CN118412273A - A method for preparing a gate of a GaN HEMT device, a gate and a GaN HEMT device - Google Patents
A method for preparing a gate of a GaN HEMT device, a gate and a GaN HEMT device Download PDFInfo
- Publication number
- CN118412273A CN118412273A CN202410881012.3A CN202410881012A CN118412273A CN 118412273 A CN118412273 A CN 118412273A CN 202410881012 A CN202410881012 A CN 202410881012A CN 118412273 A CN118412273 A CN 118412273A
- Authority
- CN
- China
- Prior art keywords
- layer
- dielectric layer
- gate
- metal
- metal layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D64/00—Electrodes of devices having potential barriers
- H10D64/01—Manufacture or treatment
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/40—FETs having zero-dimensional [0D], one-dimensional [1D] or two-dimensional [2D] charge carrier gas channels
- H10D30/47—FETs having zero-dimensional [0D], one-dimensional [1D] or two-dimensional [2D] charge carrier gas channels having 2D charge carrier gas channels, e.g. nanoribbon FETs or high electron mobility transistors [HEMT]
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D64/00—Electrodes of devices having potential barriers
- H10D64/20—Electrodes characterised by their shapes, relative sizes or dispositions
- H10D64/27—Electrodes not carrying the current to be rectified, amplified, oscillated or switched, e.g. gates
- H10D64/311—Gate electrodes for field-effect devices
- H10D64/411—Gate electrodes for field-effect devices for FETs
- H10D64/511—Gate electrodes for field-effect devices for FETs for IGFETs
- H10D64/512—Disposition of the gate electrodes, e.g. buried gates
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D64/00—Electrodes of devices having potential barriers
- H10D64/20—Electrodes characterised by their shapes, relative sizes or dispositions
- H10D64/27—Electrodes not carrying the current to be rectified, amplified, oscillated or switched, e.g. gates
- H10D64/311—Gate electrodes for field-effect devices
- H10D64/411—Gate electrodes for field-effect devices for FETs
- H10D64/511—Gate electrodes for field-effect devices for FETs for IGFETs
- H10D64/514—Gate electrodes for field-effect devices for FETs for IGFETs characterised by the insulating layers
Landscapes
- Junction Field-Effect Transistors (AREA)
Abstract
Description
技术领域Technical Field
本发明属于集成电路技术领域,具体涉及一种GaN HEMT器件的栅极制备方法、栅极以及GaN HEMT器件。The present invention belongs to the technical field of integrated circuits, and in particular relates to a method for preparing a gate of a GaN HEMT device, a gate and a GaN HEMT device.
背景技术Background technique
传统GaN HEMT(高电子迁移率晶体管)工艺制造过程中需一般采用SiN 表面钝化技术以降低表面态密度,抑制电流崩塌。而Ft(截止频率)与栅源电容和栅漏电容有直接关系,在栅长确定的条件下,栅帽下方如果采用SiN,会导致栅源或栅漏电容较大,导致Ft较小,从而使得器件应用频率场景有限。In the manufacturing process of traditional GaN HEMT (high electron mobility transistor), SiN surface passivation technology is generally used to reduce the surface state density and suppress current collapse. Ft (cut-off frequency) is directly related to the gate-source capacitance and gate-drain capacitance. Under the condition of a certain gate length, if SiN is used under the gate cap, the gate-source or gate-drain capacitance will be large, resulting in a small Ft, which limits the application frequency scenario of the device.
发明内容Summary of the invention
本发明的目的是提供一种GaN HEMT器件的栅极制备方法、栅极以及GaN HEMT器件,能够在抑制电流崩塌的同时,提高器件的Ft,从而提高器件的应用频率。The object of the present invention is to provide a method for preparing a gate of a GaN HEMT device, a gate and a GaN HEMT device, which can improve the Ft of the device while suppressing current collapse, thereby increasing the application frequency of the device.
为了实现上述目的,本发明的一个方面提供一种GaN HEMT器件的栅极制备方法,包括:In order to achieve the above object, one aspect of the present invention provides a method for preparing a gate of a GaN HEMT device, comprising:
步骤S1,在衬底上形成GaN外延层,在GaN外延层上沉积第一介质层;Step S1, forming a GaN epitaxial layer on a substrate, and depositing a first dielectric layer on the GaN epitaxial layer;
步骤S2,在第一介质层上通过溅射工艺形成第一金属层;Step S2, forming a first metal layer on the first dielectric layer by a sputtering process;
步骤S3,在要形成栅极金属结构的位置处对第一金属层和第一介质层进行开孔蚀刻,去除该位置处的第一金属层和第一介质层,形成大窗口结构,露出该位置处的GaN外延层;Step S3, performing hole etching on the first metal layer and the first dielectric layer at the position where the gate metal structure is to be formed, removing the first metal layer and the first dielectric layer at the position to form a large window structure, exposing the GaN epitaxial layer at the position;
步骤S4,在第一金属层以及露出的GaN外延层上沉积第二介质层,所述第二介质层采用低介电常数材料;Step S4, depositing a second dielectric layer on the first metal layer and the exposed GaN epitaxial layer, wherein the second dielectric layer is made of a low dielectric constant material;
步骤S5,在大窗口结构中的第二介质层上方制作保护层;Step S5, forming a protective layer on the second dielectric layer in the large window structure;
步骤S6,去除保护层覆盖的第二介质层以外的第二介质层,露出第一金属层,然后去除保护层;Step S6, removing the second dielectric layer other than the second dielectric layer covered by the protective layer to expose the first metal layer, and then removing the protective layer;
步骤S7,在大窗口结构内的第二介质层上方制作第二金属层,形成栅极金属结构;Step S7, forming a second metal layer on the second dielectric layer in the large window structure to form a gate metal structure;
步骤S8,去除第二金属层下方的第二介质层以外的第二介质层;Step S8, removing the second dielectric layer except the second dielectric layer below the second metal layer;
步骤S9,去除第一介质层上方的第一金属层;Step S9, removing the first metal layer above the first dielectric layer;
步骤S10,在第二金属层和第一介质层上进行SiN沉积形成第三介质层。Step S10: depositing SiN on the second metal layer and the first dielectric layer to form a third dielectric layer.
优选地,在步骤S1中,通过采用LPCVD或PECVD进行SiN沉积来形成第一介质层。Preferably, in step S1 , the first dielectric layer is formed by depositing SiN using LPCVD or PECVD.
优选地,在步骤S2中,通过溅射Ti金属来形成第一金属层。Preferably, in step S2, the first metal layer is formed by sputtering Ti metal.
优选地,在步骤S4中,第二介质层采用的低介电常数材料为SiO2、PI或PBO。Preferably, in step S4, the low dielectric constant material used in the second dielectric layer is SiO 2 , PI or PBO.
优选地,在步骤S7中,第二金属层采用Ni/Au。Preferably, in step S7, the second metal layer is made of Ni/Au.
优选地,在步骤S7中,形成具有栅帽和栅脚的T型栅金属结构作为栅极金属结构,在步骤S8中,去除栅帽下方的第二介质层以外的第二介质层。Preferably, in step S7, a T-shaped gate metal structure having a gate cap and a gate foot is formed as the gate metal structure, and in step S8, the second dielectric layer except the second dielectric layer under the gate cap is removed.
优选地,在步骤S8中,在第二金属层两边形成凹槽,凹槽中露出GaN外延层,在步骤S10中,通过进行SiN沉积对第二金属层两边的凹槽进行SiN 填充。Preferably, in step S8, grooves are formed on both sides of the second metal layer, and the GaN epitaxial layer is exposed in the grooves. In step S10, the grooves on both sides of the second metal layer are filled with SiN by depositing SiN.
本发明的另一个方面提供一种GaN HEMT器件的栅极,利用上述的方法制备得到。Another aspect of the present invention provides a gate of a GaN HEMT device, which is prepared using the above method.
本发明的又一个方面提供一种GaN HEMT器件,具有上述的栅极。Another aspect of the present invention provides a GaN HEMT device having the above-mentioned gate.
根据本发明上述方面的GaN HEMT器件的栅极制备方法、栅极以及GaN HEMT器件,通过在栅帽下方引入低介电常数材料的第二介质层,能够在抑制电流崩塌的同时,提高器件的Ft,从而提高器件的应用频率。According to the gate preparation method, gate and GaN HEMT device of the above aspects of the present invention, by introducing a second dielectric layer of low dielectric constant material under the gate cap, the Ft of the device can be improved while suppressing current collapse, thereby increasing the application frequency of the device.
附图说明BRIEF DESCRIPTION OF THE DRAWINGS
为了更清楚地说明本发明的技术方案,下面将对本发明实施例的描述中所使用的附图作简单的介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图:In order to more clearly illustrate the technical solution of the present invention, the following briefly introduces the drawings used in the description of the embodiments of the present invention. Obviously, the drawings described below are only some embodiments of the present invention. For those skilled in the art, other drawings can be obtained based on these drawings without creative work:
图1是本发明实施例的GaN HEMT器件的栅极制备方法的流程图;FIG1 is a flow chart of a method for preparing a gate of a GaN HEMT device according to an embodiment of the present invention;
图2是图1中的步骤S1的示意图;FIG2 is a schematic diagram of step S1 in FIG1 ;
图3是图1中的步骤S2的示意图;FIG3 is a schematic diagram of step S2 in FIG1 ;
图4是图1中的步骤S3的示意图;FIG4 is a schematic diagram of step S3 in FIG1 ;
图5是图1中的步骤S4的示意图;FIG5 is a schematic diagram of step S4 in FIG1 ;
图6是图1中的步骤S5的示意图;FIG6 is a schematic diagram of step S5 in FIG1 ;
图7是图1中的步骤S6的示意图;FIG7 is a schematic diagram of step S6 in FIG1 ;
图8是图1中的步骤S7的示意图;FIG8 is a schematic diagram of step S7 in FIG1 ;
图9是图1中的步骤S8的示意图;FIG9 is a schematic diagram of step S8 in FIG1 ;
图10是图1中的步骤S9的示意图;FIG10 is a schematic diagram of step S9 in FIG1 ;
图11是图1中的步骤S10的示意图;FIG11 is a schematic diagram of step S10 in FIG1 ;
附图标记说明:101、衬底,102、GaN外延层,103、第一介质层,104、第一金属层,105、第二介质层,106、保护层,107、第二金属层,108、第三介质层,200、大窗口结构。Explanation of the reference numerals: 101, substrate, 102, GaN epitaxial layer, 103, first dielectric layer, 104, first metal layer, 105, second dielectric layer, 106, protective layer, 107, second metal layer, 108, third dielectric layer, 200, large window structure.
具体实施方式Detailed ways
为使本发明的目的、技术方案和优点更加清楚,下面将结合附图,对本发明的技术方案进行清楚、完整的描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。In order to make the purpose, technical solution and advantages of the present invention clearer, the technical solution of the present invention will be clearly and completely described below in conjunction with the accompanying drawings. Obviously, the described embodiments are only part of the embodiments of the present invention, not all of the embodiments. Based on the embodiments of the present invention, all other embodiments obtained by ordinary technicians in this field without creative work are within the scope of protection of the present invention.
本发明的实施例提供一种GaN HEMT器件的栅极制备方法,图1是本发明实施例的GaN HEMT器件的栅极制备方法的流程图,如图1所示,本发明实施例的GaN HEMT器件的栅极制备方法包括步骤S1~S10。An embodiment of the present invention provides a method for preparing a gate of a GaN HEMT device. FIG. 1 is a flow chart of the method for preparing a gate of a GaN HEMT device according to an embodiment of the present invention. As shown in FIG. 1 , the method for preparing a gate of a GaN HEMT device according to an embodiment of the present invention includes steps S1 to S10.
在步骤S1中,如图2所示,在衬底101上形成GaN外延层102,在GaN外延层102上沉积第一介质层103。在该步骤中,可以通过采用LPCVD(低压化学气相沉积法)或PECVD(等离子体增强化学气相沉积)进行SiN沉积来形成第一介质层103。In step S1, as shown in FIG2, a GaN epitaxial layer 102 is formed on a substrate 101, and a first dielectric layer 103 is deposited on the GaN epitaxial layer 102. In this step, the first dielectric layer 103 can be formed by depositing SiN using LPCVD (low pressure chemical vapor deposition) or PECVD (plasma enhanced chemical vapor deposition).
在步骤S2中,如图3所示,在第一介质层103上通过溅射工艺形成第一金属层104。在该步骤中,可以通过溅射Ti金属来形成第一金属层104。In step S2, as shown in Fig. 3, a first metal layer 104 is formed on the first dielectric layer 103 by a sputtering process. In this step, the first metal layer 104 may be formed by sputtering Ti metal.
在步骤S3中,如图4所示,在要形成栅极金属结构的位置处对第一金属层104和第一介质层103进行开孔蚀刻,去除该位置处的第一金属层104和第一介质层103,形成大窗口结构200,露出该位置处的GaN外延层102。在该步骤中,可以采用干法蚀刻,蚀刻停止到GaN外延层102上方。In step S3, as shown in FIG4 , the first metal layer 104 and the first dielectric layer 103 are etched to form holes at the position where the gate metal structure is to be formed, and the first metal layer 104 and the first dielectric layer 103 at the position are removed to form a large window structure 200, exposing the GaN epitaxial layer 102 at the position. In this step, dry etching can be used, and the etching stops above the GaN epitaxial layer 102.
在步骤S4中,如图5所示,在第一金属层104上以及在大窗口结构200中露出的GaN外延层102上沉积第二介质层105,该第二介质层105采用低介电常数材料,一般可采用SiO2、PI(聚酰亚胺)或者PBO(聚苯并恶唑)。In step S4 , as shown in FIG5 , a second dielectric layer 105 is deposited on the first metal layer 104 and the GaN epitaxial layer 102 exposed in the large window structure 200 . The second dielectric layer 105 is made of a low dielectric constant material, generally SiO 2 , PI (polyimide) or PBO (polybenzoxazole).
在步骤S5中,如图6所示,在大窗口结构200中的第二介质层105上方制作保护层106,该保护层106可通过在旋涂光刻胶后曝光显影并在此处留下光刻胶而形成。In step S5 , as shown in FIG. 6 , a protection layer 106 is formed on the second dielectric layer 105 in the large window structure 200 . The protection layer 106 can be formed by spin-coating a photoresist, then exposing and developing the photoresist and leaving the photoresist there.
在步骤S6中,如图7所示,去除保护层106覆盖的第二介质层105以外的第二介质层105,从而露出第一金属层104,然后去除保护层106。在该步骤中,可采用干法蚀刻的工艺,蚀刻停止到第一金属层104上方,然后去除保护层106。In step S6, as shown in FIG7 , the second dielectric layer 105 other than the second dielectric layer 105 covered by the protective layer 106 is removed to expose the first metal layer 104, and then the protective layer 106 is removed. In this step, a dry etching process may be used, the etching stops above the first metal layer 104, and then the protective layer 106 is removed.
在步骤S7中,如图8所示,在大窗口结构200内的第二介质层105上方制作第二金属层107,形成栅极金属结构。在该步骤中,第二金属层可以采用Ni/Au,通过现有的曝光显影和剥离的工艺方法,最终形成栅极金属结构,这里不再赘述。In step S7, as shown in FIG8, a second metal layer 107 is formed on the second dielectric layer 105 in the large window structure 200 to form a gate metal structure. In this step, the second metal layer can be made of Ni/Au, and the gate metal structure is finally formed through the existing exposure, development and stripping process, which will not be described in detail here.
在步骤S8中,如图9所示,去除第二金属层107下方的第二介质层105以外的第二介质层105,即,除了第二金属层107的栅帽下方的第二介质层105以外,可以采用干法蚀刻去除其它位置处的第二介质层105。In step S8, as shown in FIG. 9, the second dielectric layer 105 except the second dielectric layer 105 below the second metal layer 107 is removed, that is, except for the second dielectric layer 105 below the gate cap of the second metal layer 107, the second dielectric layer 105 at other positions can be removed by dry etching.
在步骤S9中,如图10所示,去除第一介质层103上方的第一金属层104,可采用干法蚀刻的工艺,蚀刻停止到第一介质层103上方。In step S9 , as shown in FIG. 10 , the first metal layer 104 above the first dielectric layer 103 is removed. A dry etching process may be used, and the etching stops above the first dielectric layer 103 .
在步骤S10中,如图11所示,在第二金属层107和第一介质层103上沉积第三介质层108,可以采用PECVD进行SiN沉积来形成第三介质层108。In step S10 , as shown in FIG. 11 , a third dielectric layer 108 is deposited on the second metal layer 107 and the first dielectric layer 103 . The third dielectric layer 108 may be formed by depositing SiN using PECVD.
通过上述的步骤S1~S10,完成GaN HEMT器件的栅极制备。Through the above steps S1 to S10, the gate preparation of the GaN HEMT device is completed.
在一个实施例中,在第二金属层107没有完全覆盖大窗口结构200的情况下,在步骤S8中去除第二金属层107下方的第二介质层105以外的第二介质层105后,在第二金属层107两边形成凹槽,凹槽中露出GaN外延层102,在该步骤S10中通过SiN沉积对第二金属层107两边的凹槽处进行SiN 填充。In one embodiment, when the second metal layer 107 does not completely cover the large window structure 200, after removing the second dielectric layer 105 except the second dielectric layer 105 below the second metal layer 107 in step S8, grooves are formed on both sides of the second metal layer 107, and the GaN epitaxial layer 102 is exposed in the grooves. In this step S10, SiN is filled in the grooves on both sides of the second metal layer 107 by SiN deposition.
在另一个实施例中,在步骤S7中,通过制作第二金属层107,形成具有栅帽和栅脚的T型栅金属结构作为栅极金属结构,在步骤S8中,去除栅帽下方的第二介质层105以外的第二介质层105,从而仅在栅帽下方保留低介电常数材料的第二介质层105。In another embodiment, in step S7, a T-shaped gate metal structure having a gate cap and a gate foot is formed as a gate metal structure by manufacturing a second metal layer 107, and in step S8, the second dielectric layer 105 except the second dielectric layer 105 under the gate cap is removed, so that only the second dielectric layer 105 of low dielectric constant material is retained under the gate cap.
本发明的实施例还提供一种GaN HEMT器件的栅极,利用本发明实施例的方法制备得到。另外,本发明的实施例还提供一种GaN HEMT器件,具有本发明实施例的栅极。The embodiment of the present invention further provides a gate of a GaN HEMT device, which is prepared by the method of the embodiment of the present invention. In addition, the embodiment of the present invention further provides a GaN HEMT device, which has the gate of the embodiment of the present invention.
根据本发明上述实施方式的GaN HEMT器件的栅极制备方法,通过在栅极金属结构的栅帽下方引入低介电常数材料(第二介质层105)降低器件的栅漏电容和栅源电容,而其他区域(栅漏以及栅源)采用SiN 进行钝化的工艺,能够在抑制电流崩塌效应、提高GaNHEMT器件效率的同时,还可以提高器件的Ft,提高器件的应用频率,尤其适合毫米波应用场景。According to the gate preparation method of the GaN HEMT device of the above embodiment of the present invention, the gate-drain capacitance and gate-source capacitance of the device are reduced by introducing a low dielectric constant material (the second dielectric layer 105) under the gate cap of the gate metal structure, while other regions (gate-drain and gate-source) are passivated using SiN. This can suppress the current collapse effect, improve the efficiency of the GaN HEMT device, and improve the Ft of the device, thereby increasing the application frequency of the device, which is particularly suitable for millimeter wave application scenarios.
与此同时,通过在第一介质层和第二介质层中间的金属层(第一金属层104)的引入,在栅极制造工艺过程中可实现工艺过程简易可控、工艺稳定度较高的优点。At the same time, by introducing the metal layer (first metal layer 104) between the first dielectric layer and the second dielectric layer, the advantages of simple and controllable process and high process stability can be achieved in the gate manufacturing process.
以上只通过说明的方式描述了本发明的某些示范性实施例,毋庸置疑,对于本领域的普通技术人员,在不偏离本发明的精神和范围的情况下,可以用各种不同的方式对所描述的实施例进行修正。因此,上述附图和描述在本质上是说明性的,不应理解为对本发明权利要求保护范围的限制。The above description is only by way of illustration of certain exemplary embodiments of the present invention. It is undoubted that, for those skilled in the art, the described embodiments can be modified in various ways without departing from the spirit and scope of the present invention. Therefore, the above drawings and descriptions are illustrative in nature and should not be construed as limiting the scope of protection of the claims of the present invention.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202410881012.3A CN118412273B (en) | 2024-07-03 | 2024-07-03 | Gate preparation method of GaN HEMT device, gate and GaN HEMT device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202410881012.3A CN118412273B (en) | 2024-07-03 | 2024-07-03 | Gate preparation method of GaN HEMT device, gate and GaN HEMT device |
Publications (2)
Publication Number | Publication Date |
---|---|
CN118412273A true CN118412273A (en) | 2024-07-30 |
CN118412273B CN118412273B (en) | 2024-08-27 |
Family
ID=92003592
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202410881012.3A Active CN118412273B (en) | 2024-07-03 | 2024-07-03 | Gate preparation method of GaN HEMT device, gate and GaN HEMT device |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN118412273B (en) |
Citations (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007035898A (en) * | 2005-07-27 | 2007-02-08 | Nippon Telegr & Teleph Corp <Ntt> | Uwb transmitter |
US8558281B1 (en) * | 2011-12-02 | 2013-10-15 | Hrl Laboratories, Llc | Gate metallization methods for self-aligned sidewall gate GaN HEMT |
CN103383959A (en) * | 2013-07-04 | 2013-11-06 | 西安电子科技大学 | Crosswise overgrowth one-dimensional electron gas GaN-base high electron mobility transistor (HEMT) device and manufacturing method thereof |
CN103715255A (en) * | 2013-12-04 | 2014-04-09 | 中国电子科技集团公司第五十五研究所 | Self-aligned gate GaN HEMT device and preparation method thereof |
KR20150100575A (en) * | 2014-02-25 | 2015-09-02 | 서울대학교산학협력단 | Double Deck Overhang Gate Formation of Silicon-Based AlGaN / GaN HEMT Devices |
KR20150100574A (en) * | 2014-02-25 | 2015-09-02 | 서울대학교산학협력단 | Reducing Method for Gate Leakage Current of AlGaN/GaN HEMTs |
CN105226093A (en) * | 2015-11-11 | 2016-01-06 | 成都嘉石科技有限公司 | GaN HEMT device and preparation method thereof |
CN108987277A (en) * | 2018-06-04 | 2018-12-11 | 北京大学深圳研究生院 | A kind of enhancement type high electron mobility transistor and preparation method thereof |
CN109004029A (en) * | 2018-07-17 | 2018-12-14 | 中山市华南理工大学现代产业技术研究院 | With metal oxide/silica gatestack GaN base MOS-HEMT device and preparation method thereof |
CN110875386A (en) * | 2018-09-04 | 2020-03-10 | 江西兆驰半导体有限公司 | Epitaxial structure of enhancement mode GaN-based HEMT device, device and preparation method thereof |
CN110942990A (en) * | 2019-12-16 | 2020-03-31 | 成都大学 | AlGaN/GaN HEMT heat management method |
US20200111876A1 (en) * | 2017-11-21 | 2020-04-09 | South China University Of Technology | Algan/gan heterojunction hemt device compatible with si-cmos process and manufacturing method therefor |
WO2022028225A1 (en) * | 2020-08-03 | 2022-02-10 | 南京集芯光电技术研究院有限公司 | P-gan enhanced hemt device with gate-source bridge and manufacturing method therefor |
CN114242587A (en) * | 2021-12-07 | 2022-03-25 | 中国电子科技集团公司第十三研究所 | GaN HEMT device with air gap structure and preparation method thereof |
CN114883193A (en) * | 2022-07-06 | 2022-08-09 | 江苏第三代半导体研究院有限公司 | Enhanced HEMT device with stacked gate dielectric layers and preparation method thereof |
WO2022165884A1 (en) * | 2021-02-04 | 2022-08-11 | 宁波海特创电控有限公司 | Novel enhanced gan hemt device structure |
US20220360187A1 (en) * | 2021-05-04 | 2022-11-10 | Enphase Energy, Inc. | Gallium nitride bi-directional high electron mobility transistor in switched-mode neutral forming device applications |
CN116387246A (en) * | 2023-03-24 | 2023-07-04 | 华南理工大学 | p-GaN enhanced MIS-HEMT device and preparation method thereof |
CN117594445A (en) * | 2024-01-19 | 2024-02-23 | 中国电子科技集团公司第五十八研究所 | Preparation method of grid field plate structure of GaN-based HEMT device |
-
2024
- 2024-07-03 CN CN202410881012.3A patent/CN118412273B/en active Active
Patent Citations (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007035898A (en) * | 2005-07-27 | 2007-02-08 | Nippon Telegr & Teleph Corp <Ntt> | Uwb transmitter |
US8558281B1 (en) * | 2011-12-02 | 2013-10-15 | Hrl Laboratories, Llc | Gate metallization methods for self-aligned sidewall gate GaN HEMT |
CN103383959A (en) * | 2013-07-04 | 2013-11-06 | 西安电子科技大学 | Crosswise overgrowth one-dimensional electron gas GaN-base high electron mobility transistor (HEMT) device and manufacturing method thereof |
CN103715255A (en) * | 2013-12-04 | 2014-04-09 | 中国电子科技集团公司第五十五研究所 | Self-aligned gate GaN HEMT device and preparation method thereof |
KR20150100575A (en) * | 2014-02-25 | 2015-09-02 | 서울대학교산학협력단 | Double Deck Overhang Gate Formation of Silicon-Based AlGaN / GaN HEMT Devices |
KR20150100574A (en) * | 2014-02-25 | 2015-09-02 | 서울대학교산학협력단 | Reducing Method for Gate Leakage Current of AlGaN/GaN HEMTs |
CN105226093A (en) * | 2015-11-11 | 2016-01-06 | 成都嘉石科技有限公司 | GaN HEMT device and preparation method thereof |
US20200111876A1 (en) * | 2017-11-21 | 2020-04-09 | South China University Of Technology | Algan/gan heterojunction hemt device compatible with si-cmos process and manufacturing method therefor |
CN108987277A (en) * | 2018-06-04 | 2018-12-11 | 北京大学深圳研究生院 | A kind of enhancement type high electron mobility transistor and preparation method thereof |
CN109004029A (en) * | 2018-07-17 | 2018-12-14 | 中山市华南理工大学现代产业技术研究院 | With metal oxide/silica gatestack GaN base MOS-HEMT device and preparation method thereof |
CN110875386A (en) * | 2018-09-04 | 2020-03-10 | 江西兆驰半导体有限公司 | Epitaxial structure of enhancement mode GaN-based HEMT device, device and preparation method thereof |
CN110942990A (en) * | 2019-12-16 | 2020-03-31 | 成都大学 | AlGaN/GaN HEMT heat management method |
WO2022028225A1 (en) * | 2020-08-03 | 2022-02-10 | 南京集芯光电技术研究院有限公司 | P-gan enhanced hemt device with gate-source bridge and manufacturing method therefor |
WO2022165884A1 (en) * | 2021-02-04 | 2022-08-11 | 宁波海特创电控有限公司 | Novel enhanced gan hemt device structure |
US20220360187A1 (en) * | 2021-05-04 | 2022-11-10 | Enphase Energy, Inc. | Gallium nitride bi-directional high electron mobility transistor in switched-mode neutral forming device applications |
CN114242587A (en) * | 2021-12-07 | 2022-03-25 | 中国电子科技集团公司第十三研究所 | GaN HEMT device with air gap structure and preparation method thereof |
CN114883193A (en) * | 2022-07-06 | 2022-08-09 | 江苏第三代半导体研究院有限公司 | Enhanced HEMT device with stacked gate dielectric layers and preparation method thereof |
CN116387246A (en) * | 2023-03-24 | 2023-07-04 | 华南理工大学 | p-GaN enhanced MIS-HEMT device and preparation method thereof |
CN117594445A (en) * | 2024-01-19 | 2024-02-23 | 中国电子科技集团公司第五十八研究所 | Preparation method of grid field plate structure of GaN-based HEMT device |
Non-Patent Citations (3)
Title |
---|
LEE W等: "Design and analysis of integrated planar induction for GaN HEMT-based zero-voltage switching sunchronous buck converter", 2018 IEEE POWER AND ENERGY CONFERENCE AT ILLIONOIS, 23 February 2018 (2018-02-23) * |
朱彦旭等: "P鄄GaN 栅结构 GaN基 HEMT 器件研究进展", 北京工业大学学报, vol. 49, no. 8, 31 August 2023 (2023-08-31) * |
颜伟等: "AlGaN/ GaN HEMT器件工艺的研究进展", 器件与技术, vol. 48, no. 2, 28 February 2011 (2011-02-28) * |
Also Published As
Publication number | Publication date |
---|---|
CN118412273B (en) | 2024-08-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110600542B (en) | GaN-based radio frequency device with II-shaped gate and preparation method thereof | |
WO2020052204A1 (en) | High-linearity millimeter wave device based on charge partial modulation | |
CN107293482B (en) | Method for manufacturing gate electrode of gallium nitride high electron mobility transistor | |
CN110335818B (en) | A heterojunction bipolar transistor structure and manufacturing method | |
CN114361032A (en) | Low-contact-resistance GaN-based device and manufacturing method thereof | |
KR100647459B1 (en) | Method for manufacturing tee or gamma gate electrode | |
CN118412273B (en) | Gate preparation method of GaN HEMT device, gate and GaN HEMT device | |
CN118538600A (en) | Method for manufacturing double-step T-shaped gate by using double-layer medium structure | |
JP3125869B2 (en) | Method for manufacturing semiconductor device | |
CN113451129B (en) | High electron mobility transistor and preparation method thereof | |
CN116314297A (en) | A T-shaped gate with a dielectric support layer and its preparation method | |
CN107516672B (en) | Schottky contact system suitable for AlGaN/GaN high-electron-mobility transistor | |
CN211929494U (en) | A GaN-based RF device with П-type gate | |
CN114242587A (en) | GaN HEMT device with air gap structure and preparation method thereof | |
KR101064726B1 (en) | Semiconductor device and manufacturing method thereof | |
JPH03165526A (en) | Manufacture of field effect transistor | |
CN115799059B (en) | Manufacturing method of GaN HEMT BCB dielectric double-layer gate | |
TWI813489B (en) | Transistor structure and fabrication method of the same | |
JP2523985B2 (en) | Method for manufacturing semiconductor device | |
JPS59184572A (en) | Manufacture of semiconductor device | |
CN110752162A (en) | Pre-distortion integrated circuit based on X-band gallium nitride and manufacturing method | |
KR100849926B1 (en) | Method of manufacturing amorphous high electron mobility transistor | |
CN114023641A (en) | Fabrication method and application of enhanced HEMT ohmic contact structure | |
CN108922850B (en) | A kind of Y gate transistor device manufacturing method and transistor device | |
JP6094159B2 (en) | Manufacturing method of semiconductor device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |