[go: up one dir, main page]

CN118473393A - Port driving circuit, port driving method and chip - Google Patents

Port driving circuit, port driving method and chip Download PDF

Info

Publication number
CN118473393A
CN118473393A CN202410910879.7A CN202410910879A CN118473393A CN 118473393 A CN118473393 A CN 118473393A CN 202410910879 A CN202410910879 A CN 202410910879A CN 118473393 A CN118473393 A CN 118473393A
Authority
CN
China
Prior art keywords
transistor
electrode
signal
control
control signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202410910879.7A
Other languages
Chinese (zh)
Inventor
赵慧超
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuhan Xinxin Integrated Circuit Co ltd
Original Assignee
Wuhan Xinxin Integrated Circuit Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhan Xinxin Integrated Circuit Co ltd filed Critical Wuhan Xinxin Integrated Circuit Co ltd
Priority to CN202410910879.7A priority Critical patent/CN118473393A/en
Publication of CN118473393A publication Critical patent/CN118473393A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K19/00Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits
    • H03K19/0175Coupling arrangements; Interface arrangements
    • H03K19/017509Interface arrangements
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K19/00Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits
    • H03K19/0008Arrangements for reducing power consumption
    • H03K19/0013Arrangements for reducing power consumption in field effect transistor circuits

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Logic Circuits (AREA)

Abstract

The application discloses a port driving circuit, a port driving method and a chip, wherein the port driving circuit comprises a first logic processing module, a first inversion module, a second logic processing module, a second inversion module and an output module, wherein the first control signal is generated according to a first enabling signal, a data signal and a first feedback signal, the second feedback signal is generated according to the first control signal, the second control signal is generated according to a second enabling signal, the data signal and the second feedback signal, and the first feedback signal is generated according to the second control signal, so that the potential of one of the first control signal and the second control signal is delayed to change under the condition that the potential of the data signal is inverted, and the synchronous on time of transistors with different channel types in the output module is reduced through the first control signal and the second control signal, so that the duration of short-circuit current is shortened, and the power consumption is reduced.

Description

端口驱动电路、端口驱动方法及芯片Port driving circuit, port driving method and chip

技术领域Technical Field

本申请涉及电子电路技术领域,具体涉及一种端口驱动电路、端口驱动方法及芯片。The present application relates to the technical field of electronic circuits, and in particular to a port driving circuit, a port driving method and a chip.

背景技术Background Art

端口驱动电路用于驱动对应的负载,该端口驱动电路通过输出模块来提高驱动能力。其中,输出模块可以包括连接于电源端与接地端之间的P沟道型晶体管和N沟道型晶体管。The port driving circuit is used to drive the corresponding load, and the port driving circuit improves the driving capability through the output module. The output module may include a P-channel transistor and an N-channel transistor connected between the power supply terminal and the ground terminal.

然而,在数据信号的电位发生翻转的情况下,第一控制信号控制的P沟道型晶体管和第二控制信号控制的N沟道型晶体管会出现同步导通的情况,这会产生对应的短路电流,尤其是随着数据信号的电位翻转频率和/或负载具有的电容的增大,该短路电流也随之增大。However, when the potential of the data signal is reversed, the P-channel transistor controlled by the first control signal and the N-channel transistor controlled by the second control signal will be turned on synchronously, which will generate a corresponding short-circuit current. In particular, as the potential reversal frequency of the data signal and/or the capacitance of the load increases, the short-circuit current also increases accordingly.

发明内容Summary of the invention

本申请提供一种端口驱动电路、端口驱动方法及芯片,以缓解不同沟道类型的晶体管的同步导通时间较长的技术问题。The present application provides a port driving circuit, a port driving method and a chip to alleviate the technical problem of long synchronous conduction time of transistors of different channel types.

第一方面,本申请提供一种端口驱动电路,该端口驱动电路包括第一逻辑处理模块、第一反相模块、第二逻辑处理模块、第二反相模块以及输出模块,第一逻辑处理模块用于根据第一使能信号、数据信号以及第一反馈信号生成第一控制信号;第一反相模块用于根据第一控制信号生成第二反馈信号;第二逻辑处理模块用于根据第二使能信号、数据信号以及第二反馈信号生成第二控制信号;第二反相模块用于根据第二控制信号生成第一反馈信号;输出模块用于根据第一控制信号、第二控制信号生成对应的驱动信号。In a first aspect, the present application provides a port driving circuit, which includes a first logic processing module, a first inversion module, a second logic processing module, a second inversion module and an output module, wherein the first logic processing module is used to generate a first control signal according to a first enable signal, a data signal and a first feedback signal; the first inversion module is used to generate a second feedback signal according to the first control signal; the second logic processing module is used to generate a second control signal according to the second enable signal, the data signal and the second feedback signal; the second inversion module is used to generate a first feedback signal according to the second control signal; and the output module is used to generate a corresponding driving signal according to the first control signal and the second control signal.

在其中一些实施方式中,第一逻辑处理模块包括第一逻辑处理单元和第一反馈处理单元,第一逻辑处理单元用于在第一反馈信号为低电位的情况下,输出第一使能信号与数据信号的与非逻辑运算结果作为第一控制信号;第一反馈处理单元用于在第一反馈信号、第一使能信号以及数据信号均为高电位的情况下,控制第一逻辑处理单元输出低电位的第一控制信号。In some embodiments, the first logic processing module includes a first logic processing unit and a first feedback processing unit. The first logic processing unit is used to output a NAND logic operation result of a first enable signal and a data signal as a first control signal when the first feedback signal is at a low level; the first feedback processing unit is used to control the first logic processing unit to output a low-level first control signal when the first feedback signal, the first enable signal and the data signal are all at high levels.

在其中一些实施方式中,第一逻辑处理单元包括第一晶体管、第二晶体管、第三晶体管以及第四晶体管,第一晶体管的第一极与第一电源端连接,第一晶体管的控制极接入第一使能信号,第一晶体管为P沟道型晶体管;第二晶体管的第一极与第一电源端连接,第二晶体管的控制极接入数据信号,第二晶体管为P沟道型晶体管;第三晶体管的第一极与第一晶体管的第二极、第二晶体管的第二极连接并生成第一控制信号,第三晶体管的控制极与第一晶体管的控制极连接,第三晶体管为N沟道型晶体管;第四晶体管的第一极与第三晶体管的第二极连接,第四晶体管的控制极与第二晶体管的控制极连接,第四晶体管的第二极与第一反馈处理单元连接,第四晶体管为N沟道型晶体管。In some embodiments, the first logic processing unit includes a first transistor, a second transistor, a third transistor and a fourth transistor, the first electrode of the first transistor is connected to the first power supply terminal, the control electrode of the first transistor is connected to the first enable signal, and the first transistor is a P-channel transistor; the first electrode of the second transistor is connected to the first power supply terminal, the control electrode of the second transistor is connected to the data signal, and the second transistor is a P-channel transistor; the first electrode of the third transistor is connected to the second electrode of the first transistor and the second electrode of the second transistor and generates a first control signal, the control electrode of the third transistor is connected to the control electrode of the first transistor, and the third transistor is an N-channel transistor; the first electrode of the fourth transistor is connected to the second electrode of the third transistor, the control electrode of the fourth transistor is connected to the control electrode of the second transistor, the second electrode of the fourth transistor is connected to the first feedback processing unit, and the fourth transistor is an N-channel transistor.

在其中一些实施方式中,第一反馈处理单元包括第五晶体管,第五晶体管的第一极与第四晶体管的第二极连接,第五晶体管的控制极接入第一反馈信号,第五晶体管的第二极与第二电源端连接;第五晶体管的沟道类型与第三晶体管的沟道类型或者第四晶体管的沟道类型相同。In some embodiments, the first feedback processing unit includes a fifth transistor, a first electrode of the fifth transistor is connected to the second electrode of the fourth transistor, a control electrode of the fifth transistor is connected to the first feedback signal, and the second electrode of the fifth transistor is connected to the second power supply terminal; the channel type of the fifth transistor is the same as the channel type of the third transistor or the channel type of the fourth transistor.

在其中一些实施方式中,第一反相模块包括第一电阻、第六晶体管以及第七晶体管,第一电阻的一端与第一电源端连接;第六晶体管的第一极与第一电阻的另一端连接,第六晶体管的控制极接入第一控制信号,第六晶体管为P沟道型晶体管;第七晶体管的第一极与第六晶体管的第二极连接并生成第二反馈信号,第七晶体管的控制极与第六晶体管的控制极连接,第七晶体管的第二极与第二电源端连接,第七晶体管的沟道类型与第六晶体管的沟道类型不同。In some embodiments, the first inverting module includes a first resistor, a sixth transistor and a seventh transistor, one end of the first resistor is connected to the first power supply terminal; the first electrode of the sixth transistor is connected to the other end of the first resistor, the control electrode of the sixth transistor is connected to the first control signal, and the sixth transistor is a P-channel transistor; the first electrode of the seventh transistor is connected to the second electrode of the sixth transistor and generates a second feedback signal, the control electrode of the seventh transistor is connected to the control electrode of the sixth transistor, the second electrode of the seventh transistor is connected to the second power supply terminal, and the channel type of the seventh transistor is different from the channel type of the sixth transistor.

在其中一些实施方式中,第二逻辑处理模块包括第二逻辑处理单元、第二反馈处理单元,第二逻辑处理单元用于在第二反馈信号为高电位的情况下,输出第二使能信号与数据信号的或非逻辑运算结果作为第二控制信号;第二反馈处理单元用于在第二反馈信号、第二使能信号以及数据信号均为低电位的情况下,控制第二逻辑处理单元输出高电位的第二控制信号。In some embodiments, the second logic processing module includes a second logic processing unit and a second feedback processing unit. The second logic processing unit is used to output the OR-NOT logical operation result of the second enable signal and the data signal as the second control signal when the second feedback signal is at a high voltage; the second feedback processing unit is used to control the second logic processing unit to output a high-voltage second control signal when the second feedback signal, the second enable signal and the data signal are all at low voltages.

在其中一些实施方式中,第二逻辑处理单元包括第八晶体管、第九晶体管、第十晶体管以及第十一晶体管,第八晶体管的第一极与第二电源端连接,第八晶体管的控制极接入第二使能信号,第八晶体管为N沟道型晶体管;第九晶体管的第一极与第二电源端连接,第九晶体管的控制极接入数据信号,第九晶体管为N沟道型晶体管;第十晶体管的第一极与第八晶体管的第二极、第九晶体管的第二极连接并生成第二控制信号,第十晶体管的控制极与第八晶体管的控制极连接,第十晶体管为P沟道型晶体管;第十一晶体管的第一极与第十晶体管的第二极连接,第十一晶体管的控制极与第九晶体管的控制极连接,第十一晶体管的第二极与第二反馈处理单元连接,第十一晶体管的沟道类型与第十晶体管的沟道类型相同。In some embodiments, the second logic processing unit includes an eighth transistor, a ninth transistor, a tenth transistor and an eleventh transistor, the first electrode of the eighth transistor is connected to the second power supply terminal, the control electrode of the eighth transistor is connected to the second enable signal, and the eighth transistor is an N-channel transistor; the first electrode of the ninth transistor is connected to the second power supply terminal, the control electrode of the ninth transistor is connected to the data signal, and the ninth transistor is an N-channel transistor; the first electrode of the tenth transistor is connected to the second electrode of the eighth transistor and the second electrode of the ninth transistor and generates a second control signal, the control electrode of the tenth transistor is connected to the control electrode of the eighth transistor, and the tenth transistor is a P-channel transistor; the first electrode of the eleventh transistor is connected to the second electrode of the tenth transistor, the control electrode of the eleventh transistor is connected to the control electrode of the ninth transistor, the second electrode of the eleventh transistor is connected to the second feedback processing unit, and the channel type of the eleventh transistor is the same as the channel type of the tenth transistor.

在其中一些实施方式中,第二反馈处理单元包括第十二晶体管,第十二晶体管的第一极与第十一晶体管的第二极连接,第十二晶体管的控制极接入第二反馈信号,第十二晶体管的第二极与第一电源端连接;第十二晶体管的沟道类型与第十晶体管的沟道类型或者第十一晶体管的沟道类型相同。In some embodiments, the second feedback processing unit includes a twelfth transistor, a first electrode of the twelfth transistor is connected to the second electrode of the eleventh transistor, a control electrode of the twelfth transistor is connected to the second feedback signal, and the second electrode of the twelfth transistor is connected to the first power supply terminal; the channel type of the twelfth transistor is the same as the channel type of the tenth transistor or the channel type of the eleventh transistor.

在其中一些实施方式中,第二反相模块包括第十三晶体管、第十四晶体管以及第二电阻,第十三晶体管的第一极与第一电源端连接,第十三晶体管的控制极接入第二控制信号,第十三晶体管为P沟道型晶体管;第十四晶体管的第一极与第十三晶体管的第二极连接并生成第一反馈信号,第十四晶体管的控制极与第十三晶体管的控制极连接,第十四晶体管为N沟道型晶体管;第二电阻的一端与第十四晶体管的第二极连接,第二电阻的另一端与第二电源端连接。In some embodiments, the second inverting module includes a thirteenth transistor, a fourteenth transistor and a second resistor, the first electrode of the thirteenth transistor is connected to the first power supply terminal, the control electrode of the thirteenth transistor is connected to the second control signal, and the thirteenth transistor is a P-channel transistor; the first electrode of the fourteenth transistor is connected to the second electrode of the thirteenth transistor and generates a first feedback signal, the control electrode of the fourteenth transistor is connected to the control electrode of the thirteenth transistor, and the fourteenth transistor is an N-channel transistor; one end of the second resistor is connected to the second electrode of the fourteenth transistor, and the other end of the second resistor is connected to the second power supply terminal.

第二方面,本申请提供一种端口驱动方法,该端口驱动方法包括:根据第一使能信号、数据信号以及第一反馈信号生成第一控制信号;根据第一控制信号生成与第一控制信号反相的第二反馈信号;根据第二使能信号、数据信号以及第二反馈信号生成第二控制信号;根据第二控制信号生成与第二控制信号反相的第一反馈信号;根据第一控制信号、第二控制信号生成对应的驱动信号。In a second aspect, the present application provides a port driving method, which includes: generating a first control signal according to a first enable signal, a data signal and a first feedback signal; generating a second feedback signal that is inverted from the first control signal according to the first control signal; generating a second control signal according to a second enable signal, a data signal and a second feedback signal; generating a first feedback signal that is inverted from the second control signal according to the second control signal; and generating a corresponding driving signal according to the first control signal and the second control signal.

第三方面,本申请提供一种芯片,该芯片包括上述的端口驱动电路。In a third aspect, the present application provides a chip, which includes the above-mentioned port driving circuit.

本申请提供的端口驱动电路、端口驱动方法及芯片,通过根据第一使能信号、数据信号以及第一反馈信号生成第一控制信号,根据第一控制信号生成第二反馈信号,根据第二使能信号、数据信号以及第二反馈信号生成第二控制信号,根据第二控制信号生成第一反馈信号,可以在数据信号的电位发生翻转的情况下,使得第一控制信号和第二控制信号中的一个的电位延迟变化,从而通过第一控制信号、第二控制信号来减少输出模块中不同沟道类型的晶体管的同步导通时间,进而减少了短路电流的持续时间,也降低了功耗。The port driving circuit, port driving method and chip provided in the present application generate a first control signal according to a first enable signal, a data signal and a first feedback signal, generate a second feedback signal according to the first control signal, generate a second control signal according to a second enable signal, a data signal and a second feedback signal, and generate a first feedback signal according to the second control signal. In the case where the potential of the data signal is flipped, the potential of one of the first control signal and the second control signal can be delayed to change, thereby reducing the synchronous conduction time of transistors of different channel types in the output module through the first control signal and the second control signal, thereby reducing the duration of the short-circuit current and reducing power consumption.

附图说明BRIEF DESCRIPTION OF THE DRAWINGS

下面结合附图,通过对本申请的具体实施方式详细描述,将使本申请的技术方案及其它有益效果显而易见。The technical solution and other beneficial effects of the present application will be made apparent by describing in detail the specific implementation methods of the present application in conjunction with the accompanying drawings.

图1为相关技术中端口驱动电路的第一种电路原理图。FIG. 1 is a first circuit schematic diagram of a port driving circuit in the related art.

图2为本申请实施例提供的端口驱动电路的第二种电路原理图。FIG. 2 is a second circuit schematic diagram of a port driving circuit provided in an embodiment of the present application.

图3为图2所示端口驱动电路的时序示意图。FIG. 3 is a timing diagram of the port driving circuit shown in FIG. 2 .

图4为本申请实施例提供的端口驱动电路的电路原理图。FIG. 4 is a circuit schematic diagram of a port driving circuit provided in an embodiment of the present application.

图5为图4所示端口驱动电路的第一种时序示意图。FIG. 5 is a first timing diagram of the port driving circuit shown in FIG. 4 .

图6为图4所示端口驱动电路的第二种时序示意图。FIG. 6 is a second timing diagram of the port driving circuit shown in FIG. 4 .

图7为本申请实施例提供的芯片的电路原理图。FIG. 7 is a circuit diagram of a chip provided in an embodiment of the present application.

图8为本申请实施例提供的端口驱动方法的流程示意图。FIG8 is a flow chart of a port driving method provided in an embodiment of the present application.

具体实施方式DETAILED DESCRIPTION

下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述。显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。The technical solutions in the embodiments of the present application will be described clearly and completely below in conjunction with the drawings in the embodiments of the present application. Obviously, the described embodiments are only part of the embodiments of the present application, rather than all of the embodiments. Based on the embodiments in the present application, all other embodiments obtained by those skilled in the art without creative work are within the scope of protection of the present application.

此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量,由此限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个所述特征,在本发明的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。In addition, the terms "first" and "second" are used for descriptive purposes only and cannot be understood as indicating or suggesting relative importance or implicitly indicating the number of technical features indicated. The features specified as "first" and "second" may explicitly or implicitly include one or more of the said features. In the description of the present invention, "multiple" means two or more, unless otherwise clearly and specifically defined.

图1为相关技术中端口驱动电路的第一种电路原理图。图2为本申请实施例提供的端口驱动电路的第二种电路原理图。如图1、图2所示,该端口驱动电路包括P沟道型的上拉晶体管T1和N沟道型的下拉晶体管T2,上拉晶体管T1的第一极与第一电源端VCC连接,上拉晶体管T1的第二极与下拉晶体管T2的第一极连接,下拉晶体管T2的第二极与第二电源端GND连接。FIG1 is a first circuit schematic diagram of a port driving circuit in the related art. FIG2 is a second circuit schematic diagram of a port driving circuit provided in an embodiment of the present application. As shown in FIG1 and FIG2, the port driving circuit includes a P-channel pull-up transistor T1 and an N-channel pull-down transistor T2, wherein a first electrode of the pull-up transistor T1 is connected to a first power supply terminal VCC, a second electrode of the pull-up transistor T1 is connected to a first electrode of the pull-down transistor T2, and a second electrode of the pull-down transistor T2 is connected to a second power supply terminal GND.

其中,上拉晶体管T1与下拉晶体管T2的连接处通过焊盘90与负载的等效电容C1的一端连接,等效电容C1的另一端与第二电源端GND连接。The connection point between the pull-up transistor T1 and the pull-down transistor T2 is connected to one end of the equivalent capacitor C1 of the load through the pad 90 , and the other end of the equivalent capacitor C1 is connected to the second power supply terminal GND.

如图2所示,该端口驱动电路还可以包括反相器INV1,该反相器INV1用于根据第一使能信号EN生成与第一使能信号EN反相的第二使能信号ENb。也就是说,第一使能信号EN为高电位的情况下,第二使能信号ENb为低电位;或者第一使能信号EN为低电位的情况下,第二使能信号ENb为高电位。As shown in Fig. 2, the port driving circuit may further include an inverter INV1, which is used to generate a second enable signal ENb that is inverted from the first enable signal EN according to the first enable signal EN. That is, when the first enable signal EN is at a high potential, the second enable signal ENb is at a low potential; or when the first enable signal EN is at a low potential, the second enable signal ENb is at a high potential.

在一些实施例中,根据电路结构的特点,高电位可以控制P沟道型晶体管截止或者控制N沟道型晶体管导通;而低电位可以控制P沟道型晶体管导通或者控制N沟道型晶体管截止。In some embodiments, according to the characteristics of the circuit structure, a high potential can control a P-channel transistor to be cut off or an N-channel transistor to be turned on; and a low potential can control a P-channel transistor to be turned on or an N-channel transistor to be cut off.

该端口驱动电路还可以包括与非门NAND1和或非门NOR1,该与非门NAND1可以根据第一使能信号EN与数据信号DS的与非逻辑运算结果输出对应的第一控制信号PUB,该第一控制信号PUB用于控制上拉晶体管T1的开关状态。该或非门NOR1可以根据第二使能信号ENb与数据信号DS的或非逻辑运算结果输出对应的第二控制信号PD,该第二控制信号PD用于控制下拉晶体管T2的开关状态。The port driving circuit may further include a NAND gate NAND1 and a NOR gate NOR1, wherein the NAND gate NAND1 may output a corresponding first control signal PUB according to a NAND logic operation result of a first enable signal EN and a data signal DS, wherein the first control signal PUB is used to control the switch state of the pull-up transistor T1. The NOR gate NOR1 may output a corresponding second control signal PD according to a NOR logic operation result of a second enable signal ENb and a data signal DS, wherein the second control signal PD is used to control the switch state of the pull-down transistor T2.

随着负载的等效电容C1的增大,上拉晶体管T1、下拉晶体管T2的尺寸也需要随之增大,以与上拉晶体管T1、下拉晶体管T2的驱动能力相匹配。As the equivalent capacitance C1 of the load increases, the sizes of the pull-up transistor T1 and the pull-down transistor T2 also need to increase accordingly to match the driving capabilities of the pull-up transistor T1 and the pull-down transistor T2 .

在一些实施例中,上拉晶体管T1和下拉晶体管T2可以构成CMOS驱动器,可以用以驱动晶片外(off-chip)较大的容性负载,如功率晶体管的门极。In some embodiments, the pull-up transistor T1 and the pull-down transistor T2 may form a CMOS driver, which may be used to drive a relatively large capacitive load off-chip, such as a gate of a power transistor.

然而,如图3所示,在数据信号DS的电位发生翻转的情况下,例如数据信号DS从高电位的“1”切换到低电位的“0”的过程中,在第一控制信号PUB、第二控制信号PD的控制下,上拉晶体管T1、下拉晶体管T2存在一个同步导通的期间,这将会产生对应的短路电流,例如在图3所示的虚线框中,流经上拉晶体管T1的电流XPF会从负值变化至零,流经下拉晶体管T2的电流XNF会从零开始增加。这将允许电流从第一电源端VCC通过较低的阻抗直接流到第二电源端GND,因此消耗了不必要的功率,这种现象称为贯通损耗(shoot-throughdissipation)。However, as shown in FIG3 , when the potential of the data signal DS is reversed, for example, when the data signal DS switches from a high potential "1" to a low potential "0", under the control of the first control signal PUB and the second control signal PD, the pull-up transistor T1 and the pull-down transistor T2 are synchronously turned on for a period of time, which will generate a corresponding short-circuit current. For example, in the dotted box shown in FIG3 , the current XPF flowing through the pull-up transistor T1 will change from a negative value to zero, and the current XNF flowing through the pull-down transistor T2 will increase from zero. This will allow current to flow directly from the first power supply terminal VCC to the second power supply terminal GND through a lower impedance, thereby consuming unnecessary power. This phenomenon is called shoot-through dissipation.

本实施例提供了一种端口驱动电路,请参阅图4至图7,如图4、图7所示,该端口驱动电路包括第一逻辑处理模块10、第一反相模块30、第二逻辑处理模块20、第二反相模块40以及输出模块50,第一逻辑处理模块10用于根据第一使能信号EN、数据信号DS以及第一反馈信号PDb_D生成第一控制信号PUB;第一反相模块30用于根据第一控制信号PUB生成第二反馈信号PU_D;第二逻辑处理模块20用于根据第二使能信号ENb、数据信号DS以及第二反馈信号PU_D生成第二控制信号PD;第二反相模块40用于根据第二控制信号PD生成第一反馈信号PDb_D;输出模块50用于根据第一控制信号PUB、第二控制信号PD生成对应的驱动信号OUT。The present embodiment provides a port driving circuit, please refer to Figures 4 to 7. As shown in Figures 4 and 7, the port driving circuit includes a first logic processing module 10, a first inversion module 30, a second logic processing module 20, a second inversion module 40 and an output module 50. The first logic processing module 10 is used to generate a first control signal PUB according to a first enable signal EN, a data signal DS and a first feedback signal PDb_D; the first inversion module 30 is used to generate a second feedback signal PU_D according to the first control signal PUB; the second logic processing module 20 is used to generate a second control signal PD according to the second enable signal ENb, the data signal DS and the second feedback signal PU_D; the second inversion module 40 is used to generate a first feedback signal PDb_D according to the second control signal PD; and the output module 50 is used to generate a corresponding driving signal OUT according to the first control signal PUB and the second control signal PD.

可以理解的是,本实施例提供的端口驱动电路、端口驱动方法及芯片,通过根据第一使能信号EN、数据信号DS以及第一反馈信号PDb_D生成第一控制信号PUB,根据第一控制信号PUB生成第二反馈信号PU_D,根据第二使能信号ENb、数据信号DS以及第二反馈信号PU_D生成第二控制信号PD,根据第二控制信号PD生成第一反馈信号PDb_D,可以在数据信号DS的电位发生翻转的情况下,使得第一控制信号PUB和第二控制信号PD中的一个的电位延迟变化,从而通过第一控制信号PUB、第二控制信号PD来减少或消除输出模块50中不同沟道类型的晶体管的同步导通时间,进而减少或消除了短路电流的持续时间,也降低了功耗或避免了功耗浪费。It can be understood that the port driving circuit, port driving method and chip provided in the present embodiment generate a first control signal PUB according to the first enable signal EN, the data signal DS and the first feedback signal PDb_D, generate a second feedback signal PU_D according to the first control signal PUB, generate a second control signal PD according to the second enable signal ENb, the data signal DS and the second feedback signal PU_D, and generate a first feedback signal PDb_D according to the second control signal PD. In the case where the potential of the data signal DS is flipped, the potential of one of the first control signal PUB and the second control signal PD can be delayed to change, thereby reducing or eliminating the synchronous conduction time of transistors of different channel types in the output module 50 through the first control signal PUB and the second control signal PD, thereby reducing or eliminating the duration of the short-circuit current, and reducing power consumption or avoiding power waste.

需要进行说明的是,输出模块50可以包括P沟道型的上拉晶体管T1和N沟道型的下拉晶体管T2。第一逻辑处理模块10的输出端与上拉晶体管T1的控制极连接,以通过第一控制信号PUB控制上拉晶体管T1的开关状态。第一反相模块30的输入端与第一逻辑处理模块10的输出端连接,第一反相模块30的输出端与第二逻辑处理模块20的一输入端连接,以将第一控制信号PUB进行反相等处理后提供至第二逻辑处理模块20。第二逻辑处理模块20的输出端与下拉晶体管T2的控制极连接,以通过第二控制信号PD控制下拉晶体管T2的开关状态。第二反相模块40的输入端与第二逻辑处理模块20的输出端连接,第二反相模块40的输出端与第一逻辑处理模块10的一输入端连接,以将第二控制信号PD进行反相等处理后提供至第一逻辑处理模块10。It should be noted that the output module 50 may include a P-channel pull-up transistor T1 and an N-channel pull-down transistor T2. The output end of the first logic processing module 10 is connected to the control electrode of the pull-up transistor T1 to control the switch state of the pull-up transistor T1 through the first control signal PUB. The input end of the first inversion module 30 is connected to the output end of the first logic processing module 10, and the output end of the first inversion module 30 is connected to an input end of the second logic processing module 20 to provide the first control signal PUB to the second logic processing module 20 after inversion processing. The output end of the second logic processing module 20 is connected to the control electrode of the pull-down transistor T2 to control the switch state of the pull-down transistor T2 through the second control signal PD. The input end of the second inversion module 40 is connected to the output end of the second logic processing module 20, and the output end of the second inversion module 40 is connected to an input end of the first logic processing module 10 to provide the second control signal PD to the first logic processing module 10 after inversion processing.

在其中一个实施例中,如图4、图7所示,第一逻辑处理模块10包括第一逻辑处理单元11和第一反馈处理单元12,第一逻辑处理单元11用于在第一反馈信号PDb_D为低电位的情况下,输出第一使能信号EN与数据信号DS的与非逻辑运算结果作为第一控制信号PUB;第一反馈处理单元12用于在第一反馈信号PDb_D、第一使能信号EN以及数据信号DS均为高电位的情况下,控制第一逻辑处理单元11输出低电位的第一控制信号PUB。In one embodiment, as shown in Figures 4 and 7, the first logic processing module 10 includes a first logic processing unit 11 and a first feedback processing unit 12. The first logic processing unit 11 is used to output the NAND logic operation result of the first enable signal EN and the data signal DS as the first control signal PUB when the first feedback signal PDb_D is at a low level; the first feedback processing unit 12 is used to control the first logic processing unit 11 to output the low-level first control signal PUB when the first feedback signal PDb_D, the first enable signal EN and the data signal DS are all at high levels.

需要进行说明的是,第一逻辑处理单元11与第一反馈处理单元12连接,可以实现第一逻辑处理单元11、第一反馈处理单元12的上述作用。It should be noted that the first logic processing unit 11 is connected to the first feedback processing unit 12 to realize the above-mentioned functions of the first logic processing unit 11 and the first feedback processing unit 12 .

在其中一个实施例中,如图4、图7所示,第一逻辑处理单元11包括第一晶体管M1、第二晶体管M2、第三晶体管M3以及第四晶体管M4,第一晶体管M1的第一极与第一电源端VCC连接,第一晶体管M1的控制极接入第一使能信号EN,第一晶体管M1为P沟道型晶体管;第二晶体管M2的第一极与第一电源端VCC连接,第二晶体管M2的控制极接入数据信号DS,第二晶体管M2为P沟道型晶体管;第三晶体管M3的第一极与第一晶体管M1的第二极、第二晶体管M2的第二极连接并生成第一控制信号PUB,第三晶体管M3的控制极与第一晶体管M1的控制极连接,第三晶体管M3为N沟道型晶体管;第四晶体管M4的第一极与第三晶体管M3的第二极连接,第四晶体管M4的控制极与第二晶体管M2的控制极连接,第四晶体管M4的第二极与第一反馈处理单元12连接,第四晶体管M4为N沟道型晶体管。In one embodiment, as shown in FIG. 4 and FIG. 7 , the first logic processing unit 11 includes a first transistor M1, a second transistor M2, a third transistor M3 and a fourth transistor M4, wherein a first electrode of the first transistor M1 is connected to a first power supply terminal VCC, a control electrode of the first transistor M1 is connected to a first enable signal EN, and the first transistor M1 is a P-channel transistor; a first electrode of the second transistor M2 is connected to a first power supply terminal VCC, a control electrode of the second transistor M2 is connected to a data signal DS, and the second transistor M2 is a P-channel transistor; a first electrode of the third transistor M3 is connected to a second electrode of the first transistor M1 and a second electrode of the second transistor M2 and generates a first control signal PUB, a control electrode of the third transistor M3 is connected to a control electrode of the first transistor M1, and the third transistor M3 is an N-channel transistor; a first electrode of the fourth transistor M4 is connected to a second electrode of the third transistor M3, a control electrode of the fourth transistor M4 is connected to a control electrode of the second transistor M2, a second electrode of the fourth transistor M4 is connected to the first feedback processing unit 12, and the fourth transistor M4 is an N-channel transistor.

需要进行说明的是,本实施例并不限于第一反馈处理单元12连接于第四晶体管M4的第二极与第二电源端GND之间,第一反馈处理单元12还可以连接于第四晶体管M4与第三晶体管M3之间,或者还可以连接于第三晶体管M3与第二晶体管M2之间。It should be noted that this embodiment is not limited to the first feedback processing unit 12 being connected between the second electrode of the fourth transistor M4 and the second power supply terminal GND. The first feedback processing unit 12 can also be connected between the fourth transistor M4 and the third transistor M3, or can also be connected between the third transistor M3 and the second transistor M2.

其中,第一极可以为源极和漏极中的一个,第二极可以为源极和漏极中的另一个。例如,第一极为源极的情况下,第二极为漏极;或者,第一极为漏极的情况下,第二极为源极。控制极可以为栅极或者基极等。第二电源端GND可以为接地端。The first electrode may be one of the source and the drain, and the second electrode may be the other of the source and the drain. For example, when the first electrode is the source, the second electrode is the drain; or when the first electrode is the drain, the second electrode is the source. The control electrode may be a gate or a base, etc. The second power supply terminal GND may be a ground terminal.

在其中一个实施例中,如图4、图7所示,第一反馈处理单元12包括第五晶体管M5,第五晶体管M5的第一极与第四晶体管M4的第二极连接,第五晶体管M5的控制极接入第一反馈信号PDb_D,第五晶体管M5的第二极与第二电源端GND连接;第五晶体管M5的沟道类型与第三晶体管M3的沟道类型和/或第四晶体管M4的沟道类型相同。In one embodiment, as shown in Figures 4 and 7, the first feedback processing unit 12 includes a fifth transistor M5, a first electrode of the fifth transistor M5 is connected to the second electrode of the fourth transistor M4, a control electrode of the fifth transistor M5 is connected to the first feedback signal PDb_D, and a second electrode of the fifth transistor M5 is connected to the second power supply terminal GND; a channel type of the fifth transistor M5 is the same as a channel type of the third transistor M3 and/or a channel type of the fourth transistor M4.

需要进行说明的是,本实施例并不限于第五晶体管M5连接于第四晶体管M4的第二极与第二电源端GND之间,第五晶体管M5还可以连接于第四晶体管M4与第三晶体管M3之间,或者可以连接于第三晶体管M3与第二晶体管M2之间。It should be noted that this embodiment is not limited to the fifth transistor M5 being connected between the second electrode of the fourth transistor M4 and the second power supply terminal GND. The fifth transistor M5 can also be connected between the fourth transistor M4 and the third transistor M3, or can be connected between the third transistor M3 and the second transistor M2.

在其中一个实施例中,如图4、图7所示,第一反相模块30包括第一电阻R1、第六晶体管M6以及第七晶体管M7,第一电阻R1的一端与第一电源端VCC连接;第六晶体管M6的第一极与第一电阻R1的另一端连接,第六晶体管M6的控制极接入第一控制信号PUB,第六晶体管M6为P沟道型晶体管;第七晶体管M7的第一极与第六晶体管M6的第二极连接并生成第二反馈信号PU_D,第七晶体管M7的控制极与第六晶体管M6的控制极连接,第七晶体管M7的第二极与第二电源端GND连接,第七晶体管M7的沟道类型与第六晶体管M6的沟道类型不同。In one embodiment, as shown in Figures 4 and 7, the first inverting module 30 includes a first resistor R1, a sixth transistor M6 and a seventh transistor M7, one end of the first resistor R1 is connected to the first power supply terminal VCC; the first electrode of the sixth transistor M6 is connected to the other end of the first resistor R1, the control electrode of the sixth transistor M6 is connected to the first control signal PUB, and the sixth transistor M6 is a P-channel transistor; the first electrode of the seventh transistor M7 is connected to the second electrode of the sixth transistor M6 and generates a second feedback signal PU_D, the control electrode of the seventh transistor M7 is connected to the control electrode of the sixth transistor M6, the second electrode of the seventh transistor M7 is connected to the second power supply terminal GND, and the channel type of the seventh transistor M7 is different from the channel type of the sixth transistor M6.

需要进行说明的是,第一电阻R1串联于第一电源端VCC与第六晶体管M6之间,可以减小流经第六晶体管M6的电流,从而减弱了上拉能力,进而使得第一反相模块30的下拉能力大于上拉能力,在第六晶体管M6、第七晶体管M7同步导通期间可以更快速地将第二反馈信号PU_D的电位下拉至第二电源端GND的电位。这样可以减小第六晶体管M6、第七晶体管M7的同步导通时间,也就是减少了流经第六晶体管M6和第七晶体管M7的短路电流的持续时间,从而节省了功耗。在一些实施例中,第一电阻R1可以省略,第六晶体管M6的第一极连接到第一电源端VCC。It should be noted that the first resistor R1 is connected in series between the first power supply terminal VCC and the sixth transistor M6, which can reduce the current flowing through the sixth transistor M6, thereby weakening the pull-up capability, thereby making the pull-down capability of the first inverting module 30 greater than the pull-up capability, and the potential of the second feedback signal PU_D can be pulled down to the potential of the second power supply terminal GND more quickly during the synchronous conduction of the sixth transistor M6 and the seventh transistor M7. In this way, the synchronous conduction time of the sixth transistor M6 and the seventh transistor M7 can be reduced, that is, the duration of the short-circuit current flowing through the sixth transistor M6 and the seventh transistor M7 is reduced, thereby saving power consumption. In some embodiments, the first resistor R1 can be omitted, and the first electrode of the sixth transistor M6 is connected to the first power supply terminal VCC.

在其中一个实施例中,如图4、图7所示,第二逻辑处理模块20包括第二逻辑处理单元21、第二反馈处理单元22,第二逻辑处理单元21用于在第二反馈信号PU_D为高电位的情况下,输出第二使能信号ENb与数据信号DS的或非逻辑运算结果作为第二控制信号PD;第二反馈处理单元22用于在第二反馈信号PU_D、第二使能信号ENb以及数据信号DS均为低电位的情况下,控制第二逻辑处理单元21输出高电位的第二控制信号PD。In one embodiment, as shown in Figures 4 and 7, the second logic processing module 20 includes a second logic processing unit 21 and a second feedback processing unit 22. The second logic processing unit 21 is used to output the OR-N logic operation result of the second enable signal ENb and the data signal DS as the second control signal PD when the second feedback signal PU_D is at a high level; the second feedback processing unit 22 is used to control the second logic processing unit 21 to output the high-level second control signal PD when the second feedback signal PU_D, the second enable signal ENb and the data signal DS are all at low levels.

需要进行说明的是,第二逻辑处理单元21与第二反馈处理单元22连接,可以实现第二逻辑处理单元21、第二反馈处理单元22的上述作用。It should be noted that the second logic processing unit 21 is connected to the second feedback processing unit 22 to achieve the above-mentioned functions of the second logic processing unit 21 and the second feedback processing unit 22 .

在其中一个实施例中,如图4、图7所示,第二逻辑处理单元21包括第八晶体管M8、第九晶体管M9、第十晶体管M10以及第十一晶体管M11,第八晶体管M8的第一极与第二电源端GND连接,第八晶体管M8的控制极接入第二使能信号ENb,第八晶体管M8为N沟道型晶体管;第九晶体管M9的第一极与第二电源端GND连接,第九晶体管M9的控制极接入数据信号DS,第九晶体管M9为N沟道型晶体管;第十晶体管M10的第一极与第八晶体管M8的第二极、第九晶体管M9的第二极连接并生成第二控制信号PD,第十晶体管M10的控制极与第八晶体管M8的控制极连接,第十晶体管M10为P沟道型晶体管;第十一晶体管M11的第一极与第十晶体管M10的第二极连接,第十一晶体管M11的控制极与第九晶体管M9的控制极连接,第十一晶体管M11的第二极与第二反馈处理单元22连接,第十一晶体管M11的沟道类型与第十晶体管M10的沟道类型相同。In one embodiment, as shown in FIG. 4 and FIG. 7 , the second logic processing unit 21 includes an eighth transistor M8, a ninth transistor M9, a tenth transistor M10, and an eleventh transistor M11. The first electrode of the eighth transistor M8 is connected to the second power supply terminal GND, the control electrode of the eighth transistor M8 is connected to the second enable signal ENb, and the eighth transistor M8 is an N-channel transistor; the first electrode of the ninth transistor M9 is connected to the second power supply terminal GND, the control electrode of the ninth transistor M9 is connected to the data signal DS, and the ninth transistor M9 is an N-channel transistor; the first electrode of the tenth transistor M10 is connected to the second power supply terminal GND, the control electrode of the ninth transistor M9 is connected to the data signal DS, and the ninth transistor M9 is an N-channel transistor; One electrode is connected to the second electrode of the eighth transistor M8 and the second electrode of the ninth transistor M9 and generates a second control signal PD, the control electrode of the tenth transistor M10 is connected to the control electrode of the eighth transistor M8, and the tenth transistor M10 is a P-channel transistor; the first electrode of the eleventh transistor M11 is connected to the second electrode of the tenth transistor M10, the control electrode of the eleventh transistor M11 is connected to the control electrode of the ninth transistor M9, the second electrode of the eleventh transistor M11 is connected to the second feedback processing unit 22, and the channel type of the eleventh transistor M11 is the same as the channel type of the tenth transistor M10.

需要进行说明的是,本实施例并不限于第二反馈处理单元22连接于第十一晶体管M11的第二极与第一电源端VCC之间,第二反馈处理单元22还可以连接于第十晶体管M10与第十一晶体管M11之间,或者还可以连接于第九晶体管M9与第十晶体管M10之间。It should be noted that this embodiment is not limited to the second feedback processing unit 22 being connected between the second electrode of the eleventh transistor M11 and the first power supply terminal VCC. The second feedback processing unit 22 can also be connected between the tenth transistor M10 and the eleventh transistor M11, or can also be connected between the ninth transistor M9 and the tenth transistor M10.

在其中一个实施例中,如图4、图7所示,第二反馈处理单元22包括第十二晶体管M12,第十二晶体管M12的第一极与第十一晶体管M11的第二极连接,第十二晶体管M12的控制极接入第二反馈信号PU_D,第十二晶体管M12的第二极与第一电源端VCC连接;第十二晶体管M12的沟道类型与第十晶体管M10的沟道类型或者第十一晶体管M11的沟道类型相同。In one embodiment, as shown in Figures 4 and 7, the second feedback processing unit 22 includes a twelfth transistor M12, a first electrode of the twelfth transistor M12 is connected to the second electrode of the eleventh transistor M11, a control electrode of the twelfth transistor M12 is connected to the second feedback signal PU_D, and a second electrode of the twelfth transistor M12 is connected to the first power supply terminal VCC; the channel type of the twelfth transistor M12 is the same as the channel type of the tenth transistor M10 or the channel type of the eleventh transistor M11.

需要进行说明的是,本实施例并不限于第十二晶体管M12连接于第十一晶体管M11的第二极与第一电源端VCC之间,第十二晶体管M12还可以连接于第十晶体管M10与第十一晶体管M11之间,或者还可以连接于第九晶体管M9与第十晶体管M10之间。It should be noted that this embodiment is not limited to the twelfth transistor M12 being connected between the second electrode of the eleventh transistor M11 and the first power supply terminal VCC. The twelfth transistor M12 can also be connected between the tenth transistor M10 and the eleventh transistor M11, or can also be connected between the ninth transistor M9 and the tenth transistor M10.

在其中一个实施例中,如图4、图7所示,第二反相模块40包括第十三晶体管M13、第十四晶体管M14以及第二电阻R2,第十三晶体管M13的第一极与第一电源端VCC连接,第十三晶体管M13的控制极接入第二控制信号PD,第十三晶体管M13为P沟道型晶体管;第十四晶体管M14的第一极与第十三晶体管M13的第二极连接并生成第一反馈信号PDb_D,第十四晶体管M14的控制极与第十三晶体管M13的控制极连接,第十四晶体管M14为N沟道型晶体管;第二电阻R2的一端与第十四晶体管M14的第二极连接,第二电阻R2的另一端与第二电源端GND连接。In one embodiment, as shown in Figures 4 and 7, the second inverting module 40 includes a thirteenth transistor M13, a fourteenth transistor M14 and a second resistor R2, the first electrode of the thirteenth transistor M13 is connected to the first power supply terminal VCC, the control electrode of the thirteenth transistor M13 is connected to the second control signal PD, and the thirteenth transistor M13 is a P-channel transistor; the first electrode of the fourteenth transistor M14 is connected to the second electrode of the thirteenth transistor M13 and generates a first feedback signal PDb_D, the control electrode of the fourteenth transistor M14 is connected to the control electrode of the thirteenth transistor M13, and the fourteenth transistor M14 is an N-channel transistor; one end of the second resistor R2 is connected to the second electrode of the fourteenth transistor M14, and the other end of the second resistor R2 is connected to the second power supply terminal GND.

需要进行说明的是,第二电阻R2串联于第二电源端GND与第十四晶体管M14之间,可以减小流经第十四晶体管M14的电流,从而减弱了下拉能力,进而使得第二反相模块40的上拉能力大于下拉能力,在第十三晶体管M13、第十四晶体管M14的同步导通期间可以更快速地将第一反馈信号PDb_D的电位上拉至第一电源端VCC的电位。这样可以减小第十三晶体管M13、第十四晶体管M14的同步导通时间,也就是减少了流经第十三晶体管M13和第十四晶体管M14的短路电流的持续时间,从而节省了功耗。在一些实施例中,第二电阻R2可以省略,第十四晶体管M14的第二极连接到第二电源端GND。It should be noted that the second resistor R2 is connected in series between the second power supply terminal GND and the fourteenth transistor M14, which can reduce the current flowing through the fourteenth transistor M14, thereby weakening the pull-down capability, thereby making the pull-up capability of the second inverting module 40 greater than the pull-down capability, and the potential of the first feedback signal PDb_D can be pulled up to the potential of the first power supply terminal VCC more quickly during the synchronous conduction of the thirteenth transistor M13 and the fourteenth transistor M14. In this way, the synchronous conduction time of the thirteenth transistor M13 and the fourteenth transistor M14 can be reduced, that is, the duration of the short-circuit current flowing through the thirteenth transistor M13 and the fourteenth transistor M14 is reduced, thereby saving power consumption. In some embodiments, the second resistor R2 can be omitted, and the second electrode of the fourteenth transistor M14 is connected to the second power supply terminal GND.

上述端口驱动电路的工作原理说明如下:The working principle of the above port driving circuit is described as follows:

初始状态下,数据信号DS为高电位的“1”,第九晶体管M9导通,第二控制信号PD为低电位的“0”,第十三晶体管M13导通,第十四晶体管M14截止,第一反馈信号PDb_D为高电位的“1”;第一使能信号EN为高电位的“1”,第三晶体管M3、第四晶体管M4以及第五晶体管M5均导通,第一控制信号PUB为低电位的“0”,第六晶体管M6导通,第七晶体管M7截止,第二反馈信号PU_D为高电位的“1”。In the initial state, the data signal DS is a high potential "1", the ninth transistor M9 is turned on, the second control signal PD is a low potential "0", the thirteenth transistor M13 is turned on, the fourteenth transistor M14 is turned off, and the first feedback signal PDb_D is a high potential "1"; the first enable signal EN is a high potential "1", the third transistor M3, the fourth transistor M4 and the fifth transistor M5 are all turned on, the first control signal PUB is a low potential "0", the sixth transistor M6 is turned on, the seventh transistor M7 is turned off, and the second feedback signal PU_D is a high potential "1".

请参阅图5、图6,如图5所示,数据信号DS由高电位的“1”翻转到低电位的“0”,第二晶体管M2导通,第一控制信号PUB由低电位的“0”被逐渐上拉,所以P沟道型的上拉晶体管T1在逐步截止,流经上拉晶体管T1的电流XPF在趋向于0;在第一控制信号PUB的电位达到第二反馈信号PU_D的电位翻转点之前,第二反馈信号PU_D仍然保持于高电位的“1”,第十二晶体管M12处于截止状态,此时第二控制信号PD仍然保持于低电位的“0”。Please refer to Figures 5 and 6. As shown in Figure 5, the data signal DS flips from a high potential "1" to a low potential "0", the second transistor M2 is turned on, and the first control signal PUB is gradually pulled up from a low potential "0", so the P-channel pull-up transistor T1 is gradually cut off, and the current XPF flowing through the pull-up transistor T1 tends to 0; before the potential of the first control signal PUB reaches the potential flip point of the second feedback signal PU_D, the second feedback signal PU_D still remains at a high potential "1", the twelfth transistor M12 is in a cut-off state, and the second control signal PD still remains at a low potential "0".

在第一控制信号PUB的电位达到第二反馈信号PU_D的电位翻转点后,第七晶体管M7导通,第二反馈信号PU_D切换为低电位的“0”,由于数据信号DS、第二使能信号ENb均为低电位的“0”,则第十晶体管M10、第十一晶体管M11以及第十二晶体管M12均导通,第二控制信号PD才开始由低电位的“0”被逐渐上拉,下拉晶体管T2也随之逐渐打开,流经下拉晶体管T2的电流XNF从0开始增加。After the potential of the first control signal PUB reaches the potential inversion point of the second feedback signal PU_D, the seventh transistor M7 is turned on, and the second feedback signal PU_D is switched to a low potential "0". Since the data signal DS and the second enable signal ENb are both low potential "0", the tenth transistor M10, the eleventh transistor M11 and the twelfth transistor M12 are all turned on, and the second control signal PD begins to be gradually pulled up from the low potential "0", and the pull-down transistor T2 is gradually turned on, and the current XNF flowing through the pull-down transistor T2 starts to increase from 0.

由此可知,数据信号DS由高电位的“1”翻转到低电位的“0”的过程中,如图5中的虚线框所示,流经上拉晶体管T1的电流XPF、流经下拉晶体管T2的电流XNF并没有同时不为0的情况,这说明上拉晶体管T1、下拉晶体管T2没有同步导通的情况,如此减小了短路电流,也降低了功耗。It can be seen that in the process of the data signal DS flipping from the high potential "1" to the low potential "0", as shown in the dotted box in Figure 5, the current XPF flowing through the pull-up transistor T1 and the current XNF flowing through the pull-down transistor T2 are not non-0 at the same time, which means that the pull-up transistor T1 and the pull-down transistor T2 are not turned on synchronously, thus reducing the short-circuit current and the power consumption.

如图6所示,数据信号DS由低电位的“0”翻转到高电位的“1”,第九晶体管M9导通,第二控制信号PD由高电位的“1”被逐渐下拉,所以N沟道型的下拉晶体管T2在逐步截止,流经下拉晶体管T2的电流XNF在趋向于0;在第二控制信号PD的电位达到第一反馈信号PDb_D的电位翻转点之前,第一反馈信号PDb_D仍然保持于低电位的“0”,第五晶体管M5处于截止状态,此时第一控制信号PUB仍然保持于高电位的“1”。As shown in Figure 6, the data signal DS flips from a low potential "0" to a high potential "1", the ninth transistor M9 is turned on, and the second control signal PD is gradually pulled down from a high potential "1", so the N-channel pull-down transistor T2 is gradually cut off, and the current XNF flowing through the pull-down transistor T2 tends to 0; before the potential of the second control signal PD reaches the potential flip point of the first feedback signal PDb_D, the first feedback signal PDb_D still remains at a low potential "0", and the fifth transistor M5 is in a cut-off state. At this time, the first control signal PUB still remains at a high potential "1".

在第二控制信号PD的电位达到第一反馈信号PDb_D的电位翻转点后,第十三晶体管M13导通,第一反馈信号PDb_D切换为高电位的“1”,由于数据信号DS、第一使能信号EN均为高电位的“1”,则第三晶体管M3、第四晶体管M4以及第五晶体管M5均导通,第一控制信号PUB才开始由高电位的“1”被逐渐下拉,上拉晶体管T1也随之逐渐打开,流经上拉晶体管T1的电流XPF从0开始增加。After the potential of the second control signal PD reaches the potential inversion point of the first feedback signal PDb_D, the thirteenth transistor M13 is turned on, and the first feedback signal PDb_D is switched to a high potential "1". Since the data signal DS and the first enable signal EN are both high potential "1", the third transistor M3, the fourth transistor M4 and the fifth transistor M5 are all turned on, and the first control signal PUB begins to be gradually pulled down from the high potential "1", and the pull-up transistor T1 is gradually turned on, and the current XPF flowing through the pull-up transistor T1 starts to increase from 0.

由此可知,数据信号DS由低电位的“0”翻转到高电位的“1”的过程中,如图6中的虚线框所示,流经上拉晶体管T1的电流XPF、流经下拉晶体管T2的电流XNF并没有同时不为0的情况,这说明上拉晶体管T1、下拉晶体管T2没有同步导通的情况,如此减小了短路电流,也降低了功耗。It can be seen that in the process of the data signal DS flipping from the low potential "0" to the high potential "1", as shown in the dotted box in Figure 6, the current XPF flowing through the pull-up transistor T1 and the current XNF flowing through the pull-down transistor T2 are not non-0 at the same time, which means that the pull-up transistor T1 and the pull-down transistor T2 are not turned on synchronously, thereby reducing the short-circuit current and the power consumption.

在其中一个实施例中,本实施例提供一种芯片,如图7所示,该芯片包括上述的端口驱动电路。其中,该芯片可以为具有输出引脚的各种集成电路,例如,存储集成电路、控制集成电路等。In one embodiment, this embodiment provides a chip, as shown in Figure 7, which includes the above-mentioned port driving circuit. The chip can be various integrated circuits with output pins, such as a storage integrated circuit, a control integrated circuit, etc.

可以理解的是,由于本实施例提供的芯片包括了上述的端口驱动电路,同样能够通过根据第一使能信号EN、数据信号DS以及第一反馈信号PDb_D生成第一控制信号PUB,根据第一控制信号PUB生成第二反馈信号PU_D,根据第二使能信号ENb、数据信号DS以及第二反馈信号PU_D生成第二控制信号PD,根据第二控制信号PD生成第一反馈信号PDb_D,可以在数据信号DS的电位发生翻转的情况下,使得第一控制信号PUB和第二控制信号PD中的一个的电位延迟变化,从而通过第一控制信号PUB、第二控制信号PD来减少输出模块50中不同沟道类型的晶体管的同步导通时间,进而减少了短路电流的持续时间,也降低了功耗。It can be understood that since the chip provided in this embodiment includes the above-mentioned port driving circuit, it can also generate a first control signal PUB according to the first enable signal EN, the data signal DS and the first feedback signal PDb_D, generate a second feedback signal PU_D according to the first control signal PUB, generate a second control signal PD according to the second enable signal ENb, the data signal DS and the second feedback signal PU_D, and generate a first feedback signal PDb_D according to the second control signal PD. In the case where the potential of the data signal DS is flipped, the potential of one of the first control signal PUB and the second control signal PD can be delayed to change, thereby reducing the synchronous conduction time of transistors of different channel types in the output module 50 through the first control signal PUB and the second control signal PD, thereby reducing the duration of the short-circuit current and reducing power consumption.

需要进行说明的是,该芯片还可以包括焊盘90,可以通过焊盘90连接输出模块50的输出端与外部引脚。It should be noted that the chip may further include a pad 90 , through which the output end of the output module 50 may be connected to an external pin.

在其中一个实施例中,本实施例提供一种端口驱动方法,如图8所示,该端口驱动方法包括以下步骤:In one embodiment, this embodiment provides a port driving method, as shown in FIG8 , the port driving method comprises the following steps:

步骤S10:根据第一使能信号、数据信号以及第一反馈信号生成第一控制信号。Step S10: Generate a first control signal according to a first enable signal, a data signal and a first feedback signal.

步骤S20:根据第一控制信号生成与第一控制信号反相的第二反馈信号。Step S20: generating a second feedback signal having an anti-phase with the first control signal according to the first control signal.

步骤S30:根据第二使能信号、数据信号以及第二反馈信号生成第二控制信号。Step S30: Generate a second control signal according to the second enable signal, the data signal and the second feedback signal.

步骤S40:根据第二控制信号生成与第二控制信号反相的第一反馈信号。Step S40: generating a first feedback signal which is inversely proportional to the second control signal according to the second control signal.

步骤S50:根据第一控制信号、第二控制信号生成对应的驱动信号。Step S50: Generate a corresponding driving signal according to the first control signal and the second control signal.

可以理解的是,本实施例提供的端口驱动方法,通过根据第一使能信号EN、数据信号DS以及第一反馈信号PDb_D生成第一控制信号PUB,根据第一控制信号PUB生成第二反馈信号PU_D,根据第二使能信号ENb、数据信号DS以及第二反馈信号PU_D生成第二控制信号PD,根据第二控制信号PD生成第一反馈信号PDb_D,可以在数据信号DS的电位发生翻转的情况下,使得第一控制信号PUB和第二控制信号PD中的一个的电位延迟变化,从而通过第一控制信号PUB、第二控制信号PD来减少输出模块50中不同沟道类型的晶体管的同步导通时间,进而减少了短路电流的持续时间,也降低了功耗。It can be understood that the port driving method provided in this embodiment generates a first control signal PUB according to the first enable signal EN, the data signal DS and the first feedback signal PDb_D, generates a second feedback signal PU_D according to the first control signal PUB, generates a second control signal PD according to the second enable signal ENb, the data signal DS and the second feedback signal PU_D, and generates a first feedback signal PDb_D according to the second control signal PD. In the case where the potential of the data signal DS is flipped, the potential of one of the first control signal PUB and the second control signal PD can be delayed to change, thereby reducing the synchronous conduction time of transistors of different channel types in the output module 50 through the first control signal PUB and the second control signal PD, thereby reducing the duration of the short-circuit current and reducing power consumption.

需要进行说明的是,该端口驱动方法可以在处理器或者存储介质例如存储芯片中执行。It should be noted that the port driving method can be executed in a processor or a storage medium such as a storage chip.

在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述的部分,可以参见其他实施例的相关描述。In the above embodiments, the description of each embodiment has its own emphasis. For parts that are not described in detail in a certain embodiment, reference can be made to the relevant descriptions of other embodiments.

以上对本申请实施例所提供的端口驱动电路、端口驱动方法及芯片进行了详细介绍,本文中应用了具体个例对本申请的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本申请的技术方案及其核心思想;本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例的技术方案的范围。The port driving circuit, port driving method and chip provided in the embodiments of the present application are introduced in detail above. Specific examples are used in this article to illustrate the principles and implementation methods of the present application. The description of the above embodiments is only used to help understand the technical solutions and core ideas of the present application. Ordinary technicians in this field should understand that they can still modify the technical solutions recorded in the aforementioned embodiments, or replace some of the technical features therein with equivalents; and these modifications or replacements do not make the essence of the corresponding technical solutions deviate from the scope of the technical solutions of the embodiments of the present application.

Claims (11)

1.一种端口驱动电路,其特征在于,所述端口驱动电路包括:1. A port driving circuit, characterized in that the port driving circuit comprises: 第一逻辑处理模块,所述第一逻辑处理模块用于根据第一使能信号、数据信号以及第一反馈信号生成第一控制信号;A first logic processing module, wherein the first logic processing module is used to generate a first control signal according to a first enable signal, a data signal and a first feedback signal; 第一反相模块,所述第一反相模块用于根据所述第一控制信号生成第二反馈信号;A first inversion module, wherein the first inversion module is used to generate a second feedback signal according to the first control signal; 第二逻辑处理模块,所述第二逻辑处理模块用于根据第二使能信号、所述数据信号以及所述第二反馈信号生成第二控制信号;a second logic processing module, the second logic processing module being configured to generate a second control signal according to a second enable signal, the data signal and the second feedback signal; 第二反相模块,所述第二反相模块用于根据所述第二控制信号生成所述第一反馈信号;a second inverting module, the second inverting module being configured to generate the first feedback signal according to the second control signal; 输出模块,所述输出模块用于根据所述第一控制信号、所述第二控制信号生成对应的驱动信号。An output module, wherein the output module is used to generate a corresponding driving signal according to the first control signal and the second control signal. 2.根据权利要求1所述的端口驱动电路,其特征在于,所述第一逻辑处理模块包括:2. The port driving circuit according to claim 1, wherein the first logic processing module comprises: 第一逻辑处理单元,所述第一逻辑处理单元用于在所述第一反馈信号为低电位的情况下,输出所述第一使能信号与所述数据信号的与非逻辑运算结果作为所述第一控制信号;a first logic processing unit, wherein the first logic processing unit is configured to output a logical NAND result of the first enable signal and the data signal as the first control signal when the first feedback signal is at a low level; 第一反馈处理单元,所述第一反馈处理单元用于在所述第一反馈信号、所述第一使能信号以及所述数据信号均为高电位的情况下,控制所述第一逻辑处理单元输出低电位的所述第一控制信号。The first feedback processing unit is used to control the first logic processing unit to output the first control signal of low potential when the first feedback signal, the first enable signal and the data signal are all at high potential. 3.根据权利要求2所述的端口驱动电路,其特征在于,所述第一逻辑处理单元包括:3. The port driving circuit according to claim 2, wherein the first logic processing unit comprises: 第一晶体管,所述第一晶体管的第一极与第一电源端连接,所述第一晶体管的控制极接入所述第一使能信号,所述第一晶体管为P沟道型晶体管;a first transistor, wherein a first electrode of the first transistor is connected to a first power supply terminal, a control electrode of the first transistor is connected to the first enable signal, and the first transistor is a P-channel transistor; 第二晶体管,所述第二晶体管的第一极与所述第一电源端连接,所述第二晶体管的控制极接入所述数据信号,所述第二晶体管为P沟道型晶体管;a second transistor, wherein a first electrode of the second transistor is connected to the first power supply terminal, a control electrode of the second transistor is connected to the data signal, and the second transistor is a P-channel transistor; 第三晶体管,所述第三晶体管的第一极与所述第一晶体管的第二极、所述第二晶体管的第二极连接并生成所述第一控制信号,所述第三晶体管的控制极与所述第一晶体管的控制极连接,所述第三晶体管为N沟道型晶体管;a third transistor, wherein a first electrode of the third transistor is connected to a second electrode of the first transistor and a second electrode of the second transistor and generates the first control signal, a control electrode of the third transistor is connected to a control electrode of the first transistor, and the third transistor is an N-channel transistor; 第四晶体管,所述第四晶体管的第一极与所述第三晶体管的第二极连接,所述第四晶体管的控制极与所述第二晶体管的控制极连接,所述第四晶体管的第二极与所述第一反馈处理单元连接,所述第四晶体管为N沟道型晶体管。A fourth transistor, wherein a first electrode of the fourth transistor is connected to a second electrode of the third transistor, a control electrode of the fourth transistor is connected to a control electrode of the second transistor, a second electrode of the fourth transistor is connected to the first feedback processing unit, and the fourth transistor is an N-channel transistor. 4.根据权利要求3所述的端口驱动电路,其特征在于,所述第一反馈处理单元包括第五晶体管,所述第五晶体管的第一极与所述第四晶体管的第二极连接,所述第五晶体管的控制极接入所述第一反馈信号,所述第五晶体管的第二极与第二电源端连接;4. The port driving circuit according to claim 3, characterized in that the first feedback processing unit comprises a fifth transistor, a first electrode of the fifth transistor is connected to a second electrode of the fourth transistor, a control electrode of the fifth transistor is connected to the first feedback signal, and a second electrode of the fifth transistor is connected to a second power supply terminal; 所述第五晶体管的沟道类型与所述第三晶体管的沟道类型或者所述第四晶体管的沟道类型相同。A channel type of the fifth transistor is the same as a channel type of the third transistor or a channel type of the fourth transistor. 5.根据权利要求1所述的端口驱动电路,其特征在于,所述第一反相模块包括:5. The port driving circuit according to claim 1, wherein the first inverting module comprises: 第一电阻,所述第一电阻的一端与第一电源端连接;A first resistor, one end of which is connected to a first power supply end; 第六晶体管,所述第六晶体管的第一极与所述第一电阻的另一端连接,所述第六晶体管的控制极接入所述第一控制信号,所述第六晶体管为P沟道型晶体管;a sixth transistor, wherein a first electrode of the sixth transistor is connected to the other end of the first resistor, a control electrode of the sixth transistor is connected to the first control signal, and the sixth transistor is a P-channel transistor; 第七晶体管,所述第七晶体管的第一极与所述第六晶体管的第二极连接并生成所述第二反馈信号,所述第七晶体管的控制极与所述第六晶体管的控制极连接,所述第七晶体管的第二极与第二电源端连接,所述第七晶体管的沟道类型与所述第六晶体管的沟道类型不同。A seventh transistor, wherein a first electrode of the seventh transistor is connected to a second electrode of the sixth transistor and generates the second feedback signal, a control electrode of the seventh transistor is connected to a control electrode of the sixth transistor, a second electrode of the seventh transistor is connected to a second power supply terminal, and a channel type of the seventh transistor is different from a channel type of the sixth transistor. 6.根据权利要求1所述的端口驱动电路,其特征在于,所述第二逻辑处理模块包括:6. The port driving circuit according to claim 1, wherein the second logic processing module comprises: 第二逻辑处理单元,所述第二逻辑处理单元用于在所述第二反馈信号为高电位的情况下,输出所述第二使能信号与所述数据信号的或非逻辑运算结果作为所述第二控制信号;a second logic processing unit, the second logic processing unit being configured to output a logical negation result of a logical operation of the second enable signal and the data signal as the second control signal when the second feedback signal is at a high level; 第二反馈处理单元,所述第二反馈处理单元用于在所述第二反馈信号、所述第二使能信号以及所述数据信号均为低电位的情况下,控制所述第二逻辑处理单元输出高电位的所述第二控制信号。The second feedback processing unit is used to control the second logic processing unit to output the second control signal of high potential when the second feedback signal, the second enable signal and the data signal are all at low potential. 7.根据权利要求6所述的端口驱动电路,其特征在于,所述第二逻辑处理单元包括:7. The port driving circuit according to claim 6, wherein the second logic processing unit comprises: 第八晶体管,所述第八晶体管的第一极与第二电源端连接,所述第八晶体管的控制极接入所述第二使能信号,所述第八晶体管为N沟道型晶体管;an eighth transistor, wherein a first electrode of the eighth transistor is connected to the second power supply terminal, a control electrode of the eighth transistor is connected to the second enable signal, and the eighth transistor is an N-channel transistor; 第九晶体管,所述第九晶体管的第一极与第二电源端连接,所述第九晶体管的控制极接入所述数据信号,所述第九晶体管为N沟道型晶体管;a ninth transistor, wherein a first electrode of the ninth transistor is connected to the second power supply terminal, a control electrode of the ninth transistor is connected to the data signal, and the ninth transistor is an N-channel transistor; 第十晶体管,所述第十晶体管的第一极与所述第八晶体管的第二极、所述第九晶体管的第二极连接并生成所述第二控制信号,所述第十晶体管的控制极与所述第八晶体管的控制极连接,所述第十晶体管为P沟道型晶体管;a tenth transistor, wherein a first electrode of the tenth transistor is connected to a second electrode of the eighth transistor and a second electrode of the ninth transistor and generates the second control signal, a control electrode of the tenth transistor is connected to a control electrode of the eighth transistor, and the tenth transistor is a P-channel transistor; 第十一晶体管,所述第十一晶体管的第一极与所述第十晶体管的第二极连接,所述第十一晶体管的控制极与所述第九晶体管的控制极连接,所述第十一晶体管的第二极与所述第二反馈处理单元连接,所述第十一晶体管的沟道类型与所述第十晶体管的沟道类型相同。an eleventh transistor, wherein a first electrode of the eleventh transistor is connected to a second electrode of the tenth transistor, a control electrode of the eleventh transistor is connected to a control electrode of the ninth transistor, a second electrode of the eleventh transistor is connected to the second feedback processing unit, and a channel type of the eleventh transistor is the same as a channel type of the tenth transistor. 8.根据权利要求7所述的端口驱动电路,其特征在于,所述第二反馈处理单元包括第十二晶体管,所述第十二晶体管的第一极与所述第十一晶体管的第二极连接,所述第十二晶体管的控制极接入所述第二反馈信号,所述第十二晶体管的第二极与第一电源端连接;8. The port driving circuit according to claim 7, characterized in that the second feedback processing unit comprises a twelfth transistor, a first electrode of the twelfth transistor is connected to the second electrode of the eleventh transistor, a control electrode of the twelfth transistor is connected to the second feedback signal, and a second electrode of the twelfth transistor is connected to the first power supply terminal; 所述第十二晶体管的沟道类型与所述第十晶体管的沟道类型或者所述第十一晶体管的沟道类型相同。A channel type of the twelfth transistor is the same as a channel type of the tenth transistor or a channel type of the eleventh transistor. 9.根据权利要求1所述的端口驱动电路,其特征在于,所述第二反相模块包括:9. The port driving circuit according to claim 1, wherein the second inverting module comprises: 第十三晶体管,所述第十三晶体管的第一极与第一电源端连接,所述第十三晶体管的控制极接入所述第二控制信号,所述第十三晶体管为P沟道型晶体管;a thirteenth transistor, wherein a first electrode of the thirteenth transistor is connected to the first power supply terminal, a control electrode of the thirteenth transistor is connected to the second control signal, and the thirteenth transistor is a P-channel transistor; 第十四晶体管,所述第十四晶体管的第一极与所述第十三晶体管的第二极连接并生成所述第一反馈信号,所述第十四晶体管的控制极与所述第十三晶体管的控制极连接,所述第十四晶体管为N沟道型晶体管;a fourteenth transistor, wherein a first electrode of the fourteenth transistor is connected to a second electrode of the thirteenth transistor and generates the first feedback signal, a control electrode of the fourteenth transistor is connected to a control electrode of the thirteenth transistor, and the fourteenth transistor is an N-channel transistor; 第二电阻,所述第二电阻的一端与所述第十四晶体管的第二极连接,所述第二电阻的另一端与第二电源端连接。A second resistor, one end of the second resistor is connected to the second electrode of the fourteenth transistor, and the other end of the second resistor is connected to the second power supply end. 10.一种端口驱动方法,其特征在于,所述端口驱动方法包括:10. A port driving method, characterized in that the port driving method comprises: 根据第一使能信号、数据信号以及第一反馈信号生成第一控制信号;Generate a first control signal according to the first enable signal, the data signal and the first feedback signal; 根据所述第一控制信号生成与所述第一控制信号反相的第二反馈信号;generating a second feedback signal which is inversely proportional to the first control signal according to the first control signal; 根据第二使能信号、所述数据信号以及所述第二反馈信号生成第二控制信号;generating a second control signal according to a second enable signal, the data signal and the second feedback signal; 根据所述第二控制信号生成与所述第二控制信号反相的所述第一反馈信号;generating the first feedback signal which is inversely proportional to the second control signal according to the second control signal; 根据所述第一控制信号、所述第二控制信号生成对应的驱动信号。A corresponding driving signal is generated according to the first control signal and the second control signal. 11.一种芯片,其特征在于,所述芯片包括如权利要求1-9任一项所述的端口驱动电路。11. A chip, characterized in that the chip comprises the port driving circuit according to any one of claims 1 to 9.
CN202410910879.7A 2024-07-09 2024-07-09 Port driving circuit, port driving method and chip Pending CN118473393A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202410910879.7A CN118473393A (en) 2024-07-09 2024-07-09 Port driving circuit, port driving method and chip

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202410910879.7A CN118473393A (en) 2024-07-09 2024-07-09 Port driving circuit, port driving method and chip

Publications (1)

Publication Number Publication Date
CN118473393A true CN118473393A (en) 2024-08-09

Family

ID=92150087

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202410910879.7A Pending CN118473393A (en) 2024-07-09 2024-07-09 Port driving circuit, port driving method and chip

Country Status (1)

Country Link
CN (1) CN118473393A (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2084599A1 (en) * 1991-12-06 1993-06-07 James R. Ohannes Bicmos output buffer circuit with cmos data paths and bipolar current amplification
CN101174827A (en) * 2006-11-02 2008-05-07 三美电机株式会社 Reset device
CN101557213A (en) * 2009-03-27 2009-10-14 华为技术有限公司 Delay unit, annular oscillator and PLL circuit
CN102820878A (en) * 2011-06-08 2012-12-12 快捷半导体(苏州)有限公司 Output buffer system and method
CN102867534A (en) * 2011-07-06 2013-01-09 联发科技股份有限公司 Memory circuit and word line control circuit

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2084599A1 (en) * 1991-12-06 1993-06-07 James R. Ohannes Bicmos output buffer circuit with cmos data paths and bipolar current amplification
EP0545364A1 (en) * 1991-12-06 1993-06-09 National Semiconductor Corporation BICMOS output buffer circuit with CMOS data paths and bipolar current amplification
CN101174827A (en) * 2006-11-02 2008-05-07 三美电机株式会社 Reset device
CN101557213A (en) * 2009-03-27 2009-10-14 华为技术有限公司 Delay unit, annular oscillator and PLL circuit
CN102820878A (en) * 2011-06-08 2012-12-12 快捷半导体(苏州)有限公司 Output buffer system and method
CN102867534A (en) * 2011-07-06 2013-01-09 联发科技股份有限公司 Memory circuit and word line control circuit

Similar Documents

Publication Publication Date Title
JPH0435414A (en) Output circuit
JPH11509391A (en) Low noise tri-state output buffer
JP3544819B2 (en) Input and output circuits and input / output circuits
US6639424B2 (en) Combined dynamic logic gate and level shifter and method employing same
US11705892B2 (en) Deglitcher with integrated non-overlap function
JPH05136684A (en) Cmos output buffer circuit
US20230110352A1 (en) Clock gating circuit and method of operating the same
JP3123952B2 (en) Output buffer circuit
US7199638B2 (en) High speed voltage level translator
CN118473393A (en) Port driving circuit, port driving method and chip
JPH10209848A (en) Output circuit for ic chip
US20060158232A1 (en) Bus driver circuit
US10536147B1 (en) Level shifter
US10566959B1 (en) Sense amplifier flip-flop and method for fixing setup time violations in an integrated circuit
JP2001024496A (en) Input and output circuit
JP4469798B2 (en) Integrated circuit device and method for driving an output signal with the output of an inverter stage
CN118297011B (en) Simulation optimization method of D trigger and D trigger
JPH04245470A (en) Buffer circuit
CN117595859B (en) A logic circuit, output method and electronic device based on memristor
JPS62166615A (en) Cmos buffer
CN117434340A (en) Voltage detection circuit and chip
KR0182949B1 (en) Power-up driving method
KR100673697B1 (en) Output driver
KR100410813B1 (en) Inverter for high speed low power driving circuit of semiconductor device
JP2003347911A (en) Semiconductor integrated circuit

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20240809