CN118421571A - Chimeric VSV recombinant virus for expressing nipah virus envelope glycoprotein and application thereof - Google Patents
Chimeric VSV recombinant virus for expressing nipah virus envelope glycoprotein and application thereof Download PDFInfo
- Publication number
- CN118421571A CN118421571A CN202410143819.7A CN202410143819A CN118421571A CN 118421571 A CN118421571 A CN 118421571A CN 202410143819 A CN202410143819 A CN 202410143819A CN 118421571 A CN118421571 A CN 118421571A
- Authority
- CN
- China
- Prior art keywords
- rvsv
- virus
- nivmygf
- nivbdgf
- chimeric
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N7/00—Viruses; Bacteriophages; Compositions thereof; Preparation or purification thereof
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K39/395—Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum
- A61K39/42—Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum viral
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
- A61P31/12—Antivirals
- A61P31/14—Antivirals for RNA viruses
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/005—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from viruses
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K16/00—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
- C07K16/08—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from viruses
- C07K16/10—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from viruses from RNA viruses
- C07K16/1027—Paramyxoviridae, e.g. respiratory syncytial virus
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/53—Immunoassay; Biospecific binding assay; Materials therefor
- G01N33/569—Immunoassay; Biospecific binding assay; Materials therefor for microorganisms, e.g. protozoa, bacteria, viruses
- G01N33/56983—Viruses
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/70—Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
- C07K2317/76—Antagonist effect on antigen, e.g. neutralization or inhibition of binding
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2760/00—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses negative-sense
- C12N2760/00011—Details
- C12N2760/18011—Paramyxoviridae
- C12N2760/18211—Henipavirus, e.g. hendra virus
- C12N2760/18222—New viral proteins or individual genes, new structural or functional aspects of known viral proteins or genes
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2760/00—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses negative-sense
- C12N2760/00011—Details
- C12N2760/18011—Paramyxoviridae
- C12N2760/18211—Henipavirus, e.g. hendra virus
- C12N2760/18234—Use of virus or viral component as vaccine, e.g. live-attenuated or inactivated virus, VLP, viral protein
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2760/00—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses negative-sense
- C12N2760/00011—Details
- C12N2760/20011—Rhabdoviridae
- C12N2760/20211—Vesiculovirus, e.g. vesicular stomatitis Indiana virus
- C12N2760/20221—Viruses as such, e.g. new isolates, mutants or their genomic sequences
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2333/00—Assays involving biological materials from specific organisms or of a specific nature
- G01N2333/005—Assays involving biological materials from specific organisms or of a specific nature from viruses
- G01N2333/08—RNA viruses
- G01N2333/115—Paramyxoviridae, e.g. parainfluenza virus
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Virology (AREA)
- Medicinal Chemistry (AREA)
- Organic Chemistry (AREA)
- General Health & Medical Sciences (AREA)
- Immunology (AREA)
- Engineering & Computer Science (AREA)
- Molecular Biology (AREA)
- Biochemistry (AREA)
- Genetics & Genomics (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Microbiology (AREA)
- Biomedical Technology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Veterinary Medicine (AREA)
- Biophysics (AREA)
- Hematology (AREA)
- Animal Behavior & Ethology (AREA)
- Public Health (AREA)
- Wood Science & Technology (AREA)
- Zoology (AREA)
- Urology & Nephrology (AREA)
- Pharmacology & Pharmacy (AREA)
- Biotechnology (AREA)
- Epidemiology (AREA)
- Cell Biology (AREA)
- Tropical Medicine & Parasitology (AREA)
- Food Science & Technology (AREA)
- Physics & Mathematics (AREA)
- Analytical Chemistry (AREA)
- Mycology (AREA)
- General Physics & Mathematics (AREA)
- Pathology (AREA)
- Pulmonology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Gastroenterology & Hepatology (AREA)
Abstract
Description
技术领域Technical Field
本发明属于病毒领域,具体涉及一种表达尼帕病毒囊膜糖蛋白的嵌合型VSV重组病毒及其应用。The present invention belongs to the field of viruses, and in particular relates to a chimeric VSV recombinant virus expressing Nipah virus envelope glycoprotein and an application thereof.
背景技术Background technique
尼帕病是由尼帕病毒(NiV)引起的一种重大烈性人兽共患病,其自然宿主为果蝠,可感染猪马牛羊等家畜以及狗猫等宠物,猪是NiV的中间放大宿主。NiV被列为生物安全IV级病原,也是生物恐怖防范的重点病原,WHO将其列为应对潜在大流行风险蓝图的优先病原,我国将其列为I类动物疫病加以重点防范。尼帕病的病死率为40%-100%,引起严重的呼吸衰竭和神经系统症状。猪极为易感,症状不明显,但可大量排毒,是该病传播的关键风险因素之一。该病对自然宿主果蝠不致病,但可向外排毒,通过体液和排泄物污染食物而传播给人,是NiV近年来在南亚次大陆传播的主要方式。人与人之间也可通过密切接触传播。尼帕病自发现以来,几乎每年都在印度,孟加拉国等我邻国爆发,我国是世界第一养猪大国,且位于果蝠的迁徙路线,因此我国面临尼帕病的严重威胁:一是存在很高输入性风险,主要为蝙蝠迁徙带毒或边境货物走私;二是原发性风险,有研究报道我国多省蝙蝠血清呈尼帕(样)病毒血清学阳性;我国云南和山东发现了两种新型亨尼帕病毒(即墨江病毒MjoV和琅琊病毒LayV),以上证据表明我国自然环境中存在亨尼帕病毒,可能造成潜在的发病和流行。Nipah disease is a serious zoonosis caused by Nipah virus (NiV). Its natural host is fruit bats, which can infect livestock such as pigs, horses, cattle and sheep, as well as pets such as dogs and cats. Pigs are the intermediate amplification hosts of NiV. NiV is listed as a biosafety level IV pathogen and a key pathogen for bioterrorism prevention. The WHO lists it as a priority pathogen in the blueprint for responding to potential pandemic risks. my country lists it as a Class I animal disease for key prevention. The mortality rate of Nipah disease is 40%-100%, causing severe respiratory failure and neurological symptoms. Pigs are extremely susceptible, with no obvious symptoms, but can excrete a large amount of toxins, which is one of the key risk factors for the spread of the disease. The disease is not pathogenic to the natural host fruit bats, but can excrete toxins outwards and spread to humans through contamination of food by body fluids and excrement. This is the main way NiV has spread in the South Asian subcontinent in recent years. It can also be transmitted between people through close contact. Since its discovery, Nipah disease has broken out almost every year in our neighboring countries such as India and Bangladesh. my country is the world's largest pig-raising country and is located on the migration route of fruit bats. Therefore, my country faces a serious threat of Nipah disease: first, there is a very high risk of imported infection, mainly due to migrating bats carrying the virus or smuggling of goods across the border; second, there is a primary risk. Studies have reported that bat sera in many provinces in my country are serologically positive for Nipah (like) viruses; two new types of henipaviruses (Mojiang virus MjoV and Langya virus LayV) have been discovered in Yunnan and Shandong, my country. The above evidence shows that henipaviruses exist in my country's natural environment, which may cause potential illness and epidemics.
NiV属于副黏病毒科亨尼帕病毒属,NiV为副粘病毒科(Paramyxoviridae)副粘病毒亚科(Paramyxovirinae)的成员,和亨德拉病毒(Hendra virus,HeV)共同组成Henipavirus属。尼帕病毒含有约18000个核苷酸的单链RNA,其与复制复合物(核蛋白(N)、磷蛋白(P)、和聚合酶(L))的病毒蛋白结合,单链RNA被含有附着蛋白(G)和融合蛋白(F)的脂质双层的被膜所包绕(Chua,2000,Science.288:1432-5;Wang,etal2001,MicrobesandInfection3,279-287;Chan,etal2001,JGenVirol.82:2151-5)。NiV belongs to the Henipavirus genus of the Paramyxoviridae family. NiV is a member of the Paramyxovirinae subfamily of the Paramyxoviridae family and together with Hendra virus (HeV) constitutes the Henipavirus genus. Nipah virus contains a single-stranded RNA of about 18,000 nucleotides, which is bound to viral proteins of the replication complex (nucleoprotein (N), phosphoprotein (P), and polymerase (L)). The single-stranded RNA is surrounded by a lipid bilayer membrane containing attachment protein (G) and fusion protein (F) (Chua, 2000, Science. 288: 1432-5; Wang, et al 2001, Microbes and Infection 3, 279-287; Chan, et al 2001, J Gen Virol. 82: 2151-5).
NiV病毒粒子具有多形性,有囊膜,病毒颗粒大多数呈现不规则的球状,直径大多数长约150-200nm,少数病毒颗粒呈现丝状体,长度可达10000nm。NiV主要有2个遗传谱系:NiV马来西亚株(NiV Malaysia,NiV-MY)和NiV孟加拉株(NiVBangladesh,NiV-BD)。其中NiV-MY株基因组18246个核苷酸,而NiV-BD株基因组18252个核苷酸。目前流行毒株主要是马来西亚株,比同属HeV多12个碱基,编码N(核蛋白)、P(磷蛋白)、M(基质蛋白)、F(融合蛋白)、G(受体结合蛋白)、L(聚合酶)等至少6种蛋白,其中N蛋白、P蛋白、L聚合酶一起称为复制复合体,结合在病毒RNA上,与病毒基因组的转录和复制有关;M蛋白参与维持病毒囊膜形态;F蛋白、G蛋白参与蛋白的融合和吸附,与病毒入侵有关。NiV在其包膜内包含两种膜锚定糖蛋白,G蛋白和F蛋白;其中G蛋白全长共602个氨基酸,属于II型跨膜糖蛋白,N末端位于膜内,膜内部分极短,疏水的跨膜结构域靠近N端,C末端位于膜外,由一个“球型”头部区域和较长的“外茎”区域组成,G蛋白可与宿主细胞膜蛋白ephrin-B2、ephrin-B3结合;F蛋白是位于病毒粒子表面的I型跨膜糖蛋白,其主要功能是介导病毒囊膜与宿主细胞膜的融合,从而使病毒基因组进入细胞;与G蛋白一样,F蛋白也是尼帕病毒的主要免疫保护性抗原,使免疫动物产生中和抗体;针对G蛋白和F蛋白中和抗体是针对尼帕病产生保护的最主要免疫机制。NiV在入侵宿主细胞的过程中,通过病毒表面糖蛋白G与受体ephrin-B2/B3结合后,会引起G蛋白在受体结合区和茎状区内激活融合蛋白F发生构象改变,从而激活F蛋白与细胞膜融合,最终病毒侵入细胞。此两种蛋白在宿主细胞表面高度保守,所以目前F、G为抗病毒与疫苗研究的主要靶点。NiV virus particles are polymorphic and have an envelope. Most of the virus particles are irregular spherical, with a diameter of about 150-200nm. A few virus particles are filamentous and can reach 10,000nm in length. NiV has two main genetic lineages: NiV Malaysia (NiV Malaysia, NiV-MY) and NiV Bangladesh (NiV Bangladesh, NiV-BD). The genome of the NiV-MY strain is 18,246 nucleotides, while the genome of the NiV-BD strain is 18,252 nucleotides. The current prevalent strain is mainly the Malaysian strain, which has 12 more bases than the HeV of the same genus, encoding at least 6 proteins such as N (nucleoprotein), P (phosphoprotein), M (matrix protein), F (fusion protein), G (receptor binding protein), and L (polymerase). Among them, the N protein, P protein, and L polymerase are collectively called the replication complex, which is bound to the viral RNA and is related to the transcription and replication of the viral genome; the M protein is involved in maintaining the morphology of the viral envelope; the F protein and G protein are involved in the fusion and adsorption of proteins and are related to viral invasion. NiV contains two membrane-anchored glycoproteins in its envelope, G protein and F protein; the G protein is 602 amino acids in total and is a type II transmembrane glycoprotein. Its N-terminus is located inside the membrane, the intramembrane part is extremely short, the hydrophobic transmembrane domain is close to the N-terminus, and the C-terminus is located outside the membrane. It consists of a "globular" head region and a longer "external stem" region. The G protein can bind to the host cell membrane proteins ephrin-B2 and ephrin-B3; the F protein is a type I transmembrane glycoprotein located on the surface of the virus particle, and its main function is to mediate the fusion of the viral envelope and the host cell membrane, thereby allowing the viral genome to enter the cell; like the G protein, the F protein is also the main immune protective antigen of the Nipah virus, which enables the immunized animals to produce neutralizing antibodies; neutralizing antibodies against the G and F proteins are the most important immune mechanism for protection against Nipah disease. When NiV invades host cells, the virus surface glycoprotein G binds to the receptor ephrin-B2/B3, which causes the G protein to activate the fusion protein F in the receptor binding region and stem region to change its conformation, thereby activating the F protein to fuse with the cell membrane, and finally the virus invades the cell. These two proteins are highly conserved on the surface of host cells, so F and G are currently the main targets for antiviral and vaccine research.
Guillaume等人用表达尼帕病毒G或F蛋白的重组痘病毒免疫仓鼠并制备高免血清,用高免血清被动免疫仓鼠可以使其对致死剂量尼帕病毒的攻击产生保护(GuillaumeV,Contamin H,Loth P,Georges-Courbot MC,Lefeuvre A,Marianneau P,Chua KB,LamSK,Buckland R,Deubel V et al:Nipah virus:vaccination andpassive protectionstudies in a hamster model.J Virol 2004,78(2):834-840.),说明中和抗体在机体抵御和清除尼帕病毒过程中起重要作用。Kaku等人的研究比较了用尼帕病毒G和F蛋白囊膜嵌合水泡性口炎假病毒粒子以及尼帕活病毒做中和试验的血清稀释效价,发现两种方法得出的血清中和效价存在正相关关系(Kaku Y,Noguchi A,Marsh GA,McEachern JA,OkutaniA,Hotta K,Bazartseren B,Fukushi S,Broder CC,Yamada A et al:A neutralizationtest for specific detection ofNipah virus antibodies using pseudotypedvesicular s tomatitis virus expressing green fluorescent protein.J VirolMethods 2009,160(1-2):7-13.)。在专利《CN113372454B》中公开了以尼帕病毒受体结合糖蛋白(G)为研究对象,利用哺乳动物细胞对其进行可溶性表达,纯化并通过免疫小鼠制备特异性血清,结果表明尼帕病毒G蛋白在Expi293F细胞中获得可溶性表达,纯化得到的目的蛋白大小正确,纯度大于99%;制备的抗血清能特异性结合目的蛋白。在专利《HK1096431A》中证实尼帕病毒G糖蛋白造成与细胞受体的附着,而F糖蛋白诱导了病毒和细胞膜之间的融合。G和F协同作用引起融合,即表达尼帕病毒蛋白的疫苗只有在共感染(即G+F)时才诱导融合。在专利《CN102533675A》中公开一种表达尼帕脑炎病毒F蛋白的重组新城疫病毒LaSota疫苗株及其制备方法和应用;将尼帕病毒F基因插入LaSota基因组作为一个独立的转录单元,成功构建并拯救出了表达尼帕病毒F蛋白的重组新城疫病毒rLa-NiVF,试验结果证明rLa-NiVF能够正确表达尼帕病毒F蛋白,且重组病毒保持了与LaSota疫苗株一致的高鸡胚生长滴度和对哺乳动物的高安全性。在专利《CN102559612B》中提供了一种表达尼帕脑炎病毒G蛋白的重组新城疫病毒LaSota疫苗株及其制备方法和应用;具体的公开了以新城疫病毒LaSota弱毒株为载体,利用反向遗传操作技术成功构建了表达尼帕病毒G蛋白的重组新城疫病毒活载体疫苗-rLa-NiVG,证明rLa-NiVG能够正确表达尼帕病毒G蛋白,且重组病毒保持了与LaSota一致的高鸡胚生长滴度和对哺乳动物的高度安全性。Guillaume et al. immunized hamsters with recombinant poxvirus expressing Nipah virus G or F protein and prepared hyperimmune serum. Passive immunization of hamsters with hyperimmune serum can protect them against lethal doses of Nipah virus (Guillaume V, Contamin H, Loth P, Georges-Courbot MC, Lefeuvre A, Marianneau P, Chua KB, Lam SK, Buckland R, Deubel V et al: Nipah virus: vaccination and passive protection studies in a hamster model. J Virol 2004, 78(2): 834-840.), indicating that neutralizing antibodies play an important role in the body's resistance to and elimination of Nipah virus. Kaku et al. compared the serum dilution titers of neutralization tests using Nipah virus G and F protein envelope chimeric vesicular stomatitis pseudovirions and Nipah live virus, and found that there was a positive correlation between the serum neutralization titers obtained by the two methods (Kaku Y, Noguchi A, Marsh GA, McEachern JA, OkutaniA, Hotta K, Bazartseren B, Fukushi S, Broder CC, Yamada A et al: A neutralization test for specific detection of Nipah virus antibodies using pseudotyped vesicular s tomatitis virus expressing green fluorescent protein. J Virol Methods 2009, 160(1-2): 7-13.). Patent "CN113372454B" discloses that Nipah virus receptor binding glycoprotein (G) is used as the research object, and mammalian cells are used to express it soluble, purify it, and prepare specific serum by immunizing mice. The results show that Nipah virus G protein is soluble in Expi293F cells, and the purified target protein is of the correct size and has a purity of more than 99%; the prepared antiserum can specifically bind to the target protein. Patent "HK1096431A" confirms that Nipah virus G glycoprotein causes attachment to cell receptors, while F glycoprotein induces fusion between the virus and cell membranes. G and F act synergistically to cause fusion, that is, vaccines expressing Nipah virus proteins only induce fusion when co-infected (i.e., G+F). Patent "CN102533675A" discloses a recombinant Newcastle disease virus LaSota vaccine strain expressing Nipah encephalitis virus F protein, and its preparation method and application; the Nipah virus F gene was inserted into the LaSota genome as an independent transcription unit, and the recombinant Newcastle disease virus rLa-NiVF expressing Nipah virus F protein was successfully constructed and rescued. The experimental results show that rLa-NiVF can correctly express Nipah virus F protein, and the recombinant virus maintains the high chicken embryo growth titer and high safety for mammals consistent with the LaSota vaccine strain. Patent "CN102559612B" provides a recombinant Newcastle disease virus LaSota vaccine strain expressing Nipah encephalitis virus G protein, and its preparation method and application; specifically, it discloses that the Newcastle disease virus LaSota attenuated strain was used as a vector, and reverse genetic manipulation technology was used to successfully construct a recombinant Newcastle disease virus live vector vaccine - rLa-NiVG expressing Nipah virus G protein, proving that rLa-NiVG can correctly express Nipah virus G protein, and the recombinant virus maintains the high chicken embryo growth titer consistent with LaSota and a high safety for mammals.
本申请以水泡性口炎病毒(VSV)为载体,构建了G蛋白和F蛋白共表达的嵌合病毒毒株,为尼帕病的有效防控、诊断检测、疫苗制备及抗病毒治疗产品的制备提供新的途径。This application uses vesicular stomatitis virus (VSV) as a vector to construct a chimeric virus strain that co-expresses G protein and F protein, providing a new approach for the effective prevention and control, diagnosis and detection, vaccine preparation, and preparation of antiviral therapeutic products for Nipah disease.
发明内容Summary of the invention
本研究采用缺失VSV G蛋白的水泡性口炎病毒(VSV)为载体,分别构建了NiV马来西亚株(NiV-Malaysia,NiVMY)和孟加拉株(NiV-Bangladesh,NiVBD)G蛋白和F蛋白共表达的嵌合病毒毒株,构建的毒株为rVSV△G/NiVMYGF和rVSV△G/NiVBDGF;该病毒能够在缺失VSV G蛋白的水泡性口炎病毒(VSV)颗粒表面完整表达尼帕病毒的F和G蛋白,保证了病毒的完整性,并使其具有可复制性,同时该病毒在具有更好的生物安全,可以进行常规的检测及其产品的制备。In this study, vesicular stomatitis virus (VSV) lacking VSV G protein was used as a vector to construct chimeric virus strains co-expressing G protein and F protein of NiV Malaysian strain (NiV-Malaysia, NiVMY) and NiV-Bangladesh strain (NiVBD), respectively. The constructed strains are rVSV△G/NiVMYGF and rVSV△G/NiVBDGF; the virus can fully express the F and G proteins of Nipah virus on the surface of vesicular stomatitis virus (VSV) particles lacking VSV G protein, ensuring the integrity of the virus and making it replicable. At the same time, the virus has better biosafety and can be used for routine testing and preparation of its products.
在此基础上,完成了本发明。On this basis, the present invention has been completed.
第一方面,本发明提供一种共表达NiV G和F蛋白的嵌合型VSV重组病毒毒株,所述嵌合型VSV重组病毒毒株为rVSV△G/NiVMYGF和rVSV△G/NiVBDGF;水泡性口炎病毒rVSV△G/NiVMYGF,保藏编号:CCTCC NO:V2023110,保藏日期:2023.12.18,保藏单位名称:中国典型培养物保藏中心;水泡性口炎病毒rVSV△G/NiVBDGF,保藏编号:CCTCCNO:V2023111,保藏日期:2023.12.18;保藏单位名称:中国典型培养物保藏中心。In the first aspect, the present invention provides a chimeric VSV recombinant virus strain that co-expresses NiV G and F proteins, wherein the chimeric VSV recombinant virus strains are rVSV△G/NiVMYGF and rVSV△G/NiVBDGF; vesicular stomatitis virus rVSV△G/NiVMYGF, deposit number: CCTCC NO: V2023110, deposit date: 2023.12.18, name of depository unit: China Center for Type Culture Collection; vesicular stomatitis virus rVSV△G/NiVBDGF, deposit number: CCTCC NO: V2023111, deposit date: 2023.12.18; name of depository unit: China Center for Type Culture Collection.
第二方面,本发明提供一种组合物,所述组合物含有嵌合型VSV重组病毒毒株rVSV△G/NiVMYGF和rVSV△G/NiVBDGF。In a second aspect, the present invention provides a composition comprising chimeric VSV recombinant virus strains rVSV△G/NiVMYGF and rVSV△G/NiVBDGF.
进一步的,所述嵌合型VSV重组病毒毒株还可以是其核苷酸或其蛋白质。Furthermore, the chimeric VSV recombinant virus strain may also be its nucleotide or its protein.
进一步的,所述蛋白质还包括其蛋白的融合物和衍生物。Furthermore, the protein also includes its fusions and derivatives.
进一步的,所述组合物包括但不限于药物组合物和免疫制剂。Furthermore, the composition includes but is not limited to pharmaceutical compositions and immune preparations.
第三方面,本发明提供一种嵌合型VSV重组病毒毒株rVSV△G/NiVMYGF和rVSV△G/NiVBDGF在制备预防或治疗由尼帕病毒感染引起的疾病的制剂中的应用。In a third aspect, the present invention provides a use of chimeric VSV recombinant virus strains rVSV△G/NiVMYGF and rVSV△G/NiVBDGF in the preparation of a preparation for preventing or treating diseases caused by Nipah virus infection.
进一步的,所述制剂还可以是疫苗及其疫苗组合物。Furthermore, the preparation may also be a vaccine and a vaccine composition thereof.
进一步的,所述疫苗组合物还包含佐剂。Furthermore, the vaccine composition also contains an adjuvant.
进一步的,所述佐剂选自水包油佐剂、聚合物和水佐剂、油包水佐剂、氢氧化铝佐剂、维生素E佐剂及其组合。Furthermore, the adjuvant is selected from oil-in-water adjuvants, polymer and water adjuvants, water-in-oil adjuvants, aluminum hydroxide adjuvants, vitamin E adjuvants and combinations thereof.
进一步的,所述疫苗组合物,其中所述组合物还包含至少一种额外的抗原。Furthermore, the vaccine composition further comprises at least one additional antigen.
进一步的,所述制剂给药途径选自:经口给药、舌下给药、胃或肠给药、局部给药、注射给药、静脉注射、皮下注射、肌肉注射、经皮给药、和/或吸入给药。Furthermore, the administration route of the preparation is selected from: oral administration, sublingual administration, gastric or intestinal administration, topical administration, injection, intravenous injection, subcutaneous injection, intramuscular injection, transdermal administration, and/or inhalation administration.
进一步的,所述制剂可以为:片剂胶囊剂、粉剂、注射剂、糖浆剂、溶液剂、缓释剂、速释剂、控释剂、乳剂、微乳剂、纳米制剂、靶向制剂、栓剂、膏剂、凝胶剂、固体分散体、包合物和/或贴剂。Furthermore, the preparation can be: tablet capsule, powder, injection, syrup, solution, sustained release agent, rapid release agent, controlled release agent, emulsion, microemulsion, nano preparation, targeted preparation, suppository, ointment, gel, solid dispersion, inclusion compound and/or patch.
第四方面,本发明提供一种抗尼帕病毒的抗体,所述抗体由嵌合型VSV重组病毒毒株rVSV△G/NiVMYGF和rVSV△G/NiVBDGF制备获得。In a fourth aspect, the present invention provides an anti-Nipah virus antibody, wherein the antibody is prepared from chimeric VSV recombinant virus strains rVSV△G/NiVMYGF and rVSV△G/NiVBDGF.
进一步的,所述所述嵌合型VSV重组病毒为rVSV△G/NiVMYGF和rVSV△G/NiVBDGF;水泡性口炎病毒rVSV△G/NiVMYGF,保藏编号:CCTCCNO:V2023110,保藏日期:2023.12.18,保藏单位名称:中国典型培养物保藏中心;水泡性口炎病毒rVSV△G/NiVBDGF,保藏编号:CCTCC NO:V2023111,保藏日期:2023.12.18;保藏单位名称:中国典型培养物保藏中心。Furthermore, the chimeric VSV recombinant viruses are rVSV△G/NiVMYGF and rVSV△G/NiVBDGF; vesicular stomatitis virus rVSV△G/NiVMYGF, deposit number: CCTCCNO: V2023110, deposit date: 2023.12.18, name of the depository: China Center for Type Culture Collection; vesicular stomatitis virus rVSV△G/NiVBDGF, deposit number: CCTCC NO: V2023111, deposit date: 2023.12.18; name of the depository: China Center for Type Culture Collection.
进一步的,所述抗体还包括其引物:所述引物如下:Furthermore, the antibody also includes its primers: the primers are as follows:
NiVMY-F-F:NiVMY-F-F:
GGACGAGCTGTACAAGTAAGCTAGCTATGAAAAAAACTAACAGATATCACGACGC GTACAACCATGGTAGTTATACTTGACAAGAGATG;(SEQ ID NO.1)GGACGAGCTGTACAAGTAAGCTAGCTATGAAAAAAACTAACAGATATCACGACGC GTACAACCATGGTAGTTATACTTGACAAGAGATG; (SEQ ID NO. 1)
NiVMY-F-R:NiVMY-F-R:
AGAGGCTGGAATTAGGAGACTGAGTAAACCGGGGATTGTTCAGAAGCTAGAAGTT AGGGGATTGTTCAGAAGCTAGAAGTTAGACAGCCTATGTCCCAATGTAGTAGAGATCC CC;(SEQ ID NO.2)AGAGGCTGGAATTAGGAGACTGAGTAAACCGGGGATTGTTCAGAAGCTAGAAGTT AGGGGATTGTTCAGAAGCTAGAAGTTAGACAGCCTATGTCCCAATGTAGTAGAGATCC CC; (SEQ ID NO. 2)
NiVMY-G-F:NiVMY-G-F:
GTCTCCTAATTCCAGCCTCTCGAACAACTAATATCCTGTCTTTTCTATCCCTATGAA AAAAACTAACAGAGATCGATCTGTTTACGCGTACAACCATGCCGGCAGAAAACAAGA AAGTTAG;(SEQ ID NO.3)GTCTCCTAATTCCAGCCTCTCGAACAACTAATATCCTGTCTTTTCTATCCCTATGAA AAAAACTAACAGAGATCGATCTGTTTACGCGTACAACCATGCCGGCAGAAAACAAGA AAGTTAG; (SEQ ID NO. 3)
NiVMY-G-R:NiVMY-G-R:
GTCCAAACATGAAGAATCTGGCTAGCTTATGTACATTGCTCTGGTATCTTAACC;(SEQ ID NO.4)GTCCAAACATGAAGAATCTGGCTAGCTTATGTACATTGCTCTGGTATCTTAACC; (SEQ ID NO. 4)
NiVBD-F-F:NiVBD-F-F:
TGGACGAGCTGTACAAGTAAGCTAGCTATGAAAAAAACTAACAGATATCACGACG CGTACAACCATGGCAGTTATACTTAACAAGAGATA;(SEQ ID NO.5)TGGACGAGCTGTACAAGTAAGCTAGCTATGAAAAAAACTAACAGATATCACGACG CGTACAACCATGGCAGTTATACTTAACAAGAGATA; (SEQ ID NO.5)
NiVBD-F-R:NiVBD-F-R:
AGAGGCTGGAATTAGGAGACTGAGTAAACCGGGGATTGTTCAGAAGCTAGAAGTT AGGGGATTGTTCAGAAGCTAGAAGTTAGACTAGCCTATGTCCCAATGTAATAGAGATCC CC;(SEQ ID NO.6)AGAGGCTGGAATTAGGAGACTGAGTAAACCGGGGATTGTTCAGAAGCTAGAAGTT AGGGGATTGTTCAGAAGCTAGAAGTTAGACTAGCCTATGTCCCAATGTAATAGAGATCC CC; (SEQ ID NO. 6)
NiVBD-G-F:NiVBD-G-F:
GTCTCCTAATTCCAGCCTCTCGAACAACTAATATCCTGTCTTTTCTATCCCTATGAA AAAAACTAACAGAGATCGATCTGTTTACGCGTACAACCATGCCGACAGAAAGCAAGA AAGTTAG;(SEQ ID NO.7)GTCTCCTAATTCCAGCCTCTCGAACAACTAATATCCTGTCTTTTCTATCCCTATGAA AAAAACTAACAGAGATCGATCTGTTTACGCGTACAACCATGCCGACAGAAAGCAAGA AAGTTAG; (SEQ ID NO. 7)
NIVBD-G-R:NIVBD-G-R:
GTCCAAACATGAAGAATCTGGCTAGCTTATGTACATTGCTCTGGTATCTTAAC;(SEQ ID NO.8)GTCCAAACATGAAGAATCTGGCTAGCTTATGTACATTGCTCTGGTATCTTAAC; (SEQ ID NO. 8)
第五方面,本发明提供一种诊断由尼帕病毒感染引起的疾病的制剂;所述制剂含有如第四方面所述的抗尼帕病毒的抗体。In a fifth aspect, the present invention provides a preparation for diagnosing a disease caused by Nipah virus infection; the preparation contains the anti-Nipah virus antibody as described in the fourth aspect.
进一步的,所述制剂可以是诊断检测的试剂或试剂盒。Furthermore, the preparation may be a reagent or a kit for diagnostic testing.
第六方面,本发明提供一种嵌合型VSV重组病毒、组合物及其组合物在制备抗尼帕病毒的抗体中的应用。In a sixth aspect, the present invention provides a chimeric VSV recombinant virus, a composition, and use of the composition in preparing anti-Nipah virus antibodies.
进一步的,所述抗体包括但不限于单克隆抗体、基因工程抗体、多功能抗体和噬菌体技术制备的抗体。Furthermore, the antibodies include but are not limited to monoclonal antibodies, genetically engineered antibodies, multifunctional antibodies and antibodies prepared by phage technology.
进一步的,所述抗体包括但不限于诊断试剂和抗体治疗制剂。Furthermore, the antibodies include but are not limited to diagnostic reagents and antibody therapeutic preparations.
进一步的,所述抗体还包括其引物:所述引物如SEQ ID NO.1-SEQ ID NO.8所示。Furthermore, the antibody also includes its primer: the primer is shown in SEQ ID NO.1-SEQ ID NO.8.
有益效果Beneficial Effects
1.本申请采用VSV作为活病毒载体,具有多方面优势:如①在病毒囊膜表面高效且稳定的表达尼帕病毒的F蛋白和G蛋白,有助于对生物安全等级要求较高的病原体进行研究;②病毒基因组复制组装在细胞质内完成,没有宿主基因重组的风险,作为疫苗载体不存在反转录活性及整合宿主基因组风险,安全性高;③基因组简单易于修饰,可同时表达尼帕病毒的G蛋白和F蛋白;④人体预存免疫低,无针对病毒载体的预存免疫问题,具有一定的自限性;⑤诱导强效的体液免疫和细胞免疫应答;⑥VSV在大多数哺乳细胞增殖可获得很高滴度的病毒。1. This application uses VSV as a live virus vector, which has many advantages: such as ① the F protein and G protein of Nipah virus are efficiently and stably expressed on the surface of the viral envelope, which is helpful for studying pathogens with high biosafety requirements; ② the replication and assembly of the viral genome are completed in the cytoplasm, without the risk of host gene recombination, and as a vaccine vector, there is no risk of reverse transcription activity and integration into the host genome, and it is highly safe; ③ the genome is simple and easy to modify, and can express the G protein and F protein of Nipah virus at the same time; ④ the human body has low pre-existing immunity, and there is no pre-existing immunity problem against viral vectors, which has a certain self-limiting property; ⑤ inducing strong humoral and cellular immune responses; ⑥ VSV can obtain very high titer viruses when proliferating in most mammalian cells.
2.本申请构建的嵌合型VSV重组病毒毒株rVSV△G/NiVMYGF和rVSV△G/NiVBDGF,具有良好的免疫原性和生物学活性;可以在常规实验条件下进行检测,尤其是可实现可以样品中的尼帕病毒检测,而不需要特殊的实验条件,其安全性较高,没有感染的隐患。2. The chimeric VSV recombinant virus strains rVSV△G/NiVMYGF and rVSV△G/NiVBDGF constructed in the present application have good immunogenicity and biological activity; they can be detected under conventional experimental conditions, especially they can detect Nipah virus in samples without the need for special experimental conditions, they are highly safe and have no risk of infection.
3.本申请构建的缺失VSV G蛋白的嵌合病毒rVSV△G/NiVMYGF和rVSV△G/NiVBDGF;具有良好的免疫原性和生物学活性,免疫电镜表明可嵌入病毒颗粒表面;灭活的嵌合病毒免疫小鼠,均能诱导产生高水平的中和抗体,中和抗体滴度稀释倍数分别可达到640倍和512倍。因此,两株病毒生长滴度高,免疫原性佳,安全性好,可提高规模化生产效率,有利于安全生产管理,是NiV灭活疫苗的理想毒株。3. The chimeric viruses rVSV△G/NiVMYGF and rVSV△G/NiVBDGF lacking VSV G protein constructed in this application have good immunogenicity and biological activity, and immunoelectron microscopy shows that they can be embedded in the surface of virus particles; inactivated chimeric viruses can induce high levels of neutralizing antibodies in mice immunized with them, and the dilution multiples of neutralizing antibody titers can reach 640 times and 512 times, respectively. Therefore, the two strains of viruses have high growth titers, good immunogenicity, good safety, can improve the efficiency of large-scale production, are conducive to safe production management, and are ideal strains for NiV inactivated vaccines.
4.本申请构建的缺失VSV G蛋白的嵌合病毒rVSV△G/NiVMYGF和rVSV△G/NiVBDGF,基于其完整的病毒结构、更高的免疫原性和更好的安全性,可以作为今后尼帕病的有效防控、诊断检测、疫苗制备及抗病毒治疗产品的重要的病毒资源。4. The chimeric viruses rVSV△G/NiVMYGF and rVSV△G/NiVBDGF lacking VSV G protein constructed in this application can serve as an important viral resource for the effective prevention and control, diagnostic testing, vaccine preparation and antiviral treatment products of Nipah disease in the future based on their complete viral structure, higher immunogenicity and better safety.
附图说明BRIEF DESCRIPTION OF THE DRAWINGS
图1rVSV△G/NiVMYGF和rVSV△G/NiVBDGF免疫荧光结果。Fig. 1 Immunofluorescence results of rVSV△G/NiVMYGF and rVSV△G/NiVBDGF.
图2rVSV△G/NiVMYGF和rVSV△G/NiVBDGF透射电镜和免疫电镜结果。Figure 2 Transmission electron microscopy and immunoelectron microscopy results of rVSV△G/NiVMYGF and rVSV△G/NiVBDGF.
图3病毒生长曲线。Fig. 3 Virus growth curve.
图4病毒安全性评价Figure 4 Virus safety evaluation
图5rVSV△G/NiVMYGF分别利用rVSV△G/GFP/NiVMYGF和rVSV△G/GFP/NiVBDGF检测中和抗体结果。Figure 5 The results of neutralizing antibody detection using rVSV△G/NiVMYGF and rVSV△G/GFP/NiVMYGF and rVSV△G/GFP/NiVBDGF respectively.
图6rVSV△G/NiVBDGF分别利用rVSV△G/GFP/NiVMYGF和rVSV△G/GFP/NiVBDGF检测中和抗体结果。Figure 6 The results of neutralizing antibody detection using rVSV△G/NiVBDGF and rVSV△G/GFP/NiVBDGF respectively.
具体实施方式Detailed ways
下面对本发明的具体实施方式作进一步说明。在此需要说明的是,对于这些实施方式的说明用于帮助理解本发明,但并不构成对本发明的限定。此外,下面所描述实施方式中所涉及的技术特征只要彼此之间未构成冲突就可以相互组合。The specific embodiments of the present invention are further described below. It should be noted that the description of these embodiments is used to help understand the present invention, but does not constitute a limitation of the present invention. In addition, the technical features involved in the embodiments described below can be combined with each other as long as they do not conflict with each other.
下述实施例中的实验方法,如无特殊说明,均为常规方法,下述实施例中所用的试验材料,如无特殊说明,均为可通过常规的商业途径购买得到。The experimental methods in the following examples are conventional methods unless otherwise specified, and the experimental materials used in the following examples are commercially available unless otherwise specified.
水泡性口炎病毒(Vesicular stomatitis virus,VSV)是弹状病毒科的代表模式毒种,结构简单、复制能力强、能快速诱导疾病发生,被广泛用作RNA囊膜病毒入侵、复制、装配等机制的研究模型。VSV可高效插入外源基因并稳定表达外源目的蛋白,可作为病毒载体应用于其他病毒科的研究中。水泡性口炎病毒属于水泡病毒属(Rhabdoviridae)弹状病毒科,不分节段单负链RNA病毒,包括新泽西型和印第安纳型。该病毒为子弹状或圆柱状,带有囊膜,基因组长约11Kb,编码五种结构蛋白:核蛋白N、磷蛋白P、基质蛋白M、糖蛋白G和RNA聚合酶蛋白L;其中G蛋白介导病毒与宿主细胞结合并激活免疫反应,在本申请中,通过缺失其自身的糖蛋白G,来组建本申请的G蛋白和F蛋白共表达的尼帕病嵌合病毒毒株;构建的毒株rVSV△G/NiVMYGF和rVSV△G/NiVBDGF具有良好的免疫原性和生物学活性;可清楚的检测到尼帕病毒的F和G蛋白在VSV缺失G蛋白的颗粒表面完整表达,这就保证了囊莫病毒的完整性,实现了病毒的可复制性;其中水泡性口炎病毒rVSV△G/NiVMYGF,保藏编号:CCTCC NO:V2023110,保藏日期:2023.12.18,保藏单位名称:中国典型培养物保藏中心;水泡性口炎病毒rVSV△G/NiVBDGF,保藏编号:CCTCCNO:V2023111,保藏日期:2023.12.18;保藏单位名称:中国典型培养物保藏中心。Vesicular stomatitis virus (VSV) is a representative model virus of the Rhabdoviridae family. It has a simple structure, strong replication ability, and can quickly induce disease. It is widely used as a research model for the invasion, replication, and assembly mechanisms of RNA enveloped viruses. VSV can efficiently insert foreign genes and stably express foreign target proteins, and can be used as a viral vector in the study of other virus families. Vesicular stomatitis virus belongs to the Rhabdoviridae family, a non-segmented single-negative-strand RNA virus, including the New Jersey type and the Indiana type. The virus is bullet-shaped or cylindrical, with an envelope, and the genome is about 11Kb long, encoding five structural proteins: nucleoprotein N, phosphoprotein P, matrix protein M, glycoprotein G and RNA polymerase protein L; wherein the G protein mediates the binding of the virus to the host cell and activates the immune response. In the present application, the G protein and F protein co-expressing Nipah disease chimeric virus strain of the present application are constructed by deleting its own glycoprotein G; the constructed strains rVSV△G/NiVMYGF and rVSV△G/NiVBDGF have good immunogenicity and biological activity; it can be clearly detected that the F and G proteins of the Nipah virus are fully expressed on the surface of the particles of VSV lacking G protein, which ensures the integrity of the cystovirus and realizes the replicability of the virus; wherein the vesicular stomatitis virus rVSV△G/NiVMYGF, the deposit number is: CCTCC NO:V2023110, preservation date: 2023.12.18, name of the preservation unit: China Center for Type Culture Collection; Vesicular Stomatitis Virus rVSV△G/NiVBDGF, preservation number: CCTCCNO:V2023111, preservation date: 2023.12.18; name of the preservation unit: China Center for Type Culture Collection.
实施例1Example 1
1.1表达NiV G和F蛋白嵌合型VSV病毒的合成1.1 Synthesis of chimeric VSV virus expressing NiV G and F proteins
人工合成NiV马来西亚株(NiV-Malaysia,NiVMY)和孟加拉株(NiV-Bangladesh,NiVBD)G和F蛋白。分别设计引物,在上游引物起始密码子ATG前分别引入VSV基因起始、终止及Kozak序列。The G and F proteins of NiV-Malaysia (NiVMY) and Bangladesh (NiV-Bangladesh, NiVBD) were artificially synthesized. Primers were designed to introduce the start, stop and Kozak sequences of VSV gene before the start codon ATG of the upstream primer.
表1构建表达NiVF蛋白或G蛋白的重组VSV全长cDNA的引物Table 1 Primers for constructing recombinant VSV full-length cDNA expressing NiV F protein or G protein
利用PCR的方法,扩增获得目的片段,通过1%琼脂糖凝胶跑电泳回收PCR产物,并测回收产物的浓度,保存于-20℃。分别将PCR产物与载体pCI-Rz-VSVΔG-eGFP-FL的酶切回收产物(Nhe I)进行同源重组,获得表达NiVMY G和F蛋白以及表达NiVBD G和F蛋白重组质粒pCI-RzVSV△G-NiVMYGF和pCI-RzVSV△G-NiVBDGF。利用磷酸钙转染法将上述两种重组质粒分别与表达VSV的N基因,P基因和L基因的辅助质粒pBS-VSV-N,pBS-VSV-P,pBS-VSV-L共转染BHK-21细胞。转染体系如下:The target fragment was amplified by PCR, and the PCR product was recovered by 1% agarose gel electrophoresis, and the concentration of the recovered product was measured and stored at -20°C. The PCR product was homologously recombined with the enzyme digestion recovery product (Nhe I) of the vector pCI-Rz-VSVΔG-eGFP-FL to obtain the recombinant plasmids pCI-RzVSV△G-NiVMYGF and pCI-RzVSV△G-NiVBDGF expressing NiVMY G and F proteins and NiVBD G and F proteins. The above two recombinant plasmids were co-transfected into BHK-21 cells with the auxiliary plasmids pBS-VSV-N, pBS-VSV-P, and pBS-VSV-L expressing the N gene, P gene, and L gene of VSV by calcium phosphate transfection method. The transfection system is as follows:
表2转染体系Table 2 Transfection system
将A管中的反应组分混匀,添加至B管中,混匀后静置20min后滴加到BHK-21细胞的培养液中,置于37℃、5%CO2的培养箱中。Mix the reaction components in tube A and add them to tube B. After mixing, let it stand for 20 minutes and then add it dropwise to the culture medium of BHK-21 cells and place it in an incubator at 37°C and 5% CO2 .
转染72h后,收获细胞上清,在Vero-E6细胞连续传代至到形成明显的细胞病变(CPE),收集嵌合病毒,并分别命名为rVSV△G/NiVMYGF和rVSV△G/NiVBDGF。72 hours after transfection, the cell supernatant was harvested and serially passaged in Vero-E6 cells until obvious cytopathic effect (CPE) was formed. The chimeric viruses were collected and named rVSV△G/NiVMYGF and rVSV△G/NiVBDGF, respectively.
1.2重组嵌合型VSV病毒鉴定1.2 Identification of recombinant chimeric VSV
将嵌合病毒rVSV△G/NiVMYGF和rVSV△G/NiVBDGF以及野生型VSV以MOI=0.01分别感染Vero-E6细胞,感染36h后收集细胞,细胞裂解后,以鼠抗NiV-G、NiV-F血清(1:100)为一抗,进行免疫荧光鉴定。Vero-E6 cells were infected with chimeric viruses rVSV△G/NiVMYGF and rVSV△G/NiVBDGF and wild-type VSV at MOI = 0.01, and the cells were collected 36 hours after infection. After cell lysis, immunofluorescence identification was performed using mouse anti-NiV-G and NiV-F serum (1:100) as primary antibody.
分析结果表明,嵌合病毒rVSV△G/NiVMYGF和rVSV△G/NiVBDGF均可正确表达NiVF和G蛋白(如图1所示)。The analysis results showed that the chimeric viruses rVSV△G/NiVMYGF and rVSV△G/NiVBDGF could correctly express NiVF and G proteins (as shown in Figure 1).
1.3嵌合病毒形态观察1.3 Observation of chimeric virus morphology
收集病毒感染细胞上清,去除细胞碎片,采用磷钨酸负染法制备样品,在电子显微镜下观察病毒形态。为观察嵌合病毒囊膜纤突,病毒样品分别以G和F蛋白特异性抗体标记。The supernatant of virus-infected cells was collected, cell debris was removed, and samples were prepared by phosphotungstic acid negative staining method, and the virus morphology was observed under an electron microscope. To observe the chimeric virus envelope fibers, the virus samples were labeled with G and F protein specific antibodies respectively.
电子显微镜观察显示,两种嵌合病毒呈子弹形态,可观察到病毒粒子及其表面的糖蛋白。免疫电镜负染结果显示,病毒粒子表面可被特异性金颗粒附着(如图2所示)。Electron microscopy showed that the two chimeric viruses were in the shape of bullets, and the virus particles and glycoproteins on their surface could be observed. Immunoelectron microscopy negative staining results showed that the surface of the virus particles could be attached by specific gold particles (as shown in Figure 2).
1.4嵌合病毒生长动力学1.4 Chimeric virus growth kinetics
两种嵌合病毒按MOI=0.01接种Vero-E6细胞,于感染后12h、24h、36h、48h、60h、72h收集细胞上清,并测定TCID50。The two chimeric viruses were inoculated into Vero-E6 cells at MOI=0.01, and the cell supernatants were collected at 12h, 24h, 36h, 48h, 60h, and 72h after infection, and TCID50 was determined.
构建嵌合只表达NiVMY G蛋白或NiVMY F蛋白的vsv嵌合病毒rVSV△G/NiVMYG及rVSV△G/NiVMYF;同时构建只表达NiVBD G蛋白或NiVBD F蛋白的vsv嵌合病毒rVSV△G/NiVBDG及rVSV△G/NiVBDF。将rVSV△G/NiVMYG与rVSV△G/NiVMYF等比例混合,rVSV△G/NiVBDG与rVSV△G/NiVBDF等比例混合,按MOI=0.01接种Vero-E6细胞,于感染后12h、24h、36h、48h、60h、72h收集细胞上清,并测定TCID50。Construct vsv chimeric viruses rVSV△G/NiVMYG and rVSV△G/NiVMYF that only express NiVMY G protein or NiVMY F protein; construct vsv chimeric viruses rVSV△G/NiVBDG and rVSV△G/NiVBDF that only express NiVBD G protein or NiVBD F protein. Mix rVSV△G/NiVMYG and rVSV△G/NiVMYF in equal proportions, and mix rVSV△G/NiVBDG and rVSV△G/NiVBDF in equal proportions, inoculate Vero-E6 cells at MOI=0.01, collect cell supernatants at 12h, 24h, 36h, 48h, 60h, and 72h after infection, and determine TCID50 .
如图3所示,两种嵌合病毒与野生型VSV生长趋势基本一致,在36-48h达到峰值。rVSV△G/NiVMYGF和rVSV△G/NiVBDGF滴度分别为108.28TCID50/mL和108.58TCID50/mL。分别比混合感染rVSV△G/NiVMYG+rVSV△G/NiVMYF和rVSV△G/NiVBDG+rVSV△G/NiVBDF两种毒后的病毒滴度高。As shown in Figure 3, the growth trends of the two chimeric viruses were basically consistent with those of wild-type VSV, reaching a peak at 36-48 hours. The titers of rVSV△G/NiVMYGF and rVSV△G/NiVBDGF were 10 8.28 TCID 50 /mL and 10 8.58 TCID 50 /mL, respectively. These were higher than the virus titers after mixed infection with rVSV△G/NiVMYG+rVSV△G/NiVMYF and rVSV△G/NiVBDG+rVSV△G/NiVBDF.
实施例2嵌合病毒小鼠安全性试验Example 2 Chimeric virus mouse safety test
嵌合病毒rVSV△G/NiVMYGF和rVSV△G/NiVBDGF病毒液5×105TCID50/0.1ml肌肉注射分别接种10只6周龄雌性BALB/c小鼠,以同等体积PBS接种10只小鼠作为对照。每日观察小鼠健康状况并记录体重变化,连续观察两周。Chimeric virus rVSV△G/NiVMYGF and rVSV△G/NiVBDGF virus solution 5×10 5 TCID 50 /0.1ml were injected intramuscularly into 10 6-week-old female BALB/c mice, and 10 mice were inoculated with the same volume of PBS as control. The health status of mice was observed daily and the weight changes were recorded for two consecutive weeks.
如图4所示,接种嵌合病毒小鼠全部存活,无任何临床症状。实验组小鼠体重增长曲线与PBS组一致,表明嵌合病毒对小鼠不具有致病性。As shown in Figure 4, all mice inoculated with the chimeric virus survived without any clinical symptoms. The weight growth curve of mice in the experimental group was consistent with that in the PBS group, indicating that the chimeric virus was not pathogenic to mice.
实施例3嵌合病毒小鼠免疫试验Example 3 Chimeric virus mouse immunization test
嵌合病毒rVSV△G/NiVMYGF和rVSV△G/NiVBDGF灭活,分别肌肉注射6只6周龄雌性BALB/c小鼠,3周后加强免疫一次,免疫剂量为1×106TCID50/0.1ml。分别于一免后2周、3周、4周、5周、6周采血,制备血清。Chimeric viruses rVSV△G/NiVMYGF and rVSV△G/NiVBDGF were inactivated and injected intramuscularly into 6 6-week-old female BALB/c mice, and then boosted once 3 weeks later with an immunization dose of 1×10 6 TCID 50 /0.1ml. Blood was collected at 2, 3, 4, 5, and 6 weeks after the first immunization to prepare serum.
利用嵌合病毒rVSV△G/GFP/NiVMYGF和rVSV△G/GFP/NiVMYGF进行中和试验检测血清中NiV G和F中和抗体水平。采用固定病毒稀释血清法,将待检血清做2倍比稀释,与1×103个TCID50的嵌合病毒rVSV△G/GFP/NiVGF混合,每个稀释度设5个平行对照。血清与病毒混合物在37℃作用1h后感染接种于96孔板Vero-E6细胞,感染24h后于倒置荧光显微镜下观察,以能够抑制50%荧光的最高稀释度为其中和效价。The neutralization test was performed using chimeric viruses rVSV△G/GFP/NiVMYGF and rVSV△G/GFP/NiVMYGF to detect the level of neutralizing antibodies against NiV G and F in serum. The serum to be tested was diluted 2-fold using the fixed virus dilution serum method and mixed with 1×10 3 TCID 50 of chimeric virus rVSV△G/GFP/NiVGF, with 5 parallel controls for each dilution. After the serum and virus mixture was exposed to 37℃ for 1h, it was inoculated into Vero-E6 cells in a 96-well plate and observed under an inverted fluorescence microscope 24h after infection. The highest dilution that could inhibit 50% of the fluorescence was taken as its neutralization titer.
结果如图5所示,rVSV△G/NiVMYGF一免后2周小鼠血清能有效阻断rVSV△G/GFP/NiVMYGF和rVSV△G/GFP/NiVBDGF感染,加强免疫后,中和抗体滴度进一步提高,在一免后5周达到最高,稀释倍数分别可达到640倍和512倍。The results are shown in Figure 5. The mouse serum 2 weeks after the first immunization with rVSV△G/NiVMYGF can effectively block the infection of rVSV△G/GFP/NiVMYGF and rVSV△G/GFP/NiVBDGF. After booster immunization, the neutralizing antibody titer was further increased, reaching the highest 5 weeks after the first immunization, with dilution multiples reaching 640 times and 512 times, respectively.
如图6所示:rVSV△G/NiVBDGF一免后2周小鼠血清能有效阻断rVSV△G/GFP/NiVMYGF和rVSV△G/GFP/NiVBDGF感染,加强免疫后,中和抗体滴度进一步提高,在一免后5周达到最高,稀释倍数均可达到512倍。As shown in Figure 6: Mouse serum 2 weeks after the first immunization with rVSV△G/NiVBDGF can effectively block rVSV△G/GFP/NiVMYGF and rVSV△G/GFP/NiVBDGF infection. After booster immunization, the neutralizing antibody titer was further increased, reaching the highest 5 weeks after the first immunization, and the dilution multiple could reach 512 times.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202410143819.7A CN118421571A (en) | 2024-02-01 | 2024-02-01 | Chimeric VSV recombinant virus for expressing nipah virus envelope glycoprotein and application thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202410143819.7A CN118421571A (en) | 2024-02-01 | 2024-02-01 | Chimeric VSV recombinant virus for expressing nipah virus envelope glycoprotein and application thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
CN118421571A true CN118421571A (en) | 2024-08-02 |
Family
ID=92330377
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202410143819.7A Pending CN118421571A (en) | 2024-02-01 | 2024-02-01 | Chimeric VSV recombinant virus for expressing nipah virus envelope glycoprotein and application thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN118421571A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN119592524A (en) * | 2024-12-03 | 2025-03-11 | 中国农业科学院哈尔滨兽医研究所(中国动物卫生与流行病学中心哈尔滨分中心) | A recombinant vesicular stomatitis virus carrying Schmallenberg virus gene and its preparation and application |
-
2024
- 2024-02-01 CN CN202410143819.7A patent/CN118421571A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN119592524A (en) * | 2024-12-03 | 2025-03-11 | 中国农业科学院哈尔滨兽医研究所(中国动物卫生与流行病学中心哈尔滨分中心) | A recombinant vesicular stomatitis virus carrying Schmallenberg virus gene and its preparation and application |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6900437B2 (en) | Parainfluenza virus type 5 based vaccine | |
CN111560354B (en) | Recombinant novel coronavirus, preparation method and application thereof | |
CA2604732A1 (en) | Vaccine against pandemic strains of influenza viruses | |
CN108715866B (en) | Recombinant virus vector, vaccine, preparation method and application thereof | |
KR20070100882A (en) | Defective Influenza Virus Particles | |
CN102533675B (en) | Recombinant newcastle disease virus LaSota vaccine strain for expressing nipah encephalitis virus F protein | |
CN101643721B (en) | Broad-spectrum safe animal vaccine against influenza A virus | |
Sarfati-Mizrahi et al. | Protective dose of a recombinant Newcastle disease LaSota–avian influenza virus H5 Vaccine against H5N2 highly pathogenic avian influenza virus and velogenic viscerotropic Newcastle disease virus in broilers with high maternal antibody levels | |
KR102154794B1 (en) | New castle virus expression system for expressing the H5N6 surface antigen of avian influenza virus subtype H9N2 and avian vaccine using the same | |
EP3856240A1 (en) | Compositions and methods for making and using virus-like particles (vlps) | |
Wang et al. | Recombinant rabies virus expressing the H protein of canine distemper virus protects dogs from the lethal distemper challenge | |
CN112079904B (en) | Recombinant H7N9 subtype avian influenza virus-like particle and preparation method and application thereof | |
CN118421571A (en) | Chimeric VSV recombinant virus for expressing nipah virus envelope glycoprotein and application thereof | |
RU2734118C2 (en) | Recombinant virus-like particles (vlp) using bovine immunodeficiency virus group-specific antigen (gag) protein | |
Munir | Peste des petits ruminants virus. | |
CN119040279A (en) | Rabies virus vaccine based on vesicular stomatitis virus vector | |
KR102154795B1 (en) | New castle virus expression system for expressing the H5N6 surface antigen of avian influenza virus subtype H5N6 and avian vaccine using the same | |
CN102816741A (en) | Preparation method and application of newcastle disease virus living-vector vaccine through gene recombination of canine distemper attenuated vaccine strains F and H | |
CN102559612B (en) | Recombinant newcastle disease virus LaSota vaccine strain for expressing Nipah virus encephalitis G-protein | |
KR101908905B1 (en) | Recombinant influenza virus to form cross-protection against multiple subtypes h9 and h5 of influenza viruses and vaccine comprising the same | |
CN113736749B (en) | Avian influenza virus strain and application thereof | |
KR20130130326A (en) | Novel canine influenza virus(h3n2), composition comprising thereof and diagnostic kits of the novel canine h3n2 influenza virus | |
Fernandez Díaz et al. | Development and pre-clinical evaluation of Newcastle disease virus-vectored SARS-CoV-2 intranasal vaccine candidate | |
CN110577585A (en) | Vesicular stomatitis virus envelope glycoprotein variant and its construction method and application | |
CN108373500A (en) | A kind of preparation and application of thermal stability Ebola therapeutic antibodies |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |