[go: up one dir, main page]

CN118435086A - Optical dimming lens and manufacturing method thereof - Google Patents

Optical dimming lens and manufacturing method thereof Download PDF

Info

Publication number
CN118435086A
CN118435086A CN202280084566.XA CN202280084566A CN118435086A CN 118435086 A CN118435086 A CN 118435086A CN 202280084566 A CN202280084566 A CN 202280084566A CN 118435086 A CN118435086 A CN 118435086A
Authority
CN
China
Prior art keywords
material layer
lens
dimming
birefringence
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202280084566.XA
Other languages
Chinese (zh)
Inventor
阿法松·贾马利
雷鸣
黄荣志
中原翔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meta Platforms Technologies LLC
Original Assignee
Meta Platforms Technologies LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US17/983,944 external-priority patent/US20230194918A1/en
Application filed by Meta Platforms Technologies LLC filed Critical Meta Platforms Technologies LLC
Priority claimed from PCT/US2022/053575 external-priority patent/WO2023122129A1/en
Publication of CN118435086A publication Critical patent/CN118435086A/en
Pending legal-status Critical Current

Links

Abstract

A lens is provided. The lens includes a first material layer including a first lens material having a first birefringence, a first density, and a first impact resistance. The lens further includes a second material layer coupled with the first material layer, and the second material layer includes a second lens material having a second birefringence, a second density, and a second impact resistance. The first birefringence is lower than the second birefringence, the first density is lower than the second density, and the second impact resistance is stronger than the first impact resistance.

Description

光学调光透镜及其制造方法Optical dimming lens and manufacturing method thereof

相关申请Related Applications

本申请要求于2021年12月22日提交的、申请号为63/292,471的美国临时申请的优先权,以及于2022年6月18日提交的、申请号为63/353,562的美国临时专利申请的优先权。This application claims priority to U.S. Provisional Application No. 63/292,471, filed on December 22, 2021, and priority to U.S. Provisional Patent Application No. 63/353,562, filed on June 18, 2022.

技术领域Technical Field

本公开总体上涉及光学设备,更具体地,涉及一种光学调光透镜及其制造方法。The present disclosure relates generally to optical devices, and more particularly to an optical dimming lens and a method for manufacturing the same.

背景技术Background technique

人工现实设备(诸如头戴式显示器(“Head-Mounted Display,HMD”)或平视显示器(“Heads-Up Display,HUD”)设备)在包括航空、工程设计、医疗外科实践和视频游戏等的各种领域中具有广泛的应用。人工现实设备可以显示虚拟对象或将真实对象的图像与虚拟对象相结合,如在增强现实(“Augmented Reality,AR”)应用、虚拟现实(“Virtual Reality,VR”)应用和/或混合现实(“Mixed Reality,MR”)应用中那样。当人工现实设备被实施用于AR和/或MR应用时,从用户的角度来看,人工现实设备可以至少部分是透明的,使得用户能够查看周围的真实世界环境。当人工现实设备被实施用于VR应用时,人工现实设备可以是不透明的,使得用户大致沉浸在经由人工现实设备提供的VR影像中。Artificial reality devices, such as head-mounted displays (“Head-Mounted Display, HMD”) or heads-up displays (“Heads-Up Display, HUD”) devices, have wide applications in various fields including aviation, engineering design, medical surgical practice, and video games. Artificial reality devices can display virtual objects or combine images of real objects with virtual objects, such as in augmented reality (“Augmented Reality, AR”) applications, virtual reality (“Virtual Reality, VR”) applications, and/or mixed reality (“Mixed Reality, MR”) applications. When the artificial reality device is implemented for AR and/or MR applications, the artificial reality device can be at least partially transparent from the user's perspective, allowing the user to view the surrounding real-world environment. When the artificial reality device is implemented for VR applications, the artificial reality device can be opaque, allowing the user to be roughly immersed in the VR imagery provided via the artificial reality device.

发明内容Summary of the invention

根据本公开的第一方面,提供了一种透镜。该透镜包括第一材料层,该第一材料层包括第一透镜材料,该第一透镜材料具有第一双折射率、第一密度和第一抗冲击性。该透镜还包括第二材料层,该第二材料层与该第一材料层耦接,并且该第二材料层包括第二透镜材料,该第二透镜材料具有第二双折射率、第二密度和第二抗冲击性。该第一双折射率低于该第二双折射率,该第一密度低于该第二密度,并且该第二抗冲击性强于该第一抗冲击性。According to a first aspect of the present disclosure, a lens is provided. The lens comprises a first material layer, the first material layer comprises a first lens material, the first lens material has a first birefringence, a first density and a first impact resistance. The lens further comprises a second material layer, the second material layer is coupled to the first material layer, and the second material layer comprises a second lens material, the second lens material has a second birefringence, a second density and a second impact resistance. The first birefringence is lower than the second birefringence, the first density is lower than the second density, and the second impact resistance is stronger than the first impact resistance.

在一些实施例中,该透镜具有面向用户眼睛的内侧和面向真实世界环境的外侧,该第一材料层位于该透镜的该外侧处,并且该第二材料层位于该透镜的该内侧处。In some embodiments, the lens has an inner side facing the user's eye and an outer side facing the real-world environment, the first material layer is located at the outer side of the lens, and the second material layer is located at the inner side of the lens.

在一些实施例中,该第一材料层被配置为具有用于提供视力矫正的定制光焦度(optical power),并且该第二材料层被配置为具有零光焦度或小于预定值的光焦度。In some embodiments, the first material layer is configured to have a customized optical power for providing vision correction, and the second material layer is configured to have zero optical power or an optical power less than a predetermined value.

在一些实施例中,该第一透镜材料包括环烯烃共聚物或环烯烃聚合物中的至少一种,并且该第二透镜材料包括聚碳酸酯、聚甲基丙烯酸甲酯、聚乙烯、聚丙烯或聚氨酯中的至少一种。In some embodiments, the first lens material includes at least one of a cyclic olefin copolymer or a cyclic olefin polymer, and the second lens material includes at least one of polycarbonate, polymethyl methacrylate, polyethylene, polypropylene, or polyurethane.

在一些实施例中,该第一材料层具有小于100nm的延迟值。In some embodiments, the first material layer has a retardation value less than 100 nm.

在一些实施例中,该透镜还包括光学透明的粘合层,该光学透明的粘合层设置在该第一材料层与该第二材料层之间。In some embodiments, the lens further comprises an optically transparent adhesive layer disposed between the first material layer and the second material layer.

在一些实施例中,该第一材料层的中心厚度在1.0mm到1.5mm的范围内,该第二材料层的中心厚度在0.2mm到0.7mm的范围内,并且该光学透明的粘合层具有在0.01mm到0.2mm的范围内的均匀厚度。In some embodiments, the center thickness of the first material layer is in the range of 1.0 mm to 1.5 mm, the center thickness of the second material layer is in the range of 0.2 mm to 0.7 mm, and the optically transparent adhesive layer has a uniform thickness in the range of 0.01 mm to 0.2 mm.

在一些实施例中,该透镜还包括调光元件,该调光元件设置在该第一材料层与该第二材料层之间,该调光元件包括非电可调谐调光材料或电可调谐调光材料中的至少一种。In some embodiments, the lens further includes a dimming element disposed between the first material layer and the second material layer, and the dimming element includes at least one of a non-electrically tunable dimming material or an electrically tunable dimming material.

在一些实施例中,该第二材料层包括一组的两个第二材料层,并且该透镜还包括设置在该两个第二材料层之间的调光元件。In some embodiments, the second material layer includes a group of two second material layers, and the lens further includes a dimming element disposed between the two second material layers.

在一些实施例中,该透镜还包括掺杂到该第一材料层或该第二材料层中的至少一者中的调光材料。In some embodiments, the lens further includes a dimming material doped into at least one of the first material layer or the second material layer.

根据本公开的另一个方面,提供了一种方法。该方法包括提供第一材料层,该第一材料层包括第一透镜材料,该第一透镜材料具有第一双折射率、第一密度和第一抗冲击性。该方法还包括将调光元件设置在该第一材料层处。该方法还包括将第二材料层设置在该调光元件处。该第二材料层包括第二透镜材料,该第二透镜材料具有第二双折射率、第二密度和第二抗冲击性。该第一双折射率低于该第二双折射率,该第一密度低于该第二密度,并且该第二抗冲击性强于该第一抗冲击性。According to another aspect of the present disclosure, a method is provided. The method includes providing a first material layer, the first material layer including a first lens material, the first lens material having a first birefringence, a first density, and a first impact resistance. The method also includes arranging a dimming element at the first material layer. The method also includes arranging a second material layer at the dimming element. The second material layer includes a second lens material, the second lens material having a second birefringence, a second density, and a second impact resistance. The first birefringence is lower than the second birefringence, the first density is lower than the second density, and the second impact resistance is stronger than the first impact resistance.

在一些实施例中,该第一材料层、该调光元件和该第二材料层的叠置体形成透镜;该透镜具有面向用户眼睛的内侧和面向真实世界环境的外侧;该第一材料层位于该透镜的该外侧处,并且该第二材料层位于该透镜的该内侧处。In some embodiments, the stack of the first material layer, the dimming element and the second material layer forms a lens; the lens has an inner side facing the user's eyes and an outer side facing the real-world environment; the first material layer is located at the outer side of the lens, and the second material layer is located at the inner side of the lens.

在一些实施例中,该第一材料层被配置为具有用于提供视力矫正的定制光焦度,并且该第二材料层被配置为具有零光焦度或小于预定值的光焦度。In some embodiments, the first material layer is configured to have a customized optical power for providing vision correction, and the second material layer is configured to have zero optical power or an optical power less than a predetermined value.

在一些实施例中,该第一透镜材料包括环烯烃共聚物或环烯烃聚合物中的至少一种,并且该第二透镜材料包括聚碳酸酯、聚甲基丙烯酸甲酯、聚乙烯、聚丙烯或聚氨酯中的至少一种。In some embodiments, the first lens material includes at least one of a cyclic olefin copolymer or a cyclic olefin polymer, and the second lens material includes at least one of polycarbonate, polymethyl methacrylate, polyethylene, polypropylene, or polyurethane.

在一些实施例中,该第一材料层具有小于100nm的延迟值。In some embodiments, the first material layer has a retardation value less than 100 nm.

在一些实施例中,将该调光元件设置在该第一材料层处包括经由光学透明的粘合层将该调光元件层压到该第一材料层的凹表面上。In some embodiments, disposing the light dimming element at the first material layer includes laminating the light dimming element to the concave surface of the first material layer via an optically clear adhesive layer.

根据本公开的另一个方面,提供了一种方法。该方法包括提供第一材料层,该第一材料层包括第一透镜材料,该第一透镜材料具有第一双折射率、第一密度和第一抗冲击性。该方法包括将调光元件设置到第二材料层中。该第二材料层包括第二透镜材料,该第二透镜材料具有第二双折射率、第二密度和第二抗冲击性。该方法包括将该第二材料层设置在该第一材料层处。该第一双折射率低于该第二双折射率,该第一密度低于该第二密度,并且该第二抗冲击性强于该第一抗冲击性。According to another aspect of the present disclosure, a method is provided. The method includes providing a first material layer, the first material layer including a first lens material, the first lens material having a first birefringence, a first density, and a first impact resistance. The method includes setting a dimming element into a second material layer. The second material layer includes a second lens material, the second lens material having a second birefringence, a second density, and a second impact resistance. The method includes setting the second material layer at the first material layer. The first birefringence is lower than the second birefringence, the first density is lower than the second density, and the second impact resistance is stronger than the first impact resistance.

在一些实施例中,将该调光元件设置到该第二材料层中包括将该调光元件封装到该第二材料层中。In some embodiments, disposing the dimming element in the second material layer includes encapsulating the dimming element in the second material layer.

在一些实施例中,将该第二材料层设置在该第一材料层处包括经由光学透明的粘合层将该第二材料层层压到该第一材料层的凹表面上。In some embodiments, disposing the second material layer at the first material layer includes laminating the second material layer to the concave surface of the first material layer via an optically clear adhesive layer.

在一些实施例中,该第一材料层、该调光元件和该第二材料层的叠置体形成透镜;该透镜具有面向用户眼睛的内侧和面向真实世界环境的外侧;该第一材料层位于该透镜的该外侧处,并且该第二材料层位于该透镜的该内侧处。In some embodiments, the stack of the first material layer, the dimming element and the second material layer forms a lens; the lens has an inner side facing the user's eyes and an outer side facing the real-world environment; the first material layer is located at the outer side of the lens, and the second material layer is located at the inner side of the lens.

本领域技术人员可以根据本公开的说明书、权利要求书和附图来理解本公开的其它方面。上述总体描述和以下详细描述仅是示例性和解释性的,并且不对权利要求进行限制。Those skilled in the art can understand other aspects of the present disclosure according to the specification, claims and drawings of the present disclosure.The foregoing general description and the following detailed description are exemplary and explanatory only and do not limit the claims.

将理解的是,本文中描述为适合于结合到本公开的一个或多个方面或一个或多个实施例中的任何特征旨在能够推广到本公开的任何和所有的方面和实施例。本领域技术人员可以根据本公开的说明书、权利要求书和附图来理解本公开的其它方面。上述总体描述和以下详细描述仅是示例性和解释性的,并且不对权利要求进行限制。It will be understood that any feature described herein as being suitable for incorporation into one or more aspects or one or more embodiments of the present disclosure is intended to be generalizable to any and all aspects and embodiments of the present disclosure. Other aspects of the present disclosure can be understood by those skilled in the art based on the specification, claims and drawings of the present disclosure. The above general description and the following detailed description are exemplary and explanatory only and do not limit the claims.

附图说明BRIEF DESCRIPTION OF THE DRAWINGS

提供以下附图是为了根据各种所公开的实施例的说明性目的,并且这些附图不旨在限制本公开的范围。在附图中:The following drawings are provided for illustrative purposes according to various disclosed embodiments and are not intended to limit the scope of the present disclosure. In the drawings:

图1A示出了根据本公开的实施例的人工现实设备的示意图;FIG1A shows a schematic diagram of an artificial reality device according to an embodiment of the present disclosure;

图1B示意性地示出了根据本公开的实施例的图1A所示的人工现实设备的一半的截面图;FIG. 1B schematically illustrates a cross-sectional view of one half of the artificial reality device shown in FIG. 1A according to an embodiment of the present disclosure;

图1C示出了根据本公开的实施例的当图1A所示的人工现实设备以增强现实(“AR”)模式或以混合现实(“MR”)模式运行时的人工现实设备的用户所感知的图像;FIG. 1C illustrates an image perceived by a user of the artificial reality device when the artificial reality device shown in FIG. 1A operates in an augmented reality (“AR”) mode or in a mixed reality (“MR”) mode according to an embodiment of the present disclosure;

图1D示出了根据本公开的实施例的当图1A所示的人工现实设备以虚拟现实(“VR”)运行时的人工现实设备的用户所感知的图像;FIG. 1D illustrates an image perceived by a user of the artificial reality device when the artificial reality device shown in FIG. 1A operates in virtual reality (“VR”) according to an embodiment of the present disclosure;

图2A示出了根据本公开的实施例的调光透镜的示意图;FIG2A shows a schematic diagram of a dimming lens according to an embodiment of the present disclosure;

图2B示出了根据本公开的实施例的调光透镜的示意图;FIG2B shows a schematic diagram of a dimming lens according to an embodiment of the present disclosure;

图2C示出了根据本公开的实施例的调光透镜的示意图;FIG2C shows a schematic diagram of a dimming lens according to an embodiment of the present disclosure;

图2D示出了根据本公开的实施例的调光透镜的示意图;FIG2D shows a schematic diagram of a dimming lens according to an embodiment of the present disclosure;

图2E示出了根据本公开的实施例的调光透镜的示意图;FIG2E shows a schematic diagram of a dimming lens according to an embodiment of the present disclosure;

图3A和图3B示出了根据本公开的实施例的包括调光透镜的显示系统的示意图;3A and 3B are schematic diagrams showing a display system including a dimming lens according to an embodiment of the present disclosure;

图3C示出了根据本公开的实施例的包括调光透镜的显示系统的示意图;FIG3C shows a schematic diagram of a display system including a dimming lens according to an embodiment of the present disclosure;

图3D示出了根据本公开的实施例的包括调光透镜的显示系统的示意图;FIG3D shows a schematic diagram of a display system including a dimming lens according to an embodiment of the present disclosure;

图4A和图4B示出了根据本公开的实施例的可以被包括在调光透镜中的调光元件的示意图;4A and 4B are schematic diagrams showing dimming elements that may be included in a dimming lens according to an embodiment of the present disclosure;

图4C示出了根据本公开的实施例的可以被包括在调光透镜中的调光元件的示意图;FIG4C shows a schematic diagram of a dimming element that may be included in a dimming lens according to an embodiment of the present disclosure;

图5A和图5B示出了根据本公开的实施例的可以被包括在调光透镜中的调光元件的示意图;5A and 5B are schematic diagrams showing dimming elements that may be included in a dimming lens according to an embodiment of the present disclosure;

图5C示出了根据本公开的实施例的可以被包括在调光透镜中的调光元件的示意图;FIG5C shows a schematic diagram of a dimming element that may be included in a dimming lens according to an embodiment of the present disclosure;

图6A和图6B示出了根据本公开的实施例的可以被包括在调光透镜中的调光元件的示意图;6A and 6B are schematic diagrams showing dimming elements that may be included in a dimming lens according to an embodiment of the present disclosure;

图6C示出了根据本公开的实施例的可以被包括在调光透镜中的调光元件的示意图;FIG6C shows a schematic diagram of a dimming element that may be included in a dimming lens according to an embodiment of the present disclosure;

图7A是示出根据本公开的实施例的用于制造调光透镜的方法的流程图;以及FIG. 7A is a flow chart showing a method for manufacturing a dimming lens according to an embodiment of the present disclosure; and

图7B是示出根据本公开的实施例的用于制造调光透镜的方法的流程图。FIG. 7B is a flow chart illustrating a method for manufacturing a dimming lens according to an embodiment of the present disclosure.

具体实施方式Detailed ways

将参考附图来描述与本公开一致的实施例,这些实施例仅仅是用于说明性目的的示例,并且不旨在限制本公开的范围。在任何可能的情况下,在所有附图中使用相同的附图标记来表示相同或类似的部件,并且可以省略对这些部件的详细描述。Embodiments consistent with the present disclosure will be described with reference to the accompanying drawings, which are merely examples for illustrative purposes and are not intended to limit the scope of the present disclosure. Wherever possible, the same reference numerals are used in all drawings to represent the same or similar components, and detailed descriptions of these components may be omitted.

此外,在本公开中,所公开的实施例和所公开的实施例的各特征可以进行组合。所描述的实施例是本公开的实施例中的一些实施例但不是全部实施例。基于所公开的实施例,本领域普通技术人员可以推导出与本公开一致的其它实施例。例如,可以基于所公开的实施例进行修改、改编、替换、添加或其它变化。所公开的实施例的这种变化仍然在本公开的范围内。因此,本公开不限于所公开的实施例。而是,本公开的范围由所附权利要求限定。In addition, in the present disclosure, the disclosed embodiments and the features of the disclosed embodiments may be combined. The described embodiments are some embodiments of the embodiments of the present disclosure but not all embodiments. Based on the disclosed embodiments, a person of ordinary skill in the art may derive other embodiments consistent with the present disclosure. For example, modifications, adaptations, substitutions, additions or other changes may be made based on the disclosed embodiments. Such changes of the disclosed embodiments are still within the scope of the present disclosure. Therefore, the present disclosure is not limited to the disclosed embodiments. Rather, the scope of the present disclosure is defined by the appended claims.

如本文所使用的,术语“耦接(couple)、“耦接(coupled)”或“耦接(coupling)”等可以包括光学耦接、机械耦接、电耦接、电磁耦接或它们的任何组合。两个光学元件之间的“光学耦接”是指如下配置:在该配置中,两个光学元件以光学串联的方式进行布置,并且来自一个光学元件的光输出可以直接或间接地由另一个光学元件接收。光学串联是指多个光学元件在光路中的光学定位,使得来自一个光学元件的光输出可以由一个或多个其它光学元件透射、反射、衍射、转换、修改或以其它方式处理或操纵。在一些实施例中,布置多个光学元件的顺序可能影响或可能不影响多个光学元件的总体输出。耦接可以是直接耦接或间接耦接(例如,通过中间元件进行耦接)。As used herein, the terms "couple", "coupled", or "coupling", etc. may include optical coupling, mechanical coupling, electrical coupling, electromagnetic coupling, or any combination thereof. "Optical coupling" between two optical elements refers to a configuration in which the two optical elements are arranged in an optical series and the light output from one optical element can be directly or indirectly received by the other optical element. Optical series refers to the optical positioning of multiple optical elements in an optical path so that the light output from one optical element can be transmitted, reflected, diffracted, converted, modified, or otherwise processed or manipulated by one or more other optical elements. In some embodiments, the order in which the multiple optical elements are arranged may or may not affect the overall output of the multiple optical elements. Coupling may be direct coupling or indirect coupling (e.g., coupling through an intermediate element).

短语“A或B中的至少一者”可以涵盖A和B的所有组合,诸如仅A、仅B、或A和B。类似地,短语“A、B或C中的至少一者”可以涵盖A、B和C的所有组合,诸如仅A、仅B、仅C、A和B、A和C、B和C、或A和B和C。短语“A和/或B”可以以类似于短语“A或B中的至少一者”的方式来解释。例如,短语“A和/或B”可以涵盖A和B的所有组合,例如仅A、仅B、或A和B。类似地,短语“A、B和/或C”的含义类似于短语“A、B或C中的至少一者”的含义。例如,短语“A、B和/或C”可以涵盖A、B和C的所有组合,诸如仅A、仅B、仅C、A和B、A和C、B和C、或A和B和C。The phrase "at least one of A or B" may encompass all combinations of A and B, such as only A, only B, or A and B. Similarly, the phrase "at least one of A, B, or C" may encompass all combinations of A, B, and C, such as only A, only B, only C, A and B, A and C, B and C, or A and B and C. The phrase "A and/or B" may be interpreted in a manner similar to the phrase "at least one of A or B." For example, the phrase "A and/or B" may encompass all combinations of A and B, such as only A, only B, or A and B. Similarly, the meaning of the phrase "A, B, and/or C" is similar to the meaning of the phrase "at least one of A, B, or C." For example, the phrase "A, B, and/or C" may encompass all combinations of A, B, and C, such as only A, only B, only C, A and B, A and C, B and C, or A and B and C.

当第一元件被描述为“附接”、“提供”、“形成”、“粘接”、“安装”、“固定”、“连接”、“结合”、“记录”或“设置”到第二元件、在第二元件上、在第二元件处、或至少部分地在第二元件中时,第一元件可以使用任何合适的机械或非机械方式(诸如,沉积、涂覆、刻蚀、结合、胶合、螺接、压配合、卡扣配合、夹持等)被“附接”、“提供”、“形成”、“粘接”、“安装”、“固定”、“连接”、“结合”、“记录”或“设置”到第二元件、在第二元件上、在第二元件处、或至少部分地在第二元件中。此外,第一元件可以与第二元件直接接触,或者在第一元件与第二元件之间可以有中间元件。第一元件可以设置在第二元件的任何合适的一侧(诸如左、右、前、后、顶或底)。When a first element is described as being "attached", "provided", "formed", "bonded", "installed", "fixed", "connected", "combined", "recorded" or "set" to, on, at, or at least partially in a second element, the first element may be "attached", "provided", "formed", "bonded", "installed", "fixed", "connected", "combined", "recorded" or "set" to, on, at, or at least partially in a second element, using any suitable mechanical or non-mechanical means (such as, depositing, coating, etching, combining, gluing, screwing, press fit, snap fit, clamping, etc.). In addition, the first element may be in direct contact with the second element, or there may be an intermediate element between the first element and the second element. The first element may be disposed on any suitable side of the second element (such as left, right, front, back, top or bottom).

当第一元件被示出或描述为设置或布置“在”第二元件“上”时,术语“在……上”仅用于指示第一元件和第二元件之间的示例的相对取向。该描述可以基于图中所示的参考坐标系,或者可以基于图中所示的当前视图或示例配置。例如,当描述图中所示的视图时,第一元件可以被描述为设置“在”第二元件“上”。应当理解的是,术语“在……上”可以不一定暗示第一元件在竖直的重力方向上位于第二元件上方。例如,当第一元件和第二元件的组件旋转180度时,第一元件可以“在”第二元件“下方”(或者第二元件可以“在”第一元件“上”)。因此,应当理解的是,当附图示出第一元件“在”第二元件“上”时,该配置仅仅是说明性示例。第一元件可以相对于第二元件以任何合适的取向进行设置或布置(例如,位于第二元件上方或上面、位于第二元件下方或下面、位于第二元件的左侧、位于第二元件的右侧、位于第二元件的后方、位于第二元件的前方等)。When a first element is shown or described as being set or arranged "on" a second element, the term "on..." is only used to indicate the relative orientation of an example between the first element and the second element. The description may be based on the reference coordinate system shown in the figure, or may be based on the current view or example configuration shown in the figure. For example, when describing the view shown in the figure, the first element may be described as being set "on" a second element. It should be understood that the term "on..." may not necessarily imply that the first element is located above the second element in the vertical direction of gravity. For example, when the assembly of the first element and the second element is rotated 180 degrees, the first element may be "below" the second element (or the second element may be "on" the first element). Therefore, it should be understood that when the drawings show that the first element is "on" a second element, the configuration is merely an illustrative example. The first element may be set or arranged in any suitable orientation relative to the second element (e.g., located above or above the second element, located below or below the second element, located to the left of the second element, located to the right of the second element, located behind the second element, located in front of the second element, etc.).

当第一元件被描述为设置“在”第二元件“上”时,第一元件可以直接或间接地设置在第二元件上。第一元件直接地设置在第二元件上表示在第一元件与第二元件之间没有设置附加的元件。第一元件间接地设置在第二元件上表示在第一元件与第二元件之间设置有一个或多个附加的元件。When a first element is described as being disposed "on" a second element, the first element may be disposed on the second element directly or indirectly. The first element being directly disposed on the second element means that no additional elements are disposed between the first element and the second element. The first element being indirectly disposed on the second element means that one or more additional elements are disposed between the first element and the second element.

本文所使用的术语“处理器”可以涵盖任何合适的处理器,诸如中央处理单元(Central Processing Unit,“CPU”)、图形处理单元(Graphics Processing Unit,“GPU”)、专用集成电路(Application-Specific Integrated Circuit,“ASIC”)、可编程逻辑器件(Programmable Logic Device,“PLD”)、或它们的任何组合。也可以使用上文未列出的其它处理器。处理器可以被实施为软件、硬件、固件、或它们的任何组合。The term "processor" as used herein may encompass any suitable processor, such as a central processing unit (CPU), a graphics processing unit (GPU), an application-specific integrated circuit (ASIC), a programmable logic device (PLD), or any combination thereof. Other processors not listed above may also be used. The processor may be implemented as software, hardware, firmware, or any combination thereof.

术语“控制器”可以涵盖被配置为产生用于控制设备、电路、光学元件等的控制信号的任何合适的电子电路、软件或处理器。“控制器”可以被实施为软件、硬件、固件或它们的任何组合。例如,控制器可以包括处理器,或者可以被包括以作为处理器的一部分。The term "controller" may encompass any suitable electronic circuit, software, or processor configured to generate control signals for controlling a device, circuit, optical element, etc. A "controller" may be implemented as software, hardware, firmware, or any combination thereof. For example, a controller may include a processor, or may be included as part of a processor.

术语“非暂态计算机可读介质”可以涵盖用于存储、转移、传送、广播或传输数据、信号或信息的任何合适的介质。例如,非暂态计算机可读介质可以包括存储器、硬盘、磁盘、光盘、磁带等。存储器可以包括只读存储器(“Read-Only Memory,ROM”)、随机存取存储器(“Random-Access Memory,RAM”)、闪存存储器等。The term "non-transitory computer-readable medium" may encompass any suitable medium for storing, transferring, transmitting, broadcasting or transmitting data, signals or information. For example, non-transitory computer-readable media may include memory, hard disk, magnetic disk, optical disk, magnetic tape, etc. The memory may include read-only memory (ROM), random access memory (RAM), flash memory, etc.

术语“膜”、“层”、“涂层”或“板”可以包括刚性的或柔性的、自支撑或自立式的膜、层、涂层或板,该膜、层、涂层或板可以设置在支撑衬底上或设置在衬底之间。术语“膜”、“层”、“涂层”和“板”可以是可互换的。术语“膜平面”是指膜、层、涂层或板中的平面,该平面垂直于膜、层、涂层或板的厚度方向。膜平面可以是膜、层、涂层或板的体积中的平面,或者可以是膜、层、涂层或板的表面平面。The terms "film", "layer", "coating" or "sheet" may include rigid or flexible, self-supporting or free-standing films, layers, coatings or sheets, which may be disposed on a supporting substrate or between substrates. The terms "film", "layer", "coating" and "sheet" may be interchangeable. The term "film plane" refers to a plane in a film, layer, coating or sheet that is perpendicular to the thickness direction of the film, layer, coating or sheet. The film plane may be a plane in the volume of the film, layer, coating or sheet, or may be a surface plane of the film, layer, coating or sheet.

如在“正交偏振”中使用的术语“正交”、或如在“正交地偏振”中使用的术语“正交地”意指表示两种偏振的两个矢量的内积大致为零。例如,具有正交偏振的两个光或两个射束(或两个正交地偏振的光或射束)可以是具有两个正交偏振方向(例如,笛卡尔坐标系中的x-轴方向和y-轴方向)的两个线偏振光(或射束),或具有相反旋向性的两个圆偏振光(例如,左旋圆偏振光和右旋圆偏振光)。The term "orthogonal" as used in "orthogonal polarizations", or the term "orthogonally" as used in "orthogonally polarized", means that the inner product of the two vectors representing the two polarizations is approximately zero. For example, two lights or two beams with orthogonal polarizations (or two orthogonally polarized lights or beams) can be two linearly polarized lights (or beams) with two orthogonal polarization directions (e.g., the x-axis direction and the y-axis direction in a Cartesian coordinate system), or two circularly polarized lights with opposite handedness (e.g., left-handed circularly polarized light and right-handed circularly polarized light).

本公开中提到的波长范围、光谱或波段是用于说明性目的。所公开的光学设备、系统、元件、组件和方法可以应用于可见波段以及其它波段,诸如,紫外(“Ultraviolet,UV”)波段、红外(“Infrared,IR”)波段或它们的组合。用于修饰光学响应功能(诸如,描述对光的处理的透射、反射、衍射或阻挡等)的术语“大致”或“主要”意指光的大部分(包括全部)被透射、反射、衍射或阻挡等。大部分可以是全部光的预定百分数(大于50%),诸如100%、98%、90%、85%、80%等,该百分数可以基于具体应用需要来确定。The wavelength ranges, spectra or bands mentioned in the present disclosure are for illustrative purposes. The disclosed optical devices, systems, elements, assemblies and methods can be applied to the visible band as well as other bands, such as the ultraviolet (UV) band, the infrared (IR) band or a combination thereof. The terms "substantially" or "mainly" used to modify the optical response function (such as, describing the transmission, reflection, diffraction or blocking of the processing of light, etc.) mean that most (including all) of the light is transmitted, reflected, diffracted or blocked, etc. Most of the light can be a predetermined percentage (greater than 50%) of the total light, such as 100%, 98%, 90%, 85%, 80%, etc., which can be determined based on the specific application needs.

调光透镜已经被用来增加人工现实设备的动态范围。为了满足产品规格,光学调光透镜必须满足某些性质或性能,诸如紧凑性和轻重量、足够强的抗冲击性以通过政府机构的测试、具有可忽略的双折射问题的透视质量。要满足人工现实设备所需的所有这些要求往往是具有挑战性的。本公开提供了一种调光透镜,该调光透镜提供了轻重量、强抗冲击性和低双折射率。Dimming lenses have been used to increase the dynamic range of artificial reality devices. In order to meet product specifications, optical dimming lenses must meet certain properties or performances, such as compactness and light weight, strong enough impact resistance to pass government agency testing, and perspective quality with negligible birefringence issues. It is often challenging to meet all of these requirements required for artificial reality devices. The present disclosure provides a dimming lens that provides light weight, strong impact resistance, and low birefringence.

图1A示出了根据本公开的实施例的人工现实设备100的示意图。在一些实施例中,人工现实设备100可以为用户产生VR、AR和/或MR内容,诸如图像、视频、音频或它们的组合。在一些实施例中,人工现实设备100可以是智能眼镜。在一个实施例中,人工现实设备100可以是近眼显示器(“Near-Eye Display,NED”)。在一个实施例中,人工现实设备100可以是平视显示器。在一些实施例中,人工现实设备100可以是眼镜、护目镜、头盔、头显或某种其它类型的眼戴式设备(eyewear)。在一些实施例中,人工现实设备100可以被配置为穿戴在用户的头部上(例如,通过具有如图1A所示的目镜(spectacles)或眼镜(eyeglasses)的形式),或者被包括以作为由用户所穿戴的头盔的一部分。在一些实施例中,人工现实设备100可以被配置用于放置在用户的一只眼睛或双眼附近、在一只眼睛或双眼前方的固定位置处,而不是安装到用户的头部。在一些实施例中,人工现实设备100可以是提供视力矫正的眼镜的形式。在一些实施例中,人工现实设备100可以是不提供视力矫正的平光眼镜(plano-eyeglasses)的形式。在一些实施例中,人工现实设备100可以是保护用户眼睛不受明亮阳光的影响的太阳镜的形式。在一些实施例中,人工现实设备100可以是保护用户眼睛的防护眼镜的形式。在一些实施例中,人工现实设备100可以是增强用户在夜间的视力的夜视设备或红外护目镜的形式。人工现实设备100可以被实施为其它形式。FIG. 1A shows a schematic diagram of an artificial reality device 100 according to an embodiment of the present disclosure. In some embodiments, the artificial reality device 100 can generate VR, AR and/or MR content, such as images, videos, audio, or a combination thereof, for a user. In some embodiments, the artificial reality device 100 may be smart glasses. In one embodiment, the artificial reality device 100 may be a near-eye display (“Near-Eye Display, NED”). In one embodiment, the artificial reality device 100 may be a head-up display. In some embodiments, the artificial reality device 100 may be glasses, goggles, a helmet, a head-mounted display, or some other type of eye-mounted device (eyewear). In some embodiments, the artificial reality device 100 may be configured to be worn on the user's head (e.g., in the form of eyepieces (spectacles) or glasses (eyeglasses) as shown in FIG. 1A), or included as part of a helmet worn by a user. In some embodiments, the artificial reality device 100 may be configured to be placed near one or both eyes of the user, at a fixed position in front of one or both eyes, rather than mounted to the user's head. In some embodiments, the artificial reality device 100 may be in the form of glasses that provide vision correction. In some embodiments, the artificial reality device 100 may be in the form of plano-eyeglasses that do not provide vision correction. In some embodiments, the artificial reality device 100 may be in the form of sunglasses that protect the user's eyes from bright sunlight. In some embodiments, the artificial reality device 100 may be in the form of protective glasses that protect the user's eyes. In some embodiments, the artificial reality device 100 may be in the form of a night vision device or infrared goggles that enhance the user's vision at night. The artificial reality device 100 may be implemented in other forms.

出于讨论的目的,图1A示出了人工现实设备100包括:框架105,该框架被配置为安装到用户的头部;以及左眼显示系统110L和右眼显示系统110R,该左眼显示系统和该右眼显示系统安装到框架105。图1B是根据本公开的实施例的图1A所示的人工现实设备100的一半的截面图。出于说明的目的,图1B示出了与左眼显示系统110L相关的截面图。框架105仅是可以安装人工现实设备100的各种部件的示例结构。可以使用其它合适类型的固定件来代替框架105或与该框架组合使用。For purposes of discussion, FIG. 1A shows that an artificial reality device 100 includes a frame 105 configured to be mounted to a user's head, and a left-eye display system 110L and a right-eye display system 110R mounted to the frame 105. FIG. 1B is a cross-sectional view of one half of the artificial reality device 100 shown in FIG. 1A according to an embodiment of the present disclosure. For purposes of illustration, FIG. 1B shows a cross-sectional view associated with the left-eye display system 110L. The frame 105 is merely an example structure in which various components of the artificial reality device 100 may be mounted. Other suitable types of fixtures may be used in place of or in combination with the frame 105.

在一些实施例中,左眼显示系统110L和右眼显示系统110R中的每一者可以包括图像显示组件120,该图像显示组件被配置为生成表示计算机生成的虚拟图像的图像光,并且将图像光引导到适眼框区域160,在该适眼框区域中,眼睛159可以被定位为接收图像光。适眼框区域160可以包括多个出射光瞳157。出射光瞳157可以是用户眼睛159的眼睛瞳孔158可以被定位在适眼框区域160中以接收图像光的位置。例如,在一些实施例中,图像显示组件120可以包括:光源,该光源被配置为输出表示虚拟图像的图像光;以及图像组合器,该图像组合器被配置为将从光源接收的图像光引导到适眼框区域160。在一些实施例中,图像组合器还可以将来自真实世界环境的环境光(或真实世界光)142朝向适眼框区域160发射,从而组合图像光和真实世界光142,并且将图像光和真实世界光这两者朝向适眼框区域160引导。因此,眼睛159可以观察与真实世界场景光学地相结合的虚拟场景。图像显示组件120可以是任何合适的图像显示组件,并且图像组合器可以是任何合适的图像组合器,诸如与耦入元件和耦出元件耦接的光导、全息光学元件(“Holographic Optical Element,HOE”)等。为了简化图示,在图1B中未示出图像显示组件120的细节。In some embodiments, each of the left eye display system 110L and the right eye display system 110R may include an image display component 120 configured to generate image light representing a computer-generated virtual image and direct the image light to an eyebox area 160, where an eye 159 may be positioned to receive the image light. The eyebox area 160 may include a plurality of exit pupils 157. The exit pupils 157 may be locations where eye pupils 158 of a user's eye 159 may be positioned in the eyebox area 160 to receive the image light. For example, in some embodiments, the image display component 120 may include: a light source configured to output image light representing a virtual image; and an image combiner configured to direct the image light received from the light source to the eyebox area 160. In some embodiments, the image combiner can also emit ambient light (or real-world light) 142 from the real-world environment toward the eyebox area 160, thereby combining the image light and the real-world light 142, and guiding both the image light and the real-world light toward the eyebox area 160. Therefore, the eye 159 can observe the virtual scene optically combined with the real-world scene. The image display component 120 can be any suitable image display component, and the image combiner can be any suitable image combiner, such as a light guide coupled with an in-coupling element and an out-coupling element, a holographic optical element ("Holographic Optical Element, HOE"), etc. To simplify the illustration, the details of the image display component 120 are not shown in FIG. 1B.

在一些实施例中,如图1B所示,左眼显示系统110L和右眼显示系统110R中的每一者可以包括调光透镜122,该调光透镜由不同材料性质的两种透镜材料形成。调光透镜122可以提供轻重量、高抗冲击性和低双折射率。图像显示组件120可以包括面向真实世界环境的外侧以及面向适眼框区域160的内侧。调光透镜122可以设置在图像显示组件120的外侧处。注意,尽管出于说明的目的,这些元件被示出为具有平坦表面,但在一些实施例中,图像显示组件120或调光透镜122中的至少一者(例如,每一者)可以包括弯曲表面。在一些实施例中,调光透镜122可以与图像显示组件120一体地形成,或者可以是与图像显示组件120堆叠的单独的元件。In some embodiments, as shown in FIG. 1B , each of the left eye display system 110L and the right eye display system 110R may include a dimming lens 122 formed of two lens materials of different material properties. The dimming lens 122 can provide light weight, high impact resistance, and low birefringence. The image display assembly 120 may include an outer side facing the real world environment and an inner side facing the eye frame area 160. The dimming lens 122 may be disposed at the outer side of the image display assembly 120. Note that although these elements are shown as having a flat surface for illustrative purposes, in some embodiments, at least one of the image display assembly 120 or the dimming lens 122 (e.g., each) may include a curved surface. In some embodiments, the dimming lens 122 may be formed integrally with the image display assembly 120, or may be a separate element stacked with the image display assembly 120.

在一些实施例中,调光透镜122可以被配置为对来自真实世界环境的环境光(或真实世界光)142朝向适眼框区域160进行调光。来自左眼显示系统110L和右眼显示系统110R外侧的真实世界环境的环境光142可以在环境光142入射到图像显示组件120上之前入射到调光透镜122上。调光透镜122可以基于合适的调光机制(诸如偏振、吸收、散射和/或漫射等)降低环境光142的透射率,或者阻挡环境光142入射到图像显示组件120上。In some embodiments, the dimming lens 122 may be configured to dim ambient light (or real-world light) 142 from the real-world environment toward the eyebox area 160. Ambient light 142 from the real-world environment outside the left-eye display system 110L and the right-eye display system 110R may be incident on the dimming lens 122 before the ambient light 142 is incident on the image display component 120. The dimming lens 122 may reduce the transmittance of the ambient light 142 based on a suitable dimming mechanism (such as polarization, absorption, scattering and/or diffusion), or block the ambient light 142 from being incident on the image display component 120.

在一些实施例中,调光透镜122可以是全局调光透镜,该全局调光透镜被配置为在调光透镜122的整个孔口(aperture)上具有均匀的光透射率。换言之,调光透镜122可以被配置为在调光透镜122的整个孔口上均匀地调光或衰减真实世界光142。在一些实施例中,调光透镜122可以是被配置为在调光透镜122的孔口的不同区域(或区)处提供不同光透射率的区域调光透镜或局部调光透镜。调光透镜122的各个区域或部分处的对真实世界光142的光透射率可以是单独地或独立地可控的。In some embodiments, the dimming lens 122 may be a global dimming lens configured to have uniform light transmittance across the entire aperture of the dimming lens 122. In other words, the dimming lens 122 may be configured to uniformly dim or attenuate the real-world light 142 across the entire aperture of the dimming lens 122. In some embodiments, the dimming lens 122 may be a regional dimming lens or a local dimming lens configured to provide different light transmittances at different regions (or zones) of the aperture of the dimming lens 122. The light transmittances of the real-world light 142 at various regions or portions of the dimming lens 122 may be individually or independently controllable.

在一些实施例中,调光透镜122对真实世界光142的透射率或调光效果可以是固定的。在一些实施例中,可以通过合适的外部场来调节调光透镜122对真实世界光142的透射率或调光效果。在一些实施例中,可以能够通过调节电场来调节调光透镜122的透射率或调光效果。例如,调光透镜122可以包括:具有电可调谐透射率的调光材料(出于讨论目的,被称为电可调谐调光材料);以及一个或多个电极层,该一个或多个电极层被配置为电耦接到电源(该电源可以向这些电极层提供电压),以在调光材料中提供可调谐电场。电可调谐调光材料的示例可以包括宾主型液晶(“Liquid Crystal,LC”)材料(例如,掺杂有宾体染料(例如,二向色性染料)的主体LC)、聚合物稳定的胆甾型LC材料、悬浮颗粒、电致变色材料、电泳材料等。In some embodiments, the transmittance or dimming effect of the dimming lens 122 on the real-world light 142 may be fixed. In some embodiments, the transmittance or dimming effect of the dimming lens 122 on the real-world light 142 may be adjusted by a suitable external field. In some embodiments, the transmittance or dimming effect of the dimming lens 122 may be adjusted by adjusting the electric field. For example, the dimming lens 122 may include: a dimming material with an electrically tunable transmittance (referred to as an electrically tunable dimming material for discussion purposes); and one or more electrode layers, the one or more electrode layers being configured to be electrically coupled to a power source (the power source may provide a voltage to the electrode layers) to provide a tunable electric field in the dimming material. Examples of electrically tunable dimming materials may include guest-host liquid crystal (“LC”) materials (e.g., a host LC doped with a guest dye (e.g., a dichroic dye)), polymer-stabilized cholesteric LC materials, suspended particles, electrochromic materials, electrophoretic materials, and the like.

在一些实施例中,可以能够通过除电场以外的合适的外部场(例如,磁场、温度或光等)来调节调光透镜122的透射率或调光效果。例如,在一些实施例中,调光透镜122可以包括具有非电可调谐透射率的调光材料(出于讨论目的,被称为非电可调谐调光材料)。非电可调谐调光材料的光透射率可以经由除调谐电压之外的方法来调谐,例如通过环境光或温度的改变等来调谐。非电可调谐调光材料的示例可以包括光致变色材料、光致二向色性材料、热致变色材料等。在一些实施例中,调光材料可以包括电可调谐调光材料和非电可调谐调光材料这两者,以实现期望的调光效果。In some embodiments, the transmittance or dimming effect of the dimming lens 122 may be adjustable by a suitable external field other than an electric field (e.g., a magnetic field, temperature, or light, etc.). For example, in some embodiments, the dimming lens 122 may include a dimming material having a non-electrically tunable transmittance (referred to as a non-electrically tunable dimming material for discussion purposes). The light transmittance of the non-electrically tunable dimming material may be tuned via methods other than a tuning voltage, such as by a change in ambient light or temperature, etc. Examples of non-electrically tunable dimming materials may include photochromic materials, photodichroic materials, thermochromic materials, etc. In some embodiments, the dimming material may include both electrically tunable dimming materials and non-electrically tunable dimming materials to achieve a desired dimming effect.

在一些实施例中,调光透镜122可以是具有处方的眼科镜片(例如单视、双焦、三焦或渐进式),以为用户的视力提供视力矫正。例如,调光透镜122可以被配置为在透射环境光142的同时改变环境光142,以为用户的视力提供视力矫正。在一些实施例中,调光透镜122可以是不提供视力矫正的平光透镜。例如,在一些实施例中,调光透镜122可以被配置为对于环境光142具有零光焦度的平坦板或弯曲板。In some embodiments, the dimming lens 122 may be an ophthalmic lens with a prescription (e.g., single vision, bifocal, trifocal, or progressive) to provide vision correction for the user's vision. For example, the dimming lens 122 may be configured to change the ambient light 142 while transmitting the ambient light 142 to provide vision correction for the user's vision. In some embodiments, the dimming lens 122 may be a plano lens that does not provide vision correction. For example, in some embodiments, the dimming lens 122 may be configured as a flat plate or a curved plate with zero optical power for the ambient light 142.

在一些实施例中,如图1B所示,人工现实设备100还可以包括对象追踪组件190(例如,眼动追踪组件和/或面部追踪组件)。对象追踪组件190可以包括红外(“Infrared,IR”)光源191、偏转元件192(诸如光栅)和光学传感器193(诸如摄像头),该光源被配置为发射IR光以照射眼睛159和/或面部。偏转元件192可以将由眼睛159反射的IR光朝向光学传感器193偏转(例如衍射)。光学传感器193可以基于由偏转元件192偏转的IR光生成与眼睛159相关的追踪信号。追踪信号可以是眼睛159的图像。人工现实设备100可以包括控制器(未示出),该控制器可以控制左眼显示系统110L和/或对象追踪组件190中的各种光学元件。In some embodiments, as shown in FIG1B , the artificial reality device 100 may further include an object tracking component 190 (e.g., an eye tracking component and/or a facial tracking component). The object tracking component 190 may include an infrared (“IR”) light source 191, a deflection element 192 (such as a grating), and an optical sensor 193 (such as a camera), the light source being configured to emit IR light to illuminate the eye 159 and/or the face. The deflection element 192 may deflect (e.g., diffract) the IR light reflected by the eye 159 toward the optical sensor 193. The optical sensor 193 may generate a tracking signal associated with the eye 159 based on the IR light deflected by the deflection element 192. The tracking signal may be an image of the eye 159. The artificial reality device 100 may include a controller (not shown) that may control various optical elements in the left eye display system 110L and/or the object tracking component 190.

人工现实设备100可以被配置为以VR模式、AR模式或MR模式运行。人工现实设备100可以被配置为在室内环境和室外环境中能够在以VR模式、AR模式和/或MR模式运行之间切换。在一些实施例中,当人工现实设备100以AR或MR模式运行时,调光透镜122可以以透明(clear)状态或中间状态运行,并且从用户的视角来看,左眼显示系统110L和右眼显示系统110R可以是完全透明的或部分透明的,从而可以向用户提供周围真实世界环境的视图。在一些实施例中,当人工现实设备100以VR模式运行时,调光透镜122可以以不透明状态运行,并且左眼显示系统110L和右眼显示系统110R可以是不透明的,以阻挡来自真实世界环境的光,使得用户可以沉浸在基于计算机生成的图像的VR影像中。The artificial reality device 100 may be configured to operate in VR mode, AR mode, or MR mode. The artificial reality device 100 may be configured to switch between operating in VR mode, AR mode, and/or MR mode in indoor and outdoor environments. In some embodiments, when the artificial reality device 100 operates in AR or MR mode, the dimming lens 122 may operate in a transparent (clear) state or an intermediate state, and from the user's perspective, the left eye display system 110L and the right eye display system 110R may be completely transparent or partially transparent, thereby providing the user with a view of the surrounding real world environment. In some embodiments, when the artificial reality device 100 operates in VR mode, the dimming lens 122 may operate in an opaque state, and the left eye display system 110L and the right eye display system 110R may be opaque to block light from the real world environment, so that the user can be immersed in a VR image based on a computer-generated image.

图1C示出了根据本公开的实施例的以AR模式或以MR模式运行的人工现实设备100的用户所感知的图像。图1D示出了根据本公开的实施例的以VR模式运行的人工现实设备100的用户所感知的图像。出于讨论的目的,图1C和图1D示出了通过右眼显示系统110R观看的图像。如图1C所示,当人工现实设备100以AR模式或MR模式运行时,用户可以感知与真实世界场景104叠加的虚拟场景或虚拟图像102。如图1D所示,当人工现实设备100以VR模式运行时,用户可以感知虚拟场景102,但不能感知真实世界场景104。FIG1C shows an image perceived by a user of an artificial reality device 100 operating in an AR mode or in an MR mode according to an embodiment of the present disclosure. FIG1D shows an image perceived by a user of an artificial reality device 100 operating in a VR mode according to an embodiment of the present disclosure. For the purpose of discussion, FIG1C and FIG1D show images viewed through a right-eye display system 110R. As shown in FIG1C , when the artificial reality device 100 operates in an AR mode or an MR mode, the user can perceive a virtual scene or virtual image 102 superimposed on a real-world scene 104. As shown in FIG1D , when the artificial reality device 100 operates in a VR mode, the user can perceive the virtual scene 102 but cannot perceive the real-world scene 104.

图2A示出了根据本公开的实施例的调光透镜(或调光设备)200的示意图。调光透镜200可以是图1B所示的调光透镜122的实施例。调光透镜200可以包括第一材料层131以及与第一材料层131耦接的第二材料层132。第一材料层131可以位于调光透镜200的面向真实世界环境并且接收环境光142的外侧处。第二材料层132可以位于调光透镜200的面向用户眼睛159的内侧处。尽管第一材料层131和第二材料层132被示出为具有弯曲表面,但在一些实施例中,第一材料层131或第二材料层132中的至少一者可以具有一个或两个在厚度方向(例如,图2A的z轴方向)上平坦的表面。FIG2A shows a schematic diagram of a dimming lens (or dimming device) 200 according to an embodiment of the present disclosure. The dimming lens 200 may be an embodiment of the dimming lens 122 shown in FIG1B . The dimming lens 200 may include a first material layer 131 and a second material layer 132 coupled to the first material layer 131. The first material layer 131 may be located at the outer side of the dimming lens 200 facing the real world environment and receiving the ambient light 142. The second material layer 132 may be located at the inner side of the dimming lens 200 facing the user's eye 159. Although the first material layer 131 and the second material layer 132 are shown as having curved surfaces, in some embodiments, at least one of the first material layer 131 or the second material layer 132 may have one or two surfaces that are flat in the thickness direction (e.g., the z-axis direction of FIG2A ).

第一材料层131可以基于第一透镜材料来制造,并且第二材料层132可以基于与第一透镜材料不同的第二透镜材料来制造。在一些实施例中,透镜第一材料和第二透镜材料在调光透镜200的运行波长范围(例如,可见光谱)内可以是光学透明的。在一些实施例中,第一透镜材料的密度可以低于第二透镜材料的密度。在一些实施例中,在调光透镜200的运行波长范围(例如,可见光谱)内,第一透镜材料的双折射率可以低于第二透镜材料的双折射率。在一些实施例中,第一材料层131中所包括的第一透镜材料可以具有等于或小于预定密度的密度以及等于或小于预定双折射率的双折射率。因此,第二透镜材料可以具有大于预定密度的密度以及大于预定双折射率的双折射率。例如,第一透镜材料的密度可以约为1.0g/cm3或更低,并且第一透镜材料的双折射率可以约为10-5或更低。也就是说,预定密度可以是例如1.0g/cm3、1.05g/cm3、1.1g/cm3等。预定双折射率可以是10-5、2×10-5、5×10-5等。第一透镜材料的双折射率可以是第二透镜材料的双折射率的至少1/10。The first material layer 131 may be manufactured based on a first lens material, and the second material layer 132 may be manufactured based on a second lens material different from the first lens material. In some embodiments, the lens first material and the second lens material may be optically transparent within the operating wavelength range (e.g., visible spectrum) of the dimming lens 200. In some embodiments, the density of the first lens material may be lower than the density of the second lens material. In some embodiments, within the operating wavelength range (e.g., visible spectrum) of the dimming lens 200, the birefringence of the first lens material may be lower than the birefringence of the second lens material. In some embodiments, the first lens material included in the first material layer 131 may have a density equal to or less than a predetermined density and a birefringence equal to or less than a predetermined birefringence. Therefore, the second lens material may have a density greater than a predetermined density and a birefringence greater than a predetermined birefringence. For example, the density of the first lens material may be about 1.0 g/cm 3 or less, and the birefringence of the first lens material may be about 10 -5 or less. That is, the predetermined density may be, for example, 1.0 g/cm 3 , 1.05 g/cm 3 , 1.1 g/cm 3 , etc. The predetermined birefringence may be 10 -5 , 2×10 -5 , 5×10 -5 , etc. The birefringence of the first lens material may be at least 1/10 of the birefringence of the second lens material.

在一些实施例中,第二透镜材料的抗冲击性可以高于第一透镜材料的抗冲击性。抗冲击性(或冲击强度)与材料对冲击的抵抗性有关,并且抗冲击性可以被测量为由标准化样本在标准化冲击下断裂所吸收的能量(单位:J或ft-lbs)。可以通过将冲击能量除以样本的厚度来计算抗冲击性(或冲击强度)。在一些实施例中,第二透镜材料可以具有等于或大于预定抗冲击阈值的抗冲击性。因此,第一透镜材料可以具有小于预定抗冲击阈值的抗冲击性。第二透镜材料的抗冲击性可以是第一透镜材料的抗冲击性的至少10倍。In some embodiments, the impact resistance of the second lens material may be higher than the impact resistance of the first lens material. Impact resistance (or impact strength) is related to the resistance of a material to impact, and impact resistance can be measured as the energy absorbed by a standardized sample breaking under a standardized impact (unit: J or ft-lbs). The impact resistance (or impact strength) can be calculated by dividing the impact energy by the thickness of the sample. In some embodiments, the second lens material may have an impact resistance equal to or greater than a predetermined impact resistance threshold. Therefore, the first lens material may have an impact resistance less than a predetermined impact resistance threshold. The impact resistance of the second lens material may be at least 10 times the impact resistance of the first lens material.

例如,第二透镜材料的缺口冲击强度可以为约0.7ft-lbs/in或更高、约0.8ft-lbs/in或更高、约0.9ft-lbs/in或更高、约1.0ft-lbs/in或更高、约1.5ft-lbs/in或更高、约2.0ft-lbs/in或更高、约3.0ft-lbs/in或更高、约4.0ft-lbs/in或更高、约5.0ft-lbs/in或更高、约10.0ft-lbs/in或更高、约15.0ft-lbs/in或更高等。第二透镜材料可以符合美国食品和药物管理局(“Food and Drug Administration,FDA”)的落球测试或欧洲和亚洲对透镜的同等冲击测试标准中的至少一者。例如,为了通过FDA的对于透镜的落球测试,重约0.56盎司的5/8英寸钢球从50英寸的高度掉落到透镜几何中心的5/8英寸直径的圆上,并且透镜不得破裂。For example, the notched impact strength of the second lens material can be about 0.7 ft-lbs/in or more, about 0.8 ft-lbs/in or more, about 0.9 ft-lbs/in or more, about 1.0 ft-lbs/in or more, about 1.5 ft-lbs/in or more, about 2.0 ft-lbs/in or more, about 3.0 ft-lbs/in or more, about 4.0 ft-lbs/in or more, about 5.0 ft-lbs/in or more, about 10.0 ft-lbs/in or more, about 15.0 ft-lbs/in or more, etc. The second lens material can comply with at least one of the U.S. Food and Drug Administration ("FDA") drop ball test or equivalent impact test standards for lenses in Europe and Asia. For example, to pass the FDA's drop ball test for a lens, a 5/8 inch steel ball weighing approximately 0.56 ounces is dropped from a height of 50 inches onto a 5/8 inch diameter circle at the geometric center of the lens, and the lens must not break.

第一透镜材料的示例可以包括环烯烃共聚物(“Cyclic Olefin Copolymer,COC”)或环烯烃聚合物(“Cyclic Olefin Polymer,COP”)等。COC和COP具有类似于玻璃的光学性质,例如,高透明度、低双折射率、高阿贝数和高耐热性。第二透镜材料的示例可以包括聚碳酸酯(“Polycarbonate,PC”)、聚甲基丙烯酸甲酯(“Polymethyl methacrylate,PMMA”)、聚乙烯(“Polyethylene,PE”)、聚氨酯或聚丙烯(“Polypropylene,PP”)等。例如,PC的抗冲击性是传统塑料或玻璃的10倍。下表示出了可以用作第一透镜材料和第二透镜材料的示例材料的一些性质。本公开不限于这些材料。Examples of first lens materials may include cycloolefin copolymer ("Cyclic Olefin Copolymer, COC") or cycloolefin polymer ("Cyclic Olefin Polymer, COP"), etc. COC and COP have optical properties similar to those of glass, such as high transparency, low birefringence, high Abbe number, and high heat resistance. Examples of second lens materials may include polycarbonate ("Polycarbonate, PC"), polymethyl methacrylate ("Polymethyl methacrylate, PMMA"), polyethylene ("Polyethylene, PE"), polyurethane or polypropylene ("Polypropylene, PP"), etc. For example, the impact resistance of PC is 10 times that of traditional plastics or glass. The following table shows some properties of example materials that can be used as the first lens material and the second lens material. The present disclosure is not limited to these materials.

surface

材料Material 密度(g/cm3)Density (g/cm 3 ) 双折射率Birefringence 缺口冲击强度(ft-lbs/in)Notched Impact Strength (ft-lbs/in) COCCOC 1.01.0 小于10-5 Less than 10 -5 0.690.69 COPCOP 1.081.08 小于10-5 Less than 10 -5 0.560.56 PCPC 1.201.20 ~10-4 ~10 -4 12.0至16.012.0 to 16.0

在一些实施例中,调光透镜200可以是具有处方的眼科镜片(例如单视、双焦、三焦或渐进式),以为用户的视力提供视力矫正。如图2A所示,第一材料层131可以被配置为具有用于对用户进行视力矫正的定制的非零光焦度,并且第二材料层132可以被配置为具有大致低的光焦度或零光焦度(例如,第二材料层132可以是具有均匀厚度和大致零光焦度的平坦板或弯曲板)。例如,由第二材料层132提供的光焦度的绝对值可以低于由第一材料层131提供的光焦度的绝对值。第一材料层131的内表面的曲率半径可以与第二材料层132的外表面的曲率半径大致相同。出于讨论的目的,图2A示出了第一材料层131用作被配置用于远视矫正的凹凸透镜。在一些实施例中,第一材料层131可以被配置为用于另一种类型的视力矫正,例如,第一材料层131可以用作被配置用于近视矫正的凸凹透镜等。在一些实施例中,调光透镜200可以不提供视力矫正,并且第一材料层131和第二材料层132均可以被配置为具有零光焦度,例如,第一材料层131和第二材料层132均可以是具有零光焦度的平坦板或弯曲板。In some embodiments, the dimming lens 200 can be an ophthalmic lens with a prescription (e.g., single vision, bifocal, trifocal, or progressive) to provide vision correction for the user's vision. As shown in FIG. 2A, the first material layer 131 can be configured to have a customized non-zero optical power for correcting the user's vision, and the second material layer 132 can be configured to have a substantially low optical power or zero optical power (e.g., the second material layer 132 can be a flat plate or a curved plate with a uniform thickness and substantially zero optical power). For example, the absolute value of the optical power provided by the second material layer 132 can be lower than the absolute value of the optical power provided by the first material layer 131. The radius of curvature of the inner surface of the first material layer 131 can be substantially the same as the radius of curvature of the outer surface of the second material layer 132. For discussion purposes, FIG. 2A shows that the first material layer 131 is used as a concave-convex lens configured for hyperopia correction. In some embodiments, the first material layer 131 may be configured for another type of vision correction, for example, the first material layer 131 may be used as a convex-concave lens configured for myopia correction, etc. In some embodiments, the dimming lens 200 may not provide vision correction, and the first material layer 131 and the second material layer 132 may both be configured to have zero optical power, for example, the first material layer 131 and the second material layer 132 may both be flat plates or curved plates with zero optical power.

基于具有相对低密度和低双折射率的第一透镜材料制造的第一材料层131可以具有轻的重量和良好的图像质量。此外,基于具有相对高抗冲击性的第二透镜材料制造的第二材料层132可以为用户的眼睛159提供良好的安全性。当第二材料层132被配置为具有零光焦度时,第二材料层132中所包括的第二透镜材料的相对高的双折射率可以不降低调光透镜200的图像性能。The first material layer 131 manufactured based on a first lens material having a relatively low density and a low birefringence may have a light weight and good image quality. In addition, the second material layer 132 manufactured based on a second lens material having a relatively high impact resistance may provide good safety for the user's eyes 159. When the second material layer 132 is configured to have zero optical power, the relatively high birefringence of the second lens material included in the second material layer 132 may not reduce the image performance of the dimming lens 200.

在一些实施例中,第一材料层131可以被配置为比第二材料层132厚。例如,第一材料层131的厚度可以在0.1mm至1.1mm的范围、0.1mm至1.0mm的范围、0.1mm至0.9mm的范围、0.1mm至0.8mm的范围、0.1mm至0.7mm的范围、0.1mm至0.6mm的范围、0.1mm至0.5mm的范围、0.5mm至1.1mm的范围、0.6mm至1.1mm的范围、0.7mm至1.1mm的范围、或0.8mm至1.1mm的范围内等。在一些实施例中,第二材料层132的厚度可以在0.01mm至0.5mm的范围、0.01mm至0.4mm的范围、0.01mm至0.3mm的范围、0.01mm至0.2mm的范围、或0.01mm至0.1mm的范围内等。在一些实施例中,第一材料层131的中心厚度可以在1.0mm至1.5mm的范围内。“中心厚度”可以是在层的几何中心点(也可以是光学中心点)处测量的厚度。在一些实施例中,第二材料层132的中心厚度可以在0.2mm至0.7mm的范围内。在一些实施例中,第一材料层131可以在运行波长范围(例如,可见波长范围)内具有小于100nm的延迟值。In some embodiments, the first material layer 131 may be configured to be thicker than the second material layer 132. For example, the thickness of the first material layer 131 may be in the range of 0.1 mm to 1.1 mm, in the range of 0.1 mm to 1.0 mm, in the range of 0.1 mm to 0.9 mm, in the range of 0.1 mm to 0.8 mm, in the range of 0.1 mm to 0.7 mm, in the range of 0.1 mm to 0.6 mm, in the range of 0.1 mm to 0.5 mm, in the range of 0.5 mm to 1.1 mm, in the range of 0.6 mm to 1.1 mm, in the range of 0.7 mm to 1.1 mm, or in the range of 0.8 mm to 1.1 mm, etc. In some embodiments, the thickness of the second material layer 132 may be in the range of 0.01 mm to 0.5 mm, in the range of 0.01 mm to 0.4 mm, in the range of 0.01 mm to 0.3 mm, in the range of 0.01 mm to 0.2 mm, or in the range of 0.01 mm to 0.1 mm, etc. In some embodiments, the center thickness of the first material layer 131 may be in the range of 1.0 mm to 1.5 mm. The "center thickness" may be the thickness measured at the geometric center point (or optical center point) of the layer. In some embodiments, the center thickness of the second material layer 132 may be in the range of 0.2 mm to 0.7 mm. In some embodiments, the first material layer 131 may have a retardation value of less than 100 nm within an operating wavelength range (e.g., a visible wavelength range).

在一些实施例中,第一材料层131和第二材料层132可以经由合适的工序制造,这些工序诸如为金刚石车削、模制、铸造、三维(“Three-dimensional,3D”)打印或它们的组合。在一些实施例中,第一材料层131和第二材料层132可以(例如,经由光学透明的粘合层)层压在一起,其中,第二材料层132层压在第一材料层131的面向用户眼睛159的内侧(例如,凹表面)上。例如,第一材料层131和第二材料层132可以通过合适的光学透明粘合剂而层压并结合在一起。在一些实施例中,光学透明的粘合层可以在调光透镜200的孔口上具有均匀的厚度。光学透明的粘合层的厚度可以在0.01mm至0.2mm的范围内。调光透镜200可以包括用于对环境光142进行调光的调光材料136,并且调光材料136可以被掺杂到第一材料层131或第二材料层132中的至少一者中。出于说明的目的,图2A示出了调光材料136被掺杂到第二材料层132中。在一些实施例中,尽管未示出,但调光材料136可以被掺杂到第一材料层131中。调光材料136可以包括非电可调谐调光材料,诸如光致变色材料、光致二向色性材料、热致变色材料等。调光材料136可以为环境光142提供可调谐的调光效果(例如,根据温度或环境光142的亮度),或者可以提供非可调谐的固定的调光效果。In some embodiments, the first material layer 131 and the second material layer 132 may be manufactured via suitable processes, such as diamond turning, molding, casting, three-dimensional (“3D”) printing, or a combination thereof. In some embodiments, the first material layer 131 and the second material layer 132 may be laminated together (e.g., via an optically transparent adhesive layer), wherein the second material layer 132 is laminated on the inner side (e.g., concave surface) of the first material layer 131 facing the user's eye 159. For example, the first material layer 131 and the second material layer 132 may be laminated and bonded together by a suitable optically transparent adhesive. In some embodiments, the optically transparent adhesive layer may have a uniform thickness over the aperture of the dimming lens 200. The thickness of the optically transparent adhesive layer may be in the range of 0.01 mm to 0.2 mm. The dimming lens 200 may include a dimming material 136 for dimming the ambient light 142, and the dimming material 136 may be doped into at least one of the first material layer 131 or the second material layer 132. For the purpose of illustration, FIG2A shows that the dimming material 136 is doped into the second material layer 132. In some embodiments, although not shown, the dimming material 136 may be doped into the first material layer 131. The dimming material 136 may include a non-electrically tunable dimming material, such as a photochromic material, a photodichroic material, a thermochromic material, etc. The dimming material 136 may provide a tunable dimming effect for the ambient light 142 (e.g., according to the temperature or brightness of the ambient light 142), or may provide a non-tunable fixed dimming effect.

基于单个第一透镜材料层(例如,COC或COP等)制造的传统透镜可以提供相对轻的重量和相对低的双折射率,但抗冲击性相对低,而基于单个第二透镜材料层(例如,PC、PMMA、PE或PP等)制造的传统透镜可以提供相对高的抗冲击性,但重量相对重并且双折射率相对高。包括以第一透镜材料制造的第一材料层131和以第二透镜材料制造的第二材料层132的调光透镜200可以被配置为在重量、双折射率和抗冲击性之间提供平衡。例如,与基于单个第一透镜材料层(例如,COC或COP等)或单个第二透镜材料层(例如,PC、PMMA、PE或PP等)制造的传统透镜相比,调光透镜200可以同时提供低重量、低双折射率和高抗冲击性。A conventional lens manufactured based on a single first lens material layer (e.g., COC or COP, etc.) can provide a relatively light weight and a relatively low birefringence, but relatively low impact resistance, while a conventional lens manufactured based on a single second lens material layer (e.g., PC, PMMA, PE, or PP, etc.) can provide a relatively high impact resistance, but a relatively heavy weight and a relatively high birefringence. The dimming lens 200 including a first material layer 131 manufactured with a first lens material and a second material layer 132 manufactured with a second lens material can be configured to provide a balance between weight, birefringence, and impact resistance. For example, compared to a conventional lens manufactured based on a single first lens material layer (e.g., COC or COP, etc.) or a single second lens material layer (e.g., PC, PMMA, PE, or PP, etc.), the dimming lens 200 can simultaneously provide low weight, low birefringence, and high impact resistance.

图2B示出了根据本公开的实施例的调光透镜(或调光设备)210的示意图。调光透镜210可以是图1B所示的调光透镜122的实施例。调光透镜210可以包括基于第一透镜材料制造的第一材料层131和基于第二透镜材料制造的第二材料层132。在如图2B所示的实施例中,调光透镜210还可以包括设置在第一材料层131与第二材料层132之间的调光材料层138。在一些实施例中,调光材料138可以包括非电可调谐调光材料,诸如光致变色材料、光致二向色性材料、热致变色材料等。调光材料138可以为环境光142提供可调谐的调光效果(例如,根据温度或环境光142的亮度),或者非可调谐的固定的调光效果。FIG2B shows a schematic diagram of a dimming lens (or dimming device) 210 according to an embodiment of the present disclosure. The dimming lens 210 may be an embodiment of the dimming lens 122 shown in FIG1B . The dimming lens 210 may include a first material layer 131 manufactured based on a first lens material and a second material layer 132 manufactured based on a second lens material. In the embodiment shown in FIG2B , the dimming lens 210 may also include a dimming material layer 138 disposed between the first material layer 131 and the second material layer 132. In some embodiments, the dimming material 138 may include a non-electrically tunable dimming material, such as a photochromic material, a photodichroic material, a thermochromic material, etc. The dimming material 138 may provide a tunable dimming effect (e.g., according to the temperature or brightness of the ambient light 142) or a non-tunable fixed dimming effect for the ambient light 142.

图2C示出了根据本公开的实施例的调光透镜(或调光设备)230的示意图。调光透镜230可以是图1B所示的调光透镜122的实施例。调光透镜230可以包括基于第一透镜材料制造的第一材料层131、基于第二透镜材料制造的两个第二材料层132a和132b(这两个第二材料层可以分别称为第二材料层和第三材料层)以及调光材料层138。由调光材料层138以及第二材料层132a和132b形成的叠置体可以设置在第一材料层131的面向眼睛159的内侧处。例如,由调光材料层138以及第二材料层132a和132b形成的叠置体可以层压到第一材料层131的面向用户眼睛159的内侧(例如,凹表面)。第二材料层132a可以设置在第一材料层131与调光材料层138之间。调光材料层138可以设置在第二材料层132a与第二材料层132b之间。第一材料层131可以被配置为具有用于视力矫正的非零光焦度,并且第二材料层132a和132b可以被配置为具有大致低的光焦度或零光焦度(例如,第二材料层132a或132b可以是厚度均匀且光焦度大致为零的平坦板或弯曲板)。例如,由第二材料层132a和132b提供的光焦度的绝对值可以低于由第一材料层131提供的光焦度的绝对值。FIG2C shows a schematic diagram of a dimming lens (or dimming device) 230 according to an embodiment of the present disclosure. The dimming lens 230 may be an embodiment of the dimming lens 122 shown in FIG1B . The dimming lens 230 may include a first material layer 131 manufactured based on a first lens material, two second material layers 132a and 132b manufactured based on a second lens material (these two second material layers may be referred to as a second material layer and a third material layer, respectively), and a dimming material layer 138. A stack formed by the dimming material layer 138 and the second material layers 132a and 132b may be disposed at the inner side of the first material layer 131 facing the eye 159. For example, the stack formed by the dimming material layer 138 and the second material layers 132a and 132b may be laminated to the inner side (e.g., concave surface) of the first material layer 131 facing the user's eye 159. The second material layer 132a may be disposed between the first material layer 131 and the dimming material layer 138. The dimming material layer 138 may be disposed between the second material layer 132a and the second material layer 132b. The first material layer 131 may be configured to have a non-zero optical power for vision correction, and the second material layers 132a and 132b may be configured to have substantially low optical power or zero optical power (e.g., the second material layer 132a or 132b may be a flat plate or a curved plate with a uniform thickness and substantially zero optical power). For example, the absolute value of the optical power provided by the second material layers 132a and 132b may be lower than the absolute value of the optical power provided by the first material layer 131.

图2D示出了根据本公开的实施例的调光透镜(或调光设备)240的示意图。调光透镜240可以是图1B所示的调光透镜122的实施例。调光透镜240可以包括第一材料层131、第二材料层132以及设置在第一材料层131与第二材料层132之间的调光单元(或调光元件)166。调光单元166可以包括调光材料层207和至少一个电极层。出于说明的目的,图2D示出了第一电极层209-1和第二电极层209-2分别设置在调光材料层207的相反侧。电极层209-1和209-2在调光透镜240的运行波长范围(例如,可见光谱)内可以是光学透明的。在一些实施例中,电极层209-1和209-2在IR光谱中也可以是光学透明的。FIG2D shows a schematic diagram of a dimming lens (or dimming device) 240 according to an embodiment of the present disclosure. The dimming lens 240 may be an embodiment of the dimming lens 122 shown in FIG1B. The dimming lens 240 may include a first material layer 131, a second material layer 132, and a dimming unit (or dimming element) 166 disposed between the first material layer 131 and the second material layer 132. The dimming unit 166 may include a dimming material layer 207 and at least one electrode layer. For illustrative purposes, FIG2D shows that the first electrode layer 209-1 and the second electrode layer 209-2 are disposed on opposite sides of the dimming material layer 207, respectively. The electrode layers 209-1 and 209-2 may be optically transparent within the operating wavelength range (e.g., visible spectrum) of the dimming lens 240. In some embodiments, the electrode layers 209-1 and 209-2 may also be optically transparent in the IR spectrum.

在一些实施例中,电极层209-1和209-2中的每个电极层可以包括连续的平面电极。在一些实施例中,电极层209-1和209-2中的一个电极层可以包括连续的平面电极,并且电极层209-1和209-2中的另一个电极层可以包括由多个离散的分离的子电极形成的图案化电极。例如,在一些实施例中,图案化电极可以包括由第二子电极包围的第一子电极。在一些实施例中,图案化电极可以包括像素化子电极阵列。在一些实施例中,电极层209-1和209-2中的每个电极层可以包括图案化电极。例如,在一些实施例中,每个图案化电极可以包括平行布置的多个分离的条纹电极,并且各个图案化电极中的条纹电极可以被布置为在不同方向(例如,正交方向)上平行延伸。在一些实施例中,电极层209-1和209-2可以包括导电材料,该导电材料为氧化铟锡(“Indium Tin Oxide,ITO”)、掺铝氧化锌(“Al-doped ZincOxide,AZO”)、石墨烯、聚(3,4-乙烯二氧噻吩):聚(苯乙烯磺酸盐)(“Poly(3,4-ethylenedioxythiophene):Poly(Styrene-sulfonate),PEDOT:PSS”)、碳纳米管或银纳米线、或它们的组合。In some embodiments, each of the electrode layers 209-1 and 209-2 may include a continuous planar electrode. In some embodiments, one of the electrode layers 209-1 and 209-2 may include a continuous planar electrode, and the other electrode layer of the electrode layers 209-1 and 209-2 may include a patterned electrode formed by a plurality of discrete, separated sub-electrodes. For example, in some embodiments, the patterned electrode may include a first sub-electrode surrounded by a second sub-electrode. In some embodiments, the patterned electrode may include a pixelated sub-electrode array. In some embodiments, each of the electrode layers 209-1 and 209-2 may include a patterned electrode. For example, in some embodiments, each patterned electrode may include a plurality of separated stripe electrodes arranged in parallel, and the stripe electrodes in each patterned electrode may be arranged to extend in parallel in different directions (e.g., orthogonal directions). In some embodiments, the electrode layers 209-1 and 209-2 may include a conductive material, which is indium tin oxide ("Indium Tin Oxide, ITO"), aluminum-doped zinc oxide ("Al-doped ZincOxide, AZO"), graphene, poly (3,4-ethylenedioxythiophene): poly (styrene-sulfonate) ("Poly (3,4-ethylenedioxythiophene): Poly (Styrene-sulfonate), PEDOT: PSS"), carbon nanotubes or silver nanowires, or a combination thereof.

在一些实施例中,两个电极层209-1和209-2可以经由合适的方法(例如,涂覆或沉积等)分别设置在第一材料层131的内表面和第二材料层132的外表面处。在一些实施例中,为了减少在电极层209-1与第一材料层131的内表面之间的界面处的表面反射,可以在电极层209-1与第一材料层131的内表面之间设置折射率匹配层(未示出)。在一些实施例中,为了减少在电极层209-2与第二材料层132的外表面之间的界面处的表面反射,可以在电极层209-2与第二材料层132的外表面之间设置折射率匹配层(未示出)。In some embodiments, the two electrode layers 209-1 and 209-2 may be disposed at the inner surface of the first material layer 131 and the outer surface of the second material layer 132, respectively, via a suitable method (e.g., coating or deposition, etc.). In some embodiments, in order to reduce surface reflection at the interface between the electrode layer 209-1 and the inner surface of the first material layer 131, a refractive index matching layer (not shown) may be disposed between the electrode layer 209-1 and the inner surface of the first material layer 131. In some embodiments, in order to reduce surface reflection at the interface between the electrode layer 209-2 and the outer surface of the second material layer 132, a refractive index matching layer (not shown) may be disposed between the electrode layer 209-2 and the outer surface of the second material layer 132.

调光材料层207可以包括具有电可调谐透射率的调光材料(出于讨论的目的,称为电可调谐调光材料)。如由控制器控制,当施加到调光材料的电场改变时,电可调谐调光材料的光透射率可以是可调谐的。电可调谐调光材料的示例可以包括宾主型液晶(“LC”)材料(例如,掺杂有宾体染料(例如,二向色性染料)的主体LC)、聚合物稳定的胆甾型LC材料、悬浮颗粒、电致变色材料、电泳材料等。在一些实施例中,调光材料层207还可以包括具有非电可调谐透射率的调光材料(出于讨论的目的,称为非电可调谐调光材料)。非电可调谐调光材料的光透射率可以经由除调节电压之外的方法来调节,例如,通过改变环境光或温度等来调节。非电可调谐调光材料的示例可以包括光致变色材料、光致二向色性材料、热致变色材料等。调光器件166的示例可以包括宾主型液晶(“LC”)调光器件、聚合物稳定的胆甾型LC调光器件、悬浮颗粒器件、电致变色调光器件、电泳调光器件、电镀调光器件、光致变色调光器件、光致二向色性调光器件、包括电可调谐调光材料层和非电可调谐调光材料层的调光器件等。The dimming material layer 207 may include a dimming material having an electrically tunable transmittance (referred to as an electrically tunable dimming material for the purpose of discussion). As controlled by a controller, the light transmittance of the electrically tunable dimming material may be tunable when the electric field applied to the dimming material changes. Examples of electrically tunable dimming materials may include guest-host liquid crystal ("LC") materials (e.g., host LC doped with a guest dye (e.g., a dichroic dye)), polymer-stabilized cholesteric LC materials, suspended particles, electrochromic materials, electrophoretic materials, and the like. In some embodiments, the dimming material layer 207 may also include a dimming material having a non-electrically tunable transmittance (referred to as a non-electrically tunable dimming material for the purpose of discussion). The light transmittance of the non-electrically tunable dimming material may be adjusted via methods other than adjusting the voltage, for example, by changing the ambient light or temperature, and the like. Examples of non-electrically tunable dimming materials may include photochromic materials, photodichroic materials, thermochromic materials, and the like. Examples of dimming devices 166 may include guest-host liquid crystal ("LC") dimming devices, polymer-stabilized cholesteric LC dimming devices, suspended particle devices, electrochromic dimming devices, electrophoretic dimming devices, electroplating dimming devices, photochromic dimming devices, photodichroic dimming devices, dimming devices including electrically tunable dimming material layers and non-electrically tunable dimming material layers, and the like.

在一些实施例中,调光材料层207可以被配置为在调光器件166的孔口上具有均匀的厚度(例如,在图2D中的x轴方向上)。在一些实施例中,调光材料层207可以被配置为在调光器件166的孔口上具有非均匀的厚度。例如,调光材料层207可以在孔口的中心处具有比在孔口的外围处大的厚度。出于讨论的目的,图2D示出了调光材料层207被配置为具有两个弯曲表面,并且电极层209-1和209-2是弯曲电极层。在一些实施例中,调光材料层207可以被配置为具有弯曲表面和平坦表面,例如,电极层209-1和209-2中的一个电极层可以是弯曲电极层,并且另一个电极层可以是平坦电极层。在一些实施例中,调光材料层207可以被配置为具有两个平坦表面,例如,电极层209-1和209-2中的每个电极层可以是平坦电极层。In some embodiments, the dimming material layer 207 may be configured to have a uniform thickness over the aperture of the dimming device 166 (e.g., in the x-axis direction in FIG. 2D ). In some embodiments, the dimming material layer 207 may be configured to have a non-uniform thickness over the aperture of the dimming device 166. For example, the dimming material layer 207 may have a greater thickness at the center of the aperture than at the periphery of the aperture. For the purpose of discussion, FIG. 2D shows that the dimming material layer 207 is configured to have two curved surfaces, and the electrode layers 209-1 and 209-2 are curved electrode layers. In some embodiments, the dimming material layer 207 may be configured to have a curved surface and a flat surface, for example, one of the electrode layers 209-1 and 209-2 may be a curved electrode layer, and the other electrode layer may be a flat electrode layer. In some embodiments, the dimming material layer 207 may be configured to have two flat surfaces, for example, each of the electrode layers 209-1 and 209-2 may be a flat electrode layer.

电极层209-1和209-2可以与电源175电耦接。控制器215可以与电源175连接,并且可以控制电源175对电极层209-1和209-2的输出(例如,电压输出或电流输出)。因此,控制器215可以控制经由电极层209-1和209-2施加到调光材料层207的电场(例如,电场的幅度和/或方向),从而控制调光器件166的运行状态。在一些实施例中,控制器215可以控制调光器件166,使得调光器件166能够在以透明状态运行和以暗状态(也称为不透明状态)运行之间切换。因此,调光透镜240可以能够在以透明状态运行和以暗状态运行之间切换。The electrode layers 209-1 and 209-2 may be electrically coupled to the power source 175. The controller 215 may be connected to the power source 175, and may control the output (e.g., voltage output or current output) of the power source 175 to the electrode layers 209-1 and 209-2. Thus, the controller 215 may control the electric field (e.g., the amplitude and/or direction of the electric field) applied to the dimming material layer 207 via the electrode layers 209-1 and 209-2, thereby controlling the operating state of the dimming device 166. In some embodiments, the controller 215 may control the dimming device 166 so that the dimming device 166 can switch between operating in a transparent state and operating in a dark state (also referred to as an opaque state). Thus, the dimming lens 240 may be able to switch between operating in a transparent state and operating in a dark state.

在一些实施例中,以暗状态运行的调光器件166可以被配置为大致阻挡可见的真实世界光142,例如,具有约0.01%的光透射率(或具有4.0的光学密度)。以暗状态运行的调光器件166的光透射率可以被称为调光器件166的最小透射率。以透明状态运行的调光器件166可以被配置为提供大于对真实世界光142的最小透射率的预定透射率。在一些实施例中,预定透射率可以在从约30%至约50%的范围内,例如为30%、35%、40%、45%、50%、30%至40%、40%至50%、或30%至50%的范围内的任何其它子范围。在一些实施例中,预定透射率可以在约30%至约60%的范围内(例如为30%、35%、40%、45%、50%、55%、60%、30%至40%、40%至50%、50%至60%、或30%至60%范围内的任何其它子范围)、约30%至约70%的范围内(例如为30%、35%、40%、45%、50%、55%、60%、65%、70%,30%至40%、40%至50%、50%至60%、60%至70%、或30%至70%范围内的任何其它子范围)、约30%至约80%的范围内(例如为30%、35%、40%、45%、50%、55%、60%、65%、70%、75%、80%、30%至40%、40%至50%、50%至60%、60%至70%、70%至80%、或30%至80%范围内的任何其它子范围)、或约30%至约90%的范围内(30%、35%、40%、45%、50%、55%、60%、65%、70%、75%、80%、85%、90%、30%至40%、40%至50%、50%至60%、60%至70%、70%至80%、80%至90%、或30%至90%范围内的任何其它子范围)等。因此,用户可以感知与真实世界场景叠加的虚拟场景。出于讨论的目的,以透明状态运行的调光器件166的预定透射率可以被称为调光器件166的最大透射率。在一些实施例中,除了透明状态和暗状态之外,控制器215还可以控制调光器件166以中间状态运行。因此,调光透镜240可以以中间状态运行。以中间状态运行的调光器件166可以提供大于暗状态下的最小透射率且小于透明状态下的最大透射率的透射率。通过控制调光器件166的透射率,可以控制调光透镜240的透射率。因此,可以动态地调节通过调光透镜240观察到的透视视图的透射率。In some embodiments, the dimming device 166 operating in the dark state can be configured to substantially block visible real-world light 142, for example, having a light transmittance of about 0.01% (or having an optical density of 4.0). The light transmittance of the dimming device 166 operating in the dark state can be referred to as a minimum transmittance of the dimming device 166. The dimming device 166 operating in the transparent state can be configured to provide a predetermined transmittance greater than the minimum transmittance to the real-world light 142. In some embodiments, the predetermined transmittance can be in a range from about 30% to about 50%, for example, 30%, 35%, 40%, 45%, 50%, 30% to 40%, 40% to 50%, or any other sub-range within the range of 30% to 50%. In some embodiments, the predetermined transmittance can be in the range of about 30% to about 60% (e.g., 30%, 35%, 40%, 45%, 50%, 55%, 60%, 30% to 40%, 40% to 50%, 50% to 60%, or any other sub-range within the range of 30% to 60%), in the range of about 30% to about 70% (e.g., 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 30% to 40%, 40% to 50%, 50% to 60%, 60% to 70%, or any other sub-range within the range of 30% to 70%), in the range of about 30% to about 80% (e.g., 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 30% to 40%, 40% to 50%, 50% to 60%, 60% to 70%, or any other sub-range within the range of 30% to 70%), %, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 30% to 40%, 40% to 50%, 50% to 60%, 60% to 70%, 70% to 80%, or any other sub-range within the range of 30% to 80%), or in the range of about 30% to about 90% (30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 30% to 40%, 40% to 50%, 50% to 60%, 60% to 70%, 70% to 80%, 80% to 90%, or any other sub-range within the range of 30% to 90%), etc. Thus, the user can perceive the virtual scene superimposed with the real world scene. For the purpose of discussion, the predetermined transmittance of the dimming device 166 operating in the transparent state may be referred to as the maximum transmittance of the dimming device 166. In some embodiments, in addition to the transparent state and the dark state, the controller 215 may also control the dimming device 166 to operate in an intermediate state. Therefore, the dimming lens 240 may operate in an intermediate state. The dimming device 166 operating in the intermediate state may provide a transmittance greater than the minimum transmittance in the dark state and less than the maximum transmittance in the transparent state. By controlling the transmittance of the dimming device 166, the transmittance of the dimming lens 240 may be controlled. Therefore, the transmittance of the see-through view observed through the dimming lens 240 may be dynamically adjusted.

在一些实施例中,调光器件166可以是全局调光器件,该全局调光器件被配置为在调光器件166的整个孔口上具有均匀的光透射率。换言之,调光器件166可以被配置为在调光器件166的整个孔口上均匀地调光或衰减真实世界光142。因此,调光透镜240可以是全局调光透镜。在一些实施例中,调光器件166可以是被配置为在调光器件166的孔口的不同区域(或区)处提供不同光透射率的区域调光器件或局部调光器件。各个区域或部分处的对真实世界光142的光透射率可以是单独地或独立地可控的。在一些实施例中,调光器件166的孔口的每个区域(或区)可以包括一个或多个像素化调光元件。各个像素化调光元件处的光透射率可以是单独地或独立地可控的。在一些实施例中,各个像素化调光元件的尺寸可以大于1毫米。因此,调光透镜240可以是区域调光透镜或局部调光透镜。In some embodiments, the dimming device 166 may be a global dimming device configured to have a uniform light transmittance across the entire aperture of the dimming device 166. In other words, the dimming device 166 may be configured to uniformly dim or attenuate the real-world light 142 across the entire aperture of the dimming device 166. Therefore, the dimming lens 240 may be a global dimming lens. In some embodiments, the dimming device 166 may be a regional dimming device or a local dimming device configured to provide different light transmittances at different regions (or zones) of the aperture of the dimming device 166. The light transmittance of the real-world light 142 at each region or portion may be individually or independently controllable. In some embodiments, each region (or zone) of the aperture of the dimming device 166 may include one or more pixelated dimming elements. The light transmittance at each pixelated dimming element may be individually or independently controllable. In some embodiments, the size of each pixelated dimming element may be greater than 1 mm. Therefore, the dimming lens 240 may be a regional dimming lens or a local dimming lens.

出于说明的目的,图2D示出的调光透镜240的调光效果被示出为能够通过施加到调光材料层207的外部电场来调谐。基于调光材料的性质,也可以实施其它机制来调节调光效果。For illustration purposes, the dimming effect of the dimming lens 240 shown in Figure 2D is shown to be tunable by an external electric field applied to the dimming material layer 207. Other mechanisms may also be implemented to adjust the dimming effect based on the properties of the dimming material.

图2E示意性地示出了根据本公开的实施例的调光透镜250的示意图。调光透镜250可以包括第一材料层131、调光单元166和两个第二材料层132a和132b。调光单元166可以设置在两个第二材料层132a和132b之间。例如,调光单元166可以被封装到第二透镜材料中,使得大致整个调光单元166由第二透镜材料包围。如上所述,两个第二材料层132a和132b中所包括的材料可以与第二材料层132中所包括的第二透镜材料大致相同。除了调光效果由电可调谐调光单元166提供之外,该配置可以类似于图2C所示的配置。FIG2E schematically shows a schematic diagram of a dimming lens 250 according to an embodiment of the present disclosure. The dimming lens 250 may include a first material layer 131, a dimming unit 166, and two second material layers 132a and 132b. The dimming unit 166 may be disposed between the two second material layers 132a and 132b. For example, the dimming unit 166 may be encapsulated into a second lens material so that substantially the entire dimming unit 166 is surrounded by the second lens material. As described above, the material included in the two second material layers 132a and 132b may be substantially the same as the second lens material included in the second material layer 132. The configuration may be similar to the configuration shown in FIG2C except that the dimming effect is provided by the electrically tunable dimming unit 166.

在如图2D和图2E所示的各种实施例中,除了电可调谐调光单元166之外,调光透镜240或250还可以包括设置在合适位置处(诸如,在图2D所示的实施例中在第一材料层131的外表面处、在第一材料层131与有源的调光单元166之间,或者在图2E所示的实施例中在第一材料层131与第二材料层132a之间)的单独的非电可调谐调光材料层。在一些实施例中,图2C所示的调光材料层138还可以由电可调谐调光单元166代替。In various embodiments as shown in FIG. 2D and FIG. 2E , in addition to the electrically tunable dimming cell 166, the dimming lens 240 or 250 may further include a separate non-electrically tunable dimming material layer disposed at a suitable position (such as, at the outer surface of the first material layer 131 in the embodiment shown in FIG. 2D , between the first material layer 131 and the active dimming cell 166, or between the first material layer 131 and the second material layer 132a in the embodiment shown in FIG. 2E ). In some embodiments, the dimming material layer 138 shown in FIG. 2C may also be replaced by the electrically tunable dimming cell 166.

参考图2A至图2E,在一些实施例中,调光透镜200、210、230、240或250可以是被配置为在调光透镜的整个孔口上具有均匀的光透射率的全局调光透镜。换言之,调光透镜200、210、230、240或250可以被配置为在调光透镜的整个孔口上均匀地调光或衰减真实世界光142。在一些实施例中,调光透镜200、210、230、240或250可以是被配置为在调光透镜的孔口的不同区域(或区)处提供不同光透射率的区域调光透镜或局部调光透镜。调光透镜的各个区域或部分处的对真实世界光142的光透射率可以是单独地或独立地可控的。在一些实施例中,调光透镜的孔口的每个区域(或区)可以包括一个或多个像素化调光元件。各个像素化调光元件处的光透射率可以是单独地或独立地可控的。Referring to Figures 2A to 2E, in some embodiments, the dimming lens 200, 210, 230, 240, or 250 may be a global dimming lens configured to have a uniform light transmittance across the entire aperture of the dimming lens. In other words, the dimming lens 200, 210, 230, 240, or 250 may be configured to uniformly dim or attenuate the real-world light 142 across the entire aperture of the dimming lens. In some embodiments, the dimming lens 200, 210, 230, 240, or 250 may be a regional dimming lens or a local dimming lens configured to provide different light transmittances at different regions (or zones) of the aperture of the dimming lens. The light transmittance of the real-world light 142 at each region or portion of the dimming lens may be individually or independently controllable. In some embodiments, each region (or zone) of the aperture of the dimming lens may include one or more pixelated dimming elements. The light transmittance at each pixelated dimming element may be individually or independently controllable.

图3A示出了根据本公开的实施例的显示系统300的x-z截面图。显示系统300可以在用于AR应用、VR应用和/或MR应用的人工现实设备(诸如图1A至图1D所示的人工现实设备100)中实施。例如,显示系统300可以是图1A和图1B所示的显示系统110L或110R的实施例。如图3A所示,显示系统300可以包括光导显示组件320。光导显示组件320可以被包括在图1B所示的图像显示组件120中,或者被实施为图1B所示的图像显示组件120。显示系统300还可以包括调光透镜312。调光透镜312可以是本文公开的调光透镜的任何实施例,诸如图2A所示的调光透镜200、图2B所示的调光透镜210、图2C所示的调光透镜230、图2D所示的调光透镜240或图2E所示的调光透镜250。出于讨论的目的,图3A示出了调光透镜312具有与图2D所示的调光透镜240相同或类似的配置。FIG3A shows an x-z cross-sectional view of a display system 300 according to an embodiment of the present disclosure. The display system 300 may be implemented in an artificial reality device for AR applications, VR applications, and/or MR applications (such as the artificial reality device 100 shown in FIGS. 1A to 1D ). For example, the display system 300 may be an embodiment of the display system 110L or 110R shown in FIGS. 1A and 1B . As shown in FIG3A , the display system 300 may include a light guide display component 320. The light guide display component 320 may be included in the image display component 120 shown in FIG1B , or may be implemented as the image display component 120 shown in FIG1B . The display system 300 may also include a dimming lens 312. The dimming lens 312 may be any embodiment of a dimming lens disclosed herein, such as the dimming lens 200 shown in FIG2A , the dimming lens 210 shown in FIG2B , the dimming lens 230 shown in FIG2C , the dimming lens 240 shown in FIG2D , or the dimming lens 250 shown in FIG2E . For discussion purposes, FIG. 3A illustrates that the dimming lens 312 has the same or similar configuration as the dimming lens 240 illustrated in FIG. 2D .

调光透镜312可以设置在光导显示组件320的面向真实世界环境的外侧处。光导显示组件320可以包括光源组件305。光导310可以与耦入元件335和耦出元件345耦接。光导310可以包括第一表面310-1和第二表面310-2。光源组件305可以被配置为输出表示虚拟图像350(例如,包括虚拟对象302)的图像光330。与耦入元件335和耦出元件345耦接的光导310可以被配置为将图像光330引导到显示系统300的适眼框区域160中的一个或多个出射光瞳157。例如,耦入元件335可以将图像光330耦入到光导310中以作为耦入图像光332。耦入图像光332可以通过全内反射在光导310内从耦入元件335朝向耦出元件345传播。耦出元件345可以将入射到耦出元件345的不同部分上的耦入图像光332从光导310耦出,以作为朝向适眼框区域160传播的多个输出图像光334,从而在光导320的外部复制图像光330。因此,位于出射光瞳157处的眼睛159可以感知由光源组件305生成的虚拟图像。在一些实施例中,与耦入元件335和耦出元件345耦接的光导310还可以朝向适眼框区域160透射真实世界光142。因此,位于出射光瞳157处的眼睛159可以感知与真实世界场景光学地组合的虚拟图像。与耦入元件335和耦出元件345耦接的光导310可以用作将虚拟场景与真实世界场景光学地组合的图像组合器,例如,光导图像组合器。The dimming lens 312 may be disposed at an outer side of the light guide display assembly 320 facing the real world environment. The light guide display assembly 320 may include a light source assembly 305. The light guide 310 may be coupled with an incoupling element 335 and an outcoupling element 345. The light guide 310 may include a first surface 310-1 and a second surface 310-2. The light source assembly 305 may be configured to output image light 330 representing a virtual image 350 (e.g., including a virtual object 302). The light guide 310 coupled with the incoupling element 335 and the outcoupling element 345 may be configured to guide the image light 330 to one or more exit pupils 157 in the eyebox region 160 of the display system 300. For example, the incoupling element 335 may couple the image light 330 into the light guide 310 as incoupling image light 332. The incoupling image light 332 may propagate from the incoupling element 335 toward the outcoupling element 345 within the light guide 310 by total internal reflection. The outcoupling element 345 can couple the incoupled image light 332 incident on different portions of the outcoupling element 345 out of the light guide 310 as a plurality of output image lights 334 propagating toward the eyebox region 160, thereby replicating the image light 330 outside the light guide 320. Thus, the eye 159 located at the exit pupil 157 can perceive the virtual image generated by the light source assembly 305. In some embodiments, the light guide 310 coupled with the incoupling element 335 and the outcoupling element 345 can also transmit the real-world light 142 toward the eyebox region 160. Thus, the eye 159 located at the exit pupil 157 can perceive the virtual image optically combined with the real-world scene. The light guide 310 coupled with the incoupling element 335 and the outcoupling element 345 can be used as an image combiner that optically combines a virtual scene with a real-world scene, for example, a light guide image combiner.

在一些实施例中,调光透镜312可以被单独地形成,并且设置在(例如,固定到)光导310的面向真实世界环境的表面(例如,第一表面310-1)处。在一些实施例中,第一调光透镜312可以被一体地形成为光导310的一部分。在一些实施例中,调光透镜312的面积可以大于或等于耦出元件345的面积。调光透镜312可以设置在耦出元件345的面向真实世界环境的一侧。在一些实施例中,如图3A所示,调光透镜312可以设置在光导310的第一表面310-1处,并且耦出元件345可以设置在光导310的第二表面310-2处。在一些实施例中,耦出元件345也可以设置在第一表面310-1处并且在调光透镜312与光导310之间。应注意的是,尽管图3A示出了光导310具有平坦表面,但光导310可以具有弯曲表面,或者整个光导310可以是弯曲的(例如,具有与第二材料层132的曲率匹配的曲率)。In some embodiments, the dimming lens 312 may be formed separately and disposed at (e.g., fixed to) a surface (e.g., first surface 310-1) of the light guide 310 that faces the real world environment. In some embodiments, the first dimming lens 312 may be integrally formed as a part of the light guide 310. In some embodiments, the area of the dimming lens 312 may be greater than or equal to the area of the outcoupling element 345. The dimming lens 312 may be disposed on a side of the outcoupling element 345 that faces the real world environment. In some embodiments, as shown in FIG. 3A , the dimming lens 312 may be disposed at the first surface 310-1 of the light guide 310, and the outcoupling element 345 may be disposed at the second surface 310-2 of the light guide 310. In some embodiments, the outcoupling element 345 may also be disposed at the first surface 310-1 and between the dimming lens 312 and the light guide 310. It should be noted that although FIG. 3A shows the light guide 310 as having a flat surface, the light guide 310 may have a curved surface, or the entire light guide 310 may be curved (eg, having a curvature that matches the curvature of the second material layer 132 ).

控制器215(未示出)可以与调光透镜312和/或光导显示组件320中的各种元件通信耦接,以控制它们的运行。控制器215可以控制调光透镜312的运行状态,以动态地调节真实世界光142的透射率,从而使包括显示系统300的人工现实设备在以VR模式运行和以AR设备运行之间或在以VR设备运行和以MR设备运行之间切换。例如,当控制器215控制调光透镜312以暗状态运行时,包括显示系统300的虚拟现实设备可以被配置为以VR模式运行。当控制器215控制调光透镜312以透明状态或中间状态运行时,包括显示系统300的虚拟现实设备可以被配置为以AR模式或MR模式运行。在一些实施例中,调光透镜312可以被配置为根据真实世界环境的亮度而动态地衰减真实世界光142,从而调节透视视图的亮度。例如,当包括显示系统300的人工现实设备以AR模式或MR模式运行时,调光透镜312可以被配置为调节透视视图的亮度,以缓解用户所感知的透视视图与虚拟图像之间的亮度差异。The controller 215 (not shown) can be coupled to the dimming lens 312 and/or various elements in the light guide display assembly 320 to control their operation. The controller 215 can control the operating state of the dimming lens 312 to dynamically adjust the transmittance of the real-world light 142, so that the artificial reality device including the display system 300 switches between operating in VR mode and operating in an AR device or between operating in a VR device and operating in an MR device. For example, when the controller 215 controls the dimming lens 312 to operate in a dark state, the virtual reality device including the display system 300 can be configured to operate in VR mode. When the controller 215 controls the dimming lens 312 to operate in a transparent state or an intermediate state, the virtual reality device including the display system 300 can be configured to operate in AR mode or MR mode. In some embodiments, the dimming lens 312 can be configured to dynamically attenuate the real-world light 142 according to the brightness of the real-world environment, thereby adjusting the brightness of the perspective view. For example, when an artificial reality device including display system 300 operates in AR mode or MR mode, dimming lens 312 can be configured to adjust the brightness of the see-through view to alleviate the brightness difference between the see-through view and the virtual image perceived by the user.

在一些实施例中,调光透镜312可以是全局调光器。例如,当包括显示系统300的人工现实设备以AR模式或以MR模式运行时,显示系统300可以在调光透镜312的孔口上提供均匀的透视视图与虚拟图像的对比度。在一些实施例中,调光透镜312可以是区域调光器或局部调光器。例如,当包括显示系统300的人工现实设备以AR模式或以MR模式运行时,显示系统300可以在调光透镜312的孔口的不同区域(或部分、区)处提供不同的透视视图与虚拟图像的对比度。In some embodiments, the dimming lens 312 may be a global dimmer. For example, when the artificial reality device including the display system 300 operates in an AR mode or in an MR mode, the display system 300 may provide a uniform contrast ratio of a perspective view to a virtual image across the aperture of the dimming lens 312. In some embodiments, the dimming lens 312 may be a regional dimmer or a local dimmer. For example, when the artificial reality device including the display system 300 operates in an AR mode or in an MR mode, the display system 300 may provide different contrast ratios of a perspective view to a virtual image at different regions (or portions, zones) of the aperture of the dimming lens 312.

出于讨论的目的,图3A示出了控制器215控制调光透镜312以暗状态运行,因此,包括显示系统300的虚拟现实设备以VR模式运行。调光透镜312可以大致阻挡真实世界光142通过光导310朝向适眼框区域160透射。因此,位于出射光瞳157处的眼睛159可以仅感知虚拟对象302的图像355。For the purpose of discussion, FIG3A shows that the controller 215 controls the dimming lens 312 to operate in a dark state, and therefore, the virtual reality device including the display system 300 operates in VR mode. The dimming lens 312 can substantially block the real-world light 142 from being transmitted through the light guide 310 toward the eyebox area 160. Therefore, the eye 159 located at the exit pupil 157 can only perceive the image 355 of the virtual object 302.

出于讨论的目的,图3B示出了控制器215控制调光透镜312以透明状态或中间状态运行,因此,包括显示系统300的虚拟现实设备以AR模式或以MR模式运行。调光透镜312可以将真实世界光142朝向适眼框区域160中的一个或多个出射光瞳157透射。因此,位于出射光瞳157处的眼睛159可以感知图像375,在该图像中,虚拟场景(例如,虚拟对象302)与真实世界场景(例如,真实世界对象274的图像304)叠加。在一些实施例中,调光透镜312可以是被配置为在透射真实世界光142的同时改变真实世界光142以为用户的视力提供视力矫正的眼科镜片。For the purpose of discussion, FIG3B shows that the controller 215 controls the dimming lens 312 to operate in a transparent state or an intermediate state, so that the virtual reality device including the display system 300 operates in an AR mode or in an MR mode. The dimming lens 312 can transmit the real-world light 142 toward one or more exit pupils 157 in the eyebox area 160. Therefore, the eye 159 located at the exit pupil 157 can perceive an image 375 in which the virtual scene (e.g., the virtual object 302) is superimposed with the real-world scene (e.g., the image 304 of the real-world object 274). In some embodiments, the dimming lens 312 can be an ophthalmic lens configured to change the real-world light 142 while transmitting the real-world light 142 to provide vision correction for the user's vision.

图3A和图3B示出了光导显示组件320和调光透镜312是以叠置体配置来布置的单独部件。在一些实施例中,光导显示组件320可以嵌入在调光透镜312中。图3C示出了根据本公开的实施例的显示系统360的x-z截面图。显示系统360可以在用于AR应用、VR应用和/或MR应用的人工现实设备(诸如图1A至图1D所示的人工现实设备100)中实施。例如,显示系统360可以是图1A和图1B所示的显示系统110L或110R的实施例。显示系统360可以包括与图3A和图3B所示的显示系统300中所包括的元件、结构和/或功能相同或类似的元件、结构和/或功能。对相同或类似的元件、结构和/或功能的描述可以参考结合图3A和图3B呈现的以上描述。3A and 3B show that the light guide display assembly 320 and the dimming lens 312 are separate components arranged in a stacked configuration. In some embodiments, the light guide display assembly 320 can be embedded in the dimming lens 312. FIG. 3C shows an x-z cross-sectional view of a display system 360 according to an embodiment of the present disclosure. The display system 360 can be implemented in an artificial reality device (such as the artificial reality device 100 shown in FIGS. 1A to 1D) for AR applications, VR applications, and/or MR applications. For example, the display system 360 can be an embodiment of the display system 110L or 110R shown in FIGS. 1A and 1B. The display system 360 may include elements, structures, and/or functions that are the same or similar to the elements, structures, and/or functions included in the display system 300 shown in FIGS. 3A and 3B. The description of the same or similar elements, structures, and/or functions can refer to the above description presented in conjunction with FIGS. 3A and 3B.

如图3C所示,显示系统360可以包括光导显示组件320和调光透镜312。在如图3C所示的实施例中,光导显示组件320和调光透镜312可以不以叠置体配置来布置。代替地,光导显示组件320可以至少部分地嵌入在调光透镜312的第二材料层132中。光导显示组件320可以不嵌入在调光器件166和第一材料层131中,因此,光导310的输出图像光334可以不受调光器件166的影响。在一些实施例中,调光透镜312的第二材料层132可以在将输出图像光334朝向适眼框区域160中的一个或多个出射光瞳157透射的同时改变输出图像光334,以为用户的视力提供视力矫正。在一些实施例中,尽管未示出,但是调光透镜312可以包括掺杂到第一材料层131中的非电可调谐调光材料,并且光导显示组件320可以至少部分地嵌入在调光透镜312的第二材料层132中。如图3C所示,在一些实施例中,光导310的安装有耦出元件345的至少一部分可以嵌入在调光透镜312的第二材料层132中。在一些实施例中,光导310可以是具有与第二材料层132的曲率匹配的曲率的弯曲光导。As shown in FIG3C , the display system 360 may include a light guide display assembly 320 and a dimming lens 312. In the embodiment shown in FIG3C , the light guide display assembly 320 and the dimming lens 312 may not be arranged in a stacked configuration. Instead, the light guide display assembly 320 may be at least partially embedded in the second material layer 132 of the dimming lens 312. The light guide display assembly 320 may not be embedded in the dimming device 166 and the first material layer 131, and therefore, the output image light 334 of the light guide 310 may not be affected by the dimming device 166. In some embodiments, the second material layer 132 of the dimming lens 312 may change the output image light 334 while transmitting the output image light 334 toward one or more exit pupils 157 in the eyebox area 160 to provide vision correction for the user's vision. In some embodiments, although not shown, the dimming lens 312 may include a non-electrically tunable dimming material doped into the first material layer 131, and the light guide display component 320 may be at least partially embedded in the second material layer 132 of the dimming lens 312. As shown in FIG3C , in some embodiments, at least a portion of the light guide 310 on which the outcoupling element 345 is mounted may be embedded in the second material layer 132 of the dimming lens 312. In some embodiments, the light guide 310 may be a curved light guide having a curvature that matches the curvature of the second material layer 132.

图3D示出了根据本公开的实施例的显示系统380的x-z截面图。显示系统380可以在用于AR应用、VR应用和/或MR应用的人工现实设备(诸如图1A至图1D所示的人工现实设备100)中实施。例如,显示系统380可以是图1A和图1B所示的显示系统110L或110R的实施例。显示系统380可以包括与图3A和图3B所示的显示系统300或图3C所示的显示系统360中所包括的元件、结构和/或功能相同或类似的元件、结构和/或功能。对相同或类似的元件、结构和/或功能的描述可以参考结合图3A和图3B或图3C呈现的以上描述。FIG3D shows an x-z cross-sectional view of a display system 380 according to an embodiment of the present disclosure. The display system 380 may be implemented in an artificial reality device (such as the artificial reality device 100 shown in FIGS. 1A to 1D ) for AR applications, VR applications, and/or MR applications. For example, the display system 380 may be an embodiment of the display system 110L or 110R shown in FIGS. 1A and 1B . The display system 380 may include elements, structures, and/or functions that are the same or similar to the elements, structures, and/or functions included in the display system 300 shown in FIGS. 3A and 3B or the display system 360 shown in FIG. 3C . The description of the same or similar elements, structures, and/or functions may refer to the above description presented in conjunction with FIGS. 3A and 3B or FIG. 3C .

如图3D所示,显示系统380可以包括全息光学元件(“HOE”)显示组件390和调光透镜312。HOE显示组件390可以包括光源组件305和HOE图像组合器385。光源组件305可以被配置为朝向HOE图像组合器385输出表示虚拟图像350(例如,包括虚拟对象302)的图像光330。HOE图像组合器385可以将图像光330聚焦到适眼框区域160内的一个或多个出射光瞳157处的一个或多个点。在一些实施例中,调光透镜312可以被单独地形成,并且设置在(例如,固定到)HOE图像组合器385的面向真实世界环境的表面(例如,第一表面385-1)处。应注意的是,尽管图3D示出了HOE图像组合器385具有平坦表面,但HOE图像组合器385可以具有弯曲表面,或者整个HOE图像组合器385可以是弯曲的(例如,具有与第二材料层132的曲率匹配的曲率)。As shown in FIG3D , the display system 380 may include a holographic optical element (“HOE”) display assembly 390 and a dimming lens 312. The HOE display assembly 390 may include a light source assembly 305 and an HOE image combiner 385. The light source assembly 305 may be configured to output image light 330 representing a virtual image 350 (e.g., including a virtual object 302) toward the HOE image combiner 385. The HOE image combiner 385 may focus the image light 330 to one or more points at one or more exit pupils 157 within the eyebox region 160. In some embodiments, the dimming lens 312 may be formed separately and disposed at (e.g., fixed to) a surface (e.g., a first surface 385-1) of the HOE image combiner 385 that faces the real-world environment. It should be noted that although Figure 3D shows the HOE image combiner 385 having a flat surface, the HOE image combiner 385 may have a curved surface, or the entire HOE image combiner 385 may be curved (e.g., having a curvature that matches the curvature of the second material layer 132).

控制器215(未示出)可以与调光透镜312和/或HOE显示组件390中的各种元件通信耦接,以控制它们的运行。例如,控制器215可以控制调光透镜312的运行状态,以动态地调节真实世界光142的透射率,从而使包括显示系统380的人工现实设备在以VR模式运行和以AR设备运行之间或在以VR设备运行和以MR设备运行之间切换。当被配置用于AR应用或MR应用时,HOE图像组合器385可以组合由HOE图像组合器385聚焦的图像光338与真实世界光142,并且将这两个光朝向适眼框区域160引导。The controller 215 (not shown) can be communicatively coupled with the dimming lens 312 and/or various elements in the HOE display assembly 390 to control their operation. For example, the controller 215 can control the operating state of the dimming lens 312 to dynamically adjust the transmittance of the real-world light 142, so that the artificial reality device including the display system 380 switches between operating in VR mode and operating as an AR device or between operating in a VR device and operating in an MR device. When configured for AR applications or MR applications, the HOE image combiner 385 can combine the image light 338 focused by the HOE image combiner 385 with the real-world light 142, and direct the two lights toward the eyebox area 160.

在一些实施例中,尽管未示出,但HOE图像组合器385可以至少部分地嵌入在调光透镜312的第二材料层132中。HOE图像组合器385可以不嵌入在调光器件166和第一材料层131中,因此,HOE图像组合器385的输出图像光338可以不受调光器件166的影响。In some embodiments, although not shown, the HOE image combiner 385 may be at least partially embedded in the second material layer 132 of the dimming lens 312. The HOE image combiner 385 may not be embedded in the dimming device 166 and the first material layer 131, and therefore, the output image light 338 of the HOE image combiner 385 may not be affected by the dimming device 166.

图3A和图3B所示的显示系统300、图3C所示的显示系统360和图3D所示的显示系统380是出于说明的目的来解释所公开的调光透镜在人工现实设备中所包括的显示系统中的实施。所公开的调光透镜还可以在智能眼镜或其它合适的眼戴式设备中实施。图3A至图3C中所示的光导显示组件320是出于说明的目的,并且是图1B所示的图像显示组件120的示例。在一些实施例中,显示系统可以包括除光导显示组件320和HOE显示组件390之外的另一个合适的图像显示组件,并且该显示组件可以包括除光导图像组合器和HOE图像组合器之外的另一个合适的图像组合器。The display system 300 shown in Figures 3A and 3B, the display system 360 shown in Figure 3C, and the display system 380 shown in Figure 3D are for illustrative purposes to explain the implementation of the disclosed dimming lens in a display system included in an artificial reality device. The disclosed dimming lens can also be implemented in smart glasses or other suitable eye-mounted devices. The light guide display assembly 320 shown in Figures 3A to 3C is for illustrative purposes and is an example of the image display assembly 120 shown in Figure 1B. In some embodiments, the display system may include another suitable image display assembly in addition to the light guide display assembly 320 and the HOE display assembly 390, and the display assembly may include another suitable image combiner in addition to the light guide image combiner and the HOE image combiner.

在下文中,将解释可以在所公开的调光透镜中实施的示例性调光元件。调光元件可以经由诸如偏振、吸收和/或散射等的合适的调光机制来衰减输入光。图4A和图4B示出了根据本公开的实施例的调光元件400的x-z截面图。调光元件400可以是图2D或图2E所示的调光元件166的实施例。调光元件400可以是宾主型LC调光器件。如图4A所示,调光元件400可以包括电极层(或导电层)209-1和209-2以及设置在电极层209-1与电极层209-2之间的调光材料层207。每个电极层209-1或209-2可以设置有配向层404。调光材料层207可以设置在配向层404之间。配向层404为调光材料层207中所包括的分子提供配向。在如图4A和图4B所示的实施例中,调光材料层207可以是宾主型LC层,该宾主型LC层包括主体LC 408与掺杂到LC 408中的宾体染料410的混合物。在图4A所示的实施例中,宾体染料410可以包括是电压响应染料或电场响应染料的二向色性染料(出于讨论的目的,也称为410),并且宾主型LC层可以是电压驱动的宾主型LC层。In the following, an exemplary dimming element that can be implemented in the disclosed dimming lens will be explained. The dimming element can attenuate the input light via a suitable dimming mechanism such as polarization, absorption and/or scattering. Figures 4A and 4B show an x-z cross-sectional view of a dimming element 400 according to an embodiment of the present disclosure. The dimming element 400 can be an embodiment of the dimming element 166 shown in Figure 2D or Figure 2E. The dimming element 400 can be a guest-host LC dimming device. As shown in Figure 4A, the dimming element 400 can include electrode layers (or conductive layers) 209-1 and 209-2 and a dimming material layer 207 disposed between the electrode layer 209-1 and the electrode layer 209-2. Each electrode layer 209-1 or 209-2 can be provided with an alignment layer 404. The dimming material layer 207 can be disposed between the alignment layers 404. The alignment layer 404 provides alignment for the molecules included in the dimming material layer 207. In the embodiments shown in FIGS. 4A and 4B , the dimming material layer 207 may be a guest-host LC layer including a mixture of a host LC 408 and a guest dye 410 doped into the LC 408. In the embodiment shown in FIG. 4A , the guest dye 410 may include a dichroic dye (also referred to as 410 for discussion purposes) that is a voltage-responsive dye or an electric field-responsive dye, and the guest-host LC layer may be a voltage-driven guest-host LC layer.

二向色性染料410可以是具有各向异性吸收性的有机分子。二向色性染料410的吸收性质可以取决于二向色性染料410的吸收轴(例如,染料分子的长轴或短轴)与入射光的偏振方向之间的相对取向。例如,二向色性染料410可以相对较强地吸收具有平行于染料分子的吸收轴(例如,长轴或短轴)的偏振方向的入射光,而相对较弱地吸收具有垂直于染料分子的吸收轴(例如,长轴或短轴)的偏振方向的入射光。也就是说,与具有垂直于吸收轴的偏振方向的入射光相比,二向色性染料410可以向具有平行于染料分子的吸收轴的偏振方向的入射光提供更大的调光效果。因此,通过经由例如电场来改变染料分子的取向,可以调节入射光142的透射率。The dichroic dye 410 can be an organic molecule with anisotropic absorption. The absorption properties of the dichroic dye 410 can depend on the relative orientation between the absorption axis of the dichroic dye 410 (e.g., the major axis or minor axis of the dye molecule) and the polarization direction of the incident light. For example, the dichroic dye 410 can relatively strongly absorb the incident light with a polarization direction parallel to the absorption axis of the dye molecule (e.g., the major axis or minor axis), and relatively weakly absorb the incident light with a polarization direction perpendicular to the absorption axis of the dye molecule (e.g., the major axis or minor axis). That is, compared with the incident light with a polarization direction perpendicular to the absorption axis, the dichroic dye 410 can provide a greater dimming effect to the incident light with a polarization direction parallel to the absorption axis of the dye molecule. Therefore, by changing the orientation of the dye molecule through, for example, an electric field, the transmittance of the incident light 142 can be adjusted.

调光材料层207中的LC 408可以具有正的或负的介电各向异性。出于说明的目的,图4A和图4B示出了LC 408具有正的介电各向异性(Δε>0)。在电压断开状态下,二向色性染料410的染料分子可以与LC分子408一起配向在x轴方向上。如图4A和图4B所示,当LC 408的指向矢随着所施加的电压V从平面取向改变为垂直取向时,染料分子的长分子轴也可以随着LC 408改变取向。换言之,染料分子可以从V=0下的平面取向(强吸收状态)变为V≠0下的垂直取向(弱吸收状态)。因此,调光元件400可以从V=0下以暗状态运行切换到V≠0下以透明状态运行。在一些实施例中,LC 408可以具有负的介电各向异性(Δε<0),并且调光元件400的不透明状态和透明状态可以颠倒,例如,调光元件400可以在V=0下以透明状态运行,并且在V≠0下以暗状态运行。在一些实施例中,调光元件400可以不包括偏振器。在一些实施例中,调光元件400可以包括偏振器(未示出),例如,设置在上方的电极层209-1处的线栅偏振器,并且上方的电极层209-1可以设置在偏振器与上方的配向层404之间。LC 408 in dimming material layer 207 may have positive or negative dielectric anisotropy. For illustrative purposes, FIGS. 4A and 4B show that LC 408 has positive dielectric anisotropy (Δε>0). In the voltage-off state, the dye molecules of dichroic dye 410 may be aligned in the x-axis direction together with LC molecules 408. As shown in FIGS. 4A and 4B, when the director of LC 408 changes from a planar orientation to a vertical orientation with the applied voltage V, the long molecular axis of the dye molecules may also change orientation with LC 408. In other words, the dye molecules may change from a planar orientation (strong absorption state) at V=0 to a vertical orientation (weak absorption state) at V≠0. Therefore, dimming element 400 may switch from operating in a dark state at V=0 to operating in a transparent state at V≠0. In some embodiments, the LC 408 may have a negative dielectric anisotropy (Δε<0), and the opaque state and the transparent state of the dimming element 400 may be reversed, for example, the dimming element 400 may operate in a transparent state at V=0, and operate in a dark state at V≠0. In some embodiments, the dimming element 400 may not include a polarizer. In some embodiments, the dimming element 400 may include a polarizer (not shown), for example, a wire grid polarizer disposed at the upper electrode layer 209-1, and the upper electrode layer 209-1 may be disposed between the polarizer and the upper alignment layer 404.

图4C示出了根据本公开的实施例的调光元件450的x-z截面图。调光元件450可以包括与图4A和图4B所示的调光元件400中所包括的元件、结构和/或功能相同或类似的元件、结构和/或功能。对相同或类似的元件、结构和/或功能的描述可以参考结合图4A和图4B呈现的以上描述。调光元件450可以是图2D或图2E所示的调光元件166的实施例。调光元件450可以是包括调光材料层207的宾主型LC调光器件,该调光材料层包括主体LC 408和掺杂到LC 408中的宾体染料。在一些实施例中,宾体染料可以包括电压响应染料或电场响应染料(例如,二向色性染料410)以及光响应染料460。在一些实施例中,光响应染料460可以包括光致变色染料、光致二向色性染料或它们的组合。如图4C所示,调光元件450可以包括设置在调光材料层207的相反侧的电极层(或导电层)209-1和209-2以及设置在调光材料层207的相反表面处的配向层404。配向层404与调光材料层207直接接触。FIG. 4C shows an x-z cross-sectional view of a dimming element 450 according to an embodiment of the present disclosure. The dimming element 450 may include elements, structures, and/or functions that are the same or similar to those included in the dimming element 400 shown in FIGS. 4A and 4B. The description of the same or similar elements, structures, and/or functions may refer to the above description presented in conjunction with FIGS. 4A and 4B. The dimming element 450 may be an embodiment of the dimming element 166 shown in FIG. 2D or 2E. The dimming element 450 may be a guest-host LC dimming device including a dimming material layer 207, which includes a host LC 408 and a guest dye doped into the LC 408. In some embodiments, the guest dye may include a voltage-responsive dye or an electric field-responsive dye (e.g., a dichroic dye 410) and a photoresponsive dye 460. In some embodiments, the photoresponsive dye 460 may include a photochromic dye, a photodichroic dye, or a combination thereof. 4C , the dimming element 450 may include electrode layers (or conductive layers) 209-1 and 209-2 disposed on opposite sides of the dimming material layer 207 and an alignment layer 404 disposed at opposite surfaces of the dimming material layer 207. The alignment layer 404 is in direct contact with the dimming material layer 207.

在一些实施例中,光响应染料460可以在具有不同光吸收效果的至少两个稳定状态(或稳态)之间经历可逆光异构化。在可逆光异构化过程期间,当光响应染料460受到激活能量(例如,激活光照射)时,光响应染料460的一个或多个物理性质(诸如吸收光谱、荧光发射、共轭(conjugation)、电子传导性、偶极相互作用和几何形状)可以改变。在一些实施例中,光响应染料460的颜色可以根据存在或不存在具有足够高频率的激活光(诸如紫外光(“UV”)、蓝光和/或紫光)而可逆地改变。例如,当暴露于UV光(或当UV光的强度大于预定强度时)时,光响应染料460可以从透明稳态(或称为“透明状态”)改变为暗稳态(或称为“暗状态”),并且可以在不存在UV光的情况下(或当紫外光的强度低于预定强度时)恢复到透明稳态。暗稳态还可以被称为有色稳态,这是因为光响应染料460在暗稳态下可以呈现灰色或深色色调。透明稳态还可以被称为无色稳态,这是因为光响应染料460在透明稳态下可以是视觉上透明的。In some embodiments, the photoresponsive dye 460 can undergo reversible photoisomerization between at least two stable states (or stable states) with different light absorption effects. During the reversible photoisomerization process, when the photoresponsive dye 460 is subjected to activation energy (e.g., irradiation with activation light), one or more physical properties of the photoresponsive dye 460 (such as absorption spectrum, fluorescence emission, conjugation, electronic conductivity, dipole interaction, and geometry) can change. In some embodiments, the color of the photoresponsive dye 460 can be reversibly changed according to the presence or absence of activation light with a sufficiently high frequency (such as ultraviolet light ("UV"), blue light, and/or violet light). For example, when exposed to UV light (or when the intensity of UV light is greater than a predetermined intensity), the photoresponsive dye 460 can change from a transparent stable state (or referred to as a "transparent state") to a dark stable state (or referred to as a "dark state"), and can be restored to a transparent stable state in the absence of UV light (or when the intensity of UV light is less than a predetermined intensity). The dark stable state may also be referred to as a colored stable state because the photoresponsive dye 460 may appear gray or dark hues in the dark stable state. The transparent stable state may also be referred to as a colorless stable state because the photoresponsive dye 460 may be visually transparent in the transparent stable state.

在一些实施例中,可以通过将光响应染料460暴露于其它类型的激活能量(诸如热辐射或电磁辐射)来加快恢复到透明稳态的过程。例如,在一些实施例中,光响应染料460在低温环境中可能花费更长的时间来返回到透明稳态,并且在高温环境中可能不会实现大致暗稳态,这是因为光诱导(例如,UV诱导)的到暗稳态的转变可以通过热诱导的到透明稳态的快速恢复来抵消。这种光响应染料460可以被称为热可逆光响应染料,该热可逆光响应染料可以以取决于温度(例如,环境温度)的速率回到透明稳态。在一些实施例中,光响应染料460可以吸收不同波长的光以驱动到暗稳态和透明稳态的转变,其中,环境温度可以对转变速度和稳态(例如,暗和清晰稳态)性质具有忽略不计的影响或没有影响。这种光响应染料460可以被称为热稳定光响应染料。在一些实施例中,一个或多个红外(“IR”)、可见光和/或UV光源可以被布置成与光响应染料460相邻,并且根据需要而被启用,以照射光响应染料460。例如,在一些实施例中,热稳定光响应染料460可以吸收具有预定波长的激活光以从透明稳态改变到暗稳态,并且吸收具有与该激活光的预定波长不同的波长的光以回到透明稳态。In some embodiments, the process of returning to the transparent steady state can be accelerated by exposing the photoresponsive dye 460 to other types of activation energy (such as thermal radiation or electromagnetic radiation). For example, in some embodiments, the photoresponsive dye 460 may take longer to return to the transparent steady state in a low temperature environment, and may not achieve a substantially dark steady state in a high temperature environment, because the light-induced (e.g., UV-induced) transition to the dark steady state can be offset by the rapid recovery to the transparent steady state induced by heat. Such a photoresponsive dye 460 may be referred to as a thermally reversible photoresponsive dye, which can return to the transparent steady state at a rate that depends on temperature (e.g., ambient temperature). In some embodiments, the photoresponsive dye 460 can absorb light of different wavelengths to drive the transition to the dark steady state and the transparent steady state, wherein the ambient temperature may have a negligible effect or no effect on the transition speed and the steady state (e.g., dark and clear steady state) properties. Such a photoresponsive dye 460 may be referred to as a thermally stable photoresponsive dye. In some embodiments, one or more infrared ("IR"), visible light, and/or UV light sources can be arranged adjacent to the photoresponsive dye 460 and enabled as needed to illuminate the photoresponsive dye 460. For example, in some embodiments, the thermally stable photoresponsive dye 460 can absorb activation light having a predetermined wavelength to change from a transparent stable state to a dark stable state, and absorb light having a wavelength different from the predetermined wavelength of the activation light to return to the transparent stable state.

图5A和图5B示出了根据本公开的实施例的调光元件500的x-z截面图。调光元件500可以是图2D或图2E所示的调光元件166的实施例。调光元件500可以是电致变色调光器件。如图5A所示,调光元件500可以包括电极层209-1和209-2(统称为209)以及设置在电极层209-1与电极层209-2之间的调光材料层207。5A and 5B show x-z cross-sectional views of a dimming element 500 according to an embodiment of the present disclosure. The dimming element 500 may be an embodiment of the dimming element 166 shown in FIG. 2D or FIG. 2E. The dimming element 500 may be an electro-variable dimming device. As shown in FIG. 5A, the dimming element 500 may include electrode layers 209-1 and 209-2 (collectively referred to as 209) and a dimming material layer 207 disposed between the electrode layer 209-1 and the electrode layer 209-2.

在图5A所示的实施例中,调光材料层207可以包括至少一个电致变色层,该至少一个电致变色层被配置为具有响应于所施加的电场或电流的变化而变化的光透射率,以产生视觉效果。出于讨论的目的,如图5A所示,调光材料层207可以包括以叠置体配置来布置的离子存储层505、含离子材料层507(例如,离子传导层或电解质层)和电致变色层509。含离子材料层507可以设置在离子存储层505与电致变色层509之间。电致变色层509可以包括电致变色材料,诸如有机小分子的电致变色材料、包括导电聚合物的电致变色材料、或包括过渡金属氧化物的电致变色材料等。电致变色材料可以响应于所施加的电势(例如,所施加的电压)而在电化学氧化和还原之后可逆地改变该电致变色材料的光学性质。例如,电致变色层509的光透射率可以在电致变色材料的氧化或还原时发生改变。In the embodiment shown in FIG. 5A , the dimming material layer 207 may include at least one electrochromic layer configured to have a light transmittance that changes in response to a change in an applied electric field or current to produce a visual effect. For discussion purposes, as shown in FIG. 5A , the dimming material layer 207 may include an ion storage layer 505, an ion-containing material layer 507 (e.g., an ion-conducting layer or an electrolyte layer), and an electrochromic layer 509 arranged in a stacked configuration. The ion-containing material layer 507 may be disposed between the ion storage layer 505 and the electrochromic layer 509. The electrochromic layer 509 may include an electrochromic material, such as an electrochromic material of an organic small molecule, an electrochromic material including a conductive polymer, or an electrochromic material including a transition metal oxide, etc. The electrochromic material may reversibly change the optical properties of the electrochromic material after electrochemical oxidation and reduction in response to an applied potential (e.g., an applied voltage). For example, the light transmittance of the electrochromic layer 509 may change upon oxidation or reduction of the electrochromic material.

离子存储层505可以用作电荷存储膜,该电荷存储膜吸引并存储与激活或去激活电致变色层509的离子相反的带电荷的对应物。在一些实施例中,离子存储层505可以被配置为在用于电致变色层509中所包含的电致变色材料的颜色切换的可逆的氧化/还原反应时将电荷平衡与电致变色层相匹配。例如,在一些实施例中,离子存储层505可以包括具有与电致变色层509中所包括的电致变色材料不同的颜色切换反应特性的电致变色材料。例如,当电致变色层509包括还原性电致变色材料时,离子存储层505可以包括氧化性电致变色材料。在一些实施例中,含离子材料层507可以用作用于在离子存储层505与电致变色层509之间传输离子的介质。在一些实施例中,含离子材料层507可以有效地阻挡电子流,同时允许离子(通常是质子(H+)或锂离子(Li+))穿过。The ion storage layer 505 may be used as a charge storage film that attracts and stores a charged counterpart opposite to the ions that activate or deactivate the electrochromic layer 509. In some embodiments, the ion storage layer 505 may be configured to match the charge balance with the electrochromic layer during a reversible oxidation/reduction reaction for color switching of the electrochromic material included in the electrochromic layer 509. For example, in some embodiments, the ion storage layer 505 may include an electrochromic material having a different color switching reaction characteristic from the electrochromic material included in the electrochromic layer 509. For example, when the electrochromic layer 509 includes a reductive electrochromic material, the ion storage layer 505 may include an oxidative electrochromic material. In some embodiments, the ion-containing material layer 507 may be used as a medium for transmitting ions between the ion storage layer 505 and the electrochromic layer 509. In some embodiments, the ion-containing material layer 507 may effectively block the flow of electrons while allowing ions (typically protons (H + ) or lithium ions (Li + )) to pass through.

在调光元件500的运行期间,在一些实施例中,如图5A所示,可以将正电压施加到电极层209-1,并且可以将负电压(或零电压)施加到电极层209-2。调光材料层207中所生成的外部电场的方向可以沿着图5A中的-z轴方向。所生成的电场可以使得诸如锂离子、钠离子或氢离子的电荷补偿离子经由含离子材料层507从离子存储层505进入电致变色层509。同时,电子可以沿着外部电路传输,并且被注入电致变色层509。所注入的电子可以产生电致变色层509中所包括的电致变色材料的电化学还原,从而产生调光器件500的无色(例如,透明)状态。During operation of the dimming element 500, in some embodiments, as shown in FIG5A, a positive voltage may be applied to the electrode layer 209-1, and a negative voltage (or zero voltage) may be applied to the electrode layer 209-2. The direction of the external electric field generated in the dimming material layer 207 may be along the -z axis direction in FIG5A. The generated electric field may cause charge compensation ions such as lithium ions, sodium ions, or hydrogen ions to enter the electrochromic layer 509 from the ion storage layer 505 via the ion-containing material layer 507. At the same time, electrons may be transmitted along an external circuit and injected into the electrochromic layer 509. The injected electrons may produce an electrochemical reduction of the electrochromic material included in the electrochromic layer 509, thereby producing a colorless (e.g., transparent) state of the dimming device 500.

在一些实施例中,如图5B所示,可以将负电压(或零电压)施加到电极层209-1,并且可以将正电压施加到电极层209-2。调光材料层207中所生成的外部电场的方向可以沿着图5B中的+z轴方向。所生成的电场可以使电荷补偿离子从电致变色电极层509流出,并且经由含离子材料层507流回离子存储层505。同时,极性反转可以使电子从电致变色电极层509流出,沿着外部电路流动,并且流入离子存储层505。电子的提取可以产生电致变色层509中所包括的电致变色材料的电化学氧化,从而产生调光元件500的有色(例如,暗)状态。参考图5A和图5B,通过反转施加到调光元件500的电压的极性,调光设备元件可以能够在无色状态和有色状态之间切换。In some embodiments, as shown in FIG. 5B , a negative voltage (or zero voltage) may be applied to the electrode layer 209-1, and a positive voltage may be applied to the electrode layer 209-2. The direction of the external electric field generated in the dimming material layer 207 may be along the +z axis direction in FIG. 5B . The generated electric field may cause the charge compensation ions to flow out of the electrochromic electrode layer 509 and flow back to the ion storage layer 505 via the ion-containing material layer 507. At the same time, polarity reversal may cause electrons to flow out of the electrochromic electrode layer 509, flow along an external circuit, and flow into the ion storage layer 505. The extraction of electrons may produce electrochemical oxidation of the electrochromic material included in the electrochromic layer 509, thereby producing a colored (e.g., dark) state of the dimming element 500. Referring to FIGS. 5A and 5B , by reversing the polarity of the voltage applied to the dimming element 500, the dimming device element may be able to switch between a colorless state and a colored state.

图5C示出了根据本公开的实施例的调光元件550的x-z截面图。调光元件550可以是图2D或图2E所示的调光元件166的实施例。调光元件550可以是电致变色调光元件或悬浮颗粒调光元件。调光元件550可以包括与图5A和图5B所示的调光元件500中所包括的元件、结构和/或功能相同或类似的元件、结构和/或功能。对相同或类似的元件、结构和/或功能的描述可以参考结合图5A和图5B呈现的以上描述。FIG. 5C shows an x-z cross-sectional view of a dimming element 550 according to an embodiment of the present disclosure. The dimming element 550 may be an embodiment of the dimming element 166 shown in FIG. 2D or FIG. 2E. The dimming element 550 may be an electrochromic dimming element or a suspended particle dimming element. The dimming element 550 may include elements, structures, and/or functions that are the same or similar to the elements, structures, and/or functions included in the dimming element 500 shown in FIG. 5A and FIG. 5B. The description of the same or similar elements, structures, and/or functions may refer to the above description presented in conjunction with FIG. 5A and FIG. 5B.

在如图5C所示的实施例中,调光材料层207可以被配置为还包括光响应染料460,诸如光致变色染料、光致二向色性染料或它们的组合。光响应染料460可以被掺杂到离子存储层505、含离子材料层507或电致变色层509中的至少一者中。出于讨论的目的,图5C示出了光响应染料460被掺杂到含离子材料层507中。在一些实施例中,可以将光响应染料460掺杂到电致变色层509中。在一些实施例中,可以将光响应染料460掺杂到离子存储层505中。In the embodiment shown in FIG. 5C , the dimming material layer 207 can be configured to further include a photoresponsive dye 460, such as a photochromic dye, a photodichroic dye, or a combination thereof. The photoresponsive dye 460 can be doped into at least one of the ion storage layer 505, the ion-containing material layer 507, or the electrochromic layer 509. For the purpose of discussion, FIG. 5C shows that the photoresponsive dye 460 is doped into the ion-containing material layer 507. In some embodiments, the photoresponsive dye 460 can be doped into the electrochromic layer 509. In some embodiments, the photoresponsive dye 460 can be doped into the ion storage layer 505.

图6A和图6B示出了根据本公开的实施例的调光元件600的x-z截面图。调光元件600可以是图2D或图2E所示的调光元件166的实施例。调光元件600可以是电泳调光元件。如图6A所示,调光元件600可以包括电极层209-1和209-2以及设置在两个电极层209-1和209-2之间的调光材料层207。在如图6A所示的实施例中,调光材料层207可以包括悬浮在液体悬浮液或聚合物膜610中的微小的颗粒608。颗粒608可以是针状、棒状或板条状等。6A and 6B show x-z cross-sectional views of a dimming element 600 according to an embodiment of the present disclosure. The dimming element 600 may be an embodiment of the dimming element 166 shown in FIG. 2D or FIG. 2E. The dimming element 600 may be an electrophoretic dimming element. As shown in FIG. 6A, the dimming element 600 may include electrode layers 209-1 and 209-2 and a dimming material layer 207 disposed between the two electrode layers 209-1 and 209-2. In the embodiment shown in FIG. 6A, the dimming material layer 207 may include tiny particles 608 suspended in a liquid suspension or a polymer film 610. The particles 608 may be needle-shaped, rod-shaped, or lath-shaped, etc.

在电压断开状态下,如图6A所示,悬浮在液体悬浮液或膜610中的颗粒608可以由于布朗运动而随机分布或失序,并且入射到调光材料层207上的光142可以被吸收和/或散射。因此,入射到调光材料层207上的光142可以不透射通过,并且调光元件600可以以暗状态运行。在电压开启状态下,如图6B所示,当所施加的电压足够高时,颗粒608可以在电场方向上(例如,图6B中的z轴方向)均匀地取向,以允许入射光142大致透射通过。因此,调光元件600可以以透明状态运行。在去除电压之后,颗粒608可以移动回到随机图案并且大致阻挡入射光142。因此,通过改变所施加的电压,调光元件600的光透射率可以是可调谐的。In the voltage-off state, as shown in FIG6A , the particles 608 suspended in the liquid suspension or film 610 may be randomly distributed or disordered due to Brownian motion, and the light 142 incident on the dimming material layer 207 may be absorbed and/or scattered. Therefore, the light 142 incident on the dimming material layer 207 may not be transmitted through, and the dimming element 600 may operate in a dark state. In the voltage-on state, as shown in FIG6B , when the applied voltage is high enough, the particles 608 may be uniformly oriented in the direction of the electric field (e.g., the z-axis direction in FIG6B ) to allow the incident light 142 to be substantially transmitted through. Therefore, the dimming element 600 may operate in a transparent state. After the voltage is removed, the particles 608 may move back to the random pattern and substantially block the incident light 142. Therefore, by changing the applied voltage, the light transmittance of the dimming element 600 may be tunable.

图6C示出了根据本公开的实施例的调光元件650的x-z截面图。调光元件650可以是图2D或图2E所示的调光元件166的实施例。调光元件650可以是电致变色调光元件或悬浮颗粒调光元件。调光元件650可以包括与图6A和图6B所示的调光元件600中所包括的元件、结构和/或功能相同或类似的元件、结构和/或功能。对相同或类似的元件、结构和/或功能的描述可以参考结合图6A和图6B呈现的以上描述。在如图6C所示的实施例中,调光材料层207可以被配置为还包括光响应染料460,诸如光致变色染料、光致二向色性染料或它们的组合。可以将光响应染料460掺杂到液体悬浮液或聚合物膜610中,这可以进一步增强调光元件650的调光效果。FIG6C shows an x-z cross-sectional view of a dimming element 650 according to an embodiment of the present disclosure. The dimming element 650 may be an embodiment of the dimming element 166 shown in FIG2D or FIG2E. The dimming element 650 may be an electrochromic dimming element or a suspended particle dimming element. The dimming element 650 may include elements, structures and/or functions that are the same or similar to the elements, structures and/or functions included in the dimming element 600 shown in FIG6A and FIG6B. The description of the same or similar elements, structures and/or functions may refer to the above description presented in conjunction with FIG6A and FIG6B. In an embodiment as shown in FIG6C, the dimming material layer 207 may be configured to also include a photoresponsive dye 460, such as a photochromic dye, a photodichroic dye, or a combination thereof. The photoresponsive dye 460 may be doped into a liquid suspension or a polymer film 610, which may further enhance the dimming effect of the dimming element 650.

图7A是示出根据本公开的实施例的制造调光透镜的方法700的流程图。方法700可以包括提供第一材料层(步骤701)。第一材料层可以设置在衬底上。方法700还可以包括将调光元件设置在第一材料层处(步骤702)。调光元件可以设置在第一材料层的当用户使用所制造的调光透镜时面向用户眼睛的内表面(例如,凹表面)处。方法700还可以包括将第二材料层设置在调光元件处(步骤703)。第二材料层可以设置在调光元件的当用户使用所制造的调光透镜时面向用户眼睛的内表面处。如上所述,第一材料层可以包括具有低密度和低双折射率的第一透镜材料。如上所述,第二材料层可以包括具有高抗冲击性的第二透镜材料。第一透镜材料的密度可以低于第二透镜材料的密度。第一透镜材料的双折射率可以低于第二透镜材料的双折射率。第二透镜材料的抗冲击性(或冲击强度)可以高于(或强于)第一透镜材料的抗冲击性(或冲击强度)。在一些实施例中,在提供第一材料层之后,方法700可以包括将调光元件设置在第二材料层处,并且将调光元件和第二材料层的叠置体设置在第一材料层处。例如,调光元件和第二材料层的叠置体可以设置在第一材料层的当用户使用所制造的调光透镜时面向用户眼睛的内表面(例如,凹表面)处。FIG. 7A is a flow chart showing a method 700 for manufacturing a dimming lens according to an embodiment of the present disclosure. The method 700 may include providing a first material layer (step 701). The first material layer may be disposed on a substrate. The method 700 may also include disposing a dimming element at the first material layer (step 702). The dimming element may be disposed at an inner surface (e.g., a concave surface) of the first material layer that faces the user's eyes when the user uses the manufactured dimming lens. The method 700 may also include disposing a second material layer at the dimming element (step 703). The second material layer may be disposed at an inner surface of the dimming element that faces the user's eyes when the user uses the manufactured dimming lens. As described above, the first material layer may include a first lens material having a low density and a low birefringence. As described above, the second material layer may include a second lens material having high impact resistance. The density of the first lens material may be lower than the density of the second lens material. The birefringence of the first lens material may be lower than the birefringence of the second lens material. The impact resistance (or impact strength) of the second lens material may be higher (or stronger) than the impact resistance (or impact strength) of the first lens material. In some embodiments, after providing the first material layer, method 700 may include disposing a dimming element at the second material layer, and disposing a stack of the dimming element and the second material layer at the first material layer. For example, the stack of the dimming element and the second material layer may be disposed at an inner surface (e.g., a concave surface) of the first material layer that faces the user's eyes when the user uses the manufactured dimming lens.

图7B是示出根据本公开的实施例的制造调光透镜的方法750的另一个流程图。方法750可以包括例如经由注射模制来提供第一材料层(步骤751)。方法750还可以包括将调光元件设置到第二材料层中(步骤752)。例如,步骤752可以包括经由合适的工序将调光元件封装到第二材料层中。方法750还可以包括将包括调光元件的第二材料层例如经由通过光学透明的粘合剂的结合而设置在第一材料层处(步骤753)。第二材料层可以设置在第一材料层的当用户使用所制造的调光透镜时面向用户眼睛的内表面处。如上所述,第一材料层可以包括具有低密度和低双折射率的第一透镜材料。如上所述,第二材料层可以包括具有高抗冲击性的第二透镜材料。第一透镜材料的密度可以低于第二透镜材料的密度。第一透镜材料的双折射率可以低于第二透镜材料的双折射率。第二透镜材料的抗冲击性(或冲击强度)可以高于(或强于)第一透镜材料的抗冲击性(或冲击强度)。FIG7B is another flow chart showing a method 750 for manufacturing a dimming lens according to an embodiment of the present disclosure. The method 750 may include providing a first material layer, for example, via injection molding (step 751). The method 750 may also include setting a dimming element into a second material layer (step 752). For example, step 752 may include encapsulating the dimming element into the second material layer via a suitable process. The method 750 may also include setting a second material layer including a dimming element at the first material layer, for example, via bonding through an optically transparent adhesive (step 753). The second material layer may be set at the inner surface of the first material layer facing the user's eyes when the user uses the manufactured dimming lens. As described above, the first material layer may include a first lens material having a low density and a low birefringence. As described above, the second material layer may include a second lens material having high impact resistance. The density of the first lens material may be lower than the density of the second lens material. The birefringence of the first lens material may be lower than the birefringence of the second lens material. The impact resistance (or impact strength) of the second lens material may be higher (or stronger) than the impact resistance (or impact strength) of the first lens material.

在一些实施例中,本公开提供了一种透镜。该透镜包括第一材料层,该第一材料层包括第一透镜材料,该第一透镜材料具有第一双折射率、第一密度和第一抗冲击性。该透镜还包括第二材料层,该第二材料层与该第一材料层耦接,并且该第二材料层包括第二透镜材料,该第二透镜材料具有第二双折射率、第二密度和第二抗冲击性。该第一双折射率低于该第二双折射率,该第一密度低于该第二密度,并且该第二抗冲击性强于该第一抗冲击性。In some embodiments, the present disclosure provides a lens. The lens includes a first material layer, the first material layer includes a first lens material, the first lens material has a first birefringence, a first density and a first impact resistance. The lens also includes a second material layer, the second material layer is coupled to the first material layer, and the second material layer includes a second lens material, the second lens material has a second birefringence, a second density and a second impact resistance. The first birefringence is lower than the second birefringence, the first density is lower than the second density, and the second impact resistance is stronger than the first impact resistance.

在一些实施例中,该透镜具有面向用户眼睛的内侧和面向真实世界环境的外侧,该第一材料层位于该透镜的该外侧处,并且该第二材料层位于该透镜的该内侧处。In some embodiments, the lens has an inner side facing the user's eye and an outer side facing the real-world environment, the first material layer is located at the outer side of the lens, and the second material layer is located at the inner side of the lens.

在一些实施例中,该第一材料层被配置为具有用于提供视力矫正的非零光焦度,并且该第二材料层被配置为具有零光焦度或小于预定值的光焦度。In some embodiments, the first material layer is configured to have a non-zero optical power for providing vision correction, and the second material layer is configured to have zero optical power or an optical power less than a predetermined value.

在一些实施例中,该第一透镜材料包括环烯烃共聚物或环烯烃聚合物中的至少一种。该第二透镜材料包括聚碳酸酯(“PC”)、聚甲基丙烯酸甲酯(“PMMA”)、聚乙烯(“PE”)或聚丙烯(“PP”)或聚氨酯中的至少一种。In some embodiments, the first lens material includes at least one of cycloolefin copolymer or cycloolefin polymer. The second lens material includes at least one of polycarbonate ("PC"), polymethyl methacrylate ("PMMA"), polyethylene ("PE"), polypropylene ("PP"), or polyurethane.

在一些实施例中,该第一材料层具有凹表面,并且该第二材料层层压到该第一材料层的该凹表面。在一些实施例中,该透镜还包括调光元件,该调光元件设置在该第一材料层与该第二材料层之间。在一些实施例中,该调光元件包括非电可调谐调光材料。在一些实施例中,该非电可调谐调光材料包括光致变色材料、光致二向色性材料或热致变色材料中的至少一种。在一些实施例中,该调光元件包括设置在该第一材料层处的第一电极层和设置在该第二材料层处的第二电极层、以及设置在该第一电极层与该第二电极层之间的调光材料。在一些实施例中,该第一电极层和该第二电极层中的每一者包括氧化铟锡、掺铝氧化锌、石墨烯、聚(3,4-乙烯二氧噻吩):聚(苯乙烯磺酸盐)、碳纳米管或银纳米线中的至少一种。In some embodiments, the first material layer has a concave surface, and the second material layer is laminated to the concave surface of the first material layer. In some embodiments, the lens further comprises a dimming element disposed between the first material layer and the second material layer. In some embodiments, the dimming element comprises a non-electrically tunable dimming material. In some embodiments, the non-electrically tunable dimming material comprises at least one of a photochromic material, a photodichroic material, or a thermochromic material. In some embodiments, the dimming element comprises a first electrode layer disposed at the first material layer and a second electrode layer disposed at the second material layer, and a dimming material disposed between the first electrode layer and the second electrode layer. In some embodiments, each of the first electrode layer and the second electrode layer comprises at least one of indium tin oxide, aluminum-doped zinc oxide, graphene, poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate), carbon nanotubes, or silver nanowires.

在一些实施例中,该调光材料包括电可调谐调光材料。该电可调谐调光材料包括宾主型液晶(“LC”)材料、聚合物稳定的胆甾型LC材料、悬浮颗粒、电致变色材料或电泳材料中的至少一种。在一些实施例中,该调光材料还包括非电可调谐调光材料。在一些实施例中,该第二材料层包括一组的两个第二材料层,并且该透镜还包括设置在该两个第二材料层之间的调光元件。In some embodiments, the dimming material includes an electrically tunable dimming material. The electrically tunable dimming material includes at least one of a guest-host liquid crystal ("LC") material, a polymer-stabilized cholesteric LC material, suspended particles, an electrochromic material, or an electrophoretic material. In some embodiments, the dimming material also includes a non-electrically tunable dimming material. In some embodiments, the second material layer includes a set of two second material layers, and the lens also includes a dimming element disposed between the two second material layers.

在一些实施例中,该透镜还包括掺杂到该第一材料层或该第二材料层中的至少一者中的调光材料。在一些实施例中,该调光材料包括非电可调谐调光材料。In some embodiments, the lens further comprises a dimming material doped into at least one of the first material layer or the second material layer. In some embodiments, the dimming material comprises a non-electrically tunable dimming material.

在一些实施例中,本公开提供了一种系统。该系统包括光源,该光源被配置为输出图像光。该系统还包括图像组合器,该图像组合器被配置为将从该光源接收的该图像光引导到该系统的适眼框区域,该图像组合器具有面向该适眼框区域的第一侧和面向真实世界环境的第二侧。该系统还包括透镜,该透镜设置在该图像组合器的该第二侧处。该透镜包括第一材料层,该第一材料层包括第一透镜材料,该第一透镜材料具有第一双折射率、第一密度和第一抗冲击性。该透镜还包括第二材料层,该第二材料层与该第一材料层耦接,并且该第二材料层包括第二透镜材料,该第二透镜材料具有第二双折射率、第二密度和第二抗冲击性。该第一双折射率低于该第二双折射率,该第一密度低于该第二密度,并且该第二抗冲击性强于该第一抗冲击性。In some embodiments, the present disclosure provides a system. The system includes a light source configured to output image light. The system also includes an image combiner configured to guide the image light received from the light source to an eyebox area of the system, the image combiner having a first side facing the eyebox area and a second side facing the real world environment. The system also includes a lens disposed at the second side of the image combiner. The lens includes a first material layer, the first material layer including a first lens material, the first lens material having a first birefringence, a first density, and a first impact resistance. The lens also includes a second material layer, the second material layer is coupled to the first material layer, and the second material layer includes a second lens material, the second lens material having a second birefringence, a second density, and a second impact resistance. The first birefringence is lower than the second birefringence, the first density is lower than the second density, and the second impact resistance is stronger than the first impact resistance.

在一些实施例中,本公开提供了一种系统。该系统包括光源,该光源被配置为输出图像光。该系统还包括图像组合器,该图像组合器被配置为将从该光源接收的该图像光引导到该系统的适眼框区域,该图像组合器包括面向该适眼框区域的第一侧和面向真实世界环境的第二侧。该系统还包括透镜,该透镜设置在该图像组合器的该第二侧处。该透镜包括第一材料层,该第一材料层包括第一透镜材料,该第一透镜材料具有第一双折射率、第一密度和第一抗冲击性。该透镜还包括第二材料层,该第二材料层与该第一材料层耦接,并且该第二材料层包括第二透镜材料,该第二透镜材料具有第二双折射率、第二密度和第二抗冲击性。该第一双折射率低于该第二双折射率,该第一密度低于该第二密度,并且该第二抗冲击性强于该第一抗冲击性。该图像组合器至少部分嵌入到该透镜的该第二材料层中。In some embodiments, the present disclosure provides a system. The system includes a light source configured to output image light. The system also includes an image combiner configured to guide the image light received from the light source to an eyebox area of the system, the image combiner including a first side facing the eyebox area and a second side facing the real world environment. The system also includes a lens disposed at the second side of the image combiner. The lens includes a first material layer, the first material layer including a first lens material, the first lens material having a first birefringence, a first density, and a first impact resistance. The lens also includes a second material layer, the second material layer coupled to the first material layer, and the second material layer including a second lens material, the second lens material having a second birefringence, a second density, and a second impact resistance. The first birefringence is lower than the second birefringence, the first density is lower than the second density, and the second impact resistance is stronger than the first impact resistance. The image combiner is at least partially embedded in the second material layer of the lens.

在一些实施例中,本公开提供了一种方法。该方法包括提供第一材料层,该第一材料层包括第一透镜材料,该第一透镜材料具有第一双折射率、第一密度和第一抗冲击性。该方法还包括将调光元件设置在该第一材料层处。该方法还包括将第二材料层设置在该调光元件处。该第二材料层包括第二透镜材料,该第二透镜材料具有第二双折射率、第二密度和第二抗冲击性。该第一双折射率低于该第二双折射率,该第一密度低于该第二密度,并且该第二抗冲击性强于该第一抗冲击性。在一些实施例中,将该调光元件设置在该第一材料层处包括经由光学粘合剂将该调光元件层压到该第一材料层的凹表面上。In some embodiments, the present disclosure provides a method. The method includes providing a first material layer, the first material layer including a first lens material, the first lens material having a first birefringence, a first density, and a first impact resistance. The method also includes arranging a dimming element at the first material layer. The method also includes arranging a second material layer at the dimming element. The second material layer includes a second lens material, the second lens material having a second birefringence, a second density, and a second impact resistance. The first birefringence is lower than the second birefringence, the first density is lower than the second density, and the second impact resistance is stronger than the first impact resistance. In some embodiments, arranging the dimming element at the first material layer includes laminating the dimming element to the concave surface of the first material layer via an optical adhesive.

在一些实施例中,该第一材料层、该调光元件和该第二材料层的叠置体形成透镜,该透镜具有面向用户眼睛的内侧和面向真实世界环境的外侧,该第一材料层位于该透镜的该外侧处,并且该第二材料层位于该透镜的该内侧处。In some embodiments, the stack of the first material layer, the dimming element and the second material layer forms a lens having an inner side facing the user's eyes and an outer side facing the real-world environment, the first material layer is located at the outer side of the lens, and the second material layer is located at the inner side of the lens.

在一些实施例中,该第一材料层被配置为具有用于提供视力矫正的定制光焦度,并且该第二材料层被配置为具有零光焦度或小于预定值的光焦度。在一些实施例中,该第一透镜材料包括环烯烃共聚物或环烯烃聚合物中的至少一种。在一些实施例中,该第一材料层具有小于100nm的延迟值。在一些实施例中,该第二透镜材料包括聚碳酸酯、聚甲基丙烯酸甲酯、聚乙烯、聚丙烯或聚氨酯中的至少一种。In some embodiments, the first material layer is configured to have a customized optical power for providing vision correction, and the second material layer is configured to have zero optical power or an optical power less than a predetermined value. In some embodiments, the first lens material comprises at least one of a cyclic olefin copolymer or a cyclic olefin polymer. In some embodiments, the first material layer has a retardation value less than 100 nm. In some embodiments, the second lens material comprises at least one of polycarbonate, polymethyl methacrylate, polyethylene, polypropylene, or polyurethane.

在一些实施例中,本公开提供了一种方法。该方法包括提供第一材料层,该第一材料层包括第一透镜材料,该第一透镜材料具有第一双折射率、第一密度和第一抗冲击性。该方法还包括将调光元件设置到第二材料层中,该第二材料层包括第二透镜材料,该第二透镜材料具有第二双折射率、第二密度和第二抗冲击性。该方法还包括将该第二材料层设置在该第一材料层处。该第一双折射率低于该第二双折射率,该第一密度低于该第二密度,并且该第二抗冲击性强于该第一抗冲击性。在一些实施例中,将该调光元件设置到该第二材料层中包括将该调光元件封装到该第二材料层中。在一些实施例中,将该第二材料层设置在该第一材料层处包括经由光学粘合层将该第二材料层层压到该第一材料层的凹表面上。In some embodiments, the present disclosure provides a method. The method includes providing a first material layer, the first material layer including a first lens material, the first lens material having a first birefringence, a first density, and a first impact resistance. The method also includes setting a dimming element into a second material layer, the second material layer including a second lens material, the second lens material having a second birefringence, a second density, and a second impact resistance. The method also includes setting the second material layer at the first material layer. The first birefringence is lower than the second birefringence, the first density is lower than the second density, and the second impact resistance is stronger than the first impact resistance. In some embodiments, setting the dimming element into the second material layer includes encapsulating the dimming element into the second material layer. In some embodiments, setting the second material layer at the first material layer includes laminating the second material layer onto a concave surface of the first material layer via an optical bonding layer.

已经出于说明的目的呈现了本公开的实施例的前述描述。该描述不旨在穷举本公开或将本公开限制于所公开的精确形式。相关领域的技术人员可以理解的是,根据以上公开内容,许多修改和变化是可能的。The foregoing description of the embodiments of the present disclosure has been presented for illustrative purposes. This description is not intended to be exhaustive of the present disclosure or to limit the present disclosure to the precise form disclosed. It will be appreciated by those skilled in the relevant art that many modifications and variations are possible based on the above disclosure.

本说明书的一些部分可以根据对信息的操作的算法和符号表示来描述本公开的实施例。虽然在功能上、计算上或逻辑上描述了这些操作,但是这些操作可以由计算机程序或等效电路、微代码等实施。此外,已经证实,在不失一般性的情况下,有时为了方便将这些操作的布置称为模块。所描述的操作及其相关联的模块可以以软件、固件、硬件或它们的任何组合来体现。Some parts of this specification may describe embodiments of the present disclosure in terms of algorithms and symbolic representations of operations on information. Although these operations are described functionally, computationally, or logically, these operations may be implemented by computer programs or equivalent circuits, microcodes, etc. In addition, it has been demonstrated that, without loss of generality, arrangements of these operations are sometimes referred to as modules for convenience. The described operations and their associated modules may be embodied in software, firmware, hardware, or any combination thereof.

本文描述的任何步骤、操作或过程可以以一个或多个硬件和/或软件模块单独地或与其它设备组合地执行或实施。在一个实施例中,以计算机程序产品实施软件模块,该计算机程序产品包括包含计算机程序代码的非暂态计算机可读介质,该计算机程序代码可以由计算机处理器执行以用于执行任何或全部的所描述的步骤、操作或过程。在一些实施例中,硬件模块可以包括硬件部件,诸如设备、系统、光学元件、控制器、电子电路、逻辑门等。Any steps, operations or processes described herein may be performed or implemented with one or more hardware and/or software modules, alone or in combination with other devices. In one embodiment, the software modules are implemented with a computer program product, which includes a non-transitory computer-readable medium containing computer program code, which can be executed by a computer processor to perform any or all of the described steps, operations or processes. In some embodiments, the hardware modules may include hardware components, such as devices, systems, optical elements, controllers, electronic circuits, logic gates, etc.

本公开的实施例还可以涉及用于执行本文中的操作的装置。该装置可以为特定目的而专门构造,和/或该装置可以包括由存储在计算机中的计算机程序选择性地激活或重新配置的通用计算设备。这种计算机程序可以被存储在可以耦接到计算机系统总线的非暂态的有形的计算机可读存储介质、或适合于存储电子指令的任何类型的介质中。非暂态计算机可读存储介质可以是能够存储程序代码的合适的介质,例如,磁盘、光盘、只读存储器(“ROM”)或随机存取存储器(“RAM”)、电可编程只读存储器(“Electrically ProgrammableRead Only Memory,EPROM”)、电可擦除可编程只读存储器(“Electrically ErasableProgrammable Read Only Memory,EEPROM”)、寄存器、硬盘、固态盘驱动器、智能媒体卡(“Smart Media Card,SMC”)、安全数字卡(“Secure Digital,SD”)、闪存卡等。此外,说明书中描述的任何计算系统可以包括单个处理器,或者可以是采用多个处理器以提高计算能力的架构。处理器可以是中央处理单元(“CPU”)、图形处理单元(“GPU”)、或被配置为处理数据和/或基于数据执行计算的任何处理设备。处理器可以包括软件部件和硬件部件。例如,处理器可以包括硬件部件,诸如专用集成电路(“Application-Specific IntegratedCircuit,ASIC”)、可编程逻辑器件(“Programmable Logic Device,PLD”)或它们的任何组合。PLD可以是复杂可编程逻辑器件(“Complex Programmable Logic Device,CPLD”)、现场可编程门阵列(“Field-Programmable Gate Array,FPGA”)等。Embodiments of the present disclosure may also relate to a device for performing the operations herein. The device may be specially constructed for a specific purpose, and/or the device may include a general-purpose computing device selectively activated or reconfigured by a computer program stored in a computer. Such a computer program may be stored in a non-transient tangible computer-readable storage medium that can be coupled to a computer system bus, or in any type of medium suitable for storing electronic instructions. A non-transient computer-readable storage medium may be a suitable medium capable of storing program code, for example, a disk, an optical disk, a read-only memory ("ROM") or a random access memory ("RAM"), an electrically programmable read-only memory ("Electrically Programmable Read Only Memory, EPROM"), an electrically erasable programmable read-only memory ("Electrically Erasable Programmable Read Only Memory, EEPROM"), a register, a hard disk, a solid-state disk drive, a smart media card ("Smart Media Card, SMC"), a secure digital card ("Secure Digital, SD"), a flash memory card, etc. In addition, any computing system described in the specification may include a single processor, or may be an architecture that uses multiple processors to improve computing power. The processor may be a central processing unit ("CPU"), a graphics processing unit ("GPU"), or any processing device configured to process data and/or perform calculations based on data. The processor may include software components and hardware components. For example, the processor may include hardware components such as an application-specific integrated circuit ("Application-Specific Integrated Circuit, ASIC"), a programmable logic device ("Programmable Logic Device, PLD"), or any combination thereof. The PLD may be a complex programmable logic device ("Complex Programmable Logic Device, CPLD"), a field programmable gate array ("Field-Programmable Gate Array, FPGA"), etc.

此外,当附图中所示的实施例示出了单个元件时,应当理解的是,该实施例或附图中未示出但在本公开的范围内的实施例可以包括多个这样的元件。同样地,当附图中示出的实施例示出了多个这样的元件时,应当理解的是,该实施例或附图中未示出但在本公开的范围内的实施例可以仅包括一个这样的元件。附图中示出的元件的数量仅用于说明的目的,并且不应被解释为限制实施例的范围。此外,除非另有说明,否则附图中示出的实施例不是相互排斥的,并且这些实施例可以以任何合适的方式组合。例如,在一个附图/实施例中示出但未在另一个附图/实施例中示出的元件可以仍然被包括在另一个附图/实施例中。在本文中所公开的包括一个或多个光学层、膜、板或元件的任何光学设备中,附图中所示的层、膜、板或元件的数量仅用于说明的目的。在附图中未示出但仍在本公开的范围内的其它实施例中,在相同或不同的附图/实施例中示出的相同或不同的层、膜、板或元件可以以各种方式组合或重复以形成叠置体。In addition, when the embodiment shown in the drawings shows a single element, it should be understood that the embodiment or the embodiment not shown in the drawings but within the scope of the present disclosure may include multiple such elements. Similarly, when the embodiment shown in the drawings shows multiple such elements, it should be understood that the embodiment or the embodiment not shown in the drawings but within the scope of the present disclosure may include only one such element. The number of elements shown in the drawings is only for illustrative purposes and should not be interpreted as limiting the scope of the embodiment. In addition, unless otherwise specified, the embodiments shown in the drawings are not mutually exclusive, and the embodiments may be combined in any suitable manner. For example, an element shown in one drawing/embodiment but not shown in another drawing/embodiment may still be included in another drawing/embodiment. In any optical device disclosed herein including one or more optical layers, films, plates or elements, the number of layers, films, plates or elements shown in the drawings is only for illustrative purposes. In other embodiments not shown in the drawings but still within the scope of the present disclosure, the same or different layers, films, plates or elements shown in the same or different drawings/embodiments may be combined or repeated in various ways to form a stack.

已经描述了各种实施例以示出示例性实施方式。基于所公开的实施例,在不脱离本公开的范围的情况下,本领域普通技术人员可以做出各种其它改变、修改、重新布置和替换。因此,尽管已经参考以上实施例详细描述了本公开,但是本公开不限于上述实施例。在不脱离本公开的范围的情况下,本公开可以以其它等同形式来体现。本公开的范围在所附权利要求中限定。Various embodiments have been described to illustrate exemplary implementations. Based on the disclosed embodiments, various other changes, modifications, rearrangements and substitutions may be made by those of ordinary skill in the art without departing from the scope of the present disclosure. Therefore, although the present disclosure has been described in detail with reference to the above embodiments, the present disclosure is not limited to the above embodiments. The present disclosure may be embodied in other equivalent forms without departing from the scope of the present disclosure. The scope of the present disclosure is defined in the appended claims.

Claims (15)

1.一种透镜,包括:1. A lens comprising: 第一材料层,所述第一材料层包括第一透镜材料,所述第一透镜材料具有第一双折射率、第一密度和第一抗冲击性;以及a first material layer, the first material layer comprising a first lens material, the first lens material having a first birefringence, a first density, and a first impact resistance; and 第二材料层,所述第二材料层与所述第一材料层耦接,并且所述第二材料层包括第二透镜材料,所述第二透镜材料具有第二双折射率、第二密度和第二抗冲击性,a second material layer coupled to the first material layer and comprising a second lens material having a second birefringence, a second density, and a second impact resistance, 其中,所述第一双折射率低于所述第二双折射率,所述第一密度低于所述第二密度,并且所述第二抗冲击性强于所述第一抗冲击性。The first birefringence is lower than the second birefringence, the first density is lower than the second density, and the second impact resistance is stronger than the first impact resistance. 2.根据权利要求1所述的透镜,其中:2. The lens according to claim 1, wherein: 所述透镜具有面向用户眼睛的内侧和面向真实世界环境的外侧,The lens has an inner side facing the user's eye and an outer side facing the real world environment, 所述第一材料层位于所述透镜的所述外侧处,并且The first material layer is located at the outer side of the lens, and 所述第二材料层位于所述透镜的所述内侧处。The second material layer is located at the inner side of the lens. 3.根据权利要求1或权利要求2所述的透镜,其中:3. The lens according to claim 1 or claim 2, wherein: 所述第一材料层被配置为具有用于提供视力矫正的定制光焦度,并且The first material layer is configured to have a customized optical power for providing vision correction, and 所述第二材料层被配置为具有零光焦度或小于预定值的光焦度。The second material layer is configured to have zero optical power or an optical power less than a predetermined value. 4.根据任一项前述权利要求所述的透镜,其中,所述第一透镜材料包括环烯烃共聚物或环烯烃聚合物中的至少一种,并且所述第二透镜材料包括聚碳酸酯、聚甲基丙烯酸甲酯、聚乙烯、聚丙烯或聚氨酯中的至少一种。4. A lens according to any preceding claim, wherein the first lens material comprises at least one of a cyclic olefin copolymer or a cyclic olefin polymer, and the second lens material comprises at least one of polycarbonate, polymethyl methacrylate, polyethylene, polypropylene or polyurethane. 5.根据任一项前述权利要求所述的透镜,并且以下中的一者或多者:5. A lens according to any preceding claim, and one or more of the following: a)其中,所述第一材料层具有小于100nm的延迟值;a) wherein the first material layer has a retardation value less than 100 nm; b)所述透镜还包括光学透明的粘合层,所述光学透明的粘合层设置在所述第一材料层与所述第二材料层之间;b) the lens further comprises an optically transparent adhesive layer, wherein the optically transparent adhesive layer is disposed between the first material layer and the second material layer; c)其中,所述第一材料层的中心厚度在1.0mm到1.5mm的范围内,所述第二材料层的中心厚度在0.2mm到0.7mm的范围内,并且所述光学透明的粘合层具有在0.01mm到0.2mm的范围内的均匀厚度。c) wherein the center thickness of the first material layer is in the range of 1.0 mm to 1.5 mm, the center thickness of the second material layer is in the range of 0.2 mm to 0.7 mm, and the optically transparent adhesive layer has a uniform thickness in the range of 0.01 mm to 0.2 mm. 6.根据任一项前述权利要求所述的透镜,并且以下中的一者或多者:6. A lens according to any preceding claim, and one or more of the following: a)所述透镜还包括调光元件,所述调光元件设置在所述第一材料层与所述第二材料层之间,所述调光元件包括非电可调谐调光材料或电可调谐调光材料中的至少一种;a) the lens further comprises a dimming element, the dimming element is arranged between the first material layer and the second material layer, and the dimming element comprises at least one of a non-electrically tunable dimming material or an electrically tunable dimming material; b)其中,所述第二材料层包括一组的两个第二材料层,并且所述透镜还包括设置在所述两个第二材料层之间的调光元件;b) wherein the second material layer comprises a group of two second material layers, and the lens further comprises a dimming element disposed between the two second material layers; c)所述透镜还包括掺杂到所述第一材料层或所述第二材料层中的至少一者中的调光材料。c) The lens further includes a light-adjusting material doped into at least one of the first material layer or the second material layer. 7.一种方法,包括:7. A method comprising: 提供第一材料层,所述第一材料层包括第一透镜材料,所述第一透镜材料具有第一双折射率、第一密度和第一抗冲击性;Providing a first material layer, the first material layer comprising a first lens material, the first lens material having a first birefringence, a first density, and a first impact resistance; 将调光元件设置在所述第一材料层处;以及Disposing a dimming element at the first material layer; and 将第二材料层设置在所述调光元件处,所述第二材料层包括第二透镜材料,所述第二透镜材料具有第二双折射率、第二密度和第二抗冲击性,A second material layer is disposed at the dimming element, wherein the second material layer includes a second lens material, and the second lens material has a second birefringence, a second density, and a second impact resistance, 其中,所述第一双折射率低于所述第二双折射率,所述第一密度低于所述第二密度,并且所述第二抗冲击性强于所述第一抗冲击性。The first birefringence is lower than the second birefringence, the first density is lower than the second density, and the second impact resistance is stronger than the first impact resistance. 8.根据权利要求7所述的方法,其中,将所述调光元件设置在所述第一材料层处包括经由光学透明的粘合层将所述调光元件层压到所述第一材料层的凹表面上。8 . The method of claim 7 , wherein disposing the dimming element at the first material layer comprises laminating the dimming element onto a concave surface of the first material layer via an optically transparent adhesive layer. 9.根据权利要求7或权利要求8所述的方法,其中:9. A method according to claim 7 or claim 8, wherein: 所述第一材料层、所述调光元件和所述第二材料层的叠置体形成透镜,The stack of the first material layer, the dimming element and the second material layer forms a lens, 所述透镜具有面向用户眼睛的内侧和面向真实世界环境的外侧,The lens has an inner side facing the user's eye and an outer side facing the real world environment, 所述第一材料层位于所述透镜的所述外侧处,并且The first material layer is located at the outer side of the lens, and 所述第二材料层位于所述透镜的所述内侧处。The second material layer is located at the inner side of the lens. 10.根据权利要求7至9中任一项所述的方法,其中:10. The method according to any one of claims 7 to 9, wherein: 所述第一材料层被配置为具有用于提供视力矫正的定制光焦度,并且The first material layer is configured to have a customized optical power for providing vision correction, and 所述第二材料层被配置为具有零光焦度或小于预定值的光焦度。The second material layer is configured to have zero optical power or an optical power less than a predetermined value. 11.根据权利要求7至10中任一项所述的方法,其中,所述第一透镜材料包括环烯烃共聚物或环烯烃聚合物中的至少一种,并且所述第二透镜材料包括聚碳酸酯、聚甲基丙烯酸甲酯、聚乙烯、聚丙烯或聚氨酯中的至少一种。11. The method of any one of claims 7 to 10, wherein the first lens material comprises at least one of a cyclic olefin copolymer or a cyclic olefin polymer, and the second lens material comprises at least one of polycarbonate, polymethyl methacrylate, polyethylene, polypropylene, or polyurethane. 12.根据权利要求7至11中任一项所述的方法,其中,所述第一材料层具有小于100nm的延迟值。12. The method according to any one of claims 7 to 11, wherein the first material layer has a retardation value of less than 100 nm. 13.一种方法,包括:13. A method comprising: 提供第一材料层,所述第一材料层包括第一透镜材料,所述第一透镜材料具有第一双折射率、第一密度和第一抗冲击性;Providing a first material layer, the first material layer comprising a first lens material, the first lens material having a first birefringence, a first density, and a first impact resistance; 将调光元件设置到第二材料层中,所述第二材料层包括第二透镜材料,所述第二透镜材料具有第二双折射率、第二密度和第二抗冲击性;以及placing a dimming element into a second material layer, the second material layer comprising a second lens material, the second lens material having a second birefringence, a second density, and a second impact resistance; and 将所述第二材料层设置在所述第一材料层处,The second material layer is arranged at the first material layer, 其中,所述第一双折射率低于所述第二双折射率,所述第一密度低于所述第二密度,并且所述第二抗冲击性强于所述第一抗冲击性。The first birefringence is lower than the second birefringence, the first density is lower than the second density, and the second impact resistance is stronger than the first impact resistance. 14.根据权利要求13所述的方法,并且以下中的一者或多者:14. The method of claim 13, and one or more of the following: a)其中,将所述调光元件设置到所述第二材料层中包括将所述调光元件封装到所述第二材料层中;a) wherein arranging the dimming element in the second material layer comprises encapsulating the dimming element in the second material layer; b)其中,将所述第二材料层设置在所述第一材料层处包括经由光学透明的粘合层将所述第二材料层层压到所述第一材料层的凹表面上。b) wherein arranging the second material layer at the first material layer comprises laminating the second material layer onto the concave surface of the first material layer via an optically clear adhesive layer. 15.根据权利要求13或权利要求14所述的方法,其中:15. A method according to claim 13 or claim 14, wherein: 所述第一材料层、所述调光元件和所述第二材料层的叠置体形成透镜,The stack of the first material layer, the dimming element and the second material layer forms a lens, 所述透镜具有面向用户眼睛的内侧和面向真实世界环境的外侧,The lens has an inner side facing the user's eye and an outer side facing the real world environment, 所述第一材料层位于所述透镜的所述外侧处,并且The first material layer is located at the outer side of the lens, and 所述第二材料层位于所述透镜的所述内侧处。The second material layer is located at the inner side of the lens.
CN202280084566.XA 2021-12-22 2022-12-21 Optical dimming lens and manufacturing method thereof Pending CN118435086A (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US63/292,471 2021-12-22
US63/353,562 2022-06-18
US17/983,944 2022-11-09
US17/983,944 US20230194918A1 (en) 2021-12-22 2022-11-09 Optical dimming lens and fabrication method thereof
PCT/US2022/053575 WO2023122129A1 (en) 2021-12-22 2022-12-21 Optical dimming lens and fabrication method thereof

Publications (1)

Publication Number Publication Date
CN118435086A true CN118435086A (en) 2024-08-02

Family

ID=92323590

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202280084566.XA Pending CN118435086A (en) 2021-12-22 2022-12-21 Optical dimming lens and manufacturing method thereof

Country Status (1)

Country Link
CN (1) CN118435086A (en)

Similar Documents

Publication Publication Date Title
US11796813B2 (en) Optical system and method for providing compressed eyebox
US11852827B2 (en) Switchable artificial reality device
WO2020013829A1 (en) Adaptive lenses for near-eye displays
EP4045950A1 (en) Pitch variable optical devices and systems containing the same
US11803077B2 (en) Gradient-index liquid crystal device with masked electrode boundary
US20230066173A1 (en) Ophthalmic lens with embedded dimmer
US11543570B1 (en) Gradient photochromic dimming device and optical assembly including the same
WO2021076244A1 (en) Liquid crystal mixtures for pitch variable optical elements
EP4553546A2 (en) Hybrid varifocal device and system
CN103792671A (en) Lens of 3D glasses, manufacturing method and 3D glasses
EP4374213A1 (en) Tunable polarization holographic lenses
US20230194918A1 (en) Optical dimming lens and fabrication method thereof
WO2024215645A2 (en) Waveguide based imaging system for object tracking and waveguide based display system for reducing world side ghost
US11754863B2 (en) Polarization-agnostic optical dimming device and optical assembly including the same
CN118435086A (en) Optical dimming lens and manufacturing method thereof
WO2023122129A1 (en) Optical dimming lens and fabrication method thereof
CN117940827A (en) Ophthalmic lens with embedded dimmer
TW202326231A (en) Ophthalmic lens with embedded dimmer
WO2023122047A1 (en) Switchable artificial reality device
US11953796B2 (en) Tunable polarization holographic lenses
US20250060588A1 (en) Display system for providing high contrast ratio and reducing rainbow effect
US20230161093A1 (en) Light guide display system for providing increased power efficiency
US20240337785A1 (en) Switchable structured illumination generator, light guide display system with stray light reduction, and stress-neutral optical coating
US20240345389A1 (en) Waveguide based imaging system for object tracking and waveguide based display system for reducing world side ghost
KR20140002144A (en) 2 and 3 dimensional stereography image displayable device

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination