CN118414082A - A novel GLV-phenolamide: biosynthesis and function in protecting plants from herbivores - Google Patents
A novel GLV-phenolamide: biosynthesis and function in protecting plants from herbivores Download PDFInfo
- Publication number
- CN118414082A CN118414082A CN202280084827.8A CN202280084827A CN118414082A CN 118414082 A CN118414082 A CN 118414082A CN 202280084827 A CN202280084827 A CN 202280084827A CN 118414082 A CN118414082 A CN 118414082A
- Authority
- CN
- China
- Prior art keywords
- polypeptide
- seq
- polynucleotide
- activity
- encoded
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 244000038280 herbivores Species 0.000 title claims description 40
- 230000015572 biosynthetic process Effects 0.000 title description 31
- 108090000765 processed proteins & peptides Proteins 0.000 claims abstract description 492
- 102000004196 processed proteins & peptides Human genes 0.000 claims abstract description 490
- 229920001184 polypeptide Polymers 0.000 claims abstract description 489
- 230000000694 effects Effects 0.000 claims abstract description 348
- 108091033319 polynucleotide Proteins 0.000 claims abstract description 320
- 102000040430 polynucleotide Human genes 0.000 claims abstract description 320
- 239000002157 polynucleotide Substances 0.000 claims abstract description 320
- 150000001875 compounds Chemical class 0.000 claims abstract description 164
- 230000014509 gene expression Effects 0.000 claims abstract description 116
- 238000000034 method Methods 0.000 claims abstract description 100
- 239000000203 mixture Substances 0.000 claims abstract description 55
- 241001414720 Cicadellidae Species 0.000 claims abstract description 45
- 235000003869 genetically modified organism Nutrition 0.000 claims abstract description 18
- 241001498622 Cixius wagneri Species 0.000 claims abstract description 8
- 241000196324 Embryophyta Species 0.000 claims description 213
- 108010031396 Catechol oxidase Proteins 0.000 claims description 125
- 102000030523 Catechol oxidase Human genes 0.000 claims description 125
- 108700023158 Phenylalanine ammonia-lyases Proteins 0.000 claims description 94
- 108010064894 hydroperoxide lyase Proteins 0.000 claims description 94
- 102000052812 Ornithine decarboxylases Human genes 0.000 claims description 93
- 108700005126 Ornithine decarboxylases Proteins 0.000 claims description 93
- 150000001413 amino acids Chemical group 0.000 claims description 90
- 238000002360 preparation method Methods 0.000 claims description 81
- 101710194716 Hydroxycinnamoyltransferase Proteins 0.000 claims description 76
- 108010036937 Trans-cinnamate 4-monooxygenase Proteins 0.000 claims description 75
- 230000002255 enzymatic effect Effects 0.000 claims description 65
- 241000238631 Hexapoda Species 0.000 claims description 60
- 239000002773 nucleotide Substances 0.000 claims description 58
- 125000003729 nucleotide group Chemical group 0.000 claims description 58
- -1 tyramine ester Chemical class 0.000 claims description 51
- 241000894007 species Species 0.000 claims description 48
- 239000012634 fragment Substances 0.000 claims description 45
- 241000208125 Nicotiana Species 0.000 claims description 38
- 125000004169 (C1-C6) alkyl group Chemical group 0.000 claims description 35
- 230000002068 genetic effect Effects 0.000 claims description 33
- 238000000338 in vitro Methods 0.000 claims description 33
- 230000001105 regulatory effect Effects 0.000 claims description 29
- 241000995218 Coelidiinae Species 0.000 claims description 28
- 238000012239 gene modification Methods 0.000 claims description 27
- 230000005017 genetic modification Effects 0.000 claims description 27
- 235000013617 genetically modified food Nutrition 0.000 claims description 27
- 229920000768 polyamine Polymers 0.000 claims description 27
- 150000003839 salts Chemical class 0.000 claims description 27
- 239000013598 vector Substances 0.000 claims description 27
- 230000002018 overexpression Effects 0.000 claims description 24
- 108010061942 reticuline oxidase Proteins 0.000 claims description 22
- WBCMGDNFDRNGGZ-ACNVUDSMSA-N coumarate Natural products COC(=O)C1=CO[C@H](O[C@H]2O[C@H](CO)[C@@H](O)[C@H](O)[C@H]2O)[C@H]3[C@@H]1C=C[C@]34OC(=O)C(=C4)[C@H](C)OC(=O)C=Cc5ccc(O)cc5 WBCMGDNFDRNGGZ-ACNVUDSMSA-N 0.000 claims description 21
- 101710136235 Hydroxycinnamoyltransferase 1 Proteins 0.000 claims description 20
- 108090000364 Ligases Proteins 0.000 claims description 20
- 102000003960 Ligases Human genes 0.000 claims description 20
- 239000013612 plasmid Substances 0.000 claims description 17
- 125000004209 (C1-C8) alkyl group Chemical group 0.000 claims description 15
- 125000004648 C2-C8 alkenyl group Chemical group 0.000 claims description 15
- 238000003780 insertion Methods 0.000 claims description 15
- 230000037431 insertion Effects 0.000 claims description 15
- NGSWKAQJJWESNS-ZZXKWVIFSA-N trans-4-coumaric acid Chemical compound OC(=O)\C=C\C1=CC=C(O)C=C1 NGSWKAQJJWESNS-ZZXKWVIFSA-N 0.000 claims description 14
- 239000003795 chemical substances by application Substances 0.000 claims description 13
- 125000004191 (C1-C6) alkoxy group Chemical group 0.000 claims description 11
- 239000002917 insecticide Substances 0.000 claims description 11
- 230000007480 spreading Effects 0.000 claims description 11
- 238000003892 spreading Methods 0.000 claims description 11
- 241000207763 Solanum Species 0.000 claims description 7
- 235000002634 Solanum Nutrition 0.000 claims description 7
- 241000995254 Aphrodinae Species 0.000 claims description 6
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 claims description 6
- 241001466021 Cicadellinae Species 0.000 claims description 6
- DZGWFCGJZKJUFP-UHFFFAOYSA-N Tyramine Natural products NCCC1=CC=C(O)C=C1 DZGWFCGJZKJUFP-UHFFFAOYSA-N 0.000 claims description 6
- 238000002414 normal-phase solid-phase extraction Methods 0.000 claims description 6
- 239000003381 stabilizer Substances 0.000 claims description 6
- 229960003732 tyramine Drugs 0.000 claims description 6
- 240000001548 Camellia japonica Species 0.000 claims description 4
- 241000209094 Oryza Species 0.000 claims description 4
- 229910052786 argon Inorganic materials 0.000 claims description 3
- 235000018597 common camellia Nutrition 0.000 claims description 3
- 235000010627 Phaseolus vulgaris Nutrition 0.000 claims description 2
- 244000046052 Phaseolus vulgaris Species 0.000 claims description 2
- 241000209149 Zea Species 0.000 claims description 2
- 238000011010 flushing procedure Methods 0.000 claims 2
- 241000607479 Yersinia pestis Species 0.000 abstract description 4
- HBAQYPYDRFILMT-UHFFFAOYSA-N 8-[3-(1-cyclopropylpyrazol-4-yl)-1H-pyrazolo[4,3-d]pyrimidin-5-yl]-3-methyl-3,8-diazabicyclo[3.2.1]octan-2-one Chemical class C1(CC1)N1N=CC(=C1)C1=NNC2=C1N=C(N=C2)N1C2C(N(CC1CC2)C)=O HBAQYPYDRFILMT-UHFFFAOYSA-N 0.000 abstract description 3
- 210000004027 cell Anatomy 0.000 description 126
- 108090000623 proteins and genes Proteins 0.000 description 125
- 210000001519 tissue Anatomy 0.000 description 89
- ZNJFBWYDHIGLCU-HWKXXFMVSA-N jasmonic acid Chemical compound CC\C=C/C[C@@H]1[C@@H](CC(O)=O)CCC1=O ZNJFBWYDHIGLCU-HWKXXFMVSA-N 0.000 description 87
- KTZNZCYTXQYEHT-GQCTYLIASA-N N-caffeoylputrescine Chemical compound NCCCCNC(=O)\C=C\C1=CC=C(O)C(O)=C1 KTZNZCYTXQYEHT-GQCTYLIASA-N 0.000 description 85
- KTZNZCYTXQYEHT-UHFFFAOYSA-N (2E)-N-(4-aminobutyl)-3-(3,4-dihydroxyphenyl)prop-2-enamide Natural products NCCCCNC(=O)C=CC1=CC=C(O)C(O)=C1 KTZNZCYTXQYEHT-UHFFFAOYSA-N 0.000 description 70
- 241000995023 Empoasca Species 0.000 description 69
- GXANMBISFKBPEX-ARJAWSKDSA-N cis-3-hexenal Chemical compound CC\C=C/CC=O GXANMBISFKBPEX-ARJAWSKDSA-N 0.000 description 67
- ZNJFBWYDHIGLCU-UHFFFAOYSA-N jasmonic acid Natural products CCC=CCC1C(CC(O)=O)CCC1=O ZNJFBWYDHIGLCU-UHFFFAOYSA-N 0.000 description 42
- 239000002207 metabolite Substances 0.000 description 42
- 230000035508 accumulation Effects 0.000 description 37
- 238000009825 accumulation Methods 0.000 description 37
- 229910052739 hydrogen Inorganic materials 0.000 description 37
- GXANMBISFKBPEX-UHFFFAOYSA-N hex-3c-enal Natural products CCC=CCC=O GXANMBISFKBPEX-UHFFFAOYSA-N 0.000 description 33
- KIDHWZJUCRJVML-UHFFFAOYSA-N putrescine Chemical compound NCCCCN KIDHWZJUCRJVML-UHFFFAOYSA-N 0.000 description 31
- 238000004519 manufacturing process Methods 0.000 description 29
- 238000011282 treatment Methods 0.000 description 29
- 239000000758 substrate Substances 0.000 description 27
- 241000228653 Nicotiana attenuata Species 0.000 description 26
- 235000018102 proteins Nutrition 0.000 description 24
- 102000004169 proteins and genes Human genes 0.000 description 24
- 102000004190 Enzymes Human genes 0.000 description 23
- 108090000790 Enzymes Proteins 0.000 description 23
- 238000006243 chemical reaction Methods 0.000 description 23
- 229940088598 enzyme Drugs 0.000 description 23
- 239000002243 precursor Substances 0.000 description 23
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 21
- 238000001727 in vivo Methods 0.000 description 21
- CJHDBEPXEKGBDW-VMPITWQZSA-N p-coumaroylputrescine Chemical compound NCCCCNC(=O)\C=C\C1=CC=C(O)C=C1 CJHDBEPXEKGBDW-VMPITWQZSA-N 0.000 description 21
- 125000003258 trimethylene group Chemical group [H]C([H])([*:2])C([H])([H])C([H])([H])[*:1] 0.000 description 21
- 238000001228 spectrum Methods 0.000 description 20
- 108091026890 Coding region Proteins 0.000 description 19
- 238000004458 analytical method Methods 0.000 description 19
- 239000000376 reactant Substances 0.000 description 19
- 230000004044 response Effects 0.000 description 19
- 230000009261 transgenic effect Effects 0.000 description 19
- SFUVCMKSYKHYLD-UHFFFAOYSA-N N-feruloylputrescine Natural products COC1=CC(C=CC(=O)NCCCCN)=CC=C1O SFUVCMKSYKHYLD-UHFFFAOYSA-N 0.000 description 18
- SFUVCMKSYKHYLD-FNORWQNLSA-N Subaphyllin Chemical compound COC1=CC(\C=C\C(=O)NCCCCN)=CC=C1O SFUVCMKSYKHYLD-FNORWQNLSA-N 0.000 description 18
- 230000006870 function Effects 0.000 description 18
- 238000004885 tandem mass spectrometry Methods 0.000 description 18
- 244000087229 Eugenia decipiens Species 0.000 description 17
- 125000000956 methoxy group Chemical group [H]C([H])([H])O* 0.000 description 17
- 230000037361 pathway Effects 0.000 description 17
- 239000000047 product Substances 0.000 description 17
- NGSWKAQJJWESNS-UHFFFAOYSA-N 4-coumaric acid Chemical compound OC(=O)C=CC1=CC=C(O)C=C1 NGSWKAQJJWESNS-UHFFFAOYSA-N 0.000 description 16
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 15
- 239000005700 Putrescine Substances 0.000 description 15
- 230000000875 corresponding effect Effects 0.000 description 15
- 230000004048 modification Effects 0.000 description 15
- 238000012986 modification Methods 0.000 description 15
- 241001583841 Empoasca decipiens Species 0.000 description 14
- 238000003556 assay Methods 0.000 description 14
- 230000027455 binding Effects 0.000 description 14
- 108020004414 DNA Proteins 0.000 description 13
- 241000588724 Escherichia coli Species 0.000 description 13
- 241000255908 Manduca sexta Species 0.000 description 13
- 230000006378 damage Effects 0.000 description 13
- 230000002503 metabolic effect Effects 0.000 description 13
- 230000011664 signaling Effects 0.000 description 13
- GEWDNTWNSAZUDX-WQMVXFAESA-N (-)-methyl jasmonate Chemical compound CC\C=C/C[C@@H]1[C@@H](CC(=O)OC)CCC1=O GEWDNTWNSAZUDX-WQMVXFAESA-N 0.000 description 12
- FWMNVWWHGCHHJJ-SKKKGAJSSA-N 4-amino-1-[(2r)-6-amino-2-[[(2r)-2-[[(2r)-2-[[(2r)-2-amino-3-phenylpropanoyl]amino]-3-phenylpropanoyl]amino]-4-methylpentanoyl]amino]hexanoyl]piperidine-4-carboxylic acid Chemical compound C([C@H](C(=O)N[C@H](CC(C)C)C(=O)N[C@H](CCCCN)C(=O)N1CCC(N)(CC1)C(O)=O)NC(=O)[C@H](N)CC=1C=CC=CC=1)C1=CC=CC=C1 FWMNVWWHGCHHJJ-SKKKGAJSSA-N 0.000 description 12
- 230000001851 biosynthetic effect Effects 0.000 description 12
- 230000006696 biosynthetic metabolic pathway Effects 0.000 description 12
- GEWDNTWNSAZUDX-UHFFFAOYSA-N methyl 7-epi-jasmonate Natural products CCC=CCC1C(CC(=O)OC)CCC1=O GEWDNTWNSAZUDX-UHFFFAOYSA-N 0.000 description 12
- ATHGHQPFGPMSJY-UHFFFAOYSA-N spermidine Chemical compound NCCCCNCCCN ATHGHQPFGPMSJY-UHFFFAOYSA-N 0.000 description 12
- 239000000126 substance Substances 0.000 description 12
- CWVRJTMFETXNAD-FWCWNIRPSA-N 3-O-Caffeoylquinic acid Natural products O[C@H]1[C@@H](O)C[C@@](O)(C(O)=O)C[C@H]1OC(=O)\C=C\C1=CC=C(O)C(O)=C1 CWVRJTMFETXNAD-FWCWNIRPSA-N 0.000 description 11
- PZIRUHCJZBGLDY-UHFFFAOYSA-N Caffeoylquinic acid Natural products CC(CCC(=O)C(C)C1C(=O)CC2C3CC(O)C4CC(O)CCC4(C)C3CCC12C)C(=O)O PZIRUHCJZBGLDY-UHFFFAOYSA-N 0.000 description 11
- CWVRJTMFETXNAD-KLZCAUPSSA-N Neochlorogenin-saeure Natural products O[C@H]1C[C@@](O)(C[C@@H](OC(=O)C=Cc2ccc(O)c(O)c2)[C@@H]1O)C(=O)O CWVRJTMFETXNAD-KLZCAUPSSA-N 0.000 description 11
- 108091028043 Nucleic acid sequence Proteins 0.000 description 11
- 229940024606 amino acid Drugs 0.000 description 11
- 235000001014 amino acid Nutrition 0.000 description 11
- 230000008827 biological function Effects 0.000 description 11
- 238000004422 calculation algorithm Methods 0.000 description 11
- 239000000969 carrier Substances 0.000 description 11
- CWVRJTMFETXNAD-JUHZACGLSA-N chlorogenic acid Chemical compound O[C@@H]1[C@H](O)C[C@@](O)(C(O)=O)C[C@H]1OC(=O)\C=C\C1=CC=C(O)C(O)=C1 CWVRJTMFETXNAD-JUHZACGLSA-N 0.000 description 11
- 229940074393 chlorogenic acid Drugs 0.000 description 11
- 235000001368 chlorogenic acid Nutrition 0.000 description 11
- FFQSDFBBSXGVKF-KHSQJDLVSA-N chlorogenic acid Natural products O[C@@H]1C[C@](O)(C[C@@H](CC(=O)C=Cc2ccc(O)c(O)c2)[C@@H]1O)C(=O)O FFQSDFBBSXGVKF-KHSQJDLVSA-N 0.000 description 11
- BMRSEYFENKXDIS-KLZCAUPSSA-N cis-3-O-p-coumaroylquinic acid Natural products O[C@H]1C[C@@](O)(C[C@@H](OC(=O)C=Cc2ccc(O)cc2)[C@@H]1O)C(=O)O BMRSEYFENKXDIS-KLZCAUPSSA-N 0.000 description 11
- 239000001963 growth medium Substances 0.000 description 11
- 230000001960 triggered effect Effects 0.000 description 11
- WBYWAXJHAXSJNI-VOTSOKGWSA-M .beta-Phenylacrylic acid Natural products [O-]C(=O)\C=C\C1=CC=CC=C1 WBYWAXJHAXSJNI-VOTSOKGWSA-M 0.000 description 10
- 241000894006 Bacteria Species 0.000 description 10
- 240000006677 Vicia faba Species 0.000 description 10
- 230000002596 correlated effect Effects 0.000 description 10
- 230000009088 enzymatic function Effects 0.000 description 10
- 238000000855 fermentation Methods 0.000 description 10
- 230000004151 fermentation Effects 0.000 description 10
- 239000000463 material Substances 0.000 description 10
- 230000002441 reversible effect Effects 0.000 description 10
- 238000002864 sequence alignment Methods 0.000 description 10
- WBYWAXJHAXSJNI-VOTSOKGWSA-N trans-cinnamic acid Chemical compound OC(=O)\C=C\C1=CC=CC=C1 WBYWAXJHAXSJNI-VOTSOKGWSA-N 0.000 description 10
- 238000013518 transcription Methods 0.000 description 10
- 230000035897 transcription Effects 0.000 description 10
- 230000028604 virus induced gene silencing Effects 0.000 description 10
- 230000030279 gene silencing Effects 0.000 description 9
- RAXXELZNTBOGNW-UHFFFAOYSA-N imidazole Natural products C1=CNC=N1 RAXXELZNTBOGNW-UHFFFAOYSA-N 0.000 description 9
- 108020004999 messenger RNA Proteins 0.000 description 9
- 150000007523 nucleic acids Chemical class 0.000 description 9
- 239000000523 sample Substances 0.000 description 9
- 229940093681 4-coumaric acid Drugs 0.000 description 8
- ZHNUHDYFZUAESO-UHFFFAOYSA-N Formamide Chemical compound NC=O ZHNUHDYFZUAESO-UHFFFAOYSA-N 0.000 description 8
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 8
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 8
- 238000003776 cleavage reaction Methods 0.000 description 8
- 239000008103 glucose Substances 0.000 description 8
- 150000002500 ions Chemical class 0.000 description 8
- 230000007246 mechanism Effects 0.000 description 8
- 238000002705 metabolomic analysis Methods 0.000 description 8
- 230000001431 metabolomic effect Effects 0.000 description 8
- 229930015704 phenylpropanoid Natural products 0.000 description 8
- 230000007017 scission Effects 0.000 description 8
- 239000000243 solution Substances 0.000 description 8
- 239000004094 surface-active agent Substances 0.000 description 8
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 8
- 101001091417 Agaricus bisporus Polyphenol oxidase 1 Proteins 0.000 description 7
- 101001091423 Agaricus bisporus Polyphenol oxidase 2 Proteins 0.000 description 7
- 101000611521 Arabidopsis thaliana Protoporphyrinogen oxidase 1, chloroplastic Proteins 0.000 description 7
- 101000611523 Arabidopsis thaliana Protoporphyrinogen oxidase 2, chloroplastic/mitochondrial Proteins 0.000 description 7
- AZSUJBAOTYNFDE-FNORWQNLSA-N N-caffeoylspermidine Chemical compound NCCCCNCCCNC(=O)\C=C\c1ccc(O)c(O)c1 AZSUJBAOTYNFDE-FNORWQNLSA-N 0.000 description 7
- 235000010749 Vicia faba Nutrition 0.000 description 7
- 239000002671 adjuvant Substances 0.000 description 7
- 210000004899 c-terminal region Anatomy 0.000 description 7
- 230000004060 metabolic process Effects 0.000 description 7
- 102000039446 nucleic acids Human genes 0.000 description 7
- 108020004707 nucleic acids Proteins 0.000 description 7
- 150000002995 phenylpropanoid derivatives Chemical class 0.000 description 7
- 239000003375 plant hormone Substances 0.000 description 7
- 238000009991 scouring Methods 0.000 description 7
- 238000003786 synthesis reaction Methods 0.000 description 7
- 238000012360 testing method Methods 0.000 description 7
- MBDOYVRWFFCFHM-UHFFFAOYSA-N trans-2-hexenal Natural products CCCC=CC=O MBDOYVRWFFCFHM-UHFFFAOYSA-N 0.000 description 7
- MBDOYVRWFFCFHM-SNAWJCMRSA-N (2E)-hexenal Chemical compound CCC\C=C\C=O MBDOYVRWFFCFHM-SNAWJCMRSA-N 0.000 description 6
- 108700010070 Codon Usage Proteins 0.000 description 6
- 241001383243 Empoa Species 0.000 description 6
- 241000233866 Fungi Species 0.000 description 6
- 244000061176 Nicotiana tabacum Species 0.000 description 6
- 244000087991 Silene chilense Species 0.000 description 6
- 238000000692 Student's t-test Methods 0.000 description 6
- 238000010459 TALEN Methods 0.000 description 6
- 108010017070 Zinc Finger Nucleases Proteins 0.000 description 6
- 230000004186 co-expression Effects 0.000 description 6
- 230000007123 defense Effects 0.000 description 6
- 230000001419 dependent effect Effects 0.000 description 6
- 235000013305 food Nutrition 0.000 description 6
- 230000012010 growth Effects 0.000 description 6
- 230000001404 mediated effect Effects 0.000 description 6
- BDAGIHXWWSANSR-UHFFFAOYSA-N methanoic acid Natural products OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 description 6
- 230000000813 microbial effect Effects 0.000 description 6
- 239000002245 particle Substances 0.000 description 6
- 229930195732 phytohormone Natural products 0.000 description 6
- 210000002706 plastid Anatomy 0.000 description 6
- 230000037452 priming Effects 0.000 description 6
- 230000002829 reductive effect Effects 0.000 description 6
- 230000028327 secretion Effects 0.000 description 6
- 229940063673 spermidine Drugs 0.000 description 6
- 238000005406 washing Methods 0.000 description 6
- NABYCXSHQMCCEZ-SOFGYWHQSA-N (E)-N-[4-(3-aminopropylamino)butyl]-3-(4-hydroxy-3-methoxyphenyl)prop-2-enamide Chemical compound COc1cc(\C=C\C(=O)NCCCCNCCCN)ccc1O NABYCXSHQMCCEZ-SOFGYWHQSA-N 0.000 description 5
- 125000000882 C2-C6 alkenyl group Chemical group 0.000 description 5
- 241001097338 Cicadulina Species 0.000 description 5
- 241001472102 Circulifer Species 0.000 description 5
- 241001466025 Deltocephalinae Species 0.000 description 5
- 241000994328 Eurymelinae Species 0.000 description 5
- 241000995115 Hylicinae Species 0.000 description 5
- 241000995125 Iassinae Species 0.000 description 5
- COLNVLDHVKWLRT-QMMMGPOBSA-N L-phenylalanine Chemical compound OC(=O)[C@@H](N)CC1=CC=CC=C1 COLNVLDHVKWLRT-QMMMGPOBSA-N 0.000 description 5
- 241001494829 Ledrinae Species 0.000 description 5
- 241000256010 Manduca Species 0.000 description 5
- 241000995104 Megophthalminae Species 0.000 description 5
- 241000884966 Mileewinae Species 0.000 description 5
- 241001556090 Nilaparvata Species 0.000 description 5
- 241000994315 Nioniinae Species 0.000 description 5
- 108700026244 Open Reading Frames Proteins 0.000 description 5
- 241000884919 Signoretiinae Species 0.000 description 5
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 5
- 241000176085 Sogatella Species 0.000 description 5
- 108010043645 Transcription Activator-Like Effector Nucleases Proteins 0.000 description 5
- 239000003905 agrochemical Substances 0.000 description 5
- 239000000872 buffer Substances 0.000 description 5
- 239000003153 chemical reaction reagent Substances 0.000 description 5
- 210000000349 chromosome Anatomy 0.000 description 5
- 238000001952 enzyme assay Methods 0.000 description 5
- 238000002474 experimental method Methods 0.000 description 5
- 238000000605 extraction Methods 0.000 description 5
- 238000009396 hybridization Methods 0.000 description 5
- 230000008595 infiltration Effects 0.000 description 5
- 238000001764 infiltration Methods 0.000 description 5
- 239000000543 intermediate Substances 0.000 description 5
- 239000011859 microparticle Substances 0.000 description 5
- 230000007935 neutral effect Effects 0.000 description 5
- 230000003647 oxidation Effects 0.000 description 5
- 238000007254 oxidation reaction Methods 0.000 description 5
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N phenol group Chemical group C1(=CC=CC=C1)O ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 5
- 238000012545 processing Methods 0.000 description 5
- 239000002689 soil Substances 0.000 description 5
- 230000009466 transformation Effects 0.000 description 5
- 210000003934 vacuole Anatomy 0.000 description 5
- 239000003039 volatile agent Substances 0.000 description 5
- SNICXCGAKADSCV-JTQLQIEISA-N (-)-Nicotine Chemical compound CN1CCC[C@H]1C1=CC=CN=C1 SNICXCGAKADSCV-JTQLQIEISA-N 0.000 description 4
- 241000589155 Agrobacterium tumefaciens Species 0.000 description 4
- NWNGYJFQCYGXHO-JMQWPVDRSA-N C=1C=C(O)C(O)=CC=1/C=C/C(=O)N(CCCCN)CCCNC(=O)\C=C\C1=CC=C(O)C(O)=C1 Chemical compound C=1C=C(O)C(O)=CC=1/C=C/C(=O)N(CCCCN)CCCNC(=O)\C=C\C1=CC=C(O)C(O)=C1 NWNGYJFQCYGXHO-JMQWPVDRSA-N 0.000 description 4
- 241000222120 Candida <Saccharomycetales> Species 0.000 description 4
- 230000007018 DNA scission Effects 0.000 description 4
- 241000672609 Escherichia coli BL21 Species 0.000 description 4
- PVNIIMVLHYAWGP-UHFFFAOYSA-N Niacin Chemical compound OC(=O)C1=CC=CN=C1 PVNIIMVLHYAWGP-UHFFFAOYSA-N 0.000 description 4
- 235000002637 Nicotiana tabacum Nutrition 0.000 description 4
- 241000208292 Solanaceae Species 0.000 description 4
- 241000994314 Ulopinae Species 0.000 description 4
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 4
- 239000004480 active ingredient Substances 0.000 description 4
- 230000001580 bacterial effect Effects 0.000 description 4
- 230000000903 blocking effect Effects 0.000 description 4
- 238000004590 computer program Methods 0.000 description 4
- 238000012217 deletion Methods 0.000 description 4
- 230000037430 deletion Effects 0.000 description 4
- 230000006698 induction Effects 0.000 description 4
- 230000010354 integration Effects 0.000 description 4
- 230000000670 limiting effect Effects 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- 239000002609 medium Substances 0.000 description 4
- 229960002715 nicotine Drugs 0.000 description 4
- SNICXCGAKADSCV-UHFFFAOYSA-N nicotine Natural products CN1CCCC1C1=CC=CN=C1 SNICXCGAKADSCV-UHFFFAOYSA-N 0.000 description 4
- 210000001672 ovary Anatomy 0.000 description 4
- 229960005190 phenylalanine Drugs 0.000 description 4
- 235000013824 polyphenols Nutrition 0.000 description 4
- 239000000843 powder Substances 0.000 description 4
- 238000012216 screening Methods 0.000 description 4
- 239000011780 sodium chloride Substances 0.000 description 4
- 239000007787 solid Substances 0.000 description 4
- PFNFFQXMRSDOHW-UHFFFAOYSA-N spermine Chemical compound NCCCNCCCCNCCCN PFNFFQXMRSDOHW-UHFFFAOYSA-N 0.000 description 4
- 238000005507 spraying Methods 0.000 description 4
- 239000007858 starting material Substances 0.000 description 4
- 238000012546 transfer Methods 0.000 description 4
- 238000013519 translation Methods 0.000 description 4
- 230000032258 transport Effects 0.000 description 4
- 230000017260 vegetative to reproductive phase transition of meristem Effects 0.000 description 4
- 229910052725 zinc Inorganic materials 0.000 description 4
- 239000011701 zinc Substances 0.000 description 4
- OSWFIVFLDKOXQC-UHFFFAOYSA-N 4-(3-methoxyphenyl)aniline Chemical compound COC1=CC=CC(C=2C=CC(N)=CC=2)=C1 OSWFIVFLDKOXQC-UHFFFAOYSA-N 0.000 description 3
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- 108700016155 Acyl transferases Proteins 0.000 description 3
- 241000972773 Aulopiformes Species 0.000 description 3
- 108091033409 CRISPR Proteins 0.000 description 3
- 102000005870 Coenzyme A Ligases Human genes 0.000 description 3
- 230000004568 DNA-binding Effects 0.000 description 3
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 3
- 241000588722 Escherichia Species 0.000 description 3
- 241001466042 Fulgoromorpha Species 0.000 description 3
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 3
- 108010011449 Long-chain-fatty-acid-CoA ligase Proteins 0.000 description 3
- 239000006391 Luria-Bertani Medium Substances 0.000 description 3
- 241001144493 Nicotiana obtusifolia Species 0.000 description 3
- 101710163270 Nuclease Proteins 0.000 description 3
- 241000235070 Saccharomyces Species 0.000 description 3
- 208000037065 Subacute sclerosing leukoencephalitis Diseases 0.000 description 3
- 206010042297 Subacute sclerosing panencephalitis Diseases 0.000 description 3
- 239000004098 Tetracycline Substances 0.000 description 3
- 108010073062 Transcription Activator-Like Effectors Proteins 0.000 description 3
- 241000589634 Xanthomonas Species 0.000 description 3
- 150000001299 aldehydes Chemical class 0.000 description 3
- 229960000723 ampicillin Drugs 0.000 description 3
- AVKUERGKIZMTKX-NJBDSQKTSA-N ampicillin Chemical compound C1([C@@H](N)C(=O)N[C@H]2[C@H]3SC([C@@H](N3C2=O)C(O)=O)(C)C)=CC=CC=C1 AVKUERGKIZMTKX-NJBDSQKTSA-N 0.000 description 3
- 239000003242 anti bacterial agent Substances 0.000 description 3
- 238000013459 approach Methods 0.000 description 3
- 230000006399 behavior Effects 0.000 description 3
- 229940093265 berberine Drugs 0.000 description 3
- QISXPYZVZJBNDM-UHFFFAOYSA-N berberine Natural products COc1ccc2C=C3N(Cc2c1OC)C=Cc4cc5OCOc5cc34 QISXPYZVZJBNDM-UHFFFAOYSA-N 0.000 description 3
- 230000003197 catalytic effect Effects 0.000 description 3
- 239000013068 control sample Substances 0.000 description 3
- 235000005911 diet Nutrition 0.000 description 3
- 230000037213 diet Effects 0.000 description 3
- 210000003527 eukaryotic cell Anatomy 0.000 description 3
- 230000029142 excretion Effects 0.000 description 3
- 229930003935 flavonoid Natural products 0.000 description 3
- 150000002215 flavonoids Chemical class 0.000 description 3
- 235000017173 flavonoids Nutrition 0.000 description 3
- 235000019253 formic acid Nutrition 0.000 description 3
- 230000004927 fusion Effects 0.000 description 3
- 108020001507 fusion proteins Proteins 0.000 description 3
- 102000037865 fusion proteins Human genes 0.000 description 3
- 238000010362 genome editing Methods 0.000 description 3
- 230000001965 increasing effect Effects 0.000 description 3
- 230000001939 inductive effect Effects 0.000 description 3
- 239000003112 inhibitor Substances 0.000 description 3
- 230000000977 initiatory effect Effects 0.000 description 3
- 230000000749 insecticidal effect Effects 0.000 description 3
- 230000003993 interaction Effects 0.000 description 3
- 229930027917 kanamycin Natural products 0.000 description 3
- 229960000318 kanamycin Drugs 0.000 description 3
- SBUJHOSQTJFQJX-NOAMYHISSA-N kanamycin Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CN)O[C@@H]1O[C@H]1[C@H](O)[C@@H](O[C@@H]2[C@@H]([C@@H](N)[C@H](O)[C@@H](CO)O2)O)[C@H](N)C[C@@H]1N SBUJHOSQTJFQJX-NOAMYHISSA-N 0.000 description 3
- 229930182823 kanamycin A Natural products 0.000 description 3
- 229920005610 lignin Polymers 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 238000004895 liquid chromatography mass spectrometry Methods 0.000 description 3
- 239000003550 marker Substances 0.000 description 3
- 239000011159 matrix material Substances 0.000 description 3
- 238000002493 microarray Methods 0.000 description 3
- 235000001968 nicotinic acid Nutrition 0.000 description 3
- 229960003512 nicotinic acid Drugs 0.000 description 3
- 239000011664 nicotinic acid Substances 0.000 description 3
- 244000052769 pathogen Species 0.000 description 3
- COLNVLDHVKWLRT-UHFFFAOYSA-N phenylalanine Natural products OC(=O)C(N)CC1=CC=CC=C1 COLNVLDHVKWLRT-UHFFFAOYSA-N 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 238000000746 purification Methods 0.000 description 3
- 108091008146 restriction endonucleases Proteins 0.000 description 3
- 235000019515 salmon Nutrition 0.000 description 3
- 230000019491 signal transduction Effects 0.000 description 3
- 229930101283 tetracycline Natural products 0.000 description 3
- 229960002180 tetracycline Drugs 0.000 description 3
- 235000019364 tetracycline Nutrition 0.000 description 3
- 150000003522 tetracyclines Chemical class 0.000 description 3
- 210000002377 thylakoid Anatomy 0.000 description 3
- 238000001890 transfection Methods 0.000 description 3
- 239000012855 volatile organic compound Substances 0.000 description 3
- YYGNTYWPHWGJRM-UHFFFAOYSA-N (6E,10E,14E,18E)-2,6,10,15,19,23-hexamethyltetracosa-2,6,10,14,18,22-hexaene Chemical compound CC(C)=CCCC(C)=CCCC(C)=CCCC=C(C)CCC=C(C)CCC=C(C)C YYGNTYWPHWGJRM-UHFFFAOYSA-N 0.000 description 2
- FVFDFXRLJHKPAH-FNORWQNLSA-N (E)-N-[4-(3-aminopropylamino)butyl]-3-(3,4-dihydroxyphenyl)prop-2-enamide Chemical compound C(\C=C\C1=CC(O)=C(O)C=C1)(=O)NCCCCNCCCN FVFDFXRLJHKPAH-FNORWQNLSA-N 0.000 description 2
- 239000001707 (E,7R,11R)-3,7,11,15-tetramethylhexadec-2-en-1-ol Substances 0.000 description 2
- UFLHIIWVXFIJGU-ARJAWSKDSA-N (Z)-hex-3-en-1-ol Chemical compound CC\C=C/CCO UFLHIIWVXFIJGU-ARJAWSKDSA-N 0.000 description 2
- NUPJIGQFXCQJBK-UHFFFAOYSA-N 2-(4-isopropyl-4-methyl-5-oxo-4,5-dihydro-1H-imidazol-2-yl)-5-(methoxymethyl)nicotinic acid Chemical compound OC(=O)C1=CC(COC)=CN=C1C1=NC(C)(C(C)C)C(=O)N1 NUPJIGQFXCQJBK-UHFFFAOYSA-N 0.000 description 2
- DMZOKBALNZWDKI-JBNLOVLYSA-N 4-Coumaroyl-CoA Natural products S(C(=O)/C=C/c1ccc(O)cc1)CCNC(=O)CCNC(=O)[C@@H](O)C(CO[P@@](=O)(O[P@@](=O)(OC[C@H]1[C@@H](OP(=O)(O)O)[C@@H](O)[C@@H](n2c3ncnc(N)c3nc2)O1)O)O)(C)C DMZOKBALNZWDKI-JBNLOVLYSA-N 0.000 description 2
- UHPMCKVQTMMPCG-UHFFFAOYSA-N 5,8-dihydroxy-2-methoxy-6-methyl-7-(2-oxopropyl)naphthalene-1,4-dione Chemical compound CC1=C(CC(C)=O)C(O)=C2C(=O)C(OC)=CC(=O)C2=C1O UHPMCKVQTMMPCG-UHFFFAOYSA-N 0.000 description 2
- ZOCSXAVNDGMNBV-UHFFFAOYSA-N 5-amino-1-[2,6-dichloro-4-(trifluoromethyl)phenyl]-4-[(trifluoromethyl)sulfinyl]-1H-pyrazole-3-carbonitrile Chemical compound NC1=C(S(=O)C(F)(F)F)C(C#N)=NN1C1=C(Cl)C=C(C(F)(F)F)C=C1Cl ZOCSXAVNDGMNBV-UHFFFAOYSA-N 0.000 description 2
- 241001019659 Acremonium <Plectosphaerellaceae> Species 0.000 description 2
- 241000611272 Alcanivorax Species 0.000 description 2
- 241000223600 Alternaria Species 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- 241000228212 Aspergillus Species 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 241000193830 Bacillus <bacterium> Species 0.000 description 2
- 241000186000 Bifidobacterium Species 0.000 description 2
- 241001465180 Botrytis Species 0.000 description 2
- 241000186146 Brevibacterium Species 0.000 description 2
- 238000010453 CRISPR/Cas method Methods 0.000 description 2
- 244000025254 Cannabis sativa Species 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- 241000193403 Clostridium Species 0.000 description 2
- 241000186216 Corynebacterium Species 0.000 description 2
- 241001337994 Cryptococcus <scale insect> Species 0.000 description 2
- 239000005946 Cypermethrin Substances 0.000 description 2
- 102000053602 DNA Human genes 0.000 description 2
- 241000588698 Erwinia Species 0.000 description 2
- 108700039887 Essential Genes Proteins 0.000 description 2
- 108090000371 Esterases Proteins 0.000 description 2
- 241000206602 Eukaryota Species 0.000 description 2
- 239000005899 Fipronil Substances 0.000 description 2
- 241000223218 Fusarium Species 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- 239000005566 Imazamox Substances 0.000 description 2
- 241000588748 Klebsiella Species 0.000 description 2
- 241001099157 Komagataella Species 0.000 description 2
- 241000186660 Lactobacillus Species 0.000 description 2
- 239000004166 Lanolin Substances 0.000 description 2
- 235000015459 Lycium barbarum Nutrition 0.000 description 2
- 244000241838 Lycium barbarum Species 0.000 description 2
- 241001344133 Magnaporthe Species 0.000 description 2
- CSNNHWWHGAXBCP-UHFFFAOYSA-L Magnesium sulfate Chemical compound [Mg+2].[O-][S+2]([O-])([O-])[O-] CSNNHWWHGAXBCP-UHFFFAOYSA-L 0.000 description 2
- 238000006845 Michael addition reaction Methods 0.000 description 2
- 241000235395 Mucor Species 0.000 description 2
- 125000001429 N-terminal alpha-amino-acid group Chemical group 0.000 description 2
- 238000005481 NMR spectroscopy Methods 0.000 description 2
- 241001452964 Neottia acuminata Species 0.000 description 2
- 241000208126 Nicotiana acuminata Species 0.000 description 2
- 241000207746 Nicotiana benthamiana Species 0.000 description 2
- 241000250027 Nicotiana linearis Species 0.000 description 2
- 241000250030 Nicotiana miersii Species 0.000 description 2
- 241001144492 Nicotiana pauciflora Species 0.000 description 2
- 241001144495 Nicotiana spegazzinii Species 0.000 description 2
- 241000228669 Nicotiana velutina Species 0.000 description 2
- 102000004316 Oxidoreductases Human genes 0.000 description 2
- 108090000854 Oxidoreductases Proteins 0.000 description 2
- 101150053185 P450 gene Proteins 0.000 description 2
- 241000228143 Penicillium Species 0.000 description 2
- BLUHKGOSFDHHGX-UHFFFAOYSA-N Phytol Natural products CC(C)CCCC(C)CCCC(C)CCCC(C)C=CO BLUHKGOSFDHHGX-UHFFFAOYSA-N 0.000 description 2
- 108020001991 Protoporphyrinogen Oxidase Proteins 0.000 description 2
- 241000589516 Pseudomonas Species 0.000 description 2
- 241000255893 Pyralidae Species 0.000 description 2
- 238000003559 RNA-seq method Methods 0.000 description 2
- 241000235527 Rhizopus Species 0.000 description 2
- 244000241078 Solanum nodiflorum Species 0.000 description 2
- 241000191940 Staphylococcus Species 0.000 description 2
- 241000187747 Streptomyces Species 0.000 description 2
- HNZBNQYXWOLKBA-UHFFFAOYSA-N Tetrahydrofarnesol Natural products CC(C)CCCC(C)CCCC(C)=CCO HNZBNQYXWOLKBA-UHFFFAOYSA-N 0.000 description 2
- BHEOSNUKNHRBNM-UHFFFAOYSA-N Tetramethylsqualene Natural products CC(=C)C(C)CCC(=C)C(C)CCC(C)=CCCC=C(C)CCC(C)C(=C)CCC(C)C(C)=C BHEOSNUKNHRBNM-UHFFFAOYSA-N 0.000 description 2
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 2
- 241000221566 Ustilago Species 0.000 description 2
- 235000002098 Vicia faba var. major Nutrition 0.000 description 2
- 206010052428 Wound Diseases 0.000 description 2
- 239000008351 acetate buffer Substances 0.000 description 2
- 125000002252 acyl group Chemical group 0.000 description 2
- 102000045404 acyltransferase activity proteins Human genes 0.000 description 2
- 108700014220 acyltransferase activity proteins Proteins 0.000 description 2
- BOTWFXYSPFMFNR-OALUTQOASA-N all-rac-phytol Natural products CC(C)CCC[C@H](C)CCC[C@H](C)CCCC(C)=CCO BOTWFXYSPFMFNR-OALUTQOASA-N 0.000 description 2
- 238000005899 aromatization reaction Methods 0.000 description 2
- 125000003118 aryl group Chemical group 0.000 description 2
- 230000003115 biocidal effect Effects 0.000 description 2
- 230000033228 biological regulation Effects 0.000 description 2
- VAIZTNZGPYBOGF-UHFFFAOYSA-N butyl 2-(4-{[5-(trifluoromethyl)pyridin-2-yl]oxy}phenoxy)propanoate Chemical group C1=CC(OC(C)C(=O)OCCCC)=CC=C1OC1=CC=C(C(F)(F)F)C=N1 VAIZTNZGPYBOGF-UHFFFAOYSA-N 0.000 description 2
- 239000006227 byproduct Substances 0.000 description 2
- QHRGJMIMHCLHRG-FUEUKBNZSA-N caffeoyl-CoA Chemical compound O=C([C@H](O)C(C)(COP(O)(=O)OP(O)(=O)OC[C@@H]1[C@H]([C@@H](O)[C@@H](O1)N1C2=NC=NC(N)=C2N=C1)OP(O)(O)=O)C)NCCC(=O)NCCSC(=O)C=CC1=CC=C(O)C(O)=C1 QHRGJMIMHCLHRG-FUEUKBNZSA-N 0.000 description 2
- 239000001506 calcium phosphate Substances 0.000 description 2
- 229910000389 calcium phosphate Inorganic materials 0.000 description 2
- 235000011010 calcium phosphates Nutrition 0.000 description 2
- OSGAYBCDTDRGGQ-UHFFFAOYSA-L calcium sulfate Chemical compound [Ca+2].[O-]S([O-])(=O)=O OSGAYBCDTDRGGQ-UHFFFAOYSA-L 0.000 description 2
- 229940041514 candida albicans extract Drugs 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 230000001413 cellular effect Effects 0.000 description 2
- 239000001913 cellulose Substances 0.000 description 2
- 229920002678 cellulose Polymers 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 239000007806 chemical reaction intermediate Substances 0.000 description 2
- 238000010367 cloning Methods 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 238000009833 condensation Methods 0.000 description 2
- 230000005494 condensation Effects 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- ZYGHJZDHTFUPRJ-UHFFFAOYSA-N coumarin Chemical compound C1=CC=C2OC(=O)C=CC2=C1 ZYGHJZDHTFUPRJ-UHFFFAOYSA-N 0.000 description 2
- 229960005424 cypermethrin Drugs 0.000 description 2
- 210000000805 cytoplasm Anatomy 0.000 description 2
- 238000006114 decarboxylation reaction Methods 0.000 description 2
- 230000002950 deficient Effects 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 239000003599 detergent Substances 0.000 description 2
- 235000014113 dietary fatty acids Nutrition 0.000 description 2
- 239000012153 distilled water Substances 0.000 description 2
- PRAKJMSDJKAYCZ-UHFFFAOYSA-N dodecahydrosqualene Natural products CC(C)CCCC(C)CCCC(C)CCCCC(C)CCCC(C)CCCC(C)C PRAKJMSDJKAYCZ-UHFFFAOYSA-N 0.000 description 2
- 235000013601 eggs Nutrition 0.000 description 2
- 108010026638 endodeoxyribonuclease FokI Proteins 0.000 description 2
- 238000006911 enzymatic reaction Methods 0.000 description 2
- 150000002148 esters Chemical class 0.000 description 2
- 238000010195 expression analysis Methods 0.000 description 2
- 239000000194 fatty acid Substances 0.000 description 2
- 229930195729 fatty acid Natural products 0.000 description 2
- 150000004665 fatty acids Chemical class 0.000 description 2
- 229940013764 fipronil Drugs 0.000 description 2
- 230000002538 fungal effect Effects 0.000 description 2
- 230000000855 fungicidal effect Effects 0.000 description 2
- 238000010353 genetic engineering Methods 0.000 description 2
- 238000000227 grinding Methods 0.000 description 2
- 230000002363 herbicidal effect Effects 0.000 description 2
- UFLHIIWVXFIJGU-UHFFFAOYSA-N hex-3-en-1-ol Natural products CCC=CCCO UFLHIIWVXFIJGU-UHFFFAOYSA-N 0.000 description 2
- ZSIAUFGUXNUGDI-UHFFFAOYSA-N hexan-1-ol Chemical compound CCCCCCO ZSIAUFGUXNUGDI-UHFFFAOYSA-N 0.000 description 2
- JARKCYVAAOWBJS-UHFFFAOYSA-N hexanal Chemical compound CCCCCC=O JARKCYVAAOWBJS-UHFFFAOYSA-N 0.000 description 2
- 238000005805 hydroxylation reaction Methods 0.000 description 2
- 238000011534 incubation Methods 0.000 description 2
- 229940039696 lactobacillus Drugs 0.000 description 2
- 229940039717 lanolin Drugs 0.000 description 2
- 235000019388 lanolin Nutrition 0.000 description 2
- CDOSHBSSFJOMGT-UHFFFAOYSA-N linalool Chemical compound CC(C)=CCCC(C)(O)C=C CDOSHBSSFJOMGT-UHFFFAOYSA-N 0.000 description 2
- 150000002632 lipids Chemical class 0.000 description 2
- 230000037353 metabolic pathway Effects 0.000 description 2
- 244000005700 microbiome Species 0.000 description 2
- 238000002887 multiple sequence alignment Methods 0.000 description 2
- 230000035772 mutation Effects 0.000 description 2
- 230000000269 nucleophilic effect Effects 0.000 description 2
- 238000005457 optimization Methods 0.000 description 2
- 238000004806 packaging method and process Methods 0.000 description 2
- BOTWFXYSPFMFNR-PYDDKJGSSA-N phytol Chemical compound CC(C)CCC[C@@H](C)CCC[C@@H](C)CCC\C(C)=C\CO BOTWFXYSPFMFNR-PYDDKJGSSA-N 0.000 description 2
- 230000008488 polyadenylation Effects 0.000 description 2
- 238000006116 polymerization reaction Methods 0.000 description 2
- 150000008442 polyphenolic compounds Chemical class 0.000 description 2
- 229920013637 polyphenylene oxide polymer Polymers 0.000 description 2
- 239000002244 precipitate Substances 0.000 description 2
- 230000000750 progressive effect Effects 0.000 description 2
- 238000000425 proton nuclear magnetic resonance spectrum Methods 0.000 description 2
- 230000009257 reactivity Effects 0.000 description 2
- 238000005070 sampling Methods 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 238000012163 sequencing technique Methods 0.000 description 2
- JXOHGGNKMLTUBP-HSUXUTPPSA-N shikimic acid Chemical compound O[C@@H]1CC(C(O)=O)=C[C@@H](O)[C@H]1O JXOHGGNKMLTUBP-HSUXUTPPSA-N 0.000 description 2
- JXOHGGNKMLTUBP-JKUQZMGJSA-N shikimic acid Natural products O[C@@H]1CC(C(O)=O)=C[C@H](O)[C@@H]1O JXOHGGNKMLTUBP-JKUQZMGJSA-N 0.000 description 2
- 239000011734 sodium Substances 0.000 description 2
- 229940063675 spermine Drugs 0.000 description 2
- 229940031439 squalene Drugs 0.000 description 2
- TUHBEKDERLKLEC-UHFFFAOYSA-N squalene Natural products CC(=CCCC(=CCCC(=CCCC=C(/C)CCC=C(/C)CC=C(C)C)C)C)C TUHBEKDERLKLEC-UHFFFAOYSA-N 0.000 description 2
- 239000011550 stock solution Substances 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 125000001424 substituent group Chemical group 0.000 description 2
- 101150037438 tpm gene Proteins 0.000 description 2
- DMZOKBALNZWDKI-MATMFAIHSA-N trans-4-coumaroyl-CoA Chemical compound O=C([C@H](O)C(C)(COP(O)(=O)OP(O)(=O)OC[C@@H]1[C@H]([C@@H](O)[C@@H](O1)N1C2=NC=NC(N)=C2N=C1)OP(O)(O)=O)C)NCCC(=O)NCCSC(=O)\C=C\C1=CC=C(O)C=C1 DMZOKBALNZWDKI-MATMFAIHSA-N 0.000 description 2
- QAIPRVGONGVQAS-DUXPYHPUSA-N trans-caffeic acid Chemical compound OC(=O)\C=C\C1=CC=C(O)C(O)=C1 QAIPRVGONGVQAS-DUXPYHPUSA-N 0.000 description 2
- 230000010474 transient expression Effects 0.000 description 2
- QORWJWZARLRLPR-UHFFFAOYSA-H tricalcium bis(phosphate) Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QORWJWZARLRLPR-UHFFFAOYSA-H 0.000 description 2
- OKKJLVBELUTLKV-FIBGUPNXSA-N trideuteriomethanol Chemical compound [2H]C([2H])([2H])O OKKJLVBELUTLKV-FIBGUPNXSA-N 0.000 description 2
- 239000012137 tryptone Substances 0.000 description 2
- 238000007492 two-way ANOVA Methods 0.000 description 2
- 239000012138 yeast extract Substances 0.000 description 2
- 238000001086 yeast two-hybrid system Methods 0.000 description 2
- ZXQYGBMAQZUVMI-RDDWSQKMSA-N (1S)-cis-(alphaR)-cyhalothrin Chemical compound CC1(C)[C@H](\C=C(/Cl)C(F)(F)F)[C@@H]1C(=O)O[C@@H](C#N)C1=CC=CC(OC=2C=CC=CC=2)=C1 ZXQYGBMAQZUVMI-RDDWSQKMSA-N 0.000 description 1
- 239000001490 (3R)-3,7-dimethylocta-1,6-dien-3-ol Substances 0.000 description 1
- ACEAELOMUCBPJP-UHFFFAOYSA-N (E)-3,4,5-trihydroxycinnamic acid Natural products OC(=O)C=CC1=CC(O)=C(O)C(O)=C1 ACEAELOMUCBPJP-UHFFFAOYSA-N 0.000 description 1
- CDOSHBSSFJOMGT-JTQLQIEISA-N (R)-linalool Natural products CC(C)=CCC[C@@](C)(O)C=C CDOSHBSSFJOMGT-JTQLQIEISA-N 0.000 description 1
- ZFHGXWPMULPQSE-SZGBIDFHSA-N (Z)-(1S)-cis-tefluthrin Chemical compound FC1=C(F)C(C)=C(F)C(F)=C1COC(=O)[C@@H]1C(C)(C)[C@@H]1\C=C(/Cl)C(F)(F)F ZFHGXWPMULPQSE-SZGBIDFHSA-N 0.000 description 1
- 239000000267 (Z)-hex-3-en-1-ol Substances 0.000 description 1
- IIZPXYDJLKNOIY-JXPKJXOSSA-N 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCC\C=C/C\C=C/C\C=C/C\C=C/CCCCC IIZPXYDJLKNOIY-JXPKJXOSSA-N 0.000 description 1
- OVSKIKFHRZPJSS-DOMIDYPGSA-N 2-(2,4-dichlorophenoxy)acetic acid Chemical compound OC(=O)[14CH2]OC1=CC=C(Cl)C=C1Cl OVSKIKFHRZPJSS-DOMIDYPGSA-N 0.000 description 1
- PAWQVTBBRAZDMG-UHFFFAOYSA-N 2-(3-bromo-2-fluorophenyl)acetic acid Chemical compound OC(=O)CC1=CC=CC(Br)=C1F PAWQVTBBRAZDMG-UHFFFAOYSA-N 0.000 description 1
- UWHURBUBIHUHSU-UHFFFAOYSA-N 2-[(4-methoxy-6-methyl-1,3,5-triazin-2-yl)carbamoylsulfamoyl]benzoic acid Chemical compound COC1=NC(C)=NC(NC(=O)NS(=O)(=O)C=2C(=CC=CC=2)C(O)=O)=N1 UWHURBUBIHUHSU-UHFFFAOYSA-N 0.000 description 1
- GOJUJUVQIVIZAV-UHFFFAOYSA-N 2-amino-4,6-dichloropyrimidine-5-carbaldehyde Chemical group NC1=NC(Cl)=C(C=O)C(Cl)=N1 GOJUJUVQIVIZAV-UHFFFAOYSA-N 0.000 description 1
- IAJOBQBIJHVGMQ-UHFFFAOYSA-N 2-amino-4-[hydroxy(methyl)phosphoryl]butanoic acid Chemical compound CP(O)(=O)CCC(N)C(O)=O IAJOBQBIJHVGMQ-UHFFFAOYSA-N 0.000 description 1
- 102100039377 28 kDa heat- and acid-stable phosphoprotein Human genes 0.000 description 1
- 101710176122 28 kDa heat- and acid-stable phosphoprotein Proteins 0.000 description 1
- 244000215068 Acacia senegal Species 0.000 description 1
- 102000007469 Actins Human genes 0.000 description 1
- 108010085238 Actins Proteins 0.000 description 1
- 102000057234 Acyl transferases Human genes 0.000 description 1
- QYPPJABKJHAVHS-UHFFFAOYSA-N Agmatine Natural products NCCCCNC(N)=N QYPPJABKJHAVHS-UHFFFAOYSA-N 0.000 description 1
- XKJMBINCVNINCA-UHFFFAOYSA-N Alfalone Chemical compound CON(C)C(=O)NC1=CC=C(Cl)C(Cl)=C1 XKJMBINCVNINCA-UHFFFAOYSA-N 0.000 description 1
- 239000005995 Aluminium silicate Substances 0.000 description 1
- 239000005468 Aminopyralid Substances 0.000 description 1
- USFZMSVCRYTOJT-UHFFFAOYSA-N Ammonium acetate Chemical compound N.CC(O)=O USFZMSVCRYTOJT-UHFFFAOYSA-N 0.000 description 1
- 239000005695 Ammonium acetate Substances 0.000 description 1
- 239000004254 Ammonium phosphate Substances 0.000 description 1
- 240000001436 Antirrhinum majus Species 0.000 description 1
- 101000901116 Antirrhinum majus Aureusidin synthase Proteins 0.000 description 1
- 241001124076 Aphididae Species 0.000 description 1
- 101100439253 Arabidopsis thaliana CHI3 gene Proteins 0.000 description 1
- 101100128617 Arabidopsis thaliana LOX3 gene Proteins 0.000 description 1
- 101100455162 Arabidopsis thaliana LOX4 gene Proteins 0.000 description 1
- 101100132374 Arabidopsis thaliana MYB8 gene Proteins 0.000 description 1
- 239000005730 Azoxystrobin Substances 0.000 description 1
- 239000005874 Bifenthrin Substances 0.000 description 1
- 241000190146 Botryosphaeria Species 0.000 description 1
- 241000722885 Brettanomyces Species 0.000 description 1
- FIPWRIJSWJWJAI-UHFFFAOYSA-N Butyl carbitol 6-propylpiperonyl ether Chemical compound C1=C(CCC)C(COCCOCCOCCCC)=CC2=C1OCO2 FIPWRIJSWJWJAI-UHFFFAOYSA-N 0.000 description 1
- 125000001433 C-terminal amino-acid group Chemical group 0.000 description 1
- 125000004399 C1-C4 alkenyl group Chemical group 0.000 description 1
- JFLRKDZMHNBDQS-UCQUSYKYSA-N CC[C@H]1CCC[C@@H]([C@H](C(=O)C2=C[C@H]3[C@@H]4C[C@@H](C[C@H]4C(=C[C@H]3[C@@H]2CC(=O)O1)C)O[C@H]5[C@@H]([C@@H]([C@H]([C@@H](O5)C)OC)OC)OC)C)O[C@H]6CC[C@@H]([C@H](O6)C)N(C)C.CC[C@H]1CCC[C@@H]([C@H](C(=O)C2=C[C@H]3[C@@H]4C[C@@H](C[C@H]4C=C[C@H]3C2CC(=O)O1)O[C@H]5[C@@H]([C@@H]([C@H]([C@@H](O5)C)OC)OC)OC)C)O[C@H]6CC[C@@H]([C@H](O6)C)N(C)C Chemical compound CC[C@H]1CCC[C@@H]([C@H](C(=O)C2=C[C@H]3[C@@H]4C[C@@H](C[C@H]4C(=C[C@H]3[C@@H]2CC(=O)O1)C)O[C@H]5[C@@H]([C@@H]([C@H]([C@@H](O5)C)OC)OC)OC)C)O[C@H]6CC[C@@H]([C@H](O6)C)N(C)C.CC[C@H]1CCC[C@@H]([C@H](C(=O)C2=C[C@H]3[C@@H]4C[C@@H](C[C@H]4C=C[C@H]3C2CC(=O)O1)O[C@H]5[C@@H]([C@@H]([C@H]([C@@H](O5)C)OC)OC)OC)C)O[C@H]6CC[C@@H]([C@H](O6)C)N(C)C JFLRKDZMHNBDQS-UCQUSYKYSA-N 0.000 description 1
- 241000178334 Caldicellulosiruptor Species 0.000 description 1
- 108010075293 Cannabidiolic acid synthase Proteins 0.000 description 1
- 101000712615 Cannabis sativa Tetrahydrocannabinolic acid synthase Proteins 0.000 description 1
- 235000002566 Capsicum Nutrition 0.000 description 1
- 101710167800 Capsid assembly scaffolding protein Proteins 0.000 description 1
- TWFZGCMQGLPBSX-UHFFFAOYSA-N Carbendazim Natural products C1=CC=C2NC(NC(=O)OC)=NC2=C1 TWFZGCMQGLPBSX-UHFFFAOYSA-N 0.000 description 1
- 108010004539 Chalcone isomerase Proteins 0.000 description 1
- 241000254137 Cicadidae Species 0.000 description 1
- 235000008733 Citrus aurantifolia Nutrition 0.000 description 1
- 239000005500 Clopyralid Substances 0.000 description 1
- 241001465977 Coccoidea Species 0.000 description 1
- 108020004705 Codon Proteins 0.000 description 1
- 241000254173 Coleoptera Species 0.000 description 1
- 241001573881 Corolla Species 0.000 description 1
- 239000004971 Cross linker Substances 0.000 description 1
- 241000219112 Cucumis Species 0.000 description 1
- 235000015510 Cucumis melo subsp melo Nutrition 0.000 description 1
- 240000008067 Cucumis sativus Species 0.000 description 1
- 235000010799 Cucumis sativus var sativus Nutrition 0.000 description 1
- 235000019093 Cucurbita foetidissima Nutrition 0.000 description 1
- 244000149213 Cucurbita foetidissima Species 0.000 description 1
- 101100459261 Cyprinus carpio mycb gene Proteins 0.000 description 1
- 102000004163 DNA-directed RNA polymerases Human genes 0.000 description 1
- 108090000626 DNA-directed RNA polymerases Proteins 0.000 description 1
- 239000005892 Deltamethrin Substances 0.000 description 1
- 229920002307 Dextran Polymers 0.000 description 1
- 239000005504 Dicamba Substances 0.000 description 1
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 1
- 241001246273 Endothia Species 0.000 description 1
- 101100082611 Escherichia coli (strain K12) pdeF gene Proteins 0.000 description 1
- 244000001381 Eschscholzia californica Species 0.000 description 1
- 241000282326 Felis catus Species 0.000 description 1
- GBXZVJQQDAJGSO-KBJLHTFASA-N Feruloyl-CoA Natural products S(C(=O)/C=C/c1cc(OC)c(O)cc1)CCNC(=O)CCNC(=O)[C@H](O)C(CO[P@@](=O)(O[P@](=O)(OC[C@@H]1[C@H](OP(=O)(O)O)[C@H](O)[C@@H](n2c3ncnc(N)c3nc2)O1)O)O)(C)C GBXZVJQQDAJGSO-KBJLHTFASA-N 0.000 description 1
- 102100039556 Galectin-4 Human genes 0.000 description 1
- 241000159512 Geotrichum Species 0.000 description 1
- 239000004366 Glucose oxidase Substances 0.000 description 1
- 108010015776 Glucose oxidase Proteins 0.000 description 1
- 239000005561 Glufosinate Substances 0.000 description 1
- 102100031181 Glyceraldehyde-3-phosphate dehydrogenase Human genes 0.000 description 1
- 101100128612 Glycine max LOX1.2 gene Proteins 0.000 description 1
- 101100455161 Glycine max LOX1.3 gene Proteins 0.000 description 1
- 239000005562 Glyphosate Substances 0.000 description 1
- 229920002907 Guar gum Polymers 0.000 description 1
- 229920000084 Gum arabic Polymers 0.000 description 1
- 229920000569 Gum karaya Polymers 0.000 description 1
- 241000255967 Helicoverpa zea Species 0.000 description 1
- 241000258937 Hemiptera Species 0.000 description 1
- HTTJABKRGRZYRN-UHFFFAOYSA-N Heparin Chemical compound OC1C(NC(=O)C)C(O)OC(COS(O)(=O)=O)C1OC1C(OS(O)(=O)=O)C(O)C(OC2C(C(OS(O)(=O)=O)C(OC3C(C(O)C(O)C(O3)C(O)=O)OS(O)(=O)=O)C(CO)O2)NS(O)(=O)=O)C(C(O)=O)O1 HTTJABKRGRZYRN-UHFFFAOYSA-N 0.000 description 1
- 108010093488 His-His-His-His-His-His Proteins 0.000 description 1
- 101000608765 Homo sapiens Galectin-4 Proteins 0.000 description 1
- 101000827703 Homo sapiens Polyphosphoinositide phosphatase Proteins 0.000 description 1
- 101000881168 Homo sapiens SPARC Proteins 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 102000008394 Immunoglobulin Fragments Human genes 0.000 description 1
- 108010021625 Immunoglobulin Fragments Proteins 0.000 description 1
- XMLSXPIVAXONDL-PLNGDYQASA-N Jasmone Chemical compound CC\C=C/CC1=C(C)CCC1=O XMLSXPIVAXONDL-PLNGDYQASA-N 0.000 description 1
- 239000005909 Kieselgur Substances 0.000 description 1
- 241000235649 Kluyveromyces Species 0.000 description 1
- AHLPHDHHMVZTML-BYPYZUCNSA-N L-Ornithine Chemical compound NCCC[C@H](N)C(O)=O AHLPHDHHMVZTML-BYPYZUCNSA-N 0.000 description 1
- 101150046318 LOX2 gene Proteins 0.000 description 1
- 241000255777 Lepidoptera Species 0.000 description 1
- 235000019738 Limestone Nutrition 0.000 description 1
- 239000005573 Linuron Substances 0.000 description 1
- 102000003820 Lipoxygenases Human genes 0.000 description 1
- 108090000128 Lipoxygenases Proteins 0.000 description 1
- 229920000161 Locust bean gum Polymers 0.000 description 1
- 241000227653 Lycopersicon Species 0.000 description 1
- 235000007688 Lycopersicon esculentum Nutrition 0.000 description 1
- 239000005574 MCPA Substances 0.000 description 1
- 101150065635 MYC2 gene Proteins 0.000 description 1
- 108091027974 Mature messenger RNA Proteins 0.000 description 1
- 241001465754 Metazoa Species 0.000 description 1
- 101100343701 Mus musculus Loxl1 gene Proteins 0.000 description 1
- FDWZAOGDOVQOLD-UHFFFAOYSA-N N-Methylpyrrolinium Natural products C[N+]1=CCCC1 FDWZAOGDOVQOLD-UHFFFAOYSA-N 0.000 description 1
- 125000000729 N-terminal amino-acid group Chemical group 0.000 description 1
- 241000221960 Neurospora Species 0.000 description 1
- 241000250374 Nicotiana acaulis Species 0.000 description 1
- 241001144497 Nicotiana africana Species 0.000 description 1
- 244000061322 Nicotiana alata Species 0.000 description 1
- 241000250377 Nicotiana amplexicaulis Species 0.000 description 1
- 241001144490 Nicotiana arentsii Species 0.000 description 1
- 241000250375 Nicotiana benavidesii Species 0.000 description 1
- 241000250376 Nicotiana bonariensis Species 0.000 description 1
- 241000250373 Nicotiana cavicola Species 0.000 description 1
- 241001244271 Nicotiana cordifolia Species 0.000 description 1
- 241001144496 Nicotiana corymbosa Species 0.000 description 1
- 241001668821 Nicotiana cutleri Species 0.000 description 1
- 241000208113 Nicotiana debneyi Species 0.000 description 1
- 241000862464 Nicotiana excelsior Species 0.000 description 1
- 241000250379 Nicotiana exigua Species 0.000 description 1
- 244000006449 Nicotiana forgetiana Species 0.000 description 1
- 241000250367 Nicotiana fragrans Species 0.000 description 1
- 241000208128 Nicotiana glauca Species 0.000 description 1
- 241001495644 Nicotiana glutinosa Species 0.000 description 1
- 241001144503 Nicotiana goodspeedii Species 0.000 description 1
- 241000250366 Nicotiana gossei Species 0.000 description 1
- 241000579278 Nicotiana kawakamii Species 0.000 description 1
- 241000250368 Nicotiana knightiana Species 0.000 description 1
- 241000250019 Nicotiana langsdorffii Species 0.000 description 1
- 241000250024 Nicotiana longiflora Species 0.000 description 1
- 241000250031 Nicotiana megalosiphon Species 0.000 description 1
- 241000629993 Nicotiana mutabilis Species 0.000 description 1
- 241001144476 Nicotiana nesophila Species 0.000 description 1
- 241000250041 Nicotiana noctiflora Species 0.000 description 1
- 241000228665 Nicotiana nudicaulis Species 0.000 description 1
- 241001144504 Nicotiana occidentalis subsp. hesperis Species 0.000 description 1
- 241000208132 Nicotiana otophora Species 0.000 description 1
- 241000228667 Nicotiana palmeri Species 0.000 description 1
- 241000208133 Nicotiana plumbaginifolia Species 0.000 description 1
- 241000493375 Nicotiana quadrivalvis Species 0.000 description 1
- 241001144487 Nicotiana raimondii Species 0.000 description 1
- 241001144498 Nicotiana rosulata subsp. ingulba Species 0.000 description 1
- 241001144486 Nicotiana rotundifolia Species 0.000 description 1
- 241000208134 Nicotiana rustica Species 0.000 description 1
- 241001144491 Nicotiana setchellii Species 0.000 description 1
- 241000250044 Nicotiana simulans Species 0.000 description 1
- 241000249970 Nicotiana solanifolia Species 0.000 description 1
- 241000249966 Nicotiana stocktonii Species 0.000 description 1
- 241001144480 Nicotiana suaveolens Species 0.000 description 1
- 241000208136 Nicotiana sylvestris Species 0.000 description 1
- 241000579280 Nicotiana tomentosa Species 0.000 description 1
- 241001668820 Nicotiana truncata Species 0.000 description 1
- 241000249968 Nicotiana umbratica Species 0.000 description 1
- 241001144494 Nicotiana wigandioides Species 0.000 description 1
- STBCOMYLYYPNLI-HZJYAPBZSA-N OC(=O)\C=C\C1=CC=C(O)C=C1.O[C@@H]1[C@H](OP(O)(O)=O)[C@@H](COP(O)(=O)OP(O)(=O)OCC(C)(C)[C@@H](O)C(=O)NCCC(=O)NCCS)O[C@H]1N1C2=NC=NC(N)=C2N=C1 Chemical compound OC(=O)\C=C\C1=CC=C(O)C=C1.O[C@@H]1[C@H](OP(O)(O)=O)[C@@H](COP(O)(=O)OP(O)(=O)OCC(C)(C)[C@@H](O)C(=O)NCCC(=O)NCCS)O[C@H]1N1C2=NC=NC(N)=C2N=C1 STBCOMYLYYPNLI-HZJYAPBZSA-N 0.000 description 1
- 108050002069 Olfactory receptors Proteins 0.000 description 1
- 102000012547 Olfactory receptors Human genes 0.000 description 1
- 235000014643 Orbignya martiana Nutrition 0.000 description 1
- 244000021150 Orbignya martiana Species 0.000 description 1
- AHLPHDHHMVZTML-UHFFFAOYSA-N Orn-delta-NH2 Natural products NCCCC(N)C(O)=O AHLPHDHHMVZTML-UHFFFAOYSA-N 0.000 description 1
- UTJLXEIPEHZYQJ-UHFFFAOYSA-N Ornithine Natural products OC(=O)C(C)CCCN UTJLXEIPEHZYQJ-UHFFFAOYSA-N 0.000 description 1
- 235000007164 Oryza sativa Nutrition 0.000 description 1
- 238000012408 PCR amplification Methods 0.000 description 1
- 240000001090 Papaver somniferum Species 0.000 description 1
- 239000005591 Pendimethalin Substances 0.000 description 1
- 239000006002 Pepper Substances 0.000 description 1
- 240000007643 Phytolacca americana Species 0.000 description 1
- 235000009074 Phytolacca americana Nutrition 0.000 description 1
- 241000235648 Pichia Species 0.000 description 1
- 235000016761 Piper aduncum Nutrition 0.000 description 1
- 240000003889 Piper guineense Species 0.000 description 1
- 235000017804 Piper guineense Nutrition 0.000 description 1
- 235000008184 Piper nigrum Nutrition 0.000 description 1
- 241000209504 Poaceae Species 0.000 description 1
- 102100023591 Polyphosphoinositide phosphatase Human genes 0.000 description 1
- 101000621511 Potato virus M (strain German) RNA silencing suppressor Proteins 0.000 description 1
- 229910052774 Proactinium Inorganic materials 0.000 description 1
- 101710130420 Probable capsid assembly scaffolding protein Proteins 0.000 description 1
- 108010026552 Proteome Proteins 0.000 description 1
- 101100084022 Pseudomonas aeruginosa (strain ATCC 15692 / DSM 22644 / CIP 104116 / JCM 14847 / LMG 12228 / 1C / PRS 101 / PAO1) lapA gene Proteins 0.000 description 1
- 241000333692 Psychidae Species 0.000 description 1
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical group C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 1
- RWRDLPDLKQPQOW-UHFFFAOYSA-N Pyrrolidine Chemical group C1CCNC1 RWRDLPDLKQPQOW-UHFFFAOYSA-N 0.000 description 1
- 108700005075 Regulator Genes Proteins 0.000 description 1
- 108010034634 Repressor Proteins Proteins 0.000 description 1
- 102000009661 Repressor Proteins Human genes 0.000 description 1
- 241001361634 Rhizoctonia Species 0.000 description 1
- AUNGANRZJHBGPY-SCRDCRAPSA-N Riboflavin Chemical group OC[C@@H](O)[C@@H](O)[C@@H](O)CN1C=2C=C(C)C(C)=CC=2N=C2C1=NC(=O)NC2=O AUNGANRZJHBGPY-SCRDCRAPSA-N 0.000 description 1
- 235000005066 Rosa arkansana Nutrition 0.000 description 1
- 241000109365 Rosa arkansana Species 0.000 description 1
- UZMZQIZIJQTHDK-VXAHOBLNSA-N S-[2-[3-[[(2R)-4-[[[(2R,3S,4R,5R)-5-(6-aminopurin-9-yl)-4-hydroxy-3-phosphonooxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-hydroxyphosphoryl]oxy-2-hydroxy-3,3-dimethylbutanoyl]amino]propanoylamino]ethyl] 2-hydroxy-3-phenylprop-2-enethioate Chemical compound O=C([C@H](O)C(C)(COP(O)(=O)OP(O)(=O)OC[C@@H]1[C@H]([C@@H](O)[C@@H](O1)N1C2=NC=NC(N)=C2N=C1)OP(O)(O)=O)C)NCCC(=O)NCCSC(=O)C(O)=CC1=CC=CC=C1 UZMZQIZIJQTHDK-VXAHOBLNSA-N 0.000 description 1
- 102100037599 SPARC Human genes 0.000 description 1
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 1
- 101710204410 Scaffold protein Proteins 0.000 description 1
- 241000235346 Schizosaccharomyces Species 0.000 description 1
- 241000221662 Sclerotinia Species 0.000 description 1
- 108020004682 Single-Stranded DNA Proteins 0.000 description 1
- 241000208123 Solanum chilense Species 0.000 description 1
- 235000002540 Solanum chilense Nutrition 0.000 description 1
- 235000002595 Solanum tuberosum Nutrition 0.000 description 1
- 244000061456 Solanum tuberosum Species 0.000 description 1
- 239000005930 Spinosad Substances 0.000 description 1
- 241001085826 Sporotrichum Species 0.000 description 1
- 241000934878 Sterculia Species 0.000 description 1
- 239000005939 Tefluthrin Substances 0.000 description 1
- 239000005842 Thiophanate-methyl Substances 0.000 description 1
- 235000011941 Tilia x europaea Nutrition 0.000 description 1
- 241000663810 Tingidae Species 0.000 description 1
- 229920001615 Tragacanth Polymers 0.000 description 1
- 108091023040 Transcription factor Proteins 0.000 description 1
- 102000040945 Transcription factor Human genes 0.000 description 1
- WHKUVVPPKQRRBV-UHFFFAOYSA-N Trasan Chemical compound CC1=CC(Cl)=CC=C1OCC(O)=O WHKUVVPPKQRRBV-UHFFFAOYSA-N 0.000 description 1
- 241000601794 Trichothecium Species 0.000 description 1
- 235000021307 Triticum Nutrition 0.000 description 1
- 244000098338 Triticum aestivum Species 0.000 description 1
- 108090000848 Ubiquitin Proteins 0.000 description 1
- 102000044159 Ubiquitin Human genes 0.000 description 1
- 241000082085 Verticillium <Phyllachorales> Species 0.000 description 1
- 241000700605 Viruses Species 0.000 description 1
- 235000009392 Vitis Nutrition 0.000 description 1
- 241000219095 Vitis Species 0.000 description 1
- 208000027418 Wounds and injury Diseases 0.000 description 1
- 101100239644 Xenopus laevis myc-b gene Proteins 0.000 description 1
- 240000008042 Zea mays Species 0.000 description 1
- 235000007244 Zea mays Nutrition 0.000 description 1
- VXSIXFKKSNGRRO-MXOVTSAMSA-N [(1s)-2-methyl-4-oxo-3-[(2z)-penta-2,4-dienyl]cyclopent-2-en-1-yl] (1r,3r)-2,2-dimethyl-3-(2-methylprop-1-enyl)cyclopropane-1-carboxylate;[(1s)-2-methyl-4-oxo-3-[(2z)-penta-2,4-dienyl]cyclopent-2-en-1-yl] (1r,3r)-3-[(e)-3-methoxy-2-methyl-3-oxoprop-1-enyl Chemical class CC1(C)[C@H](C=C(C)C)[C@H]1C(=O)O[C@@H]1C(C)=C(C\C=C/C=C)C(=O)C1.CC1(C)[C@H](/C=C(\C)C(=O)OC)[C@H]1C(=O)O[C@@H]1C(C)=C(C\C=C/C=C)C(=O)C1 VXSIXFKKSNGRRO-MXOVTSAMSA-N 0.000 description 1
- FJJCIZWZNKZHII-UHFFFAOYSA-N [4,6-bis(cyanoamino)-1,3,5-triazin-2-yl]cyanamide Chemical compound N#CNC1=NC(NC#N)=NC(NC#N)=N1 FJJCIZWZNKZHII-UHFFFAOYSA-N 0.000 description 1
- KIAWPPWYPLTJAJ-BLPRJPCASA-N [[(2R,3S,4R,5R)-5-(6-aminopurin-9-yl)-4-hydroxy-3-phosphonooxyoxolan-2-yl]methoxy-hydroxyphosphoryl] [(3R)-3-hydroxy-2,2-dimethyl-4-oxo-4-[[3-oxo-3-(2-sulfanylethylamino)propyl]amino]butyl] hydrogen phosphate 2-hydroxy-3-phenylprop-2-enoic acid Chemical class OC(=O)C(O)=CC1=CC=CC=C1.O[C@@H]1[C@H](OP(O)(O)=O)[C@@H](COP(O)(=O)OP(O)(=O)OCC(C)(C)[C@@H](O)C(=O)NCCC(=O)NCCS)O[C@H]1N1C2=NC=NC(N)=C2N=C1 KIAWPPWYPLTJAJ-BLPRJPCASA-N 0.000 description 1
- 235000010489 acacia gum Nutrition 0.000 description 1
- 239000000205 acacia gum Substances 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 239000012190 activator Substances 0.000 description 1
- 238000005917 acylation reaction Methods 0.000 description 1
- 150000001273 acylsugars Chemical class 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- QYPPJABKJHAVHS-UHFFFAOYSA-P agmatinium(2+) Chemical compound NC(=[NH2+])NCCCC[NH3+] QYPPJABKJHAVHS-UHFFFAOYSA-P 0.000 description 1
- 125000003342 alkenyl group Chemical group 0.000 description 1
- 125000000217 alkyl group Chemical group 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 235000012211 aluminium silicate Nutrition 0.000 description 1
- 239000010476 amaranth oil Substances 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 125000000539 amino acid group Chemical group 0.000 description 1
- NIXXQNOQHKNPEJ-UHFFFAOYSA-N aminopyralid Chemical compound NC1=CC(Cl)=NC(C(O)=O)=C1Cl NIXXQNOQHKNPEJ-UHFFFAOYSA-N 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 235000019257 ammonium acetate Nutrition 0.000 description 1
- 229940043376 ammonium acetate Drugs 0.000 description 1
- 229910000148 ammonium phosphate Inorganic materials 0.000 description 1
- 235000019289 ammonium phosphates Nutrition 0.000 description 1
- BFNBIHQBYMNNAN-UHFFFAOYSA-N ammonium sulfate Chemical compound N.N.OS(O)(=O)=O BFNBIHQBYMNNAN-UHFFFAOYSA-N 0.000 description 1
- 229910052921 ammonium sulfate Inorganic materials 0.000 description 1
- 235000011130 ammonium sulphate Nutrition 0.000 description 1
- 238000000540 analysis of variance Methods 0.000 description 1
- 125000000129 anionic group Chemical group 0.000 description 1
- 230000002331 anti-herbivore Effects 0.000 description 1
- 230000000692 anti-sense effect Effects 0.000 description 1
- 229940088710 antibiotic agent Drugs 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 239000012300 argon atmosphere Substances 0.000 description 1
- 239000000305 astragalus gummifer gum Substances 0.000 description 1
- MXWJVTOOROXGIU-UHFFFAOYSA-N atrazine Chemical compound CCNC1=NC(Cl)=NC(NC(C)C)=N1 MXWJVTOOROXGIU-UHFFFAOYSA-N 0.000 description 1
- CWAXZXSFUDEMIX-ZIKBFGBNSA-N attenoside Chemical compound O[C@@H]1[C@H](O)[C@@H](O)[C@H](C)O[C@H]1O[C@H]1[C@H](O)[C@@H](O)[C@H](O[C@@](C)(CC\C=C(/C)CC\C=C(/C)CC\C=C(\C)CO[C@H]2[C@@H]([C@@H](O)[C@H](O)[C@@H](CO)O2)O[C@H]2[C@@H]([C@@H](O)[C@H](O)[C@@H](CO)O2)O)C=C)O[C@@H]1CO CWAXZXSFUDEMIX-ZIKBFGBNSA-N 0.000 description 1
- CWAXZXSFUDEMIX-UHFFFAOYSA-N attenoside Natural products OC1C(O)C(O)C(C)OC1OC1C(O)C(O)C(OC(C)(CCC=C(C)CCC=C(C)CCC=C(C)COC2C(C(O)C(O)C(CO)O2)OC2C(C(O)C(O)C(CO)O2)O)C=C)OC1CO CWAXZXSFUDEMIX-UHFFFAOYSA-N 0.000 description 1
- 244000062766 autotrophic organism Species 0.000 description 1
- 235000021302 avocado oil Nutrition 0.000 description 1
- 239000008163 avocado oil Substances 0.000 description 1
- WFDXOXNFNRHQEC-GHRIWEEISA-N azoxystrobin Chemical compound CO\C=C(\C(=O)OC)C1=CC=CC=C1OC1=CC(OC=2C(=CC=CC=2)C#N)=NC=N1 WFDXOXNFNRHQEC-GHRIWEEISA-N 0.000 description 1
- 238000010923 batch production Methods 0.000 description 1
- 150000001555 benzenes Chemical class 0.000 description 1
- 235000021028 berry Nutrition 0.000 description 1
- OMFRMAHOUUJSGP-IRHGGOMRSA-N bifenthrin Chemical compound C1=CC=C(C=2C=CC=CC=2)C(C)=C1COC(=O)[C@@H]1[C@H](\C=C(/Cl)C(F)(F)F)C1(C)C OMFRMAHOUUJSGP-IRHGGOMRSA-N 0.000 description 1
- 230000001588 bifunctional effect Effects 0.000 description 1
- 238000004166 bioassay Methods 0.000 description 1
- 238000005842 biochemical reaction Methods 0.000 description 1
- VEMKTZHHVJILDY-UXHICEINSA-N bioresmethrin Chemical compound CC1(C)[C@H](C=C(C)C)[C@H]1C(=O)OCC1=COC(CC=2C=CC=CC=2)=C1 VEMKTZHHVJILDY-UXHICEINSA-N 0.000 description 1
- 235000021324 borage oil Nutrition 0.000 description 1
- 235000004883 caffeic acid Nutrition 0.000 description 1
- 229940074360 caffeic acid Drugs 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 239000004202 carbamide Substances 0.000 description 1
- 229960005286 carbaryl Drugs 0.000 description 1
- CVXBEEMKQHEXEN-UHFFFAOYSA-N carbaryl Chemical compound C1=CC=C2C(OC(=O)NC)=CC=CC2=C1 CVXBEEMKQHEXEN-UHFFFAOYSA-N 0.000 description 1
- 239000006013 carbendazim Substances 0.000 description 1
- JNPZQRQPIHJYNM-UHFFFAOYSA-N carbendazim Chemical compound C1=C[CH]C2=NC(NC(=O)OC)=NC2=C1 JNPZQRQPIHJYNM-UHFFFAOYSA-N 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 125000002091 cationic group Chemical group 0.000 description 1
- 230000010261 cell growth Effects 0.000 description 1
- 235000013339 cereals Nutrition 0.000 description 1
- WOWHHFRSBJGXCM-UHFFFAOYSA-M cetyltrimethylammonium chloride Chemical compound [Cl-].CCCCCCCCCCCCCCCC[N+](C)(C)C WOWHHFRSBJGXCM-UHFFFAOYSA-M 0.000 description 1
- 150000001793 charged compounds Chemical class 0.000 description 1
- 125000003636 chemical group Chemical group 0.000 description 1
- 108091008690 chemoreceptors Proteins 0.000 description 1
- 230000035605 chemotaxis Effects 0.000 description 1
- 210000003763 chloroplast Anatomy 0.000 description 1
- LGTLDEUQCOJGFP-WAYWQWQTSA-N cis-3-Hexenyl propanoate Chemical compound CC\C=C/CCOC(=O)CC LGTLDEUQCOJGFP-WAYWQWQTSA-N 0.000 description 1
- QAIPRVGONGVQAS-UHFFFAOYSA-N cis-caffeic acid Natural products OC(=O)C=CC1=CC=C(O)C(O)=C1 QAIPRVGONGVQAS-UHFFFAOYSA-N 0.000 description 1
- 239000004927 clay Substances 0.000 description 1
- HUBANNPOLNYSAD-UHFFFAOYSA-N clopyralid Chemical compound OC(=O)C1=NC(Cl)=CC=C1Cl HUBANNPOLNYSAD-UHFFFAOYSA-N 0.000 description 1
- 239000003240 coconut oil Substances 0.000 description 1
- 235000019864 coconut oil Nutrition 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 239000002299 complementary DNA Substances 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 230000021615 conjugation Effects 0.000 description 1
- 108091036078 conserved sequence Proteins 0.000 description 1
- 235000020940 control diet Nutrition 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 238000010219 correlation analysis Methods 0.000 description 1
- 235000001671 coumarin Nutrition 0.000 description 1
- 229960000956 coumarin Drugs 0.000 description 1
- 244000038559 crop plants Species 0.000 description 1
- 229960001591 cyfluthrin Drugs 0.000 description 1
- QQODLKZGRKWIFG-QSFXBCCZSA-N cyfluthrin Chemical compound CC1(C)[C@@H](C=C(Cl)Cl)[C@H]1C(=O)O[C@@H](C#N)C1=CC=C(F)C(OC=2C=CC=CC=2)=C1 QQODLKZGRKWIFG-QSFXBCCZSA-N 0.000 description 1
- KAATUXNTWXVJKI-UHFFFAOYSA-N cypermethrin Chemical compound CC1(C)C(C=C(Cl)Cl)C1C(=O)OC(C#N)C1=CC=CC(OC=2C=CC=CC=2)=C1 KAATUXNTWXVJKI-UHFFFAOYSA-N 0.000 description 1
- 229960002483 decamethrin Drugs 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000004665 defense response Effects 0.000 description 1
- OWZREIFADZCYQD-NSHGMRRFSA-N deltamethrin Chemical compound CC1(C)[C@@H](C=C(Br)Br)[C@H]1C(=O)O[C@H](C#N)C1=CC=CC(OC=2C=CC=CC=2)=C1 OWZREIFADZCYQD-NSHGMRRFSA-N 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 229960002086 dextran Drugs 0.000 description 1
- 229960000633 dextran sulfate Drugs 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- MNNHAPBLZZVQHP-UHFFFAOYSA-N diammonium hydrogen phosphate Chemical compound [NH4+].[NH4+].OP([O-])([O-])=O MNNHAPBLZZVQHP-UHFFFAOYSA-N 0.000 description 1
- 239000010432 diamond Substances 0.000 description 1
- IWEDIXLBFLAXBO-UHFFFAOYSA-N dicamba Chemical compound COC1=C(Cl)C=CC(Cl)=C1C(O)=O IWEDIXLBFLAXBO-UHFFFAOYSA-N 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- 239000000539 dimer Substances 0.000 description 1
- 238000006471 dimerization reaction Methods 0.000 description 1
- 201000010099 disease Diseases 0.000 description 1
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 239000010459 dolomite Substances 0.000 description 1
- 229910000514 dolomite Inorganic materials 0.000 description 1
- 238000010410 dusting Methods 0.000 description 1
- 239000012636 effector Substances 0.000 description 1
- 238000004520 electroporation Methods 0.000 description 1
- 238000012407 engineering method Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000003623 enhancer Substances 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 235000008524 evening primrose extract Nutrition 0.000 description 1
- 229940089020 evening primrose oil Drugs 0.000 description 1
- 239000010475 evening primrose oil Substances 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 239000003925 fat Substances 0.000 description 1
- 235000019197 fats Nutrition 0.000 description 1
- 230000004634 feeding behavior Effects 0.000 description 1
- 239000003337 fertilizer Substances 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- FQKUGOMFVDPBIZ-UHFFFAOYSA-N flusilazole Chemical compound C=1C=C(F)C=CC=1[Si](C=1C=CC(F)=CC=1)(C)CN1C=NC=N1 FQKUGOMFVDPBIZ-UHFFFAOYSA-N 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 238000004108 freeze drying Methods 0.000 description 1
- 229910021485 fumed silica Inorganic materials 0.000 description 1
- 238000002825 functional assay Methods 0.000 description 1
- 125000000524 functional group Chemical group 0.000 description 1
- 238000010413 gardening Methods 0.000 description 1
- 239000000499 gel Substances 0.000 description 1
- 108091008053 gene clusters Proteins 0.000 description 1
- 101150106096 gltA gene Proteins 0.000 description 1
- 101150042350 gltA2 gene Proteins 0.000 description 1
- 229940116332 glucose oxidase Drugs 0.000 description 1
- 235000019420 glucose oxidase Nutrition 0.000 description 1
- 101150097303 glyA gene Proteins 0.000 description 1
- 101150079604 glyA1 gene Proteins 0.000 description 1
- 108020004445 glyceraldehyde-3-phosphate dehydrogenase Proteins 0.000 description 1
- 229940097068 glyphosate Drugs 0.000 description 1
- XDDAORKBJWWYJS-UHFFFAOYSA-N glyphosate Chemical compound OC(=O)CNCP(O)(O)=O XDDAORKBJWWYJS-UHFFFAOYSA-N 0.000 description 1
- 239000008169 grapeseed oil Substances 0.000 description 1
- 230000007773 growth pattern Effects 0.000 description 1
- 239000000665 guar gum Substances 0.000 description 1
- 235000010417 guar gum Nutrition 0.000 description 1
- 229960002154 guar gum Drugs 0.000 description 1
- 238000003306 harvesting Methods 0.000 description 1
- 239000010460 hemp oil Substances 0.000 description 1
- 229960002897 heparin Drugs 0.000 description 1
- 229920000669 heparin Polymers 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 150000002432 hydroperoxides Chemical class 0.000 description 1
- 125000001165 hydrophobic group Chemical group 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 230000008676 import Effects 0.000 description 1
- 230000001976 improved effect Effects 0.000 description 1
- 239000000411 inducer Substances 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 208000014674 injury Diseases 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 238000003973 irrigation Methods 0.000 description 1
- 230000002262 irrigation Effects 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- NLYAJNPCOHFWQQ-UHFFFAOYSA-N kaolin Chemical compound O.O.O=[Al]O[Si](=O)O[Si](=O)O[Al]=O NLYAJNPCOHFWQQ-UHFFFAOYSA-N 0.000 description 1
- 235000010494 karaya gum Nutrition 0.000 description 1
- 239000000231 karaya gum Substances 0.000 description 1
- 229940039371 karaya gum Drugs 0.000 description 1
- PVTHJAPFENJVNC-MHRBZPPQSA-N kasugamycin Chemical compound N[C@H]1C[C@H](NC(=N)C(O)=O)[C@@H](C)O[C@@H]1O[C@H]1[C@H](O)[C@@H](O)[C@@H](O)[C@H](O)[C@@H]1O PVTHJAPFENJVNC-MHRBZPPQSA-N 0.000 description 1
- 239000005910 lambda-Cyhalothrin Substances 0.000 description 1
- 230000001418 larval effect Effects 0.000 description 1
- 239000000787 lecithin Substances 0.000 description 1
- 229940067606 lecithin Drugs 0.000 description 1
- 235000010445 lecithin Nutrition 0.000 description 1
- 230000003902 lesion Effects 0.000 description 1
- 231100000518 lethal Toxicity 0.000 description 1
- 230000001665 lethal effect Effects 0.000 description 1
- 239000004571 lime Substances 0.000 description 1
- 239000006028 limestone Substances 0.000 description 1
- 229930007744 linalool Natural products 0.000 description 1
- 125000005647 linker group Chemical group 0.000 description 1
- 230000004807 localization Effects 0.000 description 1
- 235000010420 locust bean gum Nutrition 0.000 description 1
- 239000000711 locust bean gum Substances 0.000 description 1
- 150000004668 long chain fatty acids Chemical class 0.000 description 1
- 239000000395 magnesium oxide Substances 0.000 description 1
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 1
- 229910052943 magnesium sulfate Inorganic materials 0.000 description 1
- 235000019341 magnesium sulphate Nutrition 0.000 description 1
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 238000004949 mass spectrometry Methods 0.000 description 1
- 230000013011 mating Effects 0.000 description 1
- 150000004667 medium chain fatty acids Chemical class 0.000 description 1
- 150000004702 methyl esters Chemical class 0.000 description 1
- 235000010755 mineral Nutrition 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 208000024191 minimally invasive lung adenocarcinoma Diseases 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 210000003205 muscle Anatomy 0.000 description 1
- 230000032965 negative regulation of cell volume Effects 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 238000000655 nuclear magnetic resonance spectrum Methods 0.000 description 1
- 235000014571 nuts Nutrition 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 235000019198 oils Nutrition 0.000 description 1
- 238000001543 one-way ANOVA Methods 0.000 description 1
- 229960003104 ornithine Drugs 0.000 description 1
- 230000017448 oviposition Effects 0.000 description 1
- WCPAKWJPBJAGKN-UHFFFAOYSA-N oxadiazole Chemical compound C1=CON=N1 WCPAKWJPBJAGKN-UHFFFAOYSA-N 0.000 description 1
- FIKAKWIAUPDISJ-UHFFFAOYSA-L paraquat dichloride Chemical compound [Cl-].[Cl-].C1=C[N+](C)=CC=C1C1=CC=[N+](C)C=C1 FIKAKWIAUPDISJ-UHFFFAOYSA-L 0.000 description 1
- CHIFOSRWCNZCFN-UHFFFAOYSA-N pendimethalin Chemical compound CCC(CC)NC1=C([N+]([O-])=O)C=C(C)C(C)=C1[N+]([O-])=O CHIFOSRWCNZCFN-UHFFFAOYSA-N 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 229960000490 permethrin Drugs 0.000 description 1
- RLLPVAHGXHCWKJ-UHFFFAOYSA-N permethrin Chemical compound CC1(C)C(C=C(Cl)Cl)C1C(=O)OCC1=CC=CC(OC=2C=CC=CC=2)=C1 RLLPVAHGXHCWKJ-UHFFFAOYSA-N 0.000 description 1
- 229960003742 phenol Drugs 0.000 description 1
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 1
- 125000001474 phenylpropanoid group Chemical group 0.000 description 1
- 101150009573 phoA gene Proteins 0.000 description 1
- 230000004962 physiological condition Effects 0.000 description 1
- 229960005235 piperonyl butoxide Drugs 0.000 description 1
- 239000013600 plasmid vector Substances 0.000 description 1
- 229920002401 polyacrylamide Polymers 0.000 description 1
- 238000002264 polyacrylamide gel electrophoresis Methods 0.000 description 1
- 230000000379 polymerizing effect Effects 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 235000020777 polyunsaturated fatty acids Nutrition 0.000 description 1
- 239000013641 positive control Substances 0.000 description 1
- 230000001124 posttranscriptional effect Effects 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 1
- HYJYGLGUBUDSLJ-UHFFFAOYSA-N pyrethrin Natural products CCC(=O)OC1CC(=C)C2CC3OC3(C)C2C2OC(=O)C(=C)C12 HYJYGLGUBUDSLJ-UHFFFAOYSA-N 0.000 description 1
- 229940070846 pyrethrins Drugs 0.000 description 1
- 239000002728 pyrethroid Substances 0.000 description 1
- ZHNFLHYOFXQIOW-LPYZJUEESA-N quinine sulfate dihydrate Chemical compound [H+].[H+].O.O.[O-]S([O-])(=O)=O.C([C@H]([C@H](C1)C=C)C2)C[N@@]1[C@@H]2[C@H](O)C1=CC=NC2=CC=C(OC)C=C21.C([C@H]([C@H](C1)C=C)C2)C[N@@]1[C@@H]2[C@H](O)C1=CC=NC2=CC=C(OC)C=C21 ZHNFLHYOFXQIOW-LPYZJUEESA-N 0.000 description 1
- 230000000384 rearing effect Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000022532 regulation of transcription, DNA-dependent Effects 0.000 description 1
- 230000008521 reorganization Effects 0.000 description 1
- 230000010076 replication Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 230000028624 response to insect Effects 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 235000009566 rice Nutrition 0.000 description 1
- 239000010666 rose oil Substances 0.000 description 1
- 238000002390 rotary evaporation Methods 0.000 description 1
- 238000010079 rubber tapping Methods 0.000 description 1
- 108010038196 saccharide-binding proteins Proteins 0.000 description 1
- 210000003296 saliva Anatomy 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 239000008159 sesame oil Substances 0.000 description 1
- 235000011803 sesame oil Nutrition 0.000 description 1
- 150000004666 short chain fatty acids Chemical class 0.000 description 1
- 235000021391 short chain fatty acids Nutrition 0.000 description 1
- 239000000741 silica gel Substances 0.000 description 1
- 229910002027 silica gel Inorganic materials 0.000 description 1
- 150000004760 silicates Chemical class 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- RBFUWESMWRUGFY-GSNIOFLCSA-N sinapoyl-CoA Chemical compound COC1=C(O)C(OC)=CC(\C=C\C(=O)SCCNC(=O)CCNC(=O)[C@H](O)C(C)(C)COP(O)(=O)OP(O)(=O)OC[C@@H]2[C@H]([C@@H](O)[C@@H](O2)N2C3=NC=NC(N)=C3N=C2)OP(O)(O)=O)=C1 RBFUWESMWRUGFY-GSNIOFLCSA-N 0.000 description 1
- 150000003384 small molecules Chemical class 0.000 description 1
- 238000002791 soaking Methods 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000001509 sodium citrate Substances 0.000 description 1
- 239000001488 sodium phosphate Substances 0.000 description 1
- 229910000162 sodium phosphate Inorganic materials 0.000 description 1
- 229940014213 spinosad Drugs 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 239000008223 sterile water Substances 0.000 description 1
- 230000004960 subcellular localization Effects 0.000 description 1
- 239000006228 supernatant Substances 0.000 description 1
- 229920002994 synthetic fiber Polymers 0.000 description 1
- 230000009897 systematic effect Effects 0.000 description 1
- 239000000454 talc Substances 0.000 description 1
- 229910052623 talc Inorganic materials 0.000 description 1
- 235000012222 talc Nutrition 0.000 description 1
- 230000008685 targeting Effects 0.000 description 1
- 239000004308 thiabendazole Substances 0.000 description 1
- 235000010296 thiabendazole Nutrition 0.000 description 1
- WJCNZQLZVWNLKY-UHFFFAOYSA-N thiabendazole Chemical compound S1C=NC(C=2NC3=CC=CC=C3N=2)=C1 WJCNZQLZVWNLKY-UHFFFAOYSA-N 0.000 description 1
- 229960004546 thiabendazole Drugs 0.000 description 1
- QGHREAKMXXNCOA-UHFFFAOYSA-N thiophanate-methyl Chemical compound COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC QGHREAKMXXNCOA-UHFFFAOYSA-N 0.000 description 1
- 230000036962 time dependent Effects 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- YWSCPYYRJXKUDB-KAKFPZCNSA-N tralomethrin Chemical compound CC1(C)[C@@H](C(Br)C(Br)(Br)Br)[C@H]1C(=O)O[C@H](C#N)C1=CC=CC(OC=2C=CC=CC=2)=C1 YWSCPYYRJXKUDB-KAKFPZCNSA-N 0.000 description 1
- GBXZVJQQDAJGSO-NBXNMEGSSA-N trans-feruloyl-CoA Chemical compound C1=C(O)C(OC)=CC(\C=C\C(=O)SCCNC(=O)CCNC(=O)[C@H](O)C(C)(C)COP(O)(=O)OP(O)(=O)OC[C@@H]2[C@H]([C@@H](O)[C@@H](O2)N2C3=NC=NC(N)=C3N=C2)OP(O)(O)=O)=C1 GBXZVJQQDAJGSO-NBXNMEGSSA-N 0.000 description 1
- XMLSXPIVAXONDL-UHFFFAOYSA-N trans-jasmone Natural products CCC=CCC1=C(C)CCC1=O XMLSXPIVAXONDL-UHFFFAOYSA-N 0.000 description 1
- 230000005026 transcription initiation Effects 0.000 description 1
- 230000002103 transcriptional effect Effects 0.000 description 1
- 238000010361 transduction Methods 0.000 description 1
- 230000026683 transduction Effects 0.000 description 1
- 230000001131 transforming effect Effects 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 230000005945 translocation Effects 0.000 description 1
- HRXKRNGNAMMEHJ-UHFFFAOYSA-K trisodium citrate Chemical compound [Na+].[Na+].[Na+].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O HRXKRNGNAMMEHJ-UHFFFAOYSA-K 0.000 description 1
- 229940038773 trisodium citrate Drugs 0.000 description 1
- RYFMWSXOAZQYPI-UHFFFAOYSA-K trisodium phosphate Chemical compound [Na+].[Na+].[Na+].[O-]P([O-])([O-])=O RYFMWSXOAZQYPI-UHFFFAOYSA-K 0.000 description 1
- 238000009827 uniform distribution Methods 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
- 239000004474 valine Substances 0.000 description 1
- 235000015112 vegetable and seed oil Nutrition 0.000 description 1
- 235000019871 vegetable fat Nutrition 0.000 description 1
- 108700026220 vif Genes Proteins 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
- 239000000080 wetting agent Substances 0.000 description 1
- 239000002023 wood Substances 0.000 description 1
Landscapes
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Enzymes And Modification Thereof (AREA)
Abstract
本发明涉及介导对叶蝉和飞虱害虫的抗性的通式(I)的化合物或对映异构体、非对映异构体、立体异构体。本发明进一步涉及制备所述化合物的方法,使用至少BBL2多肽以及PPO、AT1、ODC、HPL、PAL、C4H、4CL、HCT和/或C3H活性的酶促制备所述化合物的方法。进一步考虑了制备所述化合物的遗传修饰的生物体、用于异源表达活性的表达盒、相应多肽和多核苷酸用于制备所述化合物的用途、包含所述化合物的组合物、以及所述化合物用于植物保护的用途。The present invention relates to compounds of general formula (I) that mediate resistance to leafhopper and planthopper pests or enantiomers, diastereomers, stereoisomers. The invention further relates to methods for preparing said compounds, methods for preparing said compounds enzymatically using at least a BBL2 polypeptide and PPO, AT1, ODC, HPL, PAL, C4H, 4CL, HCT and/or C3H activity. Further contemplated are genetically modified organisms for preparing said compounds, expression cassettes for heterologous expression of the activity, the use of corresponding polypeptides and polynucleotides for preparing said compounds, compositions comprising said compounds, and the use of said compounds for plant protection.
Description
技术领域Technical Field
本发明涉及介导对叶蝉和飞虱害虫的抗性的通式(I)的化合物The present invention relates to compounds of general formula (I) that mediate resistance to leafhopper and planthopper pests
或对映异构体、非对映异构体、立体异构体。本发明进一步涉及制备所述化合物的方法,使用至少BBL2多肽以及PPO、AT1、ODC、HPL、PAL、C4H、4CL、HCT和/或C3H活性的酶促制备所述化合物的方法。进一步考虑了制备所述化合物的遗传修饰的生物体、用于异源表达活性的表达盒、相应多肽和多核苷酸用于制备所述化合物的用途、包含所述化合物的组合物、以及所述化合物用于植物保护的用途。or enantiomers, diastereomers, stereoisomers. The invention further relates to methods for preparing said compounds, methods for preparing said compounds enzymatically using at least a BBL2 polypeptide and PPO, AT1, ODC, HPL, PAL, C4H, 4CL, HCT and/or C3H activity. Further contemplated are genetically modified organisms for preparing said compounds, expression cassettes for heterologous expression of the activity, the use of corresponding polypeptides and polynucleotides for preparing said compounds, compositions comprising said compounds, and the use of said compounds for plant protection.
背景技术Background technique
植物处于大多数陆地食物链的底端,不断受到食草动物和病原体的攻击(Kessler和Kalske,Annual Review of Ecology,Evolution,and Systematics 49,115-138(2018),Bednarek和Osbourn,Science 324,746-748(2009))。植物为大多数植食性昆虫物种提供各种资源,诸如食物、交配和产卵地点以及庇护所。昆虫对宿主植物的选择涉及对宿主植物的各种物理和化学特征的复杂行为应答,所述应答在不同的空间尺度上起作用,并且包括长距离嗅觉(例如,气味受体感知的植物衍生挥发物)和视觉(例如,植物形状、大小和颜色)线索以及短距离趋化性和味觉(例如,化学感受器感知的表面代谢物)线索(Thorsteinson,Ann.Rev.Entomol.5,193-218(1960))。昆虫用于宿主选择的植物的物理和化学特征取决于昆虫物种的进食集团(feeding guild)和饮食行为(例如多食性或寡食性)(Prokopy和Owens,Entomol Exp Appl 24(3):609-62(1978))。Plants are at the bottom of most terrestrial food chains and are constantly attacked by herbivores and pathogens (Kessler and Kalske, Annual Review of Ecology, Evolution, and Systematics 49, 115-138 (2018), Bednarek and Osbourn, Science 324, 746-748 (2009)). Plants provide a variety of resources for most herbivorous insect species, such as food, mating and oviposition sites, and shelter. Insect selection of host plants involves complex behavioral responses to various physical and chemical characteristics of host plants, which operate at different spatial scales and include long-range olfactory (e.g., plant-derived volatiles sensed by odorant receptors) and visual (e.g., plant shape, size, and color) cues as well as short-range chemotaxis and taste (e.g., surface metabolites sensed by chemoreceptors) cues (Thorsteinson, Ann. Rev. Entomol. 5, 193-218 (1960)). The physical and chemical characteristics of plants that insects use for host selection depend on the feeding guild and feeding behavior (eg, polyphagous or oligophagous) of the insect species (Prokopy and Owens, Entomol Exp Appl 24(3):609-62 (1978)).
昆虫也可以感知植物激素。例如,谷实夜蛾(Helicoverpa zea)(鳞翅目)幼虫可以感知茉莉酸(JA)(Li等人,Nature 419:712-715(2002)),茉莉酸在受到攻击过程中在食用植物中积聚,并诱导植物防御代谢物的从头合成(Dicke和Baldwin,Trends Plant Sci,15:167-175,(2010))。因此,昆虫可能根据植物产生某些植物激素的能力来选择植物进食。Insects can also sense plant hormones. For example, Helicoverpa zea (Lepidoptera) larvae can sense jasmonic acid (JA) (Li et al., Nature 419:712-715 (2002)), which accumulates in food plants during attack and induces de novo synthesis of plant defense metabolites (Dicke and Baldwin, Trends Plant Sci, 15:167-175, (2010)). Therefore, insects may choose plants to eat based on their ability to produce certain plant hormones.
在某些情况下,昆虫可以抑制植物防御代谢物的积累作为食用植物选择的一种机制(Howe和Jander,Annu Rev植物Biol 59:41-66(2008))。这些抑制机制经常与植物激素生物合成或信号传递途径的改变相关,并且可能涉及昆虫(Musser等人,Nature,416:599-600(2002))或载体微生物(Mayer等人.J Chem Ecol,34:1045-1049(2008))所产生的特定酶(例如,葡萄糖氧化酶)。In some cases, insects can suppress the accumulation of plant defense metabolites as a mechanism of food plant selection (Howe and Jander, Annu Rev Plant Biol 59: 41-66 (2008)). These inhibitory mechanisms are often associated with changes in plant hormone biosynthesis or signaling pathways and may involve specific enzymes (e.g., glucose oxidase) produced by insects (Musser et al., Nature, 416: 599-600 (2002)) or vector microorganisms (Mayer et al. J Chem Ecol, 34: 1045-1049 (2008)).
对于半翅目的昆虫来说,对宿主植物特征的行为应答涉及一系列步骤,包括用唇轻拍和用它们刺穿式口器探测。这些最初的探测和进食尝试也会引发植物激素(诸如JA)及其介导的诱导的防御代谢物的快速积累。例如,当通过沉默JA生物合成途径的初始关键步骤而使渐狭叶烟草(Nicotiana attenuata)植物缺乏JA时,它们在自然界中会受到小绿叶蝉属(Empoasca)的半翅类叶蝉的严重攻击。For insects of the order Hemiptera, behavioral responses to host plant features involve a series of steps, including tapping with the lips and probing with their piercing mouthparts. These initial probing and feeding attempts also trigger the rapid accumulation of phytohormones (such as JA) and their mediated induced defense metabolites. For example, when Nicotiana attenuata plants are starved of JA by silencing the initial key steps of the JA biosynthetic pathway, they are severely attacked in nature by Hemiptera leafhoppers of the genus Empoasca.
对提供生物因子(诸如小绿叶蝉属叶蝉)抗性的植物特性的研究主要集中于对病原体的非宿主抗性(Fan等人,Science 331,1185-1188(2011);Peart等人,Proc Natl AcadSci U S A 99,10865-10869(2002);Sohn等人,New Phytol 193,58-66(2012))和对食草动物的宿主抗性(Agrawal,Science 279,1201-1202(1998);Karban和Baldwin,Universityof Chicago Press,104-166(2007))。这种侧重点差异可能反映了食草动物的更大生理自主性,它们会选择性地选取植物进行攻击,同时还面临着发现食草动物拒绝攻击的宿主抗性特性的挑战。在实验室的无选择测定中,由于防御途径被废除而变得“失去防御能力”的植物可能受到非宿主食草动物的攻击(Muller等人,J Chem Ecol 36,905-913(2010);Barth and Jander,植物J 46,549-562(2006))。Research on plant traits that provide resistance to biotic agents, such as Empoasca leafhoppers, has focused primarily on non-host resistance to pathogens (Fan et al., Science 331, 1185-1188 (2011); Peart et al., Proc Natl Acad Sci U S A 99, 10865-10869 (2002); Sohn et al., New Phytol 193, 58-66 (2012)) and host resistance to herbivores (Agrawal, Science 279, 1201-1202 (1998); Karban and Baldwin, University of Chicago Press, 104-166 (2007)). This difference in emphasis may reflect the greater physiological autonomy of herbivores, which selectively choose plants to attack, as well as the challenge of discovering host resistance traits that herbivores reject. In laboratory no-choice assays, plants that become "defenseless" due to abrogation of defense pathways can be attacked by non-host herbivores (Muller et al., J Chem Ecol 36, 905-913 (2010); Barth and Jander, Plant J 46, 549-562 (2006)).
但是,这些测定并未捕捉到昆虫在自然界中选择其宿主植物的选择性程序,从而限制了从这些实验室研究中可以得出关于非宿主抗性的推论。由于实地研究不足,非宿主抵抗食草动物的机制和代谢特性仍然在很大程度上未知。However, these assays do not capture the selective programs by which insects choose their host plants in nature, limiting the inferences that can be drawn about non-host resistance from these laboratory studies. Due to a lack of field studies, the mechanisms and metabolic traits of non-host resistance to herbivores remain largely unknown.
尽管对植物在抵抗病原体的非宿主抗性方面起作用的特性了解很多,但对抵抗食草动物的非宿主抗性却知之甚少,尽管其在农业上具有重要意义。例如,小绿叶蝉属叶蝉通过窃听茉莉酸(JA)介导的信号传递的未知输出来识别宿主植物。While much is known about plant traits that contribute to non-host resistance against pathogens, less is known about non-host resistance against herbivores, despite its agricultural importance. For example, Empoasca leafhoppers recognize host plants by eavesdropping on an unknown output of jasmonic acid (JA)-mediated signaling.
因此需要能够改善植物保护以对抗食草动物诸如叶蝉或飞虱的手段和方法。There is therefore a need for means and methods which can improve the protection of plants against herbivores such as leafhoppers or plant hoppers.
发明内容Summary of the invention
本发明解决了该需求并提供了通式(I)的化合物The present invention solves this need and provides compounds of general formula (I)
其中:in:
R1、R2、R3和R4彼此独立地各自是H、OH、(C1-C6)-烷基或(C1-C6)-烷氧基;R 1 , R 2 , R 3 and R 4 are each independently H, OH, (C 1 -C 6 )-alkyl or (C 1 -C 6 )-alkoxy;
R5、R6和R7彼此独立地各自是H或(C1-C6)-烷基;R 5 , R 6 and R 7 are each independently H or (C 1 -C 6 )-alkyl;
X是直链或支链(C1-C8)-烷基或直链或支链(C2-C8)-烯基,X is a linear or branched (C 1 -C 8 )-alkyl group or a linear or branched (C 2 -C 8 )-alkenyl group,
Y选自-(CH2)m-NH2、-(CH2)n-NH-(CH2)o-NH2、-(CH2)p-NH-(CH2)q-NH-(CH2)r-NH2、NH-(CH2)m-NH2、NH-(CH2)n-NH-(CH2)o-NH2和NH-(CH2)p-NH-(CH2)q-NH-(CH2)r-NH2,其中m、n、o、p、q和r各自是1至10之间的整数,或酪胺酯;且Y is selected from -( CH2 ) m - NH2 , -( CH2 ) n -NH-( CH2 ) o - NH2 , -( CH2 ) p -NH-( CH2 ) q -NH-( CH2 ) r - NH2 , NH- (CH2) m - NH2 , NH-( CH2 ) n -NH-( CH2 ) o - NH2 , and NH-( CH2 ) p -NH-( CH2 ) q -NH-( CH2 ) r - NH2 , wherein m, n, o, p, q and r are each an integer between 1 and 10, or tyramine ester;
Z是直链或支链(C1-C8)-烷基或直链或支链(C2-C8)-烯基,Z is a linear or branched (C 1 -C 8 )-alkyl group or a linear or branched (C 2 -C 8 )-alkenyl group,
或其对映异构体、非对映异构体、立体异构体或盐。or an enantiomer, diastereomer, stereoisomer or salt thereof.
发明人意外地发现,所述化合物赋予叶蝉抗性,并且可能提供对所有以刺吸方式进食或将其卵产在叶片中的昆虫的抗性。The inventors have surprisingly found that the compounds confer resistance to leafhoppers and potentially to all insects that feed by sucking or lay their eggs in leaves.
在所述化合物的一个优选实施方案中,R1、R2、R3和R4中的两个是OH;R5、R6和R7各自是H;且X是直链(C2-C8)-烯基。In a preferred embodiment of the compounds, two of R 1 , R 2 , R 3 and R 4 are OH; R 5 , R 6 and R 7 are each H; and X is straight-chain (C 2 -C 8 )-alkenyl.
在所述化合物的一个优选实施方案中,R1和R4是H,R2和R3是OH,且X是-CH=CH-。In a preferred embodiment of said compounds, R1 and R4 are H, R2 and R3 are OH, and X is -CH=CH-.
在一个进一步优选的实施方案中,所述化合物具有下式(II):In a further preferred embodiment, the compound has the following formula (II):
其中R5、R6、R7和Z如上面所定义;wherein R 5 , R 6 , R 7 and Z are as defined above;
或是其对映异构体、非对映异构体、立体异构体或盐。or an enantiomer, diastereomer, stereoisomer or salt thereof.
在另一个优选的实施方案中,所述化合物具有式(III)In another preferred embodiment, the compound has formula (III)
或是其对映异构体、非对映异构体、立体异构体或盐。or an enantiomer, diastereomer, stereoisomer or salt thereof.
在其它方面,本发明涉及制备根据本发明的化合物的方法。In a further aspect the invention relates to processes for the preparation of the compounds according to the invention.
在一个优选的实施方案中,所述方法是使用至少BBL2(小檗碱桥酶2)多肽的酶促制备方法。In a preferred embodiment, the method is an enzymatic production method using at least a BBL2 (berberine bridge enzyme 2) polypeptide.
在所述方法的一个进一步优选的实施方案中,所述BBL2(小檗碱桥酶2)多肽是:In a further preferred embodiment of the method, the BBL2 (berberine bridge enzyme 2) polypeptide is:
(a)由具有SEQ ID NO:1的核苷酸序列的多核苷酸编码;(a) encoded by a polynucleotide having a nucleotide sequence of SEQ ID NO: 1;
(b)由作为SEQ ID NO:1的变体的多核苷酸编码;(b) is encoded by a polynucleotide that is a variant of SEQ ID NO: 1;
(c)由作为SEQ ID NO:1的等位基因变体的多核苷酸编码;(c) is encoded by a polynucleotide that is an allelic variant of SEQ ID NO: 1;
(d)由作为SEQ ID NO:1的物种同源物的多核苷酸编码;(d) is encoded by a polynucleotide that is a species homolog of SEQ ID NO: 1;
(e)由与如在(a)至(d)中的任一项中所定义的多核苷酸具有至少75%、80%、90%、95%、97%、98%或99%同一性的多核苷酸编码;(e) encoded by a polynucleotide that is at least 75%, 80%, 90%, 95%, 97%, 98% or 99% identical to a polynucleotide as defined in any one of (a) to (d);
(f)由能够在严谨条件下与在(a)至(d)中指定的多核苷酸中的任一种杂交的多核苷酸编码;(f) is encoded by a polynucleotide capable of hybridizing under stringent conditions to any one of the polynucleotides specified in (a) to (d);
(g)由具有SEQ ID NO:2的多肽代表;(g) represented by a polypeptide having SEQ ID NO: 2;
(h)由具有BBL2(小檗碱桥酶2)功能的SEQ ID NO:2的多肽片段代表;(h) represented by a polypeptide fragment of SEQ ID NO: 2 having the function of BBL2 (berberine bridge enzyme 2);
(i)由具有BBL2(小檗碱桥酶2)功能的SEQ ID NO:2的多肽结构域代表;(i) represented by the polypeptide domain of SEQ ID NO: 2 having the function of BBL2 (berberine bridge enzyme 2);
(j)由包含与SEQ ID NO:2的氨基酸序列具有至少75%、80%、90%、95%、97%、98%或99%同一性的氨基酸序列并且具有BBL2(小檗碱桥酶2)功能的多肽代表;或(j) represented by a polypeptide comprising an amino acid sequence that is at least 75%, 80%, 90%, 95%, 97%, 98% or 99% identical to the amino acid sequence of SEQ ID NO: 2 and has the function of BBL2 (berberine bridge enzyme 2); or
(k)由在(a)至(f)中指定的多核苷酸中的任一种编码的多肽代表。(k) represented by a polypeptide encoded by any one of the polynucleotides specified in (a) to (f).
在所述方法的一个进一步优选的实施方案中,所述酶促制备方法另外使用PPO(多酚氧化酶)活性或多肽,其中优选地所述PPO(多酚氧化酶)活性或多肽是:In a further preferred embodiment of the method, the enzymatic preparation method additionally uses a PPO (polyphenol oxidase) activity or polypeptide, wherein preferably the PPO (polyphenol oxidase) activity or polypeptide is:
(a)由具有SEQ ID NO:3或5的核苷酸序列的多核苷酸编码;(a) encoded by a polynucleotide having a nucleotide sequence of SEQ ID NO: 3 or 5;
(b)由作为SEQ ID NO:3或5的变体的多核苷酸编码;(b) is encoded by a polynucleotide that is a variant of SEQ ID NO: 3 or 5;
(c)由作为SEQ ID NO:3或5的等位基因变体的多核苷酸编码;(c) is encoded by a polynucleotide that is an allelic variant of SEQ ID NO: 3 or 5;
(d)由作为SEQ ID NO:3或5的物种同源物的多核苷酸编码;(d) encoded by a polynucleotide that is a species homolog of SEQ ID NO: 3 or 5;
(e)由与如在(a)至(d)中的任一项中所定义的多核苷酸具有至少75%、80%、90%、95%、97%、98%或99%同一性的多核苷酸编码;(e) encoded by a polynucleotide that is at least 75%, 80%, 90%, 95%, 97%, 98% or 99% identical to a polynucleotide as defined in any one of (a) to (d);
(f)由能够在严谨条件下与在(a)至(d)中指定的多核苷酸中的任一种杂交的多核苷酸编码;(f) is encoded by a polynucleotide capable of hybridizing under stringent conditions to any one of the polynucleotides specified in (a) to (d);
(g)由具有SEQ ID NO:4或6的多肽代表;(g) represented by a polypeptide having SEQ ID NO: 4 or 6;
(h)由具有PPO(多酚氧化酶)活性的SEQ ID NO:4或6的多肽片段代表;(h) represented by a polypeptide fragment of SEQ ID NO: 4 or 6 having PPO (polyphenol oxidase) activity;
(i)由具有PPO(多酚氧化酶)活性的SEQ ID NO:4或6的多肽结构域代表;(i) represented by a polypeptide domain of SEQ ID NO: 4 or 6 having PPO (polyphenol oxidase) activity;
(j)由包含与SEQ ID NO:4或6的氨基酸序列具有至少75%、80%、90%、95%、97%、98%或99%同一性的氨基酸序列并且具有PPO(多酚氧化酶)活性的多肽代表;或(j) represented by a polypeptide comprising an amino acid sequence that is at least 75%, 80%, 90%, 95%, 97%, 98% or 99% identical to the amino acid sequence of SEQ ID NO: 4 or 6 and having PPO (polyphenol oxidase) activity; or
(k)由在(a)至(f)中指定的多核苷酸中的任一种编码的多肽代表。(k) represented by a polypeptide encoded by any one of the polynucleotides specified in (a) to (f).
在一个优选的实施方案中,所述酶促制备方法另外使用PPO(多酚氧化酶)活性或多肽,其中优选地所述PPO(多酚氧化酶)活性或多肽是:In a preferred embodiment, the enzymatic preparation method additionally uses a PPO (polyphenol oxidase) activity or polypeptide, wherein preferably the PPO (polyphenol oxidase) activity or polypeptide is:
(a)由具有SEQ ID NO:3或5的核苷酸序列的多核苷酸编码;(a) encoded by a polynucleotide having a nucleotide sequence of SEQ ID NO: 3 or 5;
(b)由作为SEQ ID NO:3或5的变体的多核苷酸编码;(b) is encoded by a polynucleotide that is a variant of SEQ ID NO: 3 or 5;
(c)由作为SEQ ID NO:3或5的等位基因变体的多核苷酸编码;(c) is encoded by a polynucleotide that is an allelic variant of SEQ ID NO: 3 or 5;
(d)由作为SEQ ID NO:3或5的物种同源物的多核苷酸编码;(d) encoded by a polynucleotide that is a species homolog of SEQ ID NO: 3 or 5;
(e)由与如在(a)至(d)中的任一项中所定义的多核苷酸至少75%、80%、90%、95%、97%、98%或99%同一性的多核苷酸编码;(e) encoded by a polynucleotide that is at least 75%, 80%, 90%, 95%, 97%, 98% or 99% identical to a polynucleotide as defined in any one of (a) to (d);
(f)由能够在严谨条件下与在(a)至(d)中指定的多核苷酸中的任一种杂交的多核苷酸编码;(f) is encoded by a polynucleotide capable of hybridizing under stringent conditions to any one of the polynucleotides specified in (a) to (d);
(g)由具有SEQ ID NO:4或6的多肽代表;(g) represented by a polypeptide having SEQ ID NO: 4 or 6;
(h)由具有PPO(多酚氧化酶)活性的SEQ ID NO:4或6的多肽片段代表;(h) represented by a polypeptide fragment of SEQ ID NO: 4 or 6 having PPO (polyphenol oxidase) activity;
(i)由具有PPO(多酚氧化酶)活性的SEQ ID NO:4或6的多肽结构域代表;(i) represented by a polypeptide domain of SEQ ID NO: 4 or 6 having PPO (polyphenol oxidase) activity;
(j)由包含与SEQ ID NO:4或6的氨基酸序列具有至少75%、80%、90%、95%、97%、98%或99%同一性的氨基酸序列并且具有PPO(多酚氧化酶)活性的多肽代表;或(j) represented by a polypeptide comprising an amino acid sequence that is at least 75%, 80%, 90%, 95%, 97%, 98% or 99% identical to the amino acid sequence of SEQ ID NO: 4 or 6 and having PPO (polyphenol oxidase) activity; or
(k)由在(a)至(f)中指定的多核苷酸中的任一种编码的多肽代表。(k) represented by a polypeptide encoded by any one of the polynucleotides specified in (a) to (f).
在所述方法的一个进一步优选的实施方案中,所述酶促制备方法另外使用AT1(多胺羟基肉桂酰基转移酶1)活性或多肽,其中优选地所述AT1(多胺羟基肉桂酰基转移酶1)活性或多肽是:In a further preferred embodiment of the method, the enzymatic preparation method additionally uses AT1 (polyamine hydroxycinnamoyltransferase 1) activity or polypeptide, wherein preferably the AT1 (polyamine hydroxycinnamoyltransferase 1) activity or polypeptide is:
(a)由具有SEQ ID NO:7的核苷酸序列的多核苷酸编码;(a) encoded by a polynucleotide having a nucleotide sequence of SEQ ID NO: 7;
(b)由作为SEQ ID NO:7的变体的多核苷酸编码;(b) is encoded by a polynucleotide that is a variant of SEQ ID NO: 7;
(c)由作为SEQ ID NO:7的等位基因变体的多核苷酸编码;(c) is encoded by a polynucleotide that is an allelic variant of SEQ ID NO: 7;
(d)由作为SEQ ID NO:7的物种同源物的多核苷酸编码;(d) is encoded by a polynucleotide that is a species homolog of SEQ ID NO: 7;
(e)由与如在(a)至(d)中的任一项中所定义的多核苷酸具有至少75%、80%、90%、95%、97%、98%或99%同一性的多核苷酸编码;(e) encoded by a polynucleotide that is at least 75%, 80%, 90%, 95%, 97%, 98% or 99% identical to a polynucleotide as defined in any one of (a) to (d);
(f)由能够在严谨条件下与在(a)至(d)中指定的多核苷酸中的任一种杂交的多核苷酸编码;(f) is encoded by a polynucleotide capable of hybridizing under stringent conditions to any one of the polynucleotides specified in (a) to (d);
(g)由具有SEQ ID NO:8的多肽代表;(g) represented by a polypeptide having SEQ ID NO: 8;
(h)由具有AT1(多胺羟基肉桂酰基转移酶1)活性的SEQ ID NO:8的多肽片段代表;(h) represented by a polypeptide fragment of SEQ ID NO: 8 having AT1 (polyamine hydroxycinnamoyltransferase 1) activity;
(i)由具有AT1(多胺羟基肉桂酰基转移酶1)活性的SEQ ID NO:8的多肽结构域代表;(i) represented by a polypeptide domain of SEQ ID NO: 8 having AT1 (polyamine hydroxycinnamoyltransferase 1) activity;
(j)由包含与SEQ ID NO:8的氨基酸序列具有至少75%、80%、90%、95%、97%、98%或99%同一性的氨基酸序列并且具有AT1(多胺羟基肉桂酰基转移酶1)活性的多肽代表;或(j) represented by a polypeptide comprising an amino acid sequence that is at least 75%, 80%, 90%, 95%, 97%, 98% or 99% identical to the amino acid sequence of SEQ ID NO: 8 and having AT1 (polyamine hydroxycinnamoyltransferase 1) activity; or
(k)由在(a)至(f)中指定的多核苷酸中的任一种编码的多肽代表。(k) represented by a polypeptide encoded by any one of the polynucleotides specified in (a) to (f).
在所述方法的一个进一步优选的实施方案中,所述酶促制备方法另外使用ODC(鸟氨酸脱羧酶)活性或多肽和/或HPL(氢过氧化物裂解酶)活性或多肽,其中优选地In a further preferred embodiment of the method, the enzymatic preparation method additionally uses an ODC (ornithine decarboxylase) activity or polypeptide and/or an HPL (hydroperoxide lyase) activity or polypeptide, wherein preferably
(A)所述ODC(鸟氨酸脱羧酶)活性或多肽是:(A) The ODC (ornithine decarboxylase) activity or polypeptide is:
(a)由具有SEQ ID NO:9或11的核苷酸序列的多核苷酸编码;(a) encoded by a polynucleotide having a nucleotide sequence of SEQ ID NO: 9 or 11;
(b)由作为SEQ ID NO:9或11的变体的多核苷酸编码;(b) is encoded by a polynucleotide that is a variant of SEQ ID NO: 9 or 11;
(c)由作为SEQ ID NO:9或11的等位基因变体的多核苷酸编码;(c) is encoded by a polynucleotide that is an allelic variant of SEQ ID NO: 9 or 11;
(d)由作为SEQ ID NO:9或11的物种同源物的多核苷酸编码;(d) encoded by a polynucleotide that is a species homolog of SEQ ID NO: 9 or 11;
(e)由与如在(a)至(d)中的任一项中所定义的多核苷酸具有至少75%、80%、90%、95%、97%、98%或99%同一性的多核苷酸编码;(e) encoded by a polynucleotide that is at least 75%, 80%, 90%, 95%, 97%, 98% or 99% identical to a polynucleotide as defined in any one of (a) to (d);
(f)由能够在严谨条件下与在(a)至(d)中指定的多核苷酸中的任一种杂交的多核苷酸编码;(f) is encoded by a polynucleotide capable of hybridizing under stringent conditions to any one of the polynucleotides specified in (a) to (d);
(g)由具有SEQ ID NO:10或12的多肽代表;(g) represented by a polypeptide having SEQ ID NO: 10 or 12;
(h)由具有ODC(鸟氨酸脱羧酶)活性的SEQ ID NO:10或12的多肽片段代表;(h) represented by a polypeptide fragment of SEQ ID NO: 10 or 12 having ODC (ornithine decarboxylase) activity;
(i)由具有ODC(鸟氨酸脱羧酶)活性的SEQ ID NO:10或12的多肽结构域代表;(i) represented by a polypeptide domain of SEQ ID NO: 10 or 12 having ODC (ornithine decarboxylase) activity;
(j)由包含与SEQ ID NO:10或12的氨基酸序列具有至少75%、80%、90%、95%、97%、98%或99%同一性的氨基酸序列并且具有ODC(鸟氨酸脱羧酶)活性的多肽代表;或(j) represented by a polypeptide comprising an amino acid sequence that is at least 75%, 80%, 90%, 95%, 97%, 98% or 99% identical to the amino acid sequence of SEQ ID NO: 10 or 12 and having ODC (ornithine decarboxylase) activity; or
(k)由在(A)(a)至(f)中指定的多核苷酸中的任一种编码的多肽代表;且(k) represented by a polypeptide encoded by any one of the polynucleotides specified in (A)(a) to (f); and
(B)所述HPL(氢过氧化物裂解酶)活性或多肽是:(B) The HPL (hydroperoxide lyase) activity or polypeptide is:
(a)由具有SEQ ID NO:13、15或17的核苷酸序列的多核苷酸编码;(a) encoded by a polynucleotide having a nucleotide sequence of SEQ ID NO: 13, 15 or 17;
(b)由作为SEQ ID NO:13、15或17的变体的多核苷酸编码;(b) is encoded by a polynucleotide that is a variant of SEQ ID NO: 13, 15 or 17;
(c)由作为SEQ ID NO:13、15或17的等位基因变体的多核苷酸编码;(c) is encoded by a polynucleotide that is an allelic variant of SEQ ID NO: 13, 15 or 17;
(d)由作为SEQ ID NO:13、15或17的物种同源物的多核苷酸编码;(d) encoded by a polynucleotide that is a species homolog of SEQ ID NO: 13, 15 or 17;
(e)由与如在(a)至(d)中的任一项中所定义的多核苷酸具有至少75%、80%、90%、95%、97%、98%或99%同一性性的多核苷酸编码;(e) encoded by a polynucleotide that is at least 75%, 80%, 90%, 95%, 97%, 98% or 99% identical to a polynucleotide as defined in any one of (a) to (d);
(f)由能够在严谨条件下与在(B)(a)至(d)中指定的多核苷酸中的任一种杂交的多核苷酸编码;(f) is encoded by a polynucleotide capable of hybridizing under stringent conditions to any one of the polynucleotides specified in (B)(a) to (d);
(g)由具有SEQ ID NO:14、16或18的多肽代表;(g) represented by a polypeptide having SEQ ID NO: 14, 16 or 18;
(h)由具有HPL(氢过氧化物裂解酶)活性的SEQ ID NO:14、16或18的多肽片段代表;(h) represented by a polypeptide fragment of SEQ ID NO: 14, 16 or 18 having HPL (hydroperoxide lyase) activity;
(i)由具有HPL(氢过氧化物裂解酶)活性的SEQ ID NO:14、16或18的多肽结构域代表;(i) represented by a polypeptide domain of SEQ ID NO: 14, 16 or 18 having HPL (hydroperoxide lyase) activity;
(j)由包含与SEQ ID NO:14、16或18的氨基酸序列具有至少75%、80%、90%、95%、97%、98%或99%同一性的氨基酸序列并且具有HPL(氢过氧化物裂解酶)活性多肽代表;或(j) represented by a polypeptide comprising an amino acid sequence that is at least 75%, 80%, 90%, 95%, 97%, 98% or 99% identical to the amino acid sequence of SEQ ID NO: 14, 16 or 18 and has HPL (hydroperoxide lyase) activity; or
(k)由在(B)(a)至(f)中指定的多核苷酸中的任一种编码的多肽代表。(k) represented by a polypeptide encoded by any one of the polynucleotides specified in (B)(a) to (f).
在所述方法的一个进一步优选的实施方案中,所述酶促制备方法另外使用PAL(L-苯丙氨酸氨裂解酶)活性或多肽和/或C4H(反式-肉桂酸4-羟化酶)活性或多肽和/或4CL(4-香豆酸:辅酶A连接酶)活性或多肽和/或HCT(羟基肉桂酰基-转移酶)活性或多肽和/或C3H(香豆酸3-羟化酶)活性或多肽,其中优选地:In a further preferred embodiment of the method, the enzymatic preparation method additionally uses PAL (L-phenylalanine ammonia lyase) activity or polypeptide and/or C4H (trans-cinnamate 4-hydroxylase) activity or polypeptide and/or 4CL (4-coumarate: Coenzyme A ligase) activity or polypeptide and/or HCT (hydroxycinnamoyl-transferase) activity or polypeptide and/or C3H (coumarate 3-hydroxylase) activity or polypeptide, wherein preferably:
(A)所述PAL(L-苯丙氨酸氨裂解酶)活性或多肽是:(A) The PAL (L-phenylalanine ammonia lyase) activity or polypeptide is:
(a)由具有SEQ ID NO:19、21、23或25的核苷酸序列的多核苷酸编码;(a) encoded by a polynucleotide having a nucleotide sequence of SEQ ID NO: 19, 21, 23 or 25;
(b)由作为SEQ ID NO:19、21、23或25的变体的多核苷酸编码;(b) is encoded by a polynucleotide that is a variant of SEQ ID NO: 19, 21, 23 or 25;
(c)由作为SEQ ID NO:19、21、23或25的等位基因变体的多核苷酸编码;(c) is encoded by a polynucleotide that is an allelic variant of SEQ ID NO: 19, 21, 23 or 25;
(d)由作为SEQ ID NO:19、21、23或25的物种同源物的多核苷酸编码;(d) encoded by a polynucleotide that is a species homolog of SEQ ID NO: 19, 21, 23 or 25;
(e)由与如在A(a)至(d)中的任一项中所定义的多核苷酸具有至少75%、80%、90%、95%、97%、98%或99%同一性的多核苷酸编码;(e) encoded by a polynucleotide that is at least 75%, 80%, 90%, 95%, 97%, 98% or 99% identical to a polynucleotide as defined in any one of A(a) to (d);
(f)由能够在严谨条件下与在A(a)至(d)中指定的多核苷酸中的任一种杂交的多核苷酸编码;(f) is encoded by a polynucleotide capable of hybridizing under stringent conditions to any one of the polynucleotides specified in A(a) to (d);
(g)由具有SEQ ID NO:20、22、24或26的多肽代表;(g) represented by a polypeptide having SEQ ID NO: 20, 22, 24 or 26;
(h)由具有PAL(L-苯丙氨酸氨裂解酶)活性的SEQ ID NO:20、22、24或26的多肽片段代表;(h) represented by a polypeptide fragment of SEQ ID NO: 20, 22, 24 or 26 having PAL (L-phenylalanine ammonia lyase) activity;
(i)由具有PAL(L-苯丙氨酸氨裂解酶)活性的SEQ ID NO:20、22、24或26的多肽结构域代表;(i) represented by a polypeptide domain of SEQ ID NO: 20, 22, 24 or 26 having PAL (L-phenylalanine ammonia lyase) activity;
(j)由包含与SEQ ID NO:20、22、24或26的氨基酸序列具有至少75%、80%、90%、95%、97%、98%或99%同一性的氨基酸序列并且具有PAL(L-苯丙氨酸氨裂解酶)活性的多肽代表;或(j) represented by a polypeptide comprising an amino acid sequence that is at least 75%, 80%, 90%, 95%, 97%, 98% or 99% identical to the amino acid sequence of SEQ ID NO: 20, 22, 24 or 26 and having PAL (L-phenylalanine ammonia lyase) activity; or
(k)由在A(a)至(f)中指定的多核苷酸中的任一种编码的多肽代表;且(k) represented by a polypeptide encoded by any one of the polynucleotides specified in A(a) to (f); and
(B)所述C4H(反式-肉桂酸4-羟化酶)活性或多肽是:(B) the C4H (trans-cinnamate 4-hydroxylase) activity or polypeptide is:
(a)由具有SEQ ID NO:27的核苷酸序列的多核苷酸编码;(a) encoded by a polynucleotide having a nucleotide sequence of SEQ ID NO: 27;
(b)由作为SEQ ID NO:27的变体的多核苷酸编码;(b) is encoded by a polynucleotide that is a variant of SEQ ID NO: 27;
(c)由作为SEQ ID NO:27的等位基因变体的多核苷酸编码;(c) is encoded by a polynucleotide that is an allelic variant of SEQ ID NO: 27;
(d)由作为SEQ ID NO:27的物种同源物的多核苷酸编码;(d) is encoded by a polynucleotide that is a species homolog of SEQ ID NO: 27;
(e)由与如在B(a)至(d)中的任一项中所定义的多核苷酸具有至少75%、80%、90%、95%、97%、98%或99%同一性的多核苷酸编码;(e) encoded by a polynucleotide that is at least 75%, 80%, 90%, 95%, 97%, 98% or 99% identical to a polynucleotide as defined in any one of B(a) to (d);
(f)由多核苷酸能够在严谨条件下与在B(a)至(d)中指定的多核苷酸中的任一种杂交的多核苷酸编码;(f) encoded by a polynucleotide capable of hybridizing under stringent conditions to any one of the polynucleotides specified in B(a) to (d);
(g)由具有SEQ ID NO:28的多肽代表;(g) represented by a polypeptide having SEQ ID NO: 28;
(h)由具有C4H(肉桂酸4-羟化酶)活性的SEQ ID NO:28的多肽片段代表;(h) represented by a polypeptide fragment of SEQ ID NO: 28 having C4H (cinnamate 4-hydroxylase) activity;
(i)由具有C4H(肉桂酸4-羟化酶)活性的SEQ ID NO:28的多肽结构域代表;(i) represented by the polypeptide domain of SEQ ID NO: 28 having C4H (cinnamate 4-hydroxylase) activity;
(j)由包含与SEQ ID NO:28的氨基酸序列具有至少75%、80%、90%、95%、97%、98%或99%同一性的氨基酸序列并且具有C4H(肉桂酸4-羟化酶)活性的多肽代表;或(j) represented by a polypeptide comprising an amino acid sequence that is at least 75%, 80%, 90%, 95%, 97%, 98% or 99% identical to the amino acid sequence of SEQ ID NO: 28 and having C4H (cinnamate 4-hydroxylase) activity; or
(k)由在B(a)至(f)中指定的多核苷酸中的任一种编码的多肽代表;且(k) represented by a polypeptide encoded by any one of the polynucleotides specified in B(a) to (f); and
(C)所述4CL(4-香豆酸:辅酶A连接酶)活性或多肽是:(C) The 4CL (4-coumaric acid: Coenzyme A ligase) activity or polypeptide is:
(a)由具有SEQ ID NO:29、105、107、109、111、113、115、117、119、121、123、125、127、129或131的核苷酸序列的多核苷酸编码;(a) encoded by a polynucleotide having a nucleotide sequence of SEQ ID NO: 29, 105, 107, 109, 111, 113, 115, 117, 119, 121, 123, 125, 127, 129 or 131;
(b)由作为SEQ ID NO:29、105、107、109、111、113、115、117、119、121、123、125、127、129或131的变体的多核苷酸编码;(b) is encoded by a polynucleotide that is a variant of SEQ ID NO: 29, 105, 107, 109, 111, 113, 115, 117, 119, 121, 123, 125, 127, 129 or 131;
(c)由作为SEQ ID NO:29、105、107、109、111、113、115、117、119、121、123、125、127、129或131的等位基因变体的多核苷酸编码;(c) is encoded by a polynucleotide that is an allelic variant of SEQ ID NO: 29, 105, 107, 109, 111, 113, 115, 117, 119, 121, 123, 125, 127, 129 or 131;
(d)由作为SEQ ID NO:29、105、107、109、111、113、115、117、119、121、123、125、127、129或131的物种同源物的多核苷酸编码;(d) is encoded by a polynucleotide that is a species homolog of SEQ ID NO: 29, 105, 107, 109, 111, 113, 115, 117, 119, 121, 123, 125, 127, 129 or 131;
(e)由与如在C(a)至(d)中的任一项中所定义的多核苷酸具有至少75%、80%、90%、95%、97%、98%或99%同一性的多核苷酸编码;(e) encoded by a polynucleotide that is at least 75%, 80%, 90%, 95%, 97%, 98% or 99% identical to a polynucleotide as defined in any one of C(a) to (d);
(f)由能够在严谨条件下与在C(a)至(d)中指定的多核苷酸中的任一种杂交的多核苷酸编码;(f) is encoded by a polynucleotide capable of hybridizing under stringent conditions to any one of the polynucleotides specified in C(a) to (d);
(g)由具有SEQ ID NO:30、106、108、110、112、114、116、118、120、122、124、126、128、130或132的多肽代表;(g) represented by a polypeptide having SEQ ID NO: 30, 106, 108, 110, 112, 114, 116, 118, 120, 122, 124, 126, 128, 130 or 132;
(h)由具有4CL(4-香豆酸:辅酶A连接酶)活性的SEQ ID NO:30、106、108、110、112、114、116、118、120、122、124、126、128、130或132的多肽片段代表;(h) represented by a polypeptide fragment of SEQ ID NO: 30, 106, 108, 110, 112, 114, 116, 118, 120, 122, 124, 126, 128, 130 or 132 having 4CL (4-coumaric acid:CoA ligase) activity;
(i)由具有4CL(4-香豆酸:辅酶A连接酶)活性的SEQ ID NO:30、106、108、110、112、114、116、118、120、122、124、126、128、130或132的多肽结构域代表;(i) represented by a polypeptide domain of SEQ ID NO: 30, 106, 108, 110, 112, 114, 116, 118, 120, 122, 124, 126, 128, 130 or 132 having 4CL (4-coumarate:CoA ligase) activity;
(j)由包含与SEQ ID NO:30、106、108、110、112、114、116、118、120、122、124、126、128、130或132的氨基酸序列具有至少75%、80%、90%、95%、97%、98%或99%同一性的氨基酸序列并且具有4CL(4-香豆酸:辅酶A连接酶)活性的多肽代表;或(j) represented by a polypeptide comprising an amino acid sequence that is at least 75%, 80%, 90%, 95%, 97%, 98% or 99% identical to the amino acid sequence of SEQ ID NO: 30, 106, 108, 110, 112, 114, 116, 118, 120, 122, 124, 126, 128, 130 or 132 and having 4CL (4-coumarate:CoA ligase) activity; or
(k)由在C(a)至(f)中指定的多核苷酸中的任一种编码的多肽代表;且(k) represented by a polypeptide encoded by any one of the polynucleotides specified in C(a) to (f); and
(D)所述HCT(羟基肉桂酰基-转移酶)活性或多肽是:(D) The HCT (hydroxycinnamoyl-transferase) activity or polypeptide is:
(a)由具有SEQ ID NO:31、33、35、37、39、41或43的核苷酸序列的多核苷酸编码;(a) encoded by a polynucleotide having a nucleotide sequence of SEQ ID NO: 31, 33, 35, 37, 39, 41 or 43;
(b)由作为SEQ ID NO:31、33、35、37、39、41或43的变体的多核苷酸编码;(b) is encoded by a polynucleotide that is a variant of SEQ ID NO: 31, 33, 35, 37, 39, 41 or 43;
(c)由作为SEQ ID NO:31、33、35、37、39、41或43的等位基因变体的多核苷酸编码;(c) is encoded by a polynucleotide that is an allelic variant of SEQ ID NO: 31, 33, 35, 37, 39, 41 or 43;
(d)由作为SEQ ID NO:31、33、35、37、39、41或43的物种同源物的多核苷酸编码;(d) encoded by a polynucleotide that is a species homolog of SEQ ID NO: 31, 33, 35, 37, 39, 41 or 43;
(e)由与如在D(a)至(d)中的任一项中所定义的多核苷酸具有至少75%、80%、90%、95%、97%、98%或99%同一性的多核苷酸编码;(e) encoded by a polynucleotide that is at least 75%, 80%, 90%, 95%, 97%, 98% or 99% identical to a polynucleotide as defined in any one of D(a) to (d);
(f)由能够在严谨条件下与在D(a)至(d)中指定的多核苷酸中的任一种杂交的多核苷酸编码;(f) is encoded by a polynucleotide capable of hybridizing under stringent conditions to any of the polynucleotides specified in D(a) to (d);
(g)由具有SEQ ID NO:32、34、36、38、40、42或44的多肽代表;(g) represented by a polypeptide having SEQ ID NO: 32, 34, 36, 38, 40, 42 or 44;
(h)由具有HCT(羟基肉桂酰基-转移酶)活性的SEQ ID NO:32、34、36、38、40、42或44的多肽片段代表;(h) represented by a polypeptide fragment of SEQ ID NO: 32, 34, 36, 38, 40, 42 or 44 having HCT (hydroxycinnamoyl-transferase) activity;
(i)由具有HCT(羟基肉桂酰基-转移酶)活性的SEQ ID NO:32、34、36、38、40、42或44的多肽结构域代表;(i) represented by a polypeptide domain of SEQ ID NO: 32, 34, 36, 38, 40, 42 or 44 having HCT (hydroxycinnamoyl-transferase) activity;
(j)由包含与SEQ ID NO:32、34、36、38、40、42或44的氨基酸序列具有至少75%、80%、90%、95%、97%、98%或99%相似性的氨基酸序列并且具有HCT(羟基肉桂酰基-转移酶)活性的多肽代表;或(j) represented by a polypeptide comprising an amino acid sequence having at least 75%, 80%, 90%, 95%, 97%, 98% or 99% similarity to the amino acid sequence of SEQ ID NO: 32, 34, 36, 38, 40, 42 or 44 and having HCT (hydroxycinnamoyl-transferase) activity; or
(k)由在D(a)至(f)中指定的多核苷酸中的任一种编码的多肽代表;且(k) represented by a polypeptide encoded by any one of the polynucleotides specified in D(a) to (f); and
(E)所述C3H(香豆酸3-羟化酶)活性或多肽是:(E) The C3H (coumarate 3-hydroxylase) activity or polypeptide is:
(a)由具有SEQ ID NO:45的核苷酸序列的多核苷酸编码;(a) encoded by a polynucleotide having a nucleotide sequence of SEQ ID NO: 45;
(b)由作为SEQ ID NO:45的变体的多核苷酸编码;(b) is encoded by a polynucleotide that is a variant of SEQ ID NO: 45;
(c)由作为SEQ ID NO:45的等位基因变体的多核苷酸编码;(c) is encoded by a polynucleotide that is an allelic variant of SEQ ID NO:45;
(d)由作为SEQ ID NO:45的物种同源物的多核苷酸编码;(d) is encoded by a polynucleotide that is a species homolog of SEQ ID NO: 45;
(e)由与如在E(a)至(d)中的任一项中所定义的多核苷酸具有至少75%、80%、90%、95%、97%、98%或99%同一性的多核苷酸编码;(e) encoded by a polynucleotide that is at least 75%, 80%, 90%, 95%, 97%, 98% or 99% identical to a polynucleotide as defined in any one of E(a) to (d);
(f)由能够在严谨条件下与在E(a)至(d)中指定的多核苷酸中的任一种杂交的多核苷酸编码;(f) is encoded by a polynucleotide capable of hybridizing under stringent conditions to any one of the polynucleotides specified in E(a) to (d);
(g)由具有SEQ ID NO:46的多肽代表;(g) represented by a polypeptide having SEQ ID NO: 46;
(h)由具有C3H(香豆酸3-羟化酶)活性的SEQ ID NO:46的多肽片段代表;(h) represented by a polypeptide fragment of SEQ ID NO: 46 having C3H (coumarate 3-hydroxylase) activity;
(i)由具有C3H(香豆酸3-羟化酶)活性的SEQ ID NO:46的多肽结构域代表;(i) represented by the polypeptide domain of SEQ ID NO:46 having C3H (coumarate 3-hydroxylase) activity;
(j)由包含与SEQ ID NO:46的氨基酸序列具有至少75%、80%、90%、95%、97%、98%或99%同一性的氨基酸序列并且具有C3H(香豆酸3-羟化酶)活性的多肽代表;或(j) represented by a polypeptide comprising an amino acid sequence that is at least 75%, 80%, 90%, 95%, 97%, 98% or 99% identical to the amino acid sequence of SEQ ID NO: 46 and having C3H (coumarate 3-hydroxylase) activity; or
(k)由在E(a)至(f)中指定的多核苷酸中的任一种编码的多肽代表。(k) represented by a polypeptide encoded by any one of the polynucleotides specified in E(a) to (f).
在一个进一步优选的实施方案中,所述酶促制备通过体外提供的活性或多肽进行。特别优选的是,在pH值4.8或更低的pH值实行所述方法,更优选地通过使用氩气流固相萃取实行所述方法。In a further preferred embodiment, the enzymatic preparation is performed by providing the activity or polypeptide in vitro. It is particularly preferred that the method is performed at a pH of 4.8 or lower, more preferably by solid phase extraction using an argon stream.
在一个进一步优选的实施方案中,所述酶促制备通过在活细胞、组织或生物体中提供的活性或多肽进执。In a further preferred embodiment, the enzymatic preparation is performed by means of an activity or polypeptide provided in a living cell, tissue or organism.
在一个进一步优选的实施方案中,所述酶促制备通过遗传修饰的细胞、组织或生物体和在遗传修饰的细胞、组织或生物体中进行,其中所述遗传修饰允许如上文定义的一种或多种活性或多肽的异源表达。In a further preferred embodiment, the enzymatic production is performed by and in genetically modified cells, tissues or organisms, wherein the genetic modification allows the heterologous expression of one or more activities or polypeptides as defined above.
在另一个方面,本发明涉及一种用于制备根据本发明的化合物的生物体、组织或细胞,其被遗传修饰,其中所述遗传修饰允许如本文中定义的一种或多种活性或多肽的异源表达。In another aspect, the invention relates to an organism, tissue or cell for the preparation of a compound according to the invention, which is genetically modified, wherein the genetic modification allows the heterologous expression of one or more activities or polypeptides as defined herein.
在所述方法、生物体、组织或细胞的一个优选的实施方案中,所述遗传修饰至少导致如本文中定义的BBL2(小檗碱桥酶2)多肽的表达。In a preferred embodiment of the method, organism, tissue or cell, said genetic modification results in at least the expression of a BBL2 (berberine bridge enzyme 2) polypeptide as defined herein.
在所述方法、生物体、组织或细胞的一个优选的实施方案中,所述遗传修饰至少导致如本文中定义的PPO(多酚氧化酶)活性或多肽的表达。In a preferred embodiment of the method, organism, tissue or cell, the genetic modification results in at least the expression of a PPO (polyphenol oxidase) activity or a polypeptide as defined herein.
在所述方法、生物体、组织或细胞的一个进一步优选的实施方案中,所述遗传修饰至少导致如本文中定义的AT1(多胺羟基肉桂酰基转移酶1)活性或多肽的表达。In a further preferred embodiment of the method, organism, tissue or cell, the genetic modification results in at least the expression of an AT1 (polyamine hydroxycinnamoyltransferase 1) activity or a polypeptide as defined herein.
在所述方法、生物体、组织或细胞的一个进一步优选的实施方案中,所述遗传修饰至少导致如本文中定义的ODC(鸟氨酸脱羧酶)活性或多肽和/或HPL(氢过氧化物裂解酶)活性或多肽的表达。In a further preferred embodiment of the method, organism, tissue or cell, the genetic modification results in at least the expression of an ODC (ornithine decarboxylase) activity or polypeptide and/or an HPL (hydroperoxide lyase) activity or polypeptide as defined herein.
在所述方法、生物体、组织或细胞的另一个优选的实施方案中,所述遗传修饰至少导致如本文中定义的PAL(L-苯丙氨酸氨裂解酶)活性或多肽和/或C4H(反式-肉桂酸4-羟化酶)活性或多肽和/或4CL(4-香豆酸:辅酶A连接酶)活性或多肽或HCT(羟基肉桂酰基-转移酶)活性或多肽和/或C3H(香豆酸3-羟化酶)活性或多肽的表达。In another preferred embodiment of the method, organism, tissue or cell, the genetic modification results in at least the expression of a PAL (L-phenylalanine ammonia lyase) activity or polypeptide and/or a C4H (trans-cinnamate 4-hydroxylase) activity or polypeptide and/or a 4CL (4-coumarate:CoA ligase) activity or polypeptide or a HCT (hydroxycinnamoyl-transferase) activity or polypeptide and/or a C3H (coumarate 3-hydroxylase) activity or polypeptide as defined herein.
在所述方法、生物体、组织或细胞的另一个优选的实施方案中,所述表达由天然的、受调控的、组织特异性的或组成型的启动子传递。In another preferred embodiment of the method, organism, tissue or cell, the expression is conveyed by a native, regulated, tissue-specific or constitutive promoter.
特别优选的是,所述启动子允许(i)如本文中定义的活性或多肽的多顺反子表达,(ii)如本文中定义的活性或多肽的单独表达;或(iii)至少两种选自如本文中定义的活性的活性的组的成组表达。It is particularly preferred that the promoter allows (i) polycistronic expression of an activity or polypeptide as defined herein, (ii) individual expression of an activity or polypeptide as defined herein; or (iii) group expression of at least two activities selected from the group of activities as defined herein.
进一步特别优选的是,所述表达是过表达。It is further particularly preferred that the expression is overexpression.
在一个进一步优选的实施方案中,所述过表达由强调控的或强组成型启动子传递,和/或通过提供编码所述活性或多肽的遗传元件的至少第二个拷贝来传递。In a further preferred embodiment, said overexpression is conveyed by a strongly regulated or strong constitutive promoter and/or by providing at least a second copy of the genetic element encoding said activity or polypeptide.
在本发明的另一个具体实施方案中,所述酶活性或多肽来自属于烟草属的生物体。特别优选的是,所述酶活性或多肽来自渐狭叶烟草种类。In another specific embodiment of the present invention, the enzyme activity or polypeptide is from an organism belonging to the genus Nicotiana. Particularly preferred, the enzyme activity or polypeptide is from the species Nicotiana attenuata.
进一步优选的是,所述多核苷酸被包含在一个或多个染色体外载体或质粒中,和/或整合在所述生物体的基因组中。It is further preferred that the polynucleotide is contained in one or more extrachromosomal vectors or plasmids and/or is integrated in the genome of the organism.
在一个进一步优选的实施方案中,所述遗传修饰的生物体、组织或细胞是真核的。特别优选的是,所述遗传修饰的生物体是植物,或其中所述组织是植物组织,或其中所述细胞是植物细胞。In a further preferred embodiment, the genetically modified organism, tissue or cell is eukaryotic. Particularly preferred is that the genetically modified organism is a plant, or wherein the tissue is a plant tissue, or wherein the cell is a plant cell.
在进一步优选的实施方案中,所述遗传修饰的生物体属于、或所述组织或细胞衍生自被昆虫食草动物攻击的高等植物,优选受以撕裂和冲刷和/或刺吸方式进食的昆虫攻击的高等植物,更优选烟草属、茄属、稻属、玉米属、菜豆属或山茶属的高等植物。In a further preferred embodiment, the genetically modified organism belongs to, or the tissue or cell is derived from, a higher plant attacked by insect herbivores, preferably a higher plant attacked by insects that feed by tearing and scouring and/or sucking, more preferably a higher plant of the genera Nicotiana, Solanum, Oryza, Zea mays, Phaseolus vulgaris or Camellia.
在另一个方面,本发明涉及用于在真核宿主细胞中异源表达的表达盒,其中所述表达盒包含如本文中定义的多核苷酸。优选的是,所述宿主细胞是植物细胞。In another aspect, the present invention relates to an expression cassette for heterologous expression in a eukaryotic host cell, wherein the expression cassette comprises a polynucleotide as defined herein. Preferably, the host cell is a plant cell.
在另一个方面,本发明涉及载体或插入构建体,其包含如本文中定义的多核苷酸或如本文中定义的表达盒。In another aspect, the present invention relates to a vector or an insertion construct comprising a polynucleotide as defined herein or an expression cassette as defined herein.
在又另一个方面,本发明涉及如本文中定义的多肽或多核苷酸、如本文中定义的表达盒或如本文中定义的载体或插入构建体用于制备本发明的化合物的用途。In yet another aspect, the invention relates to the use of a polypeptide or polynucleotide as defined herein, an expression cassette as defined herein or a vector or insertion construct as defined herein for the preparation of a compound of the invention.
在另一个方面,本发明涉及如本文中定义的生物体、组织或细胞、或包含如本文中定义的表达盒或载体或插入构建体的生物体、组织或细胞用于制备本发明的化合物的用途。In another aspect, the invention relates to the use of an organism, tissue or cell as defined herein, or an organism, tissue or cell comprising an expression cassette or a vector or an insertion construct as defined herein, for the preparation of a compound of the invention.
在另一个方面,本发明涉及组合物,其包含根据本发明的化合物或用本发明的方法制备的化合物或由如本文中定义的生物体、组织或细胞制备的化合物。任选地,所述组合物另外包含可接受的载体、稳定剂和/或铺展剂。In another aspect, the present invention relates to a composition comprising a compound according to the present invention or a compound prepared by a method according to the present invention or a compound prepared by an organism, tissue or cell as defined herein. Optionally, the composition further comprises an acceptable carrier, stabilizer and/or spreading agent.
在又另一个方面,本发明涉及本发明的化合物或用根据本发明的方法制备的化合物或由如本文中定义的生物体、组织或细胞制备的化合物用于植物保护以免受食草动物攻击的用途,或如本文中定义的组合物用于植物保护以免受抗食草动物攻击的用途。In yet another aspect, the invention relates to the use of a compound of the invention or a compound prepared by a process according to the invention or prepared from an organism, tissue or cell as defined herein for protecting plants from attack by herbivores, or a composition as defined herein for protecting plants from attack by anti-herbivores.
在一个优选的实施方案中,所述食草动物是昆虫。In a preferred embodiment, the herbivore is an insect.
在另一个优选的实施方案中,所述昆虫是以撕裂和冲刷和/或刺吸方式进食的昆虫。In another preferred embodiment, the insects are insects that feed by tearing and scouring and/or piercing and sucking.
在一个进一步优选的实施方案中,所述昆虫是叶蝉或飞虱。特别优选的是,所述昆虫属于脊冠叶蝉(Aphrodinae)、Bathymatopohorinae、大叶蝉(Cicadellinae)、离脉叶蝉(Coelidiinae)、角顶叶蝉(Deltocephalinae)、Errhomeninae、尖颊叶蝉亚科(Euacanthelinae)、宽头叶蝉(Eurymelinae)、横脊叶蝉(Evacantinae)、杆叶蝉(Hylicinae)、叶蝉亚科(Iassinae)、Jascopinae、耳叶蝉(Ledrinae)、迈叶蝉(Megophthalminae)、窗翅叶蝉(Mileewinae)、Nastlopinae、多彩叶蝉(Neobaliane)、新离脉叶蝉(Neocoelidinae)、聂叶蝉(Nioniinae)、凸缘叶蝉(Phereurhinina)、Portaninae、长胸叶蝉(Signoretiinae)、锥胸叶蝉(Tartesinee)、小叶蝉(Typhlory bina)或窄颊叶蝉(Ulopinae)科,更优选小绿叶蝉属(Empoasca)、Circulifer属、褐飞虱属(Nilaparvata)、白背飞虱属(Sogatella)、黑尾叶蝉属(Nepotettix)或Cicadulina属。In a further preferred embodiment, the insect is a leafhopper or a planthopper. Particularly preferably, the insect belongs to Aphrodinae, Bathymatopohorinae, Cicadellinae, Coelidiinae, Deltocephalinae, Erromeninae, Euacanthelinae, Eurymelinae, Evacantinae, Hylicinae, Iassinae, Jascopinae, Ledrinae, Megophthalminae, Mileewinae, Nastlopinae, Neobaliane, Neocoelidinae, Nioniinae, Phereurhinina, Portaninae, Signoretiinae, Tartesinee, Typhlory bina or Ulopinae family, more preferably Empoasca, Circulifer, Nilaparvata, Sogatella, Nepotettix or Cicadulina.
在另一个方面,本发明涉及本发明的化合物或用本发明的方法制备的化合物或由如本文中定义的生物体、组织或细胞制备的化合物或如本文中定义的组合物作为杀昆虫剂的用途。优选的是,所述杀昆虫剂是针对如上面所定义的昆虫。In another aspect, the invention relates to the use of a compound of the invention or a compound prepared by a method of the invention or a compound prepared by an organism, tissue or cell as defined herein or a composition as defined herein as an insecticide. Preferably, the insecticide is directed against insects as defined above.
在另一个优选的实施方案中,本发明涉及植物保护方法,其包括使植物或植物的一部分与如上面所定义的本发明的化合物或组合物接触。In another preferred embodiment, the present invention relates to a method for plant protection which comprises contacting a plant or a part of a plant with a compound or composition of the invention as defined above.
附图说明BRIEF DESCRIPTION OF THE DRAWINGS
图1是田间生长的渐狭叶烟草MAGIC群体的正向遗传系的天然昆虫引导的多组学图谱,突出显示了与小绿叶蝉属叶蝉非宿主抗性的典型茉莉酮信号传递的偏差。该图显示了位于美国亚利桑那州WCCER田地站的处于其天然生长环境的天然渐狭叶烟草植物的MAGIC RIL群体的田间种植情况。图中显示了天然机会主义小绿叶蝉属叶蝉群落及其进食对叶片的损害。叶蝉以茉莉酸(JA)依赖性的方式攻击这些植物,并优先选择缺乏JA的植物作为宿主(图片:R.Halitschke,D.Kessler,A.Kessler)。Figure 1 is a natural insect-guided multi-omics profile of a forward genetic line of a field-grown N. attenuata MAGIC population, highlighting deviations from typical jasmone signaling for non-host resistance to Empoasca leafhoppers. The figure shows a field planting of a MAGIC RIL population of natural N. attenuata plants in their natural growing environment at the WCCER field station in Arizona, USA. The figure shows the natural opportunistic Empoasca leafhopper community and the damage to leaves caused by their feeding. The leafhoppers attack these plants in a jasmonic acid (JA)-dependent manner and preferentially choose plants lacking JA as hosts (Image: R. Halitschke, D. Kessler, A. Kessler).
图2是对田间的674个MAGIC RIL和亲本系进行植物激素(1816个样品)、转录组(350个样品)和代谢组(1706个样品)以及小绿叶蝉属表型(1907个样品)的高通量表型分析的示意图。为了消除自然界中昆虫攻击的随机性所造成的混杂因素,我们如下模拟食草动物进食:将新鲜收集的烟草天蛾(Manduca sexta)幼虫的口腔分泌物(OS)立即涂抹到处于标准化叶位置的叶片的标准化穿刺伤口(W)上。该程序被称作W+OS处理,它通过精确定时食草引发的应答的开始来标准化了引发。在W+OS处理后1小时收集植物激素和转录组数据集,并在72小时后收集代谢组数据集。PCC,皮尔逊相关系数。Fig. 2 is a schematic diagram of high-throughput phenotyping of 674 MAGIC RILs and parental lines in the field for phytohormones (1816 samples), transcriptomes (350 samples) and metabolomes (1706 samples) as well as Empoasca phenotypes (1907 samples). In order to eliminate the confounding factors caused by the stochasticity of insect attacks in nature, we simulated herbivory feeding as follows: oral secretions (OS) of freshly collected tobacco hornworm (Manduca sexta) larvae were immediately applied to standardized puncture wounds (W) of leaves in standardized leaf positions. This procedure is called W+OS treatment, which standardizes the initiation by precisely timing the onset of the response triggered by herbivory. Plant hormone and transcriptome data sets were collected 1 hour after W+OS treatment, and metabolome data sets were collected 72 hours later. PCC, Pearson correlation coefficient.
图3由代谢组、转录组、植物激素和SNP之间的关联构建的共关联网络(PCC截止P<0.05),并且保留了来自eQTL或mQTL填充的每个基因(小灰色圆圈)、代谢物或植物激素的前5个最显著的SNP。不同化合物类别的植物激素和代谢物以及JA相关基因被不同地标记。JA-Ile、JA信号传递基因(NaAOC、NaMYC2a、NaMYC2b、NaJAZi)、NaMYB8和酚酰胺(N-香豆酰基腐胺、N-咖啡酰基腐胺、N-阿魏酰基腐胺)形成一个中心簇并被标记。Fig. 3 Co-association network constructed from associations among metabolome, transcriptome, phytohormone and SNPs (PCC cutoff P < 0.05), and the top 5 most significant SNPs for each gene (small grey circles), metabolite or phytohormone from eQTL or mQTL filling were retained. Phytohormones and metabolites of different compound classes and JA-related genes were labeled differently. JA-Ile, JA signaling genes (NaAOC, NaMYC2a, NaMYC2b, NaJAZi), NaMYB8 and phenolamides (N-coumarylputrescine, N-caffeoylputrescine, N-feruloylputrescine) formed a central cluster and were labeled.
图4以成对PCC计算的代谢物、JA相关基因和植物激素与小绿叶蝉属表型(数目和损伤面积)共表达的热图(仅显示具有P<0.05的显著相关性,并带有差别标记)。FIG4 Heatmap of co-expression of metabolites, JA-related genes and phytohormones with Empoasca phenotypes (number and lesion area) calculated by pairwise PCC (only significant correlations with P < 0.05 are shown and marked with differences).
图5与基于信息论的无偏代谢组学相结合的反向遗传学揭示了小绿叶蝉属引发的JA-JAZi模块,其调节与小绿叶蝉属非宿主抗性相关的诱导的未知的含腐胺的酚酰胺。将转基因渐狭叶烟草系(n=10)的小绿叶蝉属损伤的叶片的表型随机放置在含有小绿叶蝉属叶蝉的开放选择温室环境中(图26)。显示了每种基因型的代表性叶片,插图突出显示了ovJAZi和irMYB8系的损伤。不同的字母指示显著差异[单向方差分析(ANOVA),随后进行Tukey氏事后多重比较]。FIG. 5 Reverse genetics combined with unbiased metabolomics based on information theory reveals a JA-JAZi module triggered by Empoasca spp., which regulates an unknown putrescine-containing phenolic amide induced by Empoasca spp. The phenotypes of leaves damaged by Empoasca spp. of transgenic Nicotiana acuminate lines (n=10) were randomly placed in an open selection greenhouse environment containing Empoasca spp. leafhoppers ( FIG. 26 ). Representative leaves of each genotype are shown, with insets highlighting damage to ovJAZi and irMYB8 lines. Different letters indicate significant differences [one-way analysis of variance (ANOVA), followed by Tukey's post hoc multiple comparisons].
图6NaJAZh和NaJAZi在渐狭叶烟草WT中的组织特异性的表达谱(左);热图差别标记描绘了Z分数缩放的TPM。响应于连续E.decipiens和M.sexta进食,在渐狭叶烟草(n=3)的叶片中NaJAZh和NaJAZi的相对转录物积累的动力学,在开始进食后0至24小时收获样品。FLB,花蕾;STI,柱头;COE,早期花冠;PED,花梗;SED,种子;OFL,开花;SNP,花柱;LEC,叶片对照;ROT,口腔分泌物处理的植物的根;OVA,子房;NEC,蜜腺;ANT,花药;STT,处理过的茎;LET,处理过的叶。Figure 6 Tissue-specific expression profiles of NaJAZh and NaJAZi in N. attenuata WT (left); heatmap differential markers depict Z-score scaled TPMs. Kinetics of relative transcript accumulation of NaJAZh and NaJAZi in leaves of N. attenuata (n=3) in response to continuous E. decipiens and M. sexta feeding, samples harvested 0 to 24 hours after the start of feeding. FLB, flower bud; STI, stigma; COE, early corolla; PED, pedicel; SED, seed; OFL, flowering; SNP, style; LEC, leaf control; ROT, root of oral secretion treated plants; OVA, ovary; NEC, nectary; ANT, anther; STT, treated stem; LET, treated leaf.
图7是关于从16个转基因系的集合中选出的4个转基因系,通过E.decipiens和M.sexta进食72小时后,叶片(n=4)的特化代谢组的多样性(Hj)相对于特化(δj)指标的散点图(完整数据集参见图32)。代谢组特化(δj)的增加表明,平均而言,产生了更多的食草/基因型特异性代谢物,而代谢组多样性(Hj)的增加表明,定性地讲产生了更多的代谢物,或者定量地讲整体代谢频率谱更均匀地分布。差别标记表示不同的昆虫;符号表示不同的处理:三角形,昆虫进食;圆圈,未处理的对照标准。Figure 7 is a scatter plot of the diversity (Hj) of the specialized metabolome of leaves (n=4) relative to the index of specialization (δj) for 4 transgenic lines selected from a collection of 16 transgenic lines after 72 hours of feeding by E. decipiens and M. sexta (see Figure 32 for the complete data set). An increase in metabolome specialization (δj) indicates that, on average, more herbivory/genotype-specific metabolites are produced, while an increase in metabolome diversity (Hj) indicates that more metabolites are produced qualitatively, or that the overall metabolic frequency spectrum is more evenly distributed quantitatively. Differential markers represent different insects; symbols represent different treatments: triangles, insect feeding; circles, untreated control standards.
图8基于图7(左)所示的四种转基因系中E.decipiens特异性引发的代谢组计算出每种代谢物的排序代谢物特异性(Si)指标分布图,并进一步与代谢物和E.decipiens数目及损伤表型之间的PCC共表达热图相关联(右),其中图5所示的所有反向遗传系的数据用于增强PCC计算的统计能力。基于化合物类别注释来标记各点。仅以颜色显示具有P<0.05的显著相关性。FIG8 Ranked metabolite specific (SI) index distribution plots for each metabolite calculated based on the metabolome specifically triggered by E. decipiens in the four transgenic lines shown in FIG7 (left), and further associated with PCC co-expression heatmaps between metabolites and E. decipiens numbers and injury phenotypes (right), where data from all reverse genetic lines shown in FIG5 were used to enhance the statistical power of PCC calculations. Points are labeled based on compound class annotations. Only significant correlations with P < 0.05 are shown in color.
图9通过将在0.1% DMSO溶液中稀释的合成的N-香豆酰基腐胺(CoP)、N-咖啡酰基腐胺(CP)或N-阿魏酰基腐胺(FP)渗入irMYC2叶片中进行体内小绿叶蝉属选择测定(n=8)(顶部),并通过用在10%葡萄糖溶液中稀释的合成的CoP、CP或FP喂养小绿叶蝉属进行体外小绿叶蝉属非选择测定(n=3,每个重复25只小绿叶蝉属叶蝉)(底部),结果表明这些酚酰胺不会影响叶蝉行为或性能。FIG. 9 An in vivo Empoasca selection assay (n=8) (top) by infiltrating irMYC2 leaves with synthetic N-coumaroylputrescine (CoP), N-caffeoylputrescine (CP), or N-feruloylputrescine (FP) diluted in 0.1% DMSO solution, and an in vitro Empoasca non-selection assay (n=3, 25 Empoasca leafhoppers per replicate) (bottom) by feeding Empoasca with synthetic CoP, CP, or FP diluted in 10% glucose solution, show that these phenolamides do not affect leafhopper behavior or performance.
图10通过将MS/MS结构代谢组学与正向和反向遗传学组合来阐明食草引发的GLV-咖啡酰基腐胺代谢物及其三分叉的生物合成途径。该图显示了基于共享片段(基于NDP的相似性)和共享中性损失(基于NL的相似性)由田间种植MAGIC群体的15个RIL构建的518个idMS/MS波谱的双聚类,揭示了在分子网络中的7个不同模块(M)(左);模块5的特写,其中腐胺-或咖啡酰基衍生的酚酰胺被富集(右),含有未知代谢物m/z 347.19,它与CP的两种异构体直接相关(绿色圈出)。CS,N-咖啡酰基精脒;CoCS,N’,N”-香豆酰基,咖啡酰基精脒;CFS,N’,N”-咖啡酰基,阿魏酰基精脒;DCS,N’,N”-二咖啡酰基精脒;CPD,咖啡酰基腐胺二聚体;CGA,氯原酸;Unk.,未知。Figure 10 Elucidation of herbivory-induced GLV-caffeoylputrescine metabolites and their trifurcated biosynthetic pathways by combining MS/MS structural metabolomics with forward and reverse genetics. The figure shows the biclustering of 518 idMS/MS spectra constructed from 15 RILs of the field-grown MAGIC population based on shared fragments (based on similarity of NDP) and shared neutral losses (based on similarity of NL), revealing 7 distinct modules (M) in the molecular network (left); close-up of module 5, where putrescine- or caffeoyl-derived phenolic amides are enriched (right), containing an unknown metabolite m/z 347.19, which is directly related to both isomers of CP (circled in green). CS, N-caffeoylspermidine; CoCS, N’,N”-coumaryl, caffeoylspermidine; CFS, N’,N”-caffeoyl, feruloylspermidine; DCS, N’,N”-dicaffeoylspermidine; CPD, caffeoylputrescine dimer; CGA, chlorogenic acid; Unk., unknown.
图11通过将MS/MS结构代谢组学与正向和反向遗传学组合来阐明食草引发的GLV-咖啡酰基腐胺代谢物及其三分叉的生物合成途径:该图显示了m/z 347.19在小绿叶蝉属引发的EV和irMYC2系中(顶部)以及MeJA诱导的EV、irMYC2、irMYB8和ovJAZi系中(底部)的积累。Figure 11 Elucidation of herbivory-induced GLV-caffeoylputrescine metabolites and their trifurcated biosynthetic pathway by combining MS/MS structural metabolomics with forward and reverse genetics: The figure shows the accumulation of m/z 347.19 in EV and irMYC2 lines triggered by Empoasca (top) and in MeJA-induced EV, irMYC2, irMYB8, and ovJAZi lines (bottom).
图12通过将MS/MS结构代谢组学与正向和反向遗传学组合来阐明食草引发的GLV-咖啡酰基腐胺代谢物及其三分叉的生物合成途径:该图显示了食草诱导的未知m/z 347.19的Manhattan图,其来自在温室中生长的MAGIC RIL群体的W+OS引发的叶片的mQTL分析,并使用最大限度减少酚酰胺部分损失的程序进行提取(左)。在mQTL分析中输入核心JA信号传递基因NaMYC2a、酚酰胺调节剂NaMYB8、CP生物合成基因NaAT1和两种未知的生物合成候选基因NaPPO1和NaPPO2(P值截止值=10-3),以及未表征的候选基因NaBBL2(P=0.0013)。使用先前发表的在W+OS引发后1小时和5小时收获的irMYB8植物的微阵列数据集构建基因共表达网络。酚酰胺生物合成基因NaAT1和NaDH29被用作诱饵(菱形),在中心的点描绘了与两种诱饵共表达的基因,而下方的点(NaAT1)和上方的点(NaDH29)描绘了与单个诱饵共表达的基因(右)。Figure 12 Elucidation of herbivory-induced GLV-caffeoylputrescine metabolites and their trifurcated biosynthetic pathways by combining MS/MS structural metabolomics with forward and reverse genetics: The figure shows the Manhattan plot of herbivory-induced unknown m/z 347.19 from mQTL analysis of W+OS-induced leaves of MAGIC RIL population grown in greenhouse and extracted using a procedure that minimizes the loss of phenolamide moieties (left). The core JA signaling gene NaMYC2a, the phenolamide regulator NaMYB8, the CP biosynthesis gene NaAT1 and two unknown biosynthesis candidate genes NaPPO1 and NaPPO2 (P value cutoff = 10-3 ), as well as the uncharacterized candidate gene NaBBL2 (P = 0.0013) were entered in the mQTL analysis. The gene co-expression network was constructed using a previously published microarray dataset of irMYB8 plants harvested 1 hour and 5 hours after W+OS induction. The phenolamide biosynthesis genes NaAT1 and NaDH29 were used as baits (diamonds), the dots in the center depict genes co-expressed with both baits, while the lower dots (NaAT1) and upper dots (NaDH29) depict genes co-expressed with a single bait (right).
图13通过将MS/MS结构代谢组学与正向和反向遗传学组合来阐明食草引发的GLV-咖啡酰基腐胺代谢物及其三分叉的生物合成途径:该图显示了参与m/z 347.19制备的生物合成基因候选物的病毒诱导的基因沉默(VIGS)。沉默NaPPO1、NaPPO2、NaAT1和NaBBL2表达会消除在EV对照植物中观察到的W+OS处理引发的m/z347.19(C,未处理的对照标准)。Figure 13 Elucidation of herbivory-induced GLV-caffeoylputrescine metabolites and their trifurcated biosynthetic pathway by combining MS/MS structural metabolomics with forward and reverse genetics: The figure shows virus-induced gene silencing (VIGS) of biosynthetic gene candidates involved in the preparation of m/z 347.19. Silencing of NaPPO1, NaPPO2, NaAT1, and NaBBL2 expression abolished W+OS treatment-induced m/z 347.19 observed in EV control plants (C, untreated control standard).
图14通过将MS/MS结构代谢组学与正向和反向遗传学组合来阐明食草引发的GLV-咖啡酰基腐胺代谢物及其三分叉的生物合成途径:该图显示了小绿叶蝉属引发的m/z347.19制备的提出的三分叉的生物合成途径,该途径需要LOX2-HPL依赖性的C6GLV代谢、LOX3依赖性的和JA调节的苯丙素代谢和多胺代谢,其产物推测与NaBBL2-和NaPPO1/2依赖性反应共轭。Figure 14 Elucidation of herbivory-induced GLV-caffeoylputrescine metabolites and their trifurcated biosynthetic pathway by combining MS/MS structural metabolomics with forward and reverse genetics: The figure shows the proposed trifurcated biosynthetic pathway of the m/z 347.19 preparation induced by Empoasca spp., which requires LOX2-HPL-dependent C6GLV metabolism, LOX3-dependent and JA-regulated phenylpropanoid metabolism, and polyamine metabolism, whose products are presumably conjugated with NaBBL2- and NaPPO1/2-dependent reactions.
图15通过将MS/MS结构代谢组学与正向和反向遗传学组合来阐明食草引发的GLV-咖啡酰基腐胺代谢物及其三分叉的生物合成途径:该图显示了来自温室的MAGIC种群(accession)中m/z 347.19相对于(Z)-3-己烯-1-醇的代谢物丰度的散点图(顶部),以及在稳定转化的EV、asHPL、irLOX2和irLOX2/3系的叶片中在W+OS处理以后m/z 347.19的积累(底部)。Figure 15 Elucidating herbivory-induced GLV-caffeoylputrescine metabolites and their trifurcated biosynthetic pathway by combining MS/MS structural metabolomics with forward and reverse genetics: The figure shows a scatter plot of the metabolite abundance of m/z 347.19 relative to (Z)-3-hexen-1-ol in the MAGIC accession from the greenhouse (top), and the accumulation of m/z 347.19 in leaves of stably transformed EV, asHPL, irLOX2 and irLOX2/3 lines after W+OS treatment (bottom).
图16m/z 347.19在体外和在植物内的结构解析、生物合成、功能以及工程改造:该图显示,用于制备m/z 347的体外酶的测定表明,NaPPO1或NaPPO2可以催化CP与(Z)-3-己烯醛(Z3H)的缩合以形成m/z 347。在大肠杆菌中表达NaPPO1和NaPPO2以及CP和Z3H或(E)-2-己烯醛的双电荷CP二聚体(m/z 250.13)和m/z 347.19的提取离子色谱图(EIC)。化合物1、2、3、4表示CP二聚体的异构体;化合物5、6表示m/z 347.19的异构体。Figure 16 Structure elucidation, biosynthesis, function and engineering of m/z 347.19 in vitro and in planta: The figure shows that the in vitro enzyme assay for the preparation of m/z 347 shows that NaPPO1 or NaPPO2 can catalyze the condensation of CP with (Z)-3-hexenal (Z3H) to form m/z 347. The extracted ion chromatograms (EICs) of the doubly charged CP dimer (m/z 250.13) and m/z 347.19 of NaPPO1 and NaPPO2 expressed in E. coli and CP and Z3H or (E)-2-hexenal. Compounds 1, 2, 3, and 4 represent isomers of CP dimer; compounds 5 and 6 represent isomers of m/z 347.19.
图17m/z 347.19在体外和在植物内的结构解析、生物合成、功能以及工程改造:该图显示了提出的由NaPPO1或NaPPO2介导的m/z 347.19合成的酶促反应:NaPPO1/2将CP氧化为咖啡酰基醌腐胺,并活化Z3H进行迈克尔加成反应,随后芳构化以产生m/z 347.19。Figure 17 Structural elucidation, biosynthesis, function and engineering of m/z 347.19 in vitro and in plants: The figure shows the proposed enzymatic reaction for the synthesis of m/z 347.19 mediated by NaPPO1 or NaPPO2: NaPPO1/2 oxidizes CP to caffeoylquinoneputrescine and activates Z3H for Michael addition reaction, followed by aromatization to produce m/z 347.19.
图18体外小绿叶蝉属非选择测定(n=4,每个重复25只小绿叶蝉属叶蝉)的死亡率,其中如下饲喂小绿叶蝉属6h:用1μM的使用NaPPO1/NaPPO2和CP和Z3H合成并在10%葡萄糖溶液中稀释的m/z 347.19,或用10%葡萄糖作为对照(顶部)。使用EV、PPO1、PPO2和AT1的VIGS植物进行的小绿叶蝉属在植物内选择测定(n=8)(底部)。Fig. 18 Mortality of Empoasca in vitro non-selection assay (n=4, 25 Empoasca leafhoppers per replicate) where Empoasca were fed for 6 h with 1 μM m/z 347.19 synthesized using NaPPO1/NaPPO2 and CP and Z3H and diluted in 10% glucose solution, or with 10% glucose as control (top). Empoasca in planta selection assay (n=8) using VIGS plants of EV, PPO1, PPO2 and AT1 (bottom).
图19参与m/z 347.19的生物合成的基因。Figure 19 Genes involved in the biosynthesis of m/z 347.19.
图20在植物中制备m/z 347.19的生物合成途径工程。蚕豆(Vicia faba)和智利番茄(Solanum chilense)在受到引发后都没有积累m/z 347.19;智利番茄(S.chilense)在受到MeJA引发后会积累CP,而蚕豆(V.faba)不会(插入的热图)。可以通过在MeJA引发的智利番茄叶片中在渗入Z3H的情况下表达NaPPO1、NaPPO2和NaBBL2来工程化智利番茄以制备m/z347.19。m/z 347.19仅在一起表达NaPPO1/NaPPO2以及NaBBL2的智利番茄中积累,而不会在单独表达NaPPO1/NaPPO2的智利番茄中积累。可以通过在叶片中在Z3H和CP渗入的情况下表达NaPPO1、NaPPO2和NaBBL2来工程化蚕豆以制备m/z347.19。体内小绿叶蝉属进食测定(n=4,每个重复25只小绿叶蝉属叶蝉)的死亡率,其中小绿叶蝉属分别在重构的智利番茄和蚕豆的叶片上进食10小时。EIC,提取离子色谱图。FIG20 Engineering of biosynthetic pathways to produce m/z 347.19 in plants. Neither Vicia faba nor Solanum chilense accumulate m/z 347.19 after priming; S. chilense accumulates CP after MeJA priming, while V. faba does not (inserted heat map). S. chilense can be engineered to produce m/z 347.19 by expressing NaPPO1, NaPPO2, and NaBBL2 in MeJA-primed S. chilense leaves infiltrated with Z3H. m/z 347.19 accumulates only in S. chilense expressing NaPPO1/NaPPO2 and NaBBL2 together, but not in S. chilense expressing NaPPO1/NaPPO2 alone. S. chilense can be engineered to produce m/z 347.19 by expressing NaPPO1, NaPPO2, and NaBBL2 in leaves infiltrated with Z3H and CP. Mortality of an in vivo Empoasca feeding assay (n=4, 25 Empoasca leafhoppers per replicate) in which Empoasca fed for 10 hours on reconstituted Chilean tomato and broad bean leaves, respectively. EIC, extracted ion chromatogram.
图21在美国亚利桑那州普雷斯科特(Prescott)WCCER田间站生长的2019年田间MAGIC群体。MAGIC群体的设计显示了主干线(东西方向8个)、分支(每个主干线上4个)和滴头(每个分支上18个)之间的距离。Figure 21 A 2019 field MAGIC colony grown at the WCCER field station in Prescott, Arizona, USA. The design of the MAGIC colony shows the distances between the main lines (8 in an east-west direction), branches (4 on each main line), and emitters (18 on each branch).
图22MAGIC群体在食草动物筛选过程中植物的生长阶段。在每个滴头(喷水器)周围种植四棵RIL,间距为50厘米。Fig. 22 Growth stages of plants in the MAGIC colony during herbivore screening. Four RILs were planted around each emitter (sprinkler) at a spacing of 50 cm.
图23MAGIC群体的植物处理和食草动物筛选。W+OS处理和食草动物筛选。Fig. 23 Plant treatments and herbivore screening of MAGIC populations. W+OS treatments and herbivore screening.
图24 2019年田间团队成员的MAGIC群体照片。Figure 24 MAGIC group photo of field team members in 2019.
图25多组学共关联网络注释。对与JA信号传递不紧密相关的多组学共关联网络的外层的详细注释(提供了在图3中提供的网络的另外的注释)。不同的化合物类别、植物激素、JA相关基因和SNP以不同的灰度色调显示。Figure 25 Multi-omics co-association network annotation. Detailed annotation of the outer layer of the multi-omics co-association network that is not closely related to JA signaling (additional annotation of the network provided in Figure 3 is provided). Different compound classes, plant hormones, JA-related genes and SNPs are shown in different grayscale tones.
图26在Isserstedt温室中的小绿叶蝉属选择测定的设置。将不同的渐狭叶烟草转基因系(每个基因型n=10株植物)随机放置在温室工作台上,彼此之间至少相距40厘米,以实现用于小绿叶蝉属选择的开放选择实验设置。从位于温室工作台两侧的网状帐篷中封闭的蚕豆植物上饲养的群体中释放叶蝉。Fig. 26 Setup of Empoasca selection assay in Isserstedt greenhouse. Different Nicotiana acuminate transgenic lines (n=10 plants per genotype) were randomly placed on greenhouse benches at least 40 cm apart to achieve an open choice experimental setup for Empoasca selection. Leafhoppers were released from colonies reared on broad bean plants enclosed in mesh tents located on both sides of the greenhouse benches.
图27转基因渐狭叶烟草系中目标基因的转录物丰度。不同转基因系的莲座期植物的基因的相对mRNA丰度。对于用设计为沉默基因表达的反向重复(ir)构建体转化的系,在W+OS引发后1小时对来自每个系的比源库过渡叶更老的成熟+2叶以及大小匹配的EV植物和每个基因型的未处理对照植物(C)的转录物进行量化。对于用过表达(ov)构建体转化的植物,仅使用未引发的对照植物。星号指示W+OS处理和未处理的对照(C)之间的显著差异[关于成对差异的Studentt-检验,*P<0.05,**P<0.01,和***P<0.001;每种处理/基因型n=6株植物]。N.S.,不显著。Figure 27 Transgenic Gradient Leaf Tobacco Transcript Abundance of Target Genes in Lines.Relative mRNA Abundance of Genes in Rosette Plants of Different Transgenic Lines.For lines transformed with inverted repeat (ir) constructs designed to silence gene expression, transcripts of mature +2 leaves older than source-sink transition leaves from each line and size-matched EV plants and untreated control plants (C) of each genotype were quantified 1 hour after W+OS initiation.For plants transformed with overexpression (ov) constructs, only uninduced control plants were used.Asterix indicates significant differences between W+OS treatment and untreated control (C) [Student t-test for paired differences, *P<0.05, **P<0.01, and ***P<0.001; n=6 plants for each treatment/genotype]. N.S., not significant.
图28在渐狭叶烟草WT中13个JAZ的组织特异性表达谱。热图标记描绘了Z-分数缩放的TPM。FLB,花蕾;STI,柱头;COE,早期花卷;PED,花梗;SED,种子;OFL,开放花;SNP,花柱;LEC,叶片对照;ROT,来自OS处理的叶片的植物的根;OVA,子房;NEC,蜜腺;ANT,花药;STT,处理的茎;LET,处理的叶。Figure 28 Tissue-specific expression profiles of 13 JAZs in N. attenuata WT. Heat map markers depict Z-score scaled TPMs. FLB, flower bud; STI, stigma; COE, early anther; PED, pedicel; SED, seed; OFL, open flower; SNP, style; LEC, leaf control; ROT, root from plants with OS-treated leaves; OVA, ovary; NEC, nectary; ANT, anther; STT, treated stem; LET, treated leaf.
图29在Y2H测定中NaMYC2a/b、NaMYB8和NaJAZi蛋白之间的相互作用。将GAL4 DNA-BD-NaMYC2a/b/NaMYB8和AD-JAZ共同转化到酵母中。使转化体在QDO(SD-Ade/-His/-Leu/-Trp,添加2mM 3-AT,在30℃下)上按所示稀释度生长。FIG29 Interaction between NaMYC2a/b, NaMYB8 and NaJAZi proteins in Y2H assay. GAL4 DNA-BD-NaMYC2a/b/NaMYB8 and AD-JAZ were co-transformed into yeast. Transformants were grown on QDO (SD-Ade/-His/-Leu/-Trp, supplemented with 2 mM 3-AT, at 30° C.) at the indicated dilutions.
图30小绿叶蝉属和Manduca生物测定的设置。在生长室中的小绿叶蝉属(右)和烟草天蛾属(Manduca)(左)进食实验的设置。注意:使用夹笼来限制小绿叶蝉属对特定叶片的攻击。Figure 30 Setup for Empoasca and Manduca bioassay. Setup for Empoasca (right) and Manduca (left) feeding experiment in a growth chamber. Note: Clip cages were used to restrict Empoasca attack to specific leaves.
图31在生长室中的小绿叶蝉属选择(顶部)和非选择(底部)进测定。FIG. 31 Empoasca selective (top) and non-selective (bottom) assays in a growth chamber.
图32在不同渐狭叶烟草转基因系中受昆虫食草影响的代谢组多样性和特化。在有和没有小绿叶蝉属桃叶蝉(E.Decipiens)(n=3)和烟草天蛾(M.Sexta)(n=4)对16个不同的渐狭叶烟草转基因系攻击72小时的情况下,特化代谢组的多样性(Hj指数)相对于特化(δj指标)的散点图。该图提供了在图7中描述的完整数据集。Figure 32 Metabolome diversity and specialization affected by insect herbivory in different Nicotiana acuminate transgenic lines. Scatter plot of the diversity (Hj index) of the specialized metabolome relative to specialization (δj index) in the presence and absence of Empoasca peach leafhopper (E.Decipiens) (n=3) and tobacco hornworm (M.Sexta) (n=4) for 72 hours of attack on 16 different Nicotiana acuminate transgenic lines. This figure provides the complete data set described in Figure 7.
图33在16个不同的转基因系中,响应于两个食草动物物种的连续进食,渐狭叶烟草叶片中酚类衍生物和酚酰胺的积累。简化的途径揭示了响应于小绿叶蝉属或烟草天蛾属昆虫进食主要的苯丙素-奎宁酸和-聚胺共轭物之间的关联。CGA,氯原酸;CoP,N-香豆酰基腐胺;CP,N-咖啡酰基腐胺;FP,N-阿魏酰基腐胺;CS,N-咖啡酰基精脒;FS,N-阿魏酰基精脒;DCS,N’,N”-二咖啡酰基精脒;CFS,N’,N”-咖啡酰基,阿魏酰基精脒。星号表示昆虫处理和对照之间的显著差异(Studentt-检验,*P<0.05,**P<0.01,***P<0.001;每种处理/基因型n=3至4株植物)。图33A)概图,B)CGA,C)苯丙氨酸,D)CoP,E)CS,F)CP,G)FS,H)FP,I)DCS和J)CFS。Figure 33 Accumulation of phenolic derivatives and phenolamides in leaves of Nicotiana acuminate in response to continuous feeding by two herbivore species in 16 different transgenic lines. Simplified pathways reveal associations between major phenylpropanoid-quinic acid and -polyamine conjugates in response to feeding by Empoasca or Sextus manduca insects. CGA, chlorogenic acid; CoP, N-coumaroylputrescine; CP, N-caffeoylputrescine; FP, N-feruloylputrescine; CS, N-caffeoylspermidine; FS, N-feruloylspermidine; DCS, N',N"-dicaffeoylspermidine; CFS, N',N"-caffeoyl,feruloylspermidine. Asterisks indicate significant differences between insect treatments and controls (Student's t-test, *P<0.05, **P<0.01, ***P<0.001; n=3 to 4 plants per treatment/genotype). Figure 33 A) Overview, B) CGA, C) Phenylalanine, D) CoP, E) CS, F) CP, G) FS, H) FP, I) DCS and J) CFS.
图34CoP、CP和FP的标准曲线。通过制备合成的CoP、CP和FP来构建CoP、CP和FP的标准曲线,该标准曲线用于量化叶片和昆虫饮食中的酚酰胺水平。在实施例中提供了LC-MS条件。Figure 34 Standard curves for CoP, CP and FP. Standard curves for CoP, CP and FP were constructed by preparing synthetic CoP, CP and FP, and used to quantify phenolamide levels in leaves and insect diets. LC-MS conditions are provided in the Examples.
图35未知代谢物m/z 347.19的注释MS/MS谱和结构。通过突出显示腐胺和C6H8O的中性损失以及m/z 347.19的相应结构来注释m/z 347.19的IdMS/MS,如右侧所示。Figure 35 Annotated MS/MS spectrum and structure of unknown metabolite m/z 347.19. The IdMS/MS of m/z 347.19 is annotated by highlighting the neutral losses of putrescine and C6H8O and the corresponding structure of m/z 347.19 as shown on the right.
图36在2019年田间季节中生长的MAGIC RIL群体中食草引发的m/z 347.19积累与茉莉酸和小绿叶蝉属表型的积累之间的关联。使用来自亚利桑那州田间站生长的MAGICRIL群体的在W+OS处理叶片后72小时定量的m/z 347.19的量(1706个样品)与在W+OS处理叶片后1小时定量的不同茉莉酸的水平(1816个样品)和小绿叶蝉属表型(1907个样品)进行成对皮尔逊相关系数(PCC)分析。对重复的样品取平均值。显示出P值<0.05的显著相关性。Figure 36 Association between herbivory-induced accumulation of m/z 347.19 and accumulation of jasmonic acid and Empoasca genus phenotypes in MAGIC RIL populations grown in the 2019 field season. Paired Pearson correlation coefficient (PCC) analysis was performed using the amount of m/z 347.19 quantified 72 hours after W+OS treatment of leaves (1706 samples) from MAGICRIL populations grown at the Arizona field station and the levels of different jasmonic acids quantified 1 hour after W+OS treatment of leaves (1816 samples) and Empoasca genus phenotypes (1907 samples). The replicate samples were averaged. A significant correlation of P value <0.05 was shown.
图37在不同转基因系的渐狭叶烟草叶片中响应于OS处理的m/z 347.19生物合成基因的转录物积累。分别在1小时和5小时后响应于叶片的OS处理在WT和irMYB8系中的m/z347.19生物合成基因的转录物积累。*P<0.05,**P<0.01,***P<0.001。Figure 37 Transcript accumulation of m/z 347.19 biosynthetic gene in response to OS treatment in N. attenuata leaves of different transgenic lines. Transcript accumulation of m/z 347.19 biosynthetic gene in response to OS treatment of leaves in WT and irMYB8 lines after 1 hour and 5 hours, respectively. *P<0.05, **P<0.01, ***P<0.001.
图38响应于叶片的OS处理在WT植物中相同生物合成基因的转录物积累的详细动力学。*P<0.05,**P<0.01,***P<0.001。Figure 38 Detailed kinetics of transcript accumulation of the same biosynthetic genes in WT plants in response to OS treatment of leaves. *P<0.05, **P<0.01, ***P<0.001.
图39在OS处理后7小时在EV和irMYC2系中m/z 347.19生物合成基因的转录丰度,这通过RNAseq量化并表示为每千碱基转录每百万个测序读取的片段数(FPKM)。星号表示与未处理的对照植物相比的显著差异(双因素方差分析,随后事后多重比较,*P<0.05,**P<0.01,***P<0.001;每种处理/基因型n=3株植物)。N.S.,不显著。FIG39 Transcript abundance of m/z 347.19 biosynthetic genes in EV and irMYC2 lines 7 hours after OS treatment, quantified by RNAseq and expressed as fragments per kilobase of transcription per million sequencing reads (FPKM). Asterisks indicate significant differences compared to untreated control plants (two-way ANOVA followed by post hoc multiple comparisons, *P<0.05, **P<0.01, ***P<0.001; n=3 plants per treatment/genotype). N.S., not significant.
图40NaAT1、NaPPO1、NaPPO2和NaBBL2在VIGS植物中的沉默效率。分别在渐狭叶烟草VIGS植物的莲座期中的NaAT1、NaPPO1、NaPPO2和NaBBL2的相对mRNA丰度。星号表示W+OS处理和未处理的对照(C)之间的显著差异(成对差异的Studentt-检验,*P<0.05,**P<0.01,和***P<0.001;每种处理/基因型n=8至11株植物)。N.S.,不显著。Figure 40 Silencing efficiency of NaAT1, NaPPO1, NaPPO2 and NaBBL2 in VIGS plants. Relative mRNA abundance of NaAT1, NaPPO1, NaPPO2 and NaBBL2 in the rosette stage of Nicotiana attenuata VIGS plants, respectively. Asterisks indicate significant differences between W+OS treatment and untreated controls (C) (Student t-test for paired differences, *P<0.05, **P<0.01, and ***P<0.001; n=8 to 11 plants per treatment/genotype). N.S., not significant.
图41在不同的病毒诱导的基因沉默(VIGS)植物中,响应于OS处理在渐狭叶烟草叶片中的酚酰胺的积累。与EV相比,沉默NaPPO1和NaPPO2不会显著改变食草诱导的酚酰胺积累。CoP,N-香豆酰基腐胺;FP,N-阿魏酰基腐胺;CS,N-咖啡酰基精脒;FS,N-阿魏酰基精脒;CoCS,N’,N”-香豆酰基,咖啡酰基精脒;CFS,N’,N”-咖啡酰基,阿魏酰基精脒;DCS,N’,N”-二咖啡酰基精脒;DFS,N’,N”-二阿魏酰基精脒。不同的字母表示显著差异(双因素方差分析,随后图基的事后多重比较;每种处理/基因型n=4至8株植物)。Figure 41 Accumulation of phenolamides in leaves of N. attenuata in response to OS treatment in different virus-induced gene silenced (VIGS) plants. Silencing NaPPO1 and NaPPO2 did not significantly alter herbivory-induced phenolamide accumulation compared to EV. CoP, N-coumaroylputrescine; FP, N-feruloylputrescine; CS, N-caffeoylspermidine; FS, N-feruloylspermidine; CoCS, N',N"-coumaroyl, caffeoylspermidine; CFS, N',N"-caffeoyl, feruloylspermidine; DCS, N',N"-dicaffeoylspermidine; DFS, N',N"-dicaffeoylspermidine. Different letters indicate significant differences (two-way ANOVA followed by Tukey's post hoc multiple comparisons; n = 4 to 8 plants per treatment/genotype).
图42在MAGIC RIL群体中食草引发的m/z 347.19与挥发性有机化合物(VOC)之间的关联。在温室中生长的650个MAGIC RIL中,计算了在叶片的W+OS处理后72hm/z 347.19的积累与W+OS处理后24小时期间VOC的释放之间的皮尔逊相关系数(PCC)。虚线表示具有P值<0.05的显著PCC相关阈值。Figure 42 Association between herbivory-induced m/z 347.19 and volatile organic compounds (VOCs) in a MAGIC RIL population. The Pearson correlation coefficient (PCC) between the accumulation of 72hm/z 347.19 after W+OS treatment of leaves and the release of VOCs during 24 hours after W+OS treatment was calculated for 650 MAGIC RILs grown in a greenhouse. The dotted line indicates a significant PCC correlation threshold with a P value <0.05.
图43重组NaPPO1蛋白在纯化过程期间的SDS-PAGE(钠二十硫酸盐-聚丙烯酰胺凝胶电泳)分析。NaPPO1的SDS-PAGE分离。泳道:1,未诱导的对照样品(1mL);2,诱导的过夜级分样品(1mL);3,不溶性级分样品(5mL);4,可溶性级分样品;5-8,用40mM(10mL)、80mM(1mL)、250mM(1mL)和250mM(1mL)咪唑缓冲液梯度冲洗后收集的样品。箭头表示纯化的NaPPO1蛋白。FIG. 43 SDS-PAGE (sodium eicosate-polyacrylamide gel electrophoresis) analysis of recombinant NaPPO1 protein during the purification process. SDS-PAGE separation of NaPPO1. Lanes: 1, uninduced control sample (1 mL); 2, induced overnight fraction sample (1 mL); 3, insoluble fraction sample (5 mL); 4, soluble fraction sample; 5-8, samples collected after gradient washing with 40 mM (10 mL), 80 mM (1 mL), 250 mM (1 mL), and 250 mM (1 mL) imidazole buffer. Arrows indicate purified NaPPO1 protein.
图44重组NaPPO2蛋白在纯化过程期间的SDS-PAGE分析。NaPPO2的SDS-PAGE分离。泳道:1,未诱导的对照样品(1mL);2,诱导的过夜级分样品(1mL);3,不溶性级分样品(5mL);4,可溶性级分样品;5-8,用40mM(10mL)、80mM(1mL)、250mM(1mL)和250mM(1mL)咪唑缓冲液梯度冲洗后收集的样品。箭头表示纯化的NaPPO2蛋白。FIG. 44 SDS-PAGE analysis of recombinant NaPPO2 protein during the purification process. SDS-PAGE separation of NaPPO2. Lanes: 1, uninduced control sample (1 mL); 2, induced overnight fraction sample (1 mL); 3, insoluble fraction sample (5 mL); 4, soluble fraction sample; 5-8, samples collected after gradient washing with 40mM (10 mL), 80mM (1 mL), 250mM (1 mL), and 250mM (1 mL) imidazole buffer. Arrows indicate purified NaPPO2 protein.
图45重组NaBBL2的SDS-PAGE分析。泳道:1,未诱导的对照样品(1mL);2,诱导的过夜级分样品(1mL);3,不溶性级分样品(5mL);4,可溶性级分样品;5-8,用40mM(10mL)、80mM(1mL)、250mM(1mL)和250mM(1mL)咪唑缓冲液梯度冲洗后收集的样品。箭头表示纯化的NaBBL2蛋白。Figure 45 SDS-PAGE analysis of recombinant NaBBL2. Lanes: 1, uninduced control sample (1 mL); 2, induced overnight fraction sample (1 mL); 3, insoluble fraction sample (5 mL); 4, soluble fraction sample; 5-8, samples collected after gradient washing with 40mM (10 mL), 80mM (1 mL), 250mM (1 mL) and 250mM (1 mL) imidazole buffer. Arrows indicate purified NaBBL2 protein.
图46体外制备的m/z 347.19与叶片中小绿叶蝉属引发的m/z 347.19的MS/MS波谱的对比。体外制备的m/z 347.19的MS/MS谱为顶部波谱(黑色),与渐狭叶烟草叶片中OS引发的m/z 347.19的MS/MS谱(红色:底部波谱)进行对比。使用8Da质量隔离窗口和25eV的碰撞能量以m/z 347.19为目标通过MS/MS数据采集来获得MS/MS波谱。m/z 347.19的相应提取离子色谱图(EIC)(25分钟LC方法)在左侧。FIG46 Comparison of the MS/MS spectra of m/z 347.19 prepared in vitro and m/z 347.19 triggered by Empoasca in leaves. The MS/MS spectrum of m/z 347.19 prepared in vitro is the top spectrum (black) and is compared with the MS/MS spectrum of m/z 347.19 triggered by OS in N. acuminate leaves (red: bottom spectrum). The MS/MS spectra were acquired by MS/MS data acquisition targeting m/z 347.19 using an 8Da mass isolation window and a collision energy of 25eV. The corresponding extracted ion chromatogram (EIC) of m/z 347.19 (25 min LC method) is on the left.
图47体外制备的未知物m/z 250.132与N-咖啡酰基腐胺标准品的MS/MS波谱的对比。显示了体外制备的未知物m/z 250.132的MS/MS谱(顶部波谱)。与N-咖啡酰基腐胺标准品的MS/MS波谱(底部波谱)相比,未知的双电荷m/z 250.132(C26H36N4O6 2+)被注释为N-咖啡酰基腐胺二聚体。Figure 47 Comparison of the MS/MS spectra of the unknown m/z 250.132 prepared in vitro and the N-caffeoylputrescine standard. The MS/MS spectrum of the unknown m/z 250.132 prepared in vitro is shown (top spectrum). Compared with the MS/MS spectrum of the N-caffeoylputrescine standard (bottom spectrum), the unknown doubly charged m/z 250.132 (C 26 H 36 N 4 O 6 2+ ) is annotated as an N-caffeoylputrescine dimer.
图48m/z 347.19的体外制备不需要NaBBL2。在培养基中添加CP和(Z)-3-己烯醛的情况下,表达NaPPO1和NaPPO2以及NaBBL2的大肠杆菌中的m/z 347.19的EIC。箭头表示在体外酶测定中制备的m/z 347.19的两种异构体。Figure 48 In vitro production of m/z 347.19 does not require NaBBL2. EIC of m/z 347.19 in E. coli expressing NaPPO1 and NaPPO2 and NaBBL2 in the presence of CP and (Z)-3-hexenal in the culture medium. Arrows indicate the two isomers of m/z 347.19 produced in the in vitro enzyme assay.
图49不同浓度的咖啡酰基腐胺和(Z)-3-己烯醛情况下PPO1和BBL2的Michaelis-Menten动力学。从表达PPO1的大肠杆菌Bl21中纯化的PPO1催化的咖啡酰基腐胺或(Z)-3-己烯醛向CPH的转化的稳态动力学。误差棒代表反应速度的三次独立测量的平均值标准误差(SEM)。使用GraphPad Prism(v.9.0d)中的非线性Michaelis-Menten曲线拟合推断出动力学常数、表观Km和Vmax(表2)以及它们的标准误差。(Z)-3-己烯醛的底物浓度为1mM。FIG. 49 Michaelis-Menten kinetics of PPO1 and BBL2 at different concentrations of caffeoylputrescine and (Z)-3-hexenal. Steady-state kinetics of the conversion of caffeoylputrescine or (Z)-3-hexenal to CPH catalyzed by PPO1 purified from E. coli Bl21 expressing PPO1. Error bars represent the standard error of the mean (SEM) of three independent measurements of the reaction rate. Kinetic constants, apparent Km and Vmax (Table 2) and their standard errors were inferred using nonlinear Michaelis-Menten curve fitting in GraphPad Prism (v.9.0d). The substrate concentration of (Z)-3-hexenal was 1 mM.
图50不同浓度的咖啡酰基腐胺和(Z)-3-己烯醛情况下PPO2和BBL2的Michaelis-Menten动力学。从表达PPO2的大肠杆菌Bl21中纯化的PPO2催化的咖啡酰基腐胺或(Z)-3-己烯醛向CPH的转化的稳态动力学。误差棒代表反应速度的三次独立测量的平均值标准误差(SEM)。使用GraphPad Prism(v.9.0d)中的非线性Michaelis-Menten曲线拟合推断出动力学常数、表观Km和Vmax(表2)以及它们的标准误差。(Z)-3-己烯醛的底物浓度为1mM。Figure 50 Michaelis-Menten kinetics of PPO2 and BBL2 at different concentrations of caffeoyl putrescine and (Z)-3-hexenal. Steady-state kinetics of the conversion of caffeoyl putrescine or (Z)-3-hexenal to CPH catalyzed by PPO2 purified from E. coli Bl21 expressing PPO2. Error bars represent the standard error of the mean (SEM) of three independent measurements of the reaction rate. Kinetic constants, apparent Km and Vmax (Table 2) and their standard errors were inferred using nonlinear Michaelis-Menten curve fitting in GraphPad Prism (v.9.0d). The substrate concentration of (Z)-3-hexenal was 1 mM.
图51不同浓度的咖啡酰基腐胺和(Z)-3-己烯醛情况下PPO1和BBL2的Michaelis-Menten动力学。从表达PPO1的大肠杆菌Bl21中纯化的PPO1催化的咖啡酰基腐胺或(Z)-3-己烯醛向CPH的转化的稳态动力学。误差棒代表反应速度的三次独立测量的平均值标准误差(SEM)。使用GraphPad Prism(v.9.0d)中的非线性Michaelis-Menten曲线拟合推断出动力学常数、表观Km和Vmax(表2)以及它们的标准误差。咖啡酰基腐胺的底物浓度为80μM。Figure 51 Michaelis-Menten kinetics of PPO1 and BBL2 at different concentrations of caffeoylputrescine and (Z)-3-hexenal. Steady-state kinetics of the conversion of caffeoylputrescine or (Z)-3-hexenal to CPH catalyzed by PPO1 purified from E. coli Bl21 expressing PPO1. Error bars represent the standard error of the mean (SEM) of three independent measurements of the reaction rate. Kinetic constants, apparent Km and Vmax (Table 2) and their standard errors were inferred using nonlinear Michaelis-Menten curve fitting in GraphPad Prism (v.9.0d). The substrate concentration of caffeoylputrescine was 80 μM.
图52不同浓度的咖啡酰基腐胺和(Z)-3-己烯醛情况下PPO2和BBL2的Michaelis-Menten动力学。从表达PPO2的大肠杆菌Bl21中纯化的PPO2催化的咖啡酰基腐胺或(Z)-3-己烯醛向CPH的转化的稳态动力学。误差棒代表反应速度的三次独立测量的平均值标准误差(SEM)。使用GraphPad Prism(v.9.0d)中的非线性Michaelis-Menten曲线拟合推断出动力学常数、表观Km和Vmax(表2)以及它们的标准误差。(Z)-3-己烯醛的底物浓度为1mM。咖啡酰基腐胺的底物浓度为80μM。Figure 52 shows the Michaelis-Menten kinetics of PPO2 and BBL2 at different concentrations of caffeoyl putrescine and (Z)-3-hexenal. Steady-state kinetics of the conversion of caffeoyl putrescine or (Z)-3-hexenal to CPH catalyzed by PPO2 purified from E. coli Bl21 expressing PPO2. Error bars represent the standard error of the mean (SEM) of three independent measurements of the reaction rate. Kinetic constants, apparent Km and Vmax (Table 2) and their standard errors were inferred using nonlinear Michaelis-Menten curve fitting in GraphPad Prism (v.9.0d). The substrate concentration of (Z)-3-hexenal was 1 mM. The substrate concentration of caffeoyl putrescine was 80 μM.
图53NaPPO1和NaPPO2酶的底物特异性。真实氯原酸(CGA标准品)、N-香豆酰基腐胺(CoP标准品)、(Z)-3-己烯醛或(E)-2-己烯醛与从大肠杆菌中纯化的NaPPO1/NaPPO2的酶测定的总离子色谱图(TIC)的叠加。化合物1和2表示CGA和CoP;3和4分别表示来自(Z)-3-己烯醛和CoP标准品的污染峰。FIG53 Substrate specificity of NaPPO1 and NaPPO2 enzymes. Overlay of total ion chromatograms (TIC) of enzyme assays of authentic chlorogenic acid (CGA standard), N-coumaroyl putrescine (CoP standard), (Z)-3-hexenal or (E)-2-hexenal with NaPPO1/NaPPO2 purified from E. coli. Compounds 1 and 2 represent CGA and CoP; 3 and 4 represent contaminating peaks from (Z)-3-hexenal and CoP standards, respectively.
图54m/z 347.19的1H NMR谱(核磁共振氢谱)和化学位移。在700μLMeOH-d3中,掺入了0.1%甲酸,在水预饱和情况下,m/z 347.19的酶产物的1H-NMR谱,32次扫描(左),m/z347.19的1H和13C化学位移(右)。Figure 54 1 H NMR spectrum (nuclear magnetic resonance hydrogen spectrum) and chemical shift of m/z 347.19. 1 H-NMR spectrum of the enzyme product at m/z 347.19 in 700 μL MeOH-d 3 , doped with 0.1% formic acid, pre-saturated with water, 32 scans (left), 1 H and 13 C chemical shifts of m/z 347.19 (right).
图55m/z 347.19的半衰期估算。显示了纯化的m/z 347.19的NMR谱的不同时间采集。从在6ppm处的位置2的信号估算,m/z 347.19的半衰期在室温下在黑暗中在酸化的甲醇-d3(0.1%甲酸)中为约22小时。Figure 55 Half-life estimation of m/z 347.19. NMR spectra of purified m/z 347.19 acquired at different times are shown. The half-life of m/z 347.19 was estimated from the signal at position 2 at 6 ppm to be about 22 hours at room temperature in acidified methanol- d3 (0.1% formic acid) in the dark.
图56在不同植物种类中m/z 347.19、CP和生物合成酶的积累。MeJA诱导的m/z347.19在密切相关的烟草种类中的积累。星号表示在羊毛脂加创伤(W)或MeJA处理与羊毛脂对照(C)之间的显著差异(成对差异的Studentt-检验,*P<0.05,**P<0.01,和***P<0.001;每种处理/基因型n=6株植物)。At,渐狭叶烟草(N.attenuata);Ac,渐尖叶烟草(N.acuminata);Li,狭叶烟草(N.linearis);Mi,摩西氏烟草(N.miersii);Ob,欧布特斯烟草(N.obtusifolia);Pa,少花烟草(N.pauciflora);Sp,斯佩格茨烟草(N.spegazzinii);FIG. 56 Accumulation of m/z 347.19, CP, and biosynthetic enzymes in different plant species. MeJA-induced accumulation of m/z 347.19 in closely related tobacco species. Asterisks indicate significant differences between lanolin wounding (W) or MeJA treatment and lanolin control (C) (Student t-test for paired differences, *P<0.05, **P<0.01, and ***P<0.001; n=6 plants per treatment/genotype). At, N. attenuata; Ac, N. acuminata; Li, N. linearis; Mi, N. miersii; Ob, N. obtusifolia; Pa, N. pauciflora; Sp, N. spegazzinii;
图57使用来自NCBI的分类学通用树创建的已测序植物基因组的系统树。热图标记按查询各自植物蛋白质组的NaAT1、NaPPO1、NaPPO2和NaBBL2同源物的顶部BLAST(blastp)命中的氨基酸同一性百分比缩放(左),并且右侧的热图代表在不同种类中MeJA诱导的咖啡酰基腐胺和m/z 347.19的存在和不存在(强度阈值>500)。Figure 57 Phylogenetic tree of sequenced plant genomes created using the taxonomic universal tree from NCBI. Heatmap markers scaled by percentage of amino acid identity of top BLAST (blastp) hits querying the respective plant proteomes for NaAT1, NaPPO1, NaPPO2, and NaBBL2 homologs (left), and the heatmap on the right represents the presence and absence (intensity threshold>500) of MeJA-induced caffeoylputrescine and m/z 347.19 in different species.
图58在渐狭叶烟草中的NaPPO1和NaPPO1的定位。(A)通过N-端氨基酸序列比对,在NaPPO1和NaPPO2的氨基酸序列中识别出质体PPO的‘类囊体转移结构域’(Joy等人,PlantPhysiol 107,1083-1089(1995))(类囊体(thylakoid)转移结构域用红色矩形标记)。NaPPO1和NaPPO2的N-端氨基酸序列与质体多酚氧化酶(PPO)前体(金鱼草(Antirrhinummajus)金鱼草素合酶(AmAS1;AB044884.1)、葡萄(Vitis vinifer)的PPO、BAA08234.1、马铃薯(Solanum tuberosum)的PPO、AAA85122.1、美洲商陆(Phytolacca americana)的PPO(PAP1)、BAA08234.1)的N-端氨基酸序列的比对。Figure 58 Localization of NaPPO1 and NaPPO2 in Nicotiana attenuata. (A) The 'thylakoid transfer domain' of the plastidial PPO was identified in the amino acid sequences of NaPPO1 and NaPPO2 (Joy et al., Plant Physiol 107, 1083-1089 (1995)) by N-terminal amino acid sequence alignment (the thylakoid transfer domain is marked with a red rectangle). The N-terminal amino acid sequences of NaPPO1 and NaPPO2 were aligned with those of plastid polyphenol oxidase (PPO) precursors (antirrhinol synthase (AmAS1; AB044884.1) from Antirrhinum majus, PPO (BAA08234.1) from Vitis vinifer, PPO (AAA85122.1) from Solanum tuberosum, and PPO (PAP1; BAA08234.1) from Phytolacca americana.
图59 35S::NaPPO1-GFP或35S:μ:NaPPO2-GFP的亚细胞定位,将GFP融合到NaPPO1和NaPPO2的开放读码框的C末端,在渐狭叶烟草叶片中瞬时表达。对照:未感染的植物,比例条:20μm。Figure 59 Subcellular localization of 35S::NaPPO1-GFP or 35S:μ:NaPPO2-GFP, GFP fused to the C-terminus of the open reading frames of NaPPO1 and NaPPO2, transiently expressed in leaves of Nicotiana attenuata. Control: uninfected plants, scale bar: 20 μm.
图60提出的在渐狭叶烟草中对抗小绿叶蝉属叶蝉的非宿主抗性的机制。提出了产生m/z 347.19的体内酶反应的模型。NaPPO1和NaPPO2位于质体中,并因此与可能在细胞质中产生的咖啡酰基腐胺(CP)物理上分开。在小绿叶蝉属损伤后,小绿叶蝉属引发的茉莉酸信号传递途径被激活,其中JA-Ile或其它JA衍生物募集NaJAZi并释放其与NaMYC2和NaMYB8的相互作用以激活CP产生。在图17所示的反应中,在NaBBL2的帮助下,NaPPO1或NaPPO2将CP与来自质体的PPO-运输的(Z)-3-己烯醛缩合,并且m/z 347.19积累在中央液泡中,因为它在通常表征液泡的弱乙酸条件下相对稳定。可替换地,叶绿体和它们携带的GLV和PPO可能响应于小绿叶蝉属攻击而被吞噬,并被运送到中央液泡中以产生m/z 347.19,其中CP存在于中央液泡中。Figure 60 proposes a mechanism for non-host resistance against Empoa spp. leafhoppers in Nicotiana attenuata. A model for the in vivo enzyme reaction that produces m/z 347.19 is proposed. NaPPO1 and NaPPO2 are located in the plastid and are therefore physically separated from caffeoyl putrescine (CP) that may be produced in the cytoplasm. After Empoa spp. damage, the Empoa spp.-induced jasmonic acid signaling pathway is activated, in which JA-Ile or other JA derivatives recruit NaJAZi and release their interaction with NaMYC2 and NaMYB8 to activate CP production. In the reaction shown in Figure 17, NaPPO1 or NaPPO2 condenses CP with (Z)-3-hexenal transported from the plastid with the help of NaBBL2, and m/z 347.19 accumulates in the central vacuole because it is relatively stable under weak acetic acid conditions that usually characterize the vacuole. Alternatively, chloroplasts and the GLVs and PPOs they carry may be engulfed in response to Empoasca attack and transported to the central vacuole to produce m/z 347.19, where the CP resides.
图61NaBBL2与其它表征的小檗碱桥酶的氨基酸序列比对。红框突出显示了参与FAD的二价连接的小檗碱桥酶的残基(His和Cys)。发现Cys残基在NaBBL2酶中发生突变(C173至G173突变)。使用MUSCLE算法进行比对。登录号:渐狭叶烟草BBL2(XM_019396928),花菱草(E.Californica)BBE(CAK49173),罂粟(P.Somniferum)BBE(XP_001394039),印度大麻(C.sativa)THCA合酶(AMQ48632),印度大麻CBDA合酶(A6P6V9),山茶(C.Japonica)BBL(BAJ40864)。FIG61 Amino acid sequence alignment of NaBBL2 with other characterized berberine bridge enzymes. The red boxes highlight the residues of the berberine bridge enzyme involved in the divalent attachment of FAD (His and Cys). The Cys residue was found to be mutated in the NaBBL2 enzyme (C 173 to G 173 mutation). The alignment was performed using the MUSCLE algorithm. Accession numbers: Nicotiana acuminate BBL2 (XM_019396928), E. californica BBE (CAK49173), P. somniferum BBE (XP_001394039), C. sativa THCA synthase (AMQ48632), C. sativa CBDA synthase (A6P6V9), C. japonica BBL (BAJ40864).
具体实施方式Detailed ways
尽管将关于具体实施方案来描述本发明,但是该描述不应以限制性含义来解释。Although the invention will be described with respect to specific embodiments, this description should not be construed in a limiting sense.
在详细描述本发明的示例性实施方案之前,给出对于理解本发明重要的定义。Before describing exemplary embodiments of the present invention in detail, definitions important for understanding the present invention are given.
如在本说明书中和在所附权利要求书中使用的,“一种”和“一个”的单数形式也包括相应的复数形式,除非上下文另外清楚地指明。As used in this specification and in the appended claims, the singular forms "a", "an" and "an" include the corresponding plural forms as well, unless the context clearly indicates otherwise.
在本发明的上下文中,术语“约”和“近似”表示本领域技术人员将理解仍确保所讨论的特征的技术效果的准确度区间。该术语通常指示±20%的与所示数值的偏差,优选±15%,更优选±10%,且甚至更优选±5%。In the context of the present invention, the terms "about" and "approximately" represent an interval of accuracy that a person skilled in the art will understand still ensures the technical effect of the feature in question. The term generally indicates a deviation of ±20% from the indicated numerical value, preferably ±15%, more preferably ±10%, and even more preferably ±5%.
应当理解,术语“包含”不是限制性的。对于本发明的目的而言,术语“由……组成”或“基本上由……组成”被认为是术语“包含……”的优选实施方案。如果在下文中将一个集合定义为至少包含特定数目的实施方案,则这还意图涵盖优选仅由这些实施方案组成的集合。It should be understood that the term "comprising" is not limiting. For the purposes of the present invention, the term "consisting of" or "consisting essentially of" are considered preferred embodiments of the term "comprising..." If a group is defined hereinafter as comprising at least a certain number of embodiments, this is also intended to cover a group that preferably consists only of these embodiments.
此外,在说明书中或在权利要求书中的术语“(i)”、“(ii)”、“(iii)”或“(a)”、“(b)”、“(c)”、“(d)”或“第一”、“第二”、“第三”等用于在类似的要素之间进行区分,并且不一定用于描述相继或时间顺序。应当理解,如此使用的术语在适当的情况下可以互换,并且本文描述的本发明的实施方案能够按照与本文描述或说明的顺序不同的顺序进行操作。如果术语涉及方法、程序或使用的步骤,则在所述步骤之间没有时间或时间间隔连贯性,即所述步骤可以同时进行或者在这些步骤之间可能存在数秒、数分钟、数小时、数天、数周等的时间间隔,除非另外指出。In addition, the terms "(i)", "(ii)", "(iii)" or "(a)", "(b)", "(c)", "(d)" or "first", "second", "third", etc., in the specification or in the claims are used to distinguish between similar elements and not necessarily to describe a sequential or chronological order. It should be understood that the terms so used are interchangeable under appropriate circumstances and that the embodiments of the invention described herein are capable of operation in an order different from that described or illustrated herein. If the terms refer to steps of a method, procedure or use, there is no time or time interval continuity between the steps, that is, the steps can be performed simultaneously or there may be time intervals of seconds, minutes, hours, days, weeks, etc. between the steps, unless otherwise indicated.
应当理解,本发明不限于本文描述的特定方法、方案、试剂等,因为这些可能变化。还应该理解,本文所使用的术语仅仅是为了描述具体实施方案的目的,并非旨在限制本发明的范围,所述范围将仅由所附权利要求限制。除非另外定义,否则在本文中使用的所有技术和科学术语具有本领域普通技术人员通常理解的相同含义。It should be understood that the present invention is not limited to the specific methods, protocols, reagents, etc. described herein, as these may vary. It should also be understood that the terms used herein are only for the purpose of describing specific embodiments and are not intended to limit the scope of the present invention, which will only be limited by the appended claims. Unless otherwise defined, all technical and scientific terms used in this article have the same meanings as commonly understood by those of ordinary skill in the art.
如上所述,本发明在一个方面涉及通式(I)的化合物As mentioned above, the present invention relates in one aspect to compounds of formula (I)
其中:in:
R1、R2、R3和R4彼此独立地各自是H、OH、(C1-C6)-烷基或(C1-C6)-烷氧基;R 1 , R 2 , R 3 and R 4 are each independently H, OH, (C 1 -C 6 )-alkyl or (C 1 -C 6 )-alkoxy;
R5、R6和R7彼此独立地各自是H或(C1-C6)-烷基;R 5 , R 6 and R 7 are each independently H or (C 1 -C 6 )-alkyl;
X是直链或支链(C1-C8)-烷基或直链或支链(C2-C8)-烯基;X is a linear or branched (C 1 -C 8 )-alkyl group or a linear or branched (C 2 -C 8 )-alkenyl group;
Y选自-(CH2)m-NH2、-(CH2)n-NH-(CH2)o-NH2、-(CH2)p-NH-(CH2)q-NH-(CH2)r-NH2、NH-(CH2)m-NH2、NH-(CH2)n-NH-(CH2)o-NH2和NH-(CH2)p-NH-(CH2)q-NH-(CH2)r-NH2,其中m、n、o、p、q和r各自是1至10之间的整数,或酪胺酯;且Y is selected from -( CH2 ) m - NH2 , -( CH2 ) n -NH-( CH2 ) o - NH2 , -( CH2 ) p -NH-( CH2 ) q -NH-( CH2 ) r - NH2 , NH- (CH2) m - NH2 , NH-( CH2 ) n -NH-( CH2 ) o - NH2 , and NH-( CH2 ) p -NH-( CH2 ) q -NH-( CH2 ) r - NH2 , wherein m, n, o, p, q and r are each an integer between 1 and 10, or tyramine ester;
Z是直链或支链(C1-C8)-烷基或直链或支链(C2-C8)-烯基,Z is a linear or branched (C 1 -C 8 )-alkyl group or a linear or branched (C 2 -C 8 )-alkenyl group,
或其对映异构体、非对映异构体、立体异构体或盐。or an enantiomer, diastereomer, stereoisomer or salt thereof.
在一个进一步优选的实施方案中,本发明涉及通式(I)的化合物,其中:In a further preferred embodiment, the present invention relates to compounds of general formula (I), wherein:
R1、R2、R3和R4中的两个是OH;且R1、R2、R3和R4中的剩余基团彼此独立地各自是H、OH、(C1-C6)-烷基或(C1-C6)-烷氧基;Two of R 1 , R 2 , R 3 and R 4 are OH; and the remaining groups of R 1 , R 2 , R 3 and R 4 are each independently H, OH, (C 1 -C 6 )-alkyl or (C 1 -C 6 )-alkoxy;
R5、R6和R7各自是H;R 5 , R 6 and R 7 are each H;
X是直链(C2-C8)-烯基;X is a straight chain (C 2 -C 8 )-alkenyl group;
Y选自-(CH2)m-NH2、-(CH2)n-NH-(CH2)o-NH2、-(CH2)p-NH-(CH2)q-NH-(CH2)r-NH2、NH-(CH2)m-NH2、NH-(CH2)n-NH-(CH2)o-NH2和NH-(CH2)p-NH-(CH2)q-NH-(CH2)r-NH2,其中m、n、o、p、q和r各自是1至10之间的整数,或酪胺酯;且Y is selected from -( CH2 ) m - NH2 , -( CH2 ) n -NH-( CH2 ) o - NH2 , -( CH2 ) p -NH-( CH2 ) q -NH-( CH2 ) r - NH2 , NH- (CH2) m - NH2 , NH-( CH2 ) n -NH-( CH2 ) o - NH2 , and NH-( CH2 ) p -NH-( CH2 ) q -NH-( CH2 ) r - NH2 , wherein m, n, o, p, q and r are each an integer between 1 and 10, or tyramine ester;
Z是直链或支链(C1-C8)-烷基或直链或支链(C2-C8)-烯基,Z is a linear or branched (C 1 -C 8 )-alkyl group or a linear or branched (C 2 -C 8 )-alkenyl group,
或其对映异构体、非对映异构体、立体异构体或盐。or an enantiomer, diastereomer, stereoisomer or salt thereof.
在一个进一步优选的实施方案中,本发明涉及通式(I)的化合物,其中:In a further preferred embodiment, the present invention relates to compounds of general formula (I), wherein:
R1和R4是H; R1 and R4 are H;
R2和R3是OH, R2 and R3 are OH,
R5、R6和R7各自是H;R 5 , R 6 and R 7 are each H;
X是-CH=CH-;X is -CH=CH-;
Y选自-(CH2)m-NH2、-(CH2)n-NH-(CH2)o-NH2、-(CH2)p-NH-(CH2)q-NH-(CH2)r-NH2、NH-(CH2)m-NH2、NH-(CH2)n-NH-(CH2)o-NH2和NH-(CH2)p-NH-(CH2)q-NH-(CH2)r-NH2,其中m、n、o、p、q和r各自是1至10之间的整数,或酪胺酯;且Y is selected from -( CH2 ) m - NH2 , -( CH2 ) n -NH-( CH2 ) o - NH2 , -( CH2 ) p -NH-( CH2 ) q -NH-( CH2 ) r - NH2 , NH- (CH2) m - NH2 , NH-( CH2 ) n -NH-( CH2 ) o - NH2 , and NH-( CH2 ) p -NH-( CH2 ) q -NH-( CH2 ) r - NH2 , wherein m, n, o, p, q and r are each an integer between 1 and 10, or tyramine ester;
Z是直链或支链(C1-C8)-烷基或直链或支链(C2-C8)-烯基,Z is a linear or branched (C 1 -C 8 )-alkyl group or a linear or branched (C 2 -C 8 )-alkenyl group,
或其对映异构体、非对映异构体、立体异构体或盐or its enantiomers, diastereomers, stereoisomers or salts
在一个实施方案中,X是直链(C2-C8)-烯基。In one embodiment, X is straight-chain (C 2 -C 8 )-alkenyl.
在一个实施方案中,X是直链(C2-C6)-烯基。In one embodiment, X is straight-chain (C 2 -C 6 )-alkenyl.
在一个实施方案中,X是直链(C2-C4)-烯基。In one embodiment, X is straight-chain (C 2 -C 4 )-alkenyl.
在一个实施方案中,X是-CH=CH-。In one embodiment, X is -CH=CH-.
在一个实施方案中,Y选自-(CH2)m-NH2、-(CH2)n-NH-(CH2)o-NH2、-(CH2)p-NH-(CH2)q-NH-(CH2)r-NH2,其中m、n、o、p、q和r各自是1至3之间的整数。In one embodiment, Y is selected from -( CH2 ) m - NH2 , -( CH2 ) n -NH-( CH2 ) o - NH2 , -( CH2 ) p -NH-( CH2 ) q -NH-( CH2 ) r - NH2 , wherein m, n, o, p, q and r are each an integer between 1 and 3.
在一个实施方案中,Y选自NH-(CH2)m-NH2、NH-(CH2)n-NH-(CH2)o-NH2和NH-(CH2)p-NH-(CH2)q-NH-(CH2)r-NH2,其中m、n、o、p、q和r各自是1至10之间的整数,或酪胺酯。In one embodiment, Y is selected from NH-( CH2 ) m - NH2 , NH-( CH2 ) n -NH-( CH2 ) o - NH2 and NH-( CH2 ) p -NH-( CH2 ) q -NH-( CH2 ) r - NH2 , wherein m, n, o, p, q and r are each an integer between 1 and 10, or tyramine ester.
在一个实施方案中,Y选自-(CH2)m-NH2、-(CH2)n-NH-(CH2)o-NH2、-(CH2)p-NH-(CH2)q-NH-(CH2)r-NH2,其中m、n、o、p、q和r各自是1。In one embodiment, Y is selected from -( CH2 ) m - NH2 , -( CH2 ) n -NH-( CH2 ) o - NH2 , -( CH2 ) p -NH-( CH2 ) q -NH-( CH2 ) r - NH2 , wherein m, n, o, p, q and r are each 1.
在一个实施方案中,Y选自NH-(CH2)m-NH2、NH-(CH2)n-NH-(CH2)o-NH2和NH-(CH2)p-NH-(CH2)q-NH-(CH2)r-NH2,其中m、n、o、p、q和r各自是1,或酪胺酯。In one embodiment, Y is selected from NH-( CH2 ) m - NH2 , NH-( CH2 ) n -NH-( CH2 ) o - NH2 , and NH-( CH2 ) p -NH-( CH2 ) q -NH-( CH2 ) r - NH2 , wherein m, n, o, p, q and r are each 1, or tyramide.
在一个实施方案中,化合物(I)具有通式(Ia)In one embodiment, compound (I) has the general formula (Ia)
其中R1、R2、R3、R4、R5、R6、R7、X和Z如上面关于式(I)所定义,wherein R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , X and Z are as defined above for formula (I),
或其对映异构体、非对映异构体、立体异构体或盐。or an enantiomer, diastereomer, stereoisomer or salt thereof.
在一个实施方案中,在式(Ia)中的R1、R2、R3和R4中的至少一个是OH;且R1、R2、R3和R4中的剩余基团彼此独立地各自是H、OH、(C1-C6)-烷基或(C1-C6)-烷氧基。优选地,在式(Ia)中,R1和R4是H,且R2和R3是OH。In one embodiment, at least one of R 1 , R 2 , R 3 and R 4 in formula (Ia) is OH; and the remaining groups in R 1 , R 2 , R 3 and R 4 are each independently H, OH, (C 1 -C 6 )-alkyl or (C 1 -C 6 )-alkoxy. Preferably, in formula (Ia), R 1 and R 4 are H, and R 2 and R 3 are OH.
在一个实施方案中,在式(Ia)中的R5和R6都是H。In one embodiment, R 5 and R 6 in formula (Ia) are both H.
在一个实施方案中,在式(Ia)中的R5、R6和R7各自是H。In one embodiment, R 5 , R 6 and R 7 in formula (Ia) are each H.
在一个实施方案中,在式(Ia)中的X是直链(C2-C6)-烯基。In one embodiment, X in formula (Ia) is straight-chain (C 2 -C 6 )-alkenyl.
在一个实施方案中,在式(Ia)中的X是-CH=CH-。In one embodiment, X in formula (Ia) is -CH=CH-.
在一个实施方案中,在式(Ia)中的Z是直链或支链(C1-C8)-烷基。In one embodiment, Z in formula (Ia) is linear or branched (C 1 -C 8 )-alkyl.
在一个实施方案中,化合物(I)具有通式(Ib)In one embodiment, compound (I) has the general formula (Ib)
其中R1、R2、R3、R4、R5、R6和R7、X和Z如上面关于式(I)所定义,wherein R 1 , R 2 , R 3 , R 4 , R 5 , R 6 and R 7 , X and Z are as defined above for formula (I),
或其对映异构体、非对映异构体、立体异构体或盐。or an enantiomer, diastereomer, stereoisomer or salt thereof.
在一个实施方案中,在式(Ib)中的R1、R2、R3和R4中的至少一个是OH;且R1、R2、R3和R4中的剩余基团彼此独立地各自是H、OH、(C1-C6)-烷基或(C1-C6)-烷氧基。优选地,在式(Ib)中,R1和R4是H,且R2和R3是OH。In one embodiment, at least one of R 1 , R 2 , R 3 and R 4 in formula (Ib) is OH; and the remaining groups in R 1 , R 2 , R 3 and R 4 are each independently H, OH, (C 1 -C 6 )-alkyl or (C 1 -C 6 )-alkoxy. Preferably, in formula (Ib), R 1 and R 4 are H, and R 2 and R 3 are OH.
在一个实施方案中,在式(Ib)中的R5和R6都是H。In one embodiment, R 5 and R 6 in formula (Ib) are both H.
在一个实施方案中,在式(Ib)中的R5、R6和R7各自是H。In one embodiment, R 5 , R 6 and R 7 in formula (Ib) are each H.
在一个实施方案中,在式(Ib)中的X是直链(C2-C6)-烯基。In one embodiment, X in formula (Ib) is straight-chain (C 2 -C 6 )-alkenyl.
在一个实施方案中,在式(Ib)中的X是-CH=CH-。In one embodiment, X in formula (Ib) is -CH=CH-.
在一个实施方案中,在式(Ib)中的Z是直链或支链(C1-C8)-烷基。In one embodiment, Z in formula (Ib) is straight-chain or branched (C 1 -C 8 )-alkyl.
在一个实施方案中,化合物(I)具有通式(Ic)In one embodiment, compound (I) has the general formula (Ic)
其中R1、R2、R3、R4、R5、R6和R7、X和Z如上面关于式(I)所定义,wherein R 1 , R 2 , R 3 , R 4 , R 5 , R 6 and R 7 , X and Z are as defined above for formula (I),
或其对映异构体、非对映异构体、立体异构体或盐。or an enantiomer, diastereomer, stereoisomer or salt thereof.
在一个实施方案中,在式(Ic)中的R1、R2、R3和R4中的至少一个是OH;且R1、R2、R3和R4中的剩余基团彼此独立地各自是H、OH、(C1-C6)-烷基或(C1-C6)-烷氧基。优选地,在式(Ic)中,R1和R4是H且R2和R3是OH。In one embodiment, at least one of R 1 , R 2 , R 3 and R 4 in formula (Ic) is OH; and the remaining groups in R 1 , R 2 , R 3 and R 4 are each independently H, OH, (C 1 -C 6 )-alkyl or (C 1 -C 6 )-alkoxy. Preferably, in formula (Ic), R 1 and R 4 are H and R 2 and R 3 are OH.
在一个实施方案中,在式(Ic)中的R5和R6都是H。In one embodiment, R 5 and R 6 in formula (Ic) are both H.
在一个实施方案中,在式(Ic)中的R5、R6和R7各自是H。In one embodiment, R 5 , R 6 and R 7 in formula (Ic) are each H.
在一个实施方案中,在式(Ic)中的X是直链(C2-C6)-烯基。In one embodiment, X in formula (Ic) is straight-chain (C 2 -C 6 )-alkenyl.
在一个实施方案中,在式(Ic)中的X是-CH=CH-。In one embodiment, X in formula (Ic) is -CH=CH-.
在一个实施方案中,在式(Ic)中的Z是直链或支链(C1-C8)-烷基。In one embodiment, Z in formula (Ic) is linear or branched (C 1 -C 8 )-alkyl.
在一个实施方案中,化合物(I)具有通式(Id)In one embodiment, compound (I) has the general formula (Id)
其中R1、R2、R3、R4、R5、R6和R7和Z如上面关于式(I)所定义,wherein R 1 , R 2 , R 3 , R 4 , R 5 , R 6 and R 7 and Z are as defined above for formula (I),
或其对映异构体、非对映异构体、立体异构体或盐。or an enantiomer, diastereomer, stereoisomer or salt thereof.
在一个实施方案中,在式(Id)中的R1、R2、R3和R4中的至少一个是OH;且R1、R2、R3和R4中的剩余基团彼此独立地各自是H、OH、(C1-C6)-烷基或(C1-C6)-烷氧基。优选地,在式(Id)中,R1和R4是H,且R2和R3是OH。In one embodiment, at least one of R 1 , R 2 , R 3 and R 4 in formula (Id) is OH; and the remaining groups in R 1 , R 2 , R 3 and R 4 are each independently H, OH, (C 1 -C 6 )-alkyl or (C 1 -C 6 )-alkoxy. Preferably, in formula (Id), R 1 and R 4 are H, and R 2 and R 3 are OH.
在一个实施方案中,在式(Id)中的R5和R6都是H。In one embodiment, R 5 and R 6 in formula (Id) are both H.
在一个实施方案中,在式(Id)中的R5、R6和R7各自是H。In one embodiment, R 5 , R 6 and R 7 in formula (Id) are each H.
在一个实施方案中,在式(Id)中的X是直链(C2-C6)-烯基。In one embodiment, X in formula (Id) is straight-chain (C 2 -C 6 )-alkenyl.
在一个实施方案中,在式(Id)中的X是-CH=CH-。In one embodiment, X in Formula (Id) is -CH=CH-.
在一个实施方案中,在式(Id)中的Z是直链或支链(C1-C8)-烷基。In one embodiment, Z in formula (Id) is linear or branched (C 1 -C 8 )-alkyl.
在一个实施方案中,在式(I)、(Ia)、(Ib)、(Ic)或(Id)中的R1、R2、R3和R4中的至少一个是OH;且R1、R2、R3和R4中的剩余基团彼此独立地各自是H、OH或(C1-C6)-烷氧基。In one embodiment, at least one of R 1 , R 2 , R 3 and R 4 in formula (I), (Ia), (Ib), (Ic) or (Id) is OH; and the remaining groups in R 1 , R 2 , R 3 and R 4 are each independently H, OH or (C 1 -C 6 )-alkoxy.
在一个实施方案中,在式(I)、(Ia)、(Ib)、(Ic)或(Id)中的R1、R2、R3和R4中的至少两个是OH;且R1、R2、R3和R4中的剩余基团彼此独立地各自是H、OH、(C1-C6)-烷基或(C1-C6)-烷氧基。In one embodiment, at least two of R 1 , R 2 , R 3 and R 4 in formula (I), (Ia), (Ib), (Ic) or (Id) are OH; and the remaining groups of R 1 , R 2 , R 3 and R 4 are each independently H, OH, (C 1 -C 6 )-alkyl or (C 1 -C 6 )-alkoxy.
在一个实施方案中,在式(I)、(Ia)、(Ib)、(Ic)或(Id)中的R1、R2、R3和R4中的至少两个是OH;且R1、R2、R3和R4中的剩余基团彼此独立地各自是H、OH或(C1-C6)-烷氧基。In one embodiment, at least two of R 1 , R 2 , R 3 and R 4 in formula (I), (Ia), (Ib), (Ic) or (Id) are OH; and the remaining groups of R 1 , R 2 , R 3 and R 4 are each independently H, OH or (C 1 -C 6 )-alkoxy.
在一个实施方案中,在式(I)、(Ia)、(Ib)、(Ic)或(Id)中的R1、R2、R3和R4中的两个是OH;且R1、R2、R3和R4中的剩余两个各自是H。优选地,R1和R4是H,且R2和R3是OH。In one embodiment, two of R 1 , R 2 , R 3 and R 4 in formula (I), (Ia), (Ib), (Ic) or (Id) are OH; and the remaining two of R 1 , R 2 , R 3 and R 4 are each H. Preferably, R 1 and R 4 are H, and R 2 and R 3 are OH.
在进一步特别优选的实施方案中,本发明涉及式(II)的化合物In a further particularly preferred embodiment, the invention relates to compounds of formula (II)
其中:in:
R5、R6和R7彼此独立地各自是H或(C1-C6)-烷基;R 5 , R 6 and R 7 are each independently H or (C 1 -C 6 )-alkyl;
且Z是直链或支链(C1-C8)-烷基或直链或支链(C2-C8)-烯基。and Z is a linear or branched (C 1 -C 8 )-alkyl group or a linear or branched (C 2 -C 8 )-alkenyl group.
或其对映异构体、非对映异构体、立体异构体或盐。or an enantiomer, diastereomer, stereoisomer or salt thereof.
在一个实施方案中,X是-CH=CH-,R1是OH,R2、R3和R4是H。在一个实施方案中,X是-CH=CH-,R2是OH,R1、R3和R4是H。在一个实施方案中,X是-CH=CH-,R3是OH,R1、R2和R4是H。在一个实施方案中,X是-CH=CH-,R4是OH,R1、R2和R3是H。In one embodiment, X is -CH=CH-, R1 is OH, R2 , R3 and R4 are H. In one embodiment, X is -CH=CH-, R2 is OH, R1 , R3 and R4 are H. In one embodiment, X is -CH=CH-, R3 is OH, R1, R2 and R4 are H. In one embodiment, X is -CH=CH-, R3 is OH, R1 , R2 and R4 are H. In one embodiment, X is -CH=CH-, R4 is OH, R1 , R2 and R3 are H.
在一个实施方案中,X是-CH=CH-,R1和R4是H,R2是-OCH3且R3是OH。In one embodiment, X is -CH=CH-, R1 and R4 are H, R2 is -OCH3 and R3 is OH.
在一个实施方案中,X是-CH=CH-,R1和R4是H,R2和R3是OH。In one embodiment, X is -CH=CH-, R1 and R4 are H, and R2 and R3 are OH.
在一个实施方案中,X是-CH=CH-,R1是H,R3是OH,R2和R4是-OCH3。In one embodiment, X is -CH=CH-, R1 is H, R3 is OH, R2 and R4 are -OCH3 .
在一个实施方案中,Y是-(CH2)4NH2。在一个实施方案中,Y是-(CH2)3-NH-(CH2)4-NH2。在一个实施方案中,Y是-(CH2)3-NH-(CH2)4-NH2。在一个实施方案中,Y是-(CH2)3-NH-(CH2)4-NH-(CH2)3-NH2。In one embodiment, Y is -(CH 2 ) 4 NH 2 . In one embodiment, Y is -(CH 2 ) 3 -NH-(CH 2 ) 4 -NH 2 . In one embodiment, Y is -(CH 2 ) 3 -NH-(CH 2 ) 4 -NH 2 . In one embodiment, Y is -(CH 2 ) 3 -NH-( CH 2 ) 4 -NH 2 .
在一个实施方案中,R5和R6是H,Z是(C1-C6)-烷基。在一个实施方案中,R5和R6是H,Z是C2-烷基。在一个实施方案中,R5和R6是H,Z是C3-烷基。在一个实施方案中,R5和R6是H,Z是C4-烷基。在一个实施方案中,R5和R6是H,Z是C5-烷基。在一个实施方案中,R5和R6是H,Z是C6-烷基。在一个实施方案中,R5和R6是H,Z是CH2。在一个实施方案中,R5和R6是H,Z是CH2CH2。在一个实施方案中,R5和R6是H,Z是CH(CH3)。在一个实施方案中,R5和R6是H,Z是CH2CH2CH2。在一个实施方案中,R5和R6是H,Z是CH(CH3)CH2。在一个实施方案中,R5和R6是H,Z是CH2CH(CH3)。在一个实施方案中,R5和R6是H,Z是CH(CH2CH3)。在一个实施方案中,R5和R6是H,Z是C(CH3)2。在一个实施方案中,R5和R6是H,Z是CH2CH2CH2CH2。在一个实施方案中,R5和R6是H,Z是CH(CH3)CH2CH2。在一个实施方案中,R5和R6是H,Z是CH2CH(CH3)CH2。在一个实施方案中,R5和R6是H,Z是CH2CH2CH(CH3)。在一个实施方案中,R5和R6是H,Z是C(CH3)2CH2。在一个实施方案中,R5和R6是H,Z是CH2C(CH3)2。在一个实施方案中,R5和R6是H,Z是CH2CH(CH2CH3)。在一个实施方案中,R5和R6是H,Z是CH(CH2CH3)CH2。优选地,在以上实施方案中,其中R5和R6是H,R7也是H。In one embodiment, R 5 and R 6 are H and Z is (C 1 -C 6 )-alkyl. In one embodiment, R 5 and R 6 are H and Z is C 2 -alkyl. In one embodiment, R 5 and R 6 are H and Z is C 3 -alkyl. In one embodiment, R 5 and R 6 are H and Z is C 4 -alkyl. In one embodiment, R 5 and R 6 are H and Z is C 5 -alkyl. In one embodiment, R 5 and R 6 are H and Z is C 6 -alkyl. In one embodiment, R 5 and R 6 are H and Z is CH 2 . In one embodiment, R 5 and R 6 are H and Z is CH 2 CH 2 . In one embodiment, R 5 and R 6 are H and Z is CH(CH 3 ). In one embodiment, R 5 and R 6 are H and Z is CH 2 CH 2 CH 2 . In one embodiment, R 5 and R 6 are H and Z is CH(CH 3 )CH 2 . In one embodiment, R 5 and R 6 are H and Z is CH 2 CH(CH 3 ). In one embodiment, R 5 and R 6 are H and Z is CH(CH 2 CH 3 ). In one embodiment, R 5 and R 6 are H and Z is C(CH 3 ) 2 . In one embodiment, R 5 and R 6 are H and Z is CH 2 CH 2 CH 2 CH 2 . In one embodiment, R 5 and R 6 are H and Z is CH(CH 3 )CH 2 CH 2 . In one embodiment, R 5 and R 6 are H and Z is CH 2 CH(CH 3 )CH 2 . In one embodiment, R 5 and R 6 are H and Z is CH 2 CH(CH 3 )CH 2 . In one embodiment, R 5 and R 6 are H and Z is C(CH 3 ) 2 CH 2 . In one embodiment, R 5 and R 6 are H and Z is CH 2 C(CH 3 ) 2 . In one embodiment, R 5 and R 6 are H and Z is CH 2 CH(CH 2 CH 3 ). In one embodiment, R 5 and R 6 are H and Z is CH(CH 2 CH 3 )CH 2 . Preferably, in the above embodiment, wherein R 5 and R 6 are H, R 7 is also H.
在另一个实施方案中,X是-CH=CH-,R1是OH,R2、R3和R4是H,且Y是-(CH2)4NH2。在一个实施方案中,X是-CH=CH-,R2是OH,R1、R3和R4是H,且Y是-(CH2)4NH2。在一个实施方案中,X是-CH=CH-,R3是OH,R1、R2和R4是H,且Y是-(CH2)4NH2。在一个实施方案中,X是-CH=CH-,R4是OH,R1、R2和R3是H且Y是-(CH2)4NH2。在一个实施方案中,X是-CH=CH-,R1和R4是H,R2是-OCH3,R3是OH,且Y是-(CH2)4NH2。在一个实施方案中,X是-CH=CH-,R1和R4是H,R2和R3是OH,且Y是-(CH2)4NH2。在一个实施方案中,X是-CH=CH-,R1是H,R3是OH,R2和R4是-OCH3,且Y是-(CH2)4NH2。In another embodiment, X is -CH=CH-, R1 is OH, R2 , R3 and R4 are H, and Y is -( CH2 ) 4NH2 . In one embodiment, X is -CH=CH-, R2 is OH, R1 , R3 and R4 are H, and Y is -( CH2 ) 4NH2 . In one embodiment, X is -CH=CH-, R3 is OH, R1 , R2 and R4 are H, and Y is -( CH2 ) 4NH2 . In one embodiment, X is -CH=CH-, R3 is OH, R1 , R2 and R4 are H, and Y is -( CH2 ) 4NH2 . In one embodiment, X is -CH=CH-, R1 and R4 are H, R2 is -OCH3 , R3 is OH, and Y is -( CH2 ) 4NH2 . In one embodiment, X is -CH=CH-, R1 and R4 are H, R2 and R3 are OH, and Y is -( CH2 ) 4NH2 . In one embodiment, X is -CH= CH- , R1 and R4 are H, R2 and R3 are OH , and Y is -( CH2 ) 4NH2 .
在另一个实施方案中,X是-CH=CH-,R1是OH,R2、R3和R4是H,且Y是-(CH2)3-NH-(CH2)4-NH2。在一个实施方案中,X是-CH=CH-,R2是OH,R1、R3和R4是H,且Y是-(CH2)3-NH-(CH2)4-NH2。在一个实施方案中,X是-CH=CH-,R3是OH,R1、R2和R4是H,且Y是-(CH2)3-NH-(CH2)4-NH2。在一个实施方案中,X是-CH=CH-,R4是OH,R1、R2和R3是H,且Y是-(CH2)3-NH-(CH2)4-NH2。在一个实施方案中,X是-CH=CH-,R1和R4是H,R2是-OCH3,R3是OH,且Y是-(CH2)3-NH-(CH2)4-NH2。在一个实施方案中,X是-CH=CH-,R1和R4是H,R2和R3是OH且Y是-(CH2)3-NH-(CH2)4-NH2。在一个实施方案中,X是-CH=CH-,R1是H,R3是OH,R2和R4是-OCH3,且Y是-(CH2)3-NH-(CH2)4-NH2。In another embodiment, X is -CH=CH-, R1 is OH, R2 , R3 and R4 are H, and Y is -( CH2 ) 3 -NH-( CH2 ) 4 - NH2 . In one embodiment, X is -CH=CH-, R2 is OH, R1 , R3 and R4 are H, and Y is -( CH2 ) 3 -NH-( CH2 ) 4 - NH2 . In one embodiment, X is -CH=CH-, R3 is OH, R1 , R2 and R4 are H, and Y is -( CH2 ) 3 -NH-( CH2 ) 4 - NH2 . In one embodiment, X is -CH=CH-, R3 is OH, R1 , R2 and R4 are H, and Y is -( CH2 ) 3 -NH-( CH2 ) 4 - NH2 . In one embodiment, X is -CH=CH-, R1 and R4 are H, R2 is -OCH3 , R3 is OH, and Y is -( CH2 ) 3 -NH-( CH2 ) 4 - NH2 . In one embodiment, X is -CH=CH-, R1 and R4 are H, R2 and R3 are OH, and Y is -( CH2 ) 3 -NH-( CH2 ) 4 - NH2 . In one embodiment, X is -CH=CH-, R1 and R4 are H, R2 and R3 are OH, and Y is -( CH2 ) 3 - NH-( CH2 ) 4 - NH2 .
在另一个实施方案中,X是-CH=CH-,R1是OH,R2、R3和R4是H,且Y是-(CH2)3-NH-(CH2)4-NH-(CH2)3-NH2。在一个实施方案中,X是-CH=CH-,R2是OH,R1、R3和R4是H,且Y是-(CH2)3-NH-(CH2)4-NH-(CH2)3-NH2。在一个实施方案中,X是-CH=CH-,R3是OH,R1、R2和R4是H,且Y是-(CH2)3-NH-(CH2)4-NH-(CH2)3-NH2。在一个实施方案中,X是-CH=CH-,R4是OH,R1、R2和R3是H,且Y是-(CH2)3-NH-(CH2)4-NH-(CH2)3-NH2。在一个实施方案中,X是-CH=CH-,R1和R4是H,R2是-OCH3,R3是OH,且Y是-(CH2)3-NH-(CH2)4-NH-(CH2)3-NH2。在一个实施方案中,X是-CH=CH-,R1和R4是H,R2和R3是OH,且Y是-(CH2)3-NH-(CH2)4-NH-(CH2)3-NH2。在一个实施方案中,X是-CH=CH-,R1是H,R3是OH,R2和R4是-OCH3,且Y是-(CH2)3-NH-(CH2)4-NH-(CH2)3-NH2。In another embodiment, X is -CH=CH-, R1 is OH, R2 , R3 and R4 are H, and Y is -( CH2 ) 3 -NH-( CH2 ) 4 -NH-( CH2 ) 3 - NH2 . In one embodiment, X is -CH=CH-, R2 is OH, R1 , R3 and R4 are H, and Y is -( CH2 ) 3 -NH-( CH2 ) 4 -NH-( CH2 ) 3 - NH2 . In one embodiment, X is -CH=CH-, R3 is OH, R1 , R3 and R4 are H, and Y is -( CH2 ) 3 -NH-( CH2 ) 4 -NH-( CH2 ) 3 - NH2 . In one embodiment, X is -CH=CH-, R 4 is OH, R 1 , R 2 and R 3 are H, and Y is -(CH 2 ) 3 -NH-(CH 2 ) 4 -NH-(CH 2 ) 3 -NH 2. In one embodiment, X is -CH=CH-, R 1 and R 4 are H, R 2 is -OCH 3 , R 3 is OH, and Y is -(CH 2 ) 3 -NH-(CH 2 ) 4 -NH-(CH 2 ) 3 -NH 2. In one embodiment, X is -CH=CH-, R 1 and R 4 are H, R 2 and R 3 are OH, and Y is -(CH 2 ) 3 -NH-(CH 2 ) 4 -NH-(CH 2 ) 3 -NH 2 . In one embodiment, X is -CH=CH-, R1 is H, R3 is OH, R2 and R4 are -OCH3 , and Y is -( CH2 ) 3 -NH-( CH2 ) 4 -NH-( CH2 ) 3 - NH2 .
在另一个特别优选的实施方案中,所述化合物具有通式(I)或其对映异构体、非对映异构体、立体异构体或盐,其中X是-CH=CH-,R1是OH,R2、R3和R4是H,Y是-(CH2)4NH2,R5、R6和R7是H,且Z是(C1-C6)-烷基。在另一个特别优选的实施方案中,X是-CH=CH-,R2是OH,R1、R3和R4是H,Y是-(CH2)4NH2,R5、R6和R7是H,且Z是(C1-C6)-烷基。在另一个特别优选的实施方案中,X是-CH=CH-,R3是OH,R1、R2和R4是H,Y是-(CH2)4NH2,R5、R6和R7是H,且Z是(C1-C6)-烷基。在另一个特别优选的实施方案中,X是-CH=CH-,R4是OH,R1、R2和R3是H,Y是-(CH2)4NH2,R5、R6和R7是H,且Z是(C1-C6)-烷基。在另一个特别优选的实施方案中,X是-CH=CH-,R1和R4是H,R2是-OCH3,R3是OH,Y是-(CH2)4NH2,R5、R6和R7是H,且Z是(C1-C6)-烷基。在另一个特别优选的实施方案中,X是-CH=CH-,R1和R4是H,R2和R3是OH,Y是-(CH2)4NH2,R5、R6和R7是H,且Z是(C1-C6)-烷基。在另一个特别优选的实施方案中,X是-CH=CH-,R1是H,R3是OH,R2和R4是-OCH3,Y是-(CH2)4NH2,R5、R6和R7是H,且Z是(C1-C6)-烷基。In another particularly preferred embodiment, the compound has the general formula (I) or an enantiomer, diastereomer, stereoisomer or salt thereof, wherein X is -CH=CH-, R1 is OH, R2 , R3 and R4 are H, Y is -( CH2 ) 4NH2 , R5 , R6 and R7 are H, and Z is ( C1 - C6 )-alkyl. In another particularly preferred embodiment, X is -CH =CH-, R2 is OH, R1 , R3 and R4 are H, Y is -( CH2 ) 4NH2 , R5 , R6 and R7 are H, and Z is ( C1 - C6 )-alkyl. In another particularly preferred embodiment, X is -CH=CH-, R3 is OH, R1 , R2 and R4 are H, Y is -( CH2 ) 4NH2 , R5 , R6 and R7 are H, and Z is ( C1 - C6 )-alkyl. In another particularly preferred embodiment, X is -CH =CH-, R4 is OH, R1 , R2 and R3 are H, Y is -( CH2 ) 4NH2 , R5 , R6 and R7 are H, and Z is ( C1 - C6 )-alkyl. In another particularly preferred embodiment, X is -CH=CH-, R1 and R4 are H, R2 is -OCH3 , R3 is OH, Y is -( CH2 ) 4NH2 , R5 , R6 and R7 are H, and Z is ( C1 - C6 )-alkyl. In another particularly preferred embodiment, X is -CH =CH-, R1 and R4 are H, R2 and R3 are OH, Y is -( CH2 ) 4NH2 , R5 , R6 and R7 are H, and Z is ( C1 - C6 )-alkyl. In another particularly preferred embodiment, X is -CH=CH-, R1 is H, R3 is OH, R2 and R4 are -OCH3 , Y is -( CH2 ) 4NH2 , R5 , R6 and R7 are H, and Z is ( C1 - C6 )-alkyl.
在另一个特别优选的实施方案中,所述化合物具有通式(I)或其对映异构体、非对映异构体、立体异构体或盐,其中X是-CH=CH-,R1是OH,R2、R3和R4是H,Y是-(CH2)3-NH-(CH2)4-NH2,R5、R6和R7是H,且Z是(C1-C6)-烷基。在另一个特别优选的实施方案中,X是-CH=CH-,R2是OH,R1、R3和R4是H,Y是-(CH2)3-NH-(CH2)4-NH2,R5、R6和R7是H,且Z是(C1-C6)-烷基。在另一个特别优选的实施方案中,X是-CH=CH-,R3是OH,R1、R2和R4是H,Y是-(CH2)3-NH-(CH2)4-NH2,R5、R6和R7是H,且Z是(C1-C6)-烷基。在另一个特别优选的实施方案中,X是-CH=CH-,R4是OH,R1、R2和R3是H,Y是-(CH2)3-NH-(CH2)4-NH2,R5、R6和R7是H,且Z是(C1-C6)-烷基。在另一个特别优选的实施方案中,X是-CH=CH-,R1和R4是H,R2是-OCH3,R3是OH,Y是-(CH2)3-NH-(CH2)4-NH2,R5、R6和R7是H,且Z是(C1-C6)-烷基。在另一个特别优选的实施方案中,X是-CH=CH-,R1和R4是H,R2和R3是OH,Y是-(CH2)3-NH-(CH2)4-NH2,R5、R6和R7是H,且Z是(C1-C6)-烷基。在另一个特别优选的实施方案中,X是-CH=CH-,R1是H,R3是OH,R2和R4是-OCH3,Y是-(CH2)3-NH-(CH2)4-NH2,R5、R6和R7是H,且Z是(C1-C6)-烷基。In another particularly preferred embodiment, the compound has the general formula (I) or an enantiomer, diastereomer, stereoisomer or salt thereof, wherein X is -CH=CH-, R1 is OH, R2 , R3 and R4 are H, Y is -( CH2 ) 3 -NH-( CH2 ) 4 - NH2 , R5 , R6 and R7 are H, and Z is ( C1 - C6 )-alkyl. In another particularly preferred embodiment, X is -CH=CH-, R2 is OH, R1 , R3 and R4 are H, Y is -( CH2 ) 3 -NH-( CH2 ) 4 - NH2 , R5 , R6 and R7 are H, and Z is ( C1 - C6 )-alkyl. In another particularly preferred embodiment, X is -CH=CH-, R3 is OH, R1 , R2 and R4 are H, Y is -( CH2 ) 3 -NH-( CH2 ) 4 - NH2 , R5, R6 and R7 are H, and Z is ( C1 - C6 )-alkyl. In another particularly preferred embodiment, X is -CH=CH-, R4 is OH, R1 , R2 and R3 are H, Y is -( CH2 ) 3 -NH-( CH2 ) 4 - NH2 , R5 , R6 and R7 are H, and Z is ( C1 - C6 )-alkyl. In another particularly preferred embodiment, X is -CH=CH-, R1 and R4 are H, R2 is -OCH3 , R3 is OH, Y is -( CH2 ) 3 -NH-( CH2 ) 4 - NH2 , R5 , R6 and R7 are H, and Z is ( C1 - C6 )-alkyl. In another particularly preferred embodiment, X is -CH=CH-, R1 and R4 are H, R2 and R3 are OH, Y is -( CH2 ) 3 -NH-( CH2 ) 4 - NH2 , R5, R6 and R7 are H, and Z is ( C1 - C6 )-alkyl. In another particularly preferred embodiment, X is -CH=CH-, R1 is H, R3 is OH, R2 and R4 are -OCH3 , Y is -( CH2 ) 3 -NH-( CH2 ) 4 - NH2 , R5 , R6 and R7 are H, and Z is ( C1 - C6 )-alkyl.
在另一个特别优选的实施方案中,所述化合物具有通式(I)或其对映异构体、非对映异构体、立体异构体或盐,其中X是-CH=CH-,R1是OH,R2、R3和R4是H,Y是-(CH2)3-NH-(CH2)4-NH-(CH2)3-NH2,R5、R6和R7是H,且Z是(C1-C6)-烷基。在另一个特别优选的实施方案中,X是-CH=CH-,R2是OH,R1、R3和R4是H,Y是-(CH2)3-NH-(CH2)4-NH-(CH2)3-NH2,R5、R6和R7是H,且Z是(C1-C6)-烷基。在另一个特别优选的实施方案中,X是-CH=CH-,R3是OH,R1、R2和R4是H,Y是-(CH2)3-NH-(CH2)4-NH-(CH2)3-NH2,R5、R6和R7是H,且Z是(C1-C6)-烷基。在另一个特别优选的实施方案中,X是-CH=CH-,R4是OH,R1、R2和R3是H,Y是-(CH2)3-NH-(CH2)4-NH-(CH2)3-NH2,R5、R6和R7是H,且Z是(C1-C6)-烷基。在另一个特别优选的实施方案中,X是-CH=CH-,R1和R4是H,R2是-OCH3,R3是OH,Y是-(CH2)3-NH-(CH2)4-NH-(CH2)3-NH2,R5、R6和R7是H,且Z是(C1-C6)-烷基。在另一个特别优选的实施方案中,X是-CH=CH-,R1和R4是H,R2和R3是OH,Y是-(CH2)3-NH-(CH2)4-NH-(CH2)3-NH2,R5、R6和R7是H,且Z是(C1-C6)-烷基。在另一个特别优选的实施方案中,X是-CH=CH-,R1是H,R3是OH,R2和R4是-OCH3,Y是-(CH2)3-NH-(CH2)4-NH-(CH2)3-NH2,R5、R6和R7是H,且Z是(C1-C6)-烷基。In another particularly preferred embodiment, the compound has the general formula (I) or an enantiomer, diastereomer, stereoisomer or salt thereof, wherein X is -CH=CH-, R1 is OH, R2 , R3 and R4 are H, Y is -( CH2 ) 3 -NH-( CH2 ) 4 -NH-( CH2 ) 3 - NH2 , R5 , R6 and R7 are H, and Z is ( C1 - C6 )-alkyl. In another particularly preferred embodiment, X is -CH=CH-, R2 is OH, R1, R3 and R4 are H, Y is -( CH2 ) 3 -NH-( CH2 ) 4 -NH-( CH2 ) 3 - NH2 , R5 , R6 and R7 are H, and Z is ( C1 - C6 )-alkyl. In another particularly preferred embodiment, X is -CH=CH-, R3 is OH, R1 , R2 and R4 are H, Y is -( CH2 ) 3 -NH-( CH2 ) 4 -NH-( CH2 ) 3 - NH2 , R5 , R6 and R7 are H, and Z is ( C1 - C6 )-alkyl. In another particularly preferred embodiment, X is -CH=CH-, R4 is OH, R1 , R2 and R3 are H, Y is -( CH2 ) 3 -NH-( CH2 ) 4 -NH-( CH2 ) 3 - NH2 , R5 , R6 and R7 are H, and Z is ( C1 - C6 )-alkyl. In another particularly preferred embodiment, X is -CH=CH-, R1 and R4 are H, R2 is -OCH3 , R3 is OH, Y is -( CH2 ) 3 -NH-( CH2 ) 4 -NH-( CH2 ) 3 - NH2 , R5 , R6 and R7 are H, and Z is ( C1 - C6 )-alkyl. In another particularly preferred embodiment, X is -CH=CH-, R1 and R4 are H, R2 and R3 are OH, Y is -( CH2 ) 3 -NH-( CH2 ) 4 -NH-( CH2 ) 3 - NH2 , R5 , R6 and R7 are H, and Z is ( C1 - C6 )-alkyl. In another particularly preferred embodiment, X is -CH=CH-, R1 is H, R3 is OH, R2 and R4 are -OCH3 , Y is -( CH2 ) 3 -NH-( CH2 ) 4 -NH-( CH2 ) 3 - NH2 , R5 , R6 and R7 are H, and Z is ( C1 - C6 )-alkyl.
在另一个特别优选的实施方案中,所述化合物具有通式(I)或其对映异构体、非对映异构体、立体异构体或盐,其中X是-CH=CH-,R1是OH,R2、R3和R4是H,Y是-(CH2)4NH2,R5、R6和R7是H,且Z是C3-烷基,其中所述C3-烷基选自CH2CH2CH2、CH(CH3)CH2、CH2CH(CH3)、CH(CH2CH3)和C(CH3)2。在另一个特别优选的实施方案中,X是-CH=CH-,R2是OH,R1、R3和R4是H,Y是-(CH2)4NH2,R5、R6和R7是H,且Z是C3-烷基,其中所述C3-烷基选自CH2CH2CH2、CH(CH3)CH2、CH2CH(CH3)、CH(CH2CH3)和C(CH3)2。在另一个特别优选的实施方案中,X是-CH=CH-,R3是OH,R1、R2和R4是H,Y是-(CH2)4NH2,R5、R6和R7是H,且Z是C3-烷基,其中所述C3-烷基选自CH2CH2CH2、CH(CH3)CH2、CH2CH(CH3)、CH(CH2CH3)和C(CH3)2。在另一个特别优选的实施方案中,X是-CH=CH-,R4是OH,R1、R2和R3是H,Y是-(CH2)4NH2,R5、R6和R7是H,且Z是C3-烷基,其中所述C3-烷基选自CH2CH2CH2、CH(CH3)CH2、CH2CH(CH3)、CH(CH2CH3)和C(CH3)2。在另一个特别优选的实施方案中,X是-CH=CH-,R1和R4是H,R2是-OCH3,R3是OH,Y是-(CH2)4NH2,R5、R6和R7是H,且Z是C3-烷基,其中所述C3-烷基选自CH2CH2CH2、CH(CH3)CH2、CH2CH(CH3)、CH(CH2CH3)和C(CH3)2。在另一个特别优选的实施方案中,X是-CH=CH-,R1和R4是H,R2和R3是OH,Y是-(CH2)4NH2,R5、R6和R7是H,且Z是C3-烷基,其中所述C3-烷基选自CH2CH2CH2、CH(CH3)CH2、CH2CH(CH3)、CH(CH2CH3)和C(CH3)2。在另一个特别优选的实施方案中,X是-CH=CH-,R1是H,R3是OH,R2和R4是-OCH3,Y是-(CH2)4NH2,R5、R6和R7是H,且Z是C3-烷基,其中所述C3-烷基选自CH2CH2CH2、CH(CH3)CH2、CH2CH(CH3)、CH(CH2CH3)和C(CH3)2。In another particularly preferred embodiment, the compound has the general formula (I) or an enantiomer, diastereomer, stereoisomer or salt thereof, wherein X is -CH=CH-, R1 is OH, R2 , R3 and R4 are H, Y is -( CH2 ) 4NH2 , R5 , R6 and R7 are H, and Z is C3 -alkyl, wherein the C3 -alkyl is selected from CH2CH2CH2 , CH( CH3 ) CH2 , CH2CH ( CH3 ), CH( CH2CH3 ) and C( CH3 ) 2 . In another particularly preferred embodiment, X is -CH=CH-, R2 is OH, R1 , R3 and R4 are H, Y is -( CH2 ) 4NH2 , R5 , R6 and R7 are H, and Z is C3 -alkyl, wherein the C3 -alkyl is selected from CH2CH2CH2 , CH( CH3 ) CH2 , CH2CH (CH3 ) , CH( CH2CH3 ) and C ( CH3 ) 2 . In another particularly preferred embodiment, X is -CH=CH-, R3 is OH, R1 , R2 and R4 are H, Y is -( CH2 ) 4NH2 , R5 , R6 and R7 are H, and Z is C3 -alkyl, wherein the C3 -alkyl is selected from CH2CH2CH2 , CH( CH3 ) CH2 , CH2CH (CH3 ) , CH( CH2CH3 ) and C ( CH3 ) 2 . In another particularly preferred embodiment, X is -CH=CH-, R4 is OH, R1 , R2 and R3 are H, Y is -( CH2 ) 4NH2 , R5 , R6 and R7 are H, and Z is C3 -alkyl, wherein the C3 -alkyl is selected from CH2CH2CH2 , CH( CH3 ) CH2 , CH2CH (CH3 ) , CH( CH2CH3 ) and C ( CH3 ) 2 . In another particularly preferred embodiment, X is -CH=CH-, R1 and R4 are H, R2 is -OCH3 , R3 is OH, Y is -( CH2 ) 4NH2 , R5 , R6 and R7 are H , and Z is C3 -alkyl, wherein the C3 -alkyl is selected from CH2CH2CH2 , CH( CH3 ) CH2 , CH2CH ( CH3 ), CH( CH2CH3 ) and C( CH3 ) 2 . In another particularly preferred embodiment, X is -CH=CH-, R1 and R4 are H, R2 and R3 are OH, Y is -( CH2 ) 4NH2 , R5 , R6 and R7 are H, and Z is C3 -alkyl, wherein the C3 -alkyl is selected from CH2CH2CH2 , CH( CH3 ) CH2 , CH2CH (CH3 ) , CH( CH2CH3 ) and C ( CH3 ) 2 . In another particularly preferred embodiment, X is -CH=CH-, R1 is H, R3 is OH, R2 and R4 are -OCH3 , Y is -( CH2 ) 4NH2 , R5 , R6 and R7 are H , and Z is C3 -alkyl, wherein the C3 -alkyl is selected from CH2CH2CH2 , CH( CH3 ) CH2 , CH2CH ( CH3 ), CH( CH2CH3 ) and C( CH3 ) 2 .
在另一个特别优选的实施方案中,所述化合物具有通式(I)或其对映异构体、非对映异构体、立体异构体或盐,其中X是-CH=CH-,R1是OH,R2、R3和R4是H,Y是-(CH2)3-NH-(CH2)4-NH2,R5、R6和R7是H,且Z是C3-烷基,其中所述C3-烷基选自CH2CH2CH2、CH(CH3)CH2、CH2CH(CH3)、CH(CH2CH3)和C(CH3)2。在另一个特别优选的实施方案中,X是-CH=CH-,R2是OH,R1、R3和R4是H,Y是-(CH2)3-NH-(CH2)4-NH2,R5、R6和R7是H,且Z是C3-烷基,其中所述C3-烷基选自CH2CH2CH2、CH(CH3)CH2、CH2CH(CH3)、CH(CH2CH3)和C(CH3)2。在另一个特别优选的实施方案中,X是-CH=CH-,R3是OH,R1、R2和R4是H,Y是-(CH2)3-NH-(CH2)4-NH2,R5、R6和R7是H,且Z是C3-烷基,其中所述C3-烷基选自CH2CH2CH2、CH(CH3)CH2、CH2CH(CH3)、CH(CH2CH3)和C(CH3)2。在另一个特别优选的实施方案中,X是-CH=CH-,R4是OH,R1、R2和R3是H,Y是-(CH2)3-NH-(CH2)4-NH2,R5、R6和R7是H,且Z是C3-烷基,其中所述C3-烷基选自CH2CH2CH2、CH(CH3)CH2、CH2CH(CH3)、CH(CH2CH3)和C(CH3)2。在另一个特别优选的实施方案中,X是-CH=CH-,R1和R4是H,R2是-OCH3,R3是OH,Y是-(CH2)3-NH-(CH2)4-NH2,R5、R6和R7是H,且Z是C3-烷基,其中所述C3-烷基选自CH2CH2CH2、CH(CH3)CH2、CH2CH(CH3)、CH(CH2CH3)和C(CH3)2。在另一个特别优选的实施方案中,X是-CH=CH-,R1和R4是H,R2和R3是OH,Y是-(CH2)3-NH-(CH2)4-NH2,R5、R6和R7是H,且Z是C3-烷基,其中所述C3-烷基选自CH2CH2CH2、CH(CH3)CH2、CH2CH(CH3)、CH(CH2CH3)和C(CH3)2。在另一个特别优选的实施方案中,X是-CH=CH-,R1是H,R3是OH,R2和R4是-OCH3,Y是-(CH2)3-NH-(CH2)4-NH2,R5、R6和R7是H,且Z是C3-烷基,其中所述C3-烷基选自CH2CH2CH2、CH(CH3)CH2、CH2CH(CH3)、CH(CH2CH3)和C(CH3)2。In another particularly preferred embodiment, the compound has the general formula (I) or an enantiomer, diastereomer, stereoisomer or salt thereof, wherein X is -CH=CH-, R1 is OH, R2 , R3 and R4 are H, Y is -( CH2 ) 3 -NH-( CH2 ) 4 - NH2 , R5 , R6 and R7 are H, and Z is C3 -alkyl, wherein the C3 -alkyl is selected from CH2CH2CH2 , CH( CH3 ) CH2 , CH2CH ( CH3 ) , CH ( CH2CH3 ) and C( CH3 ) 2 . In another particularly preferred embodiment, X is -CH=CH-, R2 is OH, R1 , R3 and R4 are H, Y is -( CH2 ) 3 -NH-( CH2 ) 4 - NH2 , R5, R6 and R7 are H, and Z is C3 -alkyl, wherein the C3 -alkyl is selected from CH2CH2CH2 , CH( CH3 ) CH2 , CH2CH ( CH3 ), CH (CH2CH3 ) and C( CH3 ) 2 . In another particularly preferred embodiment, X is -CH=CH-, R3 is OH, R1 , R2 and R4 are H, Y is -( CH2 ) 3 -NH-( CH2 ) 4 - NH2 , R5, R6 and R7 are H, and Z is C3 -alkyl, wherein the C3 -alkyl is selected from CH2CH2CH2 , CH( CH3 ) CH2 , CH2CH ( CH3 ), CH (CH2CH3 ) and C( CH3 ) 2 . In another particularly preferred embodiment, X is -CH=CH-, R4 is OH, R1 , R2 and R3 are H, Y is -( CH2 ) 3 -NH-( CH2 ) 4 - NH2 , R5, R6 and R7 are H, and Z is C3 -alkyl, wherein the C3 -alkyl is selected from CH2CH2CH2 , CH( CH3 ) CH2 , CH2CH ( CH3 ), CH (CH2CH3 ) and C( CH3 ) 2 . In another particularly preferred embodiment, X is -CH=CH-, R1 and R4 are H, R2 is -OCH3 , R3 is OH, Y is -( CH2 ) 3 -NH-( CH2 ) 4 - NH2 , R5 , R6 and R7 are H, and Z is C3 -alkyl, wherein the C3 -alkyl is selected from CH2CH2CH2 , CH( CH3 ) CH2 , CH2CH ( CH3 ), CH ( CH2CH3 ) and C( CH3 ) 2 . In another particularly preferred embodiment, X is -CH=CH-, R1 and R4 are H, R2 and R3 are OH, Y is -( CH2 ) 3 -NH-( CH2 ) 4 - NH2 , R5, R6 and R7 are H, and Z is C3 -alkyl, wherein the C3 -alkyl is selected from CH2CH2CH2 , CH( CH3 ) CH2 , CH2CH ( CH3 ), CH (CH2CH3 ) and C( CH3 ) 2 . In another particularly preferred embodiment, X is -CH=CH-, R1 is H, R3 is OH, R2 and R4 are -OCH3 , Y is -( CH2 ) 3 -NH-( CH2 ) 4 - NH2 , R5 , R6 and R7 are H, and Z is C3 -alkyl, wherein the C3 -alkyl is selected from CH2CH2CH2 , CH( CH3 ) CH2 , CH2CH ( CH3 ), CH ( CH2CH3 ) and C( CH3 ) 2 .
在另一个特别优选的实施方案中,所述化合物具有通式(I)或其对映异构体、非对映异构体、立体异构体或盐,其中X是-CH=CH-,R1是OH,R2、R3和R4是H,Y是-(CH2)3-NH-(CH2)4-NH-(CH2)3-NH2,R5、R6和R7是H,且Z是C3-烷基,其中所述C3-烷基选自CH2CH2CH2、CH(CH3)CH2、CH2CH(CH3)、CH(CH2CH3)和C(CH3)2。在另一个特别优选的实施方案中,X是-CH=CH-,R2是OH,R1、R3和R4是H,Y是-(CH2)3-NH-(CH2)4-NH-(CH2)3-NH2,R5、R6和R7是H,且Z是C3-烷基,其中所述C3-烷基选自CH2CH2CH2、CH(CH3)CH2、CH2CH(CH3)、CH(CH2CH3)和C(CH3)2。在另一个特别优选的实施方案中,X是-CH=CH-,R3是OH,R1、R2和R4是H,Y是-(CH2)3-NH-(CH2)4-NH-(CH2)3-NH2,R5、R6和R7是H,且Z是C3-烷基,其中所述C3-烷基选自CH2CH2CH2、CH(CH3)CH2、CH2CH(CH3)、CH(CH2CH3)和C(CH3)2。在另一个特别优选的实施方案中,X是-CH=CH-,R4是OH,R1、R2和R3是H,Y是-(CH2)3-NH-(CH2)4-NH-(CH2)3-NH2,R5、R6和R7是H,且Z是C3-烷基,其中所述C3-烷基选自CH2CH2CH2、CH(CH3)CH2、CH2CH(CH3)、CH(CH2CH3)和C(CH3)2。在另一个特别优选的实施方案中,X是-CH=CH-,R1和R4是H,R2是-OCH3且R3是OH,Y是-(CH2)3-NH-(CH2)4-NH-(CH2)3-NH2,R5、R6和R7是H,且Z是C3-烷基,其中所述C3-烷基选自CH2CH2CH2、CH(CH3)CH2、CH2CH(CH3)、CH(CH2CH3)和C(CH3)2。在另一个特别优选的实施方案中,X是-CH=CH-,R1和R4是H,R2和R3是OH,Y是-(CH2)3-NH-(CH2)4-NH-(CH2)3-NH2,R5、R6和R7是H,且Z是C3-烷基,其中所述C3-烷基选自CH2CH2CH2、CH(CH3)CH2、CH2CH(CH3)、CH(CH2CH3)和C(CH3)2。在另一个特别优选的实施方案中,X是-CH=CH-,R1是H,R3是OH,R2和R4是-OCH3,Y是-(CH2)3-NH-(CH2)4-NH-(CH2)3-NH2,R5、R6和R7是H,且Z是C3-烷基,其中所述C3-烷基选自CH2CH2CH2、CH(CH3)CH2、CH2CH(CH3)、CH(CH2CH3)和C(CH3)2。In another particularly preferred embodiment, the compound has the general formula (I) or an enantiomer, diastereomer, stereoisomer or salt thereof, wherein X is -CH=CH-, R1 is OH, R2 , R3 and R4 are H, Y is -( CH2 ) 3 -NH-( CH2 ) 4 -NH-( CH2 ) 3 - NH2 , R5 , R6 and R7 are H, and Z is C3 -alkyl, wherein the C3 -alkyl is selected from CH2CH2CH2 , CH( CH3 ) CH2 , CH2CH ( CH3 ), CH ( CH2CH3 ) and C( CH3 ) 2 . In another particularly preferred embodiment, X is -CH=CH-, R2 is OH, R1 , R3 and R4 are H, Y is -( CH2 ) 3 -NH-( CH2 ) 4 -NH-( CH2 ) 3 - NH2 , R5 , R6 and R7 are H, and Z is C3 -alkyl, wherein the C3 -alkyl is selected from CH2CH2CH2 , CH( CH3 ) CH2 , CH2CH (CH3 ) , CH ( CH2CH3 ) and C( CH3 ) 2 . In another particularly preferred embodiment, X is -CH=CH-, R3 is OH, R1 , R2 and R4 are H, Y is -( CH2 ) 3 -NH-( CH2 ) 4 -NH-( CH2 ) 3 - NH2 , R5 , R6 and R7 are H, and Z is C3 -alkyl, wherein the C3 -alkyl is selected from CH2CH2CH2 , CH( CH3 ) CH2 , CH2CH (CH3 ) , CH ( CH2CH3 ) and C( CH3 ) 2 . In another particularly preferred embodiment, X is -CH=CH-, R4 is OH, R1 , R2 and R3 are H, Y is -( CH2 ) 3 -NH-( CH2 ) 4 -NH-( CH2 ) 3 - NH2 , R5 , R6 and R7 are H, and Z is C3 -alkyl, wherein the C3 -alkyl is selected from CH2CH2CH2 , CH( CH3 ) CH2 , CH2CH (CH3 ) , CH ( CH2CH3 ) and C( CH3 ) 2 . In another particularly preferred embodiment, X is -CH=CH-, R1 and R4 are H, R2 is -OCH3 and R3 is OH, Y is -( CH2 ) 3 -NH-( CH2 ) 4 -NH-( CH2 ) 3 - NH2 , R5 , R6 and R7 are H, and Z is C3 -alkyl, wherein the C3 -alkyl is selected from CH2CH2CH2 , CH( CH3 ) CH2 , CH2CH ( CH3 ), CH( CH2CH3 ) and C( CH3 ) 2 . In another particularly preferred embodiment, X is -CH=CH-, R1 and R4 are H, R2 and R3 are OH, Y is -( CH2 ) 3 -NH-( CH2 ) 4 -NH-( CH2 ) 3 - NH2 , R5 , R6 and R7 are H, and Z is C3 -alkyl, wherein the C3 -alkyl is selected from CH2CH2CH2 , CH( CH3 ) CH2 , CH2CH (CH3 ) , CH ( CH2CH3 ) and C( CH3 ) 2 . In another particularly preferred embodiment, X is -CH=CH-, R1 is H, R3 is OH, R2 and R4 are -OCH3 , Y is -( CH2 ) 3 -NH-( CH2 ) 4 -NH-( CH2 ) 3 - NH2 , R5 , R6 and R7 are H, and Z is C3 -alkyl, wherein the C3 -alkyl is selected from CH2CH2CH2 , CH( CH3 ) CH2 , CH2CH ( CH3 ), CH( CH2CH3 ) and C( CH3 ) 2 .
在最优选的实施方案中,本发明涉及具有下式(III)的化合物:In the most preferred embodiment, the present invention relates to compounds having the following formula (III):
或其对映异构体、非对映异构体、立体异构体或盐。or an enantiomer, diastereomer, stereoisomer or salt thereof.
在本发明的某些具体实施方案中,在如上面所定义的化合物中,烷基和烯基链,即X的直链或支链(C1-C8)-烷基、X的直链或支链(C2-C8)-烯基、Z的直链或支链(C1-C8)-烷基和Z的直链或支链(C2-C8)-烯基可以任选地被合适的取代基取代。合适的取代基包括但不限于OH、F、Cl、Br或CN。In certain specific embodiments of the present invention, in the compounds as defined above, the alkyl and alkenyl chains, i.e., the straight or branched (C 1 -C 8 )-alkyl of X, the straight or branched (C 2 -C 8 )-alkenyl of X, the straight or branched (C 1 -C 8 )-alkyl of Z, and the straight or branched (C 2 -C 8 )-alkenyl of Z, may be optionally substituted with suitable substituents. Suitable substituents include, but are not limited to, OH, F, Cl, Br or CN.
在另一个方面,本发明涉及制备如上文定义的本发明的化合物,例如式(I)的化合物、优选式(II)的化合物和更优选式(III)的化合物的方法。本文中使用的术语“制备本发明的化合物”是指,通过任何合适的程序,以任何合适的量和以任何合适的纯度生成本发明的化合物。例如,这样的程序可以是基于存在于体外环境中的组分,或基于存在于体内环境中的组分。In another aspect, the present invention relates to a method for preparing a compound of the present invention as defined above, for example a compound of formula (I), preferably a compound of formula (II) and more preferably a compound of formula (III). As used herein, the term "preparing a compound of the present invention" means generating a compound of the present invention in any suitable amount and with any suitable purity by any suitable procedure. For example, such a procedure may be based on components present in an in vitro environment, or based on components present in an in vivo environment.
所述制备优选是酶促制备方法。本文中使用的术语“酶促制备方法”是指,将根据本发明的化合物的一种或多种反应物或前体修饰、转化、组合或以其它方式改变成一种或多种产物,最后在一种或多种酶和任选的另外因素(诸如能量载体、辅因子、还原当量、离子等)的帮助下并在特定条件(例如特定pH值、特定离子浓度)下在特定环境(例如水性环境等)中产生根据本发明的化合物。所述酶促制备方法可能涉及1、2、3、4、5、6、7、8、9、10个或更多个酶促转变、转化或修饰步骤。所述方法可以进一步包括非酶促步骤,例如允许化合物的正确定位、允许两种或更多种多肽的相互作用、或者允许将多肽或活性募集到复合物或反应位点。这些步骤的顺序可能变化。通常,转变、转化或修饰步骤的顺序遵循特定的化学逻辑,从简单的反应物开始并以复杂的产物结束。在某些实施方案中,所述方法可以利用前体或反应物,所述前体或反应物可以是另一种酶促制备方法或酶活性的产物,或者可以是非酶促合成的产物或从头提供。这样的前体的存在、同一性和量可能对酶促制备方法的总步骤数产生影响。例如,可以提供仅需要酶促步骤4、5、6等即可产生根据本发明的化合物的前体或反应物,因为所述前体或反应物与酶促步骤1至3的产物相同或相似;或者可以提供需要酶促步骤8、9和10即可产生根据本发明的化合物的前体,因为所述前体或反应物与酶促步骤1至7的产物相同或相似。此外,可以在制备方法期间同时或依次提供用于不同酶促步骤的不同前体或反应物,例如可以提供2、3、4、5种或更多种不同的前体或反应物以产生根据本发明的化合物。在某些实施方案中,酶活性的存在可能取决于进行制备方法的环境中前体或反应物的存在。The preparation is preferably an enzymatic preparation method. The term "enzymatic preparation method" used herein refers to one or more reactants or precursors of the compound according to the present invention being modified, converted, combined or otherwise changed into one or more products, and finally with the help of one or more enzymes and optional other factors (such as energy carriers, cofactors, reducing equivalents, ions, etc.) and under specific conditions (such as specific pH values, specific ion concentrations) in a specific environment (such as aqueous environment, etc.) to produce the compound according to the present invention. The enzymatic preparation method may involve 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 or more enzymatic conversions, conversions or modification steps. The method may further include non-enzymatic steps, such as allowing the correct positioning of the compound, allowing the interaction of two or more polypeptides, or allowing polypeptides or activities to be recruited to complexes or reaction sites. The order of these steps may vary. Generally, the order of the conversion, conversion or modification steps follows a specific chemical logic, starting with a simple reactant and ending with a complex product. In certain embodiments, the method may utilize a precursor or reactant, which may be the product of another enzymatic preparation method or enzymatic activity, or may be the product of non-enzymatic synthesis or provided from scratch. The presence, identity, and amount of such a precursor may have an impact on the total number of steps of the enzymatic preparation method. For example, a precursor or reactant that only requires enzymatic steps 4, 5, 6, etc. to produce a compound according to the present invention may be provided, because the precursor or reactant is the same or similar to the product of enzymatic steps 1 to 3; or a precursor that requires enzymatic steps 8, 9, and 10 to produce a compound according to the present invention may be provided, because the precursor or reactant is the same or similar to the product of enzymatic steps 1 to 7. In addition, different precursors or reactants for different enzymatic steps may be provided simultaneously or sequentially during the preparation method, for example, 2, 3, 4, 5 or more different precursors or reactants may be provided to produce a compound according to the present invention. In certain embodiments, the presence of enzyme activity may depend on the presence of precursors or reactants in the environment in which the preparation method is performed.
在具体实施方案中,可以从外部位点向反应位点(例如活细胞或生物体,优选是本文定义的植物)提供前体、反应物或底物。例如,这样的前体、反应物或底物可以以预形式或原形式提供,其需要一个或多个代谢步骤才能产生可用于本发明的方法中的形式。这些步骤可以优选通过活细胞、特别是植物细胞或植物的标准转化过程来执行。In a specific embodiment, a precursor, reactant or substrate may be provided from an external site to a reaction site (e.g. a living cell or organism, preferably a plant as defined herein). For example, such a precursor, reactant or substrate may be provided in a preform or proform that requires one or more metabolic steps to produce a form that can be used in the method of the invention. These steps may preferably be performed by standard transformation procedures of living cells, particularly plant cells or plants.
在另一个具体实施方案中,所述前体、反应物或底物可以以亲脂性酯的形式(例如作为甲酯)提供给活细胞,例如如本文中定义的植物细胞。这样的酯可以通过合适的酶(诸如酯酶)除去。酯酶通常存在于活细胞中,例如高等植物细胞中。In another specific embodiment, the precursor, reactant or substrate can be provided to a living cell, for example a plant cell as defined herein, in the form of a lipophilic ester (e.g., as a methyl ester). Such an ester can be removed by a suitable enzyme, such as an esterase. Esterases are typically present in living cells, for example, in higher plant cells.
例如,通过喷雾技术,可以将前体、反应物或底物提供给活细胞,例如本文定义的植物(更多信息可以得自例如Daware和Lokhande,International Journal ofInnovations in Engineering and Science,4,8(2019)。在其它实施方案中,它们可以与例如如下文所定义的表面活性剂或铺展剂混合。For example, precursors, reactants or substrates can be provided to living cells, such as plants as defined herein, by spraying techniques (more information can be obtained from, for example, Daware and Lokhande, International Journal of Innovations in Engineering and Science, 4, 8 (2019). In other embodiments, they can be mixed with surfactants or spreading agents, such as those defined below.
在一个优选的实施方案中,所述酶促制备方法使用至少BBL2(小檗碱桥酶2)多肽。本文中使用的术语“多肽”指特定长度的连续且无支链的肽链。相比之下,“肽”涉及包含超过2个氨基酸的任何类型的氨基酸序列或其功能衍生物。此外,肽可以与其它化学基团或官能团结合。例如,多肽可以具有超过20至50个氨基酸的长度。本文中使用的术语“蛋白”涉及一个或多个多肽的排列。因此,蛋白可以包含一个多肽或者由一个多肽组成,并因此与多肽同义。在其它实施方案中,蛋白可以包含2个或更多个多肽,所述多肽可以以蛋白形式的更高级结构的单位或亚单位组织。本文中使用的术语“活性”涉及实现某种生物学功能、优选酶功能的多肽,优选酶。在某些实施方案中,所述活性可以是将反应物转化为产物的酶的功能。In a preferred embodiment, the enzymatic preparation method uses at least BBL2 (berberine bridge enzyme 2) polypeptide. The term "polypeptide" used herein refers to a continuous and unbranched peptide chain of a specific length. In contrast, "peptide" refers to any type of amino acid sequence or its functional derivative containing more than 2 amino acids. In addition, peptides can be combined with other chemical groups or functional groups. For example, a polypeptide can have a length of more than 20 to 50 amino acids. The term "protein" used in this article refers to the arrangement of one or more polypeptides. Therefore, a protein can contain one polypeptide or consist of one polypeptide, and is therefore synonymous with a polypeptide. In other embodiments, a protein may contain two or more polypeptides, which may be organized in units or subunits of a higher-order structure in the form of a protein. The term "activity" used in this article refers to a polypeptide, preferably an enzyme, that realizes a certain biological function, preferably an enzyme function. In certain embodiments, the activity may be the function of an enzyme that converts a reactant into a product.
“BBL2(小檗碱桥酶2)多肽”涉及BBL2多肽或实现BBL2多肽的生物功能。小檗碱桥酶被描述为FAD连接的氧化酶,其具有与底物结合区相邻的特殊C-端结构元件。通常,FAD结合模块由蛋白的N端和C端部分形成。存在一种底物结合模块,其与FAD的异咯嗪环协作,为有效的底物结合和氧化提供环境。"BBL2 (berberine bridge enzyme 2) polypeptide" relates to a BBL2 polypeptide or realizes a biological function of a BBL2 polypeptide. Berberine bridge enzymes are described as FAD-linked oxidases that have a special C-terminal structural element adjacent to the substrate binding region. Generally, the FAD binding module is formed by the N-terminal and C-terminal parts of the protein. There is a substrate binding module that cooperates with the isoalloxazine ring of FAD to provide an environment for efficient substrate binding and oxidation.
不希望受理论约束,假设BBL2本发明的上下文中作为本文描述的酶促制备方法中的非催化蛋白发挥作用。该功能可能类似于类黄酮代谢中的非催化类查耳酮异构酶(CHIL)。进一步假设,BBL2与作为反应中间体的反应性的PPO激活的N-咖啡酰基腐胺(CP)或其衍生物相互作用,以在细胞环境中稳定它并避免转化为副产物,该副产物不可与(Z)-3-己烯醛反应以形成根据本发明的化合物,例如CPH(咖啡酰基腐胺-3-己烯醛化合物)。因此,认为BBL2能够在活性酶之间更有效地传导底物,例如以代谢物(metabolon)的形式。代谢物通常促进不稳定和有毒中间体的传导,并增加局部底物浓度和防止不希望的代谢串扰。这样的动态组装和拆卸允许响应于环境挑战的代谢属性的快速重组,并且被认为涉及支架蛋白。因此,用于BBL2的支架功能可能允许传导反应中间体的代谢物的动态组装和拆卸,并最大限度地提高朝向根据本发明的化合物(例如CPH)的制备的催化效率。Without wishing to be bound by theory, it is assumed that BBL2 plays a role as a non-catalytic protein in the enzymatic preparation method described herein in the context of the present invention. This function may be similar to the non-catalytic chalcone isomerase (CHIL) in flavonoid metabolism. It is further assumed that BBL2 interacts with the reactive PPO-activated N-caffeoyl putrescine (CP) or its derivatives as a reaction intermediate to stabilize it in the cellular environment and avoid conversion into byproducts, which cannot react with (Z)-3-hexenal to form compounds according to the present invention, such as CPH (caffeoyl putrescine-3-hexenal compounds). Therefore, it is believed that BBL2 can conduct substrates more effectively between active enzymes, such as in the form of metabolites. Metabolites generally promote the conduction of unstable and toxic intermediates, and increase local substrate concentrations and prevent undesirable metabolic crosstalk. Such dynamic assembly and disassembly allow rapid reorganization of metabolic properties in response to environmental challenges, and are considered to involve scaffold proteins. Thus, the scaffolding function for BBL2 may allow for the dynamic assembly and disassembly of metabolites conducting reaction intermediates and maximize the catalytic efficiency toward the preparation of compounds according to the invention (eg, CPH).
优选地BBL2是(a)由具有SEQ ID NO:1的核苷酸序列的多核苷酸编码;(b)由作为SEQ ID NO:1的变体的多核苷酸编码;(c)由作为SEQ ID NO:1的等位基因变体的多核苷酸编码;(d)由作为SEQ ID NO:1的物种同源物的多核苷酸编码;(e)由与如在(a)至(d)中的任一项中所定义的多核苷酸具有至少75%、80%、90%、95%、97%、98%或99%相似性的多核苷酸编码;(f)由能够在严谨条件下与在(a)至(d)中指定的多核苷酸中的任一种杂交的多核苷酸编码;(g)由具有SEQ ID NO:2的多肽代表;(h)由具有BBL2(小檗碱桥酶2)功能的SEQID NO:2的多肽片段代表;(i)由具有BBL2(小檗碱桥酶2)功能的SEQ ID NO:2的多肽结构域代表(j)由包含与SEQ ID NO:2的氨基酸序列具有至少75%、80%、90%、95%、97%、98%或99%相似性的氨基酸序列并且具有BBL2(小檗碱桥酶2)功能的多肽代表或(k)由在(a)至(f)中指定的多核苷酸中的任一种编码的多肽代表。Preferably, BBL2 is (a) encoded by a polynucleotide having a nucleotide sequence of SEQ ID NO: 1; (b) encoded by a polynucleotide that is a variant of SEQ ID NO: 1; (c) encoded by a polynucleotide that is an allelic variant of SEQ ID NO: 1; (d) encoded by a polynucleotide that is a species homolog of SEQ ID NO: 1; (e) encoded by a polynucleotide having at least 75%, 80%, 90%, 95%, 97%, 98% or 99% similarity to a polynucleotide as defined in any one of (a) to (d); (f) encoded by a polynucleotide that can hybridize under stringent conditions with any one of the polynucleotides specified in (a) to (d); (g) represented by a polypeptide having SEQ ID NO: 2; (h) represented by a polypeptide fragment of SEQ ID NO: 2 having the function of BBL2 (berberine bridge enzyme 2); (i) represented by a polypeptide domain of SEQ ID NO: 2 having the function of BBL2 (berberine bridge enzyme 2); (j) represented by a polypeptide domain comprising the same polypeptide as SEQ ID NO: 2; NO:2 has an amino acid sequence having at least 75%, 80%, 90%, 95%, 97%, 98% or 99% similarity and a polypeptide representative having the function of BBL2 (berberine bridge enzyme 2) or (k) a polypeptide represented by any one of the polynucleotides specified in (a) to (f).
本文中使用的术语“多核苷酸”涉及本领域技术人员所知的核酸或核酸分子,例如DNA、RNA、单链DNA、cDNA或其衍生物。所述核酸可以进一步是线性的或环状的。优选地,该术语指DNA分子。The term "polynucleotide" as used herein refers to a nucleic acid or nucleic acid molecule known to those skilled in the art, such as DNA, RNA, single-stranded DNA, cDNA or derivatives thereof. The nucleic acid may further be linear or circular. Preferably, the term refers to a DNA molecule.
本文中使用的术语“等位基因变体”指在特定基因座处以两种或更多种不同等位基因形式存在的变体多核苷酸。As used herein, the term "allelic variant" refers to variant polynucleotides that exist in two or more different allelic forms at a particular locus.
本文中使用的多核苷酸的“片段”、“变体”或“同源物”涉及这样的多核苷酸:其包含与参考多核苷酸(例如SEQ ID NO:1的参考多核苷酸)的核苷酸序列具有至少75%、优选80%、85%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%或核苷酸序列同一性的核苷酸序列或由其组成。在某些实施方案中,片段、变体和同源物可以编码能够执行由相应参考多肽(例如SEQ ID NO:2的参考多肽)所执行的一种、多种或所有功能的多肽。As used herein, a "fragment", "variant" or "homologue" of a polynucleotide refers to a polynucleotide comprising or consisting of a nucleotide sequence having at least 75%, preferably 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or nucleotide sequence identity to the nucleotide sequence of a reference polynucleotide (e.g., a reference polynucleotide of SEQ ID NO: 1). In certain embodiments, fragments, variants and homologues may encode a polypeptide capable of performing one, multiple or all of the functions performed by a corresponding reference polypeptide (e.g., a reference polypeptide of SEQ ID NO: 2).
类似地,多肽的“片段”、“变体”或“同源物”涉及这样的多肽:其包含与参考多肽(例如SEQ ID NO:2的参考多肽)的氨基酸序列具有至少75%、优选80%、85%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%或更高的氨基酸序列同一性的氨基酸序列或由其组成。在某些实施方案中,参考多肽的片段、变体和同源物可以能够执行由参考多肽(例如SEQ ID NO:2的参考多肽)所执行的一种、多种或所有功能。Similarly, a "fragment", "variant" or "homologue" of a polypeptide refers to a polypeptide comprising or consisting of an amino acid sequence having at least 75%, preferably 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or more amino acid sequence identity to the amino acid sequence of a reference polypeptide (e.g., a reference polypeptide of SEQ ID NO: 2). In certain embodiments, fragments, variants and homologues of a reference polypeptide may be capable of performing one, multiple or all of the functions performed by a reference polypeptide (e.g., a reference polypeptide of SEQ ID NO: 2).
术语“物种同源物”涉及来自与参考序列(例如SEQ ID NO:1或2)不同的物种的同源的(即高度相似的)多核苷酸或氨基酸序列。这样的高相似度通常有力地证明两个序列通过从共同祖先序列的进化变化而相关。物种同源物通常是功能同源物,即,不仅同源物的核苷酸或氨基酸序列与参考序列相似,而且相应多肽的功能(例如酶活性)也与参考多肽的功能相似或相同。The term "species homolog" refers to homologous (i.e., highly similar) polynucleotide or amino acid sequences from species different from a reference sequence (e.g., SEQ ID NO: 1 or 2). Such a high degree of similarity is generally a strong evidence that the two sequences are related by evolutionary changes from a common ancestral sequence. Species homologs are generally functional homologs, i.e., not only are the nucleotide or amino acid sequences of the homologs similar to the reference sequence, but the function (e.g., enzymatic activity) of the corresponding polypeptide is also similar or identical to that of the reference polypeptide.
本文中使用的术语“严谨条件”或“严谨杂交条件”指在42℃下,在包含50%甲酰胺、5倍SSC(750mM氯化钠、75mM柠檬酸三钠)、50mM磷酸钠(pH 7.6)、5倍登哈特溶液、10%葡聚糖硫酸盐和20g/m)变性剪切鲑鱼精子DNA的溶液中孵化过夜,然后在约65℃下用0.1倍SSC洗涤过滤器。杂交和信号检测的严谨性变化主要通过操纵甲酰胺浓度(较低的甲酰胺百分比导致较低的严谨性)、盐条件或温度来实现。例如,较低的严谨性条件包括在37℃下,在包含6倍SSPE(20倍SSPE=3M NaCl;0.2M NaH2PO4;0.02M EDTA、pH 7.4)、0.5% SDS、30%甲酰胺、100μg/ml鲑鱼精子阻断DNA的溶液中过夜孵化;然后在50℃下用1倍SSPE、0.1% SDS洗涤。此外,为了实现甚至更低的严谨性,可以在更高的盐浓度(例如用5倍SSC)进行严谨杂交后的实行的洗涤。通过包含和/或替换用于抑制杂交实验背景的替代性阻断试剂,可以实现上述条件的进一步变化。将要在本发明的上下文中使用的典型阻断试剂包括登哈特试剂、BLOTTO、肝素或变性鲑鱼精子DNA。由于兼容性问题,包含特定阻断试剂可能需要修改上述杂交条件。The term "stringent conditions" or "stringent hybridization conditions" as used herein refers to incubation overnight at 42° C. in a solution comprising 50% formamide, 5×SSC (750 mM sodium chloride, 75 mM trisodium citrate), 50 mM sodium phosphate (pH 7.6), 5×Denhardt's solution, 10% dextran sulfate, and 20 g/m) denatured sheared salmon sperm DNA, followed by washing the filter with 0.1×SSC at about 65° C. Stringency changes in hybridization and signal detection are primarily achieved by manipulating formamide concentration (lower formamide percentages result in lower stringency), salt conditions, or temperature. For example, lower stringency conditions include overnight incubation at 37°C in a solution containing 6x SSPE (20x SSPE = 3M NaCl; 0.2M NaH 2 PO 4 ; 0.02M EDTA, pH 7.4), 0.5% SDS, 30% formamide, 100 μg/ml salmon sperm blocking DNA; followed by washing with 1x SSPE, 0.1% SDS at 50°C. In addition, to achieve even lower stringency, washing after stringent hybridization can be performed at higher salt concentrations (e.g., with 5x SSC). Further variations of the above conditions can be achieved by including and/or replacing alternative blocking reagents for suppressing hybridization experimental background. Typical blocking reagents to be used in the context of the present invention include Denhardt's reagent, BLOTTO, heparin or denatured salmon sperm DNA. The inclusion of a specific blocking reagent may require modification of the above hybridization conditions due to compatibility issues.
包含与本发明的参考核苷酸序列具有例如至少95%“同一性”的核苷酸序列的核酸,是指除了所述核苷酸序列可能在编码多肽的参考核苷酸序列的每100个核苷酸中包括至多5个点突变以外,所述多核苷酸的核苷酸序列与参考序列相同。换而言之,为了获得包含与参考核苷酸序列具有至少95%同一性的核苷酸序列的多核苷酸,可以将参考序列中至多5%的核苷酸删除或用另一个核苷酸替换,或者可以将占参考序列中总核苷酸的至多5%的数目的核苷酸插入到参考序列中。查询序列可以是完整序列或如本文描述的任何片段。任何特定核酸分子是否与本发明的核苷酸序列具有至少75%、80%、85%、86%、87%、88%、89%、90%、91%、92%、93%、94%、95%、96%、97%、98%或99%同一性,可以常规地使用已知的计算机程序来确定。使用基于Brutlag等人,1990,Comp.App.Biosci.6:237-245的算法的FASTDB计算机程序,可以确定用于确定查询序列(本发明的序列)和主题序列之间的最佳整体匹配(也被称作总体序列比对)的优选方法。在核苷酸序列比对中,查询序列和主题序列都是DNA序列。可以通过将U转换为T来对比RNA序列。所述总体序列比对的结果以同一性百分比表示。在DNA序列的FASTDB比对中,计算同一性百分比时使用的优选参数是:矩阵=单元、k-元组=4、错配罚分=1、连接罚分=30、随机化组长度=0、截止分数=1、缺口罚分=5、缺口大小罚分=0.05、窗口大小=500或主题核苷酸序列的长度(取较短者)。如果由于5'或3'缺失(而不是由于内部缺失)导致主题序列比查询序列短,则必须对结果进行手动校正。这是因为FASTDB程序在计算同一性百分比时没有考虑主题序列的5'和3'截断。对于在5'或3'端截断的主题序列,相对于查询序列,通过计算查询序列中位于主题序列的5'和3'端的不匹配/不对齐的的碱基数占查询序列的总碱基的百分比来校正同一性百分比。核苷酸是否匹配/对齐由FASTDB序列比对的结果决定。然后可以从上述FASTDB程序使用指定参数计算的同一性百分比中减去该百分比,以得出最终的同一性百分比分数。该校正的分数正是用于本发明的目的的分数。为了手动调整同一性百分比分数的目的,仅计算由FASTDB比对所显示的主题序列的5'和3'碱基以外的与查询序列不匹配/不对齐的碱基。A nucleic acid comprising a nucleotide sequence having, for example, at least 95% "identity" with a reference nucleotide sequence of the present invention means that the nucleotide sequence of the polynucleotide is identical to the reference sequence except that the nucleotide sequence may include up to 5 point mutations in every 100 nucleotides of the reference nucleotide sequence encoding a polypeptide. In other words, in order to obtain a polynucleotide comprising a nucleotide sequence having at least 95% identity with a reference nucleotide sequence, up to 5% of the nucleotides in the reference sequence may be deleted or replaced with another nucleotide, or a number of nucleotides accounting for up to 5% of the total nucleotides in the reference sequence may be inserted into the reference sequence. The query sequence may be a complete sequence or any fragment as described herein. Whether any particular nucleic acid molecule has at least 75%, 80%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99% identity with a nucleotide sequence of the present invention can be routinely determined using known computer programs. Using the FASTDB computer program based on Brutlag et al., 1990, Comp.App.Biosci.6:237-245 algorithm, it is possible to determine the preferred method for determining the best overall match (also referred to as overall sequence alignment) between the query sequence (sequence of the present invention) and the subject sequence. In the nucleotide sequence alignment, the query sequence and the subject sequence are both DNA sequences. RNA sequences can be compared by converting U to T. The result of the overall sequence alignment is represented by percent identity. In the FASTDB alignment of DNA sequences, the preferred parameters used when calculating percent identity are: matrix=unit, k-tuple=4, mismatch penalty=1, connection penalty=30, randomization group length=0, cutoff score=1, gap penalty=5, gap size penalty=0.05, window size=500 or the length of the subject nucleotide sequence (taking the shorter one). If the subject sequence is shorter than the query sequence due to 5' or 3' deletions (rather than due to internal deletions), the result must be manually corrected. This is because the FASTDB program does not consider the 5' and 3' truncation of the subject sequence when calculating the identity percentage.For the subject sequence truncated at 5' or 3', relative to the query sequence, by calculating the mismatch/misalignment of the subject sequence at 5' and 3' ends in the query sequence, the percentage of the total bases of the query sequence is corrected.Whether Nucleotide matches/aligns is determined by the result of the FASTDB sequence comparison.Then the percentage can be deducted from the identity percentage calculated using the specified parameters of the above-mentioned FASTDB program to obtain the final identity percentage score.The score of this correction is just the score for the purpose of the present invention.For the purpose of manually adjusting the identity percentage score, only calculate the bases that do not match/misalign with the query sequence beyond the 5' and 3' bases of the subject sequence shown by the FASTDB comparison.
包含与本发明的查询氨基酸序列具有例如至少95%“同一性”的氨基酸序列的多肽,是指除了所述主题多肽序列可能在查询氨基酸序列的每100个氨基酸中包括至多5个氨基酸变异以外,所述主题多肽的氨基酸序列与查询序列相同。换而言之,为了获得包含与查询氨基酸序列具有至少95%同一性的氨基酸序列的多肽,可以将主题序列中至多5%的氨基酸残基插入、删除(插入缺失)或用另一种氨基酸置换。参考序列的这些变异可能发生在参考氨基酸序列的氨基或羧基末端位置,或那些末端位置之间的任何位置,单独散布在参考序列中的残基之间,或散布在参考序列内的一个或多个连续组中。任何特定多肽是否与例如本发明的氨基酸序列具有至少75%、80%、85%、86%、87%、88%、89%、90%、91%、92%、93%、94%、95%、96%、97%、98%或99%同一性,可以常规地通过使用已知的计算机程序来确定。使用基于Brutlag等人,1990,Comp.App.Biosci.6:237-245的算法的FASTDB计算机程序,可以确定用于确定查询序列(本发明的序列)与主题序列之间的最佳整体匹配(也被称作总体序列比对)的优选方法。在氨基酸序列比对中,查询序列和主题序列都是氨基酸序列。所述总体序列比对的结果以同一性百分比给出。在FASTDB氨基酸比对中使用的优选参数是:矩阵=PAM 0、k-元组=2、错配罚分=1、连接罚分=20、随机化组长度=0、截止分数=1、窗口大小=序列长度、缺口罚分=5、缺口大小罚分=0.05、窗口大小=500或主题氨基酸序列的长度(取较短者)。如果由于N端或C端缺失(而不是由于内部缺失)导致主题序列比查询序列短,则必须对结果进行手动校正。这是因为FASTDB程序在计算总体同一性百分比时没有考虑主题序列的N端和C端截断。对于在N端和C端截断的主题序列,相对于查询序列,通过计算查询序列中位于主题序列N端和C端的与相应的主题残基不匹配/不对齐的残基数占查询序列的总碱基的百分比来校正同一性百分比。残基是否匹配/对齐可以通过FASTDB序列比对的结果来确定。然后从上述FASTDB程序使用指定参数计算出的同一性百分比中减去该百分比,以得出最终的同一性百分比分数。该最终同一性百分比分数正是用于本发明的目的的分数。为了手动调整同一性百分比分数的目的,仅考虑与查询序列不匹配/不对齐的主题序列的N端和C端之外的残基。也就是说,仅位于主题序列的最远N端和C端残基之外的查询残基。A polypeptide comprising an amino acid sequence that is, for example, at least 95% "identical" to a query amino acid sequence of the invention means that the amino acid sequence of the subject polypeptide is identical to the query sequence except that the subject polypeptide sequence may include up to 5 amino acid variations per 100 amino acids in the query amino acid sequence. In other words, up to 5% of the amino acid residues in the subject sequence may be inserted, deleted (indels), or substituted with another amino acid in order to obtain a polypeptide comprising an amino acid sequence that is at least 95% identical to the query amino acid sequence. These variations of the reference sequence may occur at the amino or carboxyl terminal positions of the reference amino acid sequence, or anywhere between those terminal positions, interspersed individually between residues in the reference sequence, or interspersed in one or more contiguous groups within the reference sequence. Whether any particular polypeptide has at least 75%, 80%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99% identity with, for example, the amino acid sequence of the present invention can be routinely determined by using known computer programs. Using the FASTDB computer program based on the algorithm of Brutlag et al., 1990, Comp.App.Biosci.6:237-245, it is possible to determine the preferred method for determining the best overall match (also referred to as overall sequence alignment) between the query sequence (sequence of the present invention) and the subject sequence. In the amino acid sequence alignment, the query sequence and the subject sequence are both amino acid sequences. The result of the overall sequence alignment is given in percent identity. The preferred parameters used in the FASTDB amino acid alignment are: matrix=PAM 0, k-tuple=2, mismatch penalty=1, connection penalty=20, randomization group length=0, cutoff score=1, window size=sequence length, gap penalty=5, gap size penalty=0.05, window size=500 or the length of the subject amino acid sequence (whichever is shorter). If the subject sequence is shorter than the query sequence due to N-terminal or C-terminal deletions (rather than due to internal deletions), the result must be manually corrected. This is because the FASTDB program does not consider the N-terminal and C-terminal truncation of the subject sequence when calculating the overall identity percentage. For the subject sequence truncated at the N-terminal and C-terminal ends, relative to the query sequence, the percentage of the total bases of the query sequence is corrected by calculating the percentage of the residues that are not matched/not aligned with the corresponding subject residues in the query sequence N-terminal and C-terminal. Whether the residues match/align can be determined by the result of the FASTDB sequence alignment. This percentage is then deducted from the identity percentage calculated using the specified parameters of the above-mentioned FASTDB program to derive the final identity percentage score. This final identity percentage score is just the score for the purpose of the present invention. For the purpose of manually adjusting the identity percentage score, only the residues outside the N-terminal and C-terminal of the subject sequence that does not match/align with the query sequence are considered. That is, the query residues that are only located outside the farthest N-terminal and C-terminal residues of the subject sequence.
根据具体实施方案,为了序列比对和对比目的,可以使用替代性局部序列同一性算法。例如,可以采用Smith和Waterman,1981,Adv.Appl.Math.2:482的算法,Needleman和Wunsch,1970,J.Mol.Biol.48:443的序列同一性比对算法,Pearson和Lipman,1988,Proc.Nat.Acad.Sci.U.S.A.85:2444的检索相似性方法,或这些算法的计算机化实现方式,诸如多序列比对工具Clustal Omega(https://www.ebi.ac.uk/Tools/msa/clustalo/)、T-coffee/M-coffee(http://tcoffee.crg.cat/)、BLAST(https://blast.ncbi.nlm.nih.gov)、FASTA(https://www.ebi.ac.uk/Tools/sss/fasta/)等,优选地使用默认设置。有用算法的另一个考虑的例子是PILEUP。PILEUP使用渐进式逐对比对从一组相关序列创建多序列比对。它还可以绘制显示用于创建比对的聚类关系树。PILEUP使用Feng和Doolittle,1987,J.Mol.Evol.35:351-360的渐进比对方法的简化版。有用的算法的另一个例子是在Altschul等人,1990,J.Mol.Biol.215:403-410中描述的BLAST算法,或WU-BLAST-2程序。WU-BLAST-2使用几个搜索参数,其中大多数被设置为默认值。另一种有用的算法是使用BLOSUM-62替换评分矩阵的间隙BLAST。According to specific embodiments, for the purposes of sequence alignment and comparison, alternative local sequence identity algorithms may be used. For example, the algorithm of Smith and Waterman, 1981, Adv.Appl.Math.2:482, the sequence identity alignment algorithm of Needleman and Wunsch, 1970, J.Mol.Biol.48:443, the search similarity method of Pearson and Lipman, 1988, Proc.Nat.Acad.Sci.U.S.A.85:2444, or computerized implementations of these algorithms, such as the multiple sequence alignment tool Clustal Omega (https://www.ebi.ac.uk/Tools/msa/clustalo/), T-coffee/M-coffee (http://tcoffee.crg.cat/), BLAST (https://blast.ncbi.nlm.nih.gov), FASTA (https://www.ebi.ac.uk/Tools/sss/fasta/), etc., preferably using default settings, can be used. Another example of a useful algorithm is PILEUP. PILEUP uses progressive alignments to create multiple sequence alignments from a group of related sequences. It can also draw a clustering tree for creating alignments. PILEUP uses a simplified version of the progressive alignment method of Feng and Doolittle, 1987, J.Mol.Evol.35:351-360. Another example of a useful algorithm is the BLAST algorithm described in Altschul et al., 1990, J.Mol.Biol.215:403-410, or the WU-BLAST-2 program. WU-BLAST-2 uses several search parameters, most of which are set to default values. Another useful algorithm is the gap BLAST using BLOSUM-62 to replace the scoring matrix.
在另一个实施方案中,所述酶促制备方法另外使用PPO(多酚氧化酶)活性或多肽。优选的是,所述酶促制备方法使用与PPO活性或多肽组合的BBL多肽。In another embodiment, the enzymatic production method additionally uses a PPO (polyphenol oxidase) activity or polypeptide. Preferably, the enzymatic production method uses a BBL polypeptide in combination with a PPO activity or polypeptide.
“PPO(多酚氧化酶)活性或多肽”涉及PPO多肽或实现PPO多肽的酶功能或生物功能。所述多酚氧化酶通常接受单酚和/或邻二酚作为底物。所述酶被描述为催化单酚分子的邻位羟基化,其中苯环含有单个羟基取代基以形成邻二酚。它们进一步催化邻二酚的氧化以生成邻醌。此外,发现PPO催化邻醌的聚合以生成多酚。"PPO (polyphenol oxidase) activity or polypeptide" relates to a PPO polypeptide or to an enzymatic function or biological function that realizes a PPO polypeptide. The polyphenol oxidase enzymes generally accept monophenols and/or ortho-diphenols as substrates. The enzymes are described as catalyzing the ortho-hydroxylation of monophenol molecules, wherein the benzene ring contains a single hydroxyl substituent to form ortho-diphenols. They further catalyze the oxidation of ortho-diphenols to form ortho-quinones. In addition, PPO was found to catalyze the polymerization of ortho-quinones to form polyphenols.
在特别优选的实施方案中,所述PPO(多酚氧化酶)活性或多肽:(a)由具有SEQ IDNO:3或5的核苷酸序列的多核苷酸编码;(b)由作为SEQ ID NO:3或5的变体的多核苷酸编码;(c)由作为SEQ ID NO:3或5的等位基因变体的多核苷酸编码;(d)由作为SEQ ID NO:3或5的物种同源物的多核苷酸编码;(e)由与如在(a)至(d)中的任一项中所定义的多核苷酸具有至少75%、80%、90%、95%、97%、98%或99%同一性的多核苷酸编码;(f)由能够在严谨条件下与在(a)至(d)中指定的多核苷酸中的任一种杂交的多核苷酸编码;(g)由具有SEQID NO:4或6的多肽代表;(h)由具有PPO(多酚氧化酶)活性的SEQ ID NO:4或6的多肽片段代表;(i)由具有PPO(多酚氧化酶)活性的SEQ ID NO:4或6的多肽结构域代表;(j)由包含与SEQ ID NO:4或6的氨基酸序列具有至少75%、80%、90%、95%、97%、98%或99%同一性的氨基酸序列并且具有PPO(多酚氧化酶)活性的多肽代表;或(k)由在(a)至(f)中指定的多核苷酸中的任一种编码的多肽代表。In a particularly preferred embodiment, the PPO (polyphenol oxidase) activity or polypeptide: (a) is encoded by a polynucleotide having a nucleotide sequence of SEQ ID NO: 3 or 5; (b) is encoded by a polynucleotide that is a variant of SEQ ID NO: 3 or 5; (c) is encoded by a polynucleotide that is an allelic variant of SEQ ID NO: 3 or 5; (d) is encoded by a polynucleotide that is a species homolog of SEQ ID NO: 3 or 5; (e) is encoded by a polynucleotide that has at least 75%, 80%, 90%, 95%, 97%, 98% or 99% identity with a polynucleotide as defined in any one of (a) to (d); (f) is encoded by a polynucleotide that can hybridize under stringent conditions with any one of the polynucleotides specified in (a) to (d); (g) is represented by a polypeptide having SEQ ID NO: 4 or 6; (h) is represented by a polypeptide fragment of SEQ ID NO: 4 or 6 having PPO (polyphenol oxidase) activity; (i) is represented by a polypeptide fragment of SEQ ID NO: 4 or 6 having PPO (polyphenol oxidase) activity. NO:4 or 6 polypeptide domain representative; (j) comprises and has the amino acid sequence of SEQ ID NO:4 or 6 and has PPO (polyphenol oxidase) activity polypeptide representative; or (k) is represented by any one of the polypeptides encoded by the polynucleotides specified in (a) to (f).
在另一个实施方案中,所述酶促制备方法另外使用AT1(多胺羟基肉桂酰基转移酶1)活性或多肽。优选的是,所述酶促制备方法使用与PPO活性或多肽和AT1活性或多肽组合的BBL多肽。In another embodiment, the enzymatic production method additionally uses AT1 (polyamine hydroxycinnamoyltransferase 1) activity or polypeptide. Preferably, the enzymatic production method uses a BBL polypeptide in combination with a PPO activity or polypeptide and an AT1 activity or polypeptide.
“AT1(多胺羟基肉桂酰基转移酶1)活性或多肽”涉及AT1多肽或实现AT1多肽的酶功能或生物功能。所述多胺羟基肉桂酰基转移酶已经被描述为催化酰基从例如对香豆酰基辅酶A转移到多胺(诸如胍丁胺或腐胺)的酶。已经证实,它可以使用阿魏酰基辅酶A、咖啡酰基辅酶A和芥子酰基辅酶A作为酰基供体。"AT1 (polyamine hydroxycinnamoyltransferase 1) activity or polypeptide" relates to an AT1 polypeptide or to an enzyme function or biological function that realizes an AT1 polypeptide. The polyamine hydroxycinnamoyltransferase has been described as an enzyme that catalyzes the transfer of acyl groups from, for example, p-coumaroyl-CoA to polyamines such as agmatine or putrescine. It has been shown that it can use feruloyl-CoA, caffeoyl-CoA and sinapoyl-CoA as acyl donors.
在特别优选的实施方案中,所述AT1(多胺羟基肉桂酰基转移酶1)活性或多肽:(a)由具有SEQ ID NO:7的核苷酸序列的多核苷酸编码;(b)由作为SEQ ID NO:7的变体的多核苷酸编码;(c)由作为SEQ ID NO:7的等位基因变体的多核苷酸编码;(d)由作为SEQ ID NO:7的物种同源物的多核苷酸编码;(e)由与如在(a)至(d)中的任一项中所定义的多核苷酸具有至少75%、80%、90%、95%、97%、98%或99%同一性的多核苷酸编码;(f)由能够在严谨条件下与在(a)至(d)中指定的多核苷酸中的任一种杂交的多核苷酸编码;(g)由具有SEQID NO:8的多肽代表;(h)由具有AT1(多胺羟基肉桂酰基转移酶1)活性的SEQ ID NO:8的多肽片段代表;(i)由具有AT1(多胺羟基肉桂酰基转移酶1)活性的SEQ ID NO:8的多肽结构域代表;(j)由包含与SEQ ID NO:8的氨基酸序列具有至少75%、80%、90%、95%、97%、98%或99%同一性的氨基酸序列并且具有AT1(多胺羟基肉桂酰基转移酶1)活性的多肽代表;或(k)由在(a)至(f)中指定的多核苷酸中的任一种编码的多肽代表。In a particularly preferred embodiment, the AT1 (polyamine hydroxycinnamoyltransferase 1) activity or polypeptide: (a) is encoded by a polynucleotide having a nucleotide sequence of SEQ ID NO: 7; (b) is encoded by a polynucleotide that is a variant of SEQ ID NO: 7; (c) is encoded by a polynucleotide that is an allelic variant of SEQ ID NO: 7; (d) is encoded by a polynucleotide that is a species homolog of SEQ ID NO: 7; (e) is encoded by a polynucleotide that has at least 75%, 80%, 90%, 95%, 97%, 98% or 99% identity with a polynucleotide as defined in any one of (a) to (d); (f) is encoded by a polynucleotide that can hybridize under stringent conditions with any one of the polynucleotides specified in (a) to (d); (g) is represented by a polypeptide having SEQ ID NO: 8; (h) is represented by a polypeptide fragment of SEQ ID NO: 8 having AT1 (polyamine hydroxycinnamoyltransferase 1) activity; (i) is represented by a polypeptide fragment of SEQ ID NO: 8 having AT1 (polyamine hydroxycinnamoyltransferase 1) activity. (j) represented by a polypeptide comprising an amino acid sequence that is at least 75%, 80%, 90%, 95%, 97%, 98% or 99% identical to the amino acid sequence of SEQ ID NO: 8 and has AT1 (polyamine hydroxycinnamoyltransferase 1) activity; or (k) represented by a polypeptide encoded by any one of the polynucleotides specified in (a) to (f).
在另一个实施方案中,所述酶促制备方法另外使用ODC(鸟氨酸脱羧酶)活性或多肽。优选的是,所述酶促制备方法使用与PPO活性或多肽和AT1活性或多肽和/或ODC活性或多肽组合的BBL多肽。In another embodiment, the enzymatic production method additionally uses an ODC (ornithine decarboxylase) activity or polypeptide.Preferably, the enzymatic production method uses a BBL polypeptide in combination with a PPO activity or polypeptide and an AT1 activity or polypeptide and/or an ODC activity or polypeptide.
“ODC(鸟氨酸脱羧酶)活性或多肽”涉及ODC多肽或实现ODC多肽的酶功能或生物功能。所述鸟氨酸脱羧酶已经被描述为催化鸟氨酸的脱羧以形成腐胺的酶。由鸟氨酸脱羧酶催化的该脱羧反应是多胺(诸如腐胺、精脒和精胺)的合成中的第一步,也是关键步骤。"ODC (ornithine decarboxylase) activity or polypeptide" relates to an ODC polypeptide or realizes an enzyme function or biological function of an ODC polypeptide. The ornithine decarboxylase has been described as an enzyme that catalyzes the decarboxylation of ornithine to form putrescine. The decarboxylation reaction catalyzed by ornithine decarboxylase is the first and key step in the synthesis of polyamines such as putrescine, spermidine and spermine.
在特别优选的实施方案中,所述ODC(鸟氨酸脱羧酶)活性或多肽:(a)由具有SEQID NO:9或11的核苷酸序列的多核苷酸编码;(b)由作为SEQ ID NO:9或11的变体的多核苷酸编码;(c)由作为SEQ ID NO:9或11的等位基因变体的多核苷酸编码;(d)由作为SEQ IDNO:9或11的物种同源物的多核苷酸编码;(e)由与如在(a)至(d)中的任一项中所定义的多核苷酸具有至少75%、80%、90%、95%、97%、98%或99%同一性的多核苷酸编码;(f)由能够在严谨条件下与在(a)至(d)中指定的多核苷酸中的任一种杂交的多核苷酸编码;(g)由具有SEQ ID NO:10或12的多肽代表;(h)由具有ODC(鸟氨酸脱羧酶)活性的SEQ ID NO:10或12的多肽片段代表;(i)由具有ODC(鸟氨酸脱羧酶)活性的SEQ ID NO:10或12的多肽结构域代表;(j)由包含与SEQ ID NO:10或12的氨基酸序列具有至少75%、80%、90%、95%、97%、98%或99%同一性的氨基酸序列并且具有ODC(鸟氨酸脱羧酶)活性的多肽代表;或(k)由在(a)至(f)中指定的多核苷酸中的任一种编码的多肽代表。In a particularly preferred embodiment, the ODC (ornithine decarboxylase) activity or polypeptide: (a) is encoded by a polynucleotide having a nucleotide sequence of SEQ ID NO: 9 or 11; (b) is encoded by a polynucleotide that is a variant of SEQ ID NO: 9 or 11; (c) is encoded by a polynucleotide that is an allelic variant of SEQ ID NO: 9 or 11; (d) is encoded by a polynucleotide that is a species homolog of SEQ ID NO: 9 or 11; (e) is encoded by a polynucleotide that has at least 75%, 80%, 90%, 95%, 97%, 98% or 99% identity with a polynucleotide as defined in any one of (a) to (d); (f) is encoded by a polynucleotide that can hybridize with any one of the polynucleotides specified in (a) to (d) under stringent conditions; (g) is represented by a polypeptide having SEQ ID NO: 10 or 12; (h) is represented by a polypeptide having SEQ ID NO: 10 or 12; NO:10 or 12; (i) represented by a polypeptide domain of SEQ ID NO:10 or 12 having ODC (ornithine decarboxylase) activity; (j) represented by a polypeptide comprising an amino acid sequence that is at least 75%, 80%, 90%, 95%, 97%, 98% or 99% identical to the amino acid sequence of SEQ ID NO:10 or 12 and having ODC (ornithine decarboxylase) activity; or (k) represented by a polypeptide encoded by any one of the polynucleotides specified in (a) to (f).
在另一个实施方案中,所述酶促制备方法另外使用HPL(氢过氧化物裂解酶)活性或多肽。优选的是,所述酶促制备方法使用与PPO活性或多肽和AT1活性或多肽和/或ODC活性或多肽和/或HPL活性或多肽组合的BBL多肽。在其它实施方案中,所述酶促制备方法使用与PPO和ODC和HPL活性或多肽组合的BBL多肽;或与PPO和AT1和HPL活性组合的BBL多肽;或与PPO和AT1和ODC和HPL活性组合的BBL多肽。In another embodiment, the enzymatic preparation method additionally uses an HPL (hydroperoxide lyase) activity or polypeptide. Preferably, the enzymatic preparation method uses a BBL polypeptide in combination with a PPO activity or polypeptide and an AT1 activity or polypeptide and/or an ODC activity or polypeptide and/or an HPL activity or polypeptide. In other embodiments, the enzymatic preparation method uses a BBL polypeptide in combination with a PPO and ODC and HPL activity or polypeptide; or a BBL polypeptide in combination with a PPO and AT1 and HPL activity; or a BBL polypeptide in combination with a PPO and AT1 and ODC and HPL activity.
“HPL(氢过氧化物裂解酶)活性或多肽”涉及HPL多肽或实现HPL多肽的酶功能或生物功能。所述氢过氧化物裂解酶已经被描述为催化脂肪酸的氢过氧化物中C-C键的断裂。"HPL (hydroperoxide lyase) activity or polypeptide" relates to an HPL polypeptide or realizes an enzymatic function or biological function of an HPL polypeptide. The hydroperoxide lyase has been described as catalyzing the cleavage of the C-C bond in the hydroperoxides of fatty acids.
在特别优选的实施方案中,所述HPL(氢过氧化物裂解酶)活性或多肽:(a)由具有SEQ ID NO:13、15或17的核苷酸序列的多核苷酸编码;(b)由作为SEQ ID NO:13、15或17的变体的多核苷酸编码;(c)由作为SEQ ID NO:13、15或17的等位基因变体的多核苷酸编码;(d)由作为SEQ ID NO:13、15或17的物种同源物的多核苷酸编码;(e)由与如在(a)至(d)中的任一项中所定义的多核苷酸具有至少75%、80%、90%、95%、97%、98%或99%同一性的多核苷酸编码;(f)由能够在严谨条件下与在(a)至(d)中指定的多核苷酸中的任一种杂交的多核苷酸编码;(g)由具有SEQ ID NO:14、16或18的多肽代表;(h)由具有HPL(氢过氧化物裂解酶)活性的SEQ ID NO:14、16或18的多肽片段代表;(i)由具有HPL(氢过氧化物裂解酶)活性的SEQ ID NO:14、16或18的多肽结构域代表;(j)由包含与SEQ ID NO:14、16或18的氨基酸序列具有至少75%、80%、90%、95%、97%、98%或99%同一性的氨基酸序列并且具有HPL(氢过氧化物裂解酶)活性的多肽代表;或(k)由在(a)至(f)中指定的多核苷酸中的任一种编码的多肽代表。In a particularly preferred embodiment, the HPL (hydroperoxide lyase) activity or polypeptide: (a) is encoded by a polynucleotide having a nucleotide sequence of SEQ ID NO: 13, 15 or 17; (b) is encoded by a polynucleotide that is a variant of SEQ ID NO: 13, 15 or 17; (c) is encoded by a polynucleotide that is an allelic variant of SEQ ID NO: 13, 15 or 17; (d) is encoded by a polynucleotide that is a species homolog of SEQ ID NO: 13, 15 or 17; (e) is encoded by a polynucleotide that has at least 75%, 80%, 90%, 95%, 97%, 98% or 99% identity with a polynucleotide as defined in any one of (a) to (d); (f) is encoded by a polynucleotide that can hybridize under stringent conditions with any of the polynucleotides specified in (a) to (d); (g) is represented by a polypeptide having SEQ ID NO: 14, 16 or 18; (h) is represented by a polypeptide having SEQ ID NO: 14, 16 or 18; NO:14, 16 or 18; (i) represented by a polypeptide domain of SEQ ID NO:14, 16 or 18 having HPL (hydroperoxide lyase) activity; (j) represented by a polypeptide comprising an amino acid sequence having at least 75%, 80%, 90%, 95%, 97%, 98% or 99% identity with the amino acid sequence of SEQ ID NO:14, 16 or 18 and having HPL (hydroperoxide lyase) activity; or (k) represented by a polypeptide encoded by any one of the polynucleotides specified in (a) to (f).
在另一个实施方案中,所述酶促制备方法另外使用PAL(L-苯丙氨酸氨裂解酶)活性或多肽。优选的是,所述酶促制备方法使用与PPO活性或多肽和AT1活性或多肽和/或ODC活性或多肽和/或HPL活性或多肽和/或PAL活性或多肽组合的BBL多肽。在其它实施方案中,所述酶促制备方法使用与PPO和ODC和PAL活性或多肽组合的BBL多肽,或与PPO和AT1和ODC和PAL活性或多肽组合的BBL多肽;或与PPO和ODC和HPL和PAL活性组合的BBL多肽;或与PPO和AT1和ODC和HPL和PAL活性组合的BBL多肽。In another embodiment, the enzymatic preparation method additionally uses a PAL (L-phenylalanine ammonia lyase) activity or polypeptide. Preferably, the enzymatic preparation method uses a BBL polypeptide in combination with a PPO activity or polypeptide and an AT1 activity or polypeptide and/or an ODC activity or polypeptide and/or an HPL activity or polypeptide and/or a PAL activity or polypeptide. In other embodiments, the enzymatic preparation method uses a BBL polypeptide in combination with a PPO and ODC and PAL activity or polypeptide, or a BBL polypeptide in combination with a PPO and AT1 and ODC and PAL activity or polypeptide; or a BBL polypeptide in combination with a PPO and ODC and HPL and PAL activity; or a BBL polypeptide in combination with a PPO and AT1 and ODC and HPL and PAL activity.
“PAL(L-苯丙氨酸氨裂解酶)活性或多肽”涉及PAL多肽或实现PAL多肽的酶功能或生物功能。发现L-苯丙氨酸氨裂解酶催化将L-苯丙氨酸转化为氨和反式肉桂酸的反应。苯丙氨酸氨裂解酶(PAL)是苯丙素途径的第一步和关键步骤,并且参与植物中多酚化合物(诸如类黄酮、苯丙素和木质素)的生物合成。"PAL (L-phenylalanine ammonia lyase) activity or polypeptide" relates to a PAL polypeptide or to an enzyme function or biological function that realizes a PAL polypeptide. L-phenylalanine ammonia lyase is found to catalyze the reaction that converts L-phenylalanine into ammonia and trans-cinnamic acid. Phenylalanine ammonia lyase (PAL) is the first and key step in the phenylpropanoid pathway and is involved in the biosynthesis of polyphenolic compounds (such as flavonoids, phenylpropanoids and lignin) in plants.
在特别优选的实施方案中,所述PAL(L-苯丙氨酸氨裂解酶)活性或多肽:(a)由具有SEQ ID NO:19、21、23或25的核苷酸序列的多核苷酸编码;(b)由作为SEQ ID NO:19、21、23或25的变体的多核苷酸编码;(c)由作为SEQ ID NO:19、21、23或25的等位基因变体的多核苷酸编码;(d)由作为SEQ ID NO:19、21、23或25的物种同源物的多核苷酸编码;(e)由与如在A(a)至(d)中的任一项中所定义的多核苷酸具有至少75%、80%、90%、95%、97%、98%或99%同一性的多核苷酸编码;(f)由能够在严谨条件下与在(a)至(d)中指定的多核苷酸中的任一种杂交的多核苷酸编码;(g)由具有SEQ ID NO:20、22、24或26的多肽代表;(g)由具有SEQ ID NO:20、22、24或26的多肽代表;(h)由具有PAL(L-苯丙氨酸氨裂解酶)活性的SEQ ID NO:20、22、24或26的多肽片段代表;(i)由具有PAL(L-苯丙氨酸氨裂解酶)活性的SEQ ID NO:20、22、24或26的多肽结构域代表;(j)由包含与SEQ ID NO:20、22、24或26的氨基酸序列具有至少75%、80%、90%、95%、97%、98%或99%同一性的氨基酸序列并且具有PAL(L-苯丙氨酸氨裂解酶)活性的多肽代表;或(k)由在(a)至(f)中指定的多核苷酸中的任一种编码的多肽代表。In particularly preferred embodiments, the PAL (L-phenylalanine ammonia lyase) activity or polypeptide: (a) is encoded by a polynucleotide having a nucleotide sequence of SEQ ID NO: 19, 21, 23 or 25; (b) is encoded by a polynucleotide that is a variant of SEQ ID NO: 19, 21, 23 or 25; (c) is encoded by a polynucleotide that is an allelic variant of SEQ ID NO: 19, 21, 23 or 25; (d) is encoded by a polynucleotide that is a species homolog of SEQ ID NO: 19, 21, 23 or 25; (e) is encoded by a polynucleotide that has at least 75%, 80%, 90%, 95%, 97%, 98% or 99% identity with a polynucleotide as defined in any one of A(a) to (d); (f) is encoded by a polynucleotide that can hybridize under stringent conditions with any one of the polynucleotides specified in (a) to (d); (g) is encoded by a polynucleotide having SEQ ID NO: 19, 21, 23 or 25. NO:20, 22, 24 or 26; (g) represented by a polypeptide having SEQ ID NO:20, 22, 24 or 26; (h) represented by a polypeptide fragment of SEQ ID NO:20, 22, 24 or 26 having PAL (L-phenylalanine ammonia lyase) activity; (i) represented by a polypeptide domain of SEQ ID NO:20, 22, 24 or 26 having PAL (L-phenylalanine ammonia lyase) activity; (j) represented by a polypeptide comprising an amino acid sequence having at least 75%, 80%, 90%, 95%, 97%, 98% or 99% identity with the amino acid sequence of SEQ ID NO:20, 22, 24 or 26 and having PAL (L-phenylalanine ammonia lyase) activity; or (k) represented by a polypeptide encoded by any one of the polynucleotides specified in (a) to (f).
在另一个实施方案中,所述酶促制备方法另外使用C4H(反式肉桂酸4-羟化酶)活性或多肽。优选的是,所述酶促制备方法使用与PPO活性或多肽和AT1活性或多肽和/或ODC活性或多肽和/或HPL活性或多肽和/或PAL活性或多肽和/或C4H活性或多肽组合的BBL多肽。在其它实施方案中,所述酶促制备方法使用与PPO和ODC和HPL和C4H活性或多肽组合的BBL多肽,或与PPO和AT1和ODC和HPL和PAL和C4H活性或多肽组合的BBL多肽;或与PPO和ODC和HPL和PAL和C4H活性组合的BBL多肽;或与PPO和AT1和ODC和HPL和PAL和C4H活性或多肽组合的BBL多肽。In another embodiment, the enzymatic preparation method additionally uses C4H (trans-cinnamate 4-hydroxylase) activity or polypeptide. Preferably, the enzymatic preparation method uses a BBL polypeptide in combination with a PPO activity or polypeptide and an AT1 activity or polypeptide and/or an ODC activity or polypeptide and/or an HPL activity or polypeptide and/or a PAL activity or polypeptide and/or a C4H activity or polypeptide. In other embodiments, the enzymatic preparation method uses a BBL polypeptide in combination with a PPO and an ODC and an HPL and a C4H activity or polypeptide, or a BBL polypeptide in combination with a PPO and an AT1 and an ODC and an HPL and a PAL and a C4H activity or polypeptide; or a BBL polypeptide in combination with a PPO and an ODC and an HPL and a PAL and a C4H activity; or a BBL polypeptide in combination with a PPO and an AT1 and an ODC and an HPL and a PAL and a C4H activity or polypeptide.
“C4H(反式肉桂酸4-羟化酶)活性或多肽”涉及C4H多肽或实现C4H多肽的酶功能或生物功能。反式肉桂酸4-羟化酶被描述为催化植物的苯丙素/木质素生物合成途径中将反式肉桂酸(CA)转化为对香豆酸(COA)的反应。"C4H (trans-cinnamate 4-hydroxylase) activity or polypeptide" relates to a C4H polypeptide or to an enzyme function or biological function that realizes a C4H polypeptide. Trans-cinnamate 4-hydroxylase is described as a reaction that catalyzes the conversion of trans-cinnamic acid (CA) to p-coumaric acid (COA) in the phenylpropanoid/lignin biosynthetic pathway of plants.
在特别优选的实施方案中,所述C4H(L-苯丙氨酸氨裂解酶)活性或多肽:(a)由具有SEQ ID NO:27的核苷酸序列的多核苷酸编码;(b)由作为SEQ ID NO:27的变体的多核苷酸编码;(c)由作为SEQ ID NO:27的等位基因变体的多核苷酸编码;(d)由作为SEQ ID NO:27的物种同源物的多核苷酸编码;(e)由与如在B(a)至(d)中的任一项中所定义的多核苷酸具有至少75%、80%、90%、95%、97%、98%或99%同一性的多核苷酸编码;(f)由能够在严谨条件下与在(a)至(d)中指定的多核苷酸中的任一种杂交的多核苷酸编码;(g)由具有SEQID NO:28的多肽代表;(h)由具有C4H(肉桂酸4-羟化酶)活性的SEQ ID NO:28的多肽片段代表;(i)由具有C4H(肉桂酸4-羟化酶)活性的SEQ ID NO:28的多肽结构域代表;(j)由包含与SEQ ID NO:28的氨基酸序列具有至少75%、80%、90%、95%、97%、98%或99%同一性的氨基酸序列并且具有C4H(肉桂酸4-羟化酶)活性的多肽代表;或(k)由在(a)至(f)中指定的多核苷酸中的任一种编码的多肽代表。In a particularly preferred embodiment, the C4H (L-phenylalanine ammonia lyase) activity or polypeptide: (a) is encoded by a polynucleotide having a nucleotide sequence of SEQ ID NO: 27; (b) is encoded by a polynucleotide that is a variant of SEQ ID NO: 27; (c) is encoded by a polynucleotide that is an allelic variant of SEQ ID NO: 27; (d) is encoded by a polynucleotide that is a species homolog of SEQ ID NO: 27; (e) is encoded by a polynucleotide that has at least 75%, 80%, 90%, 95%, 97%, 98% or 99% identity with a polynucleotide as defined in any one of B (a) to (d); (f) is encoded by a polynucleotide that can hybridize under stringent conditions with any one of the polynucleotides specified in (a) to (d); (g) is represented by a polypeptide having SEQ ID NO: 28; (h) is represented by a polypeptide having SEQ ID NO: 29; NO:28; (i) represented by a polypeptide domain of SEQ ID NO:28 having C4H (cinnamate 4-hydroxylase) activity; (j) represented by a polypeptide comprising an amino acid sequence that is at least 75%, 80%, 90%, 95%, 97%, 98% or 99% identical to the amino acid sequence of SEQ ID NO:28 and having C4H (cinnamate 4-hydroxylase) activity; or (k) represented by a polypeptide encoded by any one of the polynucleotides specified in (a) to (f).
在另一个实施方案中,所述酶促制备方法另外使用4CL(4-香豆酸:辅酶A连接酶)活性或多肽。优选的是,所述酶促制备方法使用与PPO活性或多肽和AT1活性或多肽和/或ODC活性或多肽和/或HPL活性或多肽和/或PAL活性或多肽和/或C4H活性或多肽和/或4CL活性或多肽组合的BBL多肽。在其它实施方案中,所述酶促制备方法使用与PPO和ODC和HPL和PAL和C4H和4CL活性或多肽组合的BBL多肽,或与PPO和AT1和ODC和HPL和PAL和C4H和4CL活性或多肽组合的BBL多肽;或与PPO和ODC和HPL和PAL和C4H和4CL活性组合的BBL多肽;或与PPO和AT1和ODC和HPL和PAL和C4H和4CL活性组合的BBL多肽;或与PPO和HPL和PAL和4CL活性组合的BBL多肽。In another embodiment, the enzymatic preparation method additionally uses 4CL (4-coumaric acid: CoA ligase) activity or polypeptide. Preferably, the enzymatic preparation method uses a BBL polypeptide in combination with a PPO activity or polypeptide and an AT1 activity or polypeptide and/or an ODC activity or polypeptide and/or an HPL activity or polypeptide and/or a PAL activity or polypeptide and/or a C4H activity or polypeptide and/or a 4CL activity or polypeptide. In other embodiments, the enzymatic production method uses a BBL polypeptide in combination with PPO and ODC and HPL and PAL and C4H and 4CL activities or polypeptides, or a BBL polypeptide in combination with PPO and AT1 and ODC and HPL and PAL and C4H and 4CL activities or polypeptides; or a BBL polypeptide in combination with PPO and ODC and HPL and PAL and C4H and 4CL activities; or a BBL polypeptide in combination with PPO and AT1 and ODC and HPL and PAL and C4H and 4CL activities; or a BBL polypeptide in combination with PPO and HPL and PAL and 4CL activities.
“4CL(4-香豆酸:辅酶A连接酶)活性或多肽”涉及4CL多肽或实现C4H多肽的酶功能或生物功能。"4CL (4-coumarate:CoA ligase) activity or polypeptide" relates to a 4CL polypeptide or to an enzyme function or biological function that realizes a C4H polypeptide.
4-香豆酸:辅酶A连接酶是作为酸-硫醇连接酶特异性地形成碳-硫键的连接酶。它催化羟基肉桂酸辅酶A酯的形成,并在从一般苯丙素代谢到香豆素的主要分支途径的分岔点处起至关重要的作用。4-Coumarate:CoA ligase is a ligase that specifically forms carbon-sulfur bonds as an acid-thiol ligase. It catalyzes the formation of hydroxycinnamate-CoA esters and plays a crucial role at the bifurcation point of the major branching pathway from general phenylpropanoid metabolism to coumarin.
在特别优选的实施方案中,所述4CL(4-香豆酸:辅酶A连接酶)活性或多肽:(a)由具有SEQ ID NO:29、105、107、109、111、113、115、117、119、121、123、125、127、129或131的核苷酸序列的多核苷酸编码;(b)由作为SEQ ID NO:29、105、107、109、111、113、115、117、119、121、123、125、127、129或131的变体的多核苷酸编码;(c)由作为SEQ ID NO:29、105、107、109、111、113、115、117、119、121、123、125、127、129或131的等位基因变体的多核苷酸编码;(d)由作为SEQ ID NO:29、105、107、109、111、113、115、117、119、121、123、125、127、129或131的物种同源物的多核苷酸编码;(e)由与如在(a)至(d)中的任一项中所定义的多核苷酸具有至少75%、80%、90%、95%、97%、98%或99%同一性的多核苷酸编码;(f)由能够在严谨条件下与在C(a)至(d)中指定的多核苷酸中的任一种杂交的多核苷酸编码;(g)由具有SEQ ID NO:30、106、108、110、112、114、116、118、120、122、124、126、128、130或132的多肽代表;(h)由具有4CL(4-香豆酸:辅酶A连接酶)活性的SEQ ID NO:30、106、108、110、112、114、116、118、120、122、124、126、128、130或132的多肽片段代表;(i)由具有4CL(4-香豆酸:辅酶A连接酶)活性的SEQ ID NO:30、106、108、110、112、114、116、118、120、122、124、126、128、130或132的多肽结构域代表;(j)由多肽包含与SEQ ID NO:30、106、108、110、112、114、116、118、120、122、124、126、128、130或132的氨基酸序列具有至少75%、80%、90%、95%、97%、98%或99%同一性的氨基酸序列并且具有4CL(4-香豆酸:辅酶A连接酶)活性的多肽代表;或(k)由在(a)至(f)中指定的多核苷酸中的任一种编码的多肽代表。In a particularly preferred embodiment, the 4CL (4-coumaric acid: CoA ligase) activity or polypeptide: (a) is encoded by a polynucleotide having a nucleotide sequence of SEQ ID NO: 29, 105, 107, 109, 111, 113, 115, 117, 119, 121, 123, 125, 127, 129 or 131; (b) is encoded by a polynucleotide that is a variant of SEQ ID NO: 29, 105, 107, 109, 111, 113, 115, 117, 119, 121, 123, 125, 127, 129 or 131; (c) is encoded by a polynucleotide that is a variant of SEQ ID NO: 29, 105, 107, 109, 111, 113, 115, 117, 119, 121, 123, 125, 127, 129 or 131. NO:29, 105, 107, 109, 111, 113, 115, 117, 119, 121, 123, 125, 127, 129 or 131; (d) encoded by a polynucleotide that is a species homolog of SEQ ID NO:29, 105, 107, 109, 111, 113, 115, 117, 119, 121, 123, 125, 127, 129 or 131; (e) encoded by a polynucleotide that is at least 75%, 80%, 90%, 95%, 97%, 98% or 99% identical to a polynucleotide as defined in any one of (a) to (d); (f) encoded by a polynucleotide that is capable of hybridizing under stringent conditions to any of the polynucleotides specified in C(a) to (d); (g) encoded by a polynucleotide having SEQ ID NO:29, 105, 107, 109, 111, 113, 115, 117, 119, 121, 123, 125, 127, 129 or 131. NO:30, 106, 108, 110, 112, 114, 116, 118, 120, 122, 124, 126, 128, 130 or 132; (h) represented by a polypeptide fragment of SEQ ID NO:30, 106, 108, 110, 112, 114, 116, 118, 120, 122, 124, 126, 128, 130 or 132 having 4CL (4-coumaric acid: CoA ligase) activity; (i) represented by a polypeptide fragment of SEQ ID NO:30, 106, 108, 110, 112, 114, 116, 118, 120, 122, 124, 126, 128, 130 or 132 having 4CL (4-coumaric acid: CoA ligase) activity. NO:30, 106, 108, 110, 112, 114, 116, 118, 120, 122, 124, 126, 128, 130 or 132; (j) represented by a polypeptide comprising an amino acid sequence that is at least 75%, 80%, 90%, 95%, 97%, 98% or 99% identical to the amino acid sequence of SEQ ID NO:30, 106, 108, 110, 112, 114, 116, 118, 120, 122, 124, 126, 128, 130 or 132 and has 4CL (4-coumaric acid: Coenzyme A ligase) activity; or (k) represented by a polypeptide encoded by any one of the polynucleotides specified in (a) to (f).
在另一个实施方案中,所述酶促制备方法另外使用HCT(羟基肉桂酰基-转移酶)活性或多肽。优选的是,所述酶促制备方法使用与PPO活性或多肽和AT1活性或多肽和/或ODC活性或多肽和/或HPL活性或多肽和/或PAL活性或多肽和/或C4H活性或多肽和/或4CL活性或多肽和/或HCT活性或多肽组合的BBL多肽。在其它实施方案中,所述酶促制备方法使用与PPO和ODC和HPL和PAL和C4H和4CL活性或多肽组合的BBL多肽,或与PPO和AT1和ODC和HPL和PAL和C4H和4CL和HCT活性或多肽组合的BBL多肽;或与PPO和ODC和HPL和PAL和C4H和4CL和HCT活性组合的BBL多肽;或与PPO和AT1和ODC和HPL和PAL和C4H和HCT活性组合的BBL多肽;或与PPO和HPL和PAL和C4H和4CL和HCT活性组合的BBL多肽。In another embodiment, the enzymatic preparation method additionally uses HCT (hydroxycinnamoyl-transferase) activity or polypeptide. Preferably, the enzymatic preparation method uses a BBL polypeptide in combination with a PPO activity or polypeptide and an AT1 activity or polypeptide and/or an ODC activity or polypeptide and/or an HPL activity or polypeptide and/or a PAL activity or polypeptide and/or a C4H activity or polypeptide and/or a 4CL activity or polypeptide and/or an HCT activity or polypeptide. In other embodiments, the enzymatic production method uses a BBL polypeptide in combination with PPO and ODC and HPL and PAL and C4H and 4CL activities or polypeptides, or a BBL polypeptide in combination with PPO and AT1 and ODC and HPL and PAL and C4H and 4CL and HCT activities or polypeptides; or a BBL polypeptide in combination with PPO and ODC and HPL and PAL and C4H and 4CL and HCT activities; or a BBL polypeptide in combination with PPO and AT1 and ODC and HPL and PAL and C4H and HCT activities; or a BBL polypeptide in combination with PPO and HPL and PAL and C4H and 4CL and HCT activities.
“HCT(羟基肉桂酰基-转移酶)活性或多肽”涉及HCT多肽或实现HCT多肽的酶功能或生物功能。也被称作莽草酸羟基肉桂酰基转移酶的羟基肉桂酰基-转移酶参与苯丙素生物合成。它使用4-香豆酰基辅酶A和莽草酸作为底物。"HCT (hydroxycinnamoyl-transferase) activity or polypeptide" relates to an HCT polypeptide or realizes an enzyme function or biological function of an HCT polypeptide. Hydroxycinnamoyl-transferase, also known as shikimate hydroxycinnamoyltransferase, is involved in phenylpropanoid biosynthesis. It uses 4-coumaroyl-CoA and shikimate as substrates.
在特别优选的实施方案中,所述HCT(羟基肉桂酰基-转移酶)活性或多肽:(a)由具有SEQ ID NO:31、33、35、37、39、41或43的核苷酸序列的多核苷酸编码;(b)由作为SEQ IDNO:31、33、35、37、39、41或43的变体的多核苷酸编码;(c)由作为SEQ ID NO:31、33、35、37、39、41或43的等位基因变体的多核苷酸编码;(d)由作为SEQ ID NO:31、33、35、37、39、41或43的物种同源物的多核苷酸编码(e)由与如在(a)至(d)中的任一项中所定义的多核苷酸具有至少75%、80%、90%、95%、97%、98%或99%同一性的多核苷酸编码;(f)由能够在严谨条件下与在(a)至(d)中指定的多核苷酸中的任一种杂交的多核苷酸编码;(g)由具有SEQID NO:32、34、36、38、40、42或44的多肽代表;(h)由具有HCT(羟基肉桂酰基-转移酶)活性的SEQ ID NO:32、34、36、38、40、42或44的多肽片段代表;(i)由具有HCT(羟基肉桂酰基-转移酶)活性的SEQ ID NO:32、34、36、38、40、42或44的多肽结构域代表;(j)由包含与SEQ IDNO:32、34、36、38、40、42或44的氨基酸序列具有至少75%、80%、90%、95%、97%、98%或99%同一性的氨基酸序列并且具有HCT(羟基肉桂酰基-转移酶)活性的多肽代表;或(k)由在(a)至(f)中指定的多核苷酸中的任一种编码的多肽代表。In a particularly preferred embodiment, the HCT (hydroxycinnamoyl-transferase) activity or polypeptide is: (a) encoded by a polynucleotide having a nucleotide sequence of SEQ ID NO: 31, 33, 35, 37, 39, 41 or 43; (b) encoded by a polynucleotide that is a variant of SEQ ID NO: 31, 33, 35, 37, 39, 41 or 43; (c) encoded by a polynucleotide that is an allelic variant of SEQ ID NO: 31, 33, 35, 37, 39, 41 or 43; (d) encoded by a polynucleotide that is an allelic variant of SEQ ID NO: 31, 33, 35, 37, 39, 41 or 43. NO:31, 33, 35, 37, 39, 41 or 43; (e) encoded by a polynucleotide having at least 75%, 80%, 90%, 95%, 97%, 98% or 99% identity with a polynucleotide as defined in any one of (a) to (d); (f) encoded by a polynucleotide capable of hybridizing to any of the polynucleotides specified in (a) to (d) under stringent conditions; (g) represented by a polypeptide having SEQ ID NO:32, 34, 36, 38, 40, 42 or 44; (h) represented by a polypeptide fragment of SEQ ID NO:32, 34, 36, 38, 40, 42 or 44 having HCT (hydroxycinnamoyl-transferase) activity; (i) represented by a polypeptide fragment of SEQ ID NO:32, 34, 36, 38, 40, 42 or 44 having HCT (hydroxycinnamoyl-transferase) activity. NO:32, 34, 36, 38, 40, 42 or 44 polypeptide domain representative; (j) comprises and SEQ ID NO:32, 34, 36, 38, 40, 42 or 44 amino acid sequence has at least 75%, 80%, 90%, 95%, 97%, 98% or 99% identity polypeptide and has HCT (hydroxycinnamoyl -transferase) activity representative; Or (k) by any one of the polypeptides encoded by the polynucleotides specified in (a) to (f) representative.
在另一个实施方案中,所述酶促制备方法另外使用C3H(香豆酸3-羟化酶)活性或多肽。优选的是,所述酶促制备方法使用与PPO活性或多肽和AT1活性或多肽和/或ODC活性或多肽和/或HPL活性或多肽和/或PAL活性或多肽和/或C4H活性或多肽和/或4CL活性或多肽和/或HCT活性或多肽和/或C3H活性或多肽组合的BBL多肽。在其它实施方案中,所述酶促制备方法使用与PPO和ODC和HPL和PAL和C4H和4CL活性或多肽组合的BBL多肽,或与PPO和AT1和ODC和HPL和PAL和C4H和4CL和HCT和C3H活性或多肽组合的BBL多肽;或与PPO和ODC和HPL和PAL和C4H和4CL和HCT和C3H活性或多肽活性组合的BBL多肽;或与PPO和AT1和HPL和PAL和C4H和4CL和HCT和C3H活性或多肽活性组合的BBL多肽;或与PPO和HPL和PAL和4CL和HCT和C3H活性或多肽活性组合的BBL多肽。In another embodiment, the enzymatic preparation method additionally uses C3H (coumarate 3-hydroxylase) activity or polypeptide. Preferably, the enzymatic preparation method uses a BBL polypeptide in combination with a PPO activity or polypeptide and an AT1 activity or polypeptide and/or an ODC activity or polypeptide and/or an HPL activity or polypeptide and/or a PAL activity or polypeptide and/or a C4H activity or polypeptide and/or a 4CL activity or polypeptide and/or an HCT activity or polypeptide and/or a C3H activity or polypeptide. In other embodiments, the enzymatic production method uses a BBL polypeptide combined with PPO and ODC and HPL and PAL and C4H and 4CL activities or polypeptides, or a BBL polypeptide combined with PPO and AT1 and ODC and HPL and PAL and C4H and 4CL and HCT and C3H activities or polypeptides; or a BBL polypeptide combined with PPO and ODC and HPL and PAL and C4H and 4CL and HCT and C3H activities or polypeptide activities; or a BBL polypeptide combined with PPO and AT1 and HPL and PAL and C4H and 4CL and HCT and C3H activities or polypeptide activities; or a BBL polypeptide combined with PPO and HPL and PAL and 4CL and HCT and C3H activities or polypeptide activities.
“C3H(香豆酸3-羟化酶)活性或多肽”涉及C3H多肽或实现C3H多肽的酶功能或生物功能。发现香豆酸3-羟化酶在木质素生物合成中催化4-香豆酸向咖啡酸的直接3-羟基化。"C3H (coumarate 3-hydroxylase) activity or polypeptide" relates to a C3H polypeptide or realizes an enzyme function or biological function of a C3H polypeptide. Coumarate 3-hydroxylases are found to catalyze the direct 3-hydroxylation of 4-coumaric acid to caffeic acid in lignin biosynthesis.
在特别优选的实施方案中,所述C3H(香豆酸3-羟化酶)活性或多肽:(a)由具有SEQID NO:45的核苷酸序列的多核苷酸编码;(b)由作为SEQ ID NO:45的变体的多核苷酸编码;(c)由作为SEQ ID NO:45的等位基因变体的多核苷酸编码;(d)由作为SEQ ID NO:45的物种同源物的多核苷酸编码;(e)由与如在E(a)至(d)中的任一项中所定义的多核苷酸具有至少75%、80%、90%、95%、97%、98%或99%同一性的多核苷酸编码;(f)由能够在严谨条件下与在(a)至(d)中指定的多核苷酸中的任一种杂交的多核苷酸编码;(g)由具有SEQ ID NO:46的多肽代表;(h)由具有C3H(香豆酸3-羟化酶)活性的SEQ ID NO:46的多肽片段代表;(i)由具有C3H(香豆酸3-羟化酶)活性的SEQ ID NO:46的多肽结构域代表;(j)由包含与SEQ IDNO:46的氨基酸序列具有至少75%、80%、90%、95%、97%、98%或99%同一性的氨基酸序列并且具有C3H(香豆酸3-羟化酶)活性的多肽代表;或(k)由在(a)至(f)中指定的多核苷酸中的任一种编码的多肽代表。In a particularly preferred embodiment, the C3H (coumarate 3-hydroxylase) activity or polypeptide: (a) is encoded by a polynucleotide having a nucleotide sequence of SEQ ID NO: 45; (b) is encoded by a polynucleotide that is a variant of SEQ ID NO: 45; (c) is encoded by a polynucleotide that is an allelic variant of SEQ ID NO: 45; (d) is encoded by a polynucleotide that is a species homolog of SEQ ID NO: 45; (e) is encoded by a polynucleotide that has at least 75%, 80%, 90%, 95%, 97%, 98% or 99% identity with a polynucleotide as defined in any one of E (a) to (d); (f) is encoded by a polynucleotide that can hybridize under stringent conditions with any one of the polynucleotides specified in (a) to (d); (g) is represented by a polypeptide having SEQ ID NO: 46; (h) is represented by a polypeptide having SEQ ID NO: 47 having C3H (coumarate 3-hydroxylase) activity. NO:46; (i) represented by a polypeptide domain of SEQ ID NO:46 having C3H (coumarate 3-hydroxylase) activity; (j) represented by a polypeptide comprising an amino acid sequence that is at least 75%, 80%, 90%, 95%, 97%, 98% or 99% identical to the amino acid sequence of SEQ ID NO:46 and having C3H (coumarate 3-hydroxylase) activity; or (k) represented by a polypeptide encoded by any one of the polynucleotides specified in (a) to (f).
根据本发明,可以在适合产生如本文中定义的化合物的任何环境或背景下进行所述酶促制备。所述环境可以是体外环境或体内环境。本文中使用的术语“体外”是指,利用生物分子(例如如本文中定义的活性或多肽)以及任选地利用在其正常生物背景(例如在管或反应器或反应容器等中)之外的另外因素(诸如能量载体、辅因子、还原当量、离子等)进行制备。在体外环境中通常不存在细胞或组织。According to the present invention, the enzymatic preparation can be carried out in any environment or background suitable for producing a compound as defined herein. The environment can be an in vitro environment or an in vivo environment. The term "in vitro" as used herein refers to the preparation using biomolecules (e.g., activities or polypeptides as defined herein) and optionally using additional factors (such as energy carriers, cofactors, reducing equivalents, ions, etc.) outside their normal biological background (e.g., in a tube or reactor or reaction vessel, etc.). Cells or tissues are generally not present in an in vitro environment.
所述环境可以可替换地是“体内”环境。在这样的环境中,生物分子可以在细胞环境中提供,优选在活细胞、组织或生物体中提供。这可能包括提供由一个细胞或一组细胞产生的所述活性或多肽,或由细胞或细胞环境提供另外的因素,诸如能量载体、辅因子、还原当量、离子等。在某些实施方案中,这些组分中的一种或多种可以从细胞、组织或生物体的外部提供,例如经由培养基、注射等。所述体内环境可以是同源环境或自然环境,即其中生物分子等在其自然背景中提供的环境。可替换地,所述体内环境是异源环境。本文中使用的术语“异源”是指,酶促制备所需的至少一种活性或多肽或编码这种活性或多肽的序列或任何其它另外的因素(诸如能量载体、辅因子)通常或天然地不存在于用于制备的细胞、组织或生物体中,而是被引入到所述细胞、组织或生物体中或在生产细胞、组织或生物体中被修饰。所述异源环境可以是例如高等植物物种,其中已经引入(例如通过基因工程)酶促制备所需的一种或多种活性或多肽、或者编码一种或多种活性或多肽的序列。在其它实施方案中,所述异源环境可以是微生物细胞,例如细菌或真菌细胞,其包含酶促制备所需的一种或多种活性或多肽,或者已经通过例如基因工程或转化引入细胞中的编码一种或多种活性或多肽的序列。The environment may alternatively be an "in vivo" environment. In such an environment, biomolecules may be provided in a cellular environment, preferably in a living cell, tissue or organism. This may include providing the activity or polypeptide produced by a cell or a group of cells, or providing additional factors, such as energy carriers, cofactors, reducing equivalents, ions, etc., by a cell or cell environment. In certain embodiments, one or more of these components may be provided from the outside of a cell, tissue or organism, such as via a culture medium, injection, etc. The in vivo environment may be a homologous environment or a natural environment, i.e., an environment in which biomolecules, etc. are provided in their natural context. Alternatively, the in vivo environment is a heterologous environment. The term "heterologous" as used herein refers to at least one activity or polypeptide required for enzymatic preparation or a sequence encoding such an activity or polypeptide or any other additional factors (such as energy carriers, cofactors) that are not usually or naturally present in the cells, tissues or organisms used for preparation, but are introduced into the cells, tissues or organisms or modified in the production cells, tissues or organisms. The heterologous environment can be, for example, a higher plant species, into which one or more activities or polypeptides required for enzymatic production, or sequences encoding one or more activities or polypeptides, have been introduced (e.g., by genetic engineering). In other embodiments, the heterologous environment can be a microbial cell, such as a bacterial or fungal cell, comprising one or more activities or polypeptides required for enzymatic production, or sequences encoding one or more activities or polypeptides that have been introduced into the cell, for example, by genetic engineering or transformation.
在具体的优选的实施方案中,根据本发明的酶促制备在任何合适的条件下利用在体外环境中提供的活性或多肽执行。用于制备所需的活性或多肽可以包括本文定义的活性或多肽,例如BBL2多肽和PPO、AT1、ODC、HPL、PAL、C4H、4CL、HCT和/或C3H多肽或活性。可以以任何合适的纯度、浓度或量提供这些活性或多肽中的一种或多种。例如,可以根据本领域技术人员已知的合适方案获得、提取和/或纯化一种或多种活性或多肽。例如,制备根据本发明的化合物所需的一种或多种活性或多肽可以在合适的微生物(即细菌表达系统)中从载体或质粒表达,优选地通过使用合适的过表达启动子。所述表达可以在合适的温度条件下进行,例如在37℃或16℃。随后,可以将细菌细胞收集、裂解和匀浆。可以将上清液与合适的树脂一起孵化或在合适的柱上孵化,以纯化和分离多肽级分。在一个特别优选的实施方案中,按照在实施例中、特别是在实施例16中描述的方式进行制备。In a specific preferred embodiment, the enzymatic preparation according to the present invention is performed under any suitable conditions using an activity or polypeptide provided in an in vitro environment. The activity or polypeptide required for the preparation may include an activity or polypeptide defined herein, such as a BBL2 polypeptide and a PPO, AT1, ODC, HPL, PAL, C4H, 4CL, HCT and/or C3H polypeptide or activity. One or more of these activities or polypeptides may be provided in any suitable purity, concentration or amount. For example, one or more activities or polypeptides may be obtained, extracted and/or purified according to a suitable scheme known to those skilled in the art. For example, one or more activities or polypeptides required for the preparation of the compound according to the present invention may be expressed from a vector or plasmid in a suitable microorganism (i.e., a bacterial expression system), preferably by using a suitable overexpression promoter. The expression may be carried out under suitable temperature conditions, such as at 37° C. or 16° C. Subsequently, the bacterial cells may be collected, lysed and homogenized. The supernatant may be incubated with a suitable resin or incubated on a suitable column to purify and separate the polypeptide fraction. In a particularly preferred embodiment, the preparation is carried out in the manner described in the examples, particularly in Example 16.
根据某些实施方案,可以通过活性或多肽的不同组或组合或选择来进行体外酶促制备。分组通常可以根据制备本发明的化合物的总体途径中的步骤或进展来定义,例如如图19所示。根据活性或多肽的选择,可能需要特定的起始代谢物或化合物。例如,如果选择一组包含PPO和BBL2的活性或多肽,则可能需要诸如N-咖啡酰基腐胺的起始代谢物或起始化合物,并因此在体外环境中以合适的量、纯度或浓度提供。此外,可以提供另一种反应物,诸如(Z)-3-己烯醛(Z3H)。According to certain embodiments, in vitro enzymatic preparation can be carried out by different groups or combinations or selections of activity or polypeptide. Grouping can usually be defined according to the steps or progress in the overall approach to prepare the compound of the present invention, such as as shown in Figure 19. According to the selection of activity or polypeptide, specific starting metabolites or compounds may be required. For example, if a group of activities or polypeptides comprising PPO and BBL2 is selected, starting metabolites or starting compounds such as N-caffeoyl putrescine may be required, and therefore provided with suitable amount, purity or concentration in an in vitro environment. In addition, another reactant, such as (Z)-3-hexenal (Z3H) can be provided.
例如,如果选择一组包含AT1、ODC、HPL、PPO和BBL2的活性或多肽,则可能需要诸如腐胺、精胺或精脒的起始代谢物或起始化合物,并因此在体外环境中以适当的量、纯度或浓度提供。此外,可以提供另一种反应物,诸如咖啡酰基辅酶A。For example, if a group of activities or polypeptides comprising AT1, ODC, HPL, PPO and BBL2 is selected, a starting metabolite or starting compound such as putrescine, spermine or spermidine may be required and thus provided in an appropriate amount, purity or concentration in an in vitro environment. In addition, another reactant such as caffeoyl-CoA may be provided.
例如,如果选择一组包含PAL、C4H、4CL、HCT、C3H AT1、ODC、HPL、PPO和BBL2的活性或多肽,则可能需要诸如苯丙氨酸的起始代谢物或起始化合物,并因此在体外环境中以适当的量、纯度或浓度提供。此外,可以提供另一种反应物。For example, if a group of activities or polypeptides including PAL, C4H, 4CL, HCT, C3H AT1, ODC, HPL, PPO and BBL2 is selected, a starting metabolite or starting compound such as phenylalanine may be required and thus provided in an appropriate amount, purity or concentration in an in vitro environment. In addition, another reactant may be provided.
除了上述例子之外,本发明还进一步考虑了产生本发明的化合物本文定义的多肽或活性的任何其它选择或分组,以及任何其它合适的反应、起始化合物或代谢物的添加。还考虑使用本文定义的活性或多肽的子组来产生某种中间产物,并将该中间体转移到包含本文定义的活性或多肽的不同或其它子组的不同环境。在其它实施方案中,可以以组合形式提供活性或多肽,例如,将所有分组或子组以组合方式引入体外环境,或者可以连续提供它们,例如,在前一次提供已经经过特定时间段之后提供第二、第三、第四等活性等。In addition to the above examples, the present invention further contemplates any other selection or grouping of polypeptides or activities defined herein for compounds of the present invention, as well as any other suitable reaction, starting compound or addition of metabolites. It is also contemplated that a subgroup of an activity or polypeptide defined herein is used to produce a certain intermediate, and that the intermediate is transferred to a different environment comprising a different or other subgroup of an activity or polypeptide defined herein. In other embodiments, the activity or polypeptide may be provided in a combined form, for example, all groupings or subgroups may be introduced into an in vitro environment in a combined manner, or they may be provided continuously, for example, providing a second, third, fourth, etc. activity, etc., after a specific time period has passed in the previous provision.
在其它实施方案中,可以通过在特定时间段以后取样来控制制备方法和/或其效率。随后可以测试这样的样品以确定某些化合物和/或以测量这样的化合物的量,所述化合物例如为如本文中定义的根据本发明的中间体或化合物。对于这样的测试,可以采用例如质谱手段和方法。In other embodiments, the preparation method and/or its efficiency can be controlled by sampling after a specific time period. Such samples can be tested subsequently to determine certain compounds and/or to measure the amount of such compounds, such as intermediates or compounds according to the present invention as defined herein. For such tests, mass spectrometry means and methods can be used, for example.
所述制备方法可以用任何合适的缓冲液(例如乙酸盐缓冲液)进行。特别优选的是,所述体外制备方法在约4.8或更低的pH值的条件下进行,例如pH 4.7、4.6、4.5、4.4.、4.3、4.2、4.1、4.0、3.9、3.8、3.7、3.6、3.5、3.4、3.3、3.2、3.1、3.0等,或上述值之间的任何值或任何更低的值,特别优选的是pH 4.8。在>80mM乙酸盐缓冲液中可以获得这样的pH值。在另外的实施方案中,所述方法在约5至15℃的温度下进行,优选在约6至12℃,更优选在约7至10℃,最优选在约8℃的温度下进行。在其它实施方案中,所述方法进行任意合适的时间段,优选24至72小时,更优选约48小时。其它细节可以从实施例中得出,例如从实施例16或17。可替换地,可以从任何合适的供应商购买活性或多肽。The preparation method can be carried out with any suitable buffer (e.g., acetate buffer). Particularly preferably, the in vitro preparation method is carried out under the conditions of about 4.8 or lower pH values, such as pH 4.7, 4.6, 4.5, 4.4., 4.3, 4.2, 4.1, 4.0, 3.9, 3.8, 3.7, 3.6, 3.5, 3.4, 3.3, 3.2, 3.1, 3.0, etc., or any value between the above values or any lower value, particularly preferably pH 4.8. Such pH values can be obtained in> 80mM acetate buffer. In other embodiments, the method is carried out at a temperature of about 5 to 15°C, preferably at a temperature of about 6 to 12°C, more preferably at a temperature of about 7 to 10°C, and most preferably at a temperature of about 8°C. In other embodiments, the method is carried out for any suitable time period, preferably 24 to 72 hours, more preferably about 48 hours. Other details can be drawn from the examples, for example from Example 16 or 17. Alternatively, the activity or polypeptide may be purchased from any suitable supplier.
在进一步优选的实施方案中,通过使用固相萃取(SPE)方案或涉及固相萃取(SPE)方案的使用来进行该制备方法。特别优选的是,所述SPE使用氩气流。In a further preferred embodiment, the preparation method is performed by using or involving the use of a solid phase extraction (SPE) protocol. It is particularly preferred that the SPE uses an argon flow.
在体内生产的上下文中使用的术语“制备”是指通过合适的活细胞或组织或生物体制备或合成本发明的化合物。合成的化合物可以进一步被所述细胞、组织或生物体积累。术语“积累”或“累积”是指,合成的化合物储存在细胞内和/或排泄到周围环境中,在这两种情况下都导致与天然或野生型细胞或生物体相比化合物浓度的总体增加,所述天然或野生型细胞或生物体例如不包含或表达如本文中定义的活性或多肽,例如BBL2、PPO、AT1、ODC、HPL、PAL、C4H、4CL、HCT和/或C3H活性。The term "preparation" used in the context of in vivo production refers to the preparation or synthesis of the compounds of the invention by suitable living cells or tissues or organisms. The synthesized compounds may further be accumulated by the cells, tissues or organisms. The terms "accumulation" or "accumulation" refer to the storage of the synthesized compounds within the cells and/or excretion into the surrounding environment, in both cases resulting in an overall increase in the concentration of the compound compared to a natural or wild-type cell or organism, which, for example, does not contain or express an activity or polypeptide as defined herein, such as BBL2, PPO, AT1, ODC, HPL, PAL, C4H, 4CL, HCT and/or C3H activity.
为了在体内制备本发明的化合物,本发明在某些实施方案中考虑在合适的微生物细胞或生物体中进行异源制备。合适的微生物细胞或生物体的例子包括原核或真核表达宿主。例如,微生物细胞或生物体可以是细菌,例如克雷伯氏菌属(Klebsiella)、梭菌属(Clostridium)、芽孢杆菌属(Bacillus)、节杆菌属(Arthobacter)、链霉菌属(Streptomyces)、棒杆菌属(Corynebacterium)、欧文氏菌属(Erwinia)、黄单胞菌属(Xanthomonas)、乳杆菌属(Lactobacillus)、热解纤维素菌属(Caldicellulosiruptor)、假单胞菌属(Pseudomonas)、食烷菌属(Alcanivorax)、短杆菌属(Brevibacterium)、双歧杆菌属(Bifidobacterium)、埃希氏菌属(Escherichia)或葡萄球菌属(Staphylococcus)的细菌。优选地,所述细菌可以属于埃希氏菌属,更优选地,所述细菌是大肠杆菌。还考虑采用真菌,例如曲霉菌属(Aspergillus)、假丝酵母属(Candida)、酵母属(Saccharomyces)、黑粉菌属(Ustilago)、隐球菌属(Cryptococcus)、镰孢菌属(Fusarium)、根霉菌属(Rhizopus)、梨孢菌属(Magnaporthe)、驹形氏酵母属(Komagataella)、木霉属(Trichderma)、青霉属(Penicillium)、支顶孢属(Acremonium)、毛霉菌属(Mucor)、链格孢属(Alternaria)、葡萄孢属(Botrytis)、内座壳属(Endothia)、丝核菌属(Rhizoctonia)、核盘菌属(Sclerotinia)、克鲁维酵母属(Klyveromyces)、球拟酵母属(Torulopsis)、侧孢霉属(Sporotrichum)、地丝菌属(Geotrichum)、轮枝孢属(Verticillium)、葡萄座腔菌属(Botryosphaeria)、单端孢霉属(Trichothecium)、汉逊酵母属(Hansenula)、裂殖酵母属(Schizosaccharomyces)、酒香酵母属(Brettanomyces)或脉孢霉属(Neurospora)的真菌。优选采用假丝酵母属和酵母属。In order to prepare the compound of the present invention in vivo, the present invention considers in certain embodiments in suitable microbial cells or organisms to carry out heterologous preparation.The example of suitable microbial cells or organisms includes prokaryotic or eukaryotic expression host.For example, microbial cells or organisms can be bacterium, such as Klebsiella, Clostridium, Bacillus, Arthobacter, Streptomyces, Corynebacterium, Erwinia, Xanthomonas, Lactobacillus, Caldicellulosiruptor, Pseudomonas, Alcanivorax, Brevibacterium, Bifidobacterium, Escherichia or Staphylococcus. Preferably, the bacterium may belong to the genus Escherichia, more preferably, the bacterium is Escherichia coli. It is also contemplated to use fungi, such as Aspergillus, Candida, Saccharomyces, Ustilago, Cryptococcus, Fusarium, Rhizopus, Magnaporthe, Komagataella, Trichderma, Penicillium, Acremonium, Mucor, Alternaria, Botrytis, Entomophilus, and the like. The present invention also provides a kind of fungus of the genera of the genus ...
在具体实施方案中,所述方法考虑在培养基中培育所述微生物细胞或生物体。本文中使用的术语“在培养基中培育”指使用本领域技术人员已知的任何合适的手段和方法,其允许本文所定义的细胞或生物体的生长并且其适合于本发明的化合物在所述细胞或生物体中的合成和/或积累。例如,所述培养基可以适应生物体的生长模式,例如包括碳源,或者在自养生物体的情况下没有碳源。In a specific embodiment, the method contemplates cultivating the microbial cells or organisms in a culture medium. As used herein, the term "cultivating in a culture medium" refers to the use of any suitable means and methods known to those skilled in the art that allow the growth of cells or organisms as defined herein and that are suitable for the synthesis and/or accumulation of the compounds of the present invention in the cells or organisms. For example, the culture medium can be adapted to the growth pattern of the organism, for example, including a carbon source, or without a carbon source in the case of an autotrophic organism.
在大肠杆菌和相关生物体的具体实施方案中,可以使用诸如Terrific Broth(TB)、Luria-Bertani培养基(LB)或M9基本培养基等培养基。本领域技术人员将进一步意识到本文中也考虑的适合大肠杆菌的其它培养基及其制备,例如从合适的文献来源或数据库。通常,TB培养基可以在1升单位中包含12g Bacto胰蛋白胨、24g Bacto酵母浸出物、4mL甘油,添加蒸馏水至900ml,高压灭菌,并随后添加100mL无菌的0.17MKH2PO4和0.72M K2HPO4来完成。通常,LB培养基可以在1升单位中包含10g Bacto胰蛋白胨、5g酵母浸出物、10gNaCl,添加蒸馏水至1000ml,随后高压灭菌。通常,M9基本培养基在1升单位中可以包含880ml无菌水、100ml M9盐储备溶液、1ml高压灭菌的1M MgSO4、0.1ml高压灭菌的1M CaCl2和20ml 20%葡萄糖(无菌),其中所述M9盐储备溶液(10x)包含60g Na2HPO4 x 7H2O、30gKH2PO4、5g NaCl、10g NH4Cl,向其中添加水至1000ml,并随后高压灭菌。In the specific embodiment of E. coli and related organisms, culture media such as Terrific Broth (TB), Luria-Bertani medium (LB) or M9 minimal medium can be used. Those skilled in the art will further appreciate that other culture media suitable for E. coli are also considered herein and their preparation, for example from suitable literature sources or databases. Typically, TB culture media can include 12g Bacto tryptone, 24g Bacto yeast extract, 4mL glycerol in 1 liter unit, add distilled water to 900ml, autoclave, and then add 100mL sterile 0.17MKH 2 PO 4 and 0.72MK 2 HPO 4 to complete. Typically, LB culture media can include 10g Bacto tryptone, 5g yeast extract, 10g NaCl in 1 liter unit, add distilled water to 1000ml, and then autoclave. Typically, M9 minimal medium may comprise, in 1 liter unit, 880 ml sterile water, 100 ml M9 salt stock solution, 1 ml autoclaved 1 M MgSO 4 , 0.1 ml autoclaved 1 M CaCl 2 and 20 ml 20% glucose (sterile), wherein the M9 salt stock solution (10x) comprises 60 g Na 2 HPO 4 x 7H 2 O, 30 g KH 2 PO 4 , 5 g NaCl, 10 g NH 4 Cl, to which water is added to 1000 ml and then autoclaved.
培养可以以分批过程或连续发酵过程进行。优选地,使细胞或生物体在有诸如苯丙氨酸或其它合适的氨基酸等前体存在下培育。进行分批或连续发酵过程的方法是本领域技术人员所熟知的,并在文献中有所描述,例如在Li等人,Microb Cell Fact,2015,14(83)中。培养可以在特定温度条件下进行,例如,15℃至37℃之间,优选20℃至30℃之间或15℃至30℃之间,更优选20℃至30℃之间,且最优选在约24℃下。在另一个实施方案中,培养可以在pH 3至4.8的pH值范围内进行。发酵时间可能因发酵方式的程度、所用培养基、所用生物体等而变化。在本发明的某些实施方案中,可以使用约6至72h的发酵时间,优选约10至24h的发酵时间,更优选12、14、16、18或20h的发酵时间,或者上述值之间的任何值。发酵可以从新接种的培养物开始,例如来自固体培养基或冷冻备用物。优选的是,发酵从预培养物开始,例如过夜培养物。因此,可以将细胞在特定的OD600值转移到主培养物中,例如在0.5至0.8的OD600,优选在0.6。如果进行分批发酵,可以在高密度下在葡萄糖限制的限定基本培养基中培养细胞,可以在约1至100、优选约100的特定OD600值停止形成。其它细节可以从合适的文献来源获得,诸如Li等人,Microb Cell Fact,2015,14(83)。The culture may be carried out in a batch process or a continuous fermentation process. Preferably, the cells or organisms are cultured in the presence of precursors such as phenylalanine or other suitable amino acids. Methods for carrying out batch or continuous fermentation processes are well known to those skilled in the art and are described in the literature, for example in Li et al., Microb Cell Fact, 2015, 14 (83). The culture may be carried out under specific temperature conditions, for example, between 15°C and 37°C, preferably between 20°C and 30°C or between 15°C and 30°C, more preferably between 20°C and 30°C, and most preferably at about 24°C. In another embodiment, the culture may be carried out in a pH range of pH 3 to 4.8. The fermentation time may vary depending on the degree of fermentation, the culture medium used, the organism used, etc. In certain embodiments of the present invention, a fermentation time of about 6 to 72 h may be used, preferably a fermentation time of about 10 to 24 h, more preferably a fermentation time of 12, 14, 16, 18 or 20 h, or any value between the above values. Fermentation can be started from a newly inoculated culture, for example from a solid medium or a frozen standby. Preferably, fermentation is started from a pre-culture, for example an overnight culture. Therefore, cells can be transferred to the main culture at a specific OD 600 value, for example at an OD 600 of 0.5 to 0.8, preferably at 0.6. If batch fermentation is performed, cells can be cultured at high density in a defined minimal medium restricted by glucose, and formation can be stopped at a specific OD 600 value of about 1 to 100, preferably about 100. Other details can be obtained from suitable literature sources, such as Li et al., Microb Cell Fact, 2015, 14 (83).
在进一步的具体实施方案中,所述培养基可以包含另外的物质。这样的另外的物质的一个例子是抗生素,例如四环素、氨苄西林、卡那霉素。这样的抗生素可以用作包含相应抗性盒的染色体外元件的选择工具,或用作相应调节型启动子的诱导物,例如如下所定义的。它们可以以任何合适的浓度使用,例如对于氨苄西林,合适的浓度范围为50至400μg/ml,诸如50、100、150μg/ml,或者对于卡那霉素,合适的范围为25至50μg/ml,诸如25或50μg/ml。其它细节对于本领域技术人员来说是已知的,或者可以从合适的文献来源获得。In further specific embodiments, the culture medium may include other substances. An example of such other substances is an antibiotic, such as tetracycline, ampicillin, kanamycin. Such antibiotics may be used as a selection tool for the extrachromosomal elements comprising the corresponding resistance box, or as an inducer for the corresponding regulated promoter, such as defined below. They may be used at any suitable concentration, such as for ampicillin, a suitable concentration range of 50 to 400 μg/ml, such as 50,100,150 μg/ml, or for kanamycin, a suitable range of 25 to 50 μg/ml, such as 25 or 50 μg/ml. Other details are known to those skilled in the art, or may be obtained from suitable literature sources.
为了在体内制备本发明的化合物,本发明可替换地在某些实施方案中考虑在合适的真核生物中,优选高等真核细胞或生物体中,或在所述生物体的组织中,优选如下文定义的生物体、细胞或组织中,进行异源制备。For the in vivo preparation of the compounds of the invention, the present invention alternatively contemplates in certain embodiments a heterologous preparation in a suitable eukaryotic organism, preferably a higher eukaryotic cell or organism, or in a tissue of said organism, preferably an organism, cell or tissue as defined below.
在实施方案中,可以在高等真核细胞或生物体(诸如植物细胞,植物组织或植物生物体)中在体内制备本发明的化合物,以便在所述植物细胞或组织中积累所述化合物,目的是随后提取它,例如借助合适的植物材料提取方法,优选地如实施例中所述。在一个替代实施方案中,可以在高等真核细胞或生物体(诸如植物细胞、植物组织或植物生物体)中在体内制备本发明的化合物,以便提高用于制备的细胞、组织或生物体对昆虫食草动物的抗性,例如通常攻击如本文所定义的用于制备的植物的食草动物。因此可以保护相应的用于制备的细胞、组织或生物体免受这样的攻击,从而提高收成和产量。In an embodiment, the compounds of the invention may be prepared in vivo in higher eukaryotic cells or organisms (such as plant cells, plant tissues or plant organisms) in order to accumulate the compounds in the plant cells or tissues for the purpose of subsequently extracting them, for example by means of a suitable plant material extraction method, preferably as described in the examples. In an alternative embodiment, the compounds of the invention may be prepared in vivo in higher eukaryotic cells or organisms (such as plant cells, plant tissues or plant organisms) in order to increase the resistance of the prepared cells, tissues or organisms to insect herbivores, such as herbivores that typically attack the plants prepared as defined herein. Thus, the corresponding prepared cells, tissues or organisms may be protected from such attacks, thereby increasing harvests and yields.
为了在合适的细胞、组织或生物体中进行异源制备,可以对所述细胞、组织或生物体进行遗传修饰。这种遗传修饰允许如本文中定义的一种或多种活性或多肽的表达或异源表达。例如,所述遗传修饰允许BBL2多肽和PPO、AT1、ODC、HPL、PAL、C4H、4CL、HCT和/或C3H活性或多肽的表达。所述遗传修饰还可以另外允许任何另外的因子、要素、多肽或活性的表达或异源表达,所述另外的因子、要素、多肽或活性是根据本发明的制备方法所必需的,或者其有利于诸如运输、积累、输入、输出、排泄、稳定化、前体修饰、能量供应、反应物供应等辅助步骤。In order to carry out heterologous preparation in suitable cells, tissues or organisms, the cells, tissues or organisms may be genetically modified. Such genetic modification allows expression or heterologous expression of one or more activities or polypeptides as defined herein. For example, the genetic modification allows expression of BBL2 polypeptide and PPO, AT1, ODC, HPL, PAL, C4H, 4CL, HCT and/or C3H activities or polypeptides. The genetic modification may also additionally allow expression or heterologous expression of any additional factors, elements, polypeptides or activities that are necessary according to the preparation method of the present invention, or that facilitate auxiliary steps such as transport, accumulation, input, output, excretion, stabilization, precursor modification, energy supply, reactant supply, etc.
本文中使用的术语“遗传上修饰”或“遗传修饰”是指,通过本领域技术人员已知的任何合适的基因手段和方法改变细胞、组织或生物体,以制备本发明的化合物。类似地,本文中使用的术语“在遗传上被修饰的细胞、组织或生物体”是指,细胞、组织或生物体已经通过本领域技术人员已知的任何合适的基因手段和方法进行了修饰或改变,使得它合成根据本发明的化合物。所述细胞、组织或生物体还可以进一步积累和/或排泄或输出所述化合物。该术语还包括对已经遗传修饰的细胞或生物体例如作为起始细胞或生物体的修饰。在本发明中,将细胞、组织或生物体遗传修饰成表达本文定义的一种或多种活性或多肽。这些活性或多肽通常与苯丙素途径、多胺途径、绿叶挥发物(GLV)途径和/或咖啡酰基腐胺-己烯醛(CPH)途径相关,例如如图19所示。本发明考虑了进一步的活性,诸如运输活性、输出或输入活性、分泌或排泄活性、导致前体或中间体运输的活性、积累活性、前体或前前体修饰活性、参与能量供应或反应物供应的活性等。The term "genetically modified" or "genetically modified" as used herein refers to changing cells, tissues or organisms by any suitable gene means and methods known to those skilled in the art to prepare the compounds of the present invention. Similarly, the term "genetically modified cells, tissues or organisms" as used herein refers to cells, tissues or organisms that have been modified or changed by any suitable gene means and methods known to those skilled in the art so that it synthesizes the compounds according to the present invention. The cells, tissues or organisms can also further accumulate and/or excrete or export the compounds. The term also includes modifications to genetically modified cells or organisms, such as starting cells or organisms. In the present invention, cells, tissues or organisms are genetically modified to express one or more activities or polypeptides defined herein. These activities or polypeptides are generally associated with phenylpropanoid pathways, polyamine pathways, green leaf volatiles (GLV) pathways and/or caffeoyl putrescine-hexenal (CPH) pathways, such as shown in Figure 19. The present invention contemplates further activities such as transport activity, export or import activity, secretion or excretion activity, activity leading to transport of precursors or intermediates, accumulation activity, precursor or pre-precursor modification activity, activity involved in energy supply or reactant supply, etc.
用于遗传修饰生物体的方法是本领域技术人员已知的并且在文献中有描述。它们包括将遗传元件或材料引入细胞、组织或生物体中以便包含在细胞中、整合到染色体中或染色体外的常用方法(参见,例如Pfeifer等人,Science 291,1790-1792(2001);Wang等人,Appl Microbiol Biotechnol 77(2007)),或者在基因组或生物体中存在的遗传元件或序列的除去或破坏或修改的常用方法(参见,例如Peiru等人,Microbial Biotechnology(2008)1(6),476-486;Zhang等人,Biotechnol Prog.28(1),52-59(2012))。Methods for genetically modifying organisms are known to those skilled in the art and are described in the literature. They include conventional methods for introducing genetic elements or materials into cells, tissues or organisms for inclusion in cells, integration into chromosomes or extrachromosomal (see, e.g., Pfeifer et al., Science 291, 1790-1792 (2001); Wang et al., Appl Microbiol Biotechnol 77 (2007)), or conventional methods for removing or destroying or modifying genetic elements or sequences present in genomes or organisms (see, e.g., Peiru et al., Microbial Biotechnology (2008) 1 (6), 476-486; Zhang et al., Biotechnol Prog. 28 (1), 52-59 (2012)).
本文中使用的术语“遗传元件”是指能够传递遗传信息的任何分子单元。因此,它涉及基因,优选地涉及嵌合基因、外源基因、转基因或密码子优化基因。术语“基因”指表达特定蛋白的核酸分子或片段,优选地它指包括位于编码序列之前(5'非编码序列)和之后(3'非编码序列)的调控序列的核酸分子。术语“嵌合基因”指作为非天然基因的任何基因,其包括在自然界中没有被一起发现的调控序列和编码序列。因此,嵌合基因可以包括来自不同来源的调控序列和编码序列,或来自相同来源但以与自然界中发现的方式不同的方式排列的调控序列和编码序列。根据本发明,“外来基因”指这样的基因:其通常在生物体或细胞中没有被发现,但其通过基因转移被引入所述生物体或细胞中,或已经在生物体中对应于所述外来基因被修饰。外来基因可以包括插入到非天然生物体中的天然基因,或嵌合基因。术语“转基因”指已经通过转化过程引入基因组中的基因。The term "genetic element" used herein refers to any molecular unit capable of transmitting genetic information. Therefore, it relates to a gene, preferably a chimeric gene, an exogenous gene, a transgenic or a codon optimized gene. The term "gene" refers to a nucleic acid molecule or fragment expressing a specific protein, preferably it refers to a nucleic acid molecule comprising a regulatory sequence before (5' non-coding sequence) and after (3' non-coding sequence) a coding sequence. The term "chimeric gene" refers to any gene as a non-natural gene, which includes a regulatory sequence and a coding sequence that are not found together in nature. Therefore, a chimeric gene may include regulatory sequences and coding sequences from different sources, or regulatory sequences and coding sequences arranged in a different manner from the same source and found in nature. According to the present invention, "foreign gene" refers to a gene that is not usually found in an organism or cell, but is introduced into the organism or cell by gene transfer, or has been modified in an organism corresponding to the foreign gene. Foreign genes may include natural genes inserted into non-natural organisms, or chimeric genes. The term "transgenic" refers to a gene that has been introduced into a genome by a transformation process.
术语“编码序列”指编码特定氨基酸序列的DNA序列。术语“调控序列”指位于编码序列上游(5'非编码序列)、内部或下游(3'非编码序列)的核苷酸序列,并且其影响相关编码序列的转录、RNA加工或稳定性、或翻译。调控序列可以包括启动子、增强子、翻译前导序列、聚腺苷酸化识别序列、RNA加工位点、效应物结合位点和茎-环结构。The term "coding sequence" refers to a DNA sequence that encodes a specific amino acid sequence. The term "regulatory sequence" refers to a nucleotide sequence that is located upstream (5' non-coding sequence), internal or downstream (3' non-coding sequence) of a coding sequence, and that affects the transcription, RNA processing or stability, or translation of the associated coding sequence. Regulatory sequences can include promoters, enhancers, translation leader sequences, polyadenylation recognition sequences, RNA processing sites, effector binding sites, and stem-loop structures.
术语“启动子”指能够控制编码序列或功能性RNA的表达的DNA序列。通常,编码序列位于启动子序列的3'。启动子可以来自发生表达的生物体,可以来自天然基因或外来基因,或者由来自在自然界中发现的不同启动子的不同元件组成,例如在不同的分类群或类别中,或者甚至包括合成的DNA区段。本领域技术人员会理解,不同的启动子可以在不同的发育阶段、或者响应于不同的环境或生理条件指导基因的表达。在大多数遗传背景和/或大多数时间引起基因表达的启动子通常被称为“组成型启动子”。通常,由于调控序列的确切边界尚未完全定义,不同长度的DNA片段可能具有相同的启动子活性。另一方面,仅在特定环境下(例如基于特定因子的存在、生长阶段、温度、pH或特定代谢物的存在等)引起基因表达的启动子被理解为“调控型启动子”。所述启动子通常可操作地连接至如本文所定义的要表达的编码序列。本文中使用的术语“天然启动子”涉及可操作地连接至要在野生型情况下表达的编码序列的启动子。The term "promoter" refers to a DNA sequence that can control the expression of a coding sequence or functional RNA. Typically, the coding sequence is located at the 3' of the promoter sequence. The promoter can be from an organism in which expression occurs, can be from a natural gene or an exogenous gene, or be composed of different elements from different promoters found in nature, such as in different taxa or categories, or even include synthetic DNA segments. It will be appreciated by those skilled in the art that different promoters can guide the expression of genes at different developmental stages or in response to different environments or physiological conditions. The promoter that causes gene expression in most genetic backgrounds and/or most of the time is generally referred to as a "constitutive promoter". Typically, due to the fact that the exact boundaries of regulatory sequences are not yet fully defined, DNA fragments of different lengths may have the same promoter activity. On the other hand, the promoter that causes gene expression only under a specific environment (e.g., based on the presence of a specific factor, a growth stage, a temperature, a pH, or the presence of a specific metabolite, etc.) is understood to be a "regulatable promoter". The promoter is generally operably connected to the coding sequence to be expressed as defined herein. The term "natural promoter" used herein relates to a promoter that is operably connected to a coding sequence to be expressed in the wild-type case.
术语“3'非编码序列”指位于编码序列下游的DNA序列。这可能包括编码能够影响mRNA加工或基因表达的调控信号的序列。3'区域可以影响转录,即RNA转录物的存在、RNA加工或稳定性、或相关编码序列的翻译。术语“RNA转录物”指由RNA聚合酶催化的DNA序列的转录产生的产物。当RNA转录物是DNA序列的完全互补拷贝时,它被称为初级转录物,或者它可能是从初级转录物的转录后加工衍生出的RNA序列,并且被称为成熟RNA。术语“mRNA”指可以被细胞翻译成蛋白的信使RNA。The term "3' non-coding sequence" refers to a DNA sequence located downstream of a coding sequence. This may include sequences encoding regulatory signals that can affect mRNA processing or gene expression. The 3' region can affect transcription, i.e., the presence of an RNA transcript, RNA processing or stability, or translation of the associated coding sequence. The term "RNA transcript" refers to the product produced by transcription of a DNA sequence catalyzed by RNA polymerase. When the RNA transcript is a complete complementary copy of a DNA sequence, it is referred to as a primary transcript, or it may be an RNA sequence derived from post-transcriptional processing of the primary transcript and is referred to as a mature RNA. The term "mRNA" refers to a messenger RNA that can be translated into protein by the cell.
术语“可操作地连接”指核酸序列在单个核酸片段上的结合,使得一个的功能受另一个影响。在启动子的上下文中,该术语是指,使得编码序列能够影响该编码序列的表达,即编码序列处于启动子的转录控制下。这样的控制可以影响一个基因或开放读码框(单顺反子),或者它可以影响一组基因或开放读码框。The term "operably linked" refers to the association of nucleic acid sequences on a single nucleic acid fragment so that the function of one is affected by the other. In the context of a promoter, the term means that a coding sequence is able to affect the expression of the coding sequence, i.e., the coding sequence is under the transcriptional control of the promoter. Such control can affect one gene or open reading frame (monocistron), or it can affect a group of genes or open reading frames.
在一个特别优选的实施方案中,所述遗传修饰至少导致BBL2(小檗碱桥酶2)多肽的表达,优选地如上文所定义。例如,可以将以下物质作为遗传元件引入用于制备的细胞、组织或生物体中:具有SEQ ID NO:1的核苷酸序列的多核苷酸,或其变体,或其物种同源物,或与SEQ ID NO:1的多核苷酸具有75%、80%、90%、95%、97%、98%或99%同一性的多核苷酸。可以利用本文定义的合适的启动子进行引入,以允许BBL2的过表达。In a particularly preferred embodiment, the genetic modification results in at least the expression of a BBL2 (berberine bridge enzyme 2) polypeptide, preferably as defined above. For example, the following may be introduced as genetic elements into the cells, tissues or organisms used for the preparation: a polynucleotide having the nucleotide sequence of SEQ ID NO: 1, or a variant thereof, or a species homolog thereof, or a polynucleotide having 75%, 80%, 90%, 95%, 97%, 98% or 99% identity with the polynucleotide of SEQ ID NO: 1. The introduction may be carried out using a suitable promoter as defined herein to allow overexpression of BBL2.
在一个特别优选的实施方案中,所述遗传修饰另外导致PPO(多酚氧化酶)活性或多肽的表达,优选地如上文所定义。例如,可以将以下物质作为遗传元件引入用于制备的细胞、组织或生物体中:具有SEQ ID NO:3或5的核苷酸序列的多核苷酸,或其变体,或其物种同源物,或与SEQ ID NO:3或5的多核苷酸具有75%、80%、90%、95%、97%、98%或99%同一性的多核苷酸。可以利用本文定义的合适的启动子进行引入,以允许PPO的过表达。In a particularly preferred embodiment, the genetic modification additionally results in the expression of a PPO (polyphenol oxidase) activity or polypeptide, preferably as defined above. For example, the following may be introduced as genetic elements into the cells, tissues or organisms used for the preparation: a polynucleotide having the nucleotide sequence of SEQ ID NO: 3 or 5, or a variant thereof, or a species homologue thereof, or a polynucleotide having 75%, 80%, 90%, 95%, 97%, 98% or 99% identity with the polynucleotide of SEQ ID NO: 3 or 5. The introduction may be carried out using a suitable promoter as defined herein to allow overexpression of PPO.
在另一个特别优选的实施方案中,所述遗传修饰另外导致AT1(多胺羟基肉桂酰基转移酶1)活性或多肽的表达,优选地如上文所定义。例如,可以将以下物质作为遗传元件引入用于制备的细胞、组织或生物体中:具有SEQ ID NO:7的核苷酸序列的多核苷酸,或其变体,或其物种同源物,或与SEQ ID NO:7的多核苷酸具有75%、80%、90%、95%、97%、98%或99%同一性的多核苷酸。可以利用本文定义的合适的启动子进行引入,以允许AT1的过表达。In another particularly preferred embodiment, the genetic modification additionally results in the expression of AT1 (polyamine hydroxycinnamoyl transferase 1) activity or polypeptide, preferably as defined above. For example, the following may be introduced as genetic elements into the cells, tissues or organisms used for the preparation: a polynucleotide having the nucleotide sequence of SEQ ID NO: 7, or a variant thereof, or a species homologue thereof, or a polynucleotide having 75%, 80%, 90%, 95%, 97%, 98% or 99% identity with the polynucleotide of SEQ ID NO: 7. The introduction may be carried out using a suitable promoter as defined herein to allow overexpression of AT1.
在另一个特别优选的实施方案中,所述遗传修饰另外导致ODC(鸟氨酸脱羧酶)活性或多肽和/或HPL(氢过氧化物裂解酶)活性或多肽的表达,优选地如上文所定义。例如,可以将以下物质作为遗传元件引入用于制备的细胞、组织或生物体中:具有SEQ ID NO:9或11和/或13、15或17的核苷酸序列的多核苷酸,或其变体,或其物种同源物,或与SEQ ID NO:9或11和/或13、15或17的多核苷酸具有75%、80%、90%、95%、97%、98%或99%同一性的多核苷酸。可以利用本文定义的合适的启动子进行引入,以允许ODC和/或HPL的过表达。In another particularly preferred embodiment, the genetic modification additionally results in the expression of ODC (ornithine decarboxylase) activity or polypeptide and/or HPL (hydroperoxide lyase) activity or polypeptide, preferably as defined above. For example, the following substances can be introduced as genetic elements into the cells, tissues or organisms used for preparation: a polynucleotide with a nucleotide sequence of SEQ ID NO:9 or 11 and/or 13, 15 or 17, or a variant thereof, or a species homologue thereof, or a polynucleotide with 75%, 80%, 90%, 95%, 97%, 98% or 99% identity to a polynucleotide of SEQ ID NO:9 or 11 and/or 13, 15 or 17. Suitable promoters defined herein can be used to introduce to allow the overexpression of ODC and/or HPL.
在另一个特别优选的实施方案中,所述遗传修饰另外导致PAL(L-苯丙氨酸氨裂解酶)活性或多肽和/或C4H(反式肉桂酸4-羟化酶)活性或多肽和/或4CL(4-香豆酸:辅酶A连接酶)活性或多肽和/或HCT(羟基肉桂酰基-转移酶)活性和/或C3H(香豆酸3-羟化酶)活性或多肽的表达,优选地如上文所定义。例如,可以将以下物质作为遗传元件引入生产细胞、组织或生物体中:具有SEQ ID NO:19、21、23或25、和/或27和/或29、105、107、109、111、113、115、117、119、121、123、125、127、129或131和/或31、33、35、37、39、41或43、和/或45的核苷酸序列的多核苷酸,或其变体,或其物种同源物,或与SEQ ID NO:19、21、23或25、和/或27和/或29、105、107、109、111、113、115、117、119、121、123、125、127、129或131和/或31、33、35、37、39、41或43、和/或45的多核苷酸具有75%、80%、90%、95%、97%、98%或99%同一性的多核苷酸。可以利用本文定义的合适的启动子进行引入,以允许PAL、C4H、4CL和/或HCT的过表达。In another particularly preferred embodiment, the genetic modification additionally results in the expression of a PAL (L-phenylalanine ammonia lyase) activity or polypeptide and/or a C4H (trans-cinnamate 4-hydroxylase) activity or polypeptide and/or a 4CL (4-coumarate:CoA ligase) activity or polypeptide and/or a HCT (hydroxycinnamoyl-transferase) activity and/or a C3H (coumarate 3-hydroxylase) activity or polypeptide, preferably as defined above. For example, the following can be introduced as genetic elements into production cells, tissues or organisms: polynucleotides having the nucleotide sequences of SEQ ID NO: 19, 21, 23 or 25, and/or 27 and/or 29, 105, 107, 109, 111, 113, 115, 117, 119, 121, 123, 125, 127, 129 or 131 and/or 31, 33, 35, 37, 39, 41 or 43, and/or 45, or variants thereof, or species homologues thereof, or ... NO: 19, 21, 23 or 25, and/or 27 and/or 29, 105, 107, 109, 111, 113, 115, 117, 119, 121, 123, 125, 127, 129 or 131 and/or 31, 33, 35, 37, 39, 41 or 43, and/or 45 have 75%, 80%, 90%, 95%, 97%, 98% or 99% identity. Suitable promoters as defined herein may be used for introduction to allow overexpression of PAL, C4H, 4CL and/or HCT.
可以使用合适的方法(例如测序或PCR扩增)控制引入。在进一步的实施方案中,使用本领域技术人员已知的或在实施例中描述的提取和功能测定法,可以测试BBL2的表达,任选地PPO的表达,进一步任选地AT1的表达,进一步任选地ODC和/或HPL的表达,进一步任选地PAL、C4H、4CL、HCT和/或C3H的表达。The introduction can be controlled using suitable methods (e.g. sequencing or PCR amplification). In a further embodiment, the expression of BBL2, optionally the expression of PPO, further optionally the expression of AT1, further optionally the expression of ODC and/or HPL, further optionally the expression of PAL, C4H, 4CL, HCT and/or C3H can be tested using extraction and functional assays known to those skilled in the art or described in the examples.
所述表达通常由本文定义的天然的、受调控的、组织特异性的或组成型的启动子控制或传递。例如,在遗传修饰的生物体在分类学上与异源基因或遗传元件的来源生物体相关的情况下,或者如果已知这些生物体具有类似的启动子或转录起始结构的使用,可以采用天然启动子。此外,如果已知遗传修饰的生物体和异源基因或遗传元件的来源生物体具有相似的基因组GC含量,则可以考虑使用天然启动子。可替换地,可以替换或部分地替换或修饰允许根据本发明的活性或多肽的异源表达的任何具有上述特性的基因或遗传元件的相关天然启动子结构或区域中的全部或一些,以导致受调控的或组成型的启动子功能。可以在本发明的上下文中使用的例子或调控型启动子包括诱导型启动子。因此,可能根据细胞外因素,诸如温度、某些代谢物或小分子的存在等做出调控。合适的例子包括四环素诱导型启动子PTet。合适的组成型启动子的例子包括gltA、yfgF或glyA。还可考虑大肠杆菌启动子lac、trp、phoA、araBAD、rha和tac。进一步考虑的是组织特异性的启动子,即仅在某些组织中或在某些发育步骤之后才有活性的启动子。这样的启动子可以例如用于如上所述的活性或多肽的组织特异性表达,最终导致本发明的化合物仅在生物体的组织子集中的组织特异性积累,例如仅在暴露于食草动物攻击的组织(如叶片或花朵)中。The expression is usually controlled or transmitted by a natural, regulated, tissue-specific or constitutive promoter as defined herein. For example, in the case where the genetically modified organism is taxonomically related to the source organism of the heterologous gene or genetic element, or if it is known that these organisms have the use of similar promoters or transcription initiation structures, a natural promoter can be adopted. In addition, if it is known that the genetically modified organism and the source organism of the heterologous gene or genetic element have similar genomic GC content, it is considered to use a natural promoter. Alternatively, all or some of the relevant natural promoter structures or regions of any gene or genetic element with the above-mentioned characteristics that allows heterologous expression of the activity or polypeptide according to the present invention can be replaced or partially replaced or modified to cause a regulated or constitutive promoter function. Examples or regulated promoters that can be used in the context of the present invention include inducible promoters. Therefore, regulation may be made according to extracellular factors, such as the presence of temperature, certain metabolites or small molecules. Suitable examples include tetracycline inducible promoter PTet. Examples of suitable constitutive promoters include gltA, yfgF or glyA. The E. coli promoters lac, trp, phoA, araBAD, rha and tac are also contemplated. Further contemplated are tissue-specific promoters, i.e. promoters that are active only in certain tissues or after certain developmental steps. Such promoters can, for example, be used for tissue-specific expression of an activity or polypeptide as described above, ultimately leading to tissue-specific accumulation of the compounds of the invention only in a subset of tissues of the organism, for example only in tissues exposed to herbivore attack (such as leaves or flowers).
在优选的实施方案中,所述启动子允许如上面所定义的活性或多肽的多顺反子表达。本文中使用的术语“多顺反子”指编码多种不同多肽或活性的序列。在多顺反子转录的情况下,可以通过“操纵子”的组织概念来提供控制,所述“操纵子”被理解为代表含有受单个启动子控制的基因簇的基因组DNA的功能单位。操纵子的基因通常一起转录为一条mRNA链,并且一起翻译,或者进行反式剪接以创建单独翻译的单顺反子mRNA,例如,各自编码单一基因产物的几条mRNA链。在这样的情况下,在操纵子中包含的基因通常被一起表达,或者它们不被表达。因此,通常在操纵子中共同转录多个基因。一般而言,原核操纵子的表达导致多顺反子mRNA的产生。通常,操纵子包括三个遗传组分:(i)启动子,即使基因能够被转录的序列,例如如本文所定义;(ii)操纵基因,即可以被阻遏物结合的片段,其可以阻碍基因的转录;和(iii)被共表达的结构基因。此外,可能存在一个调节基因,其编码能够结合到操纵基因序列的阻遏蛋白。多顺反子排列也可能存在于真核生物(例如高等真核生物)中。如果发生多顺反子转录,则在开放读码框之间可能存在顺反子间或基因间区域。这样的顺反子间区域可能包括核糖体结合位点,例如包括Shine-Dalgarno序列或对转录和/或翻译有影响的其它功能元件。In a preferred embodiment, the promoter allows polycistronic expression of an activity or polypeptide as defined above. The term "polycistronic" as used herein refers to a sequence encoding a variety of different polypeptides or activities. In the case of polycistronic transcription, control can be provided by the organizational concept of an "operon", which is understood to be a functional unit of genomic DNA representing a gene cluster controlled by a single promoter. The genes of an operon are usually transcribed together into one mRNA chain and translated together, or trans-spliced to create a single translatable monocistronic mRNA, for example, several mRNA chains each encoding a single gene product. In such a case, the genes contained in the operon are usually expressed together, or they are not expressed. Therefore, multiple genes are usually transcribed together in an operon. In general, the expression of a prokaryotic operon results in the production of polycistronic mRNA. Typically, an operon includes three genetic components: (i) a promoter, i.e., a sequence that enables a gene to be transcribed, for example, as defined herein; (ii) an operator, i.e., a fragment that can be bound by a repressor, which can hinder the transcription of a gene; and (iii) a co-expressed structural gene. In addition, there may be a regulatory gene encoding a repressor protein that can bind to the operator gene sequence. Polycistronic arrangements may also exist in eukaryotic organisms (e.g., higher eukaryotic organisms). If polycistronic transcription occurs, there may be intercistronic or intergenic regions between open reading frames. Such intercistronic regions may include ribosome binding sites, for example, Shine-Dalgarno sequences or other functional elements that have an impact on transcription and/or translation.
在某些实施方案中,操纵子可以包含BBL2、PPO、AT1、ODC、HPL、PAL、C4H、4CL、HCT和C3H或其任何子组(例如BBL2和PPO,或BBL2和PPO和AT1,或ODC和HPL,或ODC和HPL和PAL,或C4H和4CL,HCT和C3H等)的所有编码序列。In certain embodiments, the operon can comprise all coding sequences of BBL2, PPO, AT1, ODC, HPL, PAL, C4H, 4CL, HCT, and C3H, or any subset thereof (e.g., BBL2 and PPO, or BBL2 and PPO and AT1, or ODC and HPL, or ODC and HPL and PAL, or C4H and 4CL, HCT and C3H, etc.).
在进一步优选的实施方案中,所述启动子允许如上面所定义的活性或多肽的单独表达。例如,BBL2、PPO、AT1、ODC、HPL、PAL、C4H、4CL、HCT和C3H中的每一种都可以配备其自己的启动子。在某些实施方案中,所述启动子可能是可调控的。还可以考虑针对不同活性使用不同的可调节启动子,例如,导致活性的差异表达模式,例如根据制备顺序或必要性。In a further preferred embodiment, the promoter allows the individual expression of an activity or polypeptide as defined above. For example, each of BBL2, PPO, AT1, ODC, HPL, PAL, C4H, 4CL, HCT and C3H can be equipped with its own promoter. In certain embodiments, the promoter may be regulatable. It is also possible to consider using different regulatable promoters for different activities, for example, resulting in differential expression patterns of the activities, for example according to the order of preparation or necessity.
在另一个优选的实施方案中,考虑以分组方式表达从如上面所定义的活性中选择的至少两种活性的组。例如,可以表达BBL2和PPO、AT1和ODC、HPL和PAL、C4H和4CL、HCT和C3H的组,或者2、3、4、5、6、7、8种或更多种活性的任何其它组合。可以利用如上面所定义的操纵子结构或如上面所定义的可差异调控的启动子来实现分组表达。In another preferred embodiment, it is contemplated to express in groups a group of at least two activities selected from the activities defined above. For example, a group of BBL2 and PPO, AT1 and ODC, HPL and PAL, C4H and 4CL, HCT and C3H, or any other combination of 2, 3, 4, 5, 6, 7, 8 or more activities may be expressed. Grouped expression may be achieved using an operon structure as defined above or a differentially regulated promoter as defined above.
在进一步优选的实施方案中,如上文提及的所述表达是过表达。术语“过表达”涉及比在来源生物体的情况下产生所述多肽或活性的遗传元件的天然拷贝表达时更多的转录物积累,特别是更多的多肽和活性的积累。在进一步的替代实施方案中,该术语还可以指比典型的、适度表达的持家基因(诸如肌动蛋白、GAPDH或泛素)表达时更多的转录物积累,特别是更多的多肽或活性的积累。In a further preferred embodiment, the expression as mentioned above is overexpression. The term "overexpression" refers to more transcript accumulation, particularly more polypeptide and activity accumulation, than when the natural copy of the genetic element that produces the polypeptide or activity in the case of the source organism is expressed. In a further alternative embodiment, the term can also refer to more transcript accumulation, particularly more polypeptide or activity accumulation, than when a typical, moderately expressed housekeeping gene (such as actin, GAPDH or ubiquitin) is expressed.
在优选的实施方案中,与来源生物体情况下的相应野生型或天然转录(无修饰或过表达)相比,上述过表达可以导致基因转录率提高约10%、20%、30%、40%、50%、60%、70%、80%、90%、100%、150%、200%、250%、300%、350%、400%、450%、500%、600%、700%、800%、900%、1000%或大于1000%或这些值之间的任何值。在优选的实施方案中,这样的基因转录率的提高可以提供以下中的至少一种或超过一种(例如2、3、4、5、6、7、8种或全部):编码BBL2、PPO、AT1、ODC、HPL、PAL、C4H、4CL、HCT和/或C3H的基因或遗传元件;或具有SEQ ID NO:1、3、5、7、9、11、13、15、17、19、21、23、25、27、29、31、33、35、37、39、41、43、45、105、107、109、111、113、115、117、119、121、123、125、127、129、131,的基因或遗传元件,或如本文中定义的其同源序列。In preferred embodiments, such overexpression may result in an increase in gene transcription rate of about 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 100%, 150%, 200%, 250%, 300%, 350%, 400%, 450%, 500%, 600%, 700%, 800%, 900%, 1000% or more, or any value in between, compared to the corresponding wild-type or native transcript (without modification or overexpression) in the source organism. In a preferred embodiment, such an increase in gene transcription rate can provide at least one or more than one (e.g., 2, 3, 4, 5, 6, 7, 8 or all) of the following: a gene or genetic element encoding BBL2, PPO, AT1, ODC, HPL, PAL, C4H, 4CL, HCT and/or C3H; or a gene or genetic element having SEQ ID NO: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 105, 107, 109, 111, 113, 115, 117, 119, 121, 123, 125, 127, 129, 131, or a homologous sequence thereof as defined herein.
在另一个优选的实施方案中,与来源生物体情况下相应的野生型或原始多肽量(无修饰或过表达)相比,所述过表达可以导致由过表达的基因编码的多肽的量提高约10%、20%、30%、40%、50%、60%、70%、80%、90%、100%、150%、200%、250%、300%、350%、400%、450%、500%、600%、700%、800%、900%、1000%或大于1000%或这些值之间的任何值。在优选的实施方案中,这样的由过表达的基因编码的多肽的量的提高可以提供以下中的至少一种或超过一种(例如2、3、4、5、6、7、8种或全部):BBL2、PPO、AT1、ODC、HPL、PAL、C4H、4CL、HCT和/或C3H的多肽;或具有SEQ ID NO:2、4、6、8、10、12、14、16、18、20、22、24、26、28、30、32、34、36、38、40、42、44、46、106、108、110、112、114、116、118、120、122、124、126、128、130、132的多肽,或如本文中定义的其同源序列。In another preferred embodiment, the overexpression may result in an increase in the amount of the polypeptide encoded by the overexpressed gene by about 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 100%, 150%, 200%, 250%, 300%, 350%, 400%, 450%, 500%, 600%, 700%, 800%, 900%, 1000% or more than 1000% or any value in between these values compared to the corresponding wild-type or original polypeptide amount in the source organism (without modification or overexpression). In a preferred embodiment, such an increase in the amount of a polypeptide encoded by an overexpressed gene may provide at least one or more than one (e.g., 2, 3, 4, 5, 6, 7, 8 or all) of the following: a polypeptide of BBL2, PPO, AT1, ODC, HPL, PAL, C4H, 4CL, HCT and/or C3H; or a polypeptide having SEQ ID NO: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 106, 108, 110, 112, 114, 116, 118, 120, 122, 124, 126, 128, 130, 132, or a homologous sequence thereof as defined herein.
在一个特别优选的实施方案中,至少编码BBL2和PPO活性或多肽的基因被过表达。这样的过表达可以导致,与来源生物体情况下相应的野生型或原始多肽量(无修饰或过表达)相比,由过表达的基因编码的转录物和/或多肽的量提高约10%、20%、30%、40%、50%、60%、70%、80%、90%、100%、150%、200%、250%、300%、350%、400%、450%、500%、600%、700%、800%、900%、1000%或大于1000%或这些值之间的任何值。In a particularly preferred embodiment, at least the genes encoding BBL2 and PPO activities or polypeptides are overexpressed. Such overexpression can result in an increase in the amount of transcripts and/or polypeptides encoded by the overexpressed genes by about 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 100%, 150%, 200%, 250%, 300%, 350%, 400%, 450%, 500%, 600%, 700%, 800%, 900%, 1000% or more than 1000% or any value in between these values compared to the corresponding wild-type or original polypeptide amount in the source organism (without modification or overexpression).
在一个实施方案中,如上文定义的过表达可以通过使用上文所定义的启动子来传达。可以用于过表达如本文描述的基因的、本发明考虑的启动子可以是组成型启动子或调控型启动子。在优选的实施方案中,所述启动子是异源的启动子或合成的启动子,例如强异源启动子或受调控的异源启动子。在特别优选的实施方案中,使用强调控的或强组成型的启动子。这样的强组成型或强调控型启动子的例子包括T7启动子(组成型大肠杆菌)、rhaP(诱导型大肠杆菌)或例如植物的S35启动子。本文考虑的其它合适的植物启动子可以来自Plant Prom,即一个植物启动子序列数据库(于2021年12月21日访问,网址为http://www.softberry.com/berry.phtml?topic=plantprom&group=data&subgroup=plantprom),或PlantPromoterdb,另一个植物启动子数据库(于2021年12月21日访问,网址为https://ppdb.agr.gifu-u.ac.jp/ppdb/cgi-bin/index.cgi)。In one embodiment, overexpression as defined above can be communicated by using a promoter as defined above. The promoter that can be used for overexpression of a gene as described herein, which the present invention contemplates, can be a constitutive promoter or a regulated promoter. In a preferred embodiment, the promoter is a heterologous promoter or a synthetic promoter, such as a strong heterologous promoter or a regulated heterologous promoter. In a particularly preferred embodiment, a strongly regulated or strongly constitutive promoter is used. Examples of such strong constitutive or strongly regulated promoters include T7 promoters (constitutive E. coli), rhaP (inducible E. coli) or, for example, the S35 promoter of a plant. Other suitable plant promoters considered herein may be from Plant Prom, a plant promoter sequence database (accessed on December 21, 2021, at http://www.softberry.com/berry.phtml?topic=plantprom&group=data&subgroup=plantprom), or PlantPromoterdb, another plant promoter database (accessed on December 21, 2021, at https://ppdb.agr.gifu-u.ac.jp/ppdb/cgi-bin/index.cgi).
可替换地,在其它实施方案中,上文定义的过表达可以至少通过编码所述活性或多肽的遗传元件的第二个拷贝来传达。例如,基因或遗传元件在单个细胞中可能存在2、3、4、5、6、7、8、9、10、15、20、25、30、35、40、45、50、100、200、300、400、500或超过500个拷贝,或者上述值之间的任何值。这些拷贝可能存在于生物体的基因组中,或者非基因组质粒或载体上。在质粒或载体的情况下,基因拷贝的数目和相容性可以由质粒或载体来源或ori的形式和性质来定义和调控。合适的细菌来源的例子是来自质粒,诸如pBR322、pUC、pSC101或p15A。因此,本发明考虑的质粒或载体可以来自这些质粒,或其修饰版本。Alternatively, in other embodiments, the overexpression defined above can be communicated at least by a second copy of the genetic elements encoding the activity or polypeptide. For example, a gene or genetic element may have 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 35, 40, 45, 50, 100, 200, 300, 400, 500 or more than 500 copies in a single cell, or any value between the above values. These copies may be present in the genome of an organism, or on a non-genomic plasmid or vector. In the case of a plasmid or vector, the number and compatibility of gene copies can be defined and regulated by the form and properties of a plasmid or vector source or ori. The example of a suitable bacterial source is from a plasmid, such as pBR322, pUC, pSC101 or p15A. Therefore, the plasmid or vector considered by the present invention can be from these plasmids, or its modified version.
在另一个实施方案中,上文定义的表达或过表达可以通过密码子使用的优化来传达,例如通过使上文定义的基因或遗传元件的密码子使用适应在目标生物体或细胞中最常转录或表达的基因的密码子使用,或适应最高表达的基因的密码子使用(与持家基因相比,例如如上文定义)。这样的高表达基因的密码子使用的例子可能包括发生表达的生物体中一组5、10、15、20、25或30个或更多个最高表达的基因的密码子使用。In another embodiment, expression or overexpression as defined above may be conveyed by optimization of codon usage, for example by adapting the codon usage of the gene or genetic element as defined above to the codon usage of the most frequently transcribed or expressed genes in the target organism or cell, or to the codon usage of the highest expressed genes (compared to housekeeping genes, e.g. as defined above). Examples of such codon usage of highly expressed genes may include the codon usage of a group of 5, 10, 15, 20, 25 or 30 or more of the highest expressed genes in the organism in which expression occurs.
在另一个特别优选的实施方案中,用于制备根据本发明的化合物的一种或多种酶活性或多肽,例如如本文定义的BBL2、PPO、AT1、ODC、HPL、PAL、C4H、4CL、HCT和C3H中的一种或多种,来自属于烟草属的生物体。该属通常至少包括以下物种:丛生烟草(Nicotianaacaulis)、渐尖叶烟草(Nicotiana acuminata)、非洲烟草(Nicotiana africana)、花烟草(Nicotiana alata)、阿米基诺氏烟草(Nicotiana ameghinoi)、抱茎烟草(Nicotianaamplexicaulis)、阿伦特氏烟草(Nicotiana arentsii)、渐狭叶烟草(Nicotianaattenuata)、阿赞布哈烟草(Nicotiana azambujae)、贝氏烟草(Nicotiana benavidesii)、本氏烟草(Nicotiana benthamiana)、博纳烟草(Nicotiana bonariensis)、伯比奇烟草(Nicotiana burbidgeae)、洞生烟草(Nicotiana cavicola)、克利夫兰烟草(Nicotianaclevelandii)、心叶烟草(Nicotiana cordifolia)、伞床烟草(Nicotiana corymbosa)、卡特勒烟草(Nicotiana cutleri)、底比拟烟草(Nicotiana debneyi)、高烟草(Nicotianaexcelsior)、矮烟草(Nicotiana exigua)、福氏烟草(Nicotiana forgetiana)、香烟草(Nicotiana fragrans)、光烟草(Nicotiana glauca Graham)、粘毛烟草(Nicotianaglutinosa)、古氏烟草(Nicotiana goodspeedii)、戈斯烟草(Nicotiana gossei)、香花芥烟草(Nicotiana hesperis)、异花烟草(Nicotiana heterantha)、古巴烟草(Nicotianaingulba)、川上氏烟草(Nicotiana kawakamii)、奈特烟草(Nicotiana knightiana)、朗斯多菲烟草(Nicotiana langsdorffii)、线叶烟草(Nicotiana linearis)、长苞烟草(Nicotiana longibracteata)、长花烟草(Nicotiana longiflora)、海滨烟草(Nicotianamaritima)、大管烟草(Nicotiana megalosiphon)、米尔斯烟草(Nicotiana miersii)、变色烟草(Nicotiana mutabilis)、内索菲拉烟草(Nicotiana nesophila)、夜花烟草(Nicotiana noctiflora)、光秃烟草(Nicotiana nudicaulis)、西方烟草(Nicotianaoccidentalis)、沙漠烟草(Nicotiana obtusifolia)、耳光烟草(Nicotiana otophora)、帕烟草(Nicotiana paa)、帕尔默烟草(Nicotiana palmeri)、簇花烟草(Nicotianapaniculata)、少花烟草(Nicotiana pauciflora)、牵牛花烟草(Nicotiana petuniodes)、灰背烟草(Nicotiana plumbaginifolia)、四瓣烟草(Nicotiana quadrivalvis)、雷蒙迪烟草(Nicotiana raimondii)、扩展烟草(Nicotiana repanda)、玫瑰状烟草(Nicotianarosulata)、圆叶烟草(Nicotiana rotundifolia)、野烟草(Nicotiana rustica)、塞切尔烟草(Nicotiana setchellii)、相似烟草(Nicotiana simulans)、茄叶烟草(Nicotianasolanifolia)、斯佩加齐尼烟草(Nicotiana spegazzinii)、狭果烟草(Nicotianastenocarpa)、斯托克顿烟草(Nicotiana stocktonii)、芳香烟草(Nicotianasuaveolens)、森林烟草(Nicotiana sylvestris)、普通烟草(Nicotiana tabacum)、聚花烟草(Nicotiana thrysiflora)、毛状烟草(Nicotiana tomentosa)、茸毛烟草(Nicotianatomentosiformis)、三棱烟草(Nicotiana trigonophylla)、截短烟草(Nicotianatruncata)、伞形烟草(Nicotiana umbratica)、波状烟草(Nicotiana undulata)、天鹅绒烟草(Nicotiana velutina)、威甘迪烟草(Nicotiana wigandioides)、乌特克尼烟草(Nicotiana wuttkei)。特别优选的是,用于制备根据本发明的化合物(例如如本文中定义的BBL2、PPO、AT1、ODC、HPL、PAL、C4H、4CL、HCT和C3H中的一种或多种)的一种或多种酶活性或多肽来自属于渐狭叶烟草物种的生物体。In another particularly preferred embodiment, the one or more enzyme activities or polypeptides used for the preparation of the compounds according to the invention, for example one or more of BBL2, PPO, AT1, ODC, HPL, PAL, C4H, 4CL, HCT and C3H as defined herein, are from an organism belonging to the genus Nicotiana. The genus usually includes at least the following species: Nicotiana acaulis, Nicotiana acuminata, Nicotiana africana, Nicotiana alata, Nicotiana ameghinoi, Nicotiana amplexicaulis, Nicotiana arentsii, Nicotiana attenuata, Nicotiana azambujae, Nicotiana benavidesii, Nicotiana benthamiana, Nicotiana bonariensis, Nicotiana burbidgeae, Nicotiana cavicola, Nicotiana aclevelandii, Nicotiana cordifolia, Nicotiana corymbosa), Nicotiana cutleri, Nicotiana debneyi, Nicotiana excelsior, Nicotiana exigua, Nicotiana forgetiana, Nicotiana fragrans, Nicotiana glauca Graham, Nicotiana glutinosa, Nicotiana goodspeedii, Nicotiana gossei, Nicotiana hesperis, Nicotiana heteroantha, Nicotiana ingulba, Nicotiana kawakamii, Nicotiana knightiana, Nicotiana langsdorffii, Nicotiana linearis, Nicotiana longibracteata, Nicotiana longiflora, Nicotiana amaritima, Nicotiana megalosiphon, Nicotiana miersii, Nicotiana mutabilis, Nicotiana nesophila, Nicotiana noctiflora, Nicotiana nudicaulis, Nicotiana aocidentalis, Nicotiana obtusifolia, Nicotiana otophora, Nicotiana paa, Nicotiana palmeri, Nicotiana apaniculata, Nicotiana pauciflora, Nicotiana petuniodes, Nicotiana plumbaginifolia, Nicotiana quadrivalvis, Nicotiana raimondii, Nicotiana spathulata ... repanda), Nicotiana arosulata, Nicotiana rotundifolia, Nicotiana rustica, Nicotiana setchellii, Nicotiana simulans, Nicotiana solanifolia, Nicotiana spegazzinii, Nicotiana astenocarpa, Nicotiana stocktonii, Nicotiana suaveolens, Nicotiana sylvestris, Nicotiana tabacum, Nicotiana thrysiflora, Nicotiana tomentosa, Nicotiana atomosiformis, Nicotiana trigonophylla, Nicotiana truncata, Nicotiana umbratica, Nicotiana wavy undulata), velvet tobacco (Nicotiana velutina), Weigandi tobacco (Nicotiana wigandioides), Utkeni tobacco (Nicotiana wuttkei). Particularly preferred, the one or more enzyme activities or polypeptides used to prepare the compounds according to the invention (for example one or more of BBL2, PPO, AT1, ODC, HPL, PAL, C4H, 4CL, HCT and C3H as defined herein) are from an organism belonging to the species Nicotiana attenuata.
在另一个实施方案中,如本文中定义的多核苷酸(例如编码BBL2、PPO、AT1、ODC、HPL、PAL、C4H、4CL、HCT或C3H)被包含在一个或多个染色体外载体或质粒中,和/或整合在所述生物体的基因组中,或被包含在表达盒中,优选地用于在真核宿主细胞中异源表达,更优选地用于在植物细胞中表达。In another embodiment, a polynucleotide as defined herein (e.g. encoding BBL2, PPO, AT1, ODC, HPL, PAL, C4H, 4CL, HCT or C3H) is contained in one or more extrachromosomal vectors or plasmids and/or integrated in the genome of the organism, or is contained in an expression cassette, preferably for heterologous expression in a eukaryotic host cell, more preferably for expression in a plant cell.
因此,在进一步的方面,本发明还涉及包含如本文所定义的所述多核苷酸的载体或插入构建体或表达盒。Therefore, in a further aspect, the present invention also relates to a vector or an insertion construct or an expression cassette comprising said polynucleotide as defined herein.
合适的载体可以是例如质粒、BAC或噬菌体载体,优选质粒。术语“质粒”指本领域技术人员已知的适合于转化细菌、真菌或高等真核生物(诸如植物)或根据本发明的任何其它合适的宿主生物体的任何质粒,并且特别指适合于在细菌(例如大肠杆菌)、真菌或植物等高等真核生物中表达蛋白的任何质粒,例如能够自主复制的质粒。可以将根据本发明的多核苷酸(例如如上文所定义的多核苷酸)连接至含有可选择标志物的载体以在宿主中繁殖。通常,将质粒载体引入沉淀物(诸如磷酸钙沉淀物)中,或者具有带电荷脂质的复合物中。如果所述载体是噬菌体,则可以使用适当的包装细胞系在体外包装它,并然后转导到宿主细胞中。优选地,所述载体将包括至少一种可选择标志物。这样的标志物包括例如用于在大肠杆菌和其它细菌中培养的四环素、卡那霉素或氨苄西林抗性基因。优选用于细菌中的载体包括、但不限于:pQE70、pQE60和pQE9,可得自QIAGEN,Inc.;pBluescript载体、Phagescript载体、pNH8A、pNH16a、pNH18A、pNH46A,可得自Stratagene Cloning Systems,Inc.;pKK223-3、pKK233-3、pDR540、pRIT5(可得自Pharmacia Biotech,Inc.)和pET载体(可得自Novagen)。优选用于植物中的载体包括、但不限于pBI121、pCAMBIA、pEarleyGate 201、pPZP100、pBI221、pCAMBIA1381Xb、pEarleyGate 202、pPZP101pBINPLUS、pCAMBIA1381Xc、pEarleyGate 203、pPZP102、pBin19、pCAMBIA1381Z、pEarleyGate 204、pPZP111、pCAMBIA0105.1R、pCAMBIA1390、pEarleyGate 205、pPZP112、pCAMBIA0305.1、pKANNIBAL、pHANNIBAL、pGreenll、pGreen。其它合适的载体是本领域技术人员已知的,或者可以从合适的文献来源,诸如ChenBiotechnol Adv.30(5),1102-1107(2012)获得。Suitable carriers can be, for example, plasmids, BACs or phage vectors, preferably plasmids.Term " plasmid " refers to any plasmid suitable for transforming bacteria, fungi or higher eukaryotes (such as plants) or any other suitable host organisms according to the present invention known to those skilled in the art, and refers in particular to any plasmid suitable for expressing proteins in higher eukaryotes such as bacteria (such as Escherichia coli), fungi or plants, for example, plasmids capable of autonomous replication.Polynucleotides according to the present invention (such as polynucleotides as defined above) can be connected to a carrier containing a selectable marker to breed in a host.Usually, plasmid vectors are introduced into a precipitate (such as a calcium phosphate precipitate), or in a complex with a charged lipid.If the carrier is a phage, it can be packaged in vitro using a suitable packaging cell line, and then transduced into a host cell.Preferably, the carrier will include at least one selectable marker.Such markers include, for example, tetracycline, kanamycin or ampicillin resistance genes for cultivating in Escherichia coli and other bacteria. Preferred vectors for use in bacteria include, but are not limited to, pQE70, pQE60, and pQE9, available from QIAGEN, Inc.; pBluescript vectors, Phagescript vectors, pNH8A, pNH16a, pNH18A, pNH46A, available from Stratagene Cloning Systems, Inc.; pKK223-3, pKK233-3, pDR540, pRIT5 (available from Pharmacia Biotech, Inc.), and pET vectors (available from Novagen). Preferred vectors for use in plants include, but are not limited to, pBI121, pCAMBIA, pEarleyGate 201, pPZP100, pBI221, pCAMBIA1381Xb, pEarleyGate 202, pPZP101pBINPLUS, pCAMBIA1381Xc, pEarleyGate 203, pPZP102, pBin19, pCAMBIA1381Z, pEarleyGate 204, pPZP111, pCAMBIA0105.1R, pCAMBIA1390, pEarleyGate 205, pPZP112, pCAMBIA0305.1, pKANNIBAL, pHANNIBAL, pGreenll, and pGreen. Other suitable vectors are known to those skilled in the art or can be obtained from suitable literature sources, such as Chen Biotechnol Adv. 30(5), 1102-1107 (2012).
根据本发明,上文定义的载体向细胞、组织或生物体中的引入可以通过任何合适的技术实现,例如磷酸钙转染、DEAE-葡聚糖介导的转染、阳离子脂质介导的转染、电穿孔、化学转化、转导、基于根癌农杆菌(Agrobacterium tumefaciens)的转化或基于基因枪的转化。According to the present invention, the introduction of the vector defined above into cells, tissues or organisms can be achieved by any suitable technique, such as calcium phosphate transfection, DEAE-dextran-mediated transfection, cationic lipid-mediated transfection, electroporation, chemical transformation, transduction, Agrobacterium tumefaciens-based transformation or gene gun-based transformation.
对于基因组整合,可以将如上所述的遗传元件的一个、两个或更多个拷贝通过“插入构建体”引入细胞或生物体中,并从而置于染色体中。整合位点可以位于原始拷贝(如果存在的话)附近,或者优选地位于任何合适的位置,例如,在不同的位置。可以有利地通过选择整合所必需的同源侧翼来预先选择插入。因此,插入位点可以根据基因组的已知特征来确定,例如染色体区域的转录活性、与第一个拷贝(原始基因)的可能的距离、第一个拷贝(原始基因)的方向、其它插入的基因的存在等。在某些实施方案中,插入构建体可以包括遗传元件的一个拷贝,例如编码BBL2、PPO、AT1、ODC、HPL、PAL、C4H、4CL、HCT和/或C3H的多核苷酸,或者可以以串联重复形式提供另外的拷贝。例如,插入构建体可以包括单独的BBL2、PPO、AT1、ODC、HPL、PAL、C4H、4CL、HCT或C3H,或作为组包括BBL2、PPO、AT1、ODC、HPL、PAL、C4H、4CL、HCT和C3H,或包括其任何子组。在其它实施方案中,本发明考虑使用非串联重复。在某些实施方案中,遗传元件的拷贝可以保持尽可能的差异和/或远距离。这样的差异可能是基于不同启动子的使用,基因的基因组侧的修饰,或者在具体实施方案中,基因的第二个拷贝或其它拷贝的核苷酸序列相对于第一个拷贝(原始版本)的修饰,或基因的第三个拷贝相对于第二个拷贝和/或第一个拷贝(原始版本)的修饰等。For genomic integration, one, two or more copies of genetic elements as described above can be introduced into cells or organisms by "insertion constructs", and thus placed in chromosomes. The integration site can be located near the original copy (if present), or is preferably located at any suitable position, for example, at different positions. Advantageously, insertion can be pre-selected by selecting the necessary homologous flanks for integration. Therefore, the insertion site can be determined according to the known characteristics of the genome, such as the transcriptional activity of the chromosome region, the possible distance from the first copy (original gene), the direction of the first copy (original gene), the presence of other genes inserted, etc. In certain embodiments, the insertion construct can include a copy of genetic elements, such as the polynucleotides encoding BBL2, PPO, AT1, ODC, HPL, PAL, C4H, 4CL, HCT and/or C3H, or other copies can be provided in tandem repeat form. For example, the insertion construct may include BBL2, PPO, AT1, ODC, HPL, PAL, C4H, 4CL, HCT or C3H alone, or include BBL2, PPO, AT1, ODC, HPL, PAL, C4H, 4CL, HCT and C3H as a group, or include any subgroup thereof. In other embodiments, the present invention contemplates the use of non-tandem repeats. In certain embodiments, the copies of the genetic elements may be kept as different and/or distant as possible. Such differences may be based on the use of different promoters, modification of the genomic side of the gene, or in a specific embodiment, modification of the nucleotide sequence of the second copy or other copies of the gene relative to the first copy (original version), or modification of the third copy of the gene relative to the second copy and/or first copy (original version), etc.
本文中使用的“表达盒”涉及一种多核苷酸构建体,其包含基因或遗传元件以及要由转染的细胞表达的调节序列。所述表达盒通常指导细胞的机制产生RNA和蛋白。在某些实施方案中,所述表达盒可以被设计用于蛋白编码序列的模块化克隆。在其它实施方案中,所述表达盒可以由超过一个基因或遗传元件以及控制它们表达的序列组成,所述基因或遗传元件例如为以组或其任何子组编码BBL2、PPO、AT1、ODC、HPL、PAL、C4H、4CL、HCT和C3H的多核苷酸。例如,所述表达盒可以包括启动子序列、开放读码框和3'非翻译区,任选地包含(例如在真核生物中)聚腺苷酸化位点。"Expression cassette" used herein relates to a polynucleotide construct comprising a gene or genetic element and a regulatory sequence to be expressed by a transfected cell. The expression cassette generally directs the mechanism of the cell to produce RNA and protein. In certain embodiments, the expression cassette can be designed for modular cloning of protein coding sequences. In other embodiments, the expression cassette can be composed of more than one gene or genetic element and the sequence controlling their expression, the gene or genetic element being, for example, a polynucleotide encoding BBL2, PPO, AT1, ODC, HPL, PAL, C4H, 4CL, HCT and C3H in a group or any subgroup thereof. For example, the expression cassette can include a promoter sequence, an open reading frame and a 3' non-translated region, optionally including (for example in eukaryotic organisms) a polyadenylation site.
在另一个重要方面,本发明涉及制备根据本发明的化合物的生物体、组织或细胞。所述生物体、组织或细胞可以遗传上被修饰,优选地如上文定义,例如通过引入根据本发明的载体或质粒、插入构建体或表达盒。In another important aspect, the present invention relates to an organism, tissue or cell for preparing a compound according to the invention. Said organism, tissue or cell may be genetically modified, preferably as defined above, for example by introduction of a vector or plasmid, an insertion construct or an expression cassette according to the invention.
对于细胞、生物体或组织(细胞群)的遗传修饰,另一种优选考虑的可能性是基因组的分子修饰,优选使用基因组编辑系统。Another preferably considered possibility for the genetic modification of cells, organisms or tissues (cell populations) is the molecular modification of the genome, preferably using genome editing systems.
“基因组编辑系统”有利地允许提供基因组修饰,而无需插入抗生素抗性盒或任何另外的选择标志物。例如,这样的基因组编辑方式可以基于CRISPR/Cas系统、TALEN-系统或锌指核酸酶(ZFN)-系统的使用。"Genome editing systems" advantageously allow providing genome modifications without the need to insert an antibiotic resistance cassette or any additional selection marker. For example, such genome editing approaches can be based on the use of CRISPR/Cas systems, TALEN-systems or zinc finger nucleases (ZFN)-systems.
特别优选的是使用CRISPR(成簇的规律间隔的短回文重复序列)/Cas系统。CRISPR/Cas可以用于减少特定基因(或组或类似基因)的表达或编辑基因组序列。这通常通过单链RNA以及CRISPR基因或核酸酶的表达来实现。该技术通常依赖于CRISPR基因(诸如Cas9)或其它类似基因以及RNA指导序列的表达(参见,例如,Cong等人,Science,339(6121),819-823(2013))。因此,可以使用适当的侧翼RNA指导序列的表达将双链切割靶向至特定序列,所述侧翼RNA指导序列可以作为多组分系统的一个组分提供,例如与Cas9或类似功能一起提供。在一个优选的实施方案中,可以将RNA指导序列和CRISPR基因表达(例如Cas9)作为表达构建体的一部分包括在内。Particularly preferred is the use of CRISPR (clustered regularly spaced short palindromic repeats)/Cas system. CRISPR/Cas can be used to reduce the expression of a specific gene (or group or similar gene) or edit a genomic sequence. This is usually achieved by the expression of single-stranded RNA and CRISPR genes or nucleases. The technology usually relies on the expression of CRISPR genes (such as Cas9) or other similar genes and RNA guide sequences (see, for example, Cong et al., Science, 339 (6121), 819-823 (2013)). Therefore, the expression of appropriate flanking RNA guide sequences can be used to target double-stranded cleavage to a specific sequence, and the flanking RNA guide sequence can be provided as a component of a multi-component system, for example, provided together with Cas9 or similar functions. In a preferred embodiment, RNA guide sequences and CRISPR gene expression (such as Cas9) can be included as part of an expression construct.
术语“TALEN-系统”涉及TALEN的使用,即转录激活因子样效应物核酸酶,它是一种人工限制酶,通过将TAL效应物DNA结合结构域与DNA裂解结构域融合而产生。TAL效应物是通常由黄单胞菌属细菌(Xanthomonas bacteria)或相关物种分泌的蛋白,或从其衍生并经过修饰的蛋白。TAL效应物的DNA结合结构域可以包含高度保守的序列,例如约33-34个氨基酸序列,但第12个和第13个氨基酸除外,这两个氨基酸高度可变(重复可变二残基或RVD)并且通常显示出与特定核苷酸识别的强相关性。TALEN DNA裂解结构域可以来自合适的核酸酶。例如,来自FokI内切核酸酶或FokI内切核酸酶变体的DNA裂解结构域可以用于构建杂交核酸酶。由于FokI结构域(其作为二聚体起作用)的特性,TALEN可以优选地作为单独的实体提供。TALEN或TALEN组分可以优选地被工程化或修饰以便靶向任何所需的DNA序列。这样的工程化可以根据合适的方法进行,例如Zhang等人,Nature Biotechnology,1-6(2011),或Reyon等人,Nature Biotechnology,30,460-465(2012)。The term "TALEN-system" relates to the use of TALEN, i.e., transcription activator-like effector nuclease, which is an artificial restriction enzyme produced by fusing a TAL effector DNA binding domain with a DNA cleavage domain. TAL effectors are proteins typically secreted by Xanthomonas bacteria or related species, or proteins derived therefrom and modified. The DNA binding domain of a TAL effector may comprise a highly conserved sequence, such as a sequence of about 33-34 amino acids, except for the 12th and 13th amino acids, which are highly variable (repeated variable di-residues or RVDs) and generally show a strong correlation with specific nucleotide recognition. The TALEN DNA cleavage domain may be derived from a suitable nuclease. For example, a DNA cleavage domain from a FokI endonuclease or a FokI endonuclease variant may be used to construct a hybrid nuclease. Due to the properties of the FokI domain (which acts as a dimer), TALEN may preferably be provided as a separate entity. TALEN or TALEN components may preferably be engineered or modified to target any desired DNA sequence. Such engineering can be performed according to a suitable method, for example Zhang et al., Nature Biotechnology, 1-6 (2011), or Reyon et al., Nature Biotechnology, 30, 460-465 (2012).
本文中使用的术语“锌指核酸酶(ZFN)-系统”指人工限制酶的系统,其通常通过将锌指DNA-结合结构域与DNA-切割结构域融合而产生。可以优选地对锌指结构域进行工程化或修饰,以便靶向任何所需的DNA序列。这样的工程化方法是本领域技术人员已知的,或者可以从合适的文献来源获得,诸如Bae等人,Nat Biotechnol,21,275-80(2003);Wright等人,Nature Protocols,1,1637-1652(2006))。通常,来自II型限制性内切核酸酶(例如来自FokI)的非特异性切割结构域可以用作ZFN中的切割结构域。由于该切割结构域二聚化以切割DNA,因此通常需要一对ZFN来靶向非回文DNA位点。本发明考虑的ZFN可以进一步包含非特异性切割与每个锌指结构域的C端的融合。例如,为了允许两个切割结构域二聚化并切割DNA,通常需要两个单独的ZFN来结合具有以特定距离提供的C末端的DNA的相反链。应当理解,在锌指结构域和切割结构域之间的接头序列可能要求每个结合位点的5'末端相隔约5至7bp。本发明考虑了任何合适的ZNF形式或变体,例如经典的FokI融合物或FokI的优化版本,以及具有修饰的二聚化界面、改善的结合功能或变体的酶,其能够提供异源二聚体物种。The term "zinc finger nuclease (ZFN)-system" as used herein refers to a system of artificial restriction enzymes, which are generally produced by fusing a zinc finger DNA-binding domain to a DNA-cleavage domain. The zinc finger domain may preferably be engineered or modified so as to target any desired DNA sequence. Such engineering methods are known to those skilled in the art or may be obtained from suitable literature sources, such as Bae et al., Nat Biotechnol, 21, 275-80 (2003); Wright et al., Nature Protocols, 1, 1637-1652 (2006)). Typically, a non-specific cleavage domain from a type II restriction endonuclease (e.g., from FokI) may be used as a cleavage domain in a ZFN. Since the cleavage domain dimerizes to cleave DNA, a pair of ZFNs is generally required to target a non-palindromic DNA site. The ZFN contemplated by the present invention may further comprise a fusion of non-specific cleavage to the C-terminus of each zinc finger domain. For example, to allow two cleavage domains to dimerize and cleave DNA, two separate ZFNs are typically required to bind to opposite strands of DNA with C-termini provided at a specific distance. It should be understood that the linker sequence between the zinc finger domain and the cleavage domain may require that the 5' end of each binding site be separated by about 5 to 7 bp. The present invention contemplates any suitable ZNF format or variant, such as a classic FokI fusion or an optimized version of FokI, as well as enzymes with modified dimerization interfaces, improved binding functions or variants that are capable of providing heterodimeric species.
根据本发明的优选实施方案,所述遗传修饰允许或表达本文所定义的一种或多种活性或多肽,例如BBL2、PPO、AT1、ODC、HPL、PAL、C4H、4CL、HCT和/或C3H。所述表达可以是如本文定义的异源表达,优选地是如本文定义的过表达。细胞、生物体或组织的遗传修饰是如上文详细定义的遗传修饰。具体而言,所述遗传修饰可以至少导致如上面所定义的BBL2(小檗碱桥酶2)多肽的表达,另外导致如上面所定义的PPO(多酚氧化酶)活性或多肽的表达,另外导致如上面所定义的AT1(多胺羟基肉桂酰基转移酶1)活性或多肽的表达,另外导致如上面所定义的ODC(鸟氨酸脱羧酶)活性或多肽和/或HPL(氢过氧化物裂解酶)活性或多肽的表达,且另外导致如上面所定义的PAL(L-苯丙氨酸氨裂解酶)活性或多肽和/或C4H(反式肉桂酸4-羟化酶)活性或多肽和/或4CL(4-香豆酸:辅酶A连接酶)活性或多肽和/或HCT(羟基肉桂酰基-转移酶)活性或多肽和/或C3H(香豆酸3-羟化酶)活性或多肽的表达。According to a preferred embodiment of the invention, the genetic modification allows or expresses one or more activities or polypeptides as defined herein, such as BBL2, PPO, AT1, ODC, HPL, PAL, C4H, 4CL, HCT and/or C3H. The expression may be heterologous expression as defined herein, preferably overexpression as defined herein. The genetic modification of a cell, organism or tissue is a genetic modification as defined in detail above. In particular, the genetic modification may result in at least the expression of a BBL2 (berberine bridge enzyme 2) polypeptide as defined above, additionally the expression of a PPO (polyphenol oxidase) activity or polypeptide as defined above, additionally the expression of an AT1 (polyamine hydroxycinnamoyltransferase 1) activity or polypeptide as defined above, additionally the expression of an ODC (ornithine decarboxylase) activity or polypeptide and/or an HPL (hydroperoxide lyase) activity or polypeptide as defined above, and additionally the expression of a PAL (L-phenylalanine ammonia lyase) activity or polypeptide and/or a C4H (trans-cinnamate 4-hydroxylase) activity or polypeptide and/or a 4CL (4-coumarate:CoA ligase) activity or polypeptide and/or an HCT (hydroxycinnamoyl-transferase) activity or polypeptide and/or a C3H (coumarate 3-hydroxylase) activity or polypeptide as defined above.
在一个优选的实施方案中,所述遗传修饰的生物体、组织或细胞是原核的,例如细菌或真菌,优选克雷伯氏菌属(Klebsiella)、梭菌属(Clostridium)、芽孢杆菌属(Bacillus)、节杆菌属(Arthobacter)、链霉菌属(Streptomyces)、棒杆菌属(Corynebacterium)、欧文氏菌属(Erwinia)、黄单胞菌属(Xanthomonas)、乳杆菌属(Lactobacillus)、热解纤维素菌属(Caldicellulosiruptor)、假单胞菌属(Pseudomonas)、食烷菌属(Alcanivorax)、短杆菌属(Brevibacterium)、双歧杆菌属(Bifidobacterium)、埃希氏菌属(Escherichia)或葡萄球菌属(Staphylococcus)的细菌,更优选大肠杆菌;或曲霉菌属(Aspergillus)、假丝酵母属(Candida)、酵母属(Saccharomyces)、黑粉菌属(Ustilago)、隐球菌属(Cryptococcus)、镰孢菌属(Fusarium)、根霉菌属(Rhizopus)、梨孢菌属(Magnaporthe)、驹形氏酵母属(Komagataella)、木霉属(Trichderma)、青霉属(Penicillium)、支顶孢属(Acremonium)、毛霉菌属(Mucor)、链格孢属(Alternaria)、葡萄孢属(Botrytis)、内座壳属(Endothia)、丝核菌属(Rhizoctonia)、核盘菌属(Sclerotinia)、克鲁维酵母属(Klyveromyces)、球拟酵母属(Torulopsis)、侧孢霉属(Sporotrichum)、地丝菌属(Geotrichum)、轮枝孢属(Verticillium)、葡萄座腔菌属(Botryosphaeria)、单端孢霉属(Trichothecium)、汉逊酵母属(Hansenula)、裂殖酵母属(Schizosaccharomyces)、酒香酵母属(Brettanomyces)或脉孢霉属(Neurospora)的真菌,优选假丝酵母属或酵母属。In a preferred embodiment, the genetically modified organism, tissue or cell is prokaryotic, such as bacteria or fungi, preferably Klebsiella, Clostridium, Bacillus, Arthobacter, Streptomyces, Corynebacterium, Erwinia, Xanthomonas, Lactobacillus, Caldicellu The invention also provides a bacterium of the genus losiruptor, Pseudomonas, Alcanivorax, Brevibacterium, Bifidobacterium, Escherichia or Staphylococcus, more preferably Escherichia coli; or a bacterium of the genus Aspergillus, Candida, Saccharomyces, Ustilago, Cryptococcus, etc. cus), Fusarium, Rhizopus, Magnaporthe, Komagataella, Trichderma, Penicillium, Acremonium, Mucor, Alternaria, Botrytis, Endothia, Rhizoctonia, Sclerotinia, Kluyveromyces lyveromyces, Torulopsis, Sporotrichum, Geotrichum, Verticillium, Botryosphaeria, Trichothecium, Hansenula, Schizosaccharomyces, Brettanomyces or Neurospora, preferably Candida or Saccharomyces.
进一步优选的是,所述遗传修饰的生物体、组织或细胞是真核的。更优选的是,所述遗传修饰的生物体是植物,或所述组织是植物组织,或所述细胞是植物细胞。在另一个特别优选的实施方案中,所述遗传修饰的生物体是被昆虫食草动物攻击的高等植物,或所述遗传修饰的组织属于被昆虫食草动物攻击的高等植物,或所述遗传修饰的细胞是高等植物细胞,其中所述植物被昆虫食草动物攻击。It is further preferred that the genetically modified organism, tissue or cell is eukaryotic. It is more preferred that the genetically modified organism is a plant, or the tissue is a plant tissue, or the cell is a plant cell. In another particularly preferred embodiment, the genetically modified organism is a higher plant attacked by an insect herbivore, or the genetically modified tissue belongs to a higher plant attacked by an insect herbivore, or the genetically modified cell is a higher plant cell, wherein the plant is attacked by an insect herbivore.
本文中使用的术语“昆虫食草动物”涉及在解剖学上和生理学上适合吃植物材料(诸如以叶片作为其食物的主要组分)的昆虫。由于以植物为食,食草昆虫通常具有适合锉磨或碾磨的口器。特别优选的是,所述昆虫食草动物是通过撕裂和冲刷和/或通过刺吸进食的昆虫。The term "insect herbivore" as used herein relates to insects that are anatomically and physiologically adapted to eat plant material, such as leaves as the main component of their diet. Due to their plant feeding, herbivorous insects generally have mouthparts adapted for rasping or grinding. It is particularly preferred that the insect herbivore is an insect that feeds by tearing and scouring and/or by piercing and sucking.
在具体实施方案中,所述植物是受以撕裂和冲刷和/或刺吸方式进食的昆虫攻击的高等植物。“撕裂和冲刷”昆虫的进食机制通常涉及将刺针反复插入和拔出植物组织。“刺吸”是指将植物细胞用刺针刺破,使其液化,然后使用唾液用吸嘴吸取破裂的细胞内容物。更多信息可以从合适的教科书诸如Strong等人,Insects on Plants,Harvard UniversityPress(1984)获得。In a specific embodiment, the plant is a higher plant attacked by insects that feed in a tearing and scouring and/or piercing and sucking manner. The feeding mechanism of "tearing and scouring" insects generally involves repeated insertion and withdrawal of a stinger from plant tissue. "Piercing and sucking" refers to piercing plant cells with a stinger, liquefying them, and then using saliva to suck the ruptured cell contents with a suction mouth. More information can be obtained from suitable textbooks such as Strong et al., Insects on Plants, Harvard University Press (1984).
在其它实施方案中,所述植物是受到昆虫攻击的植物,所述昆虫将其卵产在所述植物的叶片中。这样的昆虫的非限制性例子包括结草虫(bagworm)、蚜虫(aphid)、粉蚧(mealybug)、蝉(cicada)、耳虫(earworm)、甲虫(beetle)、网蝽(lace bug)、叶蝉(leafhopper)和介壳虫(scale)。In other embodiments, the plant is a plant attacked by an insect that lays its eggs in the leaves of the plant. Non-limiting examples of such insects include bagworms, aphids, mealybugs, cicadas, earworms, beetles, lace bugs, leafhoppers, and scales.
在进一步优选的实施方案中,所述食草动物昆虫是叶蝉或飞虱。甚至更优选地,所述昆虫属于脊冠叶蝉(Aphrodinae)、Bathymatopohorinae、大叶蝉(Cicadellinae)、离脉叶蝉(Coelidiinae)、角顶叶蝉(Deltocephalinae)、Errhomeninae、尖颊叶蝉亚科(Euacanthelinae)、宽头叶蝉(Eurymelinae)、横脊叶蝉(Evacantinae)、杆叶蝉(Hylicinae)、叶蝉亚科(Iassinae)、Jascopinae、耳叶蝉(Ledrinae)、迈叶蝉(Megophthalminae)、窗翅叶蝉(Mileewinae)、Nastlopinae、多彩叶蝉(Neobaliane)、新离脉叶蝉(Neocoelidinae)、聂叶蝉(Nioniinae)、凸缘叶蝉(Phereurhinina)、Portaninae、长胸叶蝉(Signoretiinae)、锥胸叶蝉(Tartesinee)、小叶蝉(Typhlory bina)或窄颊叶蝉(Ulopinae)科。甚至更优选地,所述昆虫属于小绿叶蝉属(Empoasca)、Circulifer、褐飞虱属(Nilaparvata)、白背飞虱属(Sogatella)、黑尾叶蝉属(Nepotettix)或Cicadulina属。在一个具体实施方案中,所述植物因此是受叶蝉或飞虱攻击的高等植物,更优选地受属于脊冠叶蝉(Aphrodinae)、Bathymatopohorinae、大叶蝉(Cicadellinae)、离脉叶蝉(Coelidiinae)、角顶叶蝉(Deltocephalinae)、Errhomeninae、尖颊叶蝉亚科(Euacanthelinae)、宽头叶蝉(Eurymelinae)、横脊叶蝉(Evacantinae)、杆叶蝉(Hylicinae)、叶蝉亚科(Iassinae)、Jascopinae、耳叶蝉(Ledrinae)、迈叶蝉(Megophthalminae)、窗翅叶蝉(Mileewinae)、Nastlopinae、多彩叶蝉(Neobaliane)、新离脉叶蝉(Neocoelidinae)、聂叶蝉(Nioniinae)、凸缘叶蝉(Phereurhinina)、Portaninae、长胸叶蝉(Signoretiinae)、锥胸叶蝉(Tartesinee)、小叶蝉(Typhlory bina)或窄颊叶蝉(Ulopinae)科的昆虫攻击,或甚至更优选地受属于小绿叶蝉属(Empoasca)、Circulifer、褐飞虱属(Nilaparvata)、白背飞虱属(Sogatella)、黑尾叶蝉属(Nepotettix)或Cicadulina属的昆虫攻击。In a further preferred embodiment, the herbivore insect is a leafhopper or a planthopper. Even more preferably, the insect belongs to Aphrodinae, Bathymatopohorinae, Cicadellinae, Coelidiinae, Deltocephalinae, Erromeninae, Euacanthelinae, Eurymelinae, Evacantinae, Hylicinae, Iassinae, Jascopinae, Ledrinae, Megophthalminae, Mileewinae, Nastlopinae, Neobaliane, Neocoelidinae, Nioniinae, Phereurhinina, Portaninae, Signoretiinae, Tartesinee, Typhlory Even more preferably, the insect belongs to the genus Empoasca, Circulifer, Nilaparvata, Sogatella, Nepotettix or Cicadulina. In a specific embodiment, the plant is therefore a higher plant attacked by leafhoppers or planthoppers, more preferably by plants belonging to the subfamily Aphrodinae, Bathymatopohorinae, Cicadellinae, Coelidiinae, Deltocephalinae, Erromeninae, Euacanthelinae, Eurymelinae, Evacantinae, Hylicinae, The present invention is preferably attacked by insects belonging to the family Iassinae, Jascopinae, Ledrinae, Megophthalminae, Mileewinae, Nastlopinae, Neobaliane, Neocoelidinae, Nioniinae, Phereurhinina, Portaninae, Signoretiinae, Tartesinee, Typhlory bina or Ulopinae, or even more preferably by insects belonging to the genera Empoasca, Circulifer, Nilaparvata, Sogatella, Nepotettix or Cicadulina.
在更优选的实施方案中,所述高等植物是受以撕裂和冲刷和/或刺吸方式进食的昆虫攻击的农作物。In a more preferred embodiment, the higher plants are crop plants attacked by insects that feed by tearing and scouring and/or piercing and sucking.
在最优选的实施方案中,所述高等植物属于烟草属(Nicotiana)、茄属(Solanum)、水稻属(Oryza)、玉米属(Zea)、豆属(Phaeseolus)或山茶属(Camellia)。In a most preferred embodiment, the higher plant belongs to the genus Nicotiana, Solanum, Oryza, Zea, Phaeseolus or Camellia.
在另一个方面,本发明涉及如上文定义的多肽或多核苷酸、如上文定义的表达盒或如上文定义的载体或插入构建体用于制备根据本发明的化合物(例如如上文所定义)的用途。In another aspect, the invention relates to the use of a polypeptide or a polynucleotide as defined above, an expression cassette as defined above or a vector or an insertion construct as defined above for the preparation of a compound according to the invention (eg as defined above).
在另一个方面,本发明涉及组合物,其包含如上文所定义的根据本发明的化合物,或用如上文所定义的方法制备的化合物,或通过如上文所定义的生物体、组织或细胞(优选遗传修饰的生物体、组织或细胞)制备的化合物。所述组合物可以优选地是农业组合物。本文中使用的术语“农业组合物”指适合用于农业或园艺的组合物,例如其包含有效浓度和量的诸如如本文中定义的本发明的化合物的成分。在具体实施方案中,所述组合物可以进一步用于在非农业环境中的植物上或植物内使用。In another aspect, the present invention relates to a composition comprising a compound according to the present invention as defined above, or a compound prepared by a method as defined above, or a compound prepared by an organism, tissue or cell (preferably a genetically modified organism, tissue or cell) as defined above. The composition may preferably be an agricultural composition. The term "agricultural composition" used herein refers to a composition suitable for agriculture or gardening, such as a composition comprising an effective concentration and amount of a compound of the present invention such as defined herein. In a specific embodiment, the composition may further be used for use on or in a plant in a non-agricultural environment.
在一个实施方案中,所述组合物可以被设计用于在植物内或植物上或植物所在地使用。通常,可以在植物的叶片或开花区域中使用,可替换地也可以在根部区域中使用。术语“植物所在地”应理解为植物生长或预期生长的任何类型的环境、土壤、区域或材料。优选地,该术语涉及植物在其上生长的土壤。In one embodiment, the composition may be designed for use in or on a plant or at the locus of a plant. Typically, it may be used in the foliage or flowering region of a plant, alternatively in the root region. The term "plant locus" is to be understood as any type of environment, soil, area or material in which a plant grows or is expected to grow. Preferably, the term relates to the soil on which the plant grows.
如本文中定义的化合物的“有效量”或“有效浓度”可以根据本领域技术人员已知的合适体外和体内试验来确定。这些量和浓度可以根据地点、植物种类或品种、土壤、气候条件或任何其它可能对食草动物攻击产生影响的合适参数进行调整。An "effective amount" or "effective concentration" of a compound as defined herein can be determined according to suitable in vitro and in vivo tests known to those skilled in the art. These amounts and concentrations may be adjusted according to the location, plant species or variety, soil, climatic conditions or any other suitable parameter that may have an effect on herbivore attack.
所述组合物可以包含合适的载体,优选农业化学载体。本文中使用的术语“农业化学载体”是有助于农用化学品(包括如本文中定义的化合物)在其使用田地中、特别是在植物上或植物内的递送和/或释放的物质或组合物。合适的农业化学载体的例子包括固体载体,诸如矿土,例如硅酸盐、硅胶、滑石粉、高岭土、石灰石、石灰、白垩、红壤土、黄土、粘土、白云石、硅藻土、硫酸钙、硫酸镁、氧化镁、磨碎的合成材料;肥料,诸如,例如硫酸铵、磷酸铵、硝酸铵、尿素,以及植物来源的产品,诸如谷类粉、树皮粉、木材粉和坚果壳粉、纤维素粉末,和其它固体载体。载体的其它合适例子包括烟雾二氧化硅或沉淀二氧化硅,其可以例如在固体制剂中用作流动助剂、抗结块助剂、研磨助剂以及用作液体活性成分的载体。合适载体的另外例子是微粒,例如粘附于植物叶片并在特定时间段内释放其内容物的微粒。在具体实施方案中,这样的农业化学载体可以是复合凝胶微粒,其可以用于递送植物保护活性成分,例如如US 6,180,141中所述;或包含至少一种植物活性化合物和包封佐剂的组合物,其中所述佐剂包含真菌细胞或其片段,例如如WO 2005/102045中所述;或载体颗粒,其在表面上涂布有亲脂性增粘剂,其中所述载体颗粒粘附于植物、草和杂草的表面,例如如US2007/0280981中所公开。在进一步的具体实施方案中,这样的载体可以包括特定的、强结合分子,其确保载体粘附于植物直至其内容物被完全递送。例如,所述载体可以是或包含纤维素结合结构域(CBD),其已经被描述为用于将分子种类附着到纤维素上的有用试剂(参见US 6,124,117);或CBD与酶之间的直接融合物;或可用于递送包封试剂的多功能融合蛋白,其中所述多功能融合蛋白可以由第一结合结构域(其为碳水化合物结合结构域)和第二结合结构域组成,其中第一结合结构域或第二结合结构域均可结合微粒(也参见WO 03/031477)。载体的其它合适例子包括由与微粒结合的CBD和抗-RR6抗体片段组成的双功能融合蛋白。在另一个具体实施方案中,所述载体可以是使用水分活性涂层粘附到植物表面的活性成分载体颗粒,所述涂层例如包括阿拉伯树胶、瓜尔胶、刺梧桐树胶、黄蓍树胶和槐豆胶。将颗粒施用至植物表面时,来自降水、灌溉、露水、特殊施用设备中与颗粒共同施用的水、或植物本身的吐水可以提供足够的水分用于使颗粒粘附至植物表面(也参见US 2007/0280981)。The composition may include a suitable carrier, preferably an agricultural chemical carrier. The term "agricultural chemical carrier" used herein is a material or composition that helps agricultural chemicals (including compounds as defined herein) to be delivered and/or released in the field of use, particularly on or in plants. Examples of suitable agricultural chemical carriers include solid carriers, such as mineral soils, such as silicates, silica gel, talc, kaolin, limestone, lime, chalk, red soil, loess, clay, dolomite, diatomaceous earth, calcium sulfate, magnesium sulfate, magnesium oxide, ground synthetic materials; fertilizers, such as, for example, ammonium sulfate, ammonium phosphate, ammonium nitrate, urea, and products of plant origin, such as cereal powder, bark powder, wood powder and nut shell powder, cellulose powder, and other solid carriers. Other suitable examples of carriers include fumed silica or precipitated silica, which can be used, for example, as flow aids, anti-caking aids, grinding aids, and as carriers of liquid active ingredients in solid formulations. Another example of a suitable carrier is microparticles, such as microparticles that adhere to plant leaves and release their contents within a specific time period. In a specific embodiment, such an agricultural chemical carrier may be a composite gel microparticle, which can be used to deliver plant protection active ingredients, for example as described in US 6,180,141; or a composition comprising at least one plant active compound and an encapsulated adjuvant, wherein the adjuvant comprises fungal cells or fragments thereof, for example as described in WO 2005/102045; or a carrier particle, which is coated with a lipophilic tackifier on the surface, wherein the carrier particle adheres to the surface of plants, grasses and weeds, for example as disclosed in US 2007/0280981. In a further specific embodiment, such a carrier may include specific, strong binding molecules, which ensure that the carrier adheres to the plant until its contents are completely delivered. For example, the carrier may be or comprise a cellulose binding domain (CBD), which has been described as a useful agent for attaching molecular species to cellulose (see US 6,124,117); or a direct fusion between a CBD and an enzyme; or a multifunctional fusion protein that can be used to deliver an encapsulated agent, wherein the multifunctional fusion protein may consist of a first binding domain (which is a carbohydrate binding domain) and a second binding domain, wherein either the first binding domain or the second binding domain can bind to microparticles (see also WO 03/031477). Other suitable examples of carriers include bifunctional fusion proteins consisting of a CBD bound to microparticles and an anti-RR6 antibody fragment. In another specific embodiment, the carrier may be an active ingredient carrier particle adhered to a plant surface using a water-active coating, such as gum arabic, guar gum, karaya gum, tragacanth gum, and locust bean gum. When the particles are applied to plant surfaces, water from precipitation, irrigation, dew, water co-applied with the particles in special application equipment, or water from the plants themselves can provide sufficient moisture for the particles to adhere to the plant surface (see also US 2007/0280981).
在其它实施方案中,所述组合物可以包含或可以另外包含稳定剂。本文中使用的术语“稳定剂”是指任何合适的化合物或组合物,其允许降低根据本发明的化合物的反应性和/或其防止或减慢根据本发明的组合物的反应性部分彼此相互相互作用和/或自催化聚合。在优选的实施方案中,所述稳定剂是能够降低pH和/或维持低pH、更优选维持4.8或以下的pH的化合物或组合物。在其它实施方案中,所述稳定剂可以是去污剂,诸如两性离子去污剂等。In other embodiments, the composition may comprise or may additionally comprise a stabilizer. The term "stabilizer" as used herein refers to any suitable compound or composition which allows reducing the reactivity of the compound according to the invention and/or which prevents or slows down the reactive moieties of the composition according to the invention from interacting with each other and/or autocatalytically polymerizing. In a preferred embodiment, the stabilizer is a compound or composition capable of reducing the pH and/or maintaining a low pH, more preferably maintaining a pH of 4.8 or below. In other embodiments, the stabilizer may be a detergent, such as a zwitterionic detergent, etc.
在其它实施方案中,所述组合物可以包含或可以另外包含铺展剂。本文中使用的术语“铺展剂”指这样的物质:其向液体或半固体组合物中的添加导致所述组合物所覆盖的表面的扩大。铺展剂通常通过例如降低组合物的表面张力或通过提高被处理表面的润湿性来发挥作用。因此,它有利于组合物及其成分的均匀分布,并且也有利于在处理过的表面(例如植物叶片)上形成均匀的薄膜。所述铺展剂通常抑制具有高表面张力的组合物(例如水溶液)在处理过的表面上形成微滴的趋势,形成微滴会导致所述组合物中存在的物质的斑点状集中。要在本发明的上下文中使用的铺展剂的合适例子包括油或脂肪,诸如短链脂肪酸(C6至C10),例如椰子油和巴巴苏籽油、植物脂、角鲨烯;中链脂肪酸(C12至C16)或具有高卵磷脂或角鲨烯含量,例如鳄梨油、芝麻油、葡萄籽油或苋菜红油;或长链脂肪酸(C18至C24),例如月见草油、琉璃苣油、大麻油和野玫瑰油。另一类合适的铺展剂是疏水蛋白类,即具有约100-150个氨基酸长度的小的、富含半胱氨酸的蛋白,其在自然界中仅存在于丝状真菌中。In other embodiments, the composition may comprise or may additionally comprise a spreading agent. The term "spreading agent" as used herein refers to a substance whose addition to a liquid or semisolid composition results in an enlargement of the surface covered by the composition. Spreading agents typically act by, for example, reducing the surface tension of the composition or by increasing the wettability of the treated surface. Thus, it facilitates the uniform distribution of the composition and its ingredients, and also facilitates the formation of a uniform film on the treated surface (e.g., plant leaves). The spreading agent typically inhibits the tendency of compositions with high surface tension (e.g., aqueous solutions) to form droplets on the treated surface, which would result in a spotty concentration of substances present in the composition. Suitable examples of spreading agents to be used in the context of the present invention include oils or fats, such as short-chain fatty acids (C6 to C10), for example coconut oil and babassu seed oil, vegetable fats, squalene; medium-chain fatty acids (C12 to C16) or with a high lecithin or squalene content, for example avocado oil, sesame oil, grape seed oil or amaranth oil; or long-chain fatty acids (C18 to C24), for example evening primrose oil, borage oil, hemp oil and wild rose oil. Another class of suitable spreading agents is the hydrophobins, i.e. small, cysteine-rich proteins with a length of about 100-150 amino acids, which occur in nature only in filamentous fungi.
在其它实施方案中,根据本发明的组合物可以包含佐剂。所用的“佐剂”指辅助或改变组合物的主要成分(例如根据本发明的化合物)的作用的化合物。佐剂可以充当润湿剂、粘着剂、促进剂(perpetrator)或激活剂。在具体实施方案中,它们可以用于喷涂。In other embodiments, the composition according to the present invention may include an adjuvant. The "adjuvant" used refers to a compound that assists or changes the effect of the main component of the composition (e.g., the compound according to the present invention). Adjuvants can serve as wetting agents, adhesives, accelerators (perpetrators) or activators. In specific embodiments, they can be used for spraying.
本发明考虑的佐剂的一个例子是表面活性剂。“表面活性剂”是通常为两亲性的且包含疏水基团和亲水基团的表面活性试剂。它们可以是阴离子的、阳离子的、非离子的或两性的。例子包括LAS、LES、CTAC、DODAC、APEO、FAEO和AEO。An example of an adjuvant contemplated by the present invention is a surfactant. A "surfactant" is a surface active agent that is generally amphipathic and comprises a hydrophobic group and a hydrophilic group. They can be anionic, cationic, nonionic or amphoteric. Examples include LAS, LES, CTAC, DODAC, APEO, FAEO and AEO.
根据本发明的组合物可以进一步包含另外的活性成分。例如,所述组合物可以包含例如至少一种杀虫化合物。例如,所述组合物可以另外包含至少一种除草化合物和/或至少一种杀真菌化合物和/或至少一种杀昆虫化合物。除草化合物的合适例子包括、但不限于2,4-二氯苯氧基乙酸、氯氨基吡啶酸、莠去津、二氯吡啶酸、麦草畏、草铵膦、吡氟禾草灵、氯氟吡氧乙酸、草甘膦、灭草烟、甲基咪草烟、咪草啶酸、利谷隆、2-甲基-4-氯苯氧基乙酸、异丙甲草胺、百草枯、二甲戊灵、毒莠定、定草酯、啶嘧磺隆或甲磺隆。杀真菌化合物的合适例子包括、但不限于多菌灵、硫菌灵、噻苯唑、氟硅唑、嘧菌酯、噁醚唑、春雷霉素或稻瘟灵。杀昆虫化合物的合适例子包括、但不限于接触性杀昆虫剂,诸如cephate、卡巴立、氟虫腈、除虫菊酯、拟除虫菊酯诸如联苯菊酯、氟氯氰菊酯、氯氰菊酯、溴氰菊酯、λ-三氟氯氰菊酯、扑灭司林、es-氰戊菊酯、七氟菊酯或四溴菊酯、以及氟虫腈或多杀菌素;或表面活性剂杀昆虫剂,包括例如基于新烟碱的化合物和基于有机硅的表面活性剂。还考虑了P450抑制剂,诸如胡椒基丁醚(piperniyl butoxide),它是一种通用的P450抑制剂。这些抑制剂可以与上面提到的接触性杀虫剂或表面活性剂杀虫剂联合使用。The composition according to the present invention may further include additional active ingredients. For example, the composition may include, for example, at least one insecticidal compound. For example, the composition may additionally include at least one herbicidal compound and/or at least one fungicidal compound and/or at least one insecticidal compound. Suitable examples of herbicidal compounds include, but are not limited to, 2,4-dichlorophenoxyacetic acid, aminopyralid, atrazine, clopyralid, dicamba, glufosinate, fluazifop-butyl, clofopyralid, glyphosate, metazapine, imazamox, imazamox, linuron, 2-methyl-4-chlorophenoxyacetic acid, isopropyl metolachlor, paraquat, pendimethalin, pyralid, pyralid, fluazifop-butyl or metsulfuron. Suitable examples of fungicidal compounds include, but are not limited to, carbendazim, thiophanate-methyl, thiabendazole, flusilazole, azoxystrobin, oxadiazole, kasugamycin or rice blast. Suitable examples of insecticidal compounds include, but are not limited to, contact insecticides such as cephate, carbaryl, fipronil, pyrethrins, pyrethroids such as bifenthrin, cyfluthrin, cypermethrin, deltamethrin, lambda-cyhalothrin, permethrin, es-cypermethrin, tefluthrin or tralomethrin, and fipronil or spinosad; or surfactant insecticides, including, for example, neonicotinoid-based compounds and silicone-based surfactants. P450 inhibitors are also contemplated, such as piperniyl butoxide, which is a general P450 inhibitor. These inhibitors can be used in combination with the contact insecticides or surfactant insecticides mentioned above.
在特别优选的实施方案中,所述组合物被设计或制备用于植物保护,特别是用于植物保护以防食草动物,例如如本文所定义的。例如,所述组合物可以以任何合适的方式配制,以允许应用于植物,例如高等植物,优选如本文定义的农作物。例如,所述组合物可以配制成包含佐剂、铺展剂和/或表面活性剂,其允许有效应用,例如通过喷洒或任何其它合适的方法。In a particularly preferred embodiment, the composition is designed or prepared for plant protection, in particular for plant protection against herbivores, e.g. as defined herein. For example, the composition can be formulated in any suitable manner to allow application to plants, e.g. higher plants, preferably crops as defined herein. For example, the composition can be formulated to include an adjuvant, a spreading agent and/or a surfactant, which allows effective application, e.g. by spraying or any other suitable method.
在另一个方面,本发明涉及如上文所定义的根据本发明的化合物的用途,或用如上文所定义的方法制备的化合物的用途,或通过如上文定义的生物体、组织或细胞(优选遗传修饰的生物体、组织或细胞)制备的化合物的用途,或如上文所定义的组合物的用途,所述用途是用于植物保护。在一个优选的实施方案中,本发明涉及如上文所定义的根据本发明的化合物的用途,或用如上文所定义的方法制备的化合物的用途,或通过如上文定义的生物体、组织或细胞(优选遗传修饰的生物体、组织或细胞)制备的化合物的用途,或如上文所定义的组合物用于植物保护的用途,所述用途是用于植物保护以对抗食草动物。In another aspect, the invention relates to the use of a compound according to the invention as defined above, or a compound prepared by a method as defined above, or a compound prepared by an organism, tissue or cell (preferably a genetically modified organism, tissue or cell) as defined above, or a composition as defined above, for plant protection. In a preferred embodiment, the invention relates to the use of a compound according to the invention as defined above, or a compound prepared by a method as defined above, or a compound prepared by an organism, tissue or cell (preferably a genetically modified organism, tissue or cell) as defined above, or a composition as defined above for plant protection, for plant protection against herbivores.
优选的是,所述食草动物是如上面所定义的食草动物昆虫,优选叶蝉或飞虱,更优选地属于脊冠叶蝉(Aphrodinae)、Bathymatopohorinae、大叶蝉(Cicadellinae)、离脉叶蝉(Coelidiinae)、角顶叶蝉(Deltocephalinae)、Errhomeninae、尖颊叶蝉亚科(Euacanthelinae)、宽头叶蝉(Eurymelinae)、横脊叶蝉(Evacantinae)、杆叶蝉(Hylicinae)、叶蝉亚科(Iassinae)、Jascopinae、耳叶蝉(Ledrinae)、迈叶蝉(Megophthalminae)、窗翅叶蝉(Mileewinae)、Nastlopinae、多彩叶蝉(Neobaliane)、新离脉叶蝉(Neocoelidinae)、聂叶蝉(Nioniinae)、凸缘叶蝉(Phereurhinina)、Portaninae、长胸叶蝉(Signoretiinae)、锥胸叶蝉(Tartesinee)、小叶蝉(Typhlory bina)或窄颊叶蝉(Ulopinae)科。甚至更优选地,所述昆虫属于小绿叶蝉属(Empoasca)、Circulifer、褐飞虱属(Nilaparvata)、白背飞虱属(Sogatella)、黑尾叶蝉属(Nepotettix)或Cicadulina属的昆虫。Preferably, the herbivore is an insect herbivore as defined above, preferably a leafhopper or a planthopper, more preferably belonging to the family Aphrodinae, Bathymatopohorinae, Cicadellinae, Coelidiinae, Deltocephalinae, Errhomeninae, Euacanthelinae, Eurymelinae, Evacantinae, Hylicinae, The insect belongs to the family of Iassinae, Jascopinae, Ledrinae, Megophthalminae, Mileewinae, Nastlopinae, Neobaliane, Neocoelidinae, Nioniinae, Phereurhinina, Portaninae, Signoretiinae, Tartesinee, Typhlory bina or Ulopinae. Even more preferably, the insect belongs to the genus Empoasca, Circulifer, Nilaparvata, Sogatella, Nepotettix or Cicadulina.
因此,所述化合物可以由所述生物体、组织或细胞提供。其可以以本领域技术人员已知的任何合适的量、浓度或形式提供。所述化合物可以例如积累在所述生物体、组织或细胞中,并从而有助于保护所述生物体、组织或细胞免于食草动物攻击。可替换地,所述化合物可以被排泄或输出或以其它方式递送至所述生物体、细胞或组织的外部,并随后用于不同目的,例如作为植物保护组合物中的成分。Therefore, the compound can be provided by the organism, tissue or cell. It can be provided in any suitable amount, concentration or form known to those skilled in the art. The compound can, for example, accumulate in the organism, tissue or cell, and thereby help protect the organism, tissue or cell from herbivore attacks. Alternatively, the compound can be excreted or exported or otherwise delivered to the outside of the organism, cell or tissue, and then used for different purposes, for example as a component in a plant protection composition.
在另一个方面,本发明涉及如上文所定义的根据本发明的化合物的用途,或用如上文所定义的方法制备的化合物的用途,或通过如上文定义的生物体、组织或细胞(优选遗传修饰的生物体、组织或细胞)制备的化合物的用途,或如上文所定义的组合物的作为杀昆虫剂的用途。可以在任何合适的情况或环境中、或在本领域技术人员认为合适的任何植物上或内部采用所述杀昆虫剂。优选的是,所述杀昆虫剂是对抗昆虫食草动物的特效杀昆虫剂,更优选地对抗通过撕裂和冲刷和/或通过刺吸进食的昆虫食草动物,甚至更优选地对抗叶蝉或飞虱,例如属于脊冠叶蝉(Aphrodinae)、Bathymatopohorinae、大叶蝉(Cicadellinae)、离脉叶蝉(Coelidiinae)、角顶叶蝉(Deltocephalinae)、Errhomeninae、尖颊叶蝉亚科(Euacanthelinae)、宽头叶蝉(Eurymelinae)、横脊叶蝉(Evacantinae)、杆叶蝉(Hylicinae)、叶蝉亚科(Iassinae)、Jascopinae、耳叶蝉(Ledrinae)、迈叶蝉(Megophthalminae)、窗翅叶蝉(Mileewinae)、Nastlopinae、多彩叶蝉(Neobaliane)、新离脉叶蝉(Neocoelidinae)、聂叶蝉(Nioniinae)、凸缘叶蝉(Phereurhinina)、Portaninae、长胸叶蝉(Signoretiinae)、锥胸叶蝉(Tartesinee)、小叶蝉(Typhlory bina)或窄颊叶蝉(Ulopinae)科。甚至更优选地,所述昆虫属于小绿叶蝉属(Empoasca)、Circulifer、褐飞虱属(Nilaparvata)、白背飞虱属(Sogatella)、黑尾叶蝉属(Nepotettix)或Cicadulina属的昆虫。In another aspect, the invention relates to the use of a compound according to the invention as defined above, or of a compound prepared by a method as defined above, or of a compound prepared by an organism, tissue or cell (preferably a genetically modified organism, tissue or cell) as defined above, or of a composition as defined above as an insecticide. The insecticide may be employed in any suitable situation or environment, or on or in any plant as deemed suitable by the skilled person. Preferably, the insecticide is a specific insecticide against insect herbivores, more preferably against insect herbivores that feed by tearing and scouring and/or by sucking, even more preferably against leafhoppers or planthoppers, for example, belonging to the family Aphrodinae, Bathymatopohorinae, Cicadellinae, Coelidiinae, Deltocephalinae, Errhomeninae, Euacanthelinae, Eurymelinae, Evacantinae ), Hylicinae, Iassinae, Jascopinae, Ledrinae, Megophthalminae, Mileewinae, Nastlopinae, Neobaliane, Neocoelidinae, Nioniinae, Phereurhinina, Portaninae, Signoretiinae, Tartesinee, Typhlory bina or Ulopinae. Even more preferably, the insect belongs to the genus Empoasca, Circulifer, Nilaparvata, Sogatella, Nepotettix or Cicadulina.
在另一个方面,本发明涉及如本文中定义的生物体、组织或细胞、或包含本文所定义的表达盒的生物体、组织或细胞、或如本文中定义的载体或插入构建体用于制备根据本发明的化合物的用途。因此,所述化合物可以由所述生物体、组织或细胞提供。其可以以本领域技术人员已知的任何合适的量、浓度或形式提供。所述化合物可以例如积累在所述生物体、组织或细胞中,并且从而有助于保护所述生物体、组织或细胞免受食草动物攻击。可替换地,所述化合物可以被排泄或输出或以其它方式递送至所述生物体、细胞或组织的外部,并随后用于不同目的,例如作为植物保护组合物中的成分。In another aspect, the present invention relates to organisms as defined herein, tissues or cells, or organisms, tissues or cells comprising expression cassettes as defined herein, or vectors as defined herein or insertion constructs for the preparation of the purposes of compounds according to the present invention. Therefore, the compound can be provided by the organism, tissue or cell. It can be provided in any suitable amount, concentration or form known to those skilled in the art. The compound can, for example, accumulate in the organism, tissue or cell, and thereby contribute to protecting the organism, tissue or cell from herbivorous attacks. Alternatively, the compound can be excreted or exported or otherwise delivered to the outside of the organism, cell or tissue, and then used for different purposes, for example as a component in a plant protection composition.
在另一个实施方案中,本发明涉及本文所定义的生物体(例如包含如本文中定义的表达盒的生物体,或经过遗传修饰以表达本发明的化合物的生物体)用于农业、园艺或观赏植物生产的用途。优选地,所述生物体是高等植物,例如农作物,其用于生产食物产品,或者它可以是用于园艺目的或作为观赏植物的植物。通过生产本发明的化合物,所述生物体(例如植物)被保护免受食草动物攻击,并因此可以生产食物产品,或作为园艺或观赏植物进行销售。In another embodiment, the present invention relates to the use of an organism as defined herein (e.g. an organism comprising an expression cassette as defined herein, or an organism genetically modified to express a compound of the present invention) for agricultural, horticultural or ornamental plant production. Preferably, the organism is a higher plant, such as a crop, which is used to produce a food product, or it may be a plant used for horticultural purposes or as an ornamental plant. By producing a compound of the present invention, the organism (e.g. a plant) is protected from herbivorous animals and can therefore produce a food product, or be sold as a horticultural or ornamental plant.
根据本发明的用途可以是持续使用或周期使用。例如,周期行使用可以例如意味着在特定时间段内使用,例如1、2、3、4、5、6、7天或更多天,1、2、3、4、5、6、7、8、9、10周或更多周,1、2、3、4、5、6、7、8、9、10、11、12月或更多月,或1、2、3、4、5、6、7、8、9、10年或更多年,或者介于上述值之间的任何时间段。所述用途可以基于采用根据本发明的化合物或组合物的任何合适的量、浓度或形式。Purpose according to the present invention can be continuous use or cycle use.For example, cycle use can for example mean use in a specific time period, for example 1,2,3,4,5,6,7 days or more days, 1,2,3,4,5,6,7,8,9,10 weeks or more weeks, 1,2,3,4,5,6,7,8,9,10,11,12 months or more months, or 1,2,3,4,5,6,7,8,9,10 years or more years, or any time period between the above values.Described purposes can be based on any suitable amount, concentration or form of using compound or composition according to the present invention.
在最后一个方面,本发明涉及植物保护方法,其包括使植物或植物的一部分与根据本发明的化合物或如本文中定义的组合物接触。所述方法可以包括以下步骤:制备根据本发明的化合物或组合物以用于考虑的应用形式,例如通过配制成喷雾剂等;任选地包装到合适的容器中,例如用于运输或储存,或直接用于应用装置中;通过合适的应用技术将化合物或组合物散布到目标物,例如易受食草动物攻击的田地中的高等植物。可替换地,所述方法可以基于采用预先制备的材料,例如已经在与植物所在地不同的位置与所述化合物或组合物接触的繁殖材料。In a final aspect, the present invention relates to a method for plant protection, which comprises contacting a plant or a part of a plant with a compound according to the invention or a composition as defined herein. The method may comprise the steps of preparing the compound or composition according to the invention for the application form contemplated, for example by formulating as a spray, etc.; optionally packaging into suitable containers, for example for transport or storage, or directly for use in an application device; spreading the compound or composition to the target, for example higher plants in a field susceptible to herbivorous attack, by a suitable application technique. Alternatively, the method may be based on the use of pre-prepared materials, for example propagation materials that have been contacted with the compound or composition at a location different from the location of the plant.
所述方法可以在特定时间段(诸如一周、一个月或一年)内执行一次或超过一次,例如2、3、4、5、6、7、8次。The method may be performed once or more than once, for example 2, 3, 4, 5, 6, 7, 8 times, within a specific time period, such as a week, a month or a year.
所述应用步骤可以包括,例如,使根据本发明的化合物或其组合物与植物或植物繁殖材料(例如种子)接触。这可能包括喷洒、涂敷、涂布、制粒、喷粉或浸泡应用方法。可替换地,根据本发明的化合物或组合物可以通过地面机器或航空器或无人驾驶飞机(UAV)如无人机来应用。The application step may include, for example, contacting the compound according to the present invention or its composition with a plant or plant propagation material (e.g., seed). This may include spraying, applying, coating, granulating, dusting or soaking application methods. Alternatively, the compound according to the present invention or composition may be applied by a ground machine or an aircraft or an unmanned aircraft (UAV) such as a drone.
下述实施例和图为了说明目的而提供。因此应理解,实施例和图不应被解释为限制性的。本领域技术人员显然能够考虑对本文描述的原理的进一步修改。The following examples and figures are provided for illustrative purposes. It should therefore be understood that the examples and figures should not be interpreted as limiting. It will be apparent to those skilled in the art that further modifications to the principles described herein can be considered.
实施例Example
实施例1Example 1
一般策略General Strategy
为了揭开渐狭叶烟草的JA引发的非宿主抗性性状,我们采用了正向遗传策略。将来自26个亲本多亲本高级世代互交(MAGIC)群体的650个重组近交系(RIL)的重复群体种植到亚利桑那州的天然生长环境中(图1和图21和22)。在这种环境下,小绿叶蝉属叶蝉是大量的,并且破坏其天然宿主黄瓜(臭瓜(Cucurbita foetidissima))。缺乏JA的渐狭叶烟草系被叶蝉攻击(Kallenbach等人,Proc Natl Acad Sci U S A 109,E1548-1557(2012)),其攻击率在MAGIC群体中有所不同(图1)。基于植物激素、转录组和代谢组的高通量分析,量化了田间生长的MAGIC群体的674个RIL和亲本系的1907个单株植物中的小绿叶蝉攻击水平,并构建了一个多组学数据集。该多组学数据集从模拟的食草处理所引发的叶片生成。通过使用烟草天蛾幼虫的口腔分泌物处理标准化的穿刺伤口(W+OS)来模拟食草动物攻击,以消除自然界中昆虫攻击的随机性所造成的混杂因素,并捕获来自田间生长的植物的这些样品中瞬时表达的基因和代谢物(图2和图23和24)。In order to uncover the non-host resistance trait of JA-induced in Nicotiana attenuata, we adopted a forward genetic strategy.The repeated population of 650 recombinant inbred lines (RIL) from 26 parent multi-parent advanced generation intercross (MAGIC) colonies was planted in the natural growth environment of Arizona (Fig. 1 and Figure 21 and 22).Under this environment, the leafhopper of Empoasca genus is a large amount, and destroys its natural host cucumber (stinky melon (Cucurbita foetidissima)).The leafhopper attack (Kallenbach et al., Proc Natl Acad Sci U S A 109, E1548-1557 (2012)) of the Nicotiana attenuata system lacking JA, and its attack rate is different (Fig. 1) in the MAGIC colony.Based on the high-throughput analysis of plant hormones, transcriptome and metabolome, the leafhopper attack level in 1907 individual plants of 674 RILs and parental lines of the MAGIC colony grown in field was quantified, and a multi-omics data set was constructed. This multi-omics dataset was generated from leaves induced by simulated herbivory treatments. Herbivore attack was simulated by treating standardized puncture wounds (W+OS) with oral secretions of tobacco hornworm larvae to eliminate confounding factors caused by the stochastic nature of insect attack in nature and to capture transiently expressed genes and metabolites in these samples from field-grown plants (Figures 2 and 23 and 24).
为了分析该多组学数据集的遗传和代谢应答之间的关联,重点关注了JA信号传递相关基因,并使用以前获得的渐狭叶烟草叶化学的知识(Li等人,Proc Natl Acad Sci U SA112,E4147-4155(2015),Li,S.等人,Proc Natl Acad Sci USA 113,E7610-E7618(2016))来构建JA依赖性模块的共关联网络。该网络不仅考虑了代谢物、植物激素和基因表达之间的相关性,而且考虑了通过对这些组分中的每个的代谢定量性状基因座(mQTL)或表达QTL(eQTL)分析推断出的共享的SNP(图3、图25)。该共关联网络表明,由JA调控的酚酰胺主转录因子调节剂NaMYB8成核的JA和JA相关基因(Onkokesung等人,Plant Physiol 158,389-407(2012))形成一个遗传中心,其与诱导的酚酰胺,诸如N-香豆酰基腐胺(CoP)、N-咖啡酰基腐胺(CP)、N-阿魏酰基腐胺(FP)和丙二酰化的17-HGL-DTG聚簇(图3)。该中心的更外围是糖基化的17-HGL-DTG前体,诸如枸杞甙I、枸杞甙IV、attenoside和烟碱苷III以及其它特殊代谢物诸如尼古丁、酰基糖和类黄酮(图25)。NaJAZi基因以JA为中心聚簇,但远离NaJAR4和NaCOI1,这意味着非规范JA信号传递的参与。为了进一步分析在共关联网络中造成小绿叶蝉易感性的组分,我们对组学数据集与MAGIC群体的RIL中的小绿叶蝉丰度和损伤的叶面积进行了成对相关性分析(图4)。腐胺衍生的酚酰胺和丙二酰化的17-HGL-DTG与小绿叶蝉数目和损伤负相关,而糖基化的17-HGL-DTG前体正相关。JA相关基因NaMYB8、NaLOX3、NaAOC、NaOPR3、NaJAR6和NaWIPK表现出与小绿叶蝉数目和损伤的最高负相关分数。JA相关的JAZ基因家族的表达中存在相当大的异质性,其中NaJAZa、NaJAZd、NaJAZf、NaJAZi和NaJAZj的表达与小绿叶蝉数目和损伤负相关;已知介导烟草天蛾(M.Sexta)防御应答的JAZ基因的表达,诸如NaJAZh(Oh等人,Plant Physiol 159,769-788(2012)),没有显示出显著的相关性。JA(但不是JA信号传递的规范介质JA-Ile)是负相关的,并且对于羟基化的和羧酸化的JA(OH-JA、OH-JA-Ile和COOH-JA-Ile)和JA-缬氨酸缀合物(JA-Val)也观察到负相关。这些结果意味着,JA信号传递部门可能参与了JA依赖性的小绿叶蝉属叶蝉的抗性应答。In order to analyze the association between genetic and metabolic responses of this multi-omics data set, JA signaling-related genes were focused on, and the knowledge of leaf chemistry of Nicotiana acuminate obtained previously (Li et al., Proc Natl Acad Sci USA 112, E4147-4155 (2015), Li, S. et al., Proc Natl Acad Sci USA 113, E7610-E7618 (2016)) was used to construct a co-association network of JA-dependent modules. This network not only takes into account the correlation between metabolites, plant hormones and gene expression, but also takes into account the shared SNPs (Figure 3, Figure 25) inferred by the analysis of metabolic quantitative trait loci (mQTL) or expression QTL (eQTL) for each of these components. The co-association network showed that JA and JA-related genes nucleated by the JA-regulated phenolamide master transcription factor regulator NaMYB8 (Onkokesung et al., Plant Physiol 158, 389-407 (2012)) formed a genetic center that clustered with induced phenolamides such as N-coumaroyl putrescine (CoP), N-caffeoyl putrescine (CP), N-feruloyl putrescine (FP) and malonylated 17-HGL-DTG (Figure 3). More peripheral to the center were glycosylated 17-HGL-DTG precursors such as lycium barbarum I, lycium barbarum IV, attenoside and nicotinic acid III and other special metabolites such as nicotine, acyl sugars and flavonoids (Figure 25). NaJAZi genes clustered around JA, but away from NaJAR4 and NaCOI1, implying the involvement of non-canonical JA signaling. To further analyze the components contributing to green leafhopper susceptibility in the co-association network, we performed pairwise correlation analysis of the omics datasets with green leafhopper abundance and damaged leaf area in RILs of the MAGIC population (Fig. 4). Putrescine-derived phenolamides and malonylated 17-HGL-DTG were negatively correlated with green leafhopper abundance and damage, while glycosylated 17-HGL-DTG precursors were positively correlated. JA-related genes NaMYB8, NaLOX3, NaAOC, NaOPR3, NaJAR6, and NaWIPK showed the highest negative correlation scores with green leafhopper abundance and damage. There was considerable heterogeneity in the expression of the JA-associated JAZ gene family, with expression of NaJAZa, NaJAZd, NaJAZf, NaJAZi, and NaJAZj negatively correlated with Empoasca number and damage; expression of JAZ genes known to mediate defense responses in M. Sexta, such as NaJAZh (Oh et al., Plant Physiol 159, 769-788 (2012)), did not show significant correlations. JA (but not JA-Ile, the canonical mediator of JA signaling) was negatively correlated, and negative correlations were also observed for hydroxylated and carboxylated JA (OH-JA, OH-JA-Ile, and COOH-JA-Ile) and JA-valine conjugates (JA-Val). These results imply that the JA signaling sector may be involved in the JA-dependent resistance response of Empoasca leafhoppers.
实施例2Example 2
引发的JA-JAZi模块调控小绿叶蝉属抗性The JA-JAZi module induced by the JA-JAZi module regulates the resistance to Empoasca spp.
为了进一步理清小绿叶蝉属引发的JA信号传递部分的复杂性及其调控的导致小绿叶蝉属抗性的下游代谢特征,采用了反向遗传学方法来检查酚酰胺的参与。使用小绿叶蝉(Empoasca decipiens)的实验室菌落,在温室开放选择筛选实验中筛选了渐狭叶烟草植物的同源系,这些同源系在不同的JAZ基因和NaMYC2中分别进行RNAi沉默(ir:反向重复)或过表达(ov),以评价在NaMYB8(酚酰胺主TF调节剂)以及在DH29和CV86(其催化酚酰胺生物合成中的精脒缀合步骤)中的JA信号传递缺乏(图5和图26和27)。若虫和成虫小绿叶蝉(E.decipiens)优先选择irMYC2、irMYB8和ovJAZi植物进行进食和繁殖,与此不同,其它转基因系仅因几次探测事件而受到轻微损伤(图5)。多种JAZ蛋白允许JA信号传递级联以在不同时间调控不同组织中的一系列代谢和发育特性(Chini等人,Curr Opin Plant Biol 33,147-156(2016),Major等人,New Phytol 215,1533-1547(2017)),并从而使应答情境化并优化适应性。JA-JAZi部分的模块化可能提供与小绿叶蝉属叶蝉相关的特定应答。对渐狭叶烟草基因组中所有JAZ基因的组织泛转录组学分析表明,NaJAZi在花组织中高度表达,并且对叶片中的烟草天蛾(M.Sexta)攻击没有应答(Li等人,Proc Natl Acad Sci U S A 114,E7205-E7214(2017)),而NaJAZh显示出相反的模式(图6和图28)。通过将叶片暴露于小绿叶蝉(E.Decipiens)和烟草天蛾攻击并监测JAZ转录物积累的动力学来证实这些模式:烟草天蛾进食引发叶片中的NaJAZh转录物,而小绿叶蝉进食引发叶片中的NaJAZi转录物(图6)。Y2H测定表明,NaJAZi与NaMYC2a相互作用,而NaMYB8与NaMYC2b相互作用(图29)。这些数据表明,MYC2-MYB8-JAZi JA部分参与了叶片中的小绿叶蝉属抗性。To further disentangle the complexity of the JA signaling component initiated by Empoasca and the downstream metabolic features it regulates that lead to Empoasca resistance, a reverse genetics approach was used to examine the involvement of phenolamides. Using laboratory colonies of Empoasca decipiens, isogenic lines of N. attenuata plants that were RNAi-silenced (ir: inverted repeat) or overexpressed (ov) in different JAZ genes and NaMYC2 were screened in a greenhouse open selection screening experiment to evaluate the lack of JA signaling in NaMYB8, the master TF regulator of phenolamides, and in DH29 and CV86, which catalyze the spermidine conjugation step in phenolamide biosynthesis (Figure 5 and Figures 26 and 27). In contrast to nymphs and adults of E. decipiens, which preferentially selected irMYC2, irMYB8, and ovJAZi plants for feeding and reproduction, other transgenic lines were only slightly damaged by a few probing events (Figure 5). Multiple JAZ proteins allow the JA signaling cascade to regulate a range of metabolic and developmental traits in different tissues at different times (Chini et al., Curr Opin Plant Biol 33, 147-156 (2016), Major et al., New Phytol 215, 1533-1547 (2017)), thereby contextualizing responses and optimizing adaptability. The modularity of the JA-JAZi portion may provide specific responses associated with Empoasca leafhoppers. Tissue pan-transcriptomic analysis of all JAZ genes in the Nicotiana attenuata genome showed that NaJAZi was highly expressed in flower tissues and had no response to M. Sexta attacks in leaves (Li et al., Proc Natl Acad Sci U S A 114, E7205-E7214 (2017)), while NaJAZh showed the opposite pattern (Figures 6 and 28). These patterns were confirmed by exposing leaves to E. decipiens and Manduca sexta attack and monitoring the kinetics of JAZ transcript accumulation: Manduca sexta feeding triggered NaJAZh transcripts in leaves, while E. decipiens feeding triggered NaJAZi transcripts in leaves (Figure 6). The Y2H assay showed that NaJAZi interacted with NaMYC2a, while NaMYB8 interacted with NaMYC2b (Figure 29). These data suggest that the MYC2-MYB8-JAZi JA moiety is involved in E. decipiens resistance in leaves.
为了识别该JA部分引发的代谢物,在JA信号传递缺陷型转基因系的莲座期植物的叶片上(图5),以及在irAOC和irCOI1植物上、在17-HGL-DTG积累缺乏的irGGPPS上和在尼古丁积累受损的irPMT植物上(图30和31),饲养了小绿叶蝉(E.Decipiens)成虫和若虫或烟草天蛾幼虫。使用分析和计算工作流程(Li等人,Proc Natl Acad Sci U S A 112,E4147-4155(2015),Li等人,Proc Natl Acad Sci USA 113,E7610-E7618(2016),Li等人,Sci Adv6,eaaz0381(2020))从这些叶片提取物中收集高分辨率无差别的(数据无关的)MS/MS波谱(称为idMS/MS)。使用信息理论框架(Li等人,Sci Adv 6,eaaz0381(2020),Li andGaquerel,Annu Rev Plant Biol 72,867-891(2021))量化了代谢组特化化(δ指数)、代谢组多样性(Hj指数)和单个代谢物的代谢特异性(Si指数)。在信息理论处理的代谢组特化和多样性的维度中,烟草天蛾攻击引发了总体更高的代谢组可塑性,从而产生了比小绿叶蝉(E.decipiens)攻击的更高的δj分数。不同的转基因系显示出通过两个昆虫物种的攻击而重新程序化的代谢组可塑性的不同轨迹(图7和图32)。To identify metabolites triggered by this JA moiety, leaves of rosette plants of JA signaling defective transgenic lines ( FIG. 5 ), as well as on irAOC and irCOI1 plants, on irGGPPS lacking 17-HGL-DTG accumulation, and on irPMT plants with impaired nicotine accumulation ( FIG. 30 and 31 ), were raised with E. decipiens adults and nymphs or Manduca sexta larvae. High-resolution indifferent (data-independent) MS/MS spectra (referred to as idMS/MS) were collected from these leaf extracts using an analytical and computational workflow ( Li et al., Proc Natl Acad Sci USA 112, E4147-4155 (2015), Li et al., Proc Natl Acad Sci USA 113, E7610-E7618 (2016), Li et al., Sci Adv6, eaaz0381 (2020)). Metabolome specialization (δ index), metabolome diversity (Hj index) and metabolic specificity (Si index) of individual metabolites were quantified using information theory framework (Li et al., Sci Adv 6, eaaz0381 (2020), Li and Gaquerel, Annu Rev Plant Biol 72, 867-891 (2021)). In the dimension of metabolome specialization and diversity processed by information theory, tobacco hornworm attacks triggered overall higher metabolome plasticity, thereby producing a higher δj score than that attacked by green leafhopper (E. decipiens). Different transgenic lines show different trajectories (Fig. 7 and Figure 32) of metabolome plasticity reprogrammed by attacks of two insect species.
聚焦于小绿叶蝉所优选的转基因系,注意到由食草动物攻击引发的代谢组特化的独特特征在irMYC2和irMYB8植物中更弱(图7和图32)。这意味着MYC2是响应于昆虫攻击的代谢组可塑性的主要调节剂,并且MYB8依赖性的食草诱导的酚酰胺包括导致代谢组特化增加的代谢部分。在ovJAZi系中,由小绿叶蝉属和烟草天蛾属(Manduca)攻击引发的代谢组变化轨迹是分离的(而不是其消除),这进一步指出了由小绿叶蝉属攻击引发的一小部分代谢物受NaJAZi调控,并可能与小绿叶蝉属抗性有关。Focusing on the transgenic lines preferred by Empoasca, it is noted that the unique features of metabolome specialization caused by herbivore attack are weaker in irMYC2 and irMYB8 plants (Fig. 7 and Fig. 32). This means that MYC2 is the main regulator of metabolome plasticity in response to insect attack, and the herbivorous induced phenolamides of MYB8 dependence include metabolic parts that cause increased metabolome specialization. In the ovJAZi system, the metabolome change trajectory caused by Empoasca and Manduca attack is separated (rather than eliminated), which further points out that a small part of metabolites caused by Empoasca attack is regulated by NaJAZi, and may be related to Empoasca resistance.
为了识别这些代谢物,根据从4个转基因系中小绿叶蝉(E.decipiens)引发的代谢组的每个MS/MS波谱计算的代谢物特异性对Si分数进行排序,并将Si分数与共表达热图关联,所述热图来自使用在进食实验中所用的所有反向遗传学系生成的总体方差计算的各个代谢物与小绿叶蝉数目和损伤之间的相关性(图8、图32)。酚酰胺在代谢特异性Si评分中名列前茅,其中腐胺衍生的代谢物排在最前,并且这些与小绿叶蝉数目和损伤负相关,与此不同,特定的17-HGL-DTG、奎尼酸盐缀合物和尼古丁表现出正相关(图8)。To identify these metabolites, SI scores were ranked according to metabolite specificity calculated from each MS/MS spectrum of the E. decipiens-induced metabolome in the four transgenic lines and correlated with co-expression heatmaps derived from correlations between individual metabolites and E. decipiens numbers and damage calculated using the overall variance generated from all reverse genetics lines used in the feeding experiment (Figure 8, Figure 32). Phenolamides topped the metabolite-specific Si scores, with putrescine-derived metabolites ranking first, and these were negatively correlated with E. decipiens numbers and damage, unlike specific 17-HGL-DTG, quinate conjugates, and nicotine that showed positive correlations (Figure 8).
腐胺衍生的酚酰胺CoP、CP和FP在irAOC、irCOI1、irMYC2和irMYB8系中减少,并且在被小绿叶蝉进食损伤的ovJAZi植物中选择性地降低,但在被烟草天蛾属(Manduca)进食损伤的ovJAZi植物中没有降低,而其它精脒衍生的酚酰胺在ovJAZi植物中对两个食草动物物种的攻击表现出类似的应答(图33)。基于叶蝉对irDH29和irCV86系缺乏应答,因此可以排除精脒衍生的代谢物作为小绿叶蝉属非宿主抗性的介质(图5)。为了进一步探索CoP、CP和FP的参与,通过分别将生理学上有关浓度的合成的CoP(7μM)、CP(100μM)和FP(10μM)渗入到缺乏引发的酚酰胺的irMYC2植物的叶片中,进行了体内小绿叶蝉选择测定(图9和图34)。但是,这些渗入没有改变小绿叶蝉属对irMYC2植物的偏好。使用单独化合物在葡萄糖溶液中的生理学上有关浓度进行的体外小绿叶蝉属直接进食测定表明,与以葡萄糖食的小绿叶蝉(E.decipiens)对照相比,小绿叶蝉(E.decipiens)的死亡率没有显著变化(图9)。这些数据表明,CoP、CP和FP不是导致小绿叶蝉属抗性的直接原因,而是其它尚未知晓的腐胺衍生的酚酰胺代谢物导致。Putrescine-derived phenolamides CoP, CP, and FP were reduced in irAOC, irCOI1, irMYC2, and irMYB8 lines, and selectively decreased in ovJAZi plants damaged by feeding on Empoasca, but not in ovJAZi plants damaged by feeding on Manduca, whereas other spermidine-derived phenolamides showed similar responses to attack by both herbivore species in ovJAZi plants ( FIG. 33 ). Based on the lack of response of leafhoppers to irDH29 and irCV86 lines, spermidine-derived metabolites could be excluded as mediators of Empoasca non-host resistance ( FIG. 5 ). To further explore the involvement of CoP, CP, and FP, in vivo Empoasca selection assays were performed by infiltrating leaves of irMYC2 plants lacking the priming phenolamides at physiologically relevant concentrations, respectively ( FIG. 9 and FIG. 34 ). However, these infiltrations did not alter the preference of Empoasca for irMYC2 plants. In vitro Empoasca direct feeding assays using physiologically relevant concentrations of the individual compounds in glucose solution showed no significant changes in mortality of Empoasca compared to the E. decipiens controls fed on glucose (Figure 9). These data suggest that CoP, CP, and FP are not the direct cause of Empoasca resistance, but rather other, as yet unknown, putrescine-derived phenolamide metabolites.
实施例3Example 3
多组学揭示防御及其3分叉途径Multi-omics reveals defense and its three-branching pathways
在温室中生长的受食草动物攻击的渐狭叶烟草植物的叶片积累了多种腐胺和精脒衍生的酚酰胺(Li等人,Proc Natl Acad Sci U S A112,E4147-4155(2015),Onkokesung等人,Plant Physiol 158,389-407(2012))。从MAGIC群体的基于田地的多组学数据集中选择了15个RIL(图1),其积累了高水平的在结构上不同的OS诱导的酚酰胺,以构建idMS/MS并识别腐胺衍生的酚酰胺的结构;这项努力产生了518个非冗余的idMS/MS波谱(图10)。进行双聚类分析,以根据片段(标准化的点积)和基于中性损失的相似性对波谱进行聚类,这产生七个模块(图10)。特别富含含有咖啡酰基或腐胺基团的酚酰胺相关化合物的模块5被进一步映射到分子网络上(图10)。在m/z 347.196处的未知化合物([M+H]+,C19H27N2O4 +)占据了CP的两个异构体(m/z 251.14)的直接连接网络邻居的第一层,因为它们共享Δ88.10Da的腐胺中性损失和在m/z 163.04处的片段峰(C9H7O3+),其对应于咖啡酰基基团(图10和图35)。由于分子离子中腐胺的损失,在m/z 259.09处的片段峰(C15H15O4 +)的idMS/MS表明它进一步碎裂至m/z 163.04,具有96.055Da的中性损失(C6H8O)。这意味着未知的m/z 347.19是在咖啡酰基基团的芳族环上装饰有C6H8O残基的CP衍生物(图35)。Leaves of Nicotiana acuminate plants attacked by herbivores grown in greenhouses accumulated a variety of putrescine and spermidine-derived phenolamides (Li et al., Proc Natl Acad Sci US A112, E4147-4155 (2015), Onkokesung et al., Plant Physiol 158, 389-407 (2012)). 15 RILs (Figure 1) were selected from the field-based multi-omics data set of the MAGIC population, which accumulated high levels of structurally different OS-induced phenolamides to build idMS/MS and identify the structure of putrescine-derived phenolamides; This effort produced 518 non-redundant idMS/MS spectra (Figure 10). Double clustering analysis was performed to cluster spectra according to fragments (normalized dot products) and similarities based on neutral losses, which produced seven modules (Figure 10). Module 5, which is particularly rich in phenolamide-related compounds containing caffeoyl or putrescine groups, was further mapped onto a molecular network (Figure 10). The unknown compound at m/z 347.196 ([M+H] + , C 19 H 27 N 2 O 4 + ) occupied the first layer of direct connection network neighbors of the two isomers of CP (m/z 251.14) because they shared the neutral loss of putrescine of Δ88.10 Da and the fragment peak at m/z 163.04 (C 9 H 7 O 3 +), which corresponds to the caffeoyl group ( Figures 10 and 35 ). Due to the loss of putrescine in the molecular ion, the idMS/MS of the fragment peak at m/z 259.09 (C 15 H 15 O 4 + ) showed that it was further fragmented to m/z 163.04 with a neutral loss of 96.055 Da (C 6 H 8 O). This means that the unknown m/z 347.19 is a CP derivative decorated with C 6 H 8 O residues on the aromatic ring of the caffeoyl group ( FIG. 35 ).
为了测试未知的m/z 347.19代谢物是否受特定JA-JAZi模块调控,探索了诱导的m/z 347.19对田地种植的MAGIC群体中的小绿叶蝉数目和损伤以及JA的共关联网络和共表达分析(图1)。m/z 347.19与小绿叶蝉损伤负相关性,与JA、JA-Ile和JA-Val正相关性(图36)。在下一步中,挖掘了JA缺乏型转基因系的小绿叶蝉属诱导的代谢组(图2)。但是,使用类似的计算工作流程,不可能在前面描述的数据集中识别这种化合物(图2)。大量实验表明,田地种植的RIL比温室生长的RIL(数据2)诱导更多的这种未知化合物,并且叶片采样和提取技术中的细微差异,特别是叶片同时暴露于铝箔和液氮以及不利的pH条件(表1),会导致在温室条件下生长和采样的植物中这种不稳定的酚酰胺的损失。To test whether the unknown m/z 347.19 metabolite is regulated by a specific JA-JAZi module, the co-association network and co-expression analysis of induced m/z 347.19 on leafhopper number and damage and JA in field-grown MAGIC populations was explored (Fig. 1). m/z 347.19 was negatively correlated with leafhopper damage and positively correlated with JA, JA-Ile, and JA-Val (Fig. 36). In the next step, the leafhopper-induced metabolome of JA-deficient transgenic lines was mined (Fig. 2). However, using a similar computational workflow, it was not possible to identify this compound in the previously described dataset (Fig. 2). Extensive experiments showed that field-grown RILs induced more of this unknown compound than greenhouse-grown RILs (Data 2), and that subtle differences in leaf sampling and extraction techniques, particularly simultaneous exposure of leaves to aluminum foil and liquid nitrogen and adverse pH conditions (Table 1), led to the loss of this labile phenolamide in plants grown and sampled under greenhouse conditions.
再次在irMYC2植物上饲养小绿叶蝉,并通过优化提取条件,发现小绿叶蝉进食在EV植物中强烈引发m/z 347.19积累;这些积累在irMYC2系中被消除(图11)。在此提取优化工作中意识到,小绿叶蝉属叶蝉引发程序可以用在实验上更易于处理的幼虫口腔分泌物或MeJA引发来代替。MeJA诱导的m/z 347.19的制备始终在irMYC2中受到阻碍,而且在irMYB8和ovJAZi系中也如此(图11)。这些结果表明,未知的m/z 347.19受JA-JAZi-MYC2-MYB8信号传递部分调控,其可能导致小绿叶蝉属抗性。Empoasca was again reared on irMYC2 plants and, by optimizing extraction conditions, it was found that Empoasca feeding strongly triggered accumulation of m/z 347.19 in EV plants; these accumulations were abolished in irMYC2 lines (Figure 11). In this extraction optimization work, it was realized that the Empoasca leafhopper priming procedure could be replaced with experimentally more tractable larval oral secretions or MeJA priming. MeJA-induced production of m/z 347.19 was consistently hampered in irMYC2, but also in irMYB8 and ovJAZi lines (Figure 11). These results suggest that the unknown m/z 347.19 is partially regulated by JA-JAZi-MYC2-MYB8 signaling, which may contribute to Empoasca resistance.
为了研究m/z 347.19的生物合成来源,提取了在温室条件和酚酰胺允许条件下生长的整个MAGIC RIL群体的OS引发的叶片,并进行了mQTL分析(图12)。分析推断出一系列已知参与CP调控和生物合成的基因(P’s<10-3),包括NaMYC2a、NaMYB8和NaAT1,它们编码负责CP生物合成的羟基肉桂酰基-辅酶A:腐胺酰基转移酶(Onkokesung等人,Plant Physiol158,389-407(2012)),以及分别位于染色体7和8上的两种多酚氧化酶NaPPO1和NaPPO2(图12)。使用NaAT1和NaDH29作为诱饵对irMYB8系的微阵列数据集的共表达分析(Schafer等人,J Integr Plant Biol 59,844-850(2017))揭示了NaAT1分组中的已知参与CP生物合成的一簇基因,包括NaPAL1、NaPAL2、Na4CL1和NaC3H。小檗碱桥酶-样基因NaBBL2与NaAT1高度共表达,并且其在irMYB8系中的诱导表达降低(图12和图37)。重新审视了mQTL数据集,并发现位于染色体3上的NaBBL2与m/z 347.19相关(图12),尽管统计显著性降低(P=0.0013)。食草引发的NaAT1、NaPPO2和NaBBL2表达的时间分辨微阵列数据(Kim等人,PLoS One 6,e26214(2011))表明,NaAT1和NaPPO2在渐狭叶烟草WT中表现出相似的诱导模式,而NaBBL2在1小时处被高度诱导,并在之后的时间点保持其诱导,尽管水平降低(图38)。此外,在irMYC2系的食草引发的RNAseq转录组数据集中,NaAT1、NaPPO1、NaPPO2和NaBBL2的其诱导降低(图39)。To investigate the biosynthetic origin of m/z 347.19, OS-induced leaves of the entire MAGIC RIL population grown under greenhouse conditions and phenolamide permissive conditions were extracted and mQTL analysis was performed (Figure 12). The analysis inferred a series of genes known to be involved in CP regulation and biosynthesis (P's <10-3), including NaMYC2a, NaMYB8 and NaAT1, which encode hydroxycinnamoyl-CoA: putrescine acyltransferases responsible for CP biosynthesis (Onkokesung et al., Plant Physiol 158, 389-407 (2012)), and two polyphenol oxidases NaPPO1 and NaPPO2 located on chromosomes 7 and 8, respectively (Figure 12). Co-expression analysis of a microarray dataset of irMYB8 lines using NaAT1 and NaDH29 as bait (Schafer et al., J Integr Plant Biol 59, 844-850 (2017)) revealed a cluster of genes known to be involved in CP biosynthesis in the NaAT1 grouping, including NaPAL1, NaPAL2, Na4CL1, and NaC3H. The berberine bridge enzyme-like gene NaBBL2 was highly co-expressed with NaAT1, and its induced expression was reduced in the irMYB8 lines (Figures 12 and 37). The mQTL dataset was revisited and NaBBL2, located on chromosome 3, was found to be associated with m/z 347.19 (Figure 12), although the statistical significance was reduced (P = 0.0013). The time-resolved microarray data (Kim et al., PLoS One 6, e26214 (2011)) of NaAT1, NaPPO2 and NaBBL2 expression caused by herbivory show that NaAT1 and NaPPO2 show similar induction patterns in Nicotiana acuminate WT, while NaBBL2 is highly induced at 1 hour and keeps its induction at a later time point, although the level is reduced (Figure 38). In addition, in the RNAseq transcriptome data set caused by herbivory in irMYC2 system, its induction of NaAT1, NaPPO1, NaPPO2 and NaBBL2 is reduced (Figure 39).
尽管m/z 347.19积累的生物合成步骤的数目和顺序仍然难以确定,但据推测可能需要氧化和酰化反应。因此,进一步的步骤聚焦于从多组学分析中共同推断出的氧化酶和酰基转移酶。候选基因包括三种酰基转移酶NaACT1/2/3、三种多酚氧化酶NaPPO1/2/3和一种BBL基因NaBBL2。通过使用病毒诱导的基因沉默(VIGS)来沉默渐狭叶烟草中的候选基因以及作为阳性对照的NaAT1的表达来评价其体内功能。与之前的分析一致,NaAT1的VIGS消除了m/z 347.19的积累(Li等人,Proc Natl Acad Sci U S A112,E4147-4155(2015)),并且NaPPO1、NaPPO2和NaBBL2截断了m/z 347.19的引发(图13和图40)。对VIGS沉默的植物的非靶向代谢组学分析表明,沉默NaPPO1和NaPPO2会截断m/z 347.19积累,而其它酚酰胺没有变化(图13和图41)。这些结果表明,NaPPO1、NaPPO2和NaBBL2是m/z 347.19的体内产生所必需的。Although the number and order of the biosynthetic steps of m/z 347.19 accumulation are still difficult to determine, it is speculated that oxidation and acylation reactions may be required. Therefore, further steps focus on the oxidase and acyltransferase deduced jointly from multi-omics analysis. Candidate genes include three acyltransferases NaACT1/2/3, three polyphenol oxidases NaPPO1/2/3 and a BBL gene NaBBL2. The expression of the candidate genes in Nicotiana acuminate and the NaAT1 as a positive control was evaluated by using virus-induced gene silencing (VIGS). Consistent with previous analysis, the VIGS of NaAT1 eliminated the accumulation of m/z 347.19 (Li et al., Proc Natl Acad Sci U S A112, E4147-4155 (2015)), and NaPPO1, NaPPO2 and NaBBL2 intercepted the initiation of m/z 347.19 (Figure 13 and Figure 40). Untargeted metabolomics analysis of VIGS-silenced plants showed that silencing NaPPO1 and NaPPO2 truncated the accumulation of m/z 347.19, while other phenolamides did not change (Figures 13 and 41). These results indicate that NaPPO1, NaPPO2, and NaBBL2 are required for the in vivo production of m/z 347.19.
先前的分析意味着,m/z 347.19的另外C6H8O残基是由脂肪酸氧化脂质级联产生,该级联将在应激、受伤和食草过程中从生物膜释放的C18多不饱和脂肪酸转化(Matsui,Curr Opin Plant Biol 9,274-280(2006))以产生富含反应性C6衍生物的绿叶挥发物(GLV)(Li等人,Proc Natl Acad Sci U S A 112,E4147-4155(2015))。但是,C6代谢物的来源和m/z 347.19的形成所涉及的生化反应仍然未知。为了阐明这一点,在同一温室培养的MAGIC RIL群体中测量了食草引发的GLV用于填充(图3),并与食草引发的m/z347.19积累进行了相关性分析。(Z)-3-己烯醛衍生的挥发物,诸如(Z)-3-己烯基-丙酸酯和(Z)-3-己烯醇是与m/z 347.19最显著正相关的代谢物,而1-己烷醇、芳樟醇或其它引发的挥发物则不是(图14和图42)。Previous analysis implied that the additional C6H8O residue at m/z 347.19 was generated by a fatty acid oxidation lipid cascade that converts C18 polyunsaturated fatty acids released from biofilms during stress, wounding, and herbivory (Matsui, Curr Opin Plant Biol 9, 274-280 (2006)) to produce green leaf volatiles (GLVs) rich in reactive C6 derivatives (Li et al., Proc Natl Acad Sci USA 112, E4147-4155 (2015)). However, the source of the C6 metabolites and the biochemical reactions involved in the formation of m/z 347.19 remain unknown. To elucidate this, herbivory-induced GLVs were measured in the same greenhouse-grown MAGIC RIL population for population (Figure 3) and correlated with herbivory-induced m/z 347.19 accumulation. (Z)-3-hexenal-derived volatiles, such as (Z)-3-hexenyl-propionate and (Z)-3-hexenol, were the most significantly positively correlated metabolites with m/z 347.19, while 1-hexanol, linalool, or other induced volatiles were not (Figures 14 and 42).
C6醛(其分子式为C6H8O)是从GLV途径产生的反应性最强的醛,并且已经推定(Li等人,Proc Natl Acad Sci U S A112,E4147-4155(2015))它是在m/z 347.19的生物合成中缺失的底物。与之前的分析(Allmann等人,Plant Cell Environ 33,2028-2040(2010))一致,稳定地沉默渐狭叶烟草中的脂氧合酶2(irLOX2)(其控制GLV途径中的第一个关键步骤)会消除C6醛产生和总GLV排放,并且稳定地沉默irLOX2和irLOX3的交叉(irLOX2×irLOX3)会完全消除m/z 347.19产生(Li等人,Proc Natl Acad Sci U S A112,E4147-4155(2015))(图15)。沉默NaHPL(使用反义构建体:asHPL)(其催化(Z)-3-己烯醛及其异构体(E)-2-己烯醛的初始C6 GLV产物的形成)会导致渐狭叶烟草中的GLV的时间依赖的显著减少(Joo等人,Plant Cell Environ 42,972-982(2019)),以及减少的m/z 347.19积累(至WT水平的约1/3:图15)。从这些结果总结出,响应于小绿叶蝉属探测,m/z 347.19是由三分叉的代谢途径产生,该途径由LOX2/HPL-GLV途径、LOX3-JA调控的苯丙素途径和多胺途径组成,它们由NaPPO1、NaPPO2和NaBBL2使用CP和(Z)-3-己烯醛或(E)-2-己烯醛缩合以产生m/z 347.19(图14)。C6 aldehyde (whose molecular formula is C6H8O ) is the most reactive aldehyde produced from the GLV pathway, and it has been postulated (Li et al., Proc Natl Acad Sci US A112, E4147-4155 (2015)) that it is the missing substrate in the biosynthesis of m/z 347.19. Consistent with previous analyses (Allmann et al., Plant Cell Environ 33, 2028-2040 (2010)), stable silencing of lipoxygenase 2 (irLOX2) in Nicotiana attenuata, which controls the first key step in the GLV pathway, abolished C6 aldehyde production and total GLV emission, and stable silencing of the crossover of irLOX2 and irLOX3 (irLOX2×irLOX3) completely abolished m/z 347.19 production (Li et al., Proc Natl Acad Sci US A112, E4147-4155 (2015)) (Figure 15). Silencing NaHPL (using antisense construct: asHPL), which catalyzes the formation of the initial C6 GLV product of (Z)-3-hexenal and its isomer (E)-2-hexenal, resulted in a significant time-dependent reduction in GLV in N. acuminate (Joo et al., Plant Cell Environ 42, 972-982 (2019)), as well as reduced accumulation of m/z 347.19 (to about 1/3 of WT levels: Figure 15). From these results, it was concluded that in response to Empoasca detection, m/z 347.19 was produced by a trifurcated metabolic pathway consisting of the LOX2/HPL-GLV pathway, the LOX3-JA-regulated phenylpropanoid pathway, and the polyamine pathway, which consisted of NaPPO1, NaPPO2, and NaBBL2 using CP and (Z)-3-hexenal or (E)-2-hexenal condensation to produce m/z 347.19 (Figure 14).
为了验证该假设,分离了在大肠杆菌中表达后带有N端六组氨酸标签的纯化的NaPPO1、NaPPO2和NaBBL2蛋白(图44-45)。将NaPPO1或NaPPO2(NaPPO1/2)与CP和(Z)-3-己烯醛一起孵化产生m/z 347.19峰,其MS/MS谱和保留时间与在渐狭叶烟草叶片中诱导的m/z347.19相同(图46)。此外,在口腔分泌物诱导的渐狭叶烟草WT叶片中未检测到的在m/z250.13处的双电荷CP二聚体的副产物([M+2H]2+,C26H36N4O62+)(数据2)也在体外产生(图16和图47)。仅当(Z)-3-己烯醛底物的量低于体外CP底物的量时,才会产生这些双电荷CP二聚体。NaPPO1/2在与CP和(E)-2-己烯醛一起孵化时表现出极少至无活性(图16)。单独的NaBBL2不能利用CP和(Z)-3-己烯醛作为底物来产生m/z347.19,并且在体外条件下,在NaPPO1/2、CP和(Z)-3-己烯醛存在下,NaBBL2的添加并没有显著增加m/z 347.19的制备(图48-52和表2)。由于PPO具有广泛的底物特异性,其可以接受羟基苯和/或邻二羟基化的苯作为底物(McLarin和Leung,S Crit Rev Biochem Mol Biol 55,274-308(2020)),通过将NaPPO1/2和(Z)-3-己烯醛与CoP或含有芳香族二羟基作为CP的氯原酸(CGA)一起孵化,探索了NaPPO1和NaPPO2的底物特异性。但是,没有发现新的产物,表明CoP和CGA不被NaPPO1/2接受为底物(图53)。总之,这些数据揭示了NaPPO1/2接受CP和(Z)-3-己烯醛作为底物以在体外产生m/z 347.19。In order to verify this hypothesis, the purified NaPPO1, NaPPO2 and NaBBL2 proteins (Figures 44-45) with N-terminal hexa-histidine tags after being expressed in Escherichia coli were separated. NaPPO1 or NaPPO2 (NaPPO1/2) were hatched with CP and (Z)-3-hexenal to produce m/z 347.19 peak, and its MS/MS spectrum and retention time were identical with the m/z347.19 induced in Nicotiana acuminate leaf blade (Figure 46). In addition, the by product ([M+2H] 2+ , C 26 H 36 N 4 O 62 +) (data 2) of the double-charged CP dimer at m/z250.13 place that was not detected in the Nicotiana acuminate leaf WT blade induced by oral secretions was also produced in vitro (Figure 16 and Figure 47). Only when the amount of (Z)-3-hexenal substrate was lower than the amount of external CP substrate, these double-charged CP dimers would be produced. NaPPO1/2 showed little to no activity when incubated with CP and (E)-2-hexenal (Figure 16). NaBBL2 alone cannot use CP and (Z)-3-hexenal as substrates to produce m/z 347.19, and under in vitro conditions, in the presence of NaPPO1/2, CP and (Z)-3-hexenal, the addition of NaBBL2 did not significantly increase the preparation of m/z 347.19 (Figures 48-52 and Table 2). Because PPO has a wide range of substrate specificity, it can accept hydroxybenzene and/or ortho-dihydroxylated benzene as substrates (McLarin and Leung, S Crit Rev Biochem Mol Biol 55, 274-308 (2020)), by incubating NaPPO1/2 and (Z)-3-hexenal with CoP or chlorogenic acid (CGA) containing aromatic dihydroxy as CP, the substrate specificity of NaPPO1 and NaPPO2 was explored. However, no new products were found, indicating that CoP and CGA were not accepted as substrates by NaPPO1/2 (Figure 53). Taken together, these data revealed that NaPPO1/2 accepted CP and (Z)-3-hexenal as substrates to produce m/z 347.19 in vitro.
实施例4Example 4
反应性m/z 347.19化学组成的生物合成逻辑Reactivity m/z 347.19 Biosynthetic logic of chemical composition
为了阐明m/z 347.19的化学结构,尝试使用诱导的渐狭叶烟草叶材料和酶测定衍生产物来分离和纯化m/z 347.19。但是,由于m/z 347.19的不稳定性,几次尝试都失败。虽然在醋酸铵缓冲液(pH 4.8)中相对稳定,但当通过旋转蒸发或冷冻干燥浓缩时,m/z347.19迅速分解(表1)。这些观察结果表明,m/z 347.19在高pH具有反应性且不稳定。修改了m/z347.19的纯化程序以在弱酸性条件下通过酶测定大量制备,并在氩气气氛下使用固相萃取纯化m/z 347.19。然后对纯化的m/z 347.19进行NMR分析,这阐明其结构特征为CP-5-(Z)-3-己烯醛化合物(以下称为CPH)(图54)。在室温下且在黑暗中,在酸化的甲醇-d3(0.1%甲酸)中,CPH的半衰期仅为约22h(图55)。CPH既含有来自(Z)-3-己烯醛的α,β-不饱和醛的反应性基团(其为亲电性的),也含有咖啡酰基腐胺的胺特征(其为亲核性的)。In order to illustrate the chemical structure of m/z 347.19, attempt to use induced Nicotiana tabacum leaf material and enzyme assay derivative product to separate and purify m/z 347.19.But, due to the instability of m/z 347.19, several attempts all failed.Although relatively stable in ammonium acetate buffer (pH 4.8), when concentrated by rotary evaporation or freeze drying, m/z 347.19 decomposes rapidly (table 1).These observed results show that m/z 347.19 is reactive and unstable at high pH.The purification procedure of m/z 347.19 has been modified to prepare in large quantities by enzyme assay under weakly acidic conditions, and solid phase extraction is used to purify m/z 347.19 under argon atmosphere.Then NMR analysis is carried out to the purified m/z 347.19, which illustrates that its structural feature is CP-5-(Z)-3-hexenal compound (hereinafter referred to as CPH) (Figure 54). At room temperature and in the dark, in acidified methanol-d3 (0.1% formic acid), the half-life of CPH is only about 22 h (Figure 55). CPH contains both the reactive groups of the α,β-unsaturated aldehyde from (Z)-3-hexenal (which is electrophilic) and the amine features of caffeoylputrescine (which is nucleophilic).
CPH是所谓的“直接”(CP)和“间接”((Z)-3-己烯醛)防御代谢物的生化联合的结果,并且假设CPH是小绿叶蝉属非宿主抗性背后的代谢特性。建议两种可能的作用机制:亲电基团和亲核基团的快速聚合会阻塞探测性小绿叶蝉属叶蝉的口器;α,β-不饱和醛可以作为使小绿叶蝉蛋白失效的蛋白交联剂(29)。提出了制备CPH的三步生物合成机理:NaPPO1/2将CP氧化为相应的咖啡酰基醌衍生物,激活(Z)-3-己烯醛进行迈克尔加成反应,以及将产物芳香化以形成CPH(图17)。CPH is the result of a biochemical association of so-called “direct” (CP) and “indirect” ((Z)-3-hexenal) defense metabolites, and CPH is hypothesized to be the metabolic trait underlying nonhost resistance in Empoasca. Two possible mechanisms of action have been suggested: rapid polymerization of electrophilic and nucleophilic groups blocks the probing mouthparts of Empoasca leafhoppers; and α,β-unsaturated aldehydes can act as protein cross-linkers that disable Empoasca proteins (29). A three-step biosynthetic mechanism for the preparation of CPH has been proposed: oxidation of CP by NaPPO1/2 to the corresponding caffeoylquinone derivative, activation of (Z)-3-hexenal for Michael addition, and aromatization of the product to form CPH (Fig. 17).
CPH是造成小绿叶蝉属抗性的原因CPH is responsible for resistance in Empoasca
为了测试CPH是否是造成小绿叶蝉属抗性的原因,在含有10%葡萄糖的饮食中在体外给小绿叶蝉(E.decipiens)饲喂生理学相关浓度1μM(从田地采集的引发的叶片估算)的NMR确认的CPH。在进食6小时后,CPH处理造成小绿叶蝉(E.decipiens)的几乎100%死亡率,这与对照饮食下的叶蝉生长形成鲜明对比(P=3x10-8,Studentt-检验)(图18)。使用VIGS沉默了渐狭叶烟草植物中的NaAT1表达,这会破坏CP和CPH的制备(Li等人,Proc NatlAcad Sci U S A112,E4147-4155(2015))(图13)。体内选择测定揭示,NaAT1沉默的植物接受到了比EV植物显著更大的小绿叶蝉属损伤和更高的小绿叶蝉属数目(图18)。类似地,植物中NaPPO1或NaPPO2的沉默只会消除植物中CPH的积累,而不会显著改变其它酚酰胺池(图13和图41),并且与EV植物相比,导致明显的小绿叶蝉属进食偏好(分别P=3.8x10-6和P=1.5x10-3,Studentt-检验)和更大的小绿叶蝉属损伤(分别P=1.1x10-7和P=3.5x10-6,Studentt-检验)(图18)。总之,这些体外和体内结果表明,在渐狭叶烟草中的CPH是导致该植物的小绿叶蝉属非宿主抗性的原因。To test whether CPH is responsible for resistance to green leafhoppers, NMR-confirmed CPH was fed to green leafhoppers (E. decipiens) in vitro in a diet containing 10% glucose at a physiologically relevant concentration of 1 μM (estimated from induced leaves collected in the field). After 6 hours of feeding, CPH treatment caused almost 100% mortality of green leafhoppers (E. decipiens), which was in sharp contrast to the growth of leafhoppers under the control diet (P = 3x10-8 , Studentt-test) (Figure 18). NaAT1 expression in Nicotiana acuminate plants was silenced using VIGS, which disrupted the production of CP and CPH (Li et al., Proc Natl Acad Sci US A112, E4147-4155 (2015)) (Figure 13). In vivo selection assays revealed that NaAT1-silenced plants received significantly greater green leafhopper damage and higher green leafhopper numbers than EV plants (Figure 18). Similarly, silencing of NaPPO1 or NaPPO2 in plants only abolished the accumulation of CPH in plants without significantly altering other phenolamide pools (Figures 13 and 41), and resulted in a clear preference for Empoa feeding (P = 3.8 x 10-6 and P = 1.5 x 10-3, Student t-test, respectively) and greater Empoa damage (P = 1.1 x 10-7 and P = 3.5 x 10-6, Student t-test, respectively) compared to EV plants (Figure 18). Taken together, these in vitro and in vivo results indicate that CPH in N. attenuata is responsible for Empoa non-host resistance in this plant.
NaBBL2是农作物中CPH生物合成工程所必需的NaBBL2 is required for engineering CPH biosynthesis in crops
在非宿主抗性背后的CPH及其生物合成途径的发现为农作物中CPH生物合成工程提供了框架,作为优化植物的内源代谢以防御毁灭性叶蝉害虫、其携带的疾病以及农作物的其它非宿主害虫的攻击的手段。调查了CPH是否广泛存在于茄科和其它植物分类群中。渐狭叶烟草近亲的代谢图谱分析揭示,7种烟草中的6种在MeJA引发下以与CP协调的方式诱导CPH(图56)。精确地讲,从不同的植物科中选取了13个不同的分类群,包括几种农作物,并使用NCBI序列数据库的BLAST搜索对比了NaAT1、NaPPO1、NaPPO2和NaBBL2与其最接近的同源物的氨基酸同一性(图57):所检查的13个物种中的5个茄科分类群含有四种蛋白序列的所有直系同源物。此外,还检测了8个物种中MeJA诱导的CP,包括7个茄科物种和小麦,而除渐狭叶烟草外,只有辣椒和本氏烟草2个物种产生了CPH(图57)。这些结果意味着,CPH制备可能限于茄科。The discovery of CPH and its biosynthetic pathway behind non-host resistance provides a framework for CPH biosynthetic engineering in crops as a means to optimize the endogenous metabolism of plants to defend against attacks by devastating leafhopper pests, the diseases they carry, and other non-host pests of crops. It was investigated whether CPH is widespread in Solanaceae and other plant taxa. Metabolic profiling of Nicotiana attenuata relatives revealed that 6 of 7 tobacco species induce CPH in a coordinated manner with CP under MeJA priming (Figure 56). Specifically, 13 different taxa were selected from different plant families, including several crops, and the amino acid identities of NaAT1, NaPPO1, NaPPO2 and NaBBL2 were compared with their closest homologs using BLAST searches of the NCBI sequence database (Figure 57): 5 Solanaceae taxa out of the 13 species examined contained all orthologs of the four protein sequences. In addition, MeJA-induced CP was detected in 8 species, including 7 Solanaceae species and wheat, while only 2 species, pepper and Nicotiana benthamiana, produced CPH in addition to Nicotiana attenuata (Figure 57). These results imply that CPH production may be limited to the Solanaceae family.
合成生物学由于共享的辅因子和代谢使得代谢途径可以在不同分类群之间转移(30-33)。尝试在体内重建完整的CPH途径(图20)。Synthetic biology allows metabolic pathways to be transferred between different taxa due to shared cofactors and metabolism (30-33). Attempts have been made to reconstruct the complete CPH pathway in vivo (Figure 20).
由于几个原因,选择蚕豆和智利茄进行根癌农杆菌(Agrobacteriumtumefaciens)介导的CPH途径的瞬时表达:这两个物种在未经处理的和MeJA处理的组织中均未积累CPH。蚕豆是用于饲养小绿叶蝉属的理想宿主植物。CoP、CP或FP不在蚕豆中积累,而智利茄的MeJA处理会诱导CP水平,从而为CPH制备提供内部前体(图20)。此外,两者都容易转化,并可能产生正确折叠的活性蛋白,其可以用来在植物内试验CPH生物合成基因的生化活性。Vicia faba and Solanum tumefaciens were chosen for Agrobacterium tumefaciens-mediated transient expression of the CPH pathway for several reasons: Both species do not accumulate CPH in untreated and MeJA-treated tissues. Vicia faba is an ideal host plant for rearing Empoasca spp. CoP, CP or FP do not accumulate in Vicia faba, while MeJA treatment of Solanum tumefaciens induces CP levels, providing internal precursors for CPH production (Figure 20). In addition, both are easily transformed and are likely to produce properly folded, active proteins that can be used to test the biochemical activity of CPH biosynthetic genes in plants.
NaPPO1或NaPPO2在蚕豆中与(Z)-3-己烯醛和CP叶渗入一起瞬时共表达,或在智利茄中无CP渗入情况下瞬时共表达。但是,在任何一个物种中都没有检测到任何CPH(图20)。PPO通常位于质体,这将在物理上将它们与它们的酚类底物分开,而酚类底物已知位于液泡中(34)。在渐狭叶烟草中,在NaPPO1和NaPPO2 N-端序列中均识别出类囊体转移结构域(图58)。GFP-标记的NaPPO1和NaPPO2在渐狭叶烟草叶片中的瞬时表达证实了NaPPO1和NaPPO2都是位于质体的(图59)。NaPPO1 or NaPPO2 were transiently co-expressed in Vicia faba with (Z)-3-hexenal and CP leaf infiltration or in Solanum oleraceum without CP infiltration. However, no CPH was detected in either species (Figure 20). PPOs are normally localized in plastids, which would physically separate them from their phenolic substrates, which are known to be localized in the vacuole (34). In Nicotiana attenuata, thylakoid translocation domains were identified in both NaPPO1 and NaPPO2 N-terminal sequences (Figure 58). Transient expression of GFP-tagged NaPPO1 and NaPPO2 in Nicotiana attenuata leaves confirmed that both NaPPO1 and NaPPO2 were localized in plastids (Figure 59).
因此,CPH生物合成的三分叉途径提议因不同组分的分开的酶位置而受到挑战:CP(可能在液泡或细胞质:(34,35));GLV、JA和PPO(质体:(34,36))。该挑战让人想起尼古丁生物合成,其需要BBL基因来将来自尼克酸的位于线粒体的吡啶环与来自N-甲基吡咯啉鎓阳离子的位于过氧化物酶体的吡咯烷环连接起来以产生尼克酸(37)。假设NaBBL2是体内CPH制备所必需的,并且为了验证该假设,NaBBL2与NaPPO1或NaPPO2一起在智利茄植物中表达。在渗入根癌农杆菌(Agrobacterium tumefaciens)后一天,用MeJA处理智利茄植物以诱导CP产生,并在三天后,将(Z)-3-己烯醛渗入叶片。6小时后,收获叶片进行LC-MS分析,发现叶片积累了大量CPH(图20)。对于蚕豆植物,NaBBL2与NaPPO1或NaPPO2一起表达;在根癌农杆菌(Agrobacterium tumefaciens)渗入后3天,将CP和(Z)-3-己烯醛渗入叶片,并在6小时后收获叶片进行LC-MS分析。再次积累CPH(图20)。从这些结果推断,NaBBL2虽然不是体外合成所必需的,但却是体内CPH生物合成所必需的。需要另外的工作来评估NaBBL2是否在解决位置挑战中发挥作用,这可能还有其它可能的解决方案(图60和61以及补充材料)。最后,在CPH工程化的蚕豆和智利茄植物上进行了小绿叶蝉进食试验,并观察到这些小绿叶蝉属宿主农作物变成小绿叶蝉属的致死宿主植物(图20)。Thus, the proposed three-branch pathway for CPH biosynthesis is challenged by the separate enzyme locations of the different components: CP (possibly in the vacuole or cytoplasm: (34, 35)); GLV, JA, and PPO (plastids: (34, 36)). This challenge is reminiscent of nicotine biosynthesis, which requires the BBL gene to link the mitochondrial-localized pyridine ring from niacin with the peroxisomal-localized pyrrolidine ring from the N-methylpyrrolinium cation to produce niacin (37). It was hypothesized that NaBBL2 is required for CPH production in vivo, and to test this hypothesis, NaBBL2 was expressed in Solanum tumefaciens plants together with NaPPO1 or NaPPO2. One day after infiltration with Agrobacterium tumefaciens, Solanum tumefaciens plants were treated with MeJA to induce CP production, and three days later, (Z)-3-hexenal was infiltrated into the leaves. Six hours later, the leaves were harvested for LC-MS analysis, which revealed that the leaves had accumulated a large amount of CPH (Figure 20). For faba bean plants, NaBBL2 was expressed together with NaPPO1 or NaPPO2; CP and (Z)-3-hexenal were infiltrated into leaves 3 days after Agrobacterium tumefaciens infiltration, and leaves were harvested 6 hours later for LC-MS analysis. CPH accumulated again (Figure 20). From these results, it is inferred that NaBBL2, although not required for in vitro synthesis, is required for CPH biosynthesis in vivo. Additional work is needed to evaluate whether NaBBL2 plays a role in solving the location challenge, which may have other possible solutions (Figures 60 and 61 and Supplementary Materials). Finally, green leafhopper feeding experiments were conducted on CPH-engineered faba bean and Solanum oleraceum plants, and it was observed that these green leafhopper host crops became lethal host plants for green leafhopper (Figure 20).
对小绿叶蝉属非宿主抗性的这种机制分析提供了天然植物为解决其生态挑战而进化出的创新化学解决方案的另一个例子(Rajniak等人,Nature 525,376-379(2015))。用于发现CPH及其与合成生物学方案结合的自然史驱动的多组学框架突出了自然选择数百万年的创新成果可以多么容易地转移到农作物以催化植物保护(S.M.Cook等人,Annu RevEntomol 52,375-400(2007))和驯化(Zhu等人,Cell 172,249-261e212(2018),Sanchez-Perez等人,Science 364,1095-1098(2019),Szymanski等人,Nat Genet 52,1111-1121(2020))中下一代更绿色的且经济上更有意义的革命。农作物面临的挑战与天然植物面临的挑战并无太大区别,它们不断受到食草动物群落考验,所述食草动物群落对宿主/非宿主区别提出了挑战。在气候变化和全球同质化的食草动物群落的世界中,机会主义关联将主导自然和人造生态系统。对天然植物如何应对机会性关联的了解将有助于设计出更能抵御全球气候变化带来的未知压力的作物(Xu和Weng,Advanced Genetics 1,e10022(2020))。This mechanistic analysis of non-host resistance in green leafhoppers provides another example of innovative chemical solutions evolved by natural plants to solve their ecological challenges (Rajniak et al., Nature 525, 376-379 (2015)). The natural history-driven multi-omics framework used to discover CPH and its combination with synthetic biology programs highlights how easily the innovations of millions of years of natural selection can be transferred to crops to catalyze the next generation of greener and more economically meaningful revolutions in plant protection (S.M.Cook et al., Annu Rev Entomol 52, 375-400 (2007)) and domestication (Zhu et al., Cell 172, 249-261e212 (2018), Sanchez-Perez et al., Science 364, 1095-1098 (2019), Szymanski et al., Nat Genet 52, 1111-1121 (2020)). The challenges facing crops are not so different from those faced by natural plants, they are constantly tested by herbivore communities that challenge the host/non-host distinction. In a world of climate change and globally homogenized herbivore communities, opportunistic associations will dominate natural and artificial ecosystems. Understanding how natural plants cope with opportunistic associations will help design crops that are more resilient to the unknown pressures of global climate change (Xu and Weng, Advanced Genetics 1, e10022 (2020)).
实施例5Example 5
材料和方法总结Summary of Materials and Methods
在美国亚利桑那州Prescott的WCCER田间站种植了两个重复的来自26个亲本MAGIC群体的650个RIL及其26个亲本系。为了引起标准化的食草应答,所有处于初花期的RIL的叶片都被弄伤,并立即用稀释的烟草天蛾口腔分泌物处理(W+OS)或不处理(对照),并在1小时和72小时时收获在干冰上。在代谢物取样后一周,对田间群体的所有植物筛查天然小绿叶蝉属叶蝉数目和损伤;这些叶蝉会趁机从邻近的天然黄瓜宿主植物对渐狭叶烟草植物取样。用R包软件GAPIT使用一般线性模型(GLM),使用MAGIC群体的一组646个RIL进行SNP与每种化合物或转录物相对丰度之间的mQTL和eQTL映射。从代谢组、转录组、植物激素和SNP之间的相关性构建多组学共关联网络。对于小绿叶蝉选择测定,将处于早期莲座生长阶段的渐狭叶烟草的转基因系随机放置在开放选择的温室环境中,该环境含有在德国Isserstedt的MPI-CE温室中的豆科植物上饲养的小绿叶蝉属叶蝉。利用酵母双杂交和qRT-PCR来表征小绿叶蝉属诱导的茉莉酸信号传递基因。使用UHPLC-ESI/qTOF-MS构建化合物特定idMS/MS,以进行idMS/MS采集,并使用基于规则的计算方式进行idMS/MS组装。通过考虑idMS/MS频率分布的香农(Shannon)熵,使用信息理论计算代谢组多样性和特化以及代谢特异性。通过将合成的咖啡酰基腐胺(CP)、香豆酰基腐胺(CoP)或阿魏酰基腐胺(FP)渗入irMYC2a/2b叶片中,或通过使用在10%葡萄糖溶液中稀释的化合物饲喂小绿叶蝉,进行了体内小绿叶蝉选择和体外小绿叶蝉进食测定。使用15个RIL(其在OS引发后诱导含腐胺的酚酰胺并积累了多种已知和未知的酚酰胺)构建idMS/MS进行MS/MS结构代谢组学分析。使用MS/MS相似性评分、双聚类和分子网络来识别未知的m/z 347.19代谢物。使用聚二甲基硅氧烷(PDMS)管从种植在主MPI-CE温室中的650株MAGIC RIL中收集OS诱导的挥发性排放,并通过热解吸-气相色谱法-质谱法(TD-GC-MS)进行分析。通过组合食草诱导的未知m/z347.19的mQTL分析以及WT和irMYC2a/2b和irMYB8系的OS诱导动力学的微阵列和RNAseq数据集的转录组学分析,阐明了NaPPO1/2和NaBBL2基因。通过病毒诱导的基因沉默(VIGS)和体外酶测定,使用大肠杆菌表达的NaPPO1、NaPPO2和NaBBL2与CP和(Z)-3-己烯醛对候选基因进行了功能验证。通过NMR表征CPH(CP-5-(Z)-3-己烯醛)化学结构。通过合成的CPH的体外非选择性测定或通过使用EV、NaPPO1、NaPPO2和NaAT1的VIGS植物进行的在植物内选择测定,试验了CPH对小绿叶蝉的抗性功能。通过CP和(Z)-3-己烯醛叶渗入情况下瞬时共表达NaPPO1、NaPPO2和NaBBL2,在蚕豆和智利茄中重建了CPH的生物合成途径。利用CPH工程化的蚕豆和智利茄植物进一步评估了CPH对小绿叶蝉属的非宿主抗性功能。Two replicates of 650 RILs from 26 parental MAGIC populations and their 26 parental lines were planted at the WCCER field station in Prescott, Arizona, USA. To elicit a standardized herbivory response, leaves of all RILs at the early flowering stage were wounded and immediately treated with diluted Manduca sexta oral secretions (W+OS) or not treated (control) and harvested on dry ice at 1 and 72 h. One week after metabolite sampling, all plants in the field population were screened for the number and damage of natural Empoasca leafhoppers; these leafhoppers would opportunistically sample N. acuminate plants from neighboring natural cucumber host plants. A set of 646 RILs from the MAGIC population were used for mQTL and eQTL mapping between SNPs and the relative abundance of each compound or transcript using the R package GAPIT using general linear models (GLM). Multi-omics co-association networks were constructed from correlations between metabolomes, transcriptomes, phytohormones, and SNPs. For the Empoasca selection assay, transgenic lines of Nicotiana acuminate at the early rosette growth stage were randomly placed in an open-selection greenhouse environment containing Empoasca leafhoppers reared on leguminous plants in the MPI-CE greenhouse in Isserstedt, Germany. Jasmonic acid signaling genes induced by Empoasca were characterized using yeast two-hybrid and qRT-PCR. Compound-specific idMS/MS were constructed using UHPLC-ESI/qTOF-MS for idMS/MS acquisition and rule-based computational approach for idMS/MS assembly. Metabolome diversity and specialization as well as metabolic specificity were calculated using information theory by considering the Shannon entropy of idMS/MS frequency distribution. Empoasca selection in vivo and Empoasca feeding assays in vitro were performed by infiltrating synthetic caffeoylputrescine (CP), coumaroylputrescine (CoP) or feruloylputrescine (FP) into irMYC2a/2b leaves or by feeding Empoasca leafhoppers with compounds diluted in 10% glucose solution. MS/MS structural metabolomics analysis was performed using idMS/MS constructed from 15 RILs that induced putrescine-containing phenolamides and accumulated multiple known and unknown phenolamides upon OS induction. MS/MS similarity scoring, bi-clustering, and molecular networking were used to identify the unknown m/z 347.19 metabolite. OS-induced volatile emissions were collected from 650 MAGIC RILs planted in the main MPI-CE greenhouse using polydimethylsiloxane (PDMS) tubes and analyzed by thermal desorption-gas chromatography-mass spectrometry (TD-GC-MS). NaPPO1/2 and NaBBL2 genes were elucidated by combining herbivory-induced mQTL analysis of the unknown m/z 347.19 and transcriptomic analysis of microarray and RNAseq datasets of OS induction dynamics of WT and irMYC2a/2b and irMYB8 lines. The candidate genes were functionally validated by virus-induced gene silencing (VIGS) and in vitro enzyme assays using Escherichia coli expressed NaPPO1, NaPPO2 and NaBBL2 with CP and (Z)-3-hexenal. The chemical structure of CPH (CP-5-(Z)-3-hexenal) was characterized by NMR. The resistance function of CPH against Empoa spp. was tested by in vitro non-selective assays with synthetic CPH or by in planta selection assays using VIGS plants of EV, NaPPO1, NaPPO2 and NaAT1. The biosynthetic pathway of CPH was reconstructed in Vicia faba and Solanum oleraceum by transient co-expression of NaPPO1, NaPPO2 and NaBBL2 in the presence of leaf infiltration of CP and (Z)-3-hexenal. The non-host resistance function of CPH against Empoa spp. was further evaluated using CPH-engineered Vicia faba and Solanum oleraceum plants.
实施例6Example 6
植物和材料方法、代谢物提取Plants and materials Methods, metabolite extraction
植物和材料方法:近交31代的渐狭叶烟草(最初在美国犹他州西南部的DI牧场收集)被用作所有实验和转化的野生型(WT)遗传背景。如先前所述在德国Jena的Max Planck化学生态研究所(Max Planck Institute for Chemical Ecology,MPI-CE)的温室中,以16h(26-28℃)/8h(22-24℃)的昼夜循环培育植物(Krügel等人,Chemoecology 12,177-183(2002)),。在气候室(York)中进行VIGS实验,实验开始时的生长条件为22/22℃16/8h光照/黑暗,在65%相对湿度下,低光照水平,在接种后2天的光照为大约100μmol m-2s-1,此后光照水平恢复到正常的高光照水平(400-1000μmol m-2s-1PAR)(Saedler和Baldwin,J ExpBot 55,151-157(2004))。在植物生长室(Percival Scientific)中进行小绿叶蝉选择测定,其中具有24℃的恒定温度,光照方案为白天16小时/夜间8小时,相对湿度为70%,光照强度为100%(350μmol s-1m-2PAR)。为了防止小绿叶蝉属侵染MPI-CE的主温室设施,我们在位于德国Isserstedt(距离主温室设施约7公里)的另一个温室设施中进行了大规模选择测定。在自然光条件、24℃恒温、70%相对湿度下进行选择测定。Plant and material methods: Nicotiana attenuata of inbred 31 generations (originally collected at DI Ranch in southwestern Utah, USA) was used as the wild-type (WT) genetic background for all experiments and transformations. Plants were grown in a greenhouse at the Max Planck Institute for Chemical Ecology (MPI-CE) in Jena, Germany, with a diurnal cycle of 16h (26-28°C)/8h (22-24°C) as previously described (Krügel et al., Chemoecology 12, 177-183 (2002)). VIGS experiments were performed in a climate chamber (York) with growth conditions of 22/22°C 16/8h light/dark at 65% relative humidity at the start of the experiment, with a light level of approximately 100 μmol m-2s-1 for 2 days after inoculation, after which the light level returned to normal high light levels (400-1000 μmol m-2s-1 PAR) (Saedler and Baldwin, J ExpBot 55, 151-157 (2004)). Empoasca selection assays were performed in a plant growth chamber (Percival Scientific) with a constant temperature of 24°C, a light regime of 16 h day/8 h night, 70% relative humidity, and a light intensity of 100% (350 μmol s-1 m-2 PAR). To prevent Empoasca from infesting the main greenhouse facility of MPI-CE, we conducted large-scale selection assays in another greenhouse facility located in Isserstedt, Germany (approximately 7 km from the main greenhouse facility). The selection assay was carried out under natural light conditions, a constant temperature of 24°C and a relative humidity of 70%.
代谢物提取:称量大约100mg磨碎的叶组织,并使用含有80%甲醇的提取缓冲液如下提取。每100mg组织加入1毫升提取缓冲液(含有80%甲醇的50mM乙酸盐缓冲液(pH4.8)),并将样品在球磨机(Genogrinder 2000;SPEX CertiPrep)中以1×的速度和每分钟1100次冲击匀浆化45秒。将匀浆化的样品在16,000×g在4℃离心30分钟,将800μL上清液转移进1.5-mL微量离心管中,并像之前一样重新离心。将600μL上清液转移至2mL玻璃小瓶中,用于基于MS的代谢组学分析。Metabolite extraction: Approximately 100 mg of ground leaf tissue was weighed and extracted using an extraction buffer containing 80% methanol as follows. 1 ml of extraction buffer (50 mM acetate buffer (pH 4.8) containing 80% methanol) was added per 100 mg of tissue, and the sample was homogenized in a ball mill (Genogrinder 2000; SPEX CertiPrep) at 1× speed and 1100 strokes per minute for 45 seconds. The homogenized sample was centrifuged at 16,000×g at 4°C for 30 minutes, and 800 μL of the supernatant was transferred into a 1.5-mL microcentrifuge tube and re-centrifuged as before. 600 μL of the supernatant was transferred to a 2 mL glass vial for MS-based metabolomics analysis.
实施例7Example 7
Magic 2019田间实验、昆虫收集和处理Magic 2019 field experiment, insect collection and handling
Magic 2019田间实验:在美国亚利桑那州Prescott的Walnut Creek教育和研究中心(Walnut Creek Center for Education and Research,WCCER)种植了MAGIC群体的650个重组近交系(RIL)以及用于培育MAGIC RIL群体的26个亲本系的两组重复样本(Ray等人,Plant J.99,414-425(2019))。在种植前,安装了滴灌系统以浇灌MAGIC群体植物。田块包括8条直径为1英寸的主干管路,每条主干管路包括4个灌溉管路分支,每个分支包括18个滴头,每个滴头灌溉4株植物。在每个滴头处间隔50厘米种植4株植物,并且间隔150厘米种植4株植物簇。图21描绘了灌溉系统和总体种植布局,其中垂直线表示8条主干水管。使经烟处理的渐狭叶烟草种子在泥煤颗粒中发芽,所述颗粒已经与天然土壤提取物水合,以便在发芽期间为植物提供适当的微生物组(Santhanam等人,Proc Natl Acad Sci U S A112,E5013-E5020(2015))。为了以动力学定义的方式引发标准化的食草动物特异性应答,用织物图案轮(Dritz,Spartanburg,SC)在叶片中脉的每一侧上造成三排穿刺伤口,并立即用20μL的1:5稀释的烟草天蛾口腔分泌物处理(W+OS)或不进行处理(对照)(McCloud和Baldwin,Planta 203,430-435(1997))。在每株取样的植物上,用W+OS处理前三片茎叶,并在1小时和72小时取样;对照叶片则在0小时取样。将所有叶片样品立即在干冰上冷冻,并通过飞机在干冰运输容器中在干冰上运输,并储存在MPI-CE的-80℃冰柜中。在代谢物采样后一周,田间团队统计了每株植物上的小绿叶蝉数目,并目测估计了MAGIC群体中每株植物因叶蝉进食而受损的叶面积的比例。Magic 2019 field experiment: 650 recombinant inbred lines (RILs) of the MAGIC population and two replicates of 26 parental lines used to breed the MAGIC RIL population were planted at the Walnut Creek Center for Education and Research (WCCER) in Prescott, Arizona, USA (Ray et al., Plant J. 99, 414-425 (2019)). Before planting, a drip irrigation system was installed to water the MAGIC population plants. The field included 8 main pipes with a diameter of 1 inch, each main pipe included 4 irrigation pipe branches, each branch included 18 drippers, and each dripper irrigated 4 plants. Four plants were planted at each dripper with an interval of 50 cm, and clusters of 4 plants were planted at an interval of 150 cm. Figure 21 depicts the irrigation system and the overall planting layout, where the vertical lines represent the 8 main water pipes. The tobacco seeds treated with tobacco were allowed to grow on the Plants were germinated in peat pellets that had been hydrated with natural soil extracts to provide the plants with an appropriate microbiome during germination (Santhanam et al., Proc Natl Acad Sci US A112, E5013-E5020 (2015)). To elicit a standardized herbivore-specific response in a kinetically defined manner, three rows of puncture wounds were made on each side of the leaf midrib using a fabric pattern wheel (Dritz, Spartanburg, SC) and immediately treated with 20 μL of a 1:5 dilution of tobacco hornworm oral secretions (W+OS) or left untreated (control) (McCloud and Baldwin, Planta 203, 430-435 (1997)). On each plant sampled, the first three stem leaves were treated with W+OS and sampled at 1 hour and 72 hours; control leaves were sampled at 0 hours. All leaf samples were immediately frozen on dry ice and transported by aircraft on dry ice in dry ice shipping containers and stored in a −80 °C freezer at MPI-CE. One week after metabolite sampling, the field team counted the number of green leafhoppers on each plant and visually estimated the proportion of leaf area damaged by leafhopper feeding on each plant in the MAGIC population.
昆虫收集和处理:从生长在德国Jena的MPI-CE环境中的醉鱼草属(蝴蝶紫丁香)植物上收集的昆虫建立了小绿叶蝉(Empoasca decipiens)的实验室群落。在德国Isserstedt的一座温室里,在四个网纱帐篷里用蚕豆来饲养昆虫。帐篷(220x 90x 110cm,Tatonka,德国)被网纱完全覆盖,允许空气交换。为了筛选对叶蝉攻击特异性的遗传和代谢应答,将25只成虫叶蝉关在处于莲座阶段的不同转基因系的叶片上的50-mL塑料容器(Huhtamaki)中(图30和31)。将空的50-mL塑料容器放在EV植物叶片上作为对照。为了代谢组学分析,将叶片处理72小时,将塑料容器连同叶片和昆虫一起从植物移除,并将叶蝉放回群落。为了量化转录物丰度,分别在0、0.5、1、2、3、6、9和24小时收集样品。将收获的叶片立即在液氮中冷冻并储存在-80℃冰柜中直至使用。收获对照叶并以类似方式储存。Insect collection and treatment: A laboratory colony of Empoasca decipiens was established from insects collected from Buddleja (Butterfly Lilac) plants growing in the MPI-CE environment in Jena, Germany. Insects were reared in four mesh tents with broad beans in a greenhouse in Isserstedt, Germany. The tents (220 x 90 x 110 cm, Tatonka, Germany) were completely covered with mesh to allow air exchange. In order to screen for genetic and metabolic responses specific to leafhopper attack, 25 adult leafhoppers were kept in 50-mL plastic containers (Huhtamaki) on leaves of different transgenic lines at the rosette stage (Figures 30 and 31). Empty 50-mL plastic containers were placed on EV plant leaves as controls. For metabolomics analysis, the leaves were treated for 72 hours, the plastic containers were removed from the plants together with the leaves and insects, and the leafhoppers were returned to the colony. To quantify transcript abundance, samples were collected at 0, 0.5, 1, 2, 3, 6, 9, and 24 hours. Harvested leaves were immediately frozen in liquid nitrogen and stored in a -80 °C freezer until use. Control leaves were harvested and stored in a similar manner.
烟草天蛾(M.Sexta)卵来自德国Jena的MPI-CE的进化神经行为学系(Departmentof Evolutionary Neuroethology)维护的室内群落,如先前所述(Koenig等人,InsectBiochem Mol Biol 66,51-63(2015))。通过将新孵出的烟草天蛾(M.sexta)放置在完全展开的莲座期叶片上进行烟草天蛾(M.Sexta)进食测定。M. Sexta eggs were obtained from an indoor colony maintained at the Department of Evolutionary Neuroethology at the MPI-CE in Jena, Germany, as described previously (Koenig et al., Insect Biochem Mol Biol 66, 51-63 (2015)). M. Sexta feeding assays were performed by placing newly hatched M. sexta on fully expanded rosette stage leaves.
对于茉莉酸甲酯(MeJA)处理,将MeJA(Sigma,目录号:392707-25ML)溶解在热液化的羊毛脂(50℃)中,浓度为7.5mg mL-1。纯的羊毛脂用作阴性对照。用20μL含有150μg MeJA的羊毛脂糊(Lan+MeJA),用20μL羊毛脂+伤口处理(Lan+W),或用20μL纯羊毛脂作为对照(Baldwin等人,J Chem Ecol 22,61-74(1996)),对前三片完全伸长的叶片的基部的轴外侧进行处理(在盆栽后4周)。在处理后72小时收获叶片(除去中脉),在液氮中快速冷冻,并在-80℃储存直至使用。For methyl jasmonate (MeJA) treatment, MeJA (Sigma, catalog number: 392707-25ML) was dissolved in hot liquefied lanolin (50°C) at a concentration of 7.5 mg mL-1. Pure lanolin was used as a negative control. With 20 μL of lanolin paste (Lan+MeJA) containing 150 μg MeJA, with 20 μL of lanolin+wound treatment (Lan+W), or with 20 μL of pure lanolin as a control (Baldwin et al., J Chem Ecol 22, 61-74 (1996)), the axis outside of the base of the first three fully elongated leaves was treated (4 weeks after potting). Leaves were harvested 72 hours after treatment (midrib removed), quickly frozen in liquid nitrogen, and stored at -80°C until use.
实施例8Example 8
小绿叶蝉选择实验和转基因系Green leafhopper selection experiment and transgenic lines
小绿叶蝉选择实验:使渐狭叶烟草植物在MPI-CE的主温室设施中发芽并生长,并在莲座期早期转移到Isserstedt温室。将植物转移到Isserstedt温室后,使植物适应至少两天,然后开始实验。将植物随机放置在桌子上,彼此之间的距离为至少40厘米。将小绿叶蝉(E.decipiens)群落帐篷放置在毗邻渐狭叶烟草植物的两张桌子上(图26),并将约400只小绿叶蝉(E.Decipiens)个体释放进温室中。在两周后,通过目测估计受损面积占每片叶的总叶面积的百分比,如先前所述(Kallenbach等人,Proc Natl Acad Sci U S A109,E1548-E1557(2012))。计算了三种不同叶片类型的平均叶片损伤:莲座叶、最先的(最老的)三片茎叶和所有较年轻的茎叶。我们还计数了每株植物上的小绿叶蝉个体的数目。每个基因型由10株重复植物代表。Green leafhopper selection experiment: make the tobacco plant attenuate in the main greenhouse facility of MPI-CE germinate and grow, and transfer to the Isserstedt greenhouse in the early stage of rosette stage.After plant is transferred to the Isserstedt greenhouse, make plant adapt to at least two days, then start experiment.Plant is randomly placed on the table, the distance between each other is at least 40 centimeters.Green leafhopper (E.decipiens) colony tent is placed on two tables adjacent to the tobacco plant attenuate (Figure 26), and about 400 green leafhopper (E.Decipiens) individuals are released into the greenhouse.After two weeks, the percentage of the total leaf area of each leaf is estimated by visual estimation, as previously described (Kallenbach et al., Proc Natl Acad Sci U S A109, E1548-E1557 (2012)).The average leaf damage of three different leaf types has been calculated: rosette leaf, the first (oldest) three stem leaves and all younger stem leaves. We also counted the number of green leafhopper individuals on each plant. Each genotype was represented by 10 replicate plants.
在置于生长室(Percival Scientific)中的帐篷中,对沉默PPO1、PPO2和BBL2的植物进行了小绿叶蝉选择试验(图31)。当植物处于生长的早期伸长阶段时,将沉默PPO1、PPO2和BBL2的植物从温室转移到帐篷中。将植物转移到帐篷中以后,使植物适应至少两天,然后暴露于小绿叶蝉(E.decipiens)攻击。将植物随机放置在帐篷中,彼此之间的距离为至少15厘米;每个帐篷包括四种基因型:EV、PPO1、PPO2和BBL2沉默的植物。将50只小绿叶蝉(E.decipiens)成虫释放进每个帐篷中。在一周后,目视估计受损面积,并将其量化为占每个叶片总叶面积的百分比,如前所述。我们还计数了帐篷内每株植物上的小绿叶蝉个体的数目。每个基因型由8株重复植物代表。Plants with silenced PPO1, PPO2 and BBL2 were tested for green leafhopper selection in tents placed in a growth chamber (Percival Scientific) (Figure 31). Plants with silenced PPO1, PPO2 and BBL2 were transferred from the greenhouse to the tents when the plants were in the early elongation stage of growth. After the plants were transferred to the tents, the plants were adapted for at least two days and then exposed to green leafhopper (E. decipiens) attacks. Plants were randomly placed in the tents with a distance of at least 15 cm between each other; each tent included four genotypes: EV, PPO1, PPO2 and BBL2 silenced plants. 50 green leafhopper (E. decipiens) adults were released into each tent. After one week, the damaged area was visually estimated and quantified as a percentage of the total leaf area of each leaf, as described above. We also counted the number of green leafhopper individuals on each plant in the tent. Each genotype was represented by 8 replicate plants.
转基因系的产生:通过公开的根癌农杆菌(Agrobacterium tumefaciens)介导的转化方法(Krügel等人,Chemoecology 12,177-183(2002)),使用含有NaMYC2(LOC109232914、LOC109205493)、NaJAZi(LOC109240311)、NaJAZc(LOC109233155)、NaJAZe(LOC109223947)、NaJAZL(LOC109220335)、NaJAZg(LOC109219395)、NaDH29(LOC109206371)或NaCV86(LOC109206370)序列的反向重复片段的pSOL8二元载体产生NaMYC2(irMYC2、A-17-110-2-2)/JAZi(irJAZi、A-17-013-2)/JAZc(irJAZc、A-09-220-4-1)/JAZe(irJAZe、A-09-250-7)/JAZg(irJAZg、A-19-070-5)/JAZL(irJAZL、A-18-029)/DH29(irDH29、A-06-051-1)/CV86(irCV86、A-06-022-6)沉默的系和NaJAZi(ovJAZi、A-17-007-1)/JAZL(ovJAZL、A-18-042)过表达系。通过使用分别带有NaJAZi(LOC109240311)和NaJAZL(LOC109220335)序列的pSOL9载体,构建NaJAZi和NaJAZL过表达系。在所有研究中使用携带单个插入的纯合T2二倍体植物。通过NanoString分析评估了插入拷贝数以及插入的保真度(过度读取和截断)(He等人,Proc Natl Acad Sci U S A116,14651-14660(2019))。简而言之,从单个转基因植物中提取的DNA被用于NanoString以根据设计的探针检测插入片段的特定区域。为了验证从选择性标志物抗性分离率推断出的单拷贝数插入,使用公开的具有单拷贝插入的转化系(irAGO8)作为阳性对照(Pradhan等人,Plant Physiol 175,927-946(2017))。Generation of transgenic lines: NaMYC2 (irMYC2, NaJAZi, NaJAZc, NaJAZe, NaJAZL, NaJAZg, NaDH29, NaCV86, NaCV86, NaCV86, NaCV86) were generated by a published Agrobacterium tumefaciens-mediated transformation method (Krügel et al., Chemoecology 12, 177-183 (2002)) using a pSOL8 binary vector containing inverted repeats of NaMYC2 (LOC109232914, LOC109205493), NaJAZi (LOC109240311), NaJAZc (LOC109233155), NaJAZe (LOC109223947), NaJAZL (LOC109220335), NaJAZg (LOC109219395), NaDH29 (LOC109206371), or NaCV86 (LOC109206370). A-17-110-2-2)/JAZi (irJAZi, A-17-013-2)/JAZc (irJAZc, A-09-220-4-1)/JAZe (irJAZe, A-09-250-7)/JAZg (irJAZg, A-19-070-5)/JAZL (irJAZL, A-18-029)/DH29 (irDH29, A-06-051-1)/CV86 (irCV86, A-06-022-6) silenced lines and NaJAZi (ovJAZi, A-17-007-1)/JAZL (ovJAZL, A-18-042) overexpression lines. NaJAZi and NaJAZL overexpression lines were constructed by using pSOL9 vectors with NaJAZi (LOC109240311) and NaJAZL (LOC109220335) sequences, respectively. Homozygous T2 diploid plants carrying a single insertion were used in all studies. Insertion copy number and fidelity of insertion (overreading and truncation) were evaluated by NanoString analysis (He et al., Proc Natl Acad Sci US A116, 14651-14660 (2019)). In short, DNA extracted from a single transgenic plant was used for NanoString The specific region of the inserted fragment was detected by the designed probe. In order to verify the single copy number insertion inferred from the selective marker resistance segregation rate, a published transformation line with a single copy insertion (irAGO8) was used as a positive control (Pradhan et al., Plant Physiol 175, 927-946 (2017)).
在本研究中还使用了以下四种先前表征的转基因系:在NaAOC基因的表达中被沉默的irAOC(A-07-457-1)植物(Kallenbach等人,Proc Natl Acad Sci U S A 109,E1548-E1557(2012)),在NaCOI1基因的表达中被沉默的irCOI1(A-04-249-A-1)植物(Paschold,等人,Plant J 51,79-91(2007)),在NaMYB8基因的表达中被沉默的irMYB8(A-07-810-2)植物(Onkokesung等人,Plant Physiol 158,389-407(2012)),在NaJAZh基因的表达中被沉默的irJAZh(A-09-368-7)植物(Oh等人,Plant Physiol 159,769-788(2012)),在NaPMT基因的表达中被沉默的irPMT(A-03-108)植物(Steppuhn等人,PLoS Biol 2,E217(2004)),在NaGGPPS基因的表达中被沉默的irGGPPS(A-08-231)植物(Heiling等人,Plant Cell 22,273-292(2010)),在NaHPL基因的表达中被沉默的asHPL(A-247)植物(Halitschke等人,Plant J 40,35-46(2004)),和分别在NaLOX2以及NaLOX2和NaLOX3两个基因的表达中被沉默的irLOX2(A-04-52-2)和irLOX2和LOX3杂交(A07-707-2)植物(Allmann等人,Plant CellEnviron 33,2028-2040(2010))。The following four previously characterized transgenic lines were also used in this study: irAOC (A-07-457-1) plants silenced in the expression of the NaAOC gene (Kallenbach et al., Proc Natl Acad Sci U S A 109, E1548-E1557 (2012)), irCOI1 (A-04-249-A-1) plants silenced in the expression of the NaCOI1 gene (Paschold et al., Plant J 51, 79-91 (2007)), irMYB8 (A-07-810-2) plants silenced in the expression of the NaMYB8 gene (Onkokesung et al., Plant Physiol 158, 389-407 (2012)), irJAZh (A-09-368-7) plants silenced in the expression of the NaJAZh gene (Oh et al., Plant Physiol 159, 769-788 (2012)), irPMT (A-03-108) plants silenced in the expression of the NaPMT gene (Steppuhn et al., PLoS Biol 2, E217 (2004)), irGGPPS (A-08-231) plants silenced in the expression of the NaGGPPS gene (Heiling et al., Plant Cell 22, 273-292 (2010)), asHPL (A-247) plants silenced in the expression of the NaHPL gene (Halitschke et al., Plant J 40, 35-46 (2004)), and irLOX2 (A-04-52-2) and irLOX2 and LOX3 hybrid (A07-707-2) plants silenced in the expression of the NaLOX2 and NaLOX2 and NaLOX3 genes, respectively (Allmann et al., Plant J 40, 35-46 (2004)). CellEnviron 33, 2028-2040(2010)).
实施例9Example 9
转录组学数据挖掘和微阵列分析Transcriptomics data mining and microarray analysis
转录组学数据挖掘以及微阵列和RNAseq数据集的分析:微阵列数据最初发表于Kim等人,PloS One 6,e26214(2011),并存放在国家生物技术信息中心基因表达综合数据库(GEO编号:GSE30287)中。在统计分析之前,使用R软件包将原始强度进行log2和基线转换,并归一化至其第75个百分位数。如Pertea等人,Nat Protoc 11,1650-1667(2016)所述处理原始RNAseq数据。简而言之,首先将原始RNA-seq读数转换为fastQ格式。HISAT2将fastQ转换为sam,并且SAMtools将sam文件转换为排序的bam文件。使用StringTie以每百万个测序读数每千碱基转录物的片段数(FPKM)计算基因表达。 Transcriptomics data mining and analysis of microarray and RNAseq data sets : Microarray data were originally published in Kim et al., PloS One 6, e26214 (2011) and stored in the National Center for Biotechnology Information Gene Expression Comprehensive Database (GEO number: GSE30287). Before statistical analysis, the original intensity was log2 and baseline converted using the R software package and normalized to its 75th percentile. Raw RNAseq data were processed as described in Pertea et al., Nat Protoc 11, 1650-1667 (2016). In short, the original RNA-seq readings were first converted to fastQ format. HISAT2 converts fastQ to sam, and SAMtools converts sam files to sorted bam files. StringTie was used to calculate gene expression with the number of fragments (FPKM) per kilobase transcript per million sequencing reads.
关联映射:使用R包软件GAPIT(Genome Association and PredictionIntegrated Tool),使用MAGIC群体的一组646个RIL进行SNP与每种化合物或转录物的相对丰度之间的mQTL和eQTL映射(Lipka等人,Bioinformatics 28,2397-2399(2012))。采用一般线性模型(GLM)进行关联分析。Association mapping: Using the R package software GAPIT (Genome Association and Prediction Integrated Tool), a set of 646 RILs from the MAGIC population were used to perform mQTL and eQTL mapping between SNPs and the relative abundance of each compound or transcript (Lipka et al., Bioinformatics 28, 2397-2399 (2012)). General linear models (GLM) were used for association analysis.
实施例10Example 10
挥发性物质测量Volatile substance measurement
在MAGIC RIL群体中的挥发性物质测量:为了表征食草动物诱导的挥发性物质排放,在MPI-CE的温室中种植了单个重复的650个MAGIC RIL。如上关于代谢物分析所述,将每株植物的第三老茎叶用创伤和烟草天蛾(M.Sexta)口腔分泌物处理(W+OS),并将处理过的叶片单独封装在500-mL透明(PET)杯中。将挥发物持续24小时收集在悬挂在收集杯中叶片上方的顶部空间中的两段5-mm的聚二甲基硅氧烷(PDMS)管上(Kallenbach等人,Plant J78,1060-1072(2014))。收集PDMS管,并在-20℃储存直至分析。 Volatile substance measurement in MAGIC RIL population : To characterize the volatile substance emission induced by herbivores, 650 MAGIC RILs were planted in a single replicate in the greenhouse of MPI-CE. As described above for metabolite analysis, the third oldest stem and leaf of each plant was treated with wounds and tobacco hornworm (M. Sexta) oral secretions (W+OS), and the treated leaves were individually packaged in 500-mL transparent (PET) cups. Volatiles were collected for 24 hours on two sections of 5-mm polydimethylsiloxane (PDMS) tubes suspended in the head space above the leaves in the collection cup (Kallenbach et al., Plant J78, 1060-1072 (2014)). PDMS tubes were collected and stored at -20°C until analysis.
通过热解吸-气相色谱法-质谱法(TD-GC-MS)分析挥发物。GC-MS(Shimadzu,GCMS-QP2010Ultra)配备TD自动采样器(Shimadzu TD-20)和半极性毛细管柱(Phenomenex ZB-WAXplus,30m x 0.25mm ID,250μm膜厚度)。将化合物如先前所述解吸(Kallenbach等人,Plant J 78,1060-1072(2014)),并通过应用以下柱温梯度进行分离:0至5分钟恒温在40℃,5至34分钟线性升温至185℃,34至35.5分钟线性升温至230℃,35.5至36分钟恒温在230℃。从m/z 33至400以全扫描模式运行MS检测器。绿叶挥发性物质和萜类化合物的相对定量是基于特征片段离子的提取离子色谱图的峰积分。基于保留时间和质谱图与真实标准品和内部MS库的对比来识别化合物。Volatiles were analyzed by thermal desorption-gas chromatography-mass spectrometry (TD-GC-MS). GC-MS (Shimadzu, GCMS-QP2010Ultra) was equipped with a TD autosampler (Shimadzu TD-20) and a semipolar capillary column (Phenomenex ZB-WAXplus, 30m x 0.25mm ID, 250μm film thickness). The compound was desorbed as previously described (Kallenbach et al., Plant J 78, 1060-1072 (2014)), and separated by applying the following column temperature gradient: 0 to 5 minutes constant temperature at 40°C, 5 to 34 minutes linear temperature increase to 185°C, 34 to 35.5 minutes linear temperature increase to 230°C, 35.5 to 36 minutes constant temperature at 230°C. The MS detector was run in full scan mode from m/z 33 to 400. Relative quantification of green leaf volatiles and terpenoids was based on peak integration of extracted ion chromatograms of characteristic fragment ions. Compounds were identified based on retention times and comparison of mass spectra with authentic standards and an in-house MS library.
实施例11Embodiment 11
蛋白定位和qRT-PCR分析Protein localization and qRT-PCR analysis
蛋白定位:将携带35S::NaPPO1-GFP或35S::NaPPO2-GFP的根癌农杆菌(A.tumefacien)菌株GV3101渗入到渐狭叶烟草叶片中。渗入后三天,使用CLSM 510共聚焦扫描显微镜(Zeiss)获取渗入的叶片的轴外侧表皮细胞的共聚焦图像。 Protein localization : Agrobacterium tumefaciens strain GV3101 carrying 35S::NaPPO1-GFP or 35S::NaPPO2-GFP was infiltrated into N. attenuata leaves. Three days after infiltration, confocal images of the epidermal cells outside the axis of the infiltrated leaves were acquired using a CLSM 510 confocal scanning microscope (Zeiss).
JAZ和m/z 347.19 8CHP生物合成基因的qRT-PCR分析:用剪刀从茎上剪下渐狭叶烟草野生型叶片并收集0小时时间点(对照)组织样品,在液氮中快速冷冻并在-80℃储存直至使用。对于处理过的叶片,将每株植物的一片叶片在生长室中暴露于小绿叶蝉(E.Decipiens)或烟草天蛾(M.Sexta)啃食(图30和31)。在处理后0.5、1、2、6、9、12和24小时收集叶片样品,在液氮中快速冷冻并在-80℃储存直至使用。 qRT-PCR analysis of JAZ and m/z 347.19 8CHP biosynthetic genes : Wild-type leaves of N. attenuata were cut from the stem with scissors and tissue samples were collected at the 0 hour time point (control), snap frozen in liquid nitrogen and stored at -80°C until use. For treated leaves, one leaf from each plant was exposed to feeding by E. Decipiens or M. Sexta in a growth chamber (Figures 30 and 31). Leaf samples were collected at 0.5, 1, 2, 6, 9, 12 and 24 hours after treatment, snap frozen in liquid nitrogen and stored at -80°C until use.
使用Primer3(Untergasser等人,Nucleic Acids Res 40,e115(2012))设计针对靶向基因的特定区域的引物,扩增子长度在70-200bp之间。将叶组织样品在液氮中碾磨后,按照NucleoSpin RNA植物试剂盒(MACHEREY-NAGEL,目录号:740949.50)的标准从100mg粉末状叶材料的等分试样中提取总RNA。在Nanodrop分光光度计(Peqlab,ND-1000)上测量RNA样品。按照PrimeScriptTMRT试剂盒(Perfect Real Time,Takara,目录号:RR037B)的标准,使用1μg RNA合成cDNA。在Stratagene MX3005P仪器上使用TaykonTMNo ROXMasterMix(Eurogentec,目录号:UF-NSMT-B0701)进行qPCR实验。将渐狭叶烟草延伸因子1-α基因(EF1-α;登记号GBGF01000210.1)用作持家基因来对qPCR结果进行标准化。所有qPCR引物列于表3中。Primers were designed for specific regions of the targeted gene using Primer3 (Untergasser et al., Nucleic Acids Res 40, e115 (2012)), with amplicon lengths between 70 and 200 bp. After grinding the leaf tissue samples in liquid nitrogen, total RNA was extracted from aliquots of 100 mg of powdered leaf material according to the standards of the NucleoSpin RNA Plant Kit (MACHEREY-NAGEL, catalog number: 740949.50). RNA samples were measured on a Nanodrop spectrophotometer (Peqlab, ND-1000). 1 μg RNA was used to synthesize cDNA according to the standards of the PrimeScript TM RT Kit (Perfect Real Time, Takara, catalog number: RR037B). Taykon TM No ROX was used on a Stratagene MX3005P instrument. MasterMix (Eurogentec, catalog number: UF-NSMT-B0701) was used for qPCR experiments. The Nicotiana attenuata elongation factor 1-α gene (EF1-α; accession number GBGF01000210.1) was used as a housekeeping gene to standardize the qPCR results. All qPCR primers are listed in Table 3.
实施例12Example 12
酵母双杂交测定和VIGSYeast two-hybrid assay and VIGS
酵母双杂交测定:按照生产商的说明书使用Matchmaker Gold酵母双杂交系统(Clontech)进行Y2H测定。简而言之,使用YeastmakerTM酵母转化试剂盒(Clontech,目录号:630304)将构建的AD和BD融合物与其自身的空载体(作为阴性对照)一起转化到新鲜制备的Y2Hgold感受态细胞中,并铺板在选择性脱落培养基(SD-Leu/-Trp)上。使转化体在有2mM3-AT存在下在QDO(SD-Leu/-Ade/-His/-Trp)培养基上在30℃孵化5-7天后进行记录。 Yeast two-hybrid assay : Y2H assay was performed using the Matchmaker Gold yeast two-hybrid system (Clontech) according to the manufacturer's instructions. Briefly, constructed AD and BD fusions were transformed into freshly prepared Y2Hgold competent cells together with their own empty vector (as a negative control) using the Yeastmaker TM yeast transformation kit (Clontech, catalog number: 630304) and plated on selective dropout medium (SD-Leu/-Trp). Transformants were recorded after incubation at 30°C for 5-7 days on QDO (SD-Leu/-Ade/-His/-Trp) medium in the presence of 2mM 3-AT.
VIGS:生成含有NaAT1的片段和CPH代谢物的生物合成候选基因的载体(pTV00),并如前所述进行植物生长和VIGS接种(Saedler和Baldwin,J Exp Bot 55,151-157(2004))。简而言之,为了沉默NaAT1基因和m/z 347生物合成候选基因(包括NaPPO1、NaPPO2、NaBBL2),将这些基因的150-400bp反义片段克隆到pTV00载体(由Sir David Baulcombe的实验室提供)的多聚接头中,并转化进根癌农杆菌(Agrobacterium tumefaciens)GV3101中。空克隆载体pTV00用作VIGS的非特异性表型效应的阴性对照。通过将本氏烟草八氢番茄红素去饱和酶基因(NtPDS,Niben101Scf01283g02002.1)的206bp片段以反义方向克隆到pTV00的多接头中,制备阳性对照载体pTVPD。在发芽后23-25天,通过之前描述的无针注射器渗入方法处理植物(Saedler和Baldwin,J Exp Bot 55,151-157(2004))。在盆栽后四周,通过W+OS处理来引发沉默的叶片。在三天后,将处理过的叶片在液氮中快速冷冻,并在-80℃储存直至使用,未处理的叶片以类似的方式收集作为对照。将VIGS实验重复至少三次。 VIGS : A vector (pTV00) containing fragments of NaAT1 and candidate genes for biosynthesis of CPH metabolites was generated, and plant growth and VIGS inoculation were performed as previously described (Saedler and Baldwin, J Exp Bot 55, 151-157 (2004)). Briefly, to silence the NaAT1 gene and m/z 347 biosynthesis candidate genes (including NaPPO1, NaPPO2, NaBBL2), 150-400 bp antisense fragments of these genes were cloned into the polylinker of the pTV00 vector (provided by Sir David Baulcombe's laboratory) and transformed into Agrobacterium tumefaciens GV3101. The empty cloning vector pTV00 was used as a negative control for the non-specific phenotypic effects of VIGS. The positive control vector pTVPD was prepared by cloning a 206 bp fragment of the Nicotiana benthamiana phytoene desaturase gene (NtPDS, Niben101Scf01283g02002.1) in the antisense direction into the polylinker of pTV00. Plants were treated by the needleless syringe infiltration method described previously (Saedler and Baldwin, J Exp Bot 55, 151-157 (2004)) 23-25 days after germination. Four weeks after potting, silent leaves were induced by W+OS treatment. After three days, the treated leaves were quickly frozen in liquid nitrogen and stored at -80°C until use, and untreated leaves were collected in a similar manner as controls. The VIGS experiment was repeated at least three times.
实施例13Example 13
候选CHP生物合成基因的克隆和CHP途径的重建Cloning of candidate CHP biosynthetic genes and reconstruction of the CHP pathway
候选CHP生物合成基因的克隆:根据制造商的说明书,使用Phusion高保真DNA聚合酶(New England Biolabs,目录号:M0530L)进行所有PCR扩增步骤。从Integrated DNATechnologies购买寡聚胸腺嘧啶引物。使用NucleoSpin Gel和PCR清理试剂盒(Macherey-Nagel,目录号:740609.50)从琼脂糖凝胶中纯化DNA片段。在转化进其它异源宿主中之前,使用One ShotTMTOP10化学感受态大肠杆菌(Invitrogen,目录号:C404006)进行质粒分离。使用NucleoSpin质粒试剂盒(Macherey-Nagel,目录号:740588.50)从大肠杆菌培养物中分离质粒DNA。在通过PCR扩增靶基因以后,通过Sanger二脱氧测序确认序列。将PCR片段用DyeEx 2.0旋转试剂盒(250)(QIAGEN,目录号:63206)纯化。在德国Jena的MPI-CE分子生态学系的ABI 3130基因分析仪上进行测序。关于克隆所用的引物列表,参见表3。 Cloning of candidate CHP biosynthetic genes : According to the manufacturer's instructions, all PCR amplification steps were performed using Phusion high-fidelity DNA polymerase (New England Biolabs, catalog number: M0530L). Oligothymidine primers were purchased from Integrated DNA Technologies. DNA fragments were purified from agarose gel using NucleoSpin Gel and PCR clean-up kit (Macherey-Nagel, catalog number: 740609.50). Before transformation into other heterologous hosts, plasmid separation was performed using One Shot TM TOP10 chemically competent Escherichia coli (Invitrogen, catalog number: C404006). Plasmid DNA was isolated from Escherichia coli culture using NucleoSpin plasmid kit (Macherey-Nagel, catalog number: 740588.50). After the target gene was amplified by PCR, the sequence was confirmed by Sanger dideoxy sequencing. The PCR fragment was purified using DyeEx 2.0 spin kit (250) (QIAGEN, catalog number: 63206). Sequencing was performed on an ABI 3130 gene analyzer at the MPI-CE molecular ecology department in Jena, Germany. For a list of primers used for cloning, see Table 3.
在蚕豆、智利茄和小绿叶蝉属生物测定中的CHP途径的重建:与所有选定的候选基因的全长开放读码框对应的序列均得自渐狭叶烟草基因组发布版本2.0(Xu等人,ProcNatl Acad Sci U S A 114,6133-6138(2017))。对基因序列进行PCR扩增(关于引物,参见表3),并重组到供体载体pDONR207中。将候选基因(包括NaPPO1、NaPPO2和NaBBL2)的经过序列验证的入门克隆通过Gateway重组到pEAQ-HT-DEST载体中并进行序列验证。将所得的pEAQ-HT构建体使用电穿孔方法转化到根癌农杆菌(Agrobacterium tumefaciens)(GV3101)中。使转化体在补充了20mg mL-1庆大霉素、100mg mL-1利福平和25mg mL-1卡那霉素的酵母提取物肉汤培养基板上生长。将单个菌落接种到5mL的补充了20mg mL-1庆大霉素、100mg mL-1利福平和25mg mL-1卡那霉素的酵母提取物肉汤培养基中。过夜孵化后,将用于瞬时共表达的细菌混合,通过离心沉淀,并重新悬浮在渗入缓冲液(100μM乙酰丁香酮,10mMMgCl2,和10mM MES,pH 5.7)中。在室温孵化2小时后,将细菌混合物(对于每种菌株,OD=0.25)渗入到在VIG条件下维持的生长室中生长的3-4株6周龄蚕豆或智利茄植物的完全展开的叶片的轴外侧。用MeJA处理智利茄植物的叶片。将渗入的和MeJA处理过的植物在正常生长条件下孵化3天,然后进行代谢物分析。生物学重复由来自不同植物的几个叶片组成。对于底物渗入实验,将溶解在含0.01% DMSO水溶液的50mL乙酸盐缓冲液(20mM,pH 4.8)溶液中的500μM(E)-N-咖啡酰基腐胺(BOC Sciences,目录号:B0005-053482)和1mM顺式-3-己烯醛(Sigma,目录号:W256102-样品-K)用无针1-mL注射器渗入到先前用PPO1、PPO2和BBL2根癌农杆菌属渗入的叶片的轴外表面,在根癌农杆菌渗入后1天,将1mL(E)-N-咖啡酰基腐胺(500μM)或顺式-3-己烯醛(1mM)渗入在EV植物叶片中作为阴性对照。在一天后收获叶片盘,快速冷冻并提取用于在LC-MS上进行CPH代谢物图谱分析。选择四片积累CPH的蚕豆或智利茄叶片进行小绿叶蝉属生物测定,并将25只成虫叶蝉关在先前用根癌农杆菌渗入的每片叶片上的50-mL塑料容器(Huhtamaki)中。每1小时记录小绿叶蝉存活率过夜。Reconstruction of the CHP pathway in bioassays of broad bean, Solanum chilensis and Empoasca spp.: Sequences corresponding to the full-length open reading frames of all selected candidate genes were obtained from the Nicotiana acuminate genome release 2.0 (Xu et al., Proc Natl Acad Sci USA 114, 6133-6138 (2017)). The gene sequences were PCR amplified (for primers, see Table 3) and recombined into the donor vector pDONR207. The sequence-verified entry clones of the candidate genes (including NaPPO1, NaPPO2 and NaBBL2) were recombined into the pEAQ-HT-DEST vector by Gateway and sequence-verified. The resulting pEAQ-HT construct was transformed into Agrobacterium tumefaciens (GV3101) using electroporation. Transformants were grown on yeast extract broth plates supplemented with 20 mg mL -1 gentamicin, 100 mg mL -1 rifampicin and 25 mg mL -1 kanamycin. Single colonies were inoculated into 5 mL of yeast extract broth supplemented with 20 mg mL - 1 gentamicin, 100 mg mL -1 rifampicin and 25 mg mL -1 kanamycin. After overnight incubation, the bacteria for transient coexpression were mixed, precipitated by centrifugation, and resuspended in infiltration buffer (100 μM acetosyringone, 10 mM MgCl 2 , and 10 mM MES, pH 5.7). After 2 hours of incubation at room temperature, the bacterial mixture (OD=0.25 for each strain) was infiltrated into the outer side of the axis of the fully expanded leaves of 3-4 strains of 6-week-old broad beans or Chilean nightshade plants grown in a growth chamber maintained under VIG conditions. The leaves of Chilean nightshade plants were treated with MeJA. The infiltrated and MeJA-treated plants were incubated under normal growth conditions for 3 days before metabolite analysis. Biological replicates consisted of several leaves from different plants. For substrate infiltration experiments, 500 μM (E)-N-caffeoyl putrescine (BOC Sciences, catalog number: B0005-053482) and 1 mM cis-3-hexenal (Sigma, catalog number: W256102-sample-K) dissolved in 50 mL acetate buffer (20 mM, pH 4.8) containing 0.01% DMSO aqueous solution were infiltrated into the outer surface of the axis of leaves previously infiltrated with PPO1, PPO2 and BBL2 Agrobacterium tumefaciens using a needleless 1-mL syringe. One day after Agrobacterium tumefaciens infiltration, 1 mL (E)-N-caffeoyl putrescine (500 μM) or cis-3-hexenal (1 mM) was infiltrated in EV plant leaves as a negative control. Leaf disks were harvested after one day, snap frozen and extracted for CPH metabolite profiling on LC-MS. Four CPH-accumulating broad bean or eggplant leaves were selected for Empoasca bioassay, and 25 adult leafhoppers were housed in 50-mL plastic containers (Huhtamaki) on each leaf previously infiltrated with Agrobacterium tumefaciens. Empoasca survival was recorded every 1 hour overnight.
实施例14Embodiment 14
UHPLC-ESI/gTOF-MS属性分析模式分析条件和MS/MS数据采集条件UHPLC-ESI/gTOF-MS attribute analysis mode analysis conditions and MS/MS data acquisition conditions
UHPLC-ESI/gTOF-MS属性分析模式分析条件和MS/MS数据采集条件:使用配备有UHPLC SecurityGuardTMULTRA筒(Phenomenex,目录号:AJO-8782)的Acclaim柱(150×2.1mm,颗粒尺寸2.2μm,ThermoFisher Scientific)进行分析。采用Dionex Ultimate3000UHPLC系统进行以下二元梯度:0至0.5min,等度90% A(去离子水,0.1%(v/v)乙腈和0.05%甲酸),10% B(乙腈和0.05%甲酸);0.5至23.5min,梯度阶段至10% A,90% B;23.5至25min,等度10% A,90% B。流速为400μL min-1。对于所有MS分析,将柱洗脱液注入Impact II或Compact(Bruker Daltonics,Bremen,德国)四极杆飞行时间(qTOF)质谱仪,该质谱仪配备以正电离模式运行的电喷雾源(毛细管电压4500V,毛细管出口130V,干燥温度200℃,干气流量为10L min-1)。 UHPLC-ESI/gTOF-MS attribute analysis mode analysis conditions and MS/MS data acquisition conditions : An Acclaim column (150×2.1 mm, particle size 2.2 μm, ThermoFisher Scientific) equipped with a UHPLC SecurityGuard ™ ULTRA cartridge (Phenomenex, catalog number: AJO-8782) was used for analysis. The following binary gradient was performed using a Dionex Ultimate3000 UHPLC system: 0 to 0.5 min, isocratic 90% A (deionized water, 0.1% (v/v) acetonitrile and 0.05% formic acid), 10% B (acetonitrile and 0.05% formic acid); 0.5 to 23.5 min, gradient step to 10% A, 90% B; 23.5 to 25 min, isocratic 10% A, 90% B. The flow rate was 400 μL min -1 . For all MS analyses, the column eluent was injected into an Impact II or Compact (Bruker Daltonics, Bremen, Germany) quadrupole time-of-flight (qTOF) mass spectrometer equipped with an electrospray source operated in positive ionization mode (capillary voltage 4500 V, capillary outlet 130 V, drying temperature 200 °C, dry gas flow 10 L min −1 ).
通过操作具有非常大的质量隔离窗口的四极杆来实现不加区分的MS/MS方式,这使得所有m/z信号都被视为片段。为此,用递增的CID碰撞能量值进行了几项独立分析,因为Impact II或Compact Bruker仪器都不能执行CE渐变。简而言之,首先通过UHPLC-ESI/qTOF-MS分析样品,其中使用单MS模式(来自源内片段的低碎裂条件),通过从m/z 50至1500扫描,重复率为5Hz。使用氮气作为碰撞气体进行无差别MS/MS分析,并包括在4个碰撞诱导的解离电压进行的独立测量:20、30、40和50eV。在整个测量过程中,四极杆以最大的质量隔离窗口运行,从m/z 50至1500。当将前体m/z和隔离宽度参数分别实验性地设置为200和0Da时,此质量范围通过仪器的操作软件自动活化。按照关于单MS模式描述的方式扫描质量片段。使用甲酸钠(50mL异丙醇,200μL甲酸,1mL 1M NaOH水溶液)进行质量校准。使用BrukerHPC(高精度校准)算法,根据在每次运行开始时校准段的平均波谱对数据文件进行运行后校准。使用数据分析v4.0软件(Bruker Daltonics,Bremen,德国)的导出功能将原始数据文件转换为netCDF格式。The indiscriminate MS/MS mode was achieved by operating the quadrupole with a very large mass isolation window, which made all m/z signals considered as fragments. To this end, several independent analyses were performed with increasing CID collision energy values, because neither Impact II nor Compact Bruker instruments could perform CE gradients. In brief, the sample was first analyzed by UHPLC-ESI/qTOF-MS, where a single MS mode (low fragmentation conditions from in-source fragments) was used, by scanning from m/z 50 to 1500 with a repetition rate of 5 Hz. Indiscriminate MS/MS analysis was performed using nitrogen as the collision gas, and included independent measurements at 4 collision-induced dissociation voltages: 20, 30, 40 and 50 eV. Throughout the measurement, the quadrupole was operated with the maximum mass isolation window, from m/z 50 to 1500. When the precursor m/z and isolation width parameters were experimentally set to 200 and 0 Da, respectively, this mass range was automatically activated by the instrument's operating software. Scan the mass fragments in the manner described for the single MS mode. Mass calibration was performed using sodium formate (50 mL isopropanol, 200 μL formic acid, 1 mL 1 M NaOH in water). Post-run calibration of the data files was performed using the Bruker HPC (High Precision Calibration) algorithm based on the average spectrum of the calibration segment at the beginning of each run. Raw data files were converted to netCDF format using the export function of the Data Analysis v4.0 software (Bruker Daltonics, Bremen, Germany).
IdMS/MS组装和相似性评分:进行数据无关的或无区别的MS/MS片段分析(此后被称作idMS/MS),以获得关于整体可检测的代谢属性的结构信息。通过对低和高碰撞能量以及新实施的规则的MS1和MS/MS质量信号之间的相关性分析,实现idMS/MS组装。使用R脚本实现了前体到产物分配的相关性分析,并使用C#脚本实现了规则(https://github.com/ MPI-DL/indiscriminant-MS-MS-assembly-pipeline)(Li等人,Sci Adv 6,eaaz0381(2020))。 IdMS/MS assembly and similarity scoring : Data-independent or indiscriminate MS/MS fragment analysis (hereinafter referred to as idMS/MS) is performed to obtain structural information about overall detectable metabolic properties. IdMS/MS assembly is achieved by correlation analysis between MS1 and MS/MS mass signals for low and high collision energies and newly implemented rules. Correlation analysis of precursor to product distribution is implemented using R scripts, and rules are implemented using C# scripts ( https://github.com/MPI-DL/indiscriminant-MS-MS-assembly-pipeline ) (Li et al . , Sci Adv 6, eaaz0381 (2020)).
对于MS/MS相似性评分,将idMS/MS波谱以成对方式对齐,并根据两个分数计算其相似性。首先,使用以下公式,使用标准的归一化的点积(NDP)(也被称作余弦相关法)对波谱之间的片段相似性进行评分:For MS/MS similarity scoring, idMS/MS spectra were aligned in pairs and their similarity was calculated based on two scores. First, the fragment similarity between spectra was scored using the standard normalized dot product (NDP), also known as the cosine correlation method, using the following formula:
其中S1和S2分别对应于波谱1和波谱2,并且WS1,i和WS2,i表示给予第i个公共峰的基于峰强度的权重,公共峰在两个波谱之间的差异小于0.01Da。where S1 and S2 correspond to spectrum 1 and spectrum 2, respectively, and W S1,i and W S2,i represent the peak intensity-based weights given to the ith common peak that differs less than 0.01 Da between the two spectra.
如下计算权重:The weights are calculated as follows:
W=[峰强度]m[质量]n其中m=0.5且n=2(Li等人,Sci Adv 6,eaaz0381(2020))。W = [peak intensity] m [mass] n where m = 0.5 and n = 2 (Li et al., Sci Adv 6, eaaz0381 (2020)).
实施了第二种评分方法,其涉及分析各个MS/MS之间的共享中性缺失。为此,我们使用了串联MS片段过程中经常遇到的52个中性缺失(NL)的列表,以及渐狭叶烟草次级代谢物类别的先前已经注释用于MS/MS波谱的更具体的中性缺失(Li等人,Sci Adv 6,eaaz0381(2020)),Li等人,Proc Natl Acad Sci U S A113,E7610-E7618,(2016),Li等人,ProcNatl Acad Sci U S A 112,E4147-E4155(2015))。为每个MS/MS创建1和0的二进制向量,分别对应于某个NL的存在和不存在。基于欧几里得距离相似性,计算每对二进制NL向量的NL相似性分数。Implemented the second scoring method, it relates to the shared neutral deletions between each MS/MS.For this reason, we used the list of 52 neutral deletions (NL) often encountered in the tandem MS fragment process, and the more specific neutral deletions (Li et al., Sci Adv 6, eaaz0381 (2020)) previously annotated for MS/MS spectra of the Nicotiana acuminate secondary metabolite class, Li et al., Proc Natl Acad Sci U S A 113, E7610-E7618, (2016), Li et al., Proc Natl Acad Sci U S A 112, E4147-E4155 (2015)). Create a binary vector of 1 and 0 for each MS/MS, corresponding to the presence and absence of a certain NL, respectively.Based on the Euclidean distance similarity, calculate the NL similarity score of every pair of binary NL vectors.
化合物特定的idMS/MS的组装规则:由于某些m/z特征仅在少数样品中检测到的事实,为了减少从背景噪音的虚假相关性产生假阳性错误,我们对比了使用和不使用XCMS的“填充峰”功能(用于背景噪音校正)获得的数据处理结果,并从该函数所使用的平均校正估计值计算背景噪音值,以替换未检测到的峰的“NA”强度值。当使用“填充峰”功能时,在数据集中仍会保留许多“0”强度值,这会影响相关性的计算,并且这些值会被计算出的背景值替代。我们还只考虑了其强度是背景值的3倍多的特征,并将这些视为“真峰”。对于PCC计算,仅考虑前体(MS1)和片段(MS/MS)数据集中具有至少八倍的“真峰”的m/z信号。Assembly rules for compound-specific idMS/MS: Due to the fact that some m/z features were detected in only a few samples, in order to reduce false positive errors arising from spurious correlations with background noise, we compared the data processing results obtained with and without the "Fill Peaks" function of XCMS (for background noise correction), and calculated background noise values from the average correction estimate used by this function to replace the "NA" intensity values of undetected peaks. When the "Fill Peaks" function was used, many "0" intensity values would still remain in the data set, which would affect the calculation of correlations, and these values would be replaced by the calculated background values. We also considered only features whose intensity was more than 3 times the background value and regarded these as "true peaks". For PCC calculations, only m/z signals with at least eight times "true peaks" in the precursor (MS1) and fragment (MS/MS) data sets were considered.
如果前体质量特征在样品中的强度与低或高碰撞能量下相同质量特征的强度降低显著相关,并且该特征未被CAMERA注释为同位素峰,则进一步定义该前体质量特征。然后通过计算3-s保留时间窗口内所有可能的前体到产物对进行相关性分析。只有当其m/z值低于前体的m/z值并且MS/MS片段出现在数据集中与其衍生自的前体相同的样品位置时,m/z值才被视为片段。A precursor mass feature was further defined if its intensity in the sample correlated significantly with the decreased intensity of the same mass feature at low or high collision energies and the feature was not annotated as an isotopic peak by CAMERA. Correlation analysis was then performed by calculating all possible precursor-to-product pairs within a 3-s retention time window. An m/z value was considered a fragment only if its m/z value was lower than that of the precursor and the MS/MS fragment appeared in the data set at the same sample position as the precursor from which it was derived.
在MS1模式下产生的许多源内生成片段的质量特征也可以选为候选前体,从而导致冗余化合物idMS/MS。为了减少这种数据冗余,如果波谱的NDP相似性超过0.6,并且它们属于CAMERA注释的同一色谱“pcgroup”,我们会合并波谱。最后,通过选择在不同碰撞能量下具有相同m/z值的所有候选峰中的最高强度峰,将用于前体与片段关联的4种碰撞能量的所有结果合并到最终的解卷积复合波谱中。Many mass features of in-source generated fragments produced in MS1 mode can also be selected as candidate precursors, leading to redundant compound idMS/MS. To reduce this data redundancy, we merged spectra if their NDP similarity exceeded 0.6 and they belonged to the same chromatogram “pcgroup” annotated by CAMERA. Finally, all results from the 4 collision energies used for precursor-to-fragment association were merged into the final deconvoluted composite spectrum by selecting the highest intensity peak among all candidate peaks with the same m/z value at different collision energies.
实施例15Embodiment 15
通过双聚类进行MS/MS分子网络分析MS/MS molecular network analysis by biclustering
通过双聚类进行MS/MS分子网络分析:为了进行聚类,使用了R包DiffCoEx,它是加权基因共表达分析(WGCNA)的扩展。使用MS/MS波谱的NDP和NL评分矩阵,用DiffCoEx计算对比相关矩阵,其中将“cu-treeDynamic”的参数设置为method="hybrid",cutHeight=0.9999,deepSplit=3,minClusterSize=10。DiffCoEx的R源代码从Tesson等人,BMCbioinformatics 11,1-9(2010)中的附加文件1下载,所需的R WGCNA包可以在https:// horvath.genetics.ucla.edu/html/CoexpressionNetwork/Rpackages/WGCNA/(2021年12月21日访问)找到。 MS/MS molecular network analysis by biclustering : For clustering, the R package DiffCoEx was used, which is an extension of weighted gene co-expression analysis (WGCNA). Using the NDP and NL score matrices of the MS/MS spectra, the contrast correlation matrix was calculated with DiffCoEx, where the parameters of "cu-treeDynamic" were set to method = "hybrid", cutHeight = 0.9999, deepSplit = 3, minClusterSize = 10. The R source code of DiffCoEx was downloaded from Additional file 1 in Tesson et al., BMC bioinformatics 11, 1-9 (2010), and the required R WGCNA package can be found at https://horvath.genetics.ucla.edu/html/CoexpressionNetwork/Rpackages/WGCNA/ (accessed on December 21 , 2021).
代谢组多样性和特化以及代谢特异性的基于信息论的计算Information-theoretic computation of metabolome diversity and specialization and metabolic specificity
使用MS/MS频率分布的香农(Shannon)熵,通过Martinez等人,Proc Natl AcadSci USA 105,9709-9714(2008)描述的以下方程式,计算代谢组多样性:Metabolome diversity was calculated using the Shannon entropy of the MS/MS frequency distribution by the following equation described by Martinez et al., Proc Natl Acad Sci USA 105, 9709-9714 (2008):
其中Pij对应于第j个样品(j=1,2,...,t)中的第i个MS/MS(i=1,2,...,m)的相对频率。where Pij corresponds to the relative frequency of the i-th MS/MS (i=1, 2, ..., m) in the j-th sample (j=1, 2, ..., t).
样品中第i个MS/MS的平均频率计算为:The average frequency of the i-th MS/MS in the sample is calculated as:
MS/MS特异性计算为:MS/MS specificity is calculated as:
使用以下公式计算每个样品j的代谢组特化指数δj,其为MS/MS特异性的平均值:The metabolome specialization index δj for each sample j was calculated as the average of the MS/MS specificities using the following formula:
选择15个RIL进行idMS/MS分析:根据以下两个标准选择15个RIL:1)在MAGIC群体中诱导最高酚酰胺水平的那些,尤其是对于含腐胺的代谢物;2)产生多组已知酚酰胺以及由典型酚酰胺片段组成的未知物(例如,具有异常保留时间的m/z 163.04)的那些,如从酚酰胺的先前注释以及对源内或MS/MS片段的手动检查所评估的。 Selection of 15 RILs for idMS/MS analysis : Fifteen RILs were selected based on the following two criteria: 1) those that induced the highest phenolamide levels in the MAGIC population, especially for putrescine-containing metabolites; and 2) those that produced multiple sets of known phenolamides as well as unknowns consisting of typical phenolamide fragments (e.g., m/z 163.04 with an anomalous retention time), as assessed from previous annotation of phenolamides and manual inspection of in-source or MS/MS fragments.
实施例16Example 16
异源表达和纯化Heterologous expression and purification
NaPPO1、NaPPo2和NaBBL2的异源表达和纯化:将50ng的pET28a:NaPPO1、pET28a:NaPPO2和pET28a:NaBBL2质粒通过在42℃水浴中热休克90秒转化到RosettaTM(DE3)感受态细胞(Sigma-Aldrich,目录号:70954)中。将转化体在含有50μg mL-1卡那霉素的LB琼脂板上在37℃培养。将5个独立菌落接种进20mL含有50μg mL-1卡那霉素的LB培养基中,并在37℃培养16小时。将选定的过夜培养物接种进500mL含有50μg mL-1卡那霉素的LB液体培养基中,并在37℃培养至OD600=0.4,在此时在冰上冷却培养物10分钟。加入异丙基β-d-1-硫代吡喃半乳糖苷(IPTG),达到终浓度为1mM。在16℃和160rpm摇床转速下孵化12小时后,在4℃以5000x g离心10分钟以收集细胞。弃去上清液,并将沉淀物重新悬浮在9mL提取/裂解缓冲液(50mM磷酸钠(pH 8.0),500mM NaCl,10mM咪唑,溶菌酶(ThermoFisher,目录号:89833),cOmpleteTM蛋白酶抑制剂混合液(Merck,目录号:11697498001))中,在冰上冷却1小时,然后在冰上通过声处理破碎。将所得匀浆物在4℃以15,000rpm离心30分钟。将上清液与用10mL裂解缓冲液预平衡的1mL的Ni-NTA琼脂糖树脂(Qiagen,目录号:70666-4)一起在4℃在旋转器上孵化2小时。将浆在Poly-色谱柱(BIO-RAD,目录号:7311550)上运行,并用含有从40mM至500mM的递增咪唑浓度的洗涤缓冲液洗脱蛋白。通过SDS-PAGE凝胶分析确认含有纯化的蛋白的级分。在Tecan Infinite M200平板读数器上进行蛋白浓度的Bradford测量。通过测量0、10、20、40、60、80、100μg/mL的牛血清白蛋白(BSA),在595nm处测量吸光度,光程为0.5cm,构建了用于蛋白浓度定量的校准曲线。使用标准曲线(y=0.0024x+0.4558,R2=0.99)计算蛋白浓度。 Heterologous expression and purification of NaPPO1, NaPPo2 and NaBBL2 : 50ng of pET28a:NaPPO1, pET28a:NaPPO2 and pET28a:NaBBL2 plasmids were transformed into Rosetta TM (DE3) competent cells (Sigma-Aldrich, catalog number: 70954) by heat shock in a 42°C water bath for 90 seconds. The transformants were cultured at 37°C on LB agar plates containing 50μg mL -1 kanamycin. Five independent colonies were inoculated into 20mL LB medium containing 50μg mL -1 kanamycin and cultured at 37°C for 16 hours. The selected overnight culture was inoculated into 500mL LB liquid medium containing 50μg mL -1 kanamycin and cultured at 37°C to OD 600 =0.4, at which time the culture was cooled on ice for 10 minutes. Isopropyl β-d-1-thiogalactopyranoside (IPTG) was added to a final concentration of 1 mM. After incubation at 16°C and 160 rpm shaker speed for 12 hours, the cells were collected by centrifugation at 5000 x g for 10 minutes at 4°C. The supernatant was discarded and the pellet was resuspended in 9 mL of extraction/lysis buffer (50 mM sodium phosphate (pH 8.0), 500 mM NaCl, 10 mM imidazole, lysozyme (ThermoFisher, catalog number: 89833), cOmplete TM protease inhibitor cocktail (Merck, catalog number: 11697498001)), cooled on ice for 1 hour, and then disrupted by sonication on ice. The resulting homogenate was centrifuged at 15,000 rpm for 30 minutes at 4°C. The supernatant was incubated with 1 mL of Ni-NTA agarose resin (Qiagen, catalog number: 70666-4) pre-equilibrated with 10 mL of lysis buffer at 4°C on a rotator for 2 hours. The protein was eluted with a wash buffer containing increasing imidazole concentrations from 40 mM to 500 mM. The fractions containing the purified protein were confirmed by SDS-PAGE gel analysis. Bradford measurements of protein concentration were performed on a Tecan Infinite M200 plate reader. A calibration curve for protein concentration quantification was constructed by measuring 0, 10, 20, 40, 60, 80, 100 μg/mL of bovine serum albumin (BSA) at 595 nm with an optical path of 0.5 cm. Protein concentration was calculated using a standard curve (y = 0.0024x + 0.4558, R 2 = 0.99).
NaPPO1、NaPPo2和NaBBL2酶的稳态动力学:为了稳态动力学分析,在22℃水浴中在84mM乙酸盐缓冲液(pH 4.8)中测试氧化N-咖啡酰基腐胺的能力,所述缓冲液含有1mM(Z)-3-己醛、1mM FAD、32μg NaPPO1/NaPPO2、30μg/90μg NaBBL2(总体积100μL);缺乏NaBBL2酶的测定作为阴性对照。以下八个N-咖啡酰基腐胺终浓度分别在三个独立实验中进行了测试:10、20、40、60、80、120、140和160μM。同样,在22℃在84mM乙酸盐缓冲液(pH 4.8)中测试了催化(Z)-3-己醛的能力,所述缓冲液含有80μM N-咖啡酰基腐胺、1mM FAD、32μg NaPPO1/NaPPO2、30μg/90μg NaBBL2(总体积100μL);缺乏NaBBL2酶的测定再次作为阴性对照。以下八个(Z)-3-己醛终浓度分别在三个独立实验中进行了试验:500、600、700、800、1000、1200、1600和2000μM。通过添加相应的重组酶来启动反应,并通过短暂涡旋将组分混合,并立即返回22℃水浴进行孵化。20分钟后,将所有反应物短暂涡旋,并将每个反应物的100μL等分试样转移到含有100μL的MeOH(以600ng/mL睾酮为内部标准品)的冷埃彭道夫管(-20℃)中以终止酶活性。将样品在16,000g、4℃离心30分钟,并将150μL上清液转移进2mL玻璃瓶中,按照与之前描述的相同方法进行LC/MS(1μL注射体积)分析。使用真实标准品(以600ng/mL睾酮作为内部标准品)的咖啡酰基腐胺的标准曲线(图34)被用于计算每个测定样品中底物和产物的浓度。使用GraphPad Prism 9中的非线性回归推断出咖啡酰基腐胺和(Z)-3-己醛的动力学常数:表观Km和Vmax(图34)。 Steady-state kinetics of NaPPO1, NaPPo2 and NaBBL2 enzymes : For steady-state kinetic analysis, the ability to oxidize N-caffeoyl putrescine was tested in 84 mM acetate buffer (pH 4.8) containing 1 mM (Z)-3-hexanal, 1 mM FAD, 32 μg NaPPO1/NaPPO2, 30 μg/90 μg NaBBL2 (total volume 100 μL) in a 22°C water bath; the assay lacking NaBBL2 enzyme served as a negative control. The following eight final concentrations of N-caffeoyl putrescine were tested in three independent experiments: 10, 20, 40, 60, 80, 120, 140 and 160 μM. Similarly, the ability to catalyze (Z)-3-hexanal was tested at 22°C in 84 mM acetate buffer (pH 4.8) containing 80 μM N-caffeoylputrescine, 1 mM FAD, 32 μg NaPPO1/NaPPO2, 30 μg/90 μg NaBBL2 (total volume 100 μL); the assay lacking the NaBBL2 enzyme was again used as a negative control. The following eight (Z)-3-hexanal final concentrations were tested in three independent experiments: 500, 600, 700, 800, 1000, 1200, 1600 and 2000 μM. The reaction was initiated by adding the corresponding recombinant enzyme, and the components were mixed by briefly vortexing and immediately returned to a 22°C water bath for incubation. After 20 minutes, all reactions were vortexed briefly and 100 μL aliquots of each reaction were transferred to cold Eppendorf tubes (-20°C) containing 100 μL of MeOH (with 600 ng/mL testosterone as internal standard) to stop enzyme activity. The samples were centrifuged at 16,000 g, 4°C for 30 minutes, and 150 μL of the supernatant was transferred to a 2 mL glass bottle for LC/MS (1 μL injection volume) analysis in the same manner as described previously. A standard curve (Figure 34) of caffeoyl putrescine using an authentic standard (with 600 ng/mL testosterone as internal standard) was used to calculate the concentration of substrate and product in each assay sample. The kinetic constants for caffeoyl putrescine and (Z)-3-hexanal were inferred using nonlinear regression in GraphPad Prism 9: apparent Km and Vmax (Figure 34).
实施例17Embodiment 17
体外测定以及CHP的制备和纯化In vitro assays and preparation and purification of CHP
NaPPO1、NaPPO2和NaBBL2的体外测定:通过将100μg纯化的重组蛋白在含有20mM(E)-N-咖啡酰基腐胺(BOC Sciences,目录号:B0005-053482)和1M顺式-3-己烯醛(Sigma,目录号:W256102-样品-K)或反式-2-己烯醛(Sigma,目录号:W256005-1KG-K)的84mM乙酸盐缓冲液(pH 4.8)中孵化,进行NaPPO1、NaPPO2和NaBBL2酶活性测定。在8℃孵化酶反应物的过程中,每小时直接注入1μL反应缓冲液并通过LC-MS进行分析以检测产物。缺乏酶或(E)-N-咖啡酰基腐胺的测定作为阴性对照。 In vitro assays for NaPPO1, NaPPO2, and NaBBL2: NaPPO1, NaPPO2, and NaBBL2 enzyme activity assays were performed by incubating 100 μg of purified recombinant protein in 84 mM acetate buffer (pH 4.8) containing 20 mM (E)-N-caffeoylputrescine (BOC Sciences, catalog number: B0005-053482) and 1 M cis-3-hexenal (Sigma, catalog number: W256102-sample-K) or trans-2-hexenal (Sigma, catalog number: W256005-1KG-K). During the incubation of the enzyme reactions at 8°C, 1 μL of the reaction buffer was directly injected every hour and analyzed by LC-MS to detect the products. Assays lacking enzyme or (E)-N-caffeoylputrescine served as negative controls.
CHP的制备和纯化:将100μg纯化的重组蛋白在含有(E)-N-咖啡酰基腐胺和1M顺式-3-己烯醛的84mM乙酸盐缓冲液(pH 4.8)中在8℃孵化2天,进行3mL酶反应,合并10次重复。为了除去盐,将30mL酶反应物加载到SPE柱(CHROMABOND HR-X,45μm,3mL/200mg,Macherey-Nagel,目录号:730931P45)上。使用氩气干燥SPE柱。使用3mL的100%甲醇从SPE柱洗脱化合物混合物。在配备Nucleodur Sphinx RP18柱(150×4.6mm,5μm粒径,Macherey-Nagel,德国)的Agilent 1100HPLC系统上进行进一步分级分离。应用以下二元流动相梯度:0至30分钟,梯度阶段从70% A(含0.05%甲酸的Milli-Q水)、30% B(含0.05%甲酸的MeOH)至50% A、50% B;30至35分钟,梯度阶段从50% A、50% B至100% B;30至35分钟,在100% B等度。流速为900μL min-1。在整个分级分离程序中收集级分,收集窗口为1分钟;通过LC-MS检查每个级分。将含有靶分子的级分汇集,用5倍量的水稀释,并加载到SPE柱(CHROMABOND HR-X,45μm,3mL/200mg)上。用氩气干燥后,用700μL含0.05%甲酸的MeOH-d3洗脱SPE柱。立即对洗脱液进行NMR分析。Preparation and purification of CHP: 100 μg of purified recombinant protein was incubated at 8 ° C for 2 days in 84 mM acetate buffer (pH 4.8) containing (E)-N-caffeoyl putrescine and 1 M cis-3-hexenal, 3 mL enzyme reaction was performed, and 10 repetitions were combined. In order to remove salt, 30 mL enzyme reaction was loaded onto an SPE column (CHROMABOND HR-X, 45 μm, 3 mL/200 mg, Macherey-Nagel, catalog number: 730931P45). The SPE column was dried using argon. 3 mL of 100% methanol was used to elute the compound mixture from the SPE column. Further fractionation was performed on an Agilent 1100HPLC system equipped with a Nucleodur Sphinx RP18 column (150 × 4.6 mm, 5 μm particle size, Macherey-Nagel, Germany). The following binary mobile phase gradient was applied: 0 to 30 min, gradient step from 70% A (Milli-Q water with 0.05% formic acid), 30% B (MeOH with 0.05% formic acid) to 50% A, 50% B; 30 to 35 min, gradient step from 50% A, 50% B to 100% B; 30 to 35 min, isocratic at 100% B. The flow rate was 900 μL min -1 . Fractions were collected throughout the fractionation procedure with a collection window of 1 min; each fraction was checked by LC-MS. Fractions containing the target molecule were pooled, diluted with 5-fold amount of water, and loaded onto an SPE column (CHROMABOND HR-X, 45 μm, 3 mL/200 mg). After drying with argon, the SPE column was eluted with 700 μL of MeOH-d 3 containing 0.05% formic acid. The eluate was immediately subjected to NMR analysis.
实施例18Embodiment 18
小绿叶蝉进食测定Green leafhopper feeding assay
小绿叶蝉进食测定:每1小时记录以人工饮食(10%蔗糖水溶液)进食的小绿叶蝉的存活率过夜,所述人工饮食补充了咖啡酰基腐胺(CP,100μM)、香豆酰基腐胺(CoP,7μM)、阿魏酰基腐胺(FP,10μM)或CP的m/z 347.19己烯基衍生物(CPH,1μM)。人工饲喂装置由一根50-mL的Falcon管组成,该管的圆锥形底部钻有一个7-mm孔,叶蝉通过该孔被吸入管中,然后将该孔用石蜡膜覆盖,并用针刺破以形成通风孔。Falcon管的大开口被双层石蜡膜覆盖,其装有液体饮食(100μL)。将人工饲喂装置倒置,液体饮食侧朝下,放在提供底部光照明的白光灯箱(STRATAGENE)上。 Green leafhopper feeding assay : Survival of green leafhoppers fed on an artificial diet (10% sucrose in water) supplemented with caffeoylputrescine (CP, 100 μM), coumaroylputrescine (CoP, 7 μM), feruloylputrescine (FP, 10 μM), or the m/z 347.19 hexenyl derivative of CP (CPH, 1 μM) was recorded every 1 h overnight. The artificial feeding apparatus consisted of a 50-mL Falcon tube with a 7-mm hole drilled in the conical bottom through which leafhoppers were aspirated into the tube, which was then covered with parafilm and punctured with a needle to create ventilation holes. The large opening of the Falcon tube was covered with a double layer of parafilm, which contained liquid diet (100 μL). The artificial feeding apparatus was inverted, with the liquid diet side facing down, on a white light box (STRATAGENE) that provided bottom-light illumination.
实施例19Embodiment 19
系统发育分析和统计分析Phylogenetic and statistical analyses
系统发育分析:使用来自NCBI的Taxonomy Common Tree工具构建不同物种的系统发育树。简而言之,将物种分类学名称上传到Taxonomy Common Tree以生成所选生物组的分类树。分类树被保存为phylip树文件(phy格式)。使用R包“treeio”将系统树可视化。 Phylogenetic analysis : Phylogenetic trees of different species were constructed using the Taxonomy Common Tree tool from NCBI. In brief, the species taxonomic names were uploaded to the Taxonomy Common Tree to generate a taxonomic tree for the selected biological group. The taxonomic tree was saved as a phylip tree file (phy format). The phylogenetic tree was visualized using the R package “treeio”.
统计分析:使用R对数据进行统计分析。使用方差分析(ANOVA)评价多组(≥3)数据之间的统计显著性,然后进行Tukey真实显著差异(HSD)事后检验。为了分析两组数据之间的差异,使用Studentt试验,对具有相等方差的两组样品的双尾分布进行分析。对于小绿叶蝉选择测定测试,在方差分析中包括一个阻断项以解决单独重复中的对比,并使用Freidman检验,然后进行Wilcoxon事后检验。 Statistical analysis : Data were statistically analyzed using R. Statistical significance between multiple groups (≥3) of data was evaluated using analysis of variance (ANOVA), followed by Tukey's honestly significant difference (HSD) post hoc test. To analyze differences between two groups of data, two-tailed distributions of two groups of samples with equal variance were analyzed using Student's t test. For the green leafhopper choice assay test, a blocking term was included in the ANOVA to resolve contrasts in separate replicates, and the Freidman test was used, followed by a Wilcoxon post hoc test.
实施例20Embodiment 20
NMR和化学物质NMR and Chemicals
NMR:在配备低温平台和5mm TCI冷冻探针的500MHz Bruker Avance III HD波谱仪(Bruker Biospin GmbH,Rheinstetten,德国)上在298K记录NMR波谱。该波谱参考在δC49.15和δH 3.31处的残余溶剂信号。对于波谱仪控制和数据处理,使用了Bruker TopSpinver.3.2。使用了在Bruker TopSpin中实施的标准脉冲程序。 NMR : NMR spectra were recorded at 298K on a 500MHz Bruker Avance III HD spectrometer (Bruker Biospin GmbH, Rheinstetten, Germany) equipped with a cryogenic platform and a 5mm TCI cryoprobe. The spectra were referenced to residual solvent signals at δ C 49.15 and δ H 3.31. For spectrometer control and data processing, Bruker TopSpin ver. 3.2 was used. Standard pulse programs implemented in Bruker TopSpin were used.
化学物质:N-咖啡酰基腐胺购自BOC Sciences,Shirley,NY,USA。按之前描述的方式进行N-香豆酰基腐胺和N-阿魏酰基腐胺的合成(Kyselka等人,J Agric Food Chem 66,11018-11026(2018)。通过LC-MS测定化合物的纯度。 Chemicals : N-caffeoylputrescine was purchased from BOC Sciences, Shirley, NY, USA. The synthesis of N-coumaroylputrescine and N-feruloylputrescine was performed as previously described (Kyselka et al., J Agric Food Chem 66, 11018-11026 (2018). The purity of the compounds was determined by LC-MS.
实施例21Embodiment 21
BBL2在CHP的生物合成中的作用,但并非在体外Role of BBL2 in CHP biosynthesis in vitro but not in vivo
研究发现,NaBBL2虽然不是体外合成所必需的,但却是体内CPH生物合成所必需的。虽然认为NaBBL2在解决定位挑战方面发挥作用,但其具有其它可能的解决方案。例如,在应激诱导的自噬过程中,质体及其内容物会定期转移到液泡中(Izumi等人,Plant Cell29,377-394(2017)),并且如果PPO的生化功能在运输到液泡之后仍然有效,那么CPH生物合成所需的组分就全部存在于同一细胞器中(图60)。Studies have found that although NaBBL2 is not necessary for in vitro synthesis, it is necessary for CPH biosynthesis in vivo. Although it is believed that NaBBL2 plays a role in solving positioning challenges, it has other possible solutions. For example, during stress-induced autophagy, plastids and their contents are regularly transferred to vacuoles (Izumi et al., Plant Cell 29, 377-394 (2017)), and if the biochemical function of PPO is still effective after transport to the vacuole, then the components required for CPH biosynthesis are all present in the same organelle (Figure 60).
BBE-样蛋白家族的大多数成员含有双共价连接的FAD辅因子,并且FAD辅因子与BBL蛋白的物理结合通过特定的His和Cys残基而发生(Daniel等人,Arch Biochem Biophys632,88-103(2017),Winkler等人,J Biol Chem 281,21276-21285(2006))。研究发现,NaBBL2缺少参与FAD辅因子的共价结合的Cys残基;在底物结合位点处BBL2的C至G突变意味着NaBBL2在渐狭叶烟草植物中的不同生化功能(图61)。Most members of the BBE-like protein family contain a double covalently linked FAD cofactor, and the physical binding of the FAD cofactor to the BBL protein occurs through specific His and Cys residues (Daniel et al., Arch Biochem Biophys 632, 88-103 (2017), Winkler et al., J Biol Chem 281, 21276-21285 (2006)). Studies have found that NaBBL2 lacks the Cys residue involved in the covalent binding of the FAD cofactor; the C to G mutation of BBL2 at the substrate binding site implies different biochemical functions of NaBBL2 in Nicotiana attenuata plants (Figure 61).
有人提出,BBL2可能在渐狭叶烟草CPH途径中作为一种非催化蛋白发挥作用,就像之前报道的在类黄酮代谢中的非催化查耳酮异构酶类(CHIL)一样(Ban等人,PNatl AcadSci USA115,E5223-E5232(2018))。在这种情况下,BBL2可以与反应性PPO激活的CP相互作用,使其在细胞环境中稳定并避免转化为不可与(Z)-3-己烯醛反应形成CPH的副产物。因此,BBL2可以允许底物在活性酶之间更有效地传导。许多参与特异性代谢的途径被认为是在蛋白复合物或代谢物中提供。代谢物促进不稳定的和有毒的中间体的传导,并增加局部底物浓度,防止不希望的代谢串扰(Laursen等人,Science,354,890-893(2016);Gou等人,Nature Plants 4,299-310(2018))。这样的动态组装和拆卸允许代谢特征的快速重组,以应对环境挑战,并且被认为涉及支架蛋白(等人,Current opinion in plantbiology 8,280-291(2005))。由于观察到CPH在田间生长的植物中被高度诱导,因此对BBL2有贡献的支架功能可能允许代谢物通道反应中间体的动态组装和拆卸,并使朝向CPH制备的催化效率最大化。与这样的机制一致,观察到,只有当局部CP浓度超过50μM时,在植物中才会形成CPH。在体外CPH测定中,可能的BBL2依赖性稳定/传导的缺乏可能不是什么大问题,因为(Z)-3-己烯醛可直接接近PPO酶。但是,当在体内只有小部分的(Z)-3-己烯醛可接近PPO催化的CP微环境时,BBL2的稳定/传导对于有效制备CPH来说更为关键。It has been suggested that BBL2 may play a role as a non-catalytic protein in the CPH pathway of Nicotiana attenuata, just like the non-catalytic chalcone isomerase (CHIL) in flavonoid metabolism reported previously (Ban et al., PNatl AcadSci USA115, E5223-E5232 (2018)). In this case, BBL2 can interact with the CP activated by the reactive PPO, making it stable in the cell environment and avoiding conversion into a byproduct that cannot react with (Z)-3-hexenal to form CPH. Therefore, BBL2 can allow substrates to be more effectively conducted between active enzymes. Many pathways involved in specific metabolism are considered to be provided in protein complexes or metabolites. Metabolites promote the conduction of unstable and toxic intermediates and increase local substrate concentrations to prevent undesirable metabolic crosstalk (Laursen et al., Science, 354, 890-893 (2016); Gou et al., Nature Plants 4, 299-310 (2018)). Such dynamic assembly and disassembly allows for rapid reconfiguration of metabolic signatures in response to environmental challenges and is thought to involve scaffold proteins ( et al., Current opinion in plant biology 8, 280-291 (2005)). Since CPH was observed to be highly induced in field-grown plants, the scaffolding function that contributes to BBL2 may allow for the dynamic assembly and disassembly of metabolite channel reaction intermediates and maximize the catalytic efficiency toward CPH production. Consistent with such a mechanism, it was observed that CPH was formed in plants only when the local CP concentration exceeded 50 μM. In the in vitro CPH assay, the lack of possible BBL2-dependent stabilization/conduction may not be a big problem because (Z)-3-hexenal can directly access the PPO enzyme. However, when only a small portion of (Z)-3-hexenal is accessible to the CP microenvironment of PPO catalysis in vivo, the stabilization/conduction of BBL2 is more critical for the efficient production of CPH.
实施例22Example 22
表surface
表1.在样品提取和纯化过程中m/z 347.19的稳定性Table 1. Stability of m/z 347.19 during sample extraction and purification
表2.PPO1、PPO2和BBL2对咖啡酰基腐胺和(Z)-3-己烯醛的Michaelis-Menten动力学Table 2. Michaelis-Menten kinetics of PPO1, PPO2 and BBL2 for caffeoylputrescine and (Z)-3-hexenal
注意.计算的Vmax值以[μM mg-1min-1]为单位给出。Km值以[μM]为单位给出。值是平均值±SEMNote. Calculated Vmax values are given in [μM mg -1 min -1 ]. Km values are given in [μM]. Values are mean ± SEM
表3.在实施例中使用的寡核苷酸的列表Table 3. List of oligonucleotides used in the examples
Claims (42)
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US202163293193P | 2021-12-23 | 2021-12-23 | |
EP21217268.8 | 2021-12-23 | ||
US63/293,193 | 2021-12-23 | ||
PCT/EP2022/087443 WO2023118418A1 (en) | 2021-12-23 | 2022-12-22 | A novel glv-phenolamide: biosynthesis and function in protecting plants from herbivore attack |
Publications (1)
Publication Number | Publication Date |
---|---|
CN118414082A true CN118414082A (en) | 2024-07-30 |
Family
ID=92032813
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202280084827.8A Pending CN118414082A (en) | 2021-12-23 | 2022-12-22 | A novel GLV-phenolamide: biosynthesis and function in protecting plants from herbivores |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN118414082A (en) |
-
2022
- 2022-12-22 CN CN202280084827.8A patent/CN118414082A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Liu et al. | Identification and fine mapping of a thermo-sensitive chlorophyll deficient mutant in rice (Oryza sativa L.) | |
KR102012531B1 (en) | Threonine synthase from nicotiana tabacum and methods and uses thereof | |
KR101965019B1 (en) | Modulating beta-damascenone in plants | |
US9096863B2 (en) | Biosynthetic engineering of glucosinolates | |
KR20170002444A (en) | Reduction of nicotine to nornicotine conversion in plants | |
MX2013002504A (en) | Heavy metal reduction in planta. | |
Calgaro-Kozina et al. | Engineering plant synthetic pathways for the biosynthesis of novel antifungals | |
JP2016508032A (en) | Reduction of tobacco-specific nitrosamines in plants. | |
US20210324404A1 (en) | Herbicide tolerance protein, encoding gene thereof and use thereof | |
CN103958673A (en) | Isopropylmalate synthase from nicotiana tabacum and methods and uses thereof | |
Jiang et al. | Genomic, transcriptomic, and metabolomic analyses reveal convergent evolution of oxime biosynthesis in Darwin’s orchid | |
Ovcharenko et al. | Modern approaches to genetic engineering in the Orchidaceae family | |
JP4863602B2 (en) | Plant system for comprehensive gene function analysis using full-length cDNA | |
US11319552B2 (en) | Methods for improving transformation frequency | |
CN118414082A (en) | A novel GLV-phenolamide: biosynthesis and function in protecting plants from herbivores | |
US12188029B2 (en) | Method for the transient expression of nucleic acids in plants | |
US20250051266A1 (en) | Novel GLV-Phenolamide: Biosynthesis and Function in Protecting Plants from Herbivore Attack | |
US7312323B2 (en) | Enzymes and polynucleotides encoding the same | |
Tian et al. | Cloning and functional characterisation of carotenoid cleavage dioxygenase 4 from wolfberry | |
Koleva et al. | Amino acid substrate specificities and tissue expression profiles of the nine CYP79A encoding genes in Sorghum bicolor | |
KR101231142B1 (en) | Composition for promoting flowering comprising IDS gene | |
WO2010049506A2 (en) | Polynucleotides encoding caryophyllene synthase and uses thereof | |
Borowiec | Molecular and evolutionary study of chromosomal gene clusters active during male reproductive development in Arabidopsis thaliana | |
Xi et al. | OfWRKY33 binds to the key linalool synthase gene OfTPS7 to promote linalool synthesis in Osmanthus fragrans flowers | |
Juan et al. | Cotton genomics and biotechnology |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |