CN118436347A - EEG signal emotion recognition system based on adaptive data structure optimization - Google Patents
EEG signal emotion recognition system based on adaptive data structure optimization Download PDFInfo
- Publication number
- CN118436347A CN118436347A CN202410511811.1A CN202410511811A CN118436347A CN 118436347 A CN118436347 A CN 118436347A CN 202410511811 A CN202410511811 A CN 202410511811A CN 118436347 A CN118436347 A CN 118436347A
- Authority
- CN
- China
- Prior art keywords
- emotion
- data structure
- electroencephalogram
- eeg signal
- structure optimization
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/16—Devices for psychotechnics; Testing reaction times ; Devices for evaluating the psychological state
- A61B5/165—Evaluating the state of mind, e.g. depression, anxiety
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/24—Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
- A61B5/25—Bioelectric electrodes therefor
- A61B5/279—Bioelectric electrodes therefor specially adapted for particular uses
- A61B5/291—Bioelectric electrodes therefor specially adapted for particular uses for electroencephalography [EEG]
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/24—Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
- A61B5/316—Modalities, i.e. specific diagnostic methods
- A61B5/369—Electroencephalography [EEG]
- A61B5/372—Analysis of electroencephalograms
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/72—Signal processing specially adapted for physiological signals or for diagnostic purposes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/72—Signal processing specially adapted for physiological signals or for diagnostic purposes
- A61B5/7203—Signal processing specially adapted for physiological signals or for diagnostic purposes for noise prevention, reduction or removal
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/72—Signal processing specially adapted for physiological signals or for diagnostic purposes
- A61B5/7235—Details of waveform analysis
- A61B5/7264—Classification of physiological signals or data, e.g. using neural networks, statistical classifiers, expert systems or fuzzy systems
- A61B5/7267—Classification of physiological signals or data, e.g. using neural networks, statistical classifiers, expert systems or fuzzy systems involving training the classification device
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/10—Pre-processing; Data cleansing
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/21—Design or setup of recognition systems or techniques; Extraction of features in feature space; Blind source separation
- G06F18/213—Feature extraction, e.g. by transforming the feature space; Summarisation; Mappings, e.g. subspace methods
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/24—Classification techniques
- G06F18/241—Classification techniques relating to the classification model, e.g. parametric or non-parametric approaches
- G06F18/2415—Classification techniques relating to the classification model, e.g. parametric or non-parametric approaches based on parametric or probabilistic models, e.g. based on likelihood ratio or false acceptance rate versus a false rejection rate
Landscapes
- Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Physics & Mathematics (AREA)
- Artificial Intelligence (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Biophysics (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- General Health & Medical Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Surgery (AREA)
- Theoretical Computer Science (AREA)
- Molecular Biology (AREA)
- Medical Informatics (AREA)
- Heart & Thoracic Surgery (AREA)
- Psychiatry (AREA)
- Biomedical Technology (AREA)
- Pathology (AREA)
- Data Mining & Analysis (AREA)
- Signal Processing (AREA)
- Evolutionary Computation (AREA)
- Evolutionary Biology (AREA)
- Physiology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- Bioinformatics & Computational Biology (AREA)
- Psychology (AREA)
- Fuzzy Systems (AREA)
- Mathematical Physics (AREA)
- Probability & Statistics with Applications (AREA)
- Child & Adolescent Psychology (AREA)
- Developmental Disabilities (AREA)
- Educational Technology (AREA)
- Hospice & Palliative Care (AREA)
- Social Psychology (AREA)
- Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)
Abstract
本发明提供一种基于自适应数据结构优化的脑电信号情绪识别系统,涉及情绪识别技术领域,该系统包括数据预处理模块,用于对采集的脑电信号数据进行预处理,得到脑电信号对集合;数据结构优化模块,用于对脑电信号对集合中的信号进行时变的电极排序,对脑电信号数据结构进行优化,得到优化后的脑电信号数据;特征提取模块,用于同时提取优化后的脑电信号数据中的重要时间、空间和频率特征;分类模块,用于对所述特征提取模块提取的特征进行处理,得到每类情绪的概率,最大概率值对应的情绪即为预测的情绪类别。本发明能够对受试者的数据结构实现个性化优化,从而提高跨受试者的脑电情绪识别的性能。
The present invention provides an EEG signal emotion recognition system based on adaptive data structure optimization, which relates to the field of emotion recognition technology. The system includes a data preprocessing module for preprocessing collected EEG signal data to obtain an EEG signal pair set; a data structure optimization module for performing time-varying electrode sorting on signals in the EEG signal pair set, optimizing the EEG signal data structure, and obtaining optimized EEG signal data; a feature extraction module for simultaneously extracting important time, space, and frequency features from the optimized EEG signal data; and a classification module for processing the features extracted by the feature extraction module to obtain the probability of each type of emotion, and the emotion corresponding to the maximum probability value is the predicted emotion category. The present invention can realize personalized optimization of the data structure of the subject, thereby improving the performance of EEG emotion recognition across subjects.
Description
技术领域Technical Field
本发明涉及情绪识别技术领域,尤其涉及一种基于自适应数据结构优化的脑电信号情绪识别系统。The present invention relates to the technical field of emotion recognition, and in particular to an electroencephalogram signal emotion recognition system based on adaptive data structure optimization.
背景技术Background technique
情绪是人类涉及认知和意识的复杂状态,在社会和日常生活中发挥着至关重要的作用。积极情绪对人类有有益影响,而消极情绪则可能产生有害影响。例如抑郁症,会严重影响身心健康。情绪的准确识别在人机交互、健康管理、情感计算等领域具有重要意义。情绪识别已成为智能医疗领域的一个关键研究热点。在情绪识别研究领域,识别方法可以大致分为基于生理信号的情绪识别和基于非生理信号的情绪识别。生理信号由于主观上无法控制,可以更准确地反映真实的情绪状态。在这些生理信号中,脑电信号(electroencephalogram,EEG)作为一种不易操纵的非侵入性信号脱颖而出,在情绪识别研究中具有广阔的应用前景。Emotions are complex states of human beings involving cognition and consciousness, and they play a vital role in society and daily life. Positive emotions have beneficial effects on humans, while negative emotions may have harmful effects. For example, depression can seriously affect physical and mental health. Accurate recognition of emotions is of great significance in the fields of human-computer interaction, health management, and affective computing. Emotion recognition has become a key research hotspot in the field of intelligent healthcare. In the field of emotion recognition research, recognition methods can be roughly divided into emotion recognition based on physiological signals and emotion recognition based on non-physiological signals. Since physiological signals cannot be controlled subjectively, they can more accurately reflect the real emotional state. Among these physiological signals, electroencephalogram (EEG) stands out as a non-invasive signal that is not easy to manipulate, and has broad application prospects in emotion recognition research.
Xu等人在论文“Subject-independent EEG emotion recognition with hybridspatio-temporal GRU-Conv architecture”中提出了一种新颖的名为GRU-Conv情绪分类方法。GRU-Conv首先利用门控循环单元(gated recurrent unit,GRU)捕获多维时间特征,然后使用卷积神经网络(convolutional neural network,CNN)从获得的时间特征中进一步提取空间信息,从而提高脑电分类的准确率。但是GRU-Conv没有关注电极通道结构的合理性,使用CNN提取特征前通道的顺序没有进行合理调整,且时空信息无法获得同时提取。Xu et al. proposed a novel emotion classification method called GRU-Conv in the paper “Subject-independent EEG emotion recognition with hybridspatio-temporal GRU-Conv architecture”. GRU-Conv first uses a gated recurrent unit (GRU) to capture multi-dimensional temporal features, and then uses a convolutional neural network (CNN) to further extract spatial information from the obtained temporal features, thereby improving the accuracy of EEG classification. However, GRU-Conv does not pay attention to the rationality of the electrode channel structure, the order of the channels is not reasonably adjusted before using CNN to extract features, and the spatiotemporal information cannot be obtained and extracted simultaneously.
发明内容Summary of the invention
为此,本发明实施例提供了一种基于自适应数据结构优化的脑电信号情绪识别系统,用于解决现有技术中现有情绪分类方法对情绪的识别准确率低的问题。To this end, an embodiment of the present invention provides an EEG signal emotion recognition system based on adaptive data structure optimization, which is used to solve the problem of low emotion recognition accuracy of existing emotion classification methods in the prior art.
为了解决上述问题,本发明实施例提供一种基于自适应数据结构优化的脑电信号情绪识别系统,该系统包括:In order to solve the above problems, an embodiment of the present invention provides an EEG signal emotion recognition system based on adaptive data structure optimization, the system comprising:
数据预处理模块,用于对采集的脑电信号数据进行预处理,得到脑电信号对集合;A data preprocessing module is used to preprocess the collected EEG signal data to obtain an EEG signal pair set;
数据结构优化模块,与所述数据预处理模块连接,用于对脑电信号对集合中的信号进行时变的电极排序,对脑电信号数据结构进行优化,得到优化后的脑电信号数据;A data structure optimization module, connected to the data preprocessing module, is used to perform time-varying electrode sorting on the signals in the EEG signal pair set, optimize the EEG signal data structure, and obtain optimized EEG signal data;
特征提取模块,与所述数据结构优化模块连接,用于同时提取优化后的脑电信号数据中的重要时间、空间和频率特征;A feature extraction module, connected to the data structure optimization module, for simultaneously extracting important time, space and frequency features from the optimized EEG signal data;
分类模块,与所述特征提取模块连接,用于对所述特征提取模块提取的特征进行处理,得到每类情绪的概率,最大概率值对应的情绪即为预测的情绪类别。The classification module is connected to the feature extraction module and is used to process the features extracted by the feature extraction module to obtain the probability of each type of emotion. The emotion corresponding to the maximum probability value is the predicted emotion category.
优选地,所述脑电信号对集合表示为:Preferably, the EEG signal pair set Expressed as:
式中,表示第j个信号,表示实数矩阵的集合;yj∈{1,…,C}为Xj的情绪标签,C为情绪标签数量;M为电极数;N为信号序列长度;5表示信号有5个频段,依次为δ、θ、α、β和γ频带;m为信号对数。In the formula, represents the jth signal, represents the set of real number matrices; yj∈ {1,…,C} is the emotion label of Xj , C is the number of emotion labels; M is the number of electrodes; N is the length of the signal sequence; 5 means that the signal has 5 frequency bands, namely δ, θ, α, β and γ bands; m is the number of signal logarithms.
优选地,所述对脑电信号对集合中的信号进行时变的电极排序,对脑电信号数据结构进行优化,得到优化后的脑电信号数据,具体包括:Preferably, the step of performing time-varying electrode sorting on the signals in the EEG signal pair set and optimizing the EEG signal data structure to obtain optimized EEG signal data specifically includes:
首先计算信号的关联性矩阵Rj;First, calculate the signal correlation matrix R j ;
然后对关联性矩阵的每行元素按照降序进行排序,并获得排列后相应的位置索引Lj;Then, sort the elements of each row of the correlation matrix in descending order, and obtain the corresponding position index L j after sorting;
接着根据排序后的位置索引Lj,制定电极重排规则,得到重排位置索引L′j;Then, according to the sorted position index L j , an electrode rearrangement rule is formulated to obtain a rearrangement position index L′ j ;
最后根据电极重排规则,对电极重新排序,得到优化后的脑电信号数据Sj。Finally, the electrodes are rearranged according to the electrode rearrangement rule to obtain the optimized EEG signal data S j .
优选地,所述关联性矩阵Rj表示为:Preferably, the relevance matrix Rj is expressed as:
其中in
式中,是自适应关联性矩阵;是公共关联性矩阵;表示自适应关联性矩阵的第k行、q列元素;向量是矩阵Ej的第k行,是Xj的重排;向量为是矩阵Ej的第q行;||·||表示2范数;(·)T表示转置;表示实数矩阵的集合。In the formula, is the adaptive relevance matrix; is the public relevance matrix; represents the k-th row and q-th column element of the adaptive correlation matrix; vector is the kth row of the matrix Ej , is a rearrangement of X j ; the vector is the qth row of the matrix E j ; ||·|| represents the 2-norm; (·)T represents the transpose; represents a collection of real matrices.
优选地,所述重排位置索引L′j定义如下:Preferably, the rearrangement position index L′ j is defined as follows:
式中,2|i表示i能被2整除;表示下取整函数;Lj(k,i)表示在矩阵Rj的第k行上排序为第i的元素位置,也就是与第k个电极的关联程度排序为第i的电极位置;M为电极数。In the formula, 2|i means that i is divisible by 2; represents the floor function; L j (k, i) represents the position of the element ranked as the ith element on the k-th row of the matrix R j , that is, the position of the electrode ranked as the ith electrode in terms of the degree of association with the k-th electrode; M is the number of electrodes.
优选地,优化后的脑电信号数据Sj表示为:Preferably, the optimized EEG signal data Sj is expressed as:
式中,是以第k个电极为中心重新排序的信号,k=1,…,M,M为电极数;Concat(·)表示对数据的连接操作;表示实数矩阵的集合。In the formula, is a signal reordered with the kth electrode as the center, k = 1, ..., M, M is the number of electrodes; Concat(·) represents the concatenation operation on the data; represents a collection of real matrices.
优选地,所述特征提取模块由三组3D卷积注意力模块组成,所述3D卷积注意力模块由通道注意力机制、3D-CNN层、层归一化层、LeakyReLU激活函数和dropout层构成。Preferably, the feature extraction module consists of three groups of 3D convolutional attention modules, and the 3D convolutional attention module consists of a channel attention mechanism, a 3D-CNN layer, a layer normalization layer, a LeakyReLU activation function and a dropout layer.
优选地,所述特征提取模块由三组3D卷积注意力模块组成,具体包括:Preferably, the feature extraction module is composed of three groups of 3D convolutional attention modules, specifically including:
在第一组3D卷积注意力模块中,通道注意力机制的MLP神经元个数设置为3D-CNN层中使用了64个大小为的卷积核,其中步长设置为(2,2,1),补零设置为(1,1,0),输出数据维度变为 其中M为电极数;N为信号序列长度;In the first set of 3D convolutional attention modules, the number of MLP neurons in the channel attention mechanism is set to 64 pixels of size The convolution kernel, where the step size is set to (2, 2, 1), the zero padding is set to (1, 1, 0), and the output data dimension becomes Where M is the number of electrodes; N is the length of the signal sequence;
在第二组3D卷积注意力模块中,通道注意力机制的MLP神经元个数设置为4,3D-CNN层使用了128个大小为的卷积核,其中步长设置为(2,2,1),补零设置为(1,1,1),输出数据维度变为 In the second set of 3D convolutional attention modules, the number of MLP neurons in the channel attention mechanism is set to 4, and the 3D-CNN layer uses 128 neurons of size The convolution kernel, where the step size is set to (2, 2, 1), the zero padding is set to (1, 1, 1), and the output data dimension becomes
在第三组3D卷积注意力模块中,通道注意力机制的MLP神经元的个数设置为8,3D-CNN层使用了256个大小为的卷积核,其中步长设置为(2,2,1),补零设置为(1,1,1),输出数据维度变为 In the third group of 3D convolutional attention modules, the number of MLP neurons in the channel attention mechanism is set to 8, and the 3D-CNN layer uses 256 neurons of size The convolution kernel, where the step size is set to (2, 2, 1), the zero padding is set to (1, 1, 1), and the output data dimension becomes
优选地,所述特征提取模块提取的特征Fj表示为:Preferably, the feature Fj extracted by the feature extraction module is expressed as:
其中,M为电极数;N为信号序列长度;表示实数矩阵的集合。Where M is the number of electrodes; N is the length of the signal sequence; represents a collection of real matrices.
优选地,对所述特征提取模块提取的特征进行处理,得到每类情绪的概率,最大概率值对应的情绪即为预测的情绪类别,具体包括:Preferably, the features extracted by the feature extraction module are processed to obtain the probability of each type of emotion, and the emotion corresponding to the maximum probability value is the predicted emotion category, which specifically includes:
首先将特征提取模块提取的特征Fj展平拉长;然后将其输入线性层,线性层中神经元的个数等于要分类的情绪类别数;最后利用Softmax函数对特征进行处理,得到每类情绪的概率,最大概率值对应的情绪即为预测的情绪类别。First, the feature Fj extracted by the feature extraction module is flattened and stretched; then it is input into the linear layer, and the number of neurons in the linear layer is equal to the number of emotion categories to be classified; finally, the Softmax function is used to process the features to obtain the probability of each type of emotion, and the emotion corresponding to the maximum probability value is the predicted emotion category.
从以上技术方案可以看出,本发明申请具有以下有益效果:It can be seen from the above technical solutions that the present invention has the following beneficial effects:
本发明实施例提供了一种基于自适应数据结构优化的脑电信号情绪识别系统,包括数据预处理模块、数据结构优化模块、特征提取模块以及分类模块。数据预处理模块能够迅速而准确地处理采集到的脑电信号数据,有效地去除噪声、滤波等,为后续的脑电信号分析提供高质量的数据基础。预处理后的脑电信号对集合更加清晰、准确,有利于提高后续分析的精确性。通过数据结构优化模块对脑电信号进行时变的电极排序,优化了脑电信号的数据结构,以便进行特征提取。这种优化能够显著提高数据分析的效率,减少计算量,同时保证分析的准确性。特征提取模块能够同时提取优化后的脑电信号数据中的重要时间、空间和频率特征,这种多维度的特征提取方式能够更全面地反映脑电信号的特性,为后续的情绪分类提供更加全面、准确的信息。分类模块通过对提取的特征进行处理,能够准确地预测出每类情绪的概率,并确定最大概率值对应的情绪类别。这种分类方式既考虑了脑电信号的特性,又结合了机器学习算法的优势,使得情绪分类的准确性和可靠性得到了显著提高。The embodiment of the present invention provides an EEG signal emotion recognition system based on adaptive data structure optimization, including a data preprocessing module, a data structure optimization module, a feature extraction module and a classification module. The data preprocessing module can quickly and accurately process the collected EEG signal data, effectively remove noise, filter, etc., and provide a high-quality data basis for subsequent EEG signal analysis. The preprocessed EEG signal pair set is clearer and more accurate, which is conducive to improving the accuracy of subsequent analysis. The EEG signal is time-varyingly sorted by the data structure optimization module, and the data structure of the EEG signal is optimized for feature extraction. This optimization can significantly improve the efficiency of data analysis, reduce the amount of calculation, and ensure the accuracy of analysis. The feature extraction module can simultaneously extract important time, space and frequency features in the optimized EEG signal data. This multi-dimensional feature extraction method can more comprehensively reflect the characteristics of the EEG signal and provide more comprehensive and accurate information for subsequent emotion classification. The classification module can accurately predict the probability of each type of emotion by processing the extracted features, and determine the emotion category corresponding to the maximum probability value. This classification method takes into account the characteristics of EEG signals and combines the advantages of machine learning algorithms, which significantly improves the accuracy and reliability of emotion classification.
附图说明BRIEF DESCRIPTION OF THE DRAWINGS
为了更清楚地说明本发明实施案例或现有技术中的技术方案,下边将对实施例中所需要使用的附图做简单说明,通过参考附图会更清楚的理解本发明的特征和优点,附图是示意性的而不应该理解为对本发明进行任何限制,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,可以根据这些附图获得其他的附图。其中:In order to more clearly illustrate the implementation cases of the present invention or the technical solutions in the prior art, the following is a brief description of the drawings required for use in the embodiments. By referring to the drawings, the features and advantages of the present invention will be more clearly understood. The drawings are schematic and should not be understood as limiting the present invention in any way. For ordinary technicians in this field, other drawings can be obtained based on these drawings without creative work. Among them:
图1为实施例中提供的一种基于自适应数据结构优化的脑电信号情绪识别系统架构图;FIG1 is an architecture diagram of an EEG signal emotion recognition system based on adaptive data structure optimization provided in an embodiment;
图2为实施例中提供的一种基于自适应数据结构优化的脑电信号情绪识别方法的流程图。FIG2 is a flow chart of a method for EEG signal emotion recognition based on adaptive data structure optimization provided in an embodiment.
具体实施方式Detailed ways
为使本发明实施例的目的、技术方案与优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。In order to make the purpose, technical solution and advantages of the embodiments of the present invention clearer, the technical solution in the embodiments of the present invention will be clearly and completely described below in conjunction with the drawings in the embodiments of the present invention. Obviously, the described embodiments are part of the embodiments of the present invention, not all of the embodiments. Based on the embodiments of the present invention, all other embodiments obtained by ordinary technicians in this field without creative work are within the scope of protection of the present invention.
实施例一Embodiment 1
为了解决现有技术中现有情绪分类方法对情绪的识别准确率低的问题,如图1所示,本发明实施例提出一种基于自适应数据结构优化的脑电信号情绪识别系统,该系统包括:In order to solve the problem of low emotion recognition accuracy of existing emotion classification methods in the prior art, as shown in FIG1 , an embodiment of the present invention proposes an EEG signal emotion recognition system based on adaptive data structure optimization, the system comprising:
数据预处理模块,用于对采集的脑电信号数据进行预处理,得到脑电信号对集合;A data preprocessing module is used to preprocess the collected EEG signal data to obtain an EEG signal pair set;
数据结构优化模块,与所述数据预处理模块连接,用于对脑电信号对集合中的信号进行时变的电极排序,对脑电信号数据结构进行优化,得到优化后的脑电信号数据;A data structure optimization module, connected to the data preprocessing module, is used to perform time-varying electrode sorting on the signals in the EEG signal pair set, optimize the EEG signal data structure, and obtain optimized EEG signal data;
特征提取模块,与所述数据结构优化模块连接,用于同时提取优化后的脑电信号数据中的重要时间、空间和频率特征;A feature extraction module, connected to the data structure optimization module, for simultaneously extracting important time, space and frequency features from the optimized EEG signal data;
分类模块,与所述特征提取模块连接,用于对所述特征提取模块提取的特征进行处理,得到每类情绪的概率,最大概率值对应的情绪即为预测的情绪类别。The classification module is connected to the feature extraction module and is used to process the features extracted by the feature extraction module to obtain the probability of each type of emotion. The emotion corresponding to the maximum probability value is the predicted emotion category.
从上述技术方案可知,本发明提供了一种基于自适应数据结构优化的脑电信号情绪识别系统,包括数据预处理模块、数据结构优化模块、特征提取模块以及分类模块。数据预处理模块能够迅速而准确地处理采集到的脑电信号数据,有效地去除噪声、滤波等,为后续的脑电信号分析提供高质量的数据基础。预处理后的脑电信号对集合更加清晰、准确,有利于提高后续分析的精确性。通过数据结构优化模块对脑电信号进行时变的电极排序,优化了脑电信号的数据结构,以便进行特征提取。这种优化能够显著提高数据分析的效率,减少计算量,同时保证分析的准确性。特征提取模块能够同时提取优化后的脑电信号数据中的重要时间、空间和频率特征,这种多维度的特征提取方式能够更全面地反映脑电信号的特性,为后续的情绪分类提供更加全面、准确的信息。分类模块通过对提取的特征进行处理,能够准确地预测出每类情绪的概率,并确定最大概率值对应的情绪类别。这种分类方式既考虑了脑电信号的特性,又结合了机器学习算法的优势,使得情绪分类的准确性和可靠性得到了显著提高。It can be seen from the above technical scheme that the present invention provides an EEG signal emotion recognition system based on adaptive data structure optimization, including a data preprocessing module, a data structure optimization module, a feature extraction module and a classification module. The data preprocessing module can quickly and accurately process the collected EEG signal data, effectively remove noise, filter, etc., and provide a high-quality data basis for subsequent EEG signal analysis. The preprocessed EEG signal pair set is clearer and more accurate, which is conducive to improving the accuracy of subsequent analysis. The EEG signal is time-varyingly sorted by the data structure optimization module, and the data structure of the EEG signal is optimized for feature extraction. This optimization can significantly improve the efficiency of data analysis, reduce the amount of calculation, and ensure the accuracy of analysis. The feature extraction module can simultaneously extract important time, space and frequency features in the optimized EEG signal data. This multi-dimensional feature extraction method can more comprehensively reflect the characteristics of the EEG signal and provide more comprehensive and accurate information for subsequent emotion classification. The classification module can accurately predict the probability of each type of emotion by processing the extracted features, and determine the emotion category corresponding to the maximum probability value. This classification method takes into account the characteristics of EEG signals and combines the advantages of machine learning algorithms, which significantly improves the accuracy and reliability of emotion classification.
在本实施例中,首先利用数据预处理模块对采集的脑电信号数据进行预处理,得到脑电信号对集合,其中脑电信号对集合表示为:In this embodiment, the collected EEG signal data is first preprocessed using a data preprocessing module to obtain an EEG signal pair set, wherein the EEG signal pair set Expressed as:
式中,表示第j个信号,表示实数矩阵的集合;yj∈{1,…,C}为Xj的情绪标签,C为情绪标签数量;M为电极数;N为信号序列长度;5表示信号有5个频段,依次为δ、θ、α、β和γ频带;m为信号对数。In the formula, represents the jth signal, represents the set of real number matrices; yj∈ {1,…,C} is the emotion label of Xj , C is the number of emotion labels; M is the number of electrodes; N is the length of the signal sequence; 5 means that the signal has 5 frequency bands, namely δ, θ, α, β and γ bands; m is the number of signal logarithms.
在本实施例中,所有采集的数据被下采样至200Hz,再经过1~50Hz的带通滤波器滤波,将信号分为5个频带:δ频段(1~3Hz)、θ频段(4~7Hz)、α频段(8~13Hz)、β频段(14~30Hz)和γ频段(31~50Hz)。并利用微分熵和线性动态系统对五个波段的数据进行进一步处理。此外,z分数归一化被用于对这些数据进行归一化。In this embodiment, all collected data are downsampled to 200 Hz, and then filtered by a 1-50 Hz bandpass filter to divide the signal into five frequency bands: delta band (1-3 Hz), theta band (4-7 Hz), alpha band (8-13 Hz), beta band (14-30 Hz) and gamma band (31-50 Hz). The data of the five bands are further processed using differential entropy and linear dynamic system. In addition, z-score normalization is used to normalize these data.
在本实施例中,利用数据结构优化模块对脑电信号对集合中的信号进行时变的电极排序,对脑电信号数据结构进行优化,得到优化后的脑电信号数据。In this embodiment, a data structure optimization module is used to perform time-varying electrode sorting on the signals in the EEG signal pair set, optimize the EEG signal data structure, and obtain optimized EEG signal data.
数据结构优化指的是对电极进行排序,电极的重排是基于每个电极中信号之间的关联性。Data structure optimization refers to sorting electrodes, and the rearrangement of electrodes is based on the correlation between the signals in each electrode.
具体地,首先计算信号的关联性矩阵Rj。以第j个信号Xj为例,其关联性矩阵可以表示为:Specifically, the correlation matrix R j of the signal is first calculated. Taking the j-th signal X j as an example, its correlation matrix It can be expressed as:
其中in
式中,是自适应关联性矩阵,可通过计算电极信号之间的余弦相似度得到;是公共关联性矩阵,在训练过程中通过学习获得;表示自适应关联性矩阵的第k行、q列元素;向量是矩阵Ej的第k行,是Xj的重排;向量为是矩阵Ej的第q行;||·||表示2范数;(·)T表示转置;表示实数矩阵的集合。In the formula, is the adaptive correlation matrix, which can be obtained by calculating the cosine similarity between electrode signals; is the public correlation matrix, obtained through learning during the training process; represents the k-th row and q-th column element of the adaptive correlation matrix; vector is the kth row of the matrix Ej , is a rearrangement of X j ; the vector is the qth row of the matrix E j ; ||·|| represents the 2-norm; (·) T represents the transpose; represents a collection of real matrices.
然后对关联性矩阵的每行元素按照降序进行排序,并获得排列后相应的位置索引Lj,其表示为其中Lj(k,q)表示在Rj的第k行上排序为第q的元素位置,也就是与第k个电极的关联程度排序为第q的电极位置。Then, each row of the correlation matrix is sorted in descending order, and the corresponding position index L j after sorting is obtained, which is expressed as Wherein L j (k, q) represents the qth element position ranked on the kth row of R j , that is, the qth electrode position ranked in terms of the degree of association with the kth electrode.
接着根据排序后的位置索引Lj,制定电极重排规则,得到重排位置索引L′j,其定义如下:Then, according to the sorted position index L j , the electrode rearrangement rule is formulated to obtain the rearrangement position index L′ j , which is defined as follows:
式中,2|i表示i能被2整除;表示下取整函数;对Xj而言,会以每个电极作为中心,即根据L′j的每一行来调整电极的顺序,获得新的信号。In the formula, 2|i means that i is divisible by 2; represents the floor function; for X j , each electrode is taken as the center, that is, the order of the electrodes is adjusted according to each row of L′ j to obtain a new signal.
最后根据电极重排规则,对电极重新排序,得到优化后的脑电信号数据Sj,表示为:Finally, according to the electrode rearrangement rule, the electrodes are rearranged to obtain the optimized EEG signal data S j , which is expressed as:
式中,是以第k个电极为中心重新排序的信号,k=1,…,M;Concat(·)表示对数据的连接操作。In the formula, It is a signal reordered with the kth electrode as the center, k=1,…,M; Concat(·) represents the connection operation on the data.
在本实施例中,利用特征提取模块同时提取优化后的脑电信号数据中的重要时间、空间和频率特征。In this embodiment, the feature extraction module is used to simultaneously extract important time, space and frequency features in the optimized EEG signal data.
具体地,本发明的特征提取模块由三组3D卷积注意力模块组成,所述3D卷积注意力模块由通道注意力机制、3D-CNN层、层归一化层、LeakyReLU激活函数和dropout层构成。在通道注意力机制中,首先使用3D最大池化和3D平均池化操作融合输入的上下文信息;再使用多层感知机(multilayer perceptron,MLP)对融合后的信息做进一步处理。MLP则是由两个全连接层组成,中间使用LeakyReLU作激活函数。Specifically, the feature extraction module of the present invention is composed of three groups of 3D convolutional attention modules, which are composed of a channel attention mechanism, a 3D-CNN layer, a layer normalization layer, a LeakyReLU activation function and a dropout layer. In the channel attention mechanism, 3D maximum pooling and 3D average pooling operations are first used to fuse the input context information; then a multilayer perceptron (MLP) is used to further process the fused information. MLP is composed of two fully connected layers, with LeakyReLU as the activation function in the middle.
进一步地,在第一组3D卷积注意力模块中,通道注意力机制的MLP神经元个数设置为3D-CNN层中使用了64个大小为的卷积核,其中步长设置为(2,2,1),补零设置为(1,1,0),输出数据维度变为 Furthermore, in the first set of 3D convolutional attention modules, the number of MLP neurons in the channel attention mechanism is set to 64 pixels of size The convolution kernel, where the step size is set to (2, 2, 1), the zero padding is set to (1, 1, 0), and the output data dimension becomes
在第二组3D卷积注意力模块中,通道注意力机制的MLP神经元个数设置为4,3D-CNN层使用了128个大小为的卷积核,其中步长设置为(2,2,1),补零设置为(1,1,1),输出数据维度变为 In the second set of 3D convolutional attention modules, the number of MLP neurons in the channel attention mechanism is set to 4, and the 3D-CNN layer uses 128 neurons of size The convolution kernel, where the step size is set to (2, 2, 1), the zero padding is set to (1, 1, 1), and the output data dimension becomes
在第三组3D卷积注意力模块中,通道注意力机制的MLP神经元的个数设置为8,3D-CNN层使用了256个大小为的卷积核,其中步长设置为(2,2,1),补零设置为(1,1,1),输出数据维度变为 In the third group of 3D convolutional attention modules, the number of MLP neurons in the channel attention mechanism is set to 8, and the 3D-CNN layer uses 256 neurons of size The convolution kernel, where the step size is set to (2, 2, 1), the zero padding is set to (1, 1, 1), and the output data dimension becomes
经过三个3D卷积注意力模块提取后的特征Fj表示为:The feature Fj extracted by three 3D convolutional attention modules is expressed as:
在本实施例中,利用分类模块对特征提取模块提取的特征进行处理,得到每类情绪的概率,最大概率值对应的情绪即为预测的情绪类别,具体包括:In this embodiment, the features extracted by the feature extraction module are processed by the classification module to obtain the probability of each type of emotion. The emotion corresponding to the maximum probability value is the predicted emotion category, which specifically includes:
首先将特征提取模块提取的特征Fj展平拉长;然后将其输入线性层(Linear层),线性层中神经元的个数等于要分类的情绪类别数,本实施例中Linear层神经元的个数设为3;最后利用Softmax函数对特征进行处理,得到每类情绪的概率,最大概率值对应的情绪即为预测的情绪类别。First, the feature Fj extracted by the feature extraction module is flattened and stretched; then it is input into the linear layer (Linear layer), the number of neurons in the linear layer is equal to the number of emotion categories to be classified, and the number of neurons in the Linear layer is set to 3 in this embodiment; finally, the Softmax function is used to process the features to obtain the probability of each type of emotion, and the emotion corresponding to the maximum probability value is the predicted emotion category.
在本实施例中,网络的dropout率被设置为0.1。使用的优化器是Adam,损失函数是交叉熵损失。训练时采用早停训练方法,其中patience、epoch数和学习率分别设置为120、600和0.00001。In this embodiment, the dropout rate of the network is set to 0.1. The optimizer used is Adam, and the loss function is the cross entropy loss. The early stopping training method is used during training, where patience, epoch number and learning rate are set to 120, 600 and 0.00001 respectively.
为了进一步说明本发明的技术方案及优点,下面结合具体的实验进行说明。In order to further illustrate the technical solution and advantages of the present invention, a description is given below in conjunction with specific experiments.
(1)实验数据(1) Experimental data
本发明在SEED数据集上进行了测试,该数据集中有3种情绪类别(积极、中性和消极)和15个受试者。SEED数据集选择了15个电影片段来形成情绪刺激。在收集数据集的过程中,每个受试者在三周内每周观看一次全部15个电影片段。记录他们对应的脑电图信号。由于脑电信号的持续时间不一致,对较短的信号进行零填充对齐。最后,对受试者的脑电信号采样张量为62通道×5频带×265采样点。每个受试者总共有45个脑电图信号。此外,SEED数据集采用62通道的电源成像neuroscan系统设备采集脑电信号,采样率为1000Hz。The present invention was tested on the SEED dataset, which has 3 emotion categories (positive, neutral and negative) and 15 subjects. The SEED dataset selected 15 movie clips to form emotional stimuli. In the process of collecting the dataset, each subject watched all 15 movie clips once a week for three weeks. Their corresponding EEG signals were recorded. Since the duration of EEG signals is inconsistent, zero padding alignment is performed on shorter signals. Finally, the EEG signal sampling tensor of the subject is 62 channels × 5 frequency bands × 265 sampling points. Each subject has a total of 45 EEG signals. In addition, the SEED dataset uses a 62-channel power imaging neuroscan system device to collect EEG signals with a sampling rate of 1000Hz.
(2)实验方案(2) Experimental plan
采用本发明提出的基于自适应数据结构优化的脑电信号情绪识别系统识别受试者的脑电情绪。The EEG signal emotion recognition system based on adaptive data structure optimization proposed by the present invention is used to recognize the EEG emotions of a subject.
(3)实验结果(3) Experimental results
本发明的效果可以通过在SEED数据集的测试集部分的分类结果验证:本发明情绪识别系统与GRU-Conv网络模型在相同的数据集上做情绪分类比较。验证方法为留一法(leaving one subject out,LOSO),可用于验证模型在交叉受试者条件下的性能,该方法将平均准确率和相应的标准差作为衡量网络性能的指标。从表1的结果中可以看出,本发明提出的情绪识别系统对情绪的识别比RGNN模型有更好的性能。The effect of the present invention can be verified by the classification results of the test set part of the SEED data set: the emotion recognition system of the present invention is compared with the GRU-Conv network model in emotion classification on the same data set. The verification method is the leaving one subject out (LOSO), which can be used to verify the performance of the model under the cross-subject condition. This method uses the average accuracy and the corresponding standard deviation as indicators to measure the network performance. It can be seen from the results in Table 1 that the emotion recognition system proposed by the present invention has better performance in emotion recognition than the RGNN model.
表1在SEED数据集上的情绪识别结果对比Table 1 Comparison of emotion recognition results on the SEED dataset
实施例二Embodiment 2
如图2所示,本发明提供一种基于自适应数据结构优化的脑电信号情绪识别方法,该方法采用上述实施例一的基于自适应数据结构优化的脑电信号情绪识别系统,实现对受试者的脑电情绪识别,具体包括:As shown in FIG2 , the present invention provides an EEG signal emotion recognition method based on adaptive data structure optimization. The method adopts the EEG signal emotion recognition system based on adaptive data structure optimization of the above-mentioned embodiment 1 to realize EEG emotion recognition of a subject, and specifically includes:
步骤S1:对采集的脑电信号数据进行预处理,得到脑电信号对集合;Step S1: preprocessing the collected EEG signal data to obtain an EEG signal pair set;
步骤S2:对脑电信号对集合中的信号进行时变的电极排序,对脑电信号数据结构进行优化,得到优化后的脑电信号数据;Step S2: performing time-varying electrode sorting on the signals in the EEG signal pair set, optimizing the EEG signal data structure, and obtaining optimized EEG signal data;
步骤S3:同时提取优化后的脑电信号数据中的重要时间、空间和频率特征;Step S3: extracting important time, space and frequency features from the optimized EEG signal data simultaneously;
步骤S4:对步骤S3中提取的特征进行处理,得到每类情绪的概率,最大概率值对应的情绪即为预测的情绪类别。Step S4: Process the features extracted in step S3 to obtain the probability of each type of emotion, and the emotion corresponding to the maximum probability value is the predicted emotion category.
本实施例的一种基于自适应数据结构优化的脑电信号情绪识别方法,用于采用前述的基于自适应数据结构优化的脑电信号情绪识别系统,其具体实施方式可以参照相应的各个部分实施例的描述,为了避免冗余,在此不再赘述。The present embodiment provides an EEG signal emotion recognition method based on adaptive data structure optimization, which is used to adopt the aforementioned EEG signal emotion recognition system based on adaptive data structure optimization. Its specific implementation method can refer to the description of the corresponding various partial embodiments, and will not be repeated here to avoid redundancy.
实施例三Embodiment 3
本发明实施例还提供了一种电子设备,所述电子设备包括处理器、存储器和总线系统,所述处理器和存储器通过该总线系统相连,所述存储器用于存储指令,所述处理器用于执行存储器存储的指令,以实现上述所述的基于自适应数据结构优化的脑电信号情绪识别方法。An embodiment of the present invention also provides an electronic device, which includes a processor, a memory and a bus system, wherein the processor and the memory are connected through the bus system, the memory is used to store instructions, and the processor is used to execute the instructions stored in the memory to implement the above-mentioned EEG signal emotion recognition method based on adaptive data structure optimization.
实施例四Embodiment 4
本发明实施例还提供了一种计算机存储介质,所述计算机存储介质存储有计算机软件产品,所述计算机软件产品包括的若干指令,用以使得一台计算机设备执行上述所述的基于自适应数据结构优化的脑电信号情绪识别方法。An embodiment of the present invention also provides a computer storage medium, which stores a computer software product. The computer software product includes several instructions for enabling a computer device to execute the above-mentioned EEG signal emotion recognition method based on adaptive data structure optimization.
本领域内的技术人员应明白,本申请的实施例可提供为方法、系统、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。Those skilled in the art will appreciate that the embodiments of the present application may be provided as methods, systems, or computer program products. Therefore, the present application may adopt the form of a complete hardware embodiment, a complete software embodiment, or an embodiment in combination with software and hardware. Moreover, the present application may adopt the form of a computer program product implemented in one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) that contain computer-usable program code.
本申请是参照根据本申请实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。The present application is described with reference to the flowchart and/or block diagram of the method, device (system) and computer program product according to the embodiment of the present application. It should be understood that each process and/or box in the flowchart and/or block diagram, and the combination of the process and/or box in the flowchart and/or block diagram can be realized by computer program instructions. These computer program instructions can be provided to a processor of a general-purpose computer, a special-purpose computer, an embedded processor or other programmable data processing device to produce a machine, so that the instructions executed by the processor of the computer or other programmable data processing device produce a device for realizing the function specified in one process or multiple processes in the flowchart and/or one box or multiple boxes in the block diagram.
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。These computer program instructions may also be stored in a computer-readable memory that can direct a computer or other programmable data processing device to operate in a specific manner, so that the instructions stored in the computer-readable memory produce a manufactured product including an instruction device that implements the functions specified in one or more processes of the flowchart and/or one or more blocks of the block diagram. These computer program instructions may also be loaded onto a computer or other programmable data processing device so that a series of operating steps are performed on the computer or other programmable device to produce a computer-implemented process, so that the instructions executed on the computer or other programmable device provide steps for implementing the functions specified in one or more processes of the flowchart and/or one or more blocks of the block diagram.
显然,上述实施例仅仅是为清楚地说明所作的举例,并非对实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式变化或变动。这里无需也无法对所有的实施方式予以穷举。而由此所引申出的显而易见的变化或变动仍处于本发明创造的保护范围之中。Obviously, the above embodiments are merely examples for clear explanation and are not intended to limit the implementation methods. For those skilled in the art, other different forms of changes or modifications can be made based on the above description. It is not necessary and impossible to list all the implementation methods here. The obvious changes or modifications derived from these are still within the protection scope of the invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202410511811.1A CN118436347B (en) | 2024-04-26 | EEG signal emotion recognition system based on adaptive data structure optimization |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202410511811.1A CN118436347B (en) | 2024-04-26 | EEG signal emotion recognition system based on adaptive data structure optimization |
Publications (2)
Publication Number | Publication Date |
---|---|
CN118436347A true CN118436347A (en) | 2024-08-06 |
CN118436347B CN118436347B (en) | 2025-04-11 |
Family
ID=
Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050222639A1 (en) * | 2004-02-20 | 2005-10-06 | Erich Seifritz | Translational sensory stimulation procedure for the stimulation of amygdala-hippocampal complex |
CN107256332A (en) * | 2017-05-24 | 2017-10-17 | 上海交通大学 | The electric experimental evaluation system and method for brain based on eye movement data |
US20190247662A1 (en) * | 2017-12-04 | 2019-08-15 | Neuroenhancement Lab, LLC | Method and apparatus for neuroenhancement to facilitate learning and performance |
US20190347476A1 (en) * | 2018-05-09 | 2019-11-14 | Korea Advanced Institute Of Science And Technology | Method for estimating human emotions using deep psychological affect network and system therefor |
US20200060566A1 (en) * | 2018-08-24 | 2020-02-27 | Newton Howard | Automated detection of brain disorders |
CN114052735A (en) * | 2021-11-26 | 2022-02-18 | 山东大学 | Electroencephalogram emotion recognition method and system based on depth field self-adaption |
CN114224342A (en) * | 2021-12-06 | 2022-03-25 | 南京航空航天大学 | Multi-channel electroencephalogram emotion recognition method based on space-time fusion feature network |
CN114947852A (en) * | 2022-06-14 | 2022-08-30 | 华南师范大学 | Multi-mode emotion recognition method, device, equipment and storage medium |
US20230039900A1 (en) * | 2021-08-07 | 2023-02-09 | Fuzhou University | Method for realizing a multi-channel convolutional recurrent neural network eeg emotion recognition model using transfer learning |
CN116369949A (en) * | 2023-06-06 | 2023-07-04 | 南昌航空大学 | Electroencephalogram signal grading emotion recognition method, electroencephalogram signal grading emotion recognition system, electronic equipment and medium |
CN116861211A (en) * | 2023-06-08 | 2023-10-10 | 苏州大学 | An EEG emotion recognition method and system integrating spatiotemporal interactive neural network |
CN117379052A (en) * | 2023-10-25 | 2024-01-12 | 湖南应用技术学院 | Emotion recognition method and device and computer storage medium |
CN117894491A (en) * | 2024-03-15 | 2024-04-16 | 济南宝林信息技术有限公司 | Physiological monitoring data processing method for assessing mental activities |
Patent Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050222639A1 (en) * | 2004-02-20 | 2005-10-06 | Erich Seifritz | Translational sensory stimulation procedure for the stimulation of amygdala-hippocampal complex |
CN107256332A (en) * | 2017-05-24 | 2017-10-17 | 上海交通大学 | The electric experimental evaluation system and method for brain based on eye movement data |
US20190247662A1 (en) * | 2017-12-04 | 2019-08-15 | Neuroenhancement Lab, LLC | Method and apparatus for neuroenhancement to facilitate learning and performance |
US20190347476A1 (en) * | 2018-05-09 | 2019-11-14 | Korea Advanced Institute Of Science And Technology | Method for estimating human emotions using deep psychological affect network and system therefor |
US20200060566A1 (en) * | 2018-08-24 | 2020-02-27 | Newton Howard | Automated detection of brain disorders |
US20230039900A1 (en) * | 2021-08-07 | 2023-02-09 | Fuzhou University | Method for realizing a multi-channel convolutional recurrent neural network eeg emotion recognition model using transfer learning |
CN114052735A (en) * | 2021-11-26 | 2022-02-18 | 山东大学 | Electroencephalogram emotion recognition method and system based on depth field self-adaption |
CN114224342A (en) * | 2021-12-06 | 2022-03-25 | 南京航空航天大学 | Multi-channel electroencephalogram emotion recognition method based on space-time fusion feature network |
CN114947852A (en) * | 2022-06-14 | 2022-08-30 | 华南师范大学 | Multi-mode emotion recognition method, device, equipment and storage medium |
CN116369949A (en) * | 2023-06-06 | 2023-07-04 | 南昌航空大学 | Electroencephalogram signal grading emotion recognition method, electroencephalogram signal grading emotion recognition system, electronic equipment and medium |
CN116861211A (en) * | 2023-06-08 | 2023-10-10 | 苏州大学 | An EEG emotion recognition method and system integrating spatiotemporal interactive neural network |
CN117379052A (en) * | 2023-10-25 | 2024-01-12 | 湖南应用技术学院 | Emotion recognition method and device and computer storage medium |
CN117894491A (en) * | 2024-03-15 | 2024-04-16 | 济南宝林信息技术有限公司 | Physiological monitoring data processing method for assessing mental activities |
Non-Patent Citations (2)
Title |
---|
JINRU YANG: "EEG-based emotion classification based on Bidirectional Long Short-Term Memory Network", 《PROCEDIA COMPUTER SCIENCE》, 31 December 2020 (2020-12-31), pages 491 - 504, XP086229896, DOI: 10.1016/j.procs.2020.06.117 * |
胡修文: "基于迁移学习的脑电信号情感识别", 《中国优秀硕士学位论文全文数据库》, 31 December 2023 (2023-12-31), pages 1 - 60 * |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN113990494B (en) | An auxiliary screening system for tics based on video data | |
CN112990008B (en) | Emotion recognition method and system based on three-dimensional feature map and convolutional neural network | |
CN112381008A (en) | Electroencephalogram emotion recognition method based on parallel sequence channel mapping network | |
CN114209323B (en) | Method for identifying emotion and emotion identification model based on electroencephalogram data | |
CN114947852B (en) | A multi-modal emotion recognition method, device, equipment and storage medium | |
CN111832438A (en) | An EEG signal channel selection method, system and application for emotion recognition | |
CN115804602A (en) | EEG emotion signal detection method, device and medium based on multi-channel feature fusion of attention mechanism | |
CN114330436B (en) | An emotion recognition method based on Siamese network architecture and graph convolution | |
Abdulrahman et al. | A Comprehensive Review for Emotion Detection Based on EEG Signals: Challenges, Applications, and Open Issues. | |
CN112932501B (en) | Method for automatically identifying insomnia based on one-dimensional convolutional neural network | |
CN108937968A (en) | lead selection method of emotion electroencephalogram signal based on independent component analysis | |
CN112465069A (en) | Electroencephalogram emotion classification method based on multi-scale convolution kernel CNN | |
Li et al. | Spatial–temporal discriminative restricted Boltzmann machine for event-related potential detection and analysis | |
Huang et al. | Classify motor imagery by a novel CNN with data augmentation | |
CN113128353A (en) | Emotion sensing method and system for natural human-computer interaction | |
CN116602676A (en) | A method and system for EEG emotion recognition based on multi-feature fusion and CLSTN | |
CN114595725B (en) | An EEG signal classification method based on additive network and supervised contrastive learning | |
CN114781441A (en) | EEG motor imagery classification method and multi-spatial convolutional neural network model | |
CN118766459A (en) | A method for emotion recognition of EEG signals integrating multi-scale residual attention network | |
CN118436347A (en) | EEG signal emotion recognition system based on adaptive data structure optimization | |
CN118436347B (en) | EEG signal emotion recognition system based on adaptive data structure optimization | |
CN118576206A (en) | EEG emotion recognition method and system based on multi-task and attention mechanism | |
CN117113015A (en) | An EEG signal recognition method and device based on spatiotemporal deep learning | |
Chaudhary et al. | A two-stage transformer based network for motor imagery classification | |
Nivyashree et al. | Detection of malignant and benign skin lesions using the influence of activation function and accuracy analysis in densely connected convolutional network compared over convolutional neural network |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant |