[go: up one dir, main page]

CN118476316A - Container for radiation source - Google Patents

Container for radiation source Download PDF

Info

Publication number
CN118476316A
CN118476316A CN202280084793.2A CN202280084793A CN118476316A CN 118476316 A CN118476316 A CN 118476316A CN 202280084793 A CN202280084793 A CN 202280084793A CN 118476316 A CN118476316 A CN 118476316A
Authority
CN
China
Prior art keywords
container
wall
gas
gap
guide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202280084793.2A
Other languages
Chinese (zh)
Inventor
丹尼斯·赫尔曼·卡斯帕·范班宁
D·J·M·狄莱克斯
P·A·威廉斯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ASML Holding NV
Original Assignee
ASML Holding NV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ASML Holding NV filed Critical ASML Holding NV
Publication of CN118476316A publication Critical patent/CN118476316A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05GX-RAY TECHNIQUE
    • H05G2/00Apparatus or processes specially adapted for producing X-rays, not involving X-ray tubes, e.g. involving generation of a plasma
    • H05G2/001Production of X-ray radiation generated from plasma
    • H05G2/009Auxiliary arrangements not involved in the plasma generation
    • H05G2/0094Reduction, prevention or protection from contamination; Cleaning

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • X-Ray Techniques (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Abstract

A container for an EUV radiation source, the container comprising: a guide portion for guiding the fuel chips from the plasma formation region of the radiation source toward the fuel chip removing device; a wall comprising an opening, wherein at least a portion of the guide is arranged in the opening of the wall so as to define a gap between the guide and the wall; and a gas supply system configured to supply gas into the gap to control heat transfer between the guide and the wall.

Description

用于辐射源的容器Container for radiation source

相关申请的交叉引用CROSS-REFERENCE TO RELATED APPLICATIONS

本申请要求于2021年12月22日递交的欧洲申请21217092.2的优先权,通过引用将所述欧洲申请的全部内容并入本文中。This application claims priority to European application 21217092.2 filed on December 22, 2021, the entire contents of which are incorporated herein by reference.

技术领域Technical Field

本发明涉及用于辐射源(如极紫外(EUV)辐射源)的容器,以及相关联的设备和系统。The present invention relates to containers for radiation sources, such as extreme ultraviolet (EUV) radiation sources, and associated apparatus and systems.

背景技术Background Art

光刻设备是一种被构造为将所期望的图案施加到衬底上的机器。例如,光刻设备可以用于集成电路(IC)的制造。光刻设备可以例如将图案形成装置(例如,掩模)处的图案投影到设置在衬底上的辐射敏感材料(抗蚀剂)层上。A lithographic apparatus is a machine configured to apply a desired pattern to a substrate. For example, a lithographic apparatus may be used in the manufacture of integrated circuits (ICs). A lithographic apparatus may, for example, project a pattern at a patterning device (e.g., a mask) onto a layer of radiation-sensitive material (resist) disposed on a substrate.

为了将图案投影到衬底上,光刻设备可以使用电磁辐射。这种辐射的波长确定可以形成在衬底上的特征的最小尺寸。使用极紫外(EUV)辐射(具有在4nm至20nm范围内的波长,例如6.7nm或13.5nm)的光刻设备可以被用于在衬底上形成与使用例如具有193nm波长的辐射的光刻设备相比更小的特征。To project a pattern onto a substrate, a lithographic apparatus may use electromagnetic radiation. The wavelength of this radiation determines the minimum size of a feature that can be formed on the substrate. A lithographic apparatus using extreme ultraviolet (EUV) radiation (having a wavelength in the range of 4 nm to 20 nm, such as 6.7 nm or 13.5 nm) can be used to form smaller features on a substrate than a lithographic apparatus using, for example, radiation having a wavelength of 193 nm.

光刻系统可以包括辐射源、束传递系统和光刻设备。束传递系统可以被布置成将EUV辐射从辐射源传递到光刻设备。The lithographic system may comprise a radiation source, a beam delivery system and a lithographic apparatus.The beam delivery system may be arranged to deliver EUV radiation from the radiation source to the lithographic apparatus.

可以使用等离子体产生EUV辐射。例如,可以通过将激光束对准辐射源中的燃料来产生等离子体。所得到的等离子体可以发射EUV辐射。燃料的一部分可能变成燃料碎片,所述燃料碎片可能积聚或沉积在辐射源的一个或更多个部件上。EUV radiation may be generated using plasma. For example, plasma may be generated by directing a laser beam at a fuel in a radiation source. The resulting plasma may emit EUV radiation. A portion of the fuel may become fuel debris, which may accumulate or deposit on one or more components of the radiation source.

沉积在辐射源的一个或更多个部件上的燃料碎片可能导致辐射源的其它部件的污染。这种污染可能导致辐射源的性能(例如,所产生的EUV辐射的质量或功率)的降低,这又可能导致相关联的光刻设备的性能的劣化。最终,在清洁或更换辐射源的部件时,这可能导致光刻设备的显著增加的停机时间。Fuel debris deposited on one or more components of the radiation source may lead to contamination of other components of the radiation source. Such contamination may lead to a reduction in the performance of the radiation source (e.g., the quality or power of the EUV radiation generated), which in turn may lead to a degradation in the performance of the associated lithographic apparatus. Ultimately, this may lead to significantly increased downtime of the lithographic apparatus while components of the radiation source are cleaned or replaced.

发明内容Summary of the invention

根据本发明的第一方面,提供了一种用于EUV辐射源的容器,所述容器包括:引导部,所述引导部用于将燃料碎片从EUV辐射源的等离子体形成区朝向燃料碎片去除装置引导;包括开口的壁,其中所述引导部的至少一部分布置在所述壁的开口中,以便在所述引导部与所述壁之间限定间隙;以及气体供给系统,所述气体供给系统被配置成将气体供给到所述间隙中以控制所述引导部与所述壁之间的热传递。According to a first aspect of the present invention, there is provided a container for an EUV radiation source, the container comprising: a guide portion for guiding fuel debris from a plasma formation region of the EUV radiation source toward a fuel debris removal device; a wall comprising an opening, wherein at least a portion of the guide portion is arranged in the opening of the wall so as to define a gap between the guide portion and the wall; and a gas supply system, the gas supply system being configured to supply gas into the gap to control heat transfer between the guide portion and the wall.

通过配置气体供应系统以将气体供应到间隙中,可以控制和/或改善引导部的冷却或加热。例如,当EUV辐射源产生EUV辐射时,可能期望冷却所述引导部。可以将气体供应到间隙中以允许将引导部冷却到例如低于可以在EUV辐射源中使用的燃料的熔化温度。在使用中,燃料碎片可能沉积在引导部上。通过将引导部冷却到低于燃料的熔化温度的温度,可以防止或减少液体燃料碎片的滴落、起泡和/或喷溅。这可以导致EUV辐射源的一个或更多个部件的污染的减少。By configuring the gas supply system to supply gas into the gap, the cooling or heating of the guide portion can be controlled and/or improved. For example, when the EUV radiation source generates EUV radiation, it may be desirable to cool the guide portion. Gas may be supplied into the gap to allow the guide portion to be cooled, for example, to a temperature below the melting temperature of a fuel that may be used in the EUV radiation source. In use, fuel fragments may be deposited on the guide portion. By cooling the guide portion to a temperature below the melting temperature of the fuel, dripping, bubbling and/or splashing of liquid fuel fragments may be prevented or reduced. This may result in a reduction in contamination of one or more components of the EUV radiation source.

额外地或替代地,当EUV辐射源产生EUV辐射时,引导部的温度可以增加到约300℃或更大。这可能导致引导部的损坏和/或腐蚀。例如,引导部可以包括金属材料或金属合金材料,如不锈钢。一些金属合金材料(如不锈钢)在约400℃或更高的温度下可能开始腐蚀和/或被损坏。例如当EUV辐射源产生EUV辐射时,通过配置气体供应系统以将气体供应到间隙中,可以控制和/或改善引导部的冷却。这可以导致引导部的腐蚀和/或损坏的减少和/或引导部的寿命的增加。例如当EUV辐射源不产生EUV辐射时,可能期望加热所述引导部,例如用以从引导部移除燃料碎片。Additionally or alternatively, when the EUV radiation source generates EUV radiation, the temperature of the guide portion may increase to about 300° C. or greater. This may result in damage and/or corrosion of the guide portion. For example, the guide portion may include a metal material or a metal alloy material, such as stainless steel. Some metal alloy materials (such as stainless steel) may begin to corrode and/or be damaged at temperatures of about 400° C. or higher. For example, when the EUV radiation source generates EUV radiation, by configuring the gas supply system to supply gas into the gap, the cooling of the guide portion may be controlled and/or improved. This may result in a reduction in corrosion and/or damage to the guide portion and/or an increase in the life of the guide portion. For example, when the EUV radiation source does not generate EUV radiation, it may be desirable to heat the guide portion, for example to remove fuel debris from the guide portion.

容器可以是或包括真空容器、压力容器、真空室或压力室等。容器可以被配置成围封EUV辐射源的真空或低压环境。术语“低压环境”可以被认为是包括处于低于大气压的压力下(例如,处于约100Pa与200Pa之间的压力下)的气体的环境。The container may be or include a vacuum container, a pressure container, a vacuum chamber or a pressure chamber, etc. The container may be configured to enclose a vacuum or low-pressure environment of an EUV radiation source. The term "low-pressure environment" may be considered to include an environment comprising a gas at a pressure lower than atmospheric pressure (e.g., at a pressure between about 100 Pa and 200 Pa).

气体供应系统可以是能够在第一配置与第二配置之间进行操作的。在第一配置中,气体供应系统可以被配置成将气体供应到间隙中,例如用以增加引导部与壁之间的热传递。在第二配置中,气体供应系统可以被配置成不供应气体到间隙中,例如用以降低引导部与壁之间的热传递。例如,在第二配置中,气体供应系统可以被配置成终止或停止将气体供应到间隙中。通过使气体供应系统在第一配置与第二配置之间进行操作,可以控制引导部与壁之间的热传递。这可以允许控制和/或改善引导部的冷却或加热。The gas supply system can be operable between a first configuration and a second configuration. In the first configuration, the gas supply system can be configured to supply gas into the gap, for example, to increase the heat transfer between the guide portion and the wall. In the second configuration, the gas supply system can be configured not to supply gas into the gap, for example, to reduce the heat transfer between the guide portion and the wall. For example, in the second configuration, the gas supply system can be configured to terminate or stop supplying gas into the gap. By operating the gas supply system between the first configuration and the second configuration, the heat transfer between the guide portion and the wall can be controlled. This can allow the cooling or heating of the guide portion to be controlled and/or improved.

例如当EUV辐射源产生EUV辐射时,气体供应系统可以被配置为以第一配置进行操作。例如当辐射源不产生EUV辐射时,气体供应系统可以被配置成以第二配置进行操作。EUV辐射源可以包括开态,在该开态中产生EUV辐射。EUV辐射源可以包括关态,在该关态中不产生EUV辐射。EUV辐射源可以在开态与关态之间进行操作。For example, when the EUV radiation source generates EUV radiation, the gas supply system can be configured to operate in a first configuration. For example, when the radiation source does not generate EUV radiation, the gas supply system can be configured to operate in a second configuration. The EUV radiation source can include an on state in which EUV radiation is generated. The EUV radiation source can include an off state in which EUV radiation is not generated. The EUV radiation source can operate between an on state and an off state.

当所述气体供应系统处于所述第一配置时所述间隙中的气体的压力可以大于当所述气体供应系统处于第二配置时所述间隙中的气体的压力。当气体供应系统处于第一配置时,间隙中的气体的压力可以在约10kPa与20kPa之间。当气体供应系统处于第二配置时,间隙中的气体的压力可以在约100Pa与200Pa之间。The pressure of the gas in the gap when the gas supply system is in the first configuration may be greater than the pressure of the gas in the gap when the gas supply system is in the second configuration. When the gas supply system is in the first configuration, the pressure of the gas in the gap may be between about 10 kPa and 20 kPa. When the gas supply system is in the second configuration, the pressure of the gas in the gap may be between about 100 Pa and 200 Pa.

气体供应系统可以被配置成控制间隙中的气体的压力,例如用以控制引导部与壁之间的热传递。气体供应系统可以被配置成基于气体的类型和间隙的尺寸中的至少一个来控制间隙中的气体的压力。The gas supply system may be configured to control the pressure of the gas in the gap, for example to control heat transfer between the guide and the wall.The gas supply system may be configured to control the pressure of the gas in the gap based on at least one of the type of gas and the size of the gap.

例如,在使用中,所述壁可能经受冷却源。例如,在使用中,引导部可能经受加热源。加热源包括加热元件。加热元件可以被配置成例如当EUV辐射源不产生EUV辐射时加热引导部。加热元件可以被包括在引导部的一部分中、或布置在引导部上。引导部可以被布置在容器中,使得例如在使用中,引导部可以经受在EUV辐射源的等离子体形成区处产生的热。For example, in use, the wall may be subjected to a cooling source. For example, in use, the guide portion may be subjected to a heating source. The heating source comprises a heating element. The heating element may be configured to heat the guide portion, for example, when the EUV radiation source does not generate EUV radiation. The heating element may be included in a part of the guide portion, or arranged on the guide portion. The guide portion may be arranged in the container so that, for example, in use, the guide portion may be subjected to heat generated at the plasma formation region of the EUV radiation source.

冷却源可以包括冷却元件。冷却元件可以被配置成冷却所述壁。冷却元件可以被包括在所述壁中或被包括在所述壁的一部分中。The cooling source may comprise a cooling element. The cooling element may be configured to cool the wall. The cooling element may be comprised in the wall or in a portion of the wall.

通过将气体供应系统配置成将气体供应到间隙中,可以更精确地控制或调整例如分别通过冷却源或加热源对引导部的冷却或加热。这可以减少或避免使用具有增加的容量的加热元件,例如,以抵消冷却源的增加的冷却容量。例如,当由EUV辐射源产生的EUV辐射的功率增加时,冷却源的容量的增加可能是必要的。通过减少或避免使用具有增加的容量的加热元件,可以减少或避免辐射源的可以布置在加热元件附近的一个或更多个部件的损坏或变形。By configuring the gas supply system to supply gas into the gap, cooling or heating of the guide, for example by the cooling source or the heating source, respectively, can be controlled or adjusted more precisely. This can reduce or avoid the use of heating elements with increased capacity, for example, to offset the increased cooling capacity of the cooling source. For example, an increase in the capacity of the cooling source may be necessary when the power of the EUV radiation generated by the EUV radiation source increases. By reducing or avoiding the use of heating elements with increased capacity, damage or deformation of one or more components of the radiation source that may be arranged near the heating element can be reduced or avoided.

气体可以包括在室温下在约0.02W/mK与0.18W/mK之间的热导率。The gas may include a thermal conductivity between about 0.02 W/mK and 0.18 W/mK at room temperature.

气体可以选自氢气、氮气和氦气中的至少一种。The gas may be selected from at least one of hydrogen, nitrogen and helium.

容器可以包括用于保持间隙中的气体的压力的至少一个限制元件或多个限制元件。至少一个限制元件、多个限制元件中的一些或全部可以布置在间隙中和/或布置在所述壁中或上。The container may comprise at least one restriction element or a plurality of restriction elements for maintaining the pressure of the gas in the gap.At least one restriction element, some or all of the restriction elements may be arranged in the gap and/or in or on the wall.

容器可以包括用于保持间隙的尺寸的至少一个间隔元件或多个间隔元件。至少一个间隔元件或多个间隔元件可以布置在引导部与所述壁之间。例如,至少一个间隔元件或多个间隔元件可以布置在引导部(例如其一部分)上和/或布置在所述壁上。The container may include at least one spacer element or a plurality of spacer elements for maintaining the size of the gap. At least one spacer element or a plurality of spacer elements may be arranged between the guide and the wall. For example, at least one spacer element or a plurality of spacer elements may be arranged on the guide (e.g. a portion thereof) and/or on the wall.

容器可以包括用于将所述气体引导到间隙中的多个入口。多个入口可以是所述壁的一部分、被包括在所述壁中或布置在所述壁中。The container may comprise a plurality of inlets for directing the gas into the gap.The plurality of inlets may be part of, comprised in or arranged in the wall.

根据本发明的第二方面,提供一种用于EUV辐射源的容器,所述容器包括:包括壁的容器模块,所述壁包括第一部分和第二部分,其中间隙被限定在所述壁的第一部分与第二部分之间;和气体供给系统,所述气体供给系统被配置成将气体供给到所述间隙中以控制所述壁的第一部分部分与第二部分之间的热传递。According to a second aspect of the present invention, there is provided a container for an EUV radiation source, the container comprising: a container module comprising a wall, the wall comprising a first portion and a second portion, wherein a gap is defined between the first portion and the second portion of the wall; and a gas supply system, the gas supply system being configured to supply gas into the gap to control heat transfer between the first portion and the second portion of the wall.

通过配置气体供应系统以将气体供应到间隙中,可以控制和/或改善所述壁的第一部分的冷却或加热。例如,当EUV辐射源产生EUV辐射时,可能期望冷却所述壁的第一部分。可以将气体供应到间隙中以允许将所述壁的第一部分冷却到例如低于可以在EUV辐射源中使用的燃料的熔化温度。在使用中,燃料碎片可能沉积在壁的第一部分上。通过将所述壁的第一部分冷却到低于燃料的熔化温度的温度,可以防止或减少液体燃料碎片的滴落、起泡和/或喷溅。这可以导致EUV辐射源的一个或更多个部件的污染的减少。例如当EUV辐射源SO不产生EUV辐射时,可能期望加热所述壁的第一部分,例如用以从所述壁的第一部分移除燃料碎片。By configuring the gas supply system to supply gas into the gap, the cooling or heating of the first portion of the wall can be controlled and/or improved. For example, when the EUV radiation source generates EUV radiation, it may be desirable to cool the first portion of the wall. Gas may be supplied into the gap to allow the first portion of the wall to be cooled, for example, to a temperature below the melting temperature of a fuel that can be used in the EUV radiation source. In use, fuel fragments may be deposited on the first portion of the wall. By cooling the first portion of the wall to a temperature below the melting temperature of the fuel, dripping, bubbling and/or splashing of liquid fuel fragments may be prevented or reduced. This may result in a reduction in contamination of one or more components of the EUV radiation source. For example, when the EUV radiation source SO does not generate EUV radiation, it may be desirable to heat the first portion of the wall, for example to remove fuel fragments from the first portion of the wall.

气体供应系统可以是能够在第一配置与第二配置之间进行操作的。在第一配置中,气体供应系统可以被配置成将气体供应到间隙中,例如用以增加所述壁的第一部分与第二部分之间的热传递。在第二配置中,气体供应系统可以被配置成不供应气体到所述间隙中,例如用以降低所述壁的第一部分与第二部分之间的热传递。例如,在第二配置中,气体供应系统可以被配置成终止或停止将气体供应到间隙中。通过使气体供应系统在第一配置与第二配置之间进行操作,可以控制所述壁的第一部分与第二部分之间的热传递。这可以允许控制和/或改善所述壁的第一部分的冷却或加热。The gas supply system can be operable between a first configuration and a second configuration. In the first configuration, the gas supply system can be configured to supply gas into the gap, for example, to increase the heat transfer between the first portion and the second portion of the wall. In the second configuration, the gas supply system can be configured not to supply gas into the gap, for example, to reduce the heat transfer between the first portion and the second portion of the wall. For example, in the second configuration, the gas supply system can be configured to terminate or stop supplying gas into the gap. By operating the gas supply system between the first configuration and the second configuration, the heat transfer between the first portion and the second portion of the wall can be controlled. This can allow control and/or improvement of the cooling or heating of the first portion of the wall.

例如当EUV辐射源产生EUV辐射时,气体供应系统可以被配置为以第一配置进行操作。例如当EUV辐射源不产生EUV辐射时,气体供应系统可以被配置成以第二配置中进行操作。EUV辐射源可以包括开态,在该开态中产生EUV辐射。EUV辐射源可以包括关态,在该关态中不产生EUV辐射。EUV辐射源可以在开状态与关状态之间进行操作。For example, when the EUV radiation source generates EUV radiation, the gas supply system can be configured to operate in a first configuration. For example, when the EUV radiation source does not generate EUV radiation, the gas supply system can be configured to operate in a second configuration. The EUV radiation source can include an on state in which EUV radiation is generated. The EUV radiation source can include an off state in which EUV radiation is not generated. The EUV radiation source can be operated between an on state and an off state.

气体供应系统可以被配置成控制间隙中的气体的压力,例如用以控制所述壁的第一部分与第二部分之间的热传递。气体供应系统可以被配置成例如基于气体的类型和间隙的尺寸中的至少一个来控制间隙中的气体的压力。The gas supply system may be configured to control the pressure of the gas in the gap, for example to control heat transfer between the first and second portions of the wall. The gas supply system may be configured to control the pressure of the gas in the gap, for example based on at least one of the type of gas and the size of the gap.

当所述气体供应系统处于所述第一配置时所述间隙中的气体的压力可以大于当所述气体供应系统处于第二配置时所述间隙中的气体的压力。当气体供应系统处于第一配置时,间隙中的气体的压力可以在约10kPa与20kPa之间。当气体供应系统处于第二配置时,间隙中的气体的压力可以在约100Pa与200Pa之间。The pressure of the gas in the gap when the gas supply system is in the first configuration may be greater than the pressure of the gas in the gap when the gas supply system is in the second configuration. When the gas supply system is in the first configuration, the pressure of the gas in the gap may be between about 10 kPa and 20 kPa. When the gas supply system is in the second configuration, the pressure of the gas in the gap may be between about 100 Pa and 200 Pa.

例如,在使用中,壁的第一部分可能经受加热源。壁的第二部分可能经受冷却源。加热源包括加热元件。例如当EUV辐射源不产生EUV辐射时,加热元件可以被配置成加热壁的第一部分。加热元件可以是所述壁的第一部分的一部分或被包括在所述壁的第一部分中。例如,在使用中,所述壁的第一部分可能经受在EUV辐射源的等离子体形成区处产生的热。冷却源可以包括冷却元件。冷却元件可以被配置成冷却所述壁的第二部分。冷却元件可以是所述壁的第二部分的一部分或被包括在所述壁的第二部分中。For example, in use, a first portion of the wall may be subjected to a heating source. A second portion of the wall may be subjected to a cooling source. The heating source comprises a heating element. For example, when the EUV radiation source does not generate EUV radiation, the heating element may be configured to heat the first portion of the wall. The heating element may be part of the first portion of the wall or included in the first portion of the wall. For example, in use, the first portion of the wall may be subjected to heat generated at a plasma formation region of the EUV radiation source. The cooling source may comprise a cooling element. The cooling element may be configured to cool the second portion of the wall. The cooling element may be part of the second portion of the wall or included in the second portion of the wall.

所述气体可以包括在室温下在约0.02W/mK与0.18W/mK之间的热导率。The gas may include a thermal conductivity between about 0.02 W/mK and 0.18 W/mK at room temperature.

所述气体可以选自氢气、氮气和氦气中的至少一种。The gas may be selected from at least one of hydrogen, nitrogen and helium.

容器可以包括用于保持间隙中的气体的压力的至少一个限制元件或多个限制元件。至少一个限制元件、多个限制元件中的至少一些或全部可以布置在间隙中和/或布置在所述壁上,例如布置在所述壁的第一部分和/或第二部分上。The container may include at least one restriction element or a plurality of restriction elements for maintaining the pressure of the gas in the gap. At least one restriction element, at least some or all of the restriction elements may be arranged in the gap and/or on the wall, for example, on the first part and/or the second part of the wall.

容器可以包括用于保持间隙的尺寸的至少一个间隔元件或多个间隔元件。至少一个间隔元件或多个间隔元件可以布置在所述壁的第一部分与第二部分之间。至少一个间隔元件、多个间隔元件中的至少一些或全部可以布置在所述壁的第一部分和/或第二部分上。The container may include at least one spacer element or a plurality of spacer elements for maintaining the size of the gap. The at least one spacer element or a plurality of spacer elements may be arranged between the first portion and the second portion of the wall. At least some or all of the at least one spacer element or a plurality of spacer elements may be arranged on the first portion and/or the second portion of the wall.

容器可以包括用于将所述气体引导到间隙中的多个入口。多个入口可以布置在所述壁中,例如布置在壁的第一部分和/或第二部分中。The container may comprise a plurality of inlets for directing the gas into the gap.The plurality of inlets may be arranged in the wall, for example in the first part and/or the second part of the wall.

容器模块可以被配置成在EUV辐射源的等离子体形成区附近进行使用。例如,容器模块可以被配置成围绕EUV辐射源的等离子体形成区。The container module may be configured for use in the vicinity of a plasma formation region of an EUV radiation source.For example, the container module may be configured to surround a plasma formation region of an EUV radiation source.

容器模块可以被配置成在由EUV辐射源产生的EUV辐射的中间焦点附近进行使用。The container module may be configured for use near an intermediate focus of EUV radiation generated by the EUV radiation source.

容器模块可以包括引导部,所述引导部用于将燃料碎片从EUV辐射源的等离子体形成区朝向燃料碎片去除装置引导。The containment module may include a guide for directing the fuel debris from the plasma formation region of the EUV radiation source towards the fuel debris removal device.

容器模块可以包括用于从EUV辐射源的至少一个部件收集燃料的储存器。容器模块可以包括用于向EUV辐射源的至少一个部件供应燃料的另一储存器。The container module may comprise a reservoir for collecting fuel from at least one component of the EUV radiation source.The container module may comprise a further reservoir for supplying fuel to at least one component of the EUV radiation source.

根据本发明的第三方面,提供了一种EUV辐射源,所述EUV辐射源包括根据第一方面和/或第二方面的容器。According to a third aspect of the present invention, there is provided an EUV radiation source, comprising the container according to the first aspect and/or the second aspect.

根据本发明的第四方面,提供了一种光刻系统,所述光刻设备包括根据第三方面的EUV辐射源和光刻设备。According to a fourth aspect of the present invention, there is provided a lithography system, the lithography apparatus comprising an EUV radiation source according to the third aspect and a lithography apparatus.

根据本发明的第五方面,提供了一种用于在容器中使用的引导部,所述引导部被配置成使得当所述引导部的至少一部分布置在所述容器的壁的开口中时,在所述容器的所述壁与所述引导部之间限定有间隙。According to a fifth aspect of the present invention, there is provided a guide portion for use in a container, the guide portion being configured such that when at least a portion of the guide portion is arranged in an opening in a wall of the container, a gap is defined between the wall of the container and the guide portion.

容器可以是或包括用于EUV辐射源的容器。例如,当引导部的至少一部分被布置在容器的壁的开口中时,引导部可以被配置成将燃料碎片从EUV辐射源的等离子体形成区朝向燃料碎片去除装置引导。The container may be or include a container for an EUV radiation source. For example, when at least a portion of the guide is arranged in an opening in a wall of the container, the guide may be configured to guide fuel debris from a plasma formation region of the EUV radiation source towards the fuel debris removal device.

引导部可以包括第一部分和第二部分。引导部的第一部分可以被配置成布置在容器的壁的开口中。引导部的第一部分可以包括与容器的壁的开口的形状相对应的形状。引导部可以被配置成使得引导部的第一部分的大小或尺寸小于容器的壁的开口的大小或尺寸。这可以允许在引导部的至少第一部分与容器的壁的开口之间限定或形成间隙。The guide portion may include a first portion and a second portion. The first portion of the guide portion may be configured to be arranged in an opening of the wall of the container. The first portion of the guide portion may include a shape corresponding to the shape of the opening of the wall of the container. The guide portion may be configured such that the size or dimensions of the first portion of the guide portion are smaller than the size or dimensions of the opening of the wall of the container. This may allow a gap to be defined or formed between at least the first portion of the guide portion and the opening of the wall of the container.

引导部可以被配置成使得引导部的第二部分从引导部的第一部分突出或延伸。例如,第二部分可以从第一部分垂直地(例如基本上垂直地)延伸。第二部分可以包括对应于容器壁的形状,例如弯曲形状。引导部可以被配置成使得当引导部的一部分(例如第一部分)被布置在容器的壁的开口中时,第二部分平行于容器的壁(例如基本平行于容器的壁)延伸。引导部可以被配置成使得当引导部的一部分(例如第一部分)被布置在容器的壁的开口中时,间隙被限定或形成在引导部的至少第二部分与容器的壁之间。The guide portion may be configured so that the second portion of the guide portion protrudes or extends from the first portion of the guide portion. For example, the second portion may extend vertically (e.g., substantially vertically) from the first portion. The second portion may include a shape corresponding to the container wall, such as a curved shape. The guide portion may be configured so that when a portion of the guide portion (e.g., the first portion) is arranged in an opening in the wall of the container, the second portion extends parallel to the wall of the container (e.g., substantially parallel to the wall of the container). The guide portion may be configured so that when a portion of the guide portion (e.g., the first portion) is arranged in an opening in the wall of the container, a gap is defined or formed between at least the second portion of the guide portion and the wall of the container.

上面或下面阐述的本发明的各个方面和特征可以与本发明的各个其它方面和特征组合,这对于本领域技术人员来说是明显的。It will be apparent to those skilled in the art that the various aspects and features of the present invention set out above or below may be combined with various other aspects and features of the present invention.

附图说明BRIEF DESCRIPTION OF THE DRAWINGS

现在将参考随附的示意性附图,仅通过举例的方式,描述本发明的实施例,在附图中:Embodiments of the invention will now be described, by way of example only, with reference to the accompanying schematic drawings, in which:

图1描绘了包括光刻设备和辐射源的光刻系统;FIG1 depicts a lithography system including a lithographic apparatus and a radiation source;

图2描绘了与图1的辐射源一起使用的示例性容器;FIG. 2 depicts an exemplary container for use with the radiation source of FIG. 1 ;

图3描绘了图2的容器的示例性引导部和壁的一部分的剖视图;FIG3 depicts a cross-sectional view of an exemplary guide and a portion of a wall of the container of FIG2 ;

图4描绘了图2的容器的示例性引导部和壁的一部分的剖视图;FIG4 depicts a cross-sectional view of an exemplary guide and a portion of a wall of the container of FIG2 ;

图5描绘了图2的容器的示例性引导部和壁的一部分的剖视图;FIG5 depicts a cross-sectional view of an exemplary guide and a portion of a wall of the container of FIG2;

图6描绘了与图2的容器一起使用的示例性引导部;FIG. 6 depicts an exemplary guide for use with the container of FIG. 2 ;

图7描绘了与图2的容器一起使用的示例性引导部;FIG. 7 depicts an exemplary guide for use with the container of FIG. 2 ;

图8描绘了用于在图2的容器中使用的示例性容器模块,其中引导部被移除;FIG8 depicts an exemplary container module for use in the container of FIG2 with the guide removed;

图9描绘了用于图2的容器的示例性容器模块,其中引导部的一部分布置在壁的开口中;FIG. 9 depicts an exemplary container module for the container of FIG. 2 , wherein a portion of the guide is disposed in an opening of the wall;

图10描绘了在图2的容器中使用的多个间隔元件的示例性布置的平面图;FIG10 depicts a plan view of an exemplary arrangement of a plurality of spacer elements for use in the container of FIG2 ;

图11描绘了多个间隔元件的另一示例性布置的剖视图;FIG11 depicts a cross-sectional view of another exemplary arrangement of a plurality of spacer elements;

图12描绘了布置在图2的容器的壁的开口中的引导部的第一部分的剖视图;12 depicts a cross-sectional view of a first portion of a guide disposed in an opening in the wall of the container of FIG. 2 ;

图13描绘了布置在图12的壁的开口中的引导部的第一部分的剖视图的一部分;FIG. 13 depicts a portion of a cross-sectional view of a first portion of a guide disposed in an opening in the wall of FIG. 12 ;

图14描绘了在图2的辐射源的容器中使用的示例性容器模块;FIG. 14 depicts an exemplary container module for use in the container of the radiation source of FIG. 2 ;

图15描绘了用于在图2的辐射源的容器中使用的另一示例性容器模块;以及FIG. 15 depicts another exemplary container module for use in the container of the radiation source of FIG. 2 ; and

图16描绘了在图2的辐射源的容器中使用的另一示例性容器模块。FIG. 16 depicts another exemplary container module for use in the container of the radiation source of FIG. 2 .

具体实施方式DETAILED DESCRIPTION

图1示出了包括辐射源SO和光刻设备LA的光刻系统。所述辐射源SO被配置成产生EUV辐射束B并用于向所述光刻设备LA供应所述EUV辐射束B。所述光刻设备LA包括照射系统IL、配置成支撑图案形成装置MA(例如掩模)的支撑结构MT、投影系统PS、以及配置成支撑衬底W的衬底台WT。Fig. 1 shows a lithographic system comprising a radiation source SO and a lithographic apparatus LA. The radiation source SO is configured to generate an EUV radiation beam B and for supplying the EUV radiation beam B to the lithographic apparatus LA. The lithographic apparatus LA comprises an illumination system IL, a support structure MT configured to support a patterning device MA (e.g. a mask), a projection system PS, and a substrate table WT configured to support a substrate W.

所述照射系统IL被配置成在所述EUV辐射束B入射到所述图案形成装置MA上之前调节所述EUV辐射束B。此外,所述照射系统IL可以包括琢面场反射镜装置10和琢面光瞳反射镜装置11。所述琢面场反射镜装置10和琢面光瞳反射镜装置11一起为所述EUV辐射束B提供期望的横截面形状和期望的强度分布。除了所述琢面场反射镜装置10和琢面光瞳反射镜装置11以外或代替所述琢面场反射镜装置和琢面光瞳反射镜装置,所述照射系统IL可以包括其它反射镜或装置。The illumination system IL is configured to condition the EUV radiation beam B before it is incident on the patterning device MA. Furthermore, the illumination system IL may comprise a faceted field mirror arrangement 10 and a faceted pupil mirror arrangement 11. The faceted field mirror arrangement 10 and the faceted pupil mirror arrangement 11 together provide a desired cross-sectional shape and a desired intensity distribution for the EUV radiation beam B. The illumination system IL may comprise other mirrors or arrangements in addition to or instead of the faceted field mirror arrangement 10 and the faceted pupil mirror arrangement 11.

在被如此调节之后,所述EUV辐射束B与所述图案形成装置MA相互作用。由于这种相互作用,产生经图案化的EUV辐射束B’。所述投影系统PS被配置成将所述被图案化的EUV辐射束B’投影到所述衬底W上。为此,所述投影系统PS可以包括多个反射镜13、14,所述多个反射镜被配置成将所述经图案化的EUV辐射束B’投影到由所述衬底台WT保持的衬底W上。所述投影系统PS可以对所述经图案化的EUV辐射束B’施加缩小因子,从而形成其特征小于所述图案形成装置MA上的对应特征的图像MA。例如,可以应用4或8的减小因子。虽然所述投影系统PS在图1中被图示为仅具有两个反射镜13、14,但是所述投影系统PS可以包括不同数目的反射镜(例如,六个或八个反射镜)。After being so conditioned, the EUV radiation beam B interacts with the pattern forming device MA. As a result of this interaction, a patterned EUV radiation beam B' is generated. The projection system PS is configured to project the patterned EUV radiation beam B' onto the substrate W. To this end, the projection system PS may include a plurality of mirrors 13, 14, which are configured to project the patterned EUV radiation beam B' onto the substrate W held by the substrate table WT. The projection system PS may apply a reduction factor to the patterned EUV radiation beam B', thereby forming an image MA whose features are smaller than corresponding features on the pattern forming device MA. For example, a reduction factor of 4 or 8 may be applied. Although the projection system PS is illustrated in Figure 1 as having only two mirrors 13, 14, the projection system PS may include a different number of mirrors (e.g., six or eight mirrors).

所述衬底W可以包括先前形成的图案。在这种情况下,所述光刻设备LA将由所述经图案化的EUV辐射束B’形成的图像与先前在所述衬底W上形成的图案对准。The substrate W may include a previously formed pattern. In this case, the lithographic apparatus LA aligns an image formed by the patterned EUV radiation beam B' with a pattern previously formed on the substrate W.

可以在位于所述照射系统IL和/或所述投影系统PS中的所述辐射源SO中提供相对真空,即,远低于大气压的压力下的少量气体(例如氢气)。A relative vacuum, ie a small amount of gas (eg hydrogen) at a pressure well below atmospheric pressure, may be provided in the radiation source SO in the illumination system IL and/or the projection system PS.

图1中示出的辐射源SO例如是可以被称为激光产生等离子体(LPP)源的类型。激光系统1(其可以例如包括CO2激光器)被布置成经由激光束2将能量沉淀到从例如燃料发射器3提供的燃料中,所述燃料例如是锡(Sn)。虽然在下文描述中提到锡,但是可以使用任何合适的燃料。所述燃料可以例如呈液体形式,并且可以例如是金属或合金。燃料发射器3可以包括喷嘴,所述喷嘴被配置成沿朝向等离子体形成区4的轨迹引导例如呈液滴形式的锡。所述激光束2在所述等离子体形成区4处被入射到锡上。激光能量沉积到锡中,在等离子体形成区4处产生锡等离子体7。在用所述等离子体的离子对电子进行去激发和重组期间,从所述等离子体7发射包括EUV辐射的辐射。The radiation source SO shown in FIG. 1 is, for example, of a type that may be referred to as a laser produced plasma (LPP) source. A laser system 1 (which may, for example, include a CO 2 laser) is arranged to deposit energy via a laser beam 2 into a fuel provided from, for example, a fuel emitter 3, such as tin (Sn). Although tin is mentioned in the following description, any suitable fuel may be used. The fuel may, for example, be in liquid form and may, for example, be a metal or an alloy. The fuel emitter 3 may include a nozzle configured to direct tin, for example, in the form of droplets, along a trajectory toward a plasma formation region 4. The laser beam 2 is incident on the tin at the plasma formation region 4. The laser energy is deposited into the tin, generating a tin plasma 7 at the plasma formation region 4. During de-excitation and recombination of electrons with ions of the plasma, radiation including EUV radiation is emitted from the plasma 7.

来自所述等离子体的EUV辐射由收集器5收集和聚焦。收集器5包括例如近正入射辐射收集器5(有时更通常地指的是正入射辐射收集器)。所述收集器5可以具有多层反射镜结构,所述多层反射镜结构被布置成反射EUV辐射(例如,具有诸如13.5nm的期望的波长的EUV辐射)。所述收集器5可以具有椭圆形配置,所述椭圆形配置具有两个焦点。所述焦点中的第一焦点可以位于所述等离子体形成区4处,并且所述焦点中的第二焦点可以位于中间焦点6处,如下文论述的。EUV radiation from the plasma is collected and focused by a collector 5. The collector 5 includes, for example, a near normal incidence radiation collector 5 (sometimes more generally referred to as a normal incidence radiation collector). The collector 5 may have a multilayer mirror structure arranged to reflect EUV radiation (e.g., EUV radiation having a desired wavelength such as 13.5 nm). The collector 5 may have an elliptical configuration having two focal points. A first of the focal points may be located at the plasma formation region 4, and a second of the focal points may be located at an intermediate focus 6, as discussed below.

所述激光系统1可以与所述辐射源SO在空间上分开。在这种情况下,可以借助于束传递系统(未示出)将所述激光束2从所述激光系统1传递到所述辐射源SO,所述束传递系统包括例如合适的定向反射镜和/或扩束器、和/或其它光学器件。所述激光系统1、所述辐射系统SO和所述束传递系统可以一起被认为是辐射系统。The laser system 1 may be spatially separated from the radiation source SO. In this case, the laser beam 2 may be delivered from the laser system 1 to the radiation source SO by means of a beam delivery system (not shown) comprising, for example, suitable directional mirrors and/or beam expanders, and/or other optical devices. The laser system 1, the radiation system SO and the beam delivery system may together be considered a radiation system.

由所述收集器5反射的辐射形成所述EUV辐射束B。所述EUV辐射束B被聚焦在中间焦点6处,以在呈现在所述等离子体形成区4处的所述等离子体的所述中间焦点6处形成图像。所述中间焦点6处的图像用作所述照射系统IL的虚拟辐射源。所述辐射源SO被布置成使得所述中间焦点6位于所述辐射源SO的围封结构9中的开口8处或附近。The radiation reflected by the collector 5 forms the EUV radiation beam B. The EUV radiation beam B is focused at an intermediate focus 6 to form an image at the intermediate focus 6 of the plasma present at the plasma formation region 4. The image at the intermediate focus 6 serves as a virtual radiation source for the illumination system IL. The radiation source SO is arranged such that the intermediate focus 6 is located at or near an opening 8 in an enclosure 9 of the radiation source SO.

辐射源SO可以包括开态,在该开态中产生EUV辐射。辐射源SO可以包括关态,在该关态中不产生EUV辐射。辐射源SO可以在开态与关态之间进行操作。The radiation source SO may comprise an on-state, in which EUV radiation is generated. The radiation source SO may comprise an off-state, in which no EUV radiation is generated. The radiation source SO may be operable between an on-state and an off-state.

图2示出了与图1中示出的辐射源一起使用的示例性容器16。容器16可以是辐射源SO的一部分或被包括在所述辐射源中。图1中示出的围封结构9可以由容器16限定或被包括在所述容器中。术语“容器”可以被认为包括真空容器、压力容器、真空室或压力室等。换句话说,容器16可以被认为是为辐射源SO的真空或低压环境提供了外壳。如上文描述的,容器16中的气体的压力可以低于大气压。容器16可以被配置成包围辐射源SO的一个或更多个部件,如收集器5和/或燃料发射器3。FIG2 shows an exemplary container 16 for use with the radiation source shown in FIG1 . The container 16 may be part of or included in the radiation source SO. The enclosure 9 shown in FIG1 may be defined by or included in the container 16. The term "container" may be considered to include vacuum containers, pressure vessels, vacuum chambers, or pressure chambers, etc. In other words, the container 16 may be considered to provide a housing for the vacuum or low-pressure environment of the radiation source SO. As described above, the pressure of the gas in the container 16 may be lower than atmospheric pressure. The container 16 may be configured to surround one or more components of the radiation source SO, such as the collector 5 and/or the fuel emitter 3.

容器16包括引导部18,用于将燃料碎片从辐射源SO的等离子体形成区4朝向燃料碎片去除装置20引导。燃料碎片可以包括颗粒碎片,例如当锡用作燃料时,颗粒碎片例如是Sn团簇、Sn微粒、Sn纳米颗粒和/或Sn沉积物,分子和/或原子碎片,诸如Sn蒸气、SnHx蒸气、Sn原子、Sn离子。燃料碎片可以与可能存在于辐射源SO中的气体(例如氢气)混合。该燃料碎片-气体混合物可以通过引导部18被朝向碎片去除装置20引导。燃料碎片去除装置20可以被配置成将燃料碎片(例如其至少一部分)与气体分离。可以以洗涤器等的形式提供燃料碎片去除装置20。The container 16 comprises a guide 18 for guiding the fuel fragments from the plasma formation region 4 of the radiation source SO towards the fuel fragment removal device 20. The fuel fragments may include particle fragments, for example Sn clusters, Sn microparticles, Sn nanoparticles and/or Sn deposits when tin is used as fuel, molecular and/or atomic fragments, such as Sn vapor, SnHx vapor, Sn atoms, Sn ions. The fuel fragments may be mixed with a gas (for example hydrogen) that may be present in the radiation source SO. The fuel fragment-gas mixture may be guided towards the fragment removal device 20 via the guide 18. The fuel fragment removal device 20 may be configured to separate the fuel fragments (for example at least a portion thereof) from the gas. The fuel fragment removal device 20 may be provided in the form of a scrubber or the like.

容器16包括壁16a。壁16限定容器16的内表面或其一部分。壁16a包括开口16e。引导部18的至少一部分布置在壁16a的开口16e中,使得在引导部18与壁16a之间限定或形成间隙22。容器16可以包括用于将气体供应到间隙22中以控制引导部18与壁16a之间的热传递的气体供应系统24。气体供应系统24可以是碎片减缓系统(未示出)的一部分或被包括在所述碎片减缓系统中,所述碎片减缓系统可以是容器16的一部分。将理解,术语“热传递”可以与术语“热流”互换使用。The container 16 includes a wall 16a. The wall 16 defines an inner surface of the container 16 or a portion thereof. The wall 16a includes an opening 16e. At least a portion of the guide 18 is arranged in the opening 16e of the wall 16a, so that a gap 22 is defined or formed between the guide 18 and the wall 16a. The container 16 may include a gas supply system 24 for supplying gas into the gap 22 to control heat transfer between the guide 18 and the wall 16a. The gas supply system 24 may be part of or included in a debris mitigation system (not shown), which may be part of the container 16. It will be understood that the term "heat transfer" may be used interchangeably with the term "heat flow".

至少一些燃料碎片可以沉积在引导部18上,例如沉积在引导部18的至少一部分上。例如,当辐射源SO产生EUV辐射时,可能期望将引导部18的温度保持在燃料的熔化温度以下。例如,当使用锡作为燃料时,可能期望将引导部18的温度保持在低于200℃,该温度低于锡的约230℃的熔化温度。这可以防止或减少辐射源SO的一个或更多个部件(诸如收集器5)的污染。在高于燃料的熔化温度的温度下,燃料碎片可能变成液体和/或滴落或以其它方式喷射在辐射源SO的一个或更多个部件上。液体燃料碎片的喷射可以被称为喷溅。液体燃料碎片的喷射可能是由于氢自由基与液体燃料碎片之间的相互作用。例如,氢(H2)分子可能由于它们吸收热和/或EUV辐射或离子碰撞而分裂成氢自由基。换句话说,在例如EUV辐射的影响下,可以在辐射源SO中形成氢等离子体。氢等离子体可以包含反应性物质(H、H+等),所述反应性物质可以被称为氢自由基。氢自由基可以从辐射源的一个或更多个部件(例如收集器5)去除(例如蚀刻)燃料碎片。然而,已经发现,一些氢自由基(诸如H+)可以穿透液体燃料碎片层并在液体燃料碎片层内形成氢气泡。气泡可能破坏表面,并且在一个或更多个气泡随后破裂时,燃料碎片(例如颗粒燃料碎片)可能被喷射或发射到辐射源SO中。液体燃料碎片的这种起泡或喷溅可以被认为是辐射源的一个或更多个部件(诸如收集器5)的污染的重要原因。At least some of the fuel fragments may be deposited on the guide 18, for example, on at least a portion of the guide 18. For example, when the radiation source SO generates EUV radiation, it may be desirable to keep the temperature of the guide 18 below the melting temperature of the fuel. For example, when tin is used as the fuel, it may be desirable to keep the temperature of the guide 18 below 200° C., which is below the melting temperature of tin of about 230° C. This may prevent or reduce contamination of one or more components of the radiation source SO, such as the collector 5. At temperatures above the melting temperature of the fuel, the fuel fragments may become liquid and/or drip or otherwise spray on one or more components of the radiation source SO. The spraying of liquid fuel fragments may be referred to as splashing. The spraying of liquid fuel fragments may be due to the interaction between hydrogen radicals and the liquid fuel fragments. For example, hydrogen (H2) molecules may split into hydrogen radicals due to their absorption of heat and/or EUV radiation or ion collisions. In other words, under the influence of, for example, EUV radiation, a hydrogen plasma may be formed in the radiation source SO. The hydrogen plasma may contain reactive species (H, H + , etc.), which may be referred to as hydrogen radicals. The hydrogen radicals may remove (e.g., etch) fuel debris from one or more components of the radiation source (e.g., collector 5). However, it has been found that some hydrogen radicals (such as H + ) may penetrate the liquid fuel debris layer and form hydrogen bubbles within the liquid fuel debris layer. The bubbles may damage the surface, and when one or more bubbles subsequently rupture, fuel debris (e.g., particulate fuel debris) may be ejected or emitted into the radiation source SO. This bubbling or splashing of liquid fuel debris may be considered an important cause of contamination of one or more components of the radiation source (such as collector 5).

通过配置气体供应系统24以将气体供应到间隙22中,可以控制和/或改善引导部18的冷却或加热。当辐射源SO产生EUV辐射时,可能期望冷却引导部18。例如,可以将气体供应到间隙22中,以允许将引导部18冷却到低于燃料(例如锡)的熔化温度。这又可以例如通过减少液体燃料碎片的滴落、起泡和/或喷溅来减少辐射源SO的一个或更多个部件的污染。当辐射源关闭时,例如辐射源SO不产生EUV辐射时,可能期望加热引导部18,如下面将更详细地描述的那样。By configuring the gas supply system 24 to supply gas into the gap 22, the cooling or heating of the guide portion 18 can be controlled and/or improved. When the radiation source SO generates EUV radiation, it may be desirable to cool the guide portion 18. For example, gas may be supplied into the gap 22 to allow the guide portion 18 to be cooled to below the melting temperature of the fuel (e.g., tin). This in turn may reduce contamination of one or more components of the radiation source SO, for example, by reducing dripping, bubbling, and/or splashing of liquid fuel fragments. When the radiation source is off, for example, when the radiation source SO does not generate EUV radiation, it may be desirable to heat the guide portion 18, as will be described in more detail below.

当辐射源SO产生EUV辐射时,引导部18的温度增加到约300℃或更高。这可能导致引导部18的损坏和/或腐蚀。例如,引导部18可以包括金属材料或金属合金材料,诸如不锈钢。一些金属合金材料(诸如不锈钢)在约400℃或更高的温度下可能开始腐蚀和/或被损坏。通过配置气体供应系统24以将气体供应到间隙22中,可以控制和/或改善引导部18的冷却,例如当辐射源SO产生EUV辐射时。这可以导致引导部18的腐蚀和/或损坏的减少和/或导致引导部18的寿命的增加。When the radiation source SO generates EUV radiation, the temperature of the guide portion 18 increases to about 300° C. or more. This may result in damage and/or corrosion of the guide portion 18. For example, the guide portion 18 may include a metal material or a metal alloy material, such as stainless steel. Some metal alloy materials (such as stainless steel) may begin to corrode and/or be damaged at temperatures of about 400° C. or more. By configuring the gas supply system 24 to supply gas into the gap 22, the cooling of the guide portion 18 may be controlled and/or improved, for example when the radiation source SO generates EUV radiation. This may result in a reduction in corrosion and/or damage to the guide portion 18 and/or an increase in the life of the guide portion 18.

气体供应系统24可以在第一配置与第二配置之间操作。例如,气体供应系统24可以包括质量流量控制器25。质量流量控制器25可以包括可控阀25a。质量流量控制器25可以被配置成使阀25a在打开状态与关闭状态之间操作。在第一配置中,气体供应系统24可以被配置成将气体供应到间隙22中,例如用以增加引导部18与壁16a之间的热传递。换句话说,在气体供应系统24的第一配置中,可以增加引导部18与壁16a之间的热传导。这可以例如在辐射源SO产生EUV辐射时允许引导部18的冷却。在气体供应装置24的第一配置中,质量流量控制器25可以被配置成使阀25a在打开状态下操作。例如,质量流量控制器25可以被配置成打开阀25a,使得气体以目标质量流量被供应到间隙22。在该实施例中,目标质量流速可以在大约8×10-5kg/s(5l/min)的范围内。将了解,在其它实施例中,目标质量流速可以在约8×10-5kg/s(5l/min)与0.8kg/s(50l/min)之间。The gas supply system 24 can operate between a first configuration and a second configuration. For example, the gas supply system 24 can include a mass flow controller 25. The mass flow controller 25 can include a controllable valve 25a. The mass flow controller 25 can be configured to operate the valve 25a between an open state and a closed state. In the first configuration, the gas supply system 24 can be configured to supply gas into the gap 22, for example to increase the heat transfer between the guide portion 18 and the wall 16a. In other words, in the first configuration of the gas supply system 24, the heat conduction between the guide portion 18 and the wall 16a can be increased. This can, for example, allow cooling of the guide portion 18 when the radiation source SO generates EUV radiation. In the first configuration of the gas supply device 24, the mass flow controller 25 can be configured to operate the valve 25a in an open state. For example, the mass flow controller 25 can be configured to open the valve 25a so that the gas is supplied to the gap 22 at a target mass flow rate. In this embodiment, the target mass flow rate can be in the range of about 8×10 -5 kg/s (5l/min). It will be appreciated that in other embodiments, the target mass flow rate may be between about 8×10 −5 kg/s (5 1/min) and 0.8 kg/s (50 1/min).

在第二配置中,气体供应系统24可以被配置成不将气体供应到间隙22中,例如用以降低引导部18与壁16a之间的热传递。例如,在第二配置中,气体供应系统24可以被配置成终止或停止将气体供应到间隙22中。在气体供应系统24的第二配置中,引导部18与壁16a之间的热传导可以例如相对于当气体供应系统24处于第一配置中时引导部18与壁16a之间的热传导被减小。这可以例如在辐射源SO不产生EUV辐射时允许加热所述引导部18。在气体供应装置24的第二配置中,质量流量控制器25可以被配置成操作或控制所述阀处于关闭状态。当辐射源SO产生EUV辐射时,气体供应系统24可以被配置成在第一配置中操作。当辐射源SO不产生EUV辐射时,气体供应系统24可以被配置成在第二配置中操作。In the second configuration, the gas supply system 24 may be configured not to supply gas into the gap 22, for example to reduce heat transfer between the guide portion 18 and the wall 16a. For example, in the second configuration, the gas supply system 24 may be configured to terminate or stop supplying gas into the gap 22. In the second configuration of the gas supply system 24, the heat conduction between the guide portion 18 and the wall 16a may be reduced, for example, relative to the heat conduction between the guide portion 18 and the wall 16a when the gas supply system 24 is in the first configuration. This may, for example, allow heating of the guide portion 18 when the radiation source SO does not generate EUV radiation. In the second configuration of the gas supply device 24, the mass flow controller 25 may be configured to operate or control the valve to be in a closed state. When the radiation source SO generates EUV radiation, the gas supply system 24 may be configured to operate in the first configuration. When the radiation source SO does not generate EUV radiation, the gas supply system 24 may be configured to operate in the second configuration.

可以用传热系数h表示热传递:The heat transfer can be expressed by the heat transfer coefficient h:

其中q是热通量,ΔT是温度差。Where q is the heat flux and ΔT is the temperature difference.

间隙22中的气体的传热系数h可以依赖于间隙22中的气体的压力。气体供应系统24可以被配置成控制间隙22中的气体的压力,以控制引导部18与壁16a之间的热传递。例如,气体供应系统24被配置成增加或减小间隙22中的气体的压力,以增加或减小间隙22中的气体的传热系数h。例如,当气体供应系统24处于第一配置时,间隙22中的气体的压力可以大于当气体供应系统24处于第二配置时间隙22中的气体的压力。The heat transfer coefficient h of the gas in the gap 22 may depend on the pressure of the gas in the gap 22. The gas supply system 24 may be configured to control the pressure of the gas in the gap 22 to control the heat transfer between the guide portion 18 and the wall 16a. For example, the gas supply system 24 is configured to increase or decrease the pressure of the gas in the gap 22 to increase or decrease the heat transfer coefficient h of the gas in the gap 22. For example, when the gas supply system 24 is in the first configuration, the pressure of the gas in the gap 22 may be greater than the pressure of the gas in the gap 22 when the gas supply system 24 is in the second configuration.

气体可以包括在室温下在约0.02W/mK与0.18W/mK之间的热导率。气体可以包括惰性气体。气体可以选自氢气、氮气和氦气中的至少一种。在示例性实施例中,氢气可以用作所述气体。如上文描述的,氢气可以已经用于辐射源SO中。然而,将理解,在其它实施例中,可以使用其它气体,如氮气、氦气或其混合物。The gas may include a thermal conductivity between about 0.02 W/mK and 0.18 W/mK at room temperature. The gas may include an inert gas. The gas may be selected from at least one of hydrogen, nitrogen, and helium. In an exemplary embodiment, hydrogen may be used as the gas. As described above, hydrogen may have been used in the radiation source SO. However, it will be understood that in other embodiments, other gases may be used, such as nitrogen, helium, or mixtures thereof.

在使用氢气作为所述气体的实施例中,当气体供应系统24处于第一配置时,间隙22中的气体的压力可以在约10kPa(100毫巴)与20kPa(200毫巴)之间。这可以导致在大约500W/m2K和1500W/m2K之间的传热系数h。例如,当间隙22的尺寸为约0.25mm并且间隙22中的气体的压力为约15kPa时,传热系数h可以为约750W/m2K。间隙22中的气体压力的降低导致间隙22中的气体的传热系数h的降低。当气体供应系统24是第二配置时,间隙22中的气体的压力可以在约100Pa(1毫巴)与200Pa(2毫巴)之间。这可以导致在10W/m2K与100W/m2K之间的传热系数h。例如,当间隙22的尺寸为约0.25mm并且间隙22中的气体的压力为约150Pa(1.5毫巴)时,传热系数h可以为约85W/m2K。将理解,在其它实施例中,间隙中的气体的压力可以不同于上文描述的示例性压力。当气体供应系统24在第二配置中操作时,间隙22中的气体的压力减小和/或与辐射源SO(例如容器16)中的气体的压力达到平衡。例如,辐射源SO(例如容器16)中的气体的压力可以在约100Pa(1毫巴)与200Pa(2毫巴)之间,如150Pa(1.5毫巴)。引导部18可以被布置在壁16a的开口16e中,使得间隙22与辐射源SO的内部(例如辐射源SO的内部,例如容器16)可连通地联接。例如,引导部18可以布置在壁16a的开口16e中,以便允许间隙22中的一些气体泄漏或流动到容器16中。换句话说,引导部18可以布置在壁16a的开口16e中,以便允许间隙22与容器16之间的一些气体交换。这可以例如在气体供应系统24处于第二配置时,允许间隙22中的气体的压力降低和/或达到与辐射源SO(例如容器16)中的气体的压力的平衡。气体供应系统24可以被配置成例如基于气体的类型和/或间隙的尺寸来控制间隙22中的气体的压力。例如,除了氢气之外的气体可以具有不同的热导率,这可能需要间隙中的气体的不同压力以产生期望的传热系数。然而,例如当气体供应系统处于第一或第二配置时,可以将除氢气之外的气体的压力选择为与上文描述的类似或相同,以避免改变辐射源(例如容器)中的气体的压力。附加地或替代地,间隙22中的气体的传热系数h依赖于间隙22的尺寸。这样,当间隙的尺寸变化时,间隙22中的气体的传热系数h也可以变化。间隙22的尺寸可以在约0.1mm与1mm之间,如约0.25mm。例如,当间隙22中的气体的压力在大约15kPa的范围内时,对于间隙22的在大约0.1mm与1mm之间变化的尺寸,传热系数h可以在大约1700W/m2K与195W/m2K之间变化。In an embodiment using hydrogen as the gas, when the gas supply system 24 is in the first configuration, the pressure of the gas in the gap 22 may be between about 10 kPa (100 mbar) and 20 kPa (200 mbar). This may result in a heat transfer coefficient h between about 500 W/m 2 K and 1500 W/m 2 K. For example, when the size of the gap 22 is about 0.25 mm and the pressure of the gas in the gap 22 is about 15 kPa, the heat transfer coefficient h may be about 750 W/m 2 K. A reduction in the pressure of the gas in the gap 22 results in a reduction in the heat transfer coefficient h of the gas in the gap 22. When the gas supply system 24 is the second configuration, the pressure of the gas in the gap 22 may be between about 100 Pa (1 mbar) and 200 Pa (2 mbar). This may result in a heat transfer coefficient h between 10 W/m 2 K and 100 W/m 2 K. For example, when the size of the gap 22 is about 0.25 mm and the pressure of the gas in the gap 22 is about 150 Pa (1.5 millibars), the heat transfer coefficient h can be about 85 W/m 2 K. It will be appreciated that in other embodiments, the pressure of the gas in the gap can be different from the exemplary pressures described above. When the gas supply system 24 is operated in the second configuration, the pressure of the gas in the gap 22 decreases and/or reaches equilibrium with the pressure of the gas in the radiation source SO (e.g., the container 16). For example, the pressure of the gas in the radiation source SO (e.g., the container 16) can be between about 100 Pa (1 millibar) and 200 Pa (2 millibars), such as 150 Pa (1.5 millibars). The guide 18 can be arranged in the opening 16e of the wall 16a so that the gap 22 is communicatively coupled to the interior of the radiation source SO (e.g., the interior of the radiation source SO, such as the container 16). For example, the guide 18 can be arranged in the opening 16e of the wall 16a so as to allow some of the gas in the gap 22 to leak or flow into the container 16. In other words, the guide 18 may be arranged in the opening 16e of the wall 16a so as to allow some gas exchange between the gap 22 and the container 16. This may allow the pressure of the gas in the gap 22 to decrease and/or reach equilibrium with the pressure of the gas in the radiation source SO (e.g., container 16), for example, when the gas supply system 24 is in the second configuration. The gas supply system 24 may be configured to control the pressure of the gas in the gap 22, for example, based on the type of gas and/or the size of the gap. For example, gases other than hydrogen may have different thermal conductivities, which may require different pressures of the gas in the gap to produce a desired heat transfer coefficient. However, for example, when the gas supply system is in the first or second configuration, the pressure of the gas other than hydrogen may be selected to be similar or the same as described above to avoid changing the pressure of the gas in the radiation source (e.g., container). Additionally or alternatively, the heat transfer coefficient h of the gas in the gap 22 depends on the size of the gap 22. In this way, when the size of the gap changes, the heat transfer coefficient h of the gas in the gap 22 may also change. The size of the gap 22 may be between about 0.1 mm and 1 mm, such as about 0.25 mm. For example, when the pressure of the gas in the gap 22 is in the range of about 15 kPa, the heat transfer coefficient h may vary between about 1700 W/m 2 K and 195 W/m 2 K for a size of the gap 22 varying between about 0.1 mm and 1 mm.

参考图2,可以以模块化容器的形式提供容器16。例如,容器16可以包括三个模块16b、16d、16c。容器16的第一模块16b可以被布置在等离子体形成区4附近。容器16的第一模块16b可以被布置成围绕等离子体形成区4。容器16的第二模块16c可以被布置在中间焦点6附近。容器16的第三模块16d可以被布置在容器16的第一模块16b与第二模块16c之间。壁16a可以被包括在容器16的第三模块16d中。容器16的第一模块16b、第二模块16c和第三模块16d中的每个可以包括截头圆锥形状。将理解,本文公开的容器的模块不限于具有截头圆锥形状。例如,在其它实施例中,容器的模块可以各自包括圆柱形或多面体形状等。额外地或替代地,将理解,本文公开的容器不限于具有三个模块。例如,在其它实施例中,容器可以具有多于或少于三个模块。将理解,引导部18可以是或限定容器16的另一模块。Referring to FIG. 2 , the container 16 may be provided in the form of a modular container. For example, the container 16 may include three modules 16b, 16d, 16c. The first module 16b of the container 16 may be arranged near the plasma formation region 4. The first module 16b of the container 16 may be arranged to surround the plasma formation region 4. The second module 16c of the container 16 may be arranged near the intermediate focus 6. The third module 16d of the container 16 may be arranged between the first module 16b and the second module 16c of the container 16. The wall 16a may be included in the third module 16d of the container 16. Each of the first module 16b, the second module 16c, and the third module 16d of the container 16 may include a truncated cone shape. It will be understood that the modules of the container disclosed herein are not limited to having a truncated cone shape. For example, in other embodiments, the modules of the container may each include a cylindrical or polyhedral shape, etc. Additionally or alternatively, it will be understood that the container disclosed herein is not limited to having three modules. For example, in other embodiments, the container may have more or less than three modules. It will be appreciated that the guide 18 may be or define another module of the container 16 .

图3示出了引导部18和壁16a的一部分的剖视图。如可以在图3中看到的那样,间隙22被限定在引导部18与壁16a之间。例如,在使用中,壁16a可能经受冷却源。容器16可以包括多个冷却元件26,图3中示出了其中的五个。冷却元件26可以是冷却源的一部分或被包括在冷却源中。将理解,在其它实施例中,容器可以包括多于或少于五个冷却元件。冷却元件26可以是容器16的壁16a的一部分或被包括在容器16的壁16a中。冷却源可以被配置成冷却容器16的壁16a。冷却源可以被配置成将壁16a冷却到低于150℃的温度。例如,冷却源可以被配置成将壁16a冷却到在约40℃至60℃的范围的温度,如约50℃。可以以冷却剂通道的形式提供冷却元件26。冷却元件26可以被配置成用于输送冷却剂,如冷却剂流体或气体。例如,冷却剂可以包括水。壁16a可以包括金属材料或金属合金材料。金属材料或金属合金材料可以被选择为在室温下具有约200W/mK或更大的热导率,例如用以允许通过冷却源进行充分冷却。在该实施例中,金属材料或金属合金材料可以包括铝。FIG. 3 shows a cross-sectional view of a portion of the guide 18 and the wall 16a. As can be seen in FIG. 3, a gap 22 is defined between the guide 18 and the wall 16a. For example, in use, the wall 16a may be subjected to a cooling source. The container 16 may include a plurality of cooling elements 26, five of which are shown in FIG. 3. The cooling element 26 may be part of the cooling source or included in the cooling source. It will be understood that in other embodiments, the container may include more or less than five cooling elements. The cooling element 26 may be part of the wall 16a of the container 16 or included in the wall 16a of the container 16. The cooling source may be configured to cool the wall 16a of the container 16. The cooling source may be configured to cool the wall 16a to a temperature below 150°C. For example, the cooling source may be configured to cool the wall 16a to a temperature in the range of about 40°C to 60°C, such as about 50°C. The cooling element 26 may be provided in the form of a coolant channel. The cooling element 26 may be configured to convey a coolant, such as a coolant fluid or gas. For example, the coolant may include water. Wall 16a may comprise a metal material or a metal alloy material. The metal material or metal alloy material may be selected to have a thermal conductivity of about 200 W/mK or greater at room temperature, for example to allow sufficient cooling by a cooling source. In this embodiment, the metal material or metal alloy material may comprise aluminum.

例如,在使用中,引导部18可能经受加热源。引导部18可以被布置在容器16中,使得例如在使用中,引导部18经受在辐射源SO的等离子体形成区4处产生的热。在辐射源SO的等离子体形成区4处产生的热由图3中的箭头指示。该热可以导致引导部18的温度升高,例如升高到高于燃料的熔化温度。这又可能导致沉积在引导部18上的燃料碎片的滴落、喷溅和/或起泡,这可能导致辐射源SO的一个或更多个部件(诸如收集器5)的污染。如上文描述的那样,当由辐射源SO产生EUV辐射时,气体供应系统24可以在第一配置中操作。气体供应系统24将气体供应到间隙22中,例如用以增加引导部18与壁16a之间的热传递。换句话说,通过在间隙22中供应气体,热可以从引导部18传递到壁16a。这可以导致引导部18的温度降低。在示例中,在等离子体形成区4处产生的热在大约2kW的范围中,间隙22中的气体的压力可以在大约10kPa与20kPa之间。如上文描述的那样,间隙22中的气体的压力导致引导部18与壁16a之间的传热系数h在大约500W/m2K与1500W/m2K之间。因此,引导部18的温度可以被降低到低于150℃,如在约70℃与120℃之间。通过将引导部18的温度降低到150℃以下,可以减少或防止沉积在引导部18上的燃料碎片的滴落、喷溅和/或起泡。这可以导致辐射源SO的其它部件(诸如收集器5)的污染的减少。额外地或替代地,通过将引导部18的温度降低到150℃以下,可以减少引导部18的损坏、劣化和/或腐蚀。For example, in use, the guide 18 may be subjected to a heating source. The guide 18 may be arranged in the container 16 so that, for example, in use, the guide 18 is subjected to heat generated at the plasma formation region 4 of the radiation source SO. The heat generated at the plasma formation region 4 of the radiation source SO is indicated by the arrows in FIG. 3 . This heat may cause the temperature of the guide 18 to increase, for example, to increase to a temperature higher than the melting temperature of the fuel. This in turn may cause dripping, splashing and/or bubbling of fuel fragments deposited on the guide 18, which may cause contamination of one or more components of the radiation source SO (such as the collector 5). As described above, when EUV radiation is generated by the radiation source SO, the gas supply system 24 may be operated in a first configuration. The gas supply system 24 supplies gas into the gap 22, for example, to increase the heat transfer between the guide 18 and the wall 16a. In other words, by supplying gas in the gap 22, heat can be transferred from the guide 18 to the wall 16a. This may cause the temperature of the guide 18 to decrease. In an example, the heat generated at the plasma formation region 4 is in the range of about 2 kW, and the pressure of the gas in the gap 22 may be between about 10 kPa and 20 kPa. As described above, the pressure of the gas in the gap 22 results in a heat transfer coefficient h between the guide portion 18 and the wall 16a of between about 500 W/m 2 K and 1500 W/m 2 K. Therefore, the temperature of the guide portion 18 may be reduced to below 150° C., such as between about 70° C. and 120° C. By reducing the temperature of the guide portion 18 below 150° C., dripping, splashing and/or bubbling of fuel debris deposited on the guide portion 18 may be reduced or prevented. This may result in a reduction in contamination of other components of the radiation source SO, such as the collector 5. Additionally or alternatively, by reducing the temperature of the guide portion 18 below 150° C., damage, degradation and/or corrosion of the guide portion 18 may be reduced.

加热源可以包括多个加热元件28,图3中示出了其中的六个。加热元件28可以是引导部18的一部分或被包括在引导部18中。将理解,在其它实施例中,引导部可以包括多于或少于六个加热元件。例如当辐射源SO不产生EUV辐射时,加热元件28可以被配置成加热引导部18。加热元件28可以被配置成在辐射源SO的维护操作期间加热引导部18,例如用以允许从引导部18和/或辐射源SO的其它部件移除燃料碎片。加热源可以被配置成将引导部18加热到大于燃料的熔化温度的温度。在使用锡作为燃料的实施例中,加热源可以被配置成将引导部18加热到高于230℃的温度。这可以允许从引导部18移除燃料碎片。如上文描述的那样,例如当辐射源SO不产生EUV辐射时,气体供应系统24可以被配置成在第二配置中操作。在第二配置中,气体供应系统24不向间隙22供应气体,例如用以减少引导部18与壁16a之间的热传递。在这样的示例中,间隙22中的气体的压力可以在大约100Pa与200Pa之间,这可以导致在大约10W/m2K与100W/m2K之间的传热系数h。这样,可以减少引导部18与壁16a之间的热传递,例如用以允许加热元件28将引导部18加热到高于燃料的熔化温度的温度。例如,当向加热元件28施加约2kW的功率时,引导部18的温度可以增加到约270℃与330℃之间。这可以允许例如在辐射源SO的维护操作期间从引导部18移除燃料碎片。例如,燃料碎片可以变成液体并且从引导部18或其部分滴落。液体燃料碎片可以被收集在诸如燃料储存器之类的储存器中。The heating source may include a plurality of heating elements 28, six of which are shown in FIG. 3. The heating element 28 may be part of or included in the guide 18. It will be appreciated that in other embodiments, the guide may include more or less than six heating elements. The heating element 28 may be configured to heat the guide 18, for example when the radiation source SO does not generate EUV radiation. The heating element 28 may be configured to heat the guide 18 during maintenance operations of the radiation source SO, for example to allow fuel debris to be removed from the guide 18 and/or other components of the radiation source SO. The heating source may be configured to heat the guide 18 to a temperature greater than the melting temperature of the fuel. In an embodiment using tin as the fuel, the heating source may be configured to heat the guide 18 to a temperature greater than 230° C. This may allow fuel debris to be removed from the guide 18. As described above, the gas supply system 24 may be configured to operate in a second configuration, for example when the radiation source SO does not generate EUV radiation. In a second configuration, the gas supply system 24 does not supply gas to the gap 22, for example to reduce heat transfer between the guide portion 18 and the wall 16a. In such an example, the pressure of the gas in the gap 22 may be between about 100 Pa and 200 Pa, which may result in a heat transfer coefficient h between about 10 W/m 2 K and 100 W/m 2 K. In this way, heat transfer between the guide portion 18 and the wall 16a may be reduced, for example to allow the heating element 28 to heat the guide portion 18 to a temperature above the melting temperature of the fuel. For example, when a power of about 2 kW is applied to the heating element 28, the temperature of the guide portion 18 may increase to between about 270° C. and 330° C. This may allow, for example, the removal of fuel debris from the guide portion 18 during maintenance operations of the radiation source SO. For example, the fuel debris may become liquid and drip from the guide portion 18 or parts thereof. The liquid fuel debris may be collected in a reservoir such as a fuel reservoir.

通过配置气体供应系统24以将气体供应到间隙22中,可以更精确地控制或调整引导部18的冷却或加热。这可以减少或避免使用具有增加的容量的加热元件,例如用以抵消冷却源(例如冷却元件)的增加的冷却容量。例如,当由辐射源SO产生的EUV辐射的功率增加时,冷却源的容量的增加可能是必要的。通过减少或避免使用具有增加的容量的加热元件,可以减少或避免辐射源的可以布置在加热元件附近的一个或更多个部件的损坏或变形。By configuring the gas supply system 24 to supply gas into the gap 22, the cooling or heating of the guide portion 18 may be controlled or adjusted more precisely. This may reduce or avoid the use of heating elements with increased capacity, for example to offset the increased cooling capacity of the cooling source (e.g., cooling element). For example, when the power of the EUV radiation generated by the radiation source SO increases, an increase in the capacity of the cooling source may be necessary. By reducing or avoiding the use of heating elements with increased capacity, damage or deformation of one or more components of the radiation source that may be arranged near the heating element may be reduced or avoided.

图4示出了引导部18和壁16a的一部分的另一剖视图。图4中示出的实施例类似于上文关于图3所描述的实施例。因此,以上关于图3描述的任何特征也适用于图4中示出的实施例。在图4中,为了清楚起见,省略了冷却元件26。然而,将理解,在图4中示出的实施例中,容器16可以包括如上文描述的冷却元件26。FIG4 shows another cross-sectional view of a portion of the guide 18 and the wall 16a. The embodiment shown in FIG4 is similar to the embodiment described above with respect to FIG3. Therefore, any features described above with respect to FIG3 also apply to the embodiment shown in FIG4. In FIG4, the cooling element 26 is omitted for clarity. However, it will be understood that in the embodiment shown in FIG4, the container 16 may include a cooling element 26 as described above.

容器16可以包括用于保持间隙22中的气体的压力的至少一个限制元件或多个限制元件30。例如,限制元件30可以被配置成减少在间隙22中和/或沿间隙22(例如,进入辐射源SO中)的气体流,以保持间隙22中的压力。例如,当气体供应系统24处于第一配置时,限制元件30可以被配置成在间隙22中的气体的压力与辐射源SO(例如容器16)中的气体的压力之间产生压力差。可以以多个限制元件的形式提供限制元件30。在图4中示出的实施例中,限制元件30布置在间隙22中。将理解,在其它实施例中,限制元件可以布置在容器的其它部分中或上,如在壁中。The container 16 may include at least one restriction element or a plurality of restriction elements 30 for maintaining the pressure of the gas in the gap 22. For example, the restriction element 30 may be configured to reduce the gas flow in and/or along the gap 22 (e.g., into the radiation source SO) to maintain the pressure in the gap 22. For example, when the gas supply system 24 is in the first configuration, the restriction element 30 may be configured to create a pressure difference between the pressure of the gas in the gap 22 and the pressure of the gas in the radiation source SO (e.g., container 16). The restriction element 30 may be provided in the form of a plurality of restriction elements. In the embodiment shown in FIG. 4, the restriction element 30 is arranged in the gap 22. It will be understood that in other embodiments, the restriction element may be arranged in or on other parts of the container, such as in a wall.

在该实施例中,可以以波纹状结构30a的形式提供限制元件30。波纹状结构30a可以由金属或金属合金(如不锈钢)形成。波纹状结构30可以包括多个谷30b和峰30c。波纹状结构30a可以被配置成减少沿间隙22(例如在平行于(例如基本平行于)壁16a的方向上)的气体32的流量。例如,波纹状结构30a可以被配置成使得谷30b与峰之间的气体32的流量减小。然而,波纹状结构30a可以被配置成使得一些气体可以在谷30b与峰30c之间流动,例如在谷30b和峰30c附近流动。这可以防止波纹状结构30a的一个或更多个波谷30b和/或波峰30c中的压力积聚或压力下降。例如,谷30b和峰30c的尺寸可以小于间隙22的尺寸。间隙31a可以被限定在波纹状结构30(例如其谷30b)与引导部18之间,和/或间隙31b可以形成在波纹状结构30a(例如其峰30c)与壁16a之间。In this embodiment, the limiting element 30 can be provided in the form of a corrugated structure 30a. The corrugated structure 30a can be formed of a metal or a metal alloy (such as stainless steel). The corrugated structure 30 can include a plurality of valleys 30b and peaks 30c. The corrugated structure 30a can be configured to reduce the flow of the gas 32 along the gap 22 (for example, in a direction parallel to (for example, substantially parallel to) the wall 16a). For example, the corrugated structure 30a can be configured so that the flow of the gas 32 between the valley 30b and the peak is reduced. However, the corrugated structure 30a can be configured so that some gas can flow between the valley 30b and the peak 30c, for example, flow near the valley 30b and the peak 30c. This can prevent the pressure accumulation or pressure drop in one or more valleys 30b and/or peaks 30c of the corrugated structure 30a. For example, the size of the valley 30b and the peak 30c can be smaller than the size of the gap 22. Gaps 31a may be defined between the corrugated structure 30 (eg, valleys 30b thereof) and the guide 18, and/or gaps 31b may be formed between the corrugated structure 30a (eg, peaks 30c thereof) and the wall 16a.

图5示出了引导部18和壁16a的一部分的另一剖视图。图5中示出的实施例类似于上面关于图3和图4描述的实施例。因此,以上关于图3和图4描述的任何特征也适用于图5中示出的实施例。在图5中,为了清楚起见,省略了冷却元件26。然而,将理解,在图5中示出的实施例中,容器16可以包括如上文描述的冷却元件26。FIG5 shows another cross-sectional view of a portion of the guide 18 and the wall 16a. The embodiment shown in FIG5 is similar to the embodiment described above with respect to FIG3 and FIG4. Therefore, any features described above with respect to FIG3 and FIG4 also apply to the embodiment shown in FIG5. In FIG5, the cooling element 26 is omitted for clarity. However, it will be understood that in the embodiment shown in FIG5, the container 16 may include a cooling element 26 as described above.

参考图5,容器16可以包括用于将气体引导到间隙22中的多个入口34,其中五个在图5中示出。将理解,在其它实施例中,容器可以包括多于或少于五个入口。入口34可以布置在壁16a中。可以以喷嘴的形式提供入口34,喷嘴可以被布置成将气体32的流引导到间隙22中。虽然仅在图5中示出的实施例中示出入口34,但是将理解,入口34的任何特征也可以应用于上文描述的实施例。Referring to FIG5 , the container 16 may include a plurality of inlets 34 for directing gas into the gap 22, five of which are shown in FIG5 . It will be appreciated that in other embodiments, the container may include more or less than five inlets. The inlet 34 may be arranged in the wall 16 a. The inlet 34 may be provided in the form of a nozzle that may be arranged to direct the flow of the gas 32 into the gap 22. Although the inlet 34 is shown only in the embodiment shown in FIG5 , it will be appreciated that any features of the inlet 34 may also be applied to the embodiments described above.

在该实施例中,可以以多个出口30d的形式提供限制元件30。出口30d可以是壁16a的一部分。出口30d可以被配置成限制气体32离开间隙22的流动,例如用以保持间隙22中的压力。例如,可以以狭缝或孔口等的形式设置出口30c。每个出口30d的尺寸可以被选择成使得从间隙22通过出口30d的气体32的流量被限制或减小。出口30d可以各自包括密封元件(未示出),如泄漏密封元件或O形环等。出口30d可以各自包括用于减小或限制从间隙22通过出口30d的气体32的流量的密封元件。这可以允许保持间隙22中的气体的压力。将理解,出口30d可以作为波纹状结构30a的补充或替代而被使用。虽然在以上描述中,限制元件被描述为被以波纹状结构和/或出口的形式提供,但是将理解,在其它实施例中,可以使用另一结构或元件来保持间隙中的气体的压力。In this embodiment, the limiting element 30 can be provided in the form of multiple outlets 30d. The outlet 30d can be a part of the wall 16a. The outlet 30d can be configured to limit the flow of the gas 32 leaving the gap 22, for example, to maintain the pressure in the gap 22. For example, the outlet 30c can be provided in the form of a slit or an orifice, etc. The size of each outlet 30d can be selected so that the flow of the gas 32 from the gap 22 through the outlet 30d is limited or reduced. The outlet 30d can each include a sealing element (not shown), such as a leak sealing element or an O-ring, etc. The outlet 30d can each include a sealing element for reducing or limiting the flow of the gas 32 from the gap 22 through the outlet 30d. This can allow the pressure of the gas in the gap 22 to be maintained. It will be understood that the outlet 30d can be used as a supplement or alternative to the corrugated structure 30a. Although in the above description, the limiting element is described as being provided in the form of a corrugated structure and/or an outlet, it will be understood that in other embodiments, another structure or element can be used to maintain the pressure of the gas in the gap.

图6和图7示出了与容器16一起使用的示例性引导部18。引导部18可以包括第一部分18a和第二部分18b。引导部18的第一部分18a可以被配置成布置在壁16a的开口16e中。可以以管状部分或导管的形式提供引导部18的第一部分18a。引导部18的第一部分18a可以包括与壁16a的开口16e的形状相对应的形状。例如,第一部分18a可以包括圆形形状,如具有圆形横截面(例如基本上圆形的横截面)或椭圆形横截面(例如基本上椭圆形的横截面)等的形状。引导部18的第一部分18a的大小或尺寸(如半径和/或周长)可以小于容器16的壁16a的开口16e的大小或尺寸(如半径和/或周长)。这可以允许在引导部的至少第一部分18a与容器16的壁16a的开口16e之间限定或形成间隙22。6 and 7 show an exemplary guide 18 for use with a container 16. The guide 18 may include a first portion 18a and a second portion 18b. The first portion 18a of the guide 18 may be configured to be arranged in the opening 16e of the wall 16a. The first portion 18a of the guide 18 may be provided in the form of a tubular portion or a conduit. The first portion 18a of the guide 18 may include a shape corresponding to the shape of the opening 16e of the wall 16a. For example, the first portion 18a may include a circular shape, such as a shape having a circular cross-section (e.g., a substantially circular cross-section) or an elliptical cross-section (e.g., a substantially elliptical cross-section). The size or dimensions (e.g., radius and/or circumference) of the first portion 18a of the guide 18 may be smaller than the size or dimensions (e.g., radius and/or circumference) of the opening 16e of the wall 16a of the container 16. This may allow a gap 22 to be defined or formed between at least the first portion 18a of the guide and the opening 16e of the wall 16a of the container 16.

引导部18的第一部分18a可以被配置成用于连接到另一导管(未示出),所述另一导管可以被配置成将引导部18连接到燃料碎片去除装置20。The first portion 18 a of the guide portion 18 may be configured for connection to another conduit (not shown) that may be configured to connect the guide portion 18 to the fuel debris removal device 20 .

引导部18的第二部分18b可以从引导部18的第一部分18a突出或延伸。例如,引导部18的第二部分18b可以从引导部18的第一部分18a垂直地(例如基本上垂直地)延伸。引导部18的第二部分18b可以包括弯曲形状,所述弯曲形状可以对应于(例如基本上对应于)壁16a的形状。例如,当引导部18的第一部分18a布置在壁16a的开口16e中时,引导部18的第二部分18b可以平行于(例如基本上平行于)容器16的壁16a延伸,例如如图2中示出的那样。The second portion 18b of the guide portion 18 may protrude or extend from the first portion 18a of the guide portion 18. For example, the second portion 18b of the guide portion 18 may extend vertically (e.g., substantially vertically) from the first portion 18a of the guide portion 18. The second portion 18b of the guide portion 18 may include a curved shape that may correspond to (e.g., substantially correspond to) the shape of the wall 16a. For example, when the first portion 18a of the guide portion 18 is arranged in the opening 16e of the wall 16a, the second portion 18b of the guide portion 18 may extend parallel to (e.g., substantially parallel to) the wall 16a of the container 16, such as shown in FIG. 2.

加热元件28由图6和图7中的框示意性地表示。虽然在图6和图7中示出了两个框28,但是将理解,每个框可以表示一个或更多个加热元件28。加热元件28可以布置在引导部18上,例如使得当引导部18的第一部分18a布置在壁16a的开口16e中时,加热元件28位于间隙22中。例如,加热元件28可以布置在引导部18的表面18c上。当引导部18的第一部分18a布置在开口16e中时,间隙22可以被限定在引导部18的表面18c与壁16a之间。加热元件28可以布置在引导部18的表面18c上,以便例如在加热源SO的维护操作期间均匀地加热引导部18。The heating element 28 is schematically represented by the boxes in Figures 6 and 7. Although two boxes 28 are shown in Figures 6 and 7, it will be understood that each box can represent one or more heating elements 28. The heating element 28 can be arranged on the guide portion 18, for example so that when the first part 18a of the guide portion 18 is arranged in the opening 16e of the wall 16a, the heating element 28 is located in the gap 22. For example, the heating element 28 can be arranged on the surface 18c of the guide portion 18. When the first part 18a of the guide portion 18 is arranged in the opening 16e, the gap 22 can be defined between the surface 18c of the guide portion 18 and the wall 16a. The heating element 28 can be arranged on the surface 18c of the guide portion 18 so as to uniformly heat the guide portion 18, for example during maintenance operations of the heating source SO.

图8和图9示出了在图2中示出的辐射源SO的容器16中使用的示例性容器模块。可以以如上面关于图2所描述的第三容器模块16d的形式提供在图8和图9中的每个图中示出的容器模块。图8示出了移除了引导部18的第三容器模块16d。图9示出了第三容器模块16d,其中引导部18的第一部分18a布置在壁16a的开口16e中。8 and 9 show an exemplary container module for use in the container 16 of the radiation source SO shown in FIG2 . The container module shown in each of FIGS. 8 and 9 may be provided in the form of a third container module 16 d as described above with respect to FIG2 . FIG8 shows a third container module 16 d with the guide 18 removed. FIG9 shows a third container module 16 d with the first portion 18 a of the guide 18 arranged in the opening 16 e of the wall 16 a.

第三容器模块16d可以包括围封结构36。围封结构36可以被配置成围绕第三容器模块16d的壁16a。围封结构36可以形成第三容器模块16d的外表面。围封结构36可以包括开口36a。围封结构36的开口36a的尺寸和/或形状可以对应于壁16a中的开口16e的尺寸和/或形状。The third container module 16d may include an enclosure 36. The enclosure 36 may be configured to surround the wall 16a of the third container module 16d. The enclosure 36 may form an outer surface of the third container module 16d. The enclosure 36 may include an opening 36a. The size and/or shape of the opening 36a of the enclosure 36 may correspond to the size and/or shape of the opening 16e in the wall 16a.

参考图8,壁16a的开口16e可以包括圆形形状。例如,开口16e可以包括圆形横截面(例如基本上圆形的横截面)或椭圆形横截面(例如基本上椭圆形的横截面)等。8, the opening 16e of the wall 16a may include a circular shape. For example, the opening 16e may include a circular cross-section (eg, a substantially circular cross-section) or an elliptical cross-section (eg, a substantially elliptical cross-section), or the like.

当引导部18的第一部分18a布置在壁16a的开口16e中时,间隙22可以被限定在引导部18的第一部分18a与壁16a中的开口16e的周边16f之间。间隙22可以在引导部18的第一部分18a与围封结构36的开口36a(例如其周边)之间延伸。间隙22也可以被限定在引导部18的第二部分18b与壁16a(例如壁16a的部分16g)之间,这可以在图2中被最佳地看到。间隙22可以在引导部18的第二部分18b与壁16a(例如其部分16g)之间延伸。When the first portion 18a of the guide portion 18 is disposed in the opening 16e of the wall 16a, a gap 22 can be defined between the first portion 18a of the guide portion 18 and the perimeter 16f of the opening 16e in the wall 16a. The gap 22 can extend between the first portion 18a of the guide portion 18 and the opening 36a of the enclosure structure 36 (e.g., the perimeter thereof). The gap 22 can also be defined between the second portion 18b of the guide portion 18 and the wall 16a (e.g., the portion 16g of the wall 16a), which can be best seen in Figure 2. The gap 22 can extend between the second portion 18b of the guide portion 18 and the wall 16a (e.g., the portion 16g thereof).

参考图9,当引导部1 8的第一部分18a被布置在壁16a的开口16e中时,引导部18的第一部分18a可以在向外的方向上从壁16a突出。引导部1 8的第一部分18a也可以在向外的方向上从围封结构36突出。这可以便于引导部18与另一个导管和/或燃料碎片去除装置20的连接。9, when the first portion 18a of the guide portion 18 is disposed in the opening 16e of the wall 16a, the first portion 18a of the guide portion 18 may protrude from the wall 16a in an outward direction. The first portion 18a of the guide portion 18 may also protrude from the enclosure 36 in an outward direction. This may facilitate connection of the guide portion 18 with another conduit and/or the fuel debris removal device 20.

图10示出了用于在容器16中使用的多个间隔元件40的示例性布置42的平面图。多个间隔元件40可以是容器16的一部分或被包括在容器16中。多个间隔元件40可以被配置用于保持间隙22的尺寸。例如,间隔元件40可以被配置成控制间隙22的尺寸。间隔元件40被配置成例如在引导部18和/或第三容器模块16的制造期间确定间隙22的尺寸的公差。如上文描述的,间隙22的尺寸可以在约0.1mm与1mm之间,如约0.25mm。例如,间隔元件40可以是壁16a的一部分。替代地或额外地,间隔元件40可以是引导部18的一部分。FIG. 10 shows a plan view of an exemplary arrangement 42 of a plurality of spacer elements 40 for use in a container 16. A plurality of spacer elements 40 may be a part of a container 16 or included in the container 16. A plurality of spacer elements 40 may be configured to maintain the size of the gap 22. For example, the spacer elements 40 may be configured to control the size of the gap 22. The spacer elements 40 are configured to determine the tolerance of the size of the gap 22, for example, during the manufacture of the guide 18 and/or the third container module 16. As described above, the size of the gap 22 may be between about 0.1 mm and 1 mm, such as about 0.25 mm. For example, the spacer elements 40 may be a part of the wall 16 a. Alternatively or additionally, the spacer elements 40 may be a part of the guide 18.

参考图10,间隔元件40的布置42可以布置在壁16a上,例如与引导部18的第二部分18b相对。例如,当引导部18的第一部分18a布置在壁16a的开口16e中时,间隔元件40的布置42可以布置在壁16a的部分16g上,所述部分16g可以与引导部18的第二部分18b相对,如图2中示出的那样。间隔元件40可以布置在壁16a上,以延伸到间隙22中并且面向引导部18的第二部分18b。间隔元件40的布置42可以包括如上文描述的入口34和出口30d。入口34可以布置在间隔元件40中的至少两个间隔元件之间。例如,入口34可以等距地布置在间隔元件40之间。将理解,在其它实施例中,入口可以被不同地布置。出口30d可以布置成围绕间隔元件40和入口34。例如,出口30d可以布置在布置42的周边42a上。然而,将理解,在其它实施例中,出口可以被不同地布置。Referring to FIG. 10 , the arrangement 42 of the spacer elements 40 may be arranged on the wall 16a, for example, opposite the second portion 18b of the guide 18. For example, when the first portion 18a of the guide 18 is arranged in the opening 16e of the wall 16a, the arrangement 42 of the spacer elements 40 may be arranged on the portion 16g of the wall 16a, which may be opposite the second portion 18b of the guide 18, as shown in FIG. 2 . The spacer elements 40 may be arranged on the wall 16a to extend into the gap 22 and face the second portion 18b of the guide 18. The arrangement 42 of the spacer elements 40 may include an inlet 34 and an outlet 30d as described above. The inlet 34 may be arranged between at least two of the spacer elements 40. For example, the inlet 34 may be arranged equidistantly between the spacer elements 40. It will be understood that in other embodiments, the inlet may be arranged differently. The outlet 30d may be arranged around the spacer elements 40 and the inlet 34. For example, the outlets 30d may be arranged on the perimeter 42a of the arrangement 42. However, it will be appreciated that in other embodiments the outlets may be arranged differently.

图11示出了间隔元件40的另一示例性布置44的剖视图。图11中示出的布置44可以包括图10中示出的布置42的任何特征。然而,将理解,图11中示出的间隔元件40的布置44可以在壁16a的不同部分中找到适用性。例如,间隔元件40可以布置在引导部18的第一部分18a与壁16a的开口16e之间。间隔元件40可以布置在开口16e的周边16f上。间隔元件40可以布置在壁16a上,例如布置在开口16e的周边16f上,例如以便朝向开口16e的内部或中心延伸,如下文将描述的那样。将理解,在其它实施例中,间隔元件可以额外地或替代地布置在引导部上。FIG. 11 shows a cross-sectional view of another exemplary arrangement 44 of the spacer element 40. The arrangement 44 shown in FIG. 11 may include any features of the arrangement 42 shown in FIG. 10. However, it will be understood that the arrangement 44 of the spacer element 40 shown in FIG. 11 may find applicability in different parts of the wall 16a. For example, the spacer element 40 may be arranged between the first part 18a of the guide 18 and the opening 16e of the wall 16a. The spacer element 40 may be arranged on the periphery 16f of the opening 16e. The spacer element 40 may be arranged on the wall 16a, for example, on the periphery 16f of the opening 16e, for example, so as to extend toward the interior or center of the opening 16e, as will be described below. It will be understood that in other embodiments, the spacer element may be additionally or alternatively arranged on the guide.

在图10和图11中示出的示例性实施例中,每个间隔元件40可以被设置为圆形或半圆形结构的形式,如突节。然而,将理解,在其它实施例中,每个间隔元件可以具有不同的形状。间隙22的尺寸G在图11中被指示。每个间隔元件40的高度H可以由间隙22的尺寸G的一个或更多个制造公差确定。然而,将理解,每个间隔元件40的高度H可以对应于间隙22的允许尺寸G的最小值。虽然上文描述了多个间隔元件,但是将理解,在其它实施例中,容器可以包括单个或至少一个间隔元件。In the exemplary embodiment shown in Figures 10 and 11, each spacer element 40 can be arranged in the form of a circular or semicircular structure, such as a bead. However, it will be understood that in other embodiments, each spacer element can have a different shape. The dimension G of the gap 22 is indicated in Figure 11. The height H of each spacer element 40 can be determined by one or more manufacturing tolerances of the dimension G of the gap 22. However, it will be understood that the height H of each spacer element 40 can correspond to the minimum value of the allowable dimension G of the gap 22. Although a plurality of spacer elements are described above, it will be understood that in other embodiments, the container can include a single or at least one spacer element.

容器16可以包括用于将引导部18紧固到壁16a的紧固元件46。紧固元件46可以被配置成用于将引导部18可拆卸地紧固到容器16,例如用于将引导部18可拆卸地紧固到壁16a。例如,可以以螺栓和螺母布置、或螺栓和螺栓孔布置等的形式提供紧固元件46。虽然在图11中仅示出了一个紧固元件46,但是将理解,容器可以包括用于将引导部紧固到容器(例如壁)的多于一个紧固元件。The container 16 may include a fastening element 46 for fastening the guide 18 to the wall 16a. The fastening element 46 may be configured to removably fasten the guide 18 to the container 16, such as to removably fasten the guide 18 to the wall 16a. For example, the fastening element 46 may be provided in the form of a bolt and nut arrangement, or a bolt and bolt hole arrangement, etc. Although only one fastening element 46 is shown in FIG. 11 , it will be understood that the container may include more than one fastening element for fastening the guide to the container (e.g., a wall).

图12示出了布置在壁16a的开口16e中的引导部18的第一部分18a的剖视图。引导部18的第一部分18a可以同心地布置在壁16a的开口16e中。在图12在示出的示例性实施例中,三个入口34设置在壁16a中。Fig. 12 shows a cross-sectional view of the first part 18a of the guide 18 arranged in the opening 16e of the wall 16a. The first part 18a of the guide 18 can be arranged concentrically in the opening 16e of the wall 16a. In the exemplary embodiment shown in Fig. 12, three inlets 34 are provided in the wall 16a.

图13示出了布置在图12中示出的壁16a的开口16e中的引导部18的第一部分18a的剖视图的一部分。间隔元件40可以布置在引导部18a的第一部分18a与壁16a的开口16e之间。通过将间隔元件40布置在引导部18的第一部分18a与壁16a的开口16e之间,在使用中,间隔元件40可以向引导部18的第一部分18a施加张力或预张力和/或防止引导部18的至少第一部分18a膨胀。Fig. 13 shows a portion of a cross-sectional view of the first portion 18a of the guide portion 18 arranged in the opening 16e of the wall 16a shown in Fig. 12. A spacing element 40 may be arranged between the first portion 18a of the guide portion 18a and the opening 16e of the wall 16a. By arranging the spacing element 40 between the first portion 18a of the guide portion 18 and the opening 16e of the wall 16a, in use, the spacing element 40 may apply tension or pre-tension to the first portion 18a of the guide portion 18 and/or prevent at least the first portion 18a of the guide portion 18 from expanding.

间隔元件40可以布置在引导部18a的第一部分18a与壁16a的开口16e之间,例如以便朝向开口16e的中心延伸。间隔元件40可以周向地布置在壁16a的开口16e的周边16f上。将理解,在其它实施例中,间隔元件可以额外地或替代地布置在引导部上,例如布置在引导部的第一部分和/或第二部分上。The spacing element 40 may be arranged between the first portion 18a of the guide 18a and the opening 16e of the wall 16a, for example so as to extend towards the center of the opening 16e. The spacing element 40 may be arranged circumferentially on the periphery 16f of the opening 16e of the wall 16a. It will be appreciated that in other embodiments, the spacing element may be additionally or alternatively arranged on the guide, for example on the first portion and/or the second portion of the guide.

图14示出了用于容器(如图2中示出的辐射源SO的容器16)中的示例性容器模块48。如上文描述的那样,可以以第三容器模块16d的形式提供容器模块48。因此,以上关于第三容器模块16d描述的任何特征也可以应用于图14中示出的容器模块48。FIG14 shows an exemplary container module 48 for use in a container (such as the container 16 of the radiation source SO shown in FIG2 ). As described above, the container module 48 may be provided in the form of a third container module 16 d. Therefore, any features described above with respect to the third container module 16 d may also be applied to the container module 48 shown in FIG14 .

容器模块48包括壁50,壁50包括第一部分50a和第二部分50b。可以以容器模块48的内壁的形式提供壁50的第一部分50a。可以以容器模块48的外壁的形式提供第二部分50b。间隙52被限定在壁50的第一部分50a与第二部分50b之间。在图14示出的示例性实施例中,容器模块48包括引导部18,引导部18用于将燃料碎片从辐射源SO的等离子体形成区4朝向燃料碎片去除装置20引导,如上文描述的那样。然而,将理解,在其它实施例中,容器模块可以不包括引导部。壁50可以包括开口50c。引导部18的至少一部分布置在壁的开口50c中,例如使得间隙52在引导部18、壁50的第一部分50a和第二部分50b之间延伸。壁50的第二部分50b可以包括上文描述的壁16a的任何特征。The container module 48 includes a wall 50, which includes a first portion 50a and a second portion 50b. The first portion 50a of the wall 50 can be provided in the form of an inner wall of the container module 48. The second portion 50b can be provided in the form of an outer wall of the container module 48. A gap 52 is defined between the first portion 50a and the second portion 50b of the wall 50. In the exemplary embodiment shown in Figure 14, the container module 48 includes a guide 18, which is used to guide fuel fragments from the plasma formation region 4 of the radiation source SO toward the fuel fragment removal device 20, as described above. However, it will be understood that in other embodiments, the container module may not include a guide. The wall 50 may include an opening 50c. At least a portion of the guide 18 is arranged in the opening 50c of the wall, for example, so that the gap 52 extends between the guide 18, the first portion 50a of the wall 50, and the second portion 50b. The second portion 50b of the wall 50 may include any of the features of the wall 16a described above.

容器模块48可以被配置成用于连接到气体供应系统24。在该实施例中,气体供应系统24可以被配置成将气体供应到间隙52中,以控制壁50的第一部分50a与第二部分50b之间的热传递。图14中示出的气体供应系统24可以包括上文描述的气体供应系统的任何特征。将理解,在其它实施例中,气体供应系统可以是容器模块的一部分或被包括在容器模块中。The container module 48 can be configured to be connected to the gas supply system 24. In this embodiment, the gas supply system 24 can be configured to supply gas into the gap 52 to control the heat transfer between the first portion 50a and the second portion 50b of the wall 50. The gas supply system 24 shown in Figure 14 can include any of the features of the gas supply system described above. It will be understood that in other embodiments, the gas supply system can be part of the container module or included in the container module.

如上文描述的那样,气体供应系统24可以是能够在第一配置与第二配置之间进行操作的。气体供应系统24可以包括质量流量控制器25。质量流量控制器25可以包括可控阀25a。质量流量控制器25可以被配置成使阀25a在打开状态与关闭状态之间操作。在第一配置中,气体供应系统24可以被配置成将气体供应到间隙52中,例如用以增加壁50的第一部分50a与第二部分50b之间的热传递。换句话说,在气体供应系统24的第一配置中,可以增加壁50的第一部分50a与第二部分50b之间的热传导。在气体供应装置24的第一配置中,质量流量控制器25可以被配置成使阀在打开状态下操作。例如,质量流量控制器25可以被配置成打开阀25a,使得气体以目标质量流量被供应到间隙52。As described above, the gas supply system 24 may be operable between a first configuration and a second configuration. The gas supply system 24 may include a mass flow controller 25. The mass flow controller 25 may include a controllable valve 25a. The mass flow controller 25 may be configured to operate the valve 25a between an open state and a closed state. In the first configuration, the gas supply system 24 may be configured to supply gas to the gap 52, for example, to increase the heat transfer between the first part 50a and the second part 50b of the wall 50. In other words, in the first configuration of the gas supply system 24, the heat conduction between the first part 50a and the second part 50b of the wall 50 may be increased. In the first configuration of the gas supply device 24, the mass flow controller 25 may be configured to operate the valve in an open state. For example, the mass flow controller 25 may be configured to open the valve 25a so that the gas is supplied to the gap 52 at a target mass flow rate.

在第二配置中,气体供应系统24可以被配置成终止到间隙52中的气体供应,例如用以减小壁50的第一部分50a与第二部分50b之间的热流。换句话说,在第二配置中,气体供应系统24可以被配置成不将气体供应到间隙52中。在气体供应系统24的第二配置中,第一部分50a与第二部分50b之间的热传导可以例如相对于当气体供应系统24处于第一配置中时壁50的第一部分50a与第二部分50b之间的热传导被减小。在气体供应装置24的第二配置中,质量流量控制器25可以被配置成操作或控制所述阀处于关闭状态。当辐射源SO产生EUV辐射时,气体供应系统24可以以第一配置进行操作。当辐射源SO不产生EUV辐射时,气体供应系统24可以以第二配置进行操作。In the second configuration, the gas supply system 24 may be configured to terminate the supply of gas into the gap 52, for example to reduce the heat flow between the first portion 50a and the second portion 50b of the wall 50. In other words, in the second configuration, the gas supply system 24 may be configured not to supply gas into the gap 52. In the second configuration of the gas supply system 24, the heat conduction between the first portion 50a and the second portion 50b may be reduced, for example, relative to the heat conduction between the first portion 50a and the second portion 50b of the wall 50 when the gas supply system 24 is in the first configuration. In the second configuration of the gas supply device 24, the mass flow controller 25 may be configured to operate or control the valve to be in a closed state. When the radiation source SO generates EUV radiation, the gas supply system 24 may be operated in the first configuration. When the radiation source SO does not generate EUV radiation, the gas supply system 24 may be operated in the second configuration.

间隙52中的气体的传热系数可以依赖于间隙52中的气体的压力。气体供应系统24可以被配置成控制间隙52中的气体的压力,以控制壁的第一部分50a与第二部分50b之间的热传递。例如,气体供应系统24可以被配置成增加或减小间隙52中的气体的压力,以增加或减小间隙52中的气体的传热系数h。例如,当气体供应系统24处于第一配置时,间隙52中的气体的压力可以大于当气体供应系统24处于第二配置时间隙52中的气体的压力。例如,当气体供应系统24处于第一配置时,间隙52中的气体的压力可以在约10kPa与20kPa之间。例如,当气体供应系统24处于第二配置时,间隙52中的气体的压力可以在约100Pa与200Pa之间。间隙52中的气体的压力可以依赖于间隙52的尺寸和/或气体的类型。所述气体可以包括在室温下在约0.02W/mK与0.18W/mK之间的热导率。所述气体可以包括惰性气体。所述气体可以选自氢气、氮气和氦气中的至少一种。在示例性实施例中,氢气可以用作所述气体。如上文描述的,氢气可以已经用于辐射源SO中。然而,将理解,在其它实施例中,可以使用另一气体,例如氮气、氦气或其混合物。The heat transfer coefficient of the gas in the gap 52 may depend on the pressure of the gas in the gap 52. The gas supply system 24 may be configured to control the pressure of the gas in the gap 52 to control the heat transfer between the first portion 50a and the second portion 50b of the wall. For example, the gas supply system 24 may be configured to increase or decrease the pressure of the gas in the gap 52 to increase or decrease the heat transfer coefficient h of the gas in the gap 52. For example, when the gas supply system 24 is in the first configuration, the pressure of the gas in the gap 52 may be greater than the pressure of the gas in the gap 52 when the gas supply system 24 is in the second configuration. For example, when the gas supply system 24 is in the first configuration, the pressure of the gas in the gap 52 may be between about 10kPa and 20kPa. For example, when the gas supply system 24 is in the second configuration, the pressure of the gas in the gap 52 may be between about 100Pa and 200Pa. The pressure of the gas in the gap 52 may depend on the size of the gap 52 and/or the type of gas. The gas may include a thermal conductivity between about 0.02W/mK and 0.18W/mK at room temperature. The gas may include an inert gas. The gas may be selected from at least one of hydrogen, nitrogen and helium. In an exemplary embodiment, hydrogen may be used as the gas. As described above, hydrogen may have been used in the radiation source SO. However, it will be appreciated that in other embodiments, another gas may be used, such as nitrogen, helium or a mixture thereof.

如上文描述的那样,例如,在使用中,壁50可能经受冷却源。容器模块48可以包括多个冷却元件。冷却元件可以是冷却源的一部分或被包括在冷却源中。冷却元件可以是壁50的第二部分50b的一部分或被包括在壁50的第二部分50b中。容器模块48的冷却元件可以包括上文描述的冷却元件26的任何特征。As described above, for example, in use, the wall 50 may be subjected to a cooling source. The container module 48 may include a plurality of cooling elements. The cooling element may be part of the cooling source or included in the cooling source. The cooling element may be part of the second portion 50b of the wall 50 or included in the second portion 50b of the wall 50. The cooling element of the container module 48 may include any of the features of the cooling element 26 described above.

例如,在使用中,壁50的第一部分50a可能经受加热源。例如,在使用中,壁50的第一部分50a可能经受在辐射源SO的等离子体形成区4处产生的热。该热可能导致壁50的第一部分50a的温度增加到高于燃料的熔化温度。如上文描述的那样,这又可能导致沉积在壁18的第一部分50a上的燃料碎片的滴落、喷溅和/或起泡,这可能导致辐射源SO的一个或更多个部件(如收集器5)的污染。如上文描述的那样,当辐射源打开时,气体供应系统24可以以第一配置进行操作。气体供应系统24将气体供应到间隙52中,例如用以增加壁50的第一部分50a与第二部分50b之间的热传递。换句话说,通过在间隙22中供应气体,热可以从壁50的第一部分50a传递到第二部分50b。这可以导致壁50的第一部分50a的温度降低,例如降低到低于燃料的熔化温度。通过将壁的第一部分50a的温度降低到低于燃料的熔化温度,可以减少或防止沉积在壁的第一部分50a上的燃料碎片的滴落、喷溅和/或起泡。这可以导致辐射源SO的其它部件(如收集器5)的污染的减少。For example, in use, the first portion 50a of the wall 50 may be subjected to a heating source. For example, in use, the first portion 50a of the wall 50 may be subjected to heat generated at the plasma formation region 4 of the radiation source SO. The heat may cause the temperature of the first portion 50a of the wall 50 to increase to above the melting temperature of the fuel. As described above, this in turn may cause dripping, splashing and/or bubbling of fuel debris deposited on the first portion 50a of the wall 18, which may cause contamination of one or more components (such as the collector 5) of the radiation source SO. As described above, when the radiation source is turned on, the gas supply system 24 may operate in a first configuration. The gas supply system 24 supplies gas into the gap 52, for example, to increase heat transfer between the first portion 50a and the second portion 50b of the wall 50. In other words, by supplying gas in the gap 22, heat can be transferred from the first portion 50a of the wall 50 to the second portion 50b. This can cause the temperature of the first portion 50a of the wall 50 to decrease, for example, to below the melting temperature of the fuel. By lowering the temperature of the first portion 50a of the wall below the melting temperature of the fuel, dripping, splashing and/or foaming of fuel debris deposited on the first portion 50a of the wall can be reduced or prevented. This can result in reduced contamination of other components of the radiation source SO, such as the collector 5.

加热源可以包括加热元件28。加热元件28可以是壁50的第一部分50a的一部分或被包括在壁50的第一部分50a中。例如当辐射源SO不产生EUV辐射时,加热元件28可以被配置成加热壁50的第一部分50a。加热元件28可以在辐射源SO的维护操作期间加热引导部18,例如用以允许从壁的第一部分50a和/或辐射源SO的其它部件移除燃料碎片。加热元件28可以被配置成将壁50的第一部分50a加热到大于燃料的熔化温度的温度。在使用锡作为燃料的实施例中,加热源可以被配置成将壁的第一部分50a加热到高于230℃的温度。这可以允许从壁50的第一部分50a移除燃料碎片。如上文描述的那样,当辐射源SO不产生EUV辐射时,气体供应系统24可以被配置成以第二配置进行操作。在第二配置中,气体供应系统24可以不向间隙52供应气体,例如用以减小壁50的第一部分50a与第二部分50b之间的热传递。这可以允许加热元件28将壁50的第一部分50a加热到高于燃料的熔化温度的温度。这又可以允许例如在辐射源SO的维护操作期间从壁50的第一部分50a移除燃料碎片。例如,燃料碎片可以变成液体并且从壁的第一部分50或其部分滴落。液体燃料碎片可以被收集在诸如燃料储存器之类的储存器中。The heating source may include a heating element 28. The heating element 28 may be part of or included in the first portion 50a of the wall 50. For example, when the radiation source SO does not generate EUV radiation, the heating element 28 may be configured to heat the first portion 50a of the wall 50. The heating element 28 may heat the guide 18 during maintenance operations of the radiation source SO, for example to allow fuel debris to be removed from the first portion 50a of the wall and/or other components of the radiation source SO. The heating element 28 may be configured to heat the first portion 50a of the wall 50 to a temperature greater than the melting temperature of the fuel. In an embodiment using tin as the fuel, the heating source may be configured to heat the first portion 50a of the wall to a temperature greater than 230°C. This may allow fuel debris to be removed from the first portion 50a of the wall 50. As described above, when the radiation source SO does not generate EUV radiation, the gas supply system 24 may be configured to operate in a second configuration. In a second configuration, the gas supply system 24 may not supply gas to the gap 52, for example to reduce heat transfer between the first portion 50a and the second portion 50b of the wall 50. This may allow the heating element 28 to heat the first portion 50a of the wall 50 to a temperature above the melting temperature of the fuel. This in turn may allow, for example, the removal of fuel debris from the first portion 50a of the wall 50 during maintenance operations of the radiation source SO. For example, the fuel debris may become liquid and drip from the first portion 50 of the wall or portions thereof. The liquid fuel debris may be collected in a reservoir such as a fuel reservoir.

将理解,容器模块48可以包括如上文描述的限制元件、入口和/或间隔元件的任何特征。例如,限制元件可以布置在间隙52中和/或壁50的第二部分50b中。入口可以布置在壁50的第二部分50b中。间隔元件可以布置在壁50的第一部分50a和/或第二部分50b上,例如使得间隔元件延伸到间隙52中,如上文描述的那样。It will be appreciated that the container module 48 may include any of the features of the restriction element, inlet and/or spacing element as described above. For example, the restriction element may be disposed in the gap 52 and/or in the second portion 50b of the wall 50. The inlet may be disposed in the second portion 50b of the wall 50. The spacing element may be disposed on the first portion 50a and/or the second portion 50b of the wall 50, for example such that the spacing element extends into the gap 52, as described above.

虽然在本文中已经将容器模块48描述为被以第三容器模块16d的形式提供,但是将理解,在其它实施例中,可以以第一模块16b或第二模块16c的形式提供容器模块。Although the container module 48 has been described herein as being provided in the form of the third container module 16d, it will be appreciated that in other embodiments the container module may be provided in the form of the first module 16b or the second module 16c.

图15示出了在辐射源SO的容器中使用的另一示例性容器模块48。在图15中示出的实施例中,以上文描述的第一容器模块16b的形式提供容器模块48。Figure 15 shows another exemplary container module 48 for use in a container of a radiation source SO. In the embodiment shown in Figure 15, the container module 48 is provided in the form of the first container module 16b described above.

图16示出了在辐射源SO的容器中使用的另一示例性容器模块48。在图16中示出的实施例中,以上文描述的第二容器模块16c的形式提供容器模块48。Figure 16 shows another exemplary container module 48 for use in a container of a radiation source SO. In the embodiment shown in Figure 16, the container module 48 is provided in the form of the second container module 16c described above.

将理解,如图2中示出的那样,容器16的第一容器模块16b、第二容器模块16c和第三容器模块16d中的每个可以包括容器模块48的特征。在一些实施例中,模块的间隙可以彼此连通。换句话说,容器16,例如第一容器模块16b、第二容器模块16c和/或第三容器模块16d,可以被配置成使得允许第一容器模块16b、第二容器模块16c和第三容器模块16d中的一个容器模块的间隙52与第一容器模块16b、第二容器模块16c和第三容器模块16d中的至少一个其它容器模块的间隙52之间进行气体交换。在其它实施例中,容器16,例如第一容器模块16b、第二容器模块16c和/或第三容器模块16d,可以被配置成使得第一容器模块16b、第二容器模块16c和第三容器模块16d中的一个容器模块的间隙与第一容器模块16b、第二容器模块16c和第三容器模块16d中的至少一个其它容器模块的间隙之间的气体交换被阻止。第一容器模块16b、第二容器模块16c和/或第三容器模块16d可以被配置成使得可以允许第一容器模块16b、第二容器模块16c和第三容器模块16d中的至少一个容器模块的间隙52与辐射源SO(例如容器16)之间的气体交换,例如用以在气体供应系统24处于第二配置时减小间隙52中的压力。It will be understood that, as shown in FIG. 2, each of the first container module 16b, the second container module 16c, and the third container module 16d of the container 16 may include the features of the container module 48. In some embodiments, the gaps of the modules may be communicated with each other. In other words, the container 16, such as the first container module 16b, the second container module 16c, and/or the third container module 16d, may be configured so as to allow the gap 52 of one container module in the first container module 16b, the second container module 16c, and the third container module 16d to exchange gas with the gap 52 of at least one other container module in the first container module 16b, the second container module 16c, and the third container module 16d. In other embodiments, the container 16, such as the first container module 16b, the second container module 16c, and/or the third container module 16d, may be configured so that the gap of one container module in the first container module 16b, the second container module 16c, and the third container module 16d and the gap of at least one other container module in the first container module 16b, the second container module 16c, and the third container module 16d are prevented from exchanging gas between the gap. The first container module 16b, the second container module 16c and/or the third container module 16d can be configured to allow gas exchange between the gap 52 of at least one of the first container module 16b, the second container module 16c and the third container module 16d and the radiation source SO (e.g., container 16), for example to reduce the pressure in the gap 52 when the gas supply system 24 is in the second configuration.

虽然在以上描述中,可以以第一容器模块16b、第二容器模块16c和/或第三容器模块16d的形式提供容器模块48,但是将理解,本公开不限于此。例如,将理解,在其它实施例中,可以以用于向辐射源供应燃料的储存器的形式提供容器模块。可以以用于从辐射源收集燃料的另一储存器的形式提供容器模块。Although in the above description, the container module 48 can be provided in the form of the first container module 16b, the second container module 16c and/or the third container module 16d, it will be understood that the present disclosure is not limited thereto. For example, it will be understood that in other embodiments, the container module can be provided in the form of a storage for supplying fuel to the radiation source. The container module can be provided in the form of another storage for collecting fuel from the radiation source.

虽然在以上描述中,当由辐射源产生辐射时,气体供应系统以第一配置进行操作,但是将理解,在其它实施例中,当辐射源不产生辐射时,气体供应系统可以额外地或替代地以第一配置进行操作。额外地或替代地,当由辐射源产生辐射时,气体供应系统可以以第二配置进行操作。Although in the above description, the gas supply system operates in the first configuration when radiation is generated by the radiation source, it will be understood that in other embodiments, the gas supply system may additionally or alternatively operate in the first configuration when the radiation source does not generate radiation. Additionally or alternatively, the gas supply system may operate in the second configuration when radiation is generated by the radiation source.

虽然在上面的描述中使用氢气作为气体。将理解,在其它实施例中,可以使用除氢气之外的气体。例如,在其它实施例中,气体可以包括氦气、氮气或其混合物。在这样的其它实施例中,例如当气体供应系统处于第一或第二配置时,间隙中的气体的压力可以与本文公开的示例性压力相似、相同或不同。Although hydrogen is used as the gas in the above description. It will be appreciated that in other embodiments, gases other than hydrogen may be used. For example, in other embodiments, the gas may include helium, nitrogen, or a mixture thereof. In such other embodiments, for example when the gas supply system is in the first or second configuration, the pressure of the gas in the gap may be similar, the same, or different from the exemplary pressures disclosed herein.

虽然在本文中可以对光刻设备在IC制造中的使用进行具体参考,但是应理解,本文中描述的光刻设备可以具有其它应用。可能的其它应用包括集成光学系统、用于磁畴存储器的引导和检测图案、平板显示器、液晶显示器(LCD)、薄膜磁头等的制造。Although specific reference may be made herein to the use of lithographic apparatus in IC manufacturing, it should be understood that the lithographic apparatus described herein may have other applications. Possible other applications include the manufacture of integrated optical systems, guidance and detection patterns for magnetic domain memories, flat panel displays, liquid crystal displays (LCDs), thin film magnetic heads, etc.

虽然上文已经描述了本发明的具体实施例,但是将理解,可以以与所描述的不同的方式来实践本发明。上文的描述旨在是示例性的而非限制性的。因此,本领域的技术人员将明白,可以对所描述的本发明进行修改,而不脱离下文阐述的方面的范围。Although specific embodiments of the present invention have been described above, it will be appreciated that the present invention may be practiced in a manner different from that described. The above description is intended to be exemplary and not restrictive. Therefore, it will be appreciated by those skilled in the art that modifications may be made to the described invention without departing from the scope of the aspects set forth below.

方面aspect

1.一种用于EUV辐射源的容器,所述容器包括:1. A container for an EUV radiation source, the container comprising:

引导部,所述引导部用于将燃料碎片从EUV辐射源的等离子体形成区朝向燃料碎片去除装置引导;a guide portion for guiding the fuel debris from the plasma formation region of the EUV radiation source toward the fuel debris removal device;

包括开口的壁,其中所述引导部的至少一部分布置在所述壁的开口中,以便在所述引导部与所述壁之间限定间隙;以及a wall comprising an opening, wherein at least a portion of the guide portion is disposed in the opening of the wall so as to define a gap between the guide portion and the wall; and

气体供给系统,所述气体供给系统被配置成将气体供给到所述间隙中以控制所述引导部与所述壁之间的热传递。A gas supply system is configured to supply gas into the gap to control heat transfer between the guide portion and the wall.

2.根据方面1所述的容器,其中,所述气体供应系统能够在第一配置与第二配置之间进行操作,其中在所述第一配置中,所述气体供应系统被配置成将所述气体供应到所述间隙中以增加所述引导部与所述壁之间的热传递,并且其中,在所述第二配置中,所述气体供应系统被配置成不供应气体到所述间隙中以减少所述引导部与所述壁之间的热传递。2. A container according to aspect 1, wherein the gas supply system is capable of operating between a first configuration and a second configuration, wherein in the first configuration, the gas supply system is configured to supply the gas into the gap to increase heat transfer between the guide portion and the wall, and wherein, in the second configuration, the gas supply system is configured not to supply gas into the gap to reduce heat transfer between the guide portion and the wall.

3.根据方面2所述的容器,其中,所述气体供应系统被配置成当所述EUV辐射源产生EUV辐射时以所述第一配置进行操作,并且其中,所述气体供应系统被配置成当所述EUV辐射源不产生EUV辐射时以所述第二配置进行操作。3. A container according to aspect 2, wherein the gas supply system is configured to operate in the first configuration when the EUV radiation source generates EUV radiation, and wherein the gas supply system is configured to operate in the second configuration when the EUV radiation source does not generate EUV radiation.

4.根据方面2或3中任一项所述的容器,其中,当所述气体供应系统处于所述第一配置时所述间隙中的所述气体的压力大于当所述气体供应系统处于第二配置时所述间隙中的所述气体的压力。4. A container according to any one of aspects 2 or 3, wherein the pressure of the gas in the gap when the gas supply system is in the first configuration is greater than the pressure of the gas in the gap when the gas supply system is in the second configuration.

5.根据方面4所述的容器,其中,当所述气体供应系统处于所述第一配置时,所述间隙中的所述气体的压力在约10kPa与20kPa之间,并且其中,当所述气体供应系统处于所述第二配置时,所述间隙中的所述气体的压力在约100Pa与200Pa之间。5. A container according to aspect 4, wherein, when the gas supply system is in the first configuration, the pressure of the gas in the gap is between approximately 10 kPa and 20 kPa, and wherein, when the gas supply system is in the second configuration, the pressure of the gas in the gap is between approximately 100 Pa and 200 Pa.

6.根据任一前述方面所述的容器,其中,所述气体供应系统被配置成控制所述间隙中的所述气体的压力,以控制所述引导部与所述壁之间的热传递,所述气体供应系统被配置成基于气体的类型和所述间隙的尺寸中的至少一个来控制所述间隙中的所述气体的压力。6. A container according to any of the preceding aspects, wherein the gas supply system is configured to control the pressure of the gas in the gap to control heat transfer between the guide portion and the wall, and the gas supply system is configured to control the pressure of the gas in the gap based on at least one of the type of gas and the size of the gap.

7.根据任一前述方面所述的容器,其中,在使用中,所述壁经受冷却源,并且所述引导部经受加热源。7. A container according to any preceding aspect, wherein, in use, the wall is subjected to a cooling source and the guide is subjected to a heating source.

8.根据方面7所述的容器,其中,所述加热源包括加热元件,所述加热元件被配置成当所述EUV辐射源不产生EUV辐射时加热所述引导部,所述加热元件是所述引导部的一部分。8. The container of clause 7, wherein the heating source comprises a heating element configured to heat the guide portion when the EUV radiation source does not generate EUV radiation, the heating element being a part of the guide portion.

9.根据方面7或8所述的容器,其中,所述引导部被布置在所述容器中,使得在使用中,所述引导部经受在所述EUV辐射源的所述等离子体形成区处产生的热。9. A container according to aspect 7 or 8, wherein the guide portion is arranged in the container so that, in use, the guide portion is subjected to heat generated at the plasma formation region of the EUV radiation source.

10.根据方面7至9中任一项所述的容器,其中,所述冷却源包括配置成冷却所述壁的冷却元件,所述冷却元件是所述壁的一部分。10. The container according to any one of aspects 7 to 9, wherein the cooling source comprises a cooling element configured to cool the wall, the cooling element being part of the wall.

11.根据任一前述方面所述的容器,其中,所述气体包括在室温下在约0.02W/mK与0.18W/mK之间的热导率。11. The container of any preceding aspect, wherein the gas comprises a thermal conductivity between about 0.02 W/mK and 0.18 W/mK at room temperature.

12.根据任一前述方面所述的容器,其中,所述气体选自以下各项中的至少一种:氢气、氮气和氦气。12. The container according to any preceding aspect, wherein the gas is selected from at least one of the following: hydrogen, nitrogen and helium.

13.根据任一前述方面所述的容器,其中,所述容器包括用于保持所述间隙中的所述气体的压力的至少一个限制元件或多个限制元件,所述多个限制元件中的至少一些限制元件布置在所述间隙和/或所述壁中。13. A container according to any of the preceding aspects, wherein the container comprises at least one restriction element or a plurality of restriction elements for maintaining the pressure of the gas in the gap, at least some of the plurality of restriction elements being arranged in the gap and/or the wall.

14.根据任一前述方面所述的容器,其中,所述容器包括用于保持所述间隙的尺寸的多个间隔元件,所述多个间隔元件布置在所述引导部与所述壁之间。14. A container according to any preceding aspect, wherein the container comprises a plurality of spacer elements for maintaining the size of the gap, the plurality of spacer elements being arranged between the guide portion and the wall.

15.根据任一前述方面所述的容器,其中,所述容器包括用于将所述气体引导到所述间隙中的多个入口,所述多个入口布置在所述壁中。15. A container according to any preceding aspect, wherein the container comprises a plurality of inlets for directing the gas into the gap, the plurality of inlets being arranged in the wall.

16.一种EUV辐射源,包括根据任一前述方面所述的容器。16. An EUV radiation source comprising a container according to any preceding aspect.

17.一种光刻系统,包括根据方面16所述的EUV辐射源和光刻设备。17. A lithography system comprising the EUV radiation source according to clause 16 and a lithography apparatus.

Claims (15)

1.一种用于EUV辐射源的容器,所述容器包括:1. A container for an EUV radiation source, the container comprising: 引导部,所述引导部用于将燃料碎片从EUV辐射源的等离子体形成区朝向燃料碎片去除装置引导;a guide portion for guiding the fuel debris from the plasma formation region of the EUV radiation source toward the fuel debris removal device; 包括开口的壁,其中所述引导部的至少一部分布置在所述壁的开口中,以便在所述引导部与所述壁之间限定间隙;以及a wall comprising an opening, wherein at least a portion of the guide portion is disposed in the opening of the wall so as to define a gap between the guide portion and the wall; and 气体供给系统,所述气体供给系统被配置成将气体供给到所述间隙中以控制所述引导部与所述壁之间的热传递。A gas supply system is configured to supply gas into the gap to control heat transfer between the guide portion and the wall. 2.根据权利要求1所述的容器,其中,所述气体供应系统能够在第一配置与第二配置之间进行操作,其中,在所述第一配置中,所述气体供应系统被配置成将所述气体供应到所述间隙中以增加所述引导部与所述壁之间的热传递,并且其中,在所述第二配置中,所述气体供应系统被配置成不供应气体到所述间隙中以减少所述引导部与所述壁之间的热传递。2. The container of claim 1 , wherein the gas supply system is operable between a first configuration and a second configuration, wherein, in the first configuration, the gas supply system is configured to supply the gas into the gap to increase heat transfer between the guide portion and the wall, and wherein, in the second configuration, the gas supply system is configured not to supply the gas into the gap to reduce heat transfer between the guide portion and the wall. 3.根据权利要求2所述的容器,其中,所述气体供应系统被配置成当所述EUV辐射源产生EUV辐射时以所述第一配置进行操作,并且其中,所述气体供应系统被配置成当所述EUV辐射源不产生EUV辐射时以所述第二配置进行操作。3. The container of claim 2, wherein the gas supply system is configured to operate in the first configuration when the EUV radiation source generates EUV radiation, and wherein the gas supply system is configured to operate in the second configuration when the EUV radiation source does not generate EUV radiation. 4.根据权利要求2或3中任一项所述的容器,其中,当所述气体供应系统处于所述第一配置时所述间隙中的所述气体的压力大于当所述气体供应系统处于第二配置时所述间隙中的所述气体的压力。4. The container according to any one of claims 2 or 3, wherein the pressure of the gas in the gap when the gas supply system is in the first configuration is greater than the pressure of the gas in the gap when the gas supply system is in the second configuration. 5.根据权利要求4所述的容器,其中,当所述气体供应系统处于所述第一配置时,所述间隙中的所述气体的压力在约10kPa与20kPa之间,并且其中,当所述气体供应系统处于所述第二配置时,所述间隙中的所述气体的压力在约100Pa与200Pa之间。5. A container according to claim 4, wherein, when the gas supply system is in the first configuration, the pressure of the gas in the gap is between about 10 kPa and 20 kPa, and wherein, when the gas supply system is in the second configuration, the pressure of the gas in the gap is between about 100 Pa and 200 Pa. 6.根据任一前述权利要求所述的容器,其中,所述气体供应系统被配置成控制所述间隙中的所述气体的压力,以控制所述引导部与所述壁之间的热传递,所述气体供应系统被配置成基于气体的类型和所述间隙的尺寸中的至少一个来控制所述间隙中的所述气体的压力。6. A container according to any preceding claim, wherein the gas supply system is configured to control the pressure of the gas in the gap to control heat transfer between the guide portion and the wall, and the gas supply system is configured to control the pressure of the gas in the gap based on at least one of the type of gas and the size of the gap. 7.根据任一前述权利要求所述的容器,其中,在使用中,所述壁经受冷却源,并且所述引导部经受加热源。7. A container according to any preceding claim, wherein, in use, the wall is subjected to a cooling source and the guide is subjected to a heating source. 8.根据权利要求7所述的容器,其中,所述加热源包括加热元件,所述加热元件被配置成当所述EUV辐射源不产生EUV辐射时加热所述引导部,所述加热元件是所述引导部的一部分。8. The container of claim 7, wherein the heating source comprises a heating element configured to heat the guide portion when the EUV radiation source does not generate EUV radiation, the heating element being a part of the guide portion. 9.根据任一前述权利要求所述的容器,其中,所述气体包括在室温下在约0.02W/mK与0.18W/mK之间的热导率。9. The container of any preceding claim, wherein the gas comprises a thermal conductivity of between about 0.02 W/mK and 0.18 W/mK at room temperature. 10.根据任一前述权利要求所述的容器,其中,所述容器包括用于保持所述间隙中的所述气体的压力的至少一个限制元件或多个限制元件,所述多个限制元件中的至少一些限制元件布置在所述间隙中和/或布置在所述壁中。10. A container according to any preceding claim, wherein the container comprises at least one restriction element or a plurality of restriction elements for maintaining the pressure of the gas in the gap, at least some of the plurality of restriction elements being arranged in the gap and/or in the wall. 11.根据任一前述权利要求所述的容器,其中,所述容器包括用于保持所述间隙的尺寸的多个间隔元件,所述多个间隔元件布置在所述引导部与所述壁之间。11. A container according to any preceding claim, wherein the container comprises a plurality of spacer elements for maintaining the size of the gap, the plurality of spacer elements being arranged between the guide and the wall. 12.根据任一前述权利要求所述的容器,其中,所述容器包括用于将所述气体引导到所述间隙中的多个入口,所述多个入口布置在所述壁中。12. A container according to any preceding claim, wherein the container comprises a plurality of inlets for directing the gas into the gap, the plurality of inlets being arranged in the wall. 13.一种EUV辐射源,包括根据任一前述权利要求所述的容器。13. An EUV radiation source comprising a container according to any preceding claim. 14.一种光刻系统,包括根据权利要求13所述的EUV辐射源、和光刻设备。14. A lithography system comprising the EUV radiation source according to claim 13, and a lithography apparatus. 15.一种用于在容器中使用的引导部,所述引导部被配置成使得当所述引导部的至少一部分布置在所述容器的壁的开口中时,在所述容器的所述壁与所述引导部之间限定有间隙。15. A guide for use in a container, the guide being configured such that when at least a portion of the guide is disposed in an opening in a wall of the container, a gap is defined between the wall of the container and the guide.
CN202280084793.2A 2021-12-22 2022-11-11 Container for radiation source Pending CN118476316A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP21217092.2A EP4203626A1 (en) 2021-12-22 2021-12-22 Vessel for a radiation source
EP21217092.2 2021-12-22
PCT/EP2022/081585 WO2023117206A1 (en) 2021-12-22 2022-11-11 Vessel for a radiation source

Publications (1)

Publication Number Publication Date
CN118476316A true CN118476316A (en) 2024-08-09

Family

ID=79024701

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202280084793.2A Pending CN118476316A (en) 2021-12-22 2022-11-11 Container for radiation source

Country Status (3)

Country Link
EP (1) EP4203626A1 (en)
CN (1) CN118476316A (en)
WO (1) WO2023117206A1 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015086232A1 (en) * 2013-12-09 2015-06-18 Asml Netherlands B.V. Radiation source device, lithographic apparatus and device manufacturing method
NL2020238A (en) * 2017-01-06 2018-07-23 Asml Netherlands Bv Guiding device and associated system
JP7269889B2 (en) * 2017-06-23 2023-05-09 エーエスエムエル ネザーランズ ビー.ブイ. Radiation source module and lithographic apparatus

Also Published As

Publication number Publication date
WO2023117206A1 (en) 2023-06-29
EP4203626A1 (en) 2023-06-28

Similar Documents

Publication Publication Date Title
JP7465923B2 (en) Extreme ultraviolet radiation source
US11822252B2 (en) Guiding device and associated system
JP6549123B2 (en) Radiation source apparatus and lithographic apparatus
WO2018127565A2 (en) Guiding device and associated system
US6190835B1 (en) System and method for providing a lithographic light source for a semiconductor manufacturing process
KR20060122899A (en) Gas Distribution Plate Assembly for Plasma Reactor
JP7269889B2 (en) Radiation source module and lithographic apparatus
TWI809227B (en) Prevention maintenance operation method for lithography system
US11874608B2 (en) Apparatus for and method of reducing contamination from source material in an EUV light source
CN118476316A (en) Container for radiation source
TW202215906A (en) Apparatus for and method of controlling gas flow in an euv light source
TWI855055B (en) Contamination trap, debris mitigation system for use in radiation source, radiation source for producing radiation, lithographic system, and method of manufacturing of contamination trap for use in debris mitigation system of radiation source
CN114450637B (en) Radiant Pipe
EP4163721A1 (en) Chamber for a projection system of a lithographic apparatus, projection system and lithographic apparatus
TWI877241B (en) Membrane cleaning apparatus
TW202509639A (en) Nozzle for providing a gas flow and method of making the nozzle
KR20220142053A (en) Extreme ultraviolet light source including target debris collection devicee
TW202347016A (en) Assembly for a lithographic apparatus
NL2012720A (en) Radiation source device, lithographic apparatus and device manufacturing method.

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination