[go: up one dir, main page]

CN118421577B - Tyrosinase mutant and use thereof - Google Patents

Tyrosinase mutant and use thereof Download PDF

Info

Publication number
CN118421577B
CN118421577B CN202410855245.6A CN202410855245A CN118421577B CN 118421577 B CN118421577 B CN 118421577B CN 202410855245 A CN202410855245 A CN 202410855245A CN 118421577 B CN118421577 B CN 118421577B
Authority
CN
China
Prior art keywords
tyrosinase
mutant
dihydroxyindole
dopa
pet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202410855245.6A
Other languages
Chinese (zh)
Other versions
CN118421577A (en
Inventor
张雷
吴东升
师瑞
孟巨光
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangzhou Startec Science & Technology Co ltd
Original Assignee
South China University of Technology SCUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by South China University of Technology SCUT filed Critical South China University of Technology SCUT
Priority to CN202410855245.6A priority Critical patent/CN118421577B/en
Publication of CN118421577A publication Critical patent/CN118421577A/en
Application granted granted Critical
Publication of CN118421577B publication Critical patent/CN118421577B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0071Oxidoreductases (1.) acting on paired donors with incorporation of molecular oxygen (1.14)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/70Vectors or expression systems specially adapted for E. coli
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P17/00Preparation of heterocyclic carbon compounds with only O, N, S, Se or Te as ring hetero atoms
    • C12P17/10Nitrogen as only ring hetero atom
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y114/00Oxidoreductases acting on paired donors, with incorporation or reduction of molecular oxygen (1.14)
    • C12Y114/18Oxidoreductases acting on paired donors, with incorporation or reduction of molecular oxygen (1.14) with another compound as one donor, and incorporation of one atom of oxygen (1.14.18)
    • C12Y114/18001Tyrosinase (1.14.18.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/01Bacteria or Actinomycetales ; using bacteria or Actinomycetales
    • C12R2001/185Escherichia
    • C12R2001/19Escherichia coli

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Medicinal Chemistry (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

The present embodiment proposes a tyrosinase mutant and its use. The tyrosinase mutant undergoes an amino acid mutation on the amino acid sequence shown in SEQ ID NO.2; wherein, the amino acid mutation site is one or a combination of F197A, P201A, R209A, V218A, F197D, F197E, F197M, F197N, F197Q, F197R, F197S, F197V, N205D, N205I, N205K, N205L, N205Q, N205R, N205S, N205T, N205V, R209D, R209G, R209N, R209S, R209V, V218G, V218I, V218M, V218Q, V218S. The tyrosinase mutant provided in the embodiments of the application can better catalyze the production of 5,6-dihydroxyindole from levodopa and has a higher conversion rate, indicating that this tyrosinase mutant has good application prospects in the biotransformation of levodopa to prepare 5,6-dihydroxyindole.

Description

酪氨酸酶突变体及其用途Tyrosinase mutant and its use

技术领域Technical Field

本申请涉及生物酶技术领域,具体涉及一种酪氨酸酶突变体及其用途。The present application relates to the field of biological enzyme technology, and in particular to a tyrosinase mutant and its use.

背景技术Background Art

酪氨酸酶普遍存在于自然界动、植物和微生物体内,其具有单酚酶活性和二酚酶活性。在生物体内,酪氨酸酶是黑色素合成中的关键限速酶。Tyrosinase is widely present in animals, plants and microorganisms in nature, and has monophenolase activity and diphenolase activity. In organisms, tyrosinase is the key rate-limiting enzyme in melanin synthesis.

5,6-二羟基吲哚(DHI)作为黑色素合成的重要中间体和组成结构,由于5,6-二羟基吲哚中间体的活泼性,其易在空气的条件下氧化自聚,无需引发剂的刺激,对人体的刺激性更小。并且,由于5,6-二羟基吲哚是在人体中天然存在的作为人体中的天然成分,所以5,6-二羟基吲哚黑色素染发剂对人体更安全,其正逐步取代对苯二胺类化合物作为染发剂的更好选择。5,6-dihydroxyindole (DHI) is an important intermediate and component structure of melanin synthesis. Due to the activity of 5,6-dihydroxyindole intermediate, it is easy to oxidize and self-polymerize under air conditions without the stimulation of initiators, and is less irritating to the human body. In addition, since 5,6-dihydroxyindole is naturally present in the human body as a natural component in the human body, 5,6-dihydroxyindole melanin hair dye is safer for the human body and is gradually replacing p-phenylenediamine compounds as a better choice for hair dyes.

现有技术中,5,6-二羟基吲哚的合成方法根据原材料的不同主要分为苯乙胺法、苯甲醛法和苯乙腈法。但上述合成方法需要使用具有高毒性和致癌性的材料,存在制备时间较长、步骤繁琐的缺陷。In the prior art, the synthesis methods of 5,6-dihydroxyindole are mainly divided into phenylethylamine method, benzaldehyde method and benzyl cyanide method according to different raw materials. However, the above synthesis methods require the use of highly toxic and carcinogenic materials, and have the disadvantages of long preparation time and complicated steps.

目前,部分生物染发剂采用酪氨酸酶催化左旋多巴得到多巴醌,进而还原得到5,6-二羟基吲哚的方案,但目前的酪氨酸酶催化左旋多巴得到5,6-二羟基吲哚的转化率较低。At present, some biological hair dyes use tyrosinase to catalyze the conversion of L-DOPA to dopaquinone, which is then reduced to 5,6-dihydroxyindole. However, the current conversion rate of tyrosinase to 5,6-dihydroxyindole from L-DOPA is low.

有鉴于此,挖掘更多的酪氨酸酶并对其结构进行改造,实现5,6-二羟基吲哚的高效合成,对促进5,6-二羟基吲哚的工业化生产具有重大意义。In view of this, discovering more tyrosinases and modifying their structures to achieve efficient synthesis of 5,6-dihydroxyindole is of great significance to promoting the industrial production of 5,6-dihydroxyindole.

发明内容Summary of the invention

本申请的目的在于提供了一种酪氨酸酶突变体及其用途。The purpose of the present application is to provide a tyrosinase mutant and its use.

为实现上述目的,本申请提出以下技术方案:To achieve the above objectives, this application proposes the following technical solutions:

本申请实施例第一方面提供了一种酪氨酸酶突变体,所述酪氨酸酶突变体在如SEQ ID NO. 2所示的氨基酸序列上发生氨基酸突变;In a first aspect, an embodiment of the present application provides a tyrosinase mutant, wherein the tyrosinase mutant has an amino acid mutation in the amino acid sequence shown in SEQ ID NO. 2;

其中,所述氨基酸突变的位点为F197A、P201A、R209A、V218A、F197D、F197E、F197M、F197N、F197Q、F197R、F197S、F197V、N205D、N205I、N205K、N205L、N205Q、N205R、N205S、N205T、N205V、R209D、R209G、R209K、R209N、R209S、R209V、V218G、V218I、V218M、V218Q、V218S中的一个或两个组合。Wherein, the site of the amino acid mutation is one or a combination of two of F197A, P201A, R209A, V218A, F197D, F197E, F197M, F197N, F197Q, F197R, F197S, F197V, N205D, N205I, N205K, N205L, N205Q, N205R, N205S, N205T, N205V, R209D, R209G, R209K, R209N, R209S, R209V, V218G, V218I, V218M, V218Q, and V218S.

作为一种实施方式,所述酪氨酸酶突变体发生以下氨基酸突变中的任意一种:As an embodiment, the tyrosinase mutant undergoes any one of the following amino acid mutations:

F197A、P201A、R209A、V218A、F197D、F197E、F197M、F197N、F197Q、F197R、F197S、F197V、N205D、N205I、N205K、N205L、N205Q、N205R、N205S、N205T、N205V、R209D、R209G、R209K、R209N、R209S、R209V、V218G、V218I、V218M、V218Q、V218S、N205D+F197A、N205D+F197D、N205D+F197E、N205D+R209D、N205D+R209N、N205T+F197A、N205T+R209D、N205T+R209N、R209D+F197A、R209D+F197D、R209D+F197E、R209N+F197A、R209N+F197D、R209N+F197E。F197A, P201A, R209A, V218A, F197D, F197E, F197M, F197N, F197Q, F197R, F197S, F197V, N205D, N205I, N205K, N205L, N205Q, N205R, N205S, N205T, N2 05V, R209D, R209G, R209K, R209N, R209S, R209V, V218G, V218I, V218M, V218Q, V218S, N205D+F197A, N205D+F197D, N205D+F197E, N205D+R209D, N205D+R209N, N205T+F197A, N205T+R209D, N205T+R209N, R209D+F197A, R2 09D+F197D, R209D+F197E, R209N+ F197A, R209N+F197D, R209N+F197E.

本申请实施例第二方面提供了一种DNA分子,所述DNA分子包含编码如第一方面所述的酪氨酸酶突变体的核苷酸序列或其互补序列。A second aspect of an embodiment of the present application provides a DNA molecule, wherein the DNA molecule comprises a nucleotide sequence encoding the tyrosinase mutant as described in the first aspect or its complementary sequence.

本申请实施例第三方面提供了一种重组质粒,所述重组质粒含有如第二方面所述的DNA分子。The third aspect of the embodiment of the present application provides a recombinant plasmid, which contains the DNA molecule as described in the second aspect.

本申请实施例第四方面提供了一种重组菌株,所述重组菌株含有如第三方面所述的重组质粒。The fourth aspect of the embodiments of the present application provides a recombinant strain, wherein the recombinant strain contains the recombinant plasmid as described in the third aspect.

作为一种实施方式,所述重组菌株的宿主细胞为原核细胞或真核细胞,所述真核细胞为酵母细胞。As an embodiment, the host cell of the recombinant strain is a prokaryotic cell or a eukaryotic cell, and the eukaryotic cell is a yeast cell.

作为一种实施方式,所述重组菌株的宿主细胞为感受态细胞。As an embodiment, the host cell of the recombinant strain is a competent cell.

作为一种实施方式,所述感受态细胞为大肠杆菌BL21(DE3)。As an embodiment, the competent cell is Escherichia coli BL21 (DE3).

本申请实施例第五方面提供了第一方面所述的酪氨酸酶突变体、第二方面所述的DNA分子、第三方面所述的重组质粒、第四方面所述的重组菌株在用于催化左旋多巴生成5,6-二羟基吲哚中的用途。The fifth aspect of the embodiments of the present application provides the use of the tyrosinase mutant described in the first aspect, the DNA molecule described in the second aspect, the recombinant plasmid described in the third aspect, and the recombinant strain described in the fourth aspect in catalyzing the production of 5,6-dihydroxyindole from L-dopa.

作为一种实施方式,所述5,6-二羟基吲哚的制备方法,包括:As an embodiment, the preparation method of 5,6-dihydroxyindole comprises:

制备含有编码酪氨酸酶突变体的重组质粒;preparing a recombinant plasmid containing a tyrosinase mutant;

将重组质粒转化至宿主细胞中,得到重组菌株;Transforming the recombinant plasmid into a host cell to obtain a recombinant strain;

以左旋多巴为底物,利用重组菌株催化左旋多巴生成5,6-二羟基吲哚。Using L-DOPA as substrate, the recombinant strain catalyzes L-DOPA to produce 5,6-dihydroxyindole.

本申请实施例至少具有以下有益效果:The embodiments of the present application have at least the following beneficial effects:

本申请实施例以SEQ ID NO. 2所示的氨基酸序列为模板(基础),根据左旋多巴与酪氨酸酶活性中心的结合构象,选取活性中心的关键氨基酸位点进行突变改造,构建了突变体库,并筛选得到一系列催化活性明显提高的突变体;本申请实施例提供的酪氨酸酶突变体能够更好地催化左旋多巴生成5,6-二羟基吲哚,具备更高的转化率,提示该酪氨酸酶突变体在生物转化左旋多巴制备5,6-二羟基吲哚中具有良好的应用前景。The present application example uses the amino acid sequence shown in SEQ ID NO. 2 as a template (basis), selects key amino acid sites in the active center for mutation modification according to the binding conformation of L-DOPA and the tyrosinase active center, constructs a mutant library, and screens to obtain a series of mutants with significantly improved catalytic activity; the tyrosinase mutant provided in the present application example can better catalyze L-DOPA to produce 5,6-dihydroxyindole, and has a higher conversion rate, indicating that the tyrosinase mutant has good application prospects in the biotransformation of L-DOPA to prepare 5,6-dihydroxyindole.

本申请附加的方面和优点将在下面的描述中部分给出,这些将从下面的描述中变得明显,或通过本申请的实践了解到。Additional aspects and advantages of the present application will be partially given in the following description, which will become apparent from the following description, or will be understood through the practice of the present application.

附图说明BRIEF DESCRIPTION OF THE DRAWINGS

图1为酪氨酸酶突变体催化L-DOPA生成DHI的反应路线图;FIG1 is a reaction scheme of tyrosinase mutants catalyzing L-DOPA to produce DHI;

图2为模板pET-30a-TYR催化L-DOPA得到DHI的HPLC检测图;FIG2 is a HPLC detection diagram of the template pET-30a-TYR catalyzing L-DOPA to obtain DHI;

图3为酪氨酸酶突变体N205T+R209D突变体催化L-DOPA得到DHI的HPLC检测图。FIG. 3 is a HPLC detection chart of the tyrosinase mutant N205T+R209D mutant catalyzing L-DOPA to produce DHI.

具体实施方式DETAILED DESCRIPTION

下面将结合本申请实施例和附图,对实施例中的技术方案进行清楚、完整地描述。显然,以下将描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。The technical solutions in the embodiments will be described clearly and completely below in combination with the embodiments and drawings of the present application. Obviously, the embodiments described below are only part of the embodiments of the present application, rather than all of the embodiments. Based on the embodiments in the present application, all other embodiments obtained by ordinary technicians in the field without creative work are within the scope of protection of the present application.

应当理解,当在本说明书和所附权利要求书中使用时,术语“包括”和 “包含”指示所描述特征、整体、步骤、操作、元素和/或组件的存在,但并不排除一个或多个其它特征、整体、步骤、操作、元素、组件和/或其集合的存在或添加。It should be understood that when used in this specification and the appended claims, the terms "include" and "comprises" indicate the presence of described features, integers, steps, operations, elements and/or components, but do not exclude the presence or addition of one or more other features, integers, steps, operations, elements, components and/or combinations thereof.

还应当理解,在此本申请实施例说明书中所使用的术语仅仅是出于描述特定实施例的目的而并不意在限制本申请实施例。如在本申请实施例说明书和所附权利要求书中所使用的那样,除非上下文清楚地指明其它情况,否则单数形式的“一”、“一个”及“该”意在包括复数形式。It should also be understood that the terms used in this specification of the embodiments of the present application are only for the purpose of describing specific embodiments and are not intended to limit the embodiments of the present application. As used in the specification of the embodiments of the present application and the appended claims, unless the context clearly indicates otherwise, the singular forms of "a", "an" and "the" are intended to include plural forms.

下面先对本实施例中涉及的部分用语及材料进行解释说明,以便于本领域技术人员理解。Some of the terms and materials involved in this embodiment are explained below to facilitate understanding by those skilled in the art.

DHI:5,6-二羟基吲哚,英文名称为5,6-Dihydroxyindole;DHI的结构式为:DHI: 5,6-dihydroxyindole, the English name is 5,6-Dihydroxyindole; the structural formula of DHI is: .

L-DOPA:左旋多巴或多巴,英文名称Levodopa。L-DOPA的结构式为:L-DOPA: Levodopa or DOPA, English name Levodopa. The structural formula of L-DOPA is: .

DQ:多巴醌;多巴醌的结构式为:DQ: Dopaquinone; the structural formula of dopaquinone is: .

DC:多巴色素;多巴色素的结构式为:DC: Dopachrome; the structural formula of dopachrome is: .

本实施例中所使用的培养基如下所示:The culture medium used in this example is as follows:

LB液体培养基:取1 L的烧杯,加入酵母粉5 g,氯化钠10 g,蛋白胨10 g,加入900mL蒸馏水混匀,调节pH至7.0,再定容到1000 mL,最后分装到250 mL锥形瓶中,每瓶100 mL,高压灭菌锅121℃灭菌20 min后使用;LB liquid medium: Take a 1 L beaker, add 5 g yeast powder, 10 g sodium chloride, 10 g peptone, add 900 mL distilled water and mix well, adjust the pH to 7.0, and then make up to 1000 mL. Finally, dispense into 250 mL conical flasks, 100 mL per bottle, and sterilize in an autoclave at 121°C for 20 min before use;

TB培养基:准确称取酵母提取物7.2 g,蛋白胨3.6 g,于1 L烧杯中,加入200 mL无菌水,加入1.2 mL甘油,定容到270 mL,分装到150 mL锥形瓶中,每瓶22.5 mL;准确称取三水合磷酸氢二钾16.43 g(0.72 M),无水磷酸二氢钾2.31 g(0.17 M),于100 mL烧杯中,加入80 mL无菌水溶解,再定容到100 mL,制成磷酸钾缓冲液;两者各自分装后,于高压灭菌121℃灭菌20 min,待使用时在22.5 mL培养基中加入2.5 mL磷酸钾缓冲液混合使用。TB medium: Accurately weigh 7.2 g of yeast extract and 3.6 g of peptone, add 200 mL of sterile water and 1.2 mL of glycerol into a 1 L beaker, make up to 270 mL, and dispense into 150 mL conical flasks, 22.5 mL per bottle; accurately weigh 16.43 g (0.72 M) of dipotassium hydrogen phosphate trihydrate and 2.31 g (0.17 M) of anhydrous potassium dihydrogen phosphate, dissolve into a 100 mL beaker, and make up to 100 mL to prepare potassium phosphate buffer; after each of them is dispensed, sterilize them at 121°C in an autoclave for 20 min. When using, add 2.5 mL of potassium phosphate buffer to 22.5 mL of culture medium and mix them.

下面将详细说明本申请实施例的酪氨酸酶突变体及其用途。The tyrosinase mutants and their uses in the examples of the present application are described in detail below.

酪氨酸酶突变体Tyrosinase mutants

现有技术中,传统的染发剂如对苯二胺类化合物染发剂,具有致敏性和致癌性。而由于5,6-二羟基吲哚易在空气的条件下氧化自聚,且无需引发剂的刺激,5,6-二羟基吲哚黑色素染发剂也正逐步取代传统的苯胺类化合物,作为合成染发剂的更好选择。In the prior art, traditional hair dyes such as p-phenylenediamine hair dyes are allergenic and carcinogenic. However, since 5,6-dihydroxyindole is easily oxidized and self-polymerized under air conditions and does not require the stimulation of an initiator, 5,6-dihydroxyindole melanin hair dyes are gradually replacing traditional aniline compounds as a better choice for synthetic hair dyes.

现有文献报道,5,6-二羟基吲哚合成方法根据原材料的不同主要分为苯乙胺法、苯甲醛法和苯乙腈法。下面将以苯乙腈法进行举例说明。According to existing literature reports, the synthesis methods of 5,6-dihydroxyindole are mainly divided into phenylethylamine method, benzaldehyde method and benzyl cyanide method according to the different raw materials. The benzyl cyanide method will be used as an example below.

苯乙腈法制备5,6-二羟基吲哚的制备方法,包括:The preparation method of 5,6-dihydroxyindole by the benzyl cyanide method comprises:

将3,4-二甲氧基苯乙腈脱甲基得出中间产品3,4-二羟基苯乙腈(去甲基反应);Demethylating 3,4-dimethoxybenzeneacetonitrile to obtain the intermediate product 3,4-dihydroxybenzeneacetonitrile (demethylation reaction);

3,4-二羟基苯乙腈通过和苄氯反应得到3,4-二苄氧基苯乙腈以对羟基进行保护(羟基保护);3,4-dihydroxybenzyl acetonitrile is reacted with benzyl chloride to obtain 3,4-dibenzyloxybenzyl acetonitrile to protect the hydroxyl group (hydroxyl protection);

保护后的中间物硝化得到2-硝基-3,4-二苄氧基苯乙腈(硝化反应);The protected intermediate is nitrated to obtain 2-nitro-3,4-dibenzyloxyphenylacetonitrile (nitration reaction);

通过还原和环化反应得到3,4-二苄氧基吲哚,最后脱去苄氧基保护得到产物5,6-二羟基吲哚(还原环化反应)。3,4-dibenzyloxyindole is obtained by reduction and cyclization reaction, and finally the benzyloxy protection is removed to obtain the product 5,6-dihydroxyindole (reductive cyclization reaction).

通过上述记载可得,上述制备方法时间较长、步骤繁琐,并且所用材料,如去甲基反应中使用的吡啶等具有高毒性和致癌性。It can be seen from the above records that the above preparation method takes a long time and has complicated steps, and the materials used, such as pyridine used in the demethylation reaction, are highly toxic and carcinogenic.

基于上述问题,目前存在采用酪氨酸酶催化底物(左旋多巴)得到5,6-二羟基吲哚的合成方法,但目前的酪氨酸酶催化左旋多巴得到5,6-二羟基吲哚的转化率较低。Based on the above problems, there is currently a synthesis method for obtaining 5,6-dihydroxyindole by using tyrosinase to catalyze the substrate (levodopa). However, the current conversion rate of tyrosinase to obtain 5,6-dihydroxyindole by catalyzing l-dopa is low.

有鉴于此,本实施例提出的一种酪氨酸酶突变体,该酪氨酸酶突变体在如SEQ IDNO. 2所示的氨基酸序列上发生氨基酸突变;其中,所述氨基酸突变的位点为F197A、P201A、R209A、V218A、F197D、F197E、F197M、F197N、F197Q、F197R、F197S、F197V、N205D、N205I、N205K、N205L、N205Q、N205R、N205S、N205T、N205V、R209D、R209G、R209K、R209N、R209S、R209V、V218G、V218I、V218M、V218Q、V218S中的一个或两个组合。In view of this, the present embodiment provides a tyrosinase mutant, which has an amino acid mutation in the amino acid sequence shown in SEQ ID NO. 2; wherein the site of the amino acid mutation is one or a combination of two of F197A, P201A, R209A, V218A, F197D, F197E, F197M, F197N, F197Q, F197R, F197S, F197V, N205D, N205I, N205K, N205L, N205Q, N205R, N205S, N205T, N205V, R209D, R209G, R209K, R209N, R209S, R209V, V218G, V218I, V218M, V218Q, and V218S.

本实施例中的酪氨酸酶来源于巨大芽孢杆菌(Bacillus megaterium),该酪氨酸酶的核苷酸序列如SEQ ID NO. 1所示,氨基酸序列如SEQ ID NO. 2所示。The tyrosinase in this example is derived from Bacillus megaterium . The nucleotide sequence of the tyrosinase is shown in SEQ ID NO. 1, and the amino acid sequence is shown in SEQ ID NO. 2.

本实施例以SEQ ID NO. 2所示的氨基酸序列为模板(基础),根据左旋多巴与酪氨酸酶活性中心的结合构象,选取活性中心的关键氨基酸位点进行突变改造,构建了突变体库,并筛选得到一系列催化活性明显提高的突变体。In this example, the amino acid sequence shown in SEQ ID NO. 2 was used as a template (basis), and according to the binding conformation of L-DOPA with the active center of tyrosinase, key amino acid sites in the active center were selected for mutation modification, a mutant library was constructed, and a series of mutants with significantly improved catalytic activity were screened.

可以理解的,本实施例所述的催化活性,是指突变体在单位时间内能更好地催化左旋多巴转化为5,6-二羟基吲哚(具备更高的转化率)。It can be understood that the catalytic activity described in this example refers to the ability of the mutant to better catalyze the conversion of L-dopa to 5,6-dihydroxyindole per unit time (having a higher conversion rate).

因此,本实施例得到的突变体,在催化左旋多巴生成5,6-二羟基吲哚的反应(酶促转化反应)中,具备更高的转化率。Therefore, the mutant obtained in this example has a higher conversion rate in the reaction (enzymatic conversion reaction) of levodopa to 5,6-dihydroxyindole.

其中,上述酪氨酸酶的核苷酸序列(SEQ ID NO. 1)为:Wherein, the nucleotide sequence of the above tyrosinase (SEQ ID NO. 1) is:

ATGAGTAACAAGTATAGAGTTAGAAAAAACGTATTACATCTTACCGACACGGAAAAAAGAGATTTTGTTCGTACCGTGCTAATACTAAAGGAAAAAGGGATATATGACCGCTATATAGCCTGGCATGGTGCAGCAGGTAAATTTCATACTCCTCCGGGCAGCGATCGAAATGCAGCACATATGAGTTCTGCTTTTTTACCGTGGCATCGTGAATACCTTTTACGATTCGAACGTGACCTTCAGTCAATCAATCCAGAAGTAACCCTTCCTTATTGGGAATGGGAAACGGACGCACAGATGCAGGATCCCTCACAATCACAAATTTGGAGTGCAGATTTTATGGGAGGAAACGGAAATCCCATAAAAGATTTTATCGTCGATACCGGGCCATTTGCAGCTGGGCGCTGGACGACGATCGATGAACAAGGAAATCCTTCCGGAGGGCTAAAACGTAATTTTGGAGCAACGAAAGAGGCACCTACACTCCCTACTCGAGATGATGTCCTCAATGCTTTAAAAATAACTCAGTATGATACGCCGCCTTGGGATATGACCAGCCAAAACAGCTTTCGTAATCAGCTTGAAGGATTTATTAACGGGCCACAGCTTCACAATCGCGTACACCGTTGGGTTGGCGGACAGATGGGCGTTGTGCCTACTGCTCCGAATGATCCTGTCTTCTTTTTACACCACGCAAATGTGGATCGTATTTGGGCTGTATGGCAAATTATTCATCGTAATCAAAACTATCAGCCGATGAAAAACGGGCCATTTGGTCAAAACTTTAGAGATCCGATGTACCCTTGGAATACAACCCCTGAAGACGTTATGAACCATCGAAAGCTTGGGTACGTATACGATATAGAATTAAGAAAATCAAAACGTTCCTCATAA。ATGAGTAACAAGTATAGAGTTAGAAAAAACGTATTACATCTTACCGACACGGAAAAAAGAGATTTTGTTCGTACCGTGCTAATACTAAAGGAAAAAGGGATATATGACCGCTATATAGCCTGGCATGGTGCAGCAGGTAAATTCATACTCCTCCGGGCAGCGATCGAAATGCAGCACATATGAGTTCTGCTTTTTTACCGTGGCATCGTGAATACCTTTACGATTCGAACGTGACCTTCAGTCAATCCAGAAGTAACCCT TCCTTATTGGGAATGGGAAACGGACGCACAGATGCAGGATCCCTCACAATCACAAATTTGGAGTGCAGATTTTATGGGAGGAAACGGAAATCCCATAAAAGATTTTATCGTCGATACCGGGCCATTTGCAGCTGGGCGCTGGACGACGATCGATGAACAAGGAAATCCTTCCGGAGGGCTA AAACGTAATTTTGGAGCAACGAAAGAGGCACCTACACTCCCTACTCGAGATGATGTCCTCAATGCTTTAAAAATAACTCAGTATGATACGCCGCCTTGGGATATGACCAGCCAAAACAGCTTTCGTAATCAGCTTGAAGGATTTATTAACGGGCCACAGCTTCACAATCGCGTACACCGTTGGGTTGGCGGACAGATGGGCGTTGTGCCTACTGCTCCGAATGATCCTGTCTTCTTTTTACACCACGCAAATGTGGATCGT ATTTGGGCTGTATGGCAAATTATTCATCGTAATCAAAACTATCAGCCGATGAAAAACGGGCCATTTGGTCAAAACTTTAGAGATCCGATGTACCCTTGGAATACAACCCCTGAAGACGTTATGAACCATCGAAAGCTTGGGTACGTATACGATATAGAATTAAGAAAATCAAAACGTTCCTCATAA.

上述酪氨酸酶的氨基酸序列(SEQ ID NO. 2)为:The amino acid sequence of the above tyrosinase (SEQ ID NO. 2) is:

MSNKYRVRKNVLHLTDTEKRDFVRTVLILKEKGIYDRYIAWHGAAGKFHTPPGSDRNAAHMSSAFLPWHREYLLRFERDLQSINPEVTLPYWEWETDAQMQDPSQSQIWSADFMGGNGNPIKDFIVDTGPFAAGRWTTIDEQGNPSGGLKRNFGATKEAPTLPTRDDVLNALKITQYDTPPWDMTSQNSFRNQLEGFINGPQLHNRVHRWVGGQMGVVPTAPNDPVFFLHHANVDRIWAVWQIIHRNQNYQPMKNGPFGQNFRDPMYPWNTTPEDVMNHRKLGYVYDIELRKSKRSS。MSNKYRVRKNVLHLTDTEKRDFVRTVLILKEKGIYDRYIAWHGAAGKFHTPPGSDRNAAHMSSAFLPWHREYLLRFERDLQSINPEVTLPYWEWETDAQMQDPSQSQIWSADFMGGNGNPIKDFIVDTGPFAAGRWTTIDEQGNPSGGLKRNFGATKEAPTLPTRDDVLNALKITQYDTPPWDMTSQNSFRNQLEGFINGPQLHNR VHRWVGGQMGVVPTAPNDPVFFLHHANVDRIWAVWQIIHRNQNYQPMKNGPFGQNFRDPMYPWNTTPEDVMNHRKLGYVYDIELRKSKRSS.

本实施例中,上述氨基酸突变的位点可以为单一位点的突变,即单独在位点F197A、P201A、R209A、V218A、F197D、F197E、F197M、F197N、F197Q、F197R、F197S、F197V、N205D、N205I、N205K、N205L、N205Q、N205R、N205S、N205T、N205V、R209D、R209G、R209K、R209N、R209S、R209V、V218G、V218I、V218M、V218Q、V218S上的突变(单一突变体);亦可以为两个位点的组合突变,即在位点F197A、P201A、R209A、V218A、F197D、F197E、F197M、F197N、F197Q、F197R、F197S、F197V、N205D、N205I、N205K、N205L、N205Q、N205R、N205S、N205T、N205V、R209D、R209G、R209K、R209N、R209S、R209V、V218G、V218I、V218M、V218Q、V218S中的任意两个位点发生突变(多突变点的突变体)。In this embodiment, the site of the above-mentioned amino acid mutation can be a single site mutation, that is, a mutation at the site F197A, P201A, R209A, V218A, F197D, F197E, F197M, F197N, F197Q, F197R, F197S, F197V, N205D, N205I, N205K, N205L, N205Q, N205R, N205S, N205T, N205V, R209D, R209G, R209K, R209N, R209S, R209V, V218G, V218I, V218M, V218Q, V218S (single mutants) ); it may also be a combined mutation of two sites, that is, mutations occur at any two sites among sites F197A, P201A, R209A, V218A, F197D, F197E, F197M, F197N, F197Q, F197R, F197S, F197V, N205D, N205I, N205K, N205L, N205Q, N205R, N205S, N205T, N205V, R209D, R209G, R209K, R209N, R209S, R209V, V218G, V218I, V218M, V218Q, and V218S (mutants with multiple mutation points).

示例性地,上述酪氨酸酶突变体以SEQ ID NO. 2所示的氨基酸序列为模板(基础),发生以下氨基酸突变中的任意一种:Illustratively, the above-mentioned tyrosinase mutant uses the amino acid sequence shown in SEQ ID NO. 2 as a template (based on), and any one of the following amino acid mutations occurs:

F197A、P201A、R209A、V218A、F197D、F197E、F197M、F197N、F197Q、F197R、F197S、F197V、N205D、N205I、N205K、N205L、N205Q、N205R、N205S、N205T、N205V、R209D、R209G、R209K、R209N、R209S、R209V、V218G、V218I、V218M、V218Q、V218S、N205D+F197A、N205D+F197D、N205D+F197E、N205D+R209D、N205D+R209N、N205T+F197A、N205T+R209D、N205T+R209N、R209D+F197A、R209D+F197D、R209D+F197E、R209N+F197A、R209N+F197D、R209N+F197E。F197A, P201A, R209A, V218A, F197D, F197E, F197M, F197N, F197Q, F197R, F197S, F197V, N205D, N205I, N205K, N205L, N205Q, N205R, N205S, N205T, N2 05V, R209D, R209G, R209K, R209N, R209S, R209V, V218G, V218I, V218M, V218Q, V218S, N205D+F197A, N205D+F197D, N205D+F197E, N205D+R209D, N205D+R209N, N205T+F197A, N205T+R209D, N205T+R209N, R209D+F197A, R2 09D+F197D, R209D+F197E, R209N+ F197A, R209N+F197D, R209N+F197E.

作为本实施例优选的实施方式,本实施例的突变体发生以下氨基酸突变中的任意一种:As a preferred embodiment of this embodiment, the mutant of this embodiment undergoes any one of the following amino acid mutations:

F197A、F197D、F197E、N205T、R209D、R209N、V218G、N205D+F197A、N205D+R209D、N205D+R209N、N205T+R209D、N205T+R209N、R209D+F197A、R209D+F197D、R209D+F197E、R209N+F197A、R209N+F197D、R209N+F197E。F197A, F197D, F197E, N205T, R209D, R209N, V218G, N205D+F197A, N205D+R209D, N205D+R209N, N205T+R209D, N205T+R209N, R209D+F197A, R209D+F1 97D, R209D+F197E, R209N+F197A, R209N+F197D, R209N+F197E.

可以理解的是,本实施例的酪氨酸酶突变体可以通过现有的定点突变技术进行相应位点的突变,得到目标突变体。其中,具有多突变点的突变体可以在单一突变体的基础上进行叠加突变,即在单一突变体的基础上,在另一个氨基酸突变位点上进行突变,从而获得具有多突变点的突变体。It is understandable that the tyrosinase mutant of this embodiment can be mutated at the corresponding site by existing site-directed mutagenesis technology to obtain the target mutant. Among them, the mutant with multiple mutation points can be superimposed on the basis of a single mutant, that is, on the basis of a single mutant, a mutation is performed at another amino acid mutation site to obtain a mutant with multiple mutation points.

图1为本实施例制得的酪氨酸酶突变体催化多巴生成5,6-二羟基吲哚的反应路线图,图1中的TYR为酪氨酸酶突变体。请参阅图1,本实施例所提供的酪氨酸酶突变体可以催化L-DOPA生成多巴醌,生成的多巴醌会自发环化脱羧转化成5,6-二羟基吲哚。FIG1 is a reaction scheme of the tyrosinase mutant prepared in this example catalyzing DOPA to generate 5,6-dihydroxyindole, and TYR in FIG1 is the tyrosinase mutant. Referring to FIG1 , the tyrosinase mutant provided in this example can catalyze L-DOPA to generate dopaquinone, and the generated dopaquinone will spontaneously cyclize and decarboxylate to convert into 5,6-dihydroxyindole.

与现有技术相比,本实施例提供的酪氨酸酶突变体不仅能够催化左旋多巴生成5,6-二羟基吲哚,且具备更高的转化率,提示该酪氨酸酶突变体在生物转化左旋多巴制备5,6-二羟基吲哚中具有良好的应用前景。Compared with the prior art, the tyrosinase mutant provided in this example can not only catalyze L-dopa to produce 5,6-dihydroxyindole, but also has a higher conversion rate, indicating that the tyrosinase mutant has good application prospects in the biotransformation of L-dopa to prepare 5,6-dihydroxyindole.

重组质粒Recombinant plasmid

本实施例提供的重组质粒为含有编码上述任一酪氨酸酶突变体的核苷酸序列或其互补序列的DNA分子。The recombinant plasmid provided in this embodiment is a DNA molecule containing a nucleotide sequence encoding any of the above-mentioned tyrosinase mutants or its complementary sequence.

示例性地,本实施例的重组质粒可以选自如下任意一种:pET-21b(+)、pET-22b(+)、pET-3a(+)、pET-3d(+)、pET-11a(+)、pET-12a(+)、pET-14b(+)、pET-15b(+)、pET-16b(+)、pET-17b(+)、pET-19b(+)、pET-20b(+)、pET-21a(+)、pET-23a(+)、pET-23b(+)、pGEX-6p-1、pET-24a(+)、p ET-25b(+)、pET-26b(+)、pET-27b(+)、pUC-19、pET-28a(+)、pET-29a(+)、pET-30a(+)、pET-31b(+)、pET-32a(+)、pET-35b(+)、pET-38b(+)、pET-39b(+)、pET-40b(+)、pET-41a(+)、pET-41b(+)、pET-42a(+)、pET-43a(+)、pET-43b(+)、pET-44a(+)、pET-49b(+)、pQE2、pQE9、pQE30、pQE31、pQE32、pQE40、pQE70、pQE80、pRSET-A、pRSET-B、pRSET-C、pGEX-5X-1、pGEX-6p-1、pGEX-6p-2、pBV220、pBV221、pBV222、pTrc99A、pTwin1、pEZZ18、pKK232-8、pUC-18、pUC-19。Illustratively, the recombinant plasmid of this embodiment can be selected from any one of the following: pET-21b (+), pET-22b (+), pET-3a (+), pET-3d (+), pET-11a (+), pET-12a (+), pET-14b (+), pET-15b (+), pET-16b (+), pET-17b (+), pET-19b (+), pET-20b (+), pET-21a (+), pET-23a (+), pET-23b (+), pGEX-6p-1, pET-24a (+), pET- ET-25b(+), pET-26b(+), pET-27b(+), pUC-19, pET-28a(+), pET-29a(+), pET-30a(+), pET-31b(+), pET-32a(+), pET-35b(+), pET-38b(+), pET-39b(+), pET-40b (+), pET-41a (+), pET-41b (+), pET-42a (+), pET-43a (+), pET-43b ( +), pET-44a (+), pET-49b (+), pQE2, pQE9, pQE30, pQE31, pQE32, pQE40, pQE70, pQE80, pRSET-A, pRSET-B, pRSET-C, pGEX-5X-1, pGEX-6p-1, pGEX-6p-2, pBV220, pB V221, pBV222, pTrc99A, pTwin1, pEZZ18, pKK232-8, pUC-18, pUC-19.

本实施例的重组质粒可以采用现有已知的制备方法制备而成,例如:The recombinant plasmid of this embodiment can be prepared by a known preparation method, for example:

以含有SEQ ID NO. 2所示氨基酸序列的表达载体为模板,进行相应位点的突变,得到含有编码酪氨酸酶突变体的重组质粒。Using the expression vector containing the amino acid sequence shown in SEQ ID NO. 2 as a template, mutations were performed at the corresponding sites to obtain a recombinant plasmid containing the encoded tyrosinase mutant.

其中,上述表达载体包括但不限于pET-30a;上述含有SEQ ID NO. 2所示氨基酸序列的表达载体,可以通过基因合成公司(如天一辉远基因科技有限公司)将对应的基因序列合成到pET-30a载体上,得到相应的模板(如实施例1中的模板pET-30a-TYR)。Among them, the above-mentioned expression vector includes but is not limited to pET-30a; the above-mentioned expression vector containing the amino acid sequence shown in SEQ ID NO. 2 can be synthesized into the pET-30a vector by a gene synthesis company (such as Tianyi Huiyuan Gene Technology Co., Ltd.) to obtain the corresponding template (such as the template pET-30a-TYR in Example 1).

重组菌株Recombinant strains

可以理解的是,本实施例提供的重组菌株含有上述重组质粒。It is understandable that the recombinant strain provided in this embodiment contains the above-mentioned recombinant plasmid.

本实施例中,重组菌株的宿主细胞为原核细胞或真核细胞,优选真核细胞为酵母细胞。In this embodiment, the host cell of the recombinant strain is a prokaryotic cell or a eukaryotic cell, and preferably the eukaryotic cell is a yeast cell.

其中,宿主细胞可以为感受态细胞,优选感受态细胞为大肠杆菌BL21(DE3)。The host cell may be a competent cell, and preferably the competent cell is Escherichia coli BL21 (DE3).

本实施例的重组菌株可以采用以下制备方法制备而成,例如:The recombinant strain of this embodiment can be prepared by the following preparation method, for example:

将制得的重组质粒转入大肠杆菌BL21(DE3)进行培养,获得重组菌株。The prepared recombinant plasmid was transferred into Escherichia coli BL21 (DE3) for cultivation to obtain a recombinant strain.

通常,在得到重组质粒后,会通过限制性核酸酶(例如Dpn I酶)进行处理,再转入大肠杆菌BL21(DE3)进行培养。Usually, after obtaining the recombinant plasmid, it will be treated with restriction nuclease (such as Dpn I enzyme) and then transformed into Escherichia coli BL21 (DE3) for culture.

可以理解的是,制备得到的重组菌株需要放置在冰箱(-80℃)中保存。It is understandable that the prepared recombinant strain needs to be stored in a refrigerator (-80°C).

酪氨酸酶突变体的用途Uses of tyrosinase mutants

如前所述,本实施例的酪氨酸酶突变体可用于催化左旋多巴生成5,6-二羟基吲哚。As mentioned above, the tyrosinase mutant of this example can be used to catalyze the production of 5,6-dihydroxyindole from L-dopa.

事实上,基于酪氨酸酶突变体的用途,本实施例的DNA分子、重组质粒、重组菌株同样可用于催化左旋多巴生成5,6-二羟基吲哚。In fact, based on the use of tyrosinase mutants, the DNA molecules, recombinant plasmids, and recombinant strains of this embodiment can also be used to catalyze L-DOPA to produce 5,6-dihydroxyindole.

下面将详细介绍5,6-二羟基吲哚的制备方法。The preparation method of 5,6-dihydroxyindole will be introduced in detail below.

示例性地,本实施例中5,6-二羟基吲哚的制备方法,包括:Illustratively, the method for preparing 5,6-dihydroxyindole in this embodiment comprises:

(I)制备含有编码酪氨酸酶突变体的重组质粒;(I) preparing a recombinant plasmid containing a tyrosinase mutant;

(II)将重组质粒转化至宿主细胞,得到重组菌株;(II) transforming the recombinant plasmid into a host cell to obtain a recombinant strain;

(III)以左旋多巴为底物,利用重组菌株催化左旋多巴生成5,6-二羟基吲哚。(III) Using L-DOPA as a substrate, the recombinant strain catalyzes L-DOPA to produce 5,6-dihydroxyindole.

下面将对上述制备方法的步骤做进一步说明。The steps of the above preparation method will be further described below.

步骤(I)中,制备含有编码酪氨酸酶突变体的重组质粒,包括:In step (I), preparing a recombinant plasmid containing a tyrosinase mutant, comprising:

以含有SEQ ID NO. 2所示氨基酸序列的表达载体(pET-30a)为模板,进行相应位点的突变(定点突变),得到含有编码酪氨酸酶突变体的重组质粒。Using the expression vector (pET-30a) containing the amino acid sequence shown in SEQ ID NO. 2 as a template, mutations (site-directed mutagenesis) were performed at the corresponding sites to obtain a recombinant plasmid containing the encoded tyrosinase mutant.

其中,定点突变可以采用现有的突变技术,例如聚合酶链式反应(PCR)方法。Among them, site-directed mutagenesis can adopt existing mutagenesis techniques, such as polymerase chain reaction (PCR) method.

步骤(II)中,将重组质粒转化至宿主细胞,得到重组菌株,包括:In step (II), the recombinant plasmid is transformed into a host cell to obtain a recombinant strain, comprising:

将步骤(I)获得的重组质粒经Dpn I酶消化后,转入大肠杆菌BL21(DE3)进行培养,获得重组菌株。The recombinant plasmid obtained in step (I) was digested with Dpn I enzyme and then transferred into Escherichia coli BL21 (DE3) for culture to obtain a recombinant strain.

步骤(III)中,以左旋多巴为底物,利用重组菌株催化左旋多巴生成5,6-二羟基吲哚,包括:In step (III), levodopa is used as a substrate, and the recombinant strain is used to catalyze levodopa to produce 5,6-dihydroxyindole, comprising:

将步骤(II)获得的重组菌株加入含有左旋多巴的溶液中,利用重组菌株催化左旋多巴生成5,6-二羟基吲哚。The recombinant strain obtained in step (II) is added to a solution containing levodopa, and the recombinant strain is used to catalyze levodopa to generate 5,6-dihydroxyindole.

可以理解的是,请参阅图1,步骤(III)中L-DOPA生成DHI主要分为两部分反应;第一部分反应中,L-DOPA生成DQ并快速转化为DC;第二部分反应中,生成的DC转化为DHI。It can be understood that, referring to FIG. 1 , the generation of DHI from L-DOPA in step (III) is mainly divided into two reactions; in the first reaction, L-DOPA generates DQ and is quickly converted into DC; in the second reaction, the generated DC is converted into DHI.

其中,在第一部分反应中,需要氧气参与反应,以使L-DOPA生成DQ并转化为DC,因此第一部分反应可以在空气中进行反应;在第二部分反应中,通常会通入氮气或进行密封处理以保护DHI,可以减少DHI的氧化聚合。Among them, in the first part of the reaction, oxygen is required to participate in the reaction so that L-DOPA generates DQ and converts into DC, so the first part of the reaction can be carried out in the air; in the second part of the reaction, nitrogen is usually introduced or sealed to protect DHI, which can reduce the oxidative polymerization of DHI.

通常,第一部分反应的反应温度为10~40℃,优选为25~38℃(如37℃);反应时间为3~20min,优选为5~15min(例如5min)。在第一部分反应过程中,通常会进行搅拌,以提高反应速率。通常,搅拌速率为100~500r/min,优选为200~400r/min(如220rpm)。Typically, the reaction temperature of the first reaction is 10-40°C, preferably 25-38°C (e.g., 37°C); the reaction time is 3-20 min, preferably 5-15 min (e.g., 5 min). During the first reaction, stirring is usually performed to increase the reaction rate. Typically, the stirring rate is 100-500 r/min, preferably 200-400 r/min (e.g., 220 rpm).

通常,在第二部分反应中,即第一部分反应达到预设时间(例如5min)后,会取出反应液,往反应液中加入无水乙醇和浓酸(如37%浓盐酸),以加快DC转化为DHI。例如,在反应液中加入无水乙醇和浓酸,密封状态下于20℃、220rpm反应30min,得到DHI。Usually, in the second reaction, that is, after the first reaction reaches a preset time (e.g., 5 minutes), the reaction liquid is taken out, and anhydrous ethanol and concentrated acid (e.g., 37% concentrated hydrochloric acid) are added to the reaction liquid to accelerate the conversion of DC to DHI. For example, anhydrous ethanol and concentrated acid are added to the reaction liquid, and the reaction is carried out at 20°C and 220 rpm for 30 minutes in a sealed state to obtain DHI.

下面将结合具体实施例,进一步阐述本申请。应理解,这些实施例仅用于说明/解释本申请而不用于限制本申请的范围。The present application will be further described below in conjunction with specific examples. It should be understood that these examples are only used to illustrate/explain the present application and are not used to limit the scope of the present application.

在以下实施例中,所用到的材料、试剂以及仪器如没有特殊说明,均可从商业途径购买获得。In the following examples, the materials, reagents and instruments used can be purchased from commercial sources unless otherwise specified.

实施例1 Example 1

模板pET-30a-TYR的合成和重组表达Synthesis and recombinant expression of template pET-30a-TYR

本实施例以来自巨大芽孢杆菌(Bacillus megaterium)的酪氨酸酶TYR作为模版,其优化后的核苷酸序列如SEQ ID NO. 1所示,氨基酸序列如SEQ ID NO. 2所示。In this example, tyrosinase TYR from Bacillus megaterium was used as a template, and its optimized nucleotide sequence is shown in SEQ ID NO. 1, and its amino acid sequence is shown in SEQ ID NO. 2.

其中,酪氨酸酶TYR可从NCBI数据库中获得,其NCBI登录号为EU627691.1。Among them, tyrosinase TYR can be obtained from the NCBI database, and its NCBI accession number is EU627691.1.

基于此,本实施例将酪氨酸酶TYR作为亲本模板进行模板pET-30a-TYR的合成和重组表达。Based on this, in this example, tyrosinase TYR was used as a parent template to synthesize and recombinantly express the template pET-30a-TYR.

具体地:Specifically:

将酪氨酸酶TYR的基因序列合成到pET-30a载体上,得到pET-30a-TYR;The gene sequence of tyrosinase TYR was synthesized into the pET-30a vector to obtain pET-30a-TYR;

将pET-30a-TYR转入大肠杆菌BL21(DE3)中,置于37℃,220 rpm的摇床中,复苏60min;复苏后取菌液涂布于含有50 μg/mL卡那抗生素的LB平板,37℃倒置过夜培养;pET-30a-TYR was transferred into Escherichia coli BL21 (DE3), and placed in a shaker at 37°C and 220 rpm for 60 min of recovery. After recovery, the bacterial solution was spread on an LB plate containing 50 μg/mL kanamycin and incubated at 37°C overnight.

挑取平板上的单菌落进行活化,接种于25 mL含有50 μg/mL卡那抗生素的TB培养基中,在37℃、220 rpm条件下培养至OD600为 0.6~0.8后进行诱导;诱导条件为:加入诱导剂IPTG 0.6 mM,在25℃,180 rpm震荡培养12 h;A single colony on the plate was picked for activation and inoculated into 25 mL of TB medium containing 50 μg/mL kanamycin. The culture was cultured at 37°C and 220 rpm until OD 600 was 0.6-0.8, and then induced. The induction conditions were: adding 0.6 mM inducer IPTG, shaking and culturing at 25°C and 180 rpm for 12 h.

菌体在6000 rpm、4℃、10 min下收集,收集的菌体用1×PBS缓冲溶液洗涤两次,将洗涤过的菌体(湿菌体)保存到-80℃冰箱中备用。The cells were collected at 6000 rpm, 4°C, and 10 min, and the collected cells were washed twice with 1×PBS buffer solution. The washed cells (wet cells) were stored in a -80°C refrigerator for later use.

实施例2 Example 2

以pET30a-TYR质粒为模板,设计突变引物,将需要突变的碱基放在引物中间;Using pET30a-TYR plasmid as template, design mutation primers and place the base to be mutated in the middle of the primer;

PCR体系为:模板1 ng,上下游突变引物各1.5 μL,2×PCR Buffer for KOD FXNeo 25 μL,KOD FX Neo酶1 μL,最后加灭菌蒸馏水将体积补至50 μL。The PCR system was as follows: template 1 ng, upstream and downstream mutation primers 1.5 μL each, 2×PCR Buffer for KOD FXNeo 25 μL, KOD FX Neo enzyme 1 μL, and finally sterile distilled water was added to make up the volume to 50 μL.

其中,本实施例采用的上下游突变引物的序列如下表1所示;The sequences of the upstream and downstream mutation primers used in this embodiment are shown in Table 1 below;

表1:上下游突变引物的序列Table 1: Sequences of upstream and downstream mutation primers

引物名称Primer name 引物序列(5’-3’)Primer sequence (5'-3') F197A-FF197A-F GTAATCAGTTAGAAGGCGCAATTAACGGCCCGCAACTGCGTAATCAGTTAGAAGGCGCAATTAACGGCCCGCAACTGC F197A-RF197A-R GTTGCGGGCCGTTAATTGCGCCTTCTAACTGATTACGAAAGGTTGCGGGCCGTTAATTGCGCCTTCTAACTGATTACGAAAG P201A-FP201A-F GCTTTATTAACGGCGCACAACTGCATAATCGTGTTCATCGGCTTTATTAACGGCGCACAACTGCATAATCGTGTTCATCG P201A-RP201A-R CGATTATGCAGTTGTGCGCCGTTAATAAAGCCTTCTAACTGCGATTATGCAGTTGTGCCGCCGTTAATAAAGCCTTCTAACTG R209A-FR209A-F CATAATCGTGTTCATGCATGGGTAGGTGGCCAAATGGGCATAATCGTGTTCATGCATGGGTAGGTGGCCAAATGGG R209A-RR209A-R GGCCACCTACCCATGCATGAACACGATTATGCAGTTGGGCCACCTACCCATGCATGAACACGATTATGCAGTTG V218A-FV218A-F GTGGCCAAATGGGTGTTGCACCTACCGCGCCGAACGTGGCCAAATGGGTGTTGCACCTACCGCGCCGAAC V218A-RV218A-R CGGCGCGGTAGGTGCAACACCCATTTGGCCACCTACCGGCGCGGTAGGTGCAACACCCATTTGGCCACCTAC F197D-FF197D-F GTAATCAGTTAGAAGGCGATATTAACGGCCCGCAACTGCGTAATCAGTTAGAAGGCGATATTAACGGCCCGCAACTGC F197D-RF197D-R GTTGCGGGCCGTTAATATCGCCTTCTAACTGATTACGAAAGGTTGCGGGCCGTTAATATCGCCTTCTAACTGATTACGAAAG F197E-FF197E-F G GTAATCAGTTAGAAGGCGAAATTAACGGCCCGCAACTGCG GTAATCAGTTAGAAGGCGAAATTAACGGCCCGCAACTGC F197E-RF197E-R GTTGCGGGCCGTTAATTTCGCCTTCTAACTGATTACGAAAGGTTGCGGGCCGTTAATTTCGCCTTCTAACTGATTACGAAAG F197M-FF197M-F GTAATCAGTTAGAAGGCATGATTAACGGCCCGCAACTGCGTAATCAGTTAGAAGGCATGATTAACGGCCCGCAACTGC F197M-RF197M-R GTTGCGGGCCGTTAATCATGCCTTCTAACTGATTACGAAAGGTTGCGGGCCGTTAATCATGCCTTCTAACTGATTACGAAAG F197N-FF197N-F GTAATCAGTTAGAAGGCAATATTAACGGCCCGCAACTGCGTAATCAGTTAGAAGGCAATATTAACGGCCCGCAACTGC F197N-RF197N-R GTTGCGGGCCGTTAATATTGCCTTCTAACTGATTACGAAAGGTTGCGGGCCGTTAATATTGCCTTCTAACTGATTACGAAAG F197Q-FF197Q-F GTAATCAGTTAGAAGGCCAGATTAACGGCCCGCAACTGCGTAATCAGTTAGAAGGCCAGATTAACGGCCCGCAACTGC F197Q-RF197Q-R GTTGCGGGCCGTTAATCTGGCCTTCTAACTGATTACGAAAGGTTGCGGGCCGTTAATCTGGCCTTCTAACTGATTACGAAAG F197R-FF197R-F GTAATCAGTTAGAAGGCCGTATTAACGGCCCGCAACTGCGTAATCAGTTAGAAGGCCGTATTAACGGCCCGCAACTGC F197R-RF197R-R GTTGCGGGCCGTTAATACGGCCTTCTAACTGATTACGAAAGGTTGCGGGCCGTTAATACGGCCTTCTAACTGATTACGAAAG F197S-FF197S-F GTAATCAGTTAGAAGGCAGCATTAACGGCCCGCAACTGCGTAATCAGTTAGAAGGCAGCATTAACGGCCCGCAACTGC F197S-RF197S-R GTTGCGGGCCGTTAATGCTGCCTTCTAACTGATTACGAAAGGTTGCGGGCCGTTAATGCTGCCTTCTAACTGATTACGAAAG F197V-FF197V-F GTAATCAGTTAGAAGGCGTTATTAACGGCCCGCAACTGCGTAATCAGTTAGAAGGCGTTATTAACGGCCCGCAACTGC F197V-RF197V-R GTTGCGGGCCGTTAATAACGCCTTCTAACTGATTACGAAAGGTTGCGGGCCGTTAATAACGCCTTCTAACTGATTACGAAAG N205D-FN205D-F GGCCCGCAACTGCATGACCGTGTTCATCGCTGGGTAGGGCCCGCAACTGCATGACCGTGTTCATCGCTGGGTAG N205D-RN205D-R CCCAGCGATGAACACGGTCATGCAGTTGCGGGCCGTTAATAAAGCCCAGCGATGAACACGGTCATGCAGTTGCGGCCGTTAATAAAG N205I-FN205I-F GGCCCGCAACTGCATATTCGTGTTCATCGCTGGGTAGGGCCCGCAACTGCATATTCGTGTTCATCGCTGGGTAG N205I-RN205I-R CCCAGCGATGAACACGAATATGCAGTTGCGGGCCGTTAATAAAGCCCAGCGATGAACACGAATATGCAGTTGCGGGCCGTTAATAAAG N205K-FN205K-F GGCCCGCAACTGCATAAACGTGTTCATCGCTGGGTAGGGCCCGCAACTGCATAAACGTGTTCATCGCTGGGTAG N205K-RN205K-R CCCAGCGATGAACACGTTTATGCAGTTGCGGGCCGTTAATAAAGCCCAGCGATGAACACGTTTATGCAGTTGCGGGCCGTTAATAAAG N205L-FN205L-F GGCCCGCAACTGCATCTGCGTGTTCATCGCTGGGTAGGGCCCGCAACTGCATCTGCGTGTTCATCGCTGGGTAG N205L-RN205L-R CCCAGCGATGAACACGCAGATGCAGTTGCGGGCCGTTAATAAAGCCCAGCGATGAACACGCAGATGCAGTTGCGGGCCGTTAATAAAG N205Q-FN205Q-F GGCCCGCAACTGCATCAGCGTGTTCATCGCTGGGTAGGGCCCGCAACTGCATCAGCGTGTTCATCGCTGGGTAG N205Q-RN205Q-R CCCAGCGATGAACACGCTGATGCAGTTGCGGGCCGTTAATAAAGCCCAGCGATGAACACGCTGATGCAGTTGCGGGCCGTTAATAAAG N205R-FN205R-F GGCCCGCAACTGCATCGTCGTGTTCATCGCTGGGTAGGGCCCGCAACTGCATCGTCGTGTTCATCGCTGGGTAG N205R-RN205R-R CCCAGCGATGAACACGACGATGCAGTTGCGGGCCGTTAATAAAGCCCAGCGATGAACACGACGATGCAGTTGCGGGCCGTTAATAAAG N205S-FN205S-F GGCCCGCAACTGCATAGCCGTGTTCATCGCTGGGTAGGGCCCGCAACTGCATAGCCGTGTTCATCGCTGGGTAG N205S-RN205S-R CCCAGCGATGAACACGGCTATGCAGTTGCGGGCCGTTAATAAAGCCCAGCGATGAACACGGCTATGCAGTTGCGGGCCGTTAATAAAG N205T-FN205T-F GGCCCGCAACTGCATACCCGTGTTCATCGCTGGGTAGGGCCCGCAACTGCATACCCGTGTTCATCGCTGGGTAG N205T-RN205T-R CCCAGCGATGAACACGGGTATGCAGTTGCGGGCCGTTAATAAAGCCCAGCGATGAACACGGGTATGCAGTTGCGGGCCGTTAATAAAG N205V-FN205V-F GGCCCGCAACTGCATGTTCGTGTTCATCGCTGGGTAGGGCCCGCAACTGCATGTTCGTGTTCATCGCTGGGTAG N205V-RN205V-R CCCAGCGATGAACACGAACATGCAGTTGCGGGCCGTTAATAAAGCCCAGCGATGAACACGAACATGCAGTTGCGGCCGTTAATAAAG R209D-FR209D-F CATAATCGTGTTCATGATTGGGTAGGTGGCCAAATGGGCATAATCGTGTTCATGATTGGGTAGGTGGCCAAATGGG R209D-RR209D-R GGCCACCTACCCAATCATGAACACGATTATGCAGTTGGGCCACCTACCCAATCATGAACACGATTATGCAGTTG R209G-FR209G-F CATAATCGTGTTCATGGCTGGGTAGGTGGCCAAATGGGCATAATCGTGTTCATGGCTGGGTAGGTGGCCAAATGGG R209G-RR209G-R GGCCACCTACCCAGCCATGAACACGATTATGCAGTTGGGCCACCTACCCAGCCATGAACACGATTATGCAGTTG R209K-FR209K-F CATAATCGTGTTCATAAATGGGTAGGTGGCCAAATGGGCATAATCGTGTTCATAAATGGGTAGGTGGCCAAATGGG R209K-RR209K-R GGCCACCTACCCATTTATGAACACGATTATGCAGTTGGGCCACCTACCCATTTATGAACACGATTATGCAGTTG R209N-FR209N-F CATAATCGTGTTCATAATTGGGTAGGTGGCCAAATGGGCATAATCGTGTTCATAATTGGGTAGGTGGCCAAATGGG R209N-RR209N-R GGCCACCTACCCAATTATGAACACGATTATGCAGTTGGGCCACCTACCCAATTATGAACACGATTATGCAGTTG R209S-FR209S-F CATAATCGTGTTCATAGCTGGGTAGGTGGCCAAATGGGCATAATCGTGTTCATAGCTGGGTAGGTGGCCAAATGGG R209S-RR209S-R GGCCACCTACCCAGCTATGAACACGATTATGCAGTTGGGCCACCTACCCAGCTATGAACACGATTATGCAGTTG R209V-FR209V-F CATAATCGTGTTCATGTTTGGGTAGGTGGCCAAATGGGCATAATCGTGTTCATGTTTGGGTAGGTGGCCAAATGGG R209V-RR209V-R GGCCACCTACCCAAACATGAACACGATTATGCAGTTGGGCCACCTACCCAAACATGAACACGATTATGCAGTTG V218G-FV218G-F GTGGCCAAATGGGTGTTGGTCCTACCGCGCCGAACGTGGCCAAATGGGTGTTGGTCCTACCGCGCCGAAC V218G-RV218G-R CGGCGCGGTAGGACCAACACCCATTTGGCCACCTACCGGCGCGGTAGGACCAACACCCATTTGGCCACCTAC V218I-FV218I-F GTGGCCAAATGGGTGTTATTCCTACCGCGCCGAACGTGGCCAAATGGGTGTTATTCCTACCGCGCCGAAC V218I-RV218I-R CGGCGCGGTAGGAATAACACCCATTTGGCCACCTACCGGCCGCGTAGGAATAACACCCATTTGGCCACCTAC V218M-FV218M-F GTGGCCAAATGGGTGTTATGCCTACCGCGCCGAACGTGGCCAAATGGGTGTTATGCCTACCGCGCCGAAC V218M-RV218M-R CGGCGCGGTAGGCATAACACCCATTTGGCCACCTACCGGCGCGGTAGGCATAACACCCATTTGGCCACCTAC V218Q-FV218Q-F GTGGCCAAATGGGTGTTCAGCCTACCGCGCCGAACGTGGCCAAATGGGTGTTCAGCCTACCGCGCCGAAC V218Q-RV218Q-R CGGCGCGGTAGGCTGAACACCCATTTGGCCACCTACCGGCGCGGTAGGCTGAACACCCATTTGGCCACCTAC V218S-FV218S-F GTGGCCAAATGGGTGTTAGCCCTACCGCGCCGAACGTGGCCAAATGGGTGTTAGCCCTACCGCGCCGAAC V218S-RV218S-R CGGCGCGGTAGGGCTAACACCCATTTGGCCACCTACCGGCGCGGTAGGGCTAACACCCATTTGGCCACCTAC

PCR反应程序为:(1) 94℃预变性2 min;(2) 98℃变性10 s;(3)根据突变引物设置退火温度,退火时间15s;(4) 68℃延伸60 s,步骤(2)~(4)进行30个循环,最后68℃延伸10 min,12℃保存PCR产物。The PCR reaction procedure was as follows: (1) pre-denaturation at 94°C for 2 min; (2) denaturation at 98°C for 10 s; (3) annealing temperature was set according to the mutant primers, and the annealing time was 15 s; (4) extension at 68°C for 60 s, steps (2) to (4) were repeated for 30 cycles, and finally extension was performed at 68°C for 10 min. The PCR product was stored at 12°C.

将上述PCR产物进行Dpn I酶消化,去除模板后转入大肠杆菌DH5α感受态细胞,恢复培养后的菌液涂布于含有50μg/mL卡那抗生素的LB培养基平板,37℃倒置培养过夜。The PCR product was digested with Dpn I enzyme, and after removing the template, it was transferred into Escherichia coli DH5α competent cells. The bacterial solution after recovery culture was spread on LB medium plates containing 50 μg/mL kanamycin and inverted cultured at 37°C overnight.

挑取单克隆菌落进行单菌落验证,选1-3个单菌落进行基因测序,并提取测序正确的菌株。Pick monoclonal colonies for single colony verification, select 1-3 single colonies for gene sequencing, and extract the strains with correct sequencing.

其中,具有多突变点的突变体,采用上述同样的方法在单一突变体的基础上进行叠加突变,从而获得具有多突变点的突变体。Among them, the mutant with multiple mutation points is obtained by superimposing mutations on a single mutant using the same method as above, thereby obtaining a mutant with multiple mutation points.

突变体的诱导表达与上述模板的诱导表达一致。The inducible expression of the mutants was consistent with that of the above templates.

实施例3Example 3

酪氨酸酶突变体的活性筛选Activity screening of tyrosinase mutants

本实施例以L-DOPA为底物,测定酪氨酸酶突变体的催化活性。In this example, L-DOPA was used as a substrate to determine the catalytic activity of the tyrosinase mutant.

具体方法为:The specific method is:

将得到的湿菌体按照1g(湿菌体):7.5 mL(1×PBS缓冲溶液)重悬,取600 μL用于超声破碎,开1s,关2s,总时长10 min,破碎液于12000 rpm离心15min。收集上清,取500μL上清,加入500 μL底物L-DOPA(用DDW配制成8mM母液),终体积1mL;The obtained wet bacteria were resuspended in 7.5 mL (1×PBS buffer solution) at a ratio of 1 g (wet bacteria), and 600 μL was used for ultrasonic disruption, with 1 second on and 2 seconds off for a total of 10 minutes. The disrupted liquid was centrifuged at 12,000 rpm for 15 minutes. The supernatant was collected, 500 μL of the supernatant was taken, and 500 μL of the substrate L-DOPA (prepared with DDW to 8 mM stock solution) was added to a final volume of 1 mL;

空气环境下,置于37℃、220 rpm下反应5 min,取出反应液加入2 μL浓盐酸(37%)和1mL无水乙醇,密封状态下于20℃、220 rpm反应30 min;待反应结束,于12000 rpm离心10min,用0.22μm的有机滤膜过滤制样,采用HPLC检测含量。酪氨酸酶突变体的活性测试结果如下表2所示;In an air environment, place it at 37°C and 220 rpm for 5 min, take out the reaction solution, add 2 μL concentrated hydrochloric acid (37%) and 1 mL anhydrous ethanol, and react at 20°C and 220 rpm for 30 min in a sealed state; after the reaction is completed, centrifuge at 12000 rpm for 10 min, filter with a 0.22 μm organic filter membrane, and use HPLC to detect the content. The activity test results of the tyrosinase mutants are shown in Table 2 below;

表2:酪氨酸酶突变体的活性测试结果Table 2: Activity test results of tyrosinase mutants

模板/突变体Template/Mutant 产率(%)Yield (%) 模板(pET-30a-TYR)Template (pET-30a-TYR) 19.89±0.419.89±0.4 F197AF197A 35.62±2.0735.62±2.07 P201AP201A 22.03±0.9522.03±0.95 R209AR209A 25.15±0.2225.15±0.22 V218AV218A 27.29±1.0127.29±1.01 F197DF197D 38.15±2.4938.15±2.49 F197EF197E 39.61±2.2539.61±2.25 F197MF197M 25.78±0.1125.78±0.11 F197NF197N 23.61±0.1323.61±0.13 F197QF197Q 23.8±0.0223.8±0.02 F197RF197R 21.02±0.1321.02±0.13 F197SF197S 24.55±0.1624.55±0.16 F197VF197V 22.21±0.0222.21±0.02 N205DN205D 29.63±1.3529.63±1.35 N205IN205I 23.73±0.1623.73±0.16 N205KN205K 24.18±0.6624.18±0.66 N205LN205L 21.83±0.1621.83±0.16 N205QN205Q 22.31±0.0822.31±0.08 N205RN205R 27.67±0.2127.67±0.21 N205SN205S 26.22±0.1626.22±0.16 N205TN205T 37.99±1.5537.99±1.55 N205VN205V 22.9±0.1722.9±0.17 R209DR209D 42.42±1.1742.42±1.17 R209GR209G 21.1±0.1521.1±0.15 R209KR209K 23.4±0.1723.4±0.17 R209NR209N 36.61±0.936.61±0.9 R209SR209S 24.69±0.1424.69±0.14 R209VR209V 28.16±0.6728.16±0.67 V218GV218G 31.16±0.3331.16±0.33 V218IV218I 23.79±0.8523.79±0.85 V218MV218M 24.24±0.9424.24±0.94 V218QV218Q 20.36±0.7820.36±0.78 V218SV218S 26.84±0.9926.84±0.99 N205D+F197AN205D+F197A 44.86±0.1844.86±0.18 N205D+F197DN205D+F197D 28.12±0.1228.12±0.12 N205D+F197EN205D+F197E 24.8±17.5424.8±17.54 N205D+R209DN205D+R209D 42.83±1.4642.83±1.46 N205D+R209NN205D+R209N 40.43±1.2140.43±1.21 N205T+F197AN205T+F197A 24.65±0.0224.65±0.02 N205T+R209DN205T+R209D 63.77±1.6763.77±1.67 N205T+R209NN205T+R209N 44.62±1.3144.62±1.31 R209D+F197AR209D+F197A 43.21±1.1943.21±1.19 R209D+F197DR209D+F197D 37.34±5.1437.34±5.14 R209D+F197ER209D+F197E 46.78±1.4746.78±1.47 R209N+F197AR209N+F197A 32.66±0.632.66±0.6 R209N+F197DR209N+F197D 47.57±0.8647.57±0.86 R209N+F197ER209N+F197E 53.88±1.553.88±1.5

注:表2的测试结果是在同样反应条件下进行三次平行反应后得出。其中,产率定义为:反应结束产物摩尔浓度/初始底物摩尔浓度×100%。Note: The test results in Table 2 were obtained after three parallel reactions under the same reaction conditions. The yield is defined as: molar concentration of product at the end of the reaction/molar concentration of the initial substrate × 100%.

根据表2的测试结果,本实施例在模板pET-30a-TYR的基础上对关键活性位点进行突变改造,得到对催化左旋多巴(L-DOPA)生成5,6-二羟基吲哚活性明显提高的突变体。According to the test results in Table 2, in this example, the key active sites were mutated based on the template pET-30a-TYR to obtain a mutant with significantly improved activity in catalyzing levodopa (L-DOPA) to generate 5,6-dihydroxyindole.

由此,上述突变体相比于模板pET-30a-TYR,其催化L-DOPA生成DHI的产率均有提高。Therefore, compared with the template pET-30a-TYR, the above mutants have improved yields of L-DOPA to DHI.

具体地,图2为模板pET-30a-TYR催化L-DOPA得到DHI的HPLC检测图,图3为酪氨酸酶突变体N205T+R209D突变体催化L-DOPA得到DHI的HPLC检测图。Specifically, FIG. 2 is a HPLC detection diagram of the template pET-30a-TYR catalyzing L-DOPA to obtain DHI, and FIG. 3 is a HPLC detection diagram of the tyrosinase mutant N205T+R209D mutant catalyzing L-DOPA to obtain DHI.

进一步结合表2、图2和图3可知,突变体N205T+R209D相对于模板pET-30a-TYR,表现出更高的催化活性,DHI的产率从19.89%提高到63.77%。Further combined with Table 2, Figure 2 and Figure 3, it can be seen that the mutant N205T+R209D showed higher catalytic activity than the template pET-30a-TYR, and the yield of DHI increased from 19.89% to 63.77%.

可以理解的是,突变体N205T+R209D在本实施例中视为较优实施方式。It can be understood that the mutant N205T+R209D is considered as a preferred embodiment in this example.

实施例4 Example 4

基于实施例3的测试结果,本实施例以突变体N205T、R209D和N205T+R209D为示例性突变体,进一步验证酪氨酸酶突变体的酶活性;Based on the test results of Example 3, this example uses mutants N205T, R209D and N205T+R209D as exemplary mutants to further verify the enzyme activity of tyrosinase mutants;

本实施例中上述突变体的诱导表达方法与实施例1一致;The induction expression method of the mutant in this example is consistent with that in Example 1;

分别取20 μL突变体N205T、R209D、N205T+R209D重组菌株,加入5 mL含有50 μg/mL的LB培养基中,37℃、220 rpm条件下培养过夜。取2.5 mL菌液加入250 mL含有50 μg/mL卡那抗生素的TB培养基中,在37℃、220 rpm条件下培养至OD600为0.6-0.8后进行诱导;诱导条件为:加入0.6 mM IPTG,于25℃、180 rpm下诱导12 h。培养液在6000 rpm、4℃条件下离心5min收集,用1× PBS缓冲溶液洗涤两次,将得到的湿菌体保存于-80℃备用;Take 20 μL of mutant N205T, R209D, and N205T+R209D recombinant strains, add them to 5 mL of LB medium containing 50 μg/mL, and culture them overnight at 37°C and 220 rpm. Take 2.5 mL of bacterial solution and add it to 250 mL of TB medium containing 50 μg/mL kanamycin, culture it at 37°C and 220 rpm until OD 600 is 0.6-0.8, and then induce it; the induction conditions are: add 0.6 mM IPTG, and induce it at 25°C and 180 rpm for 12 h. The culture solution was collected by centrifugation at 6000 rpm and 4°C for 5 minutes, washed twice with 1× PBS buffer solution, and the obtained wet bacteria were stored at -80°C for use;

诱导表达后,按照1 g(湿菌体):15 mL(平衡缓冲液(500 mM NaCl,20 mM咪唑,20mM Tris-HCL缓冲液,pH=7.2 ))重悬,在冰浴的条件下超声破碎,开1s,关2s,总时长60min。细胞破碎液在12000 rpm,4℃离心15 min,上清再用0.22 μm的滤膜过滤用于后续纯化;After induction, the cells were resuspended in 15 mL of equilibration buffer (500 mM NaCl, 20 mM imidazole, 20 mM Tris-HCL buffer, pH = 7.2) according to 1 g (wet cells). Ultrasonic disruption was performed in an ice bath, with the cell disruption solution on for 1 second and off for 2 seconds, for a total of 60 minutes. The cell disruption solution was centrifuged at 12,000 rpm and 4°C for 15 minutes, and the supernatant was filtered with a 0.22 μm filter membrane for subsequent purification.

纯化方法为镍柱亲和层析方法:纯化柱为5 mL预装柱,先用平衡缓冲液(500 mMNaCl,20 mM咪唑,20 mM Tris-HCL缓冲液,pH=7.2 )平衡整个纯化系统,再以1 mL/min的流速上样,进一步用平衡缓冲液(500 mM NaCl,20 mM咪唑,20 mM Tris-HCL缓冲液,pH=7.2 )将未挂柱的杂蛋白去除,之后用洗脱缓冲液(500 mM NaCl,500 mM咪唑,20 mM Tris-HCL缓冲液,pH=7.2)进行梯度洗脱;The purification method is nickel column affinity chromatography: the purification column is a 5 mL pre-packed column, and the entire purification system is first balanced with an equilibrium buffer (500 mM NaCl, 20 mM imidazole, 20 mM Tris-HCL buffer, pH=7.2), and then the sample is loaded at a flow rate of 1 mL/min, and the impurities that are not attached to the column are further removed with an equilibrium buffer (500 mM NaCl, 20 mM imidazole, 20 mM Tris-HCL buffer, pH=7.2), and then gradient elution is performed with an elution buffer (500 mM NaCl, 500 mM imidazole, 20 mM Tris-HCL buffer, pH=7.2);

目的蛋白大约在300 mM的咪唑浓度被洗脱下来,收集目的蛋白,用超滤管(截留30KDa)进行浓缩和脱盐至最后体积为1 mL,最后将蛋白液分装保存于-80℃备用;The target protein was eluted at an imidazole concentration of about 300 mM, and the target protein was collected, concentrated and desalted using an ultrafiltration tube (cutoff 30 KDa) to a final volume of 1 mL, and the protein solution was aliquoted and stored at -80°C for later use;

因为L-DOPA在酪氨酸酶的催化作用下氧化生成多巴醌(DQ),而DQ具有极高的反应活性,会以高速率自发环化生成多巴色素(DC)。之后DC会进一步脱羧生成DHI;Because L-DOPA is oxidized to dopaquinone (DQ) under the catalysis of tyrosinase, and DQ has extremely high reactivity and will spontaneously cyclize to dopachrome (DC) at a high rate. DC will then further decarboxylate to form DHI;

由于中间产物DC在475 nm处有极大吸收峰(ε=3700 M-1 cm-1),因此可以采用比色法检测在475 nm处的吸光值来探究突变体的酶活和催化效率。Since the intermediate product DC has a maximum absorption peak at 475 nm (ε=3700 M -1 cm -1 ), the colorimetric method can be used to detect the absorbance at 475 nm to explore the enzyme activity and catalytic efficiency of the mutant.

具体步骤为:The specific steps are:

在96孔板中加入130 μL的100 mM磷酸钠缓冲液(pH = 7.0),和不同浓度50 μL的L-DOPA溶液,震荡30秒,置于37℃恒温培养箱中稳保温5分钟,再加入20 μL的纯酶液(用1×PBS缓冲溶液将蛋白液配制成1 μM浓度的母液),总体积为200μL;在37℃恒温培养箱反应5min,使用酶标仪测量在475 nm处的吸光值来测定DC(ε=3700 M-1 cm-1)的生成,光程l=0.6cm,每个试验分别设置三个平行。测试结果如下表3所示。其中,Kcat/KM(S-1mM-1)为催化效率;Add 130 μL of 100 mM sodium phosphate buffer (pH = 7.0) and 50 μL of L-DOPA solution of different concentrations to a 96-well plate, shake for 30 seconds, place in a 37°C constant temperature incubator for 5 minutes, and then add 20 μL of pure enzyme solution (use 1×PBS buffer solution to prepare the protein solution into a 1 μM concentration mother solution), the total volume is 200 μL; react in a 37°C constant temperature incubator for 5 minutes, use a microplate reader to measure the absorbance at 475 nm to determine the generation of DC (ε=3700 M -1 cm -1 ), the optical path length l=0.6 cm, and set three parallels for each test. The test results are shown in Table 3 below. Among them, K cat /K M (S -1 mM -1 ) is the catalytic efficiency;

表3:突变体N205T、R209D和N205T+R209D的酶活测试结果:Table 3: Enzyme activity test results of mutants N205T, R209D and N205T+R209D:

模板/突变体Template/Mutant KM(μM)K M (μM) Vmax(μM-1min-1)V max (μM -1 min -1 ) Kcat(S-1)K cat (S -1 ) Kcat/KM(S-1mM-1)K cat /K M (S -1 mM -1 ) 模板pET-30a-TYRTemplate pET-30a-TYR 0.41±0.060.41±0.06 26.86±0.7526.86±0.75 4.48±0.134.48±0.13 10.92±2.0810.92±2.08 N205TN205T 0.28±0.150.28±0.15 28.92±0.6428.92±0.64 4.82±0.114.82±0.11 17.21±0.7117.21±0.71 R209DR209D 1.02±0.431.02±0.43 125.05±2.6125.05±2.6 20.84±0.4320.84±0.43 20.23±1.0120.23±1.01 N205T/R209DN205T/R209D 1.06±0.111.06±0.11 139.27±1.06139.27±1.06 23.21±0.1823.21±0.18 21.9±1.6121.9±1.61

结合表3的测试结果可得,本实施例中的突变体N205T、R209D和N205T/R209D相比于模板pET-30a-TYR,均具有更好的催化效率。因此,本实施例提供的酪氨酸酶突变体能够更好地催化左旋多巴生成5,6-二羟基吲哚,具备更高的产率。Combined with the test results in Table 3, it can be seen that the mutants N205T, R209D and N205T/R209D in this example have better catalytic efficiency than the template pET-30a-TYR. Therefore, the tyrosinase mutant provided in this example can better catalyze L-DOPA to generate 5,6-dihydroxyindole with a higher yield.

综上所述,本实施例以SEQ ID NO. 2所示的氨基酸序列为模板(基础),根据左旋多巴与酪氨酸酶活性中心的结合构象,选取活性中心的关键氨基酸位点进行突变改造,构建了突变体库,并筛选得到一系列催化活性明显提高的突变体;本实施例提供的酪氨酸酶突变体能够更好地催化左旋多巴生成5,6-二羟基吲哚,具备更高的转化率,提示该酪氨酸酶突变体在生物转化左旋多巴制备5,6-二羟基吲哚中具有良好的应用前景。In summary, this example uses the amino acid sequence shown in SEQ ID NO. 2 as a template (basis), selects key amino acid sites in the active center for mutation modification according to the binding conformation of L-DOPA and the tyrosinase active center, constructs a mutant library, and screens a series of mutants with significantly improved catalytic activity; the tyrosinase mutant provided in this example can better catalyze L-DOPA to produce 5,6-dihydroxyindole, and has a higher conversion rate, indicating that the tyrosinase mutant has good application prospects in the biotransformation of L-DOPA to prepare 5,6-dihydroxyindole.

以上对本申请实施例所提供的技术方案进行了详细介绍,本文中应用了具体个例对本申请实施例的原理以及实施方式进行了阐述,以上实施例的说明只适用于帮助理解本申请实施例的原理;同时,对于本领域的一般技术人员,依据本申请实施例,在具体实施方式以及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本申请的限制。The technical solutions provided in the embodiments of the present application are introduced in detail above. Specific examples are used herein to illustrate the principles and implementation methods of the embodiments of the present application. The description of the above embodiments is only applicable to help understand the principles of the embodiments of the present application. At the same time, for those skilled in the art, according to the embodiments of the present application, there will be changes in the specific implementation methods and application scopes. In summary, the contents of this specification should not be understood as limiting the present application.

Claims (9)

1.一种酪氨酸酶突变体,其特征在于,所述酪氨酸酶突变体在如SEQ ID NO. 2所示的氨基酸序列上,发生以下氨基酸突变:1. A tyrosinase mutant, characterized in that the tyrosinase mutant has the following amino acid mutations in the amino acid sequence shown in SEQ ID NO. 2: N205T+R209D。N205T+R209D. 2.一种DNA分子,其特征在于,所述DNA分子为编码如权利要求1所述的酪氨酸酶突变体的核苷酸序列或其互补序列。2. A DNA molecule, characterized in that the DNA molecule is a nucleotide sequence encoding the tyrosinase mutant according to claim 1 or its complementary sequence. 3.一种重组质粒,其特征在于,所述重组质粒含有如权利要求2所述的DNA分子。3. A recombinant plasmid, characterized in that the recombinant plasmid contains the DNA molecule according to claim 2. 4.一种重组菌株,其特征在于,所述重组菌株含有如权利要求3所述的重组质粒。4. A recombinant strain, characterized in that the recombinant strain contains the recombinant plasmid according to claim 3. 5.根据权利要求4所述的重组菌株,其特征在于,所述重组菌株的宿主细胞为原核细胞或真核细胞,所述真核细胞为酵母细胞。5. The recombinant strain according to claim 4, characterized in that the host cell of the recombinant strain is a prokaryotic cell or a eukaryotic cell, and the eukaryotic cell is a yeast cell. 6.根据权利要求4所述的重组菌株,其特征在于,所述重组菌株的宿主细胞为感受态细胞。The recombinant strain according to claim 4 , characterized in that the host cell of the recombinant strain is a competent cell. 7.根据权利要求6所述的重组菌株,其特征在于,所述感受态细胞为大肠杆菌BL21(DE3)。7. The recombinant strain according to claim 6, characterized in that the competent cell is Escherichia coli BL21 (DE3). 8.根据权利要求1所述的酪氨酸酶突变体、权利要求2所述的DNA分子、权利要求3所述的重组质粒、权利要求4-7任一项所述的重组菌株在用于催化左旋多巴生成5,6-二羟基吲哚中的用途。8. Use of the tyrosinase mutant according to claim 1, the DNA molecule according to claim 2, the recombinant plasmid according to claim 3, or the recombinant strain according to any one of claims 4 to 7 in catalyzing the production of 5,6-dihydroxyindole from L-dopa. 9.根据权利要求8所述的用途,其特征在于,所述5,6-二羟基吲哚的制备方法,包括:9. The use according to claim 8, characterized in that the preparation method of 5,6-dihydroxyindole comprises: 制备含有编码酪氨酸酶突变体的重组质粒;preparing a recombinant plasmid containing a tyrosinase mutant; 将重组质粒转化至宿主细胞中,得到重组菌株;Transforming the recombinant plasmid into a host cell to obtain a recombinant strain; 以左旋多巴为底物,利用重组菌株催化左旋多巴生成5,6-二羟基吲哚。Using L-DOPA as substrate, the recombinant strain catalyzes L-DOPA to produce 5,6-dihydroxyindole.
CN202410855245.6A 2024-06-28 2024-06-28 Tyrosinase mutant and use thereof Active CN118421577B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202410855245.6A CN118421577B (en) 2024-06-28 2024-06-28 Tyrosinase mutant and use thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202410855245.6A CN118421577B (en) 2024-06-28 2024-06-28 Tyrosinase mutant and use thereof

Publications (2)

Publication Number Publication Date
CN118421577A CN118421577A (en) 2024-08-02
CN118421577B true CN118421577B (en) 2024-10-01

Family

ID=92321587

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202410855245.6A Active CN118421577B (en) 2024-06-28 2024-06-28 Tyrosinase mutant and use thereof

Country Status (1)

Country Link
CN (1) CN118421577B (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1033405A2 (en) * 1999-02-25 2000-09-06 Ceres Incorporated Sequence-determined DNA fragments and corresponding polypeptides encoded thereby
CN107602498A (en) * 2017-07-26 2018-01-19 华南理工大学 A kind of fluorescence probe and preparation method thereof with detected in tyrosinase in application

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10766932B2 (en) * 2011-05-11 2020-09-08 The Children's Medical Center Corporation Multiple antigen presenting immunogenic composition, and methods and uses thereof
CN115717131B (en) * 2022-11-21 2025-03-25 江南大学 A recombinant tyrosinase mutant and its application
CN117603926A (en) * 2023-10-12 2024-02-27 华南理工大学 A mutant recombinant rose polyphenol oxidase proenzyme and its preparation method and application

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1033405A2 (en) * 1999-02-25 2000-09-06 Ceres Incorporated Sequence-determined DNA fragments and corresponding polypeptides encoded thereby
CN107602498A (en) * 2017-07-26 2018-01-19 华南理工大学 A kind of fluorescence probe and preparation method thereof with detected in tyrosinase in application

Also Published As

Publication number Publication date
CN118421577A (en) 2024-08-02

Similar Documents

Publication Publication Date Title
CN108034648B (en) D-psicose 3-epimerase mutant with improved thermal stability
CN113774036A (en) Imine reductase mutant and application thereof
CN113151201B (en) High thermostability and high activity isoeugenol monooxygenase mutant and its application
CN112662638A (en) Function of novel R-selective styrene monooxygenase
CN112779232B (en) A kind of synthetic method of chiral amine alcohol compound
CN118421577B (en) Tyrosinase mutant and use thereof
CN113881657A (en) Lysine decarboxylase for synthesizing pentanediamine and application thereof
CN113462678B (en) A glutamate decarboxylase mutant
WO2016127469A1 (en) Engineering bacteria and method for producing beta-alanine
CN111996220B (en) Method for synthesizing spermidine by biological method
US20030175909A1 (en) Novel thermostable galactose isomerase and tagatose production thereby
CN106544336A (en) A kind of nitrile hydratase improved by aliphatic dintrile regioselectivity
CN113061593B (en) L-malate dehydrogenase mutant and application thereof
CN113637650B (en) Alanine dehydrogenase SaAD and its encoding gene and application
WO2018127143A1 (en) Highly active s-cyanohydrin lyase and application thereof
CN112625993B (en) Preparation of alpha-ketoglutaric acid by microbial conversion method
CN114164198B (en) A (R)-(-)-3-(carbamoylmethyl)-5-methylhexanoic acid synthetic protein and its mutant and application
CN108277216A (en) High activity S- cyanalcohols lyases and its application
JPWO2002055715A1 (en) DNA encoding D-myo-inositol 1-epimerase
CN112921012A (en) Corynebacterium glutamicum meso-2, 6-diaminopimelate dehydrogenase mutant and application thereof
CN108034644B (en) A kind of L-lactate dehydrogenase mutant with improved catalytic efficiency and construction method thereof
CN108559734B (en) L-lactate dehydrogenase mutant with improved catalytic efficiency and application thereof
JP2005176828A (en) Modified sarcosine oxidase, its gene, its recombinant dna, and method for producing the modified sarcosine oxidase
CN109486783B (en) An ω-transaminase mutant that catalyzes the five-membered ring intermediate of sitafloxacin
CN109456952B (en) Omega-transaminase mutant capable of catalyzing sitafloxacin five-membered ring key intermediate

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20241018

Address after: Building 1-8, No. 7 Canghai 2nd Road, Yonghe Economic Zone, Guangzhou Economic and Technological Development Zone, Guangdong Province 510000

Patentee after: GUANGZHOU STARTEC SCIENCE & TECHNOLOGY CO.,LTD.

Country or region after: China

Address before: No. 381, five mountain road, Tianhe District, Guangzhou, Guangdong

Patentee before: SOUTH CHINA University OF TECHNOLOGY

Country or region before: China

TR01 Transfer of patent right