[go: up one dir, main page]

CN118401787A - Ventilation device, air conditioning system, ventilation method, and ventilation system - Google Patents

Ventilation device, air conditioning system, ventilation method, and ventilation system Download PDF

Info

Publication number
CN118401787A
CN118401787A CN202280082974.1A CN202280082974A CN118401787A CN 118401787 A CN118401787 A CN 118401787A CN 202280082974 A CN202280082974 A CN 202280082974A CN 118401787 A CN118401787 A CN 118401787A
Authority
CN
China
Prior art keywords
heat exchanger
air
temperature
unit
ventilation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202280082974.1A
Other languages
Chinese (zh)
Inventor
高桥隆
大堂维大
鹤薗祥太
松井伸树
花田卓弥
藤田尚利
山野井喜记
井吉悠太
佐伯久美子
宫崎猛
前田敏行
冈本哲也
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority claimed from PCT/JP2022/036876 external-priority patent/WO2023112428A1/en
Publication of CN118401787A publication Critical patent/CN118401787A/en
Pending legal-status Critical Current

Links

Landscapes

  • Air Conditioning Control Device (AREA)

Abstract

The ventilation device includes: a compressor; a1 st heat exchanger; a1 st air flow path for supplying air introduced from the outside to the indoor space after passing through the 1 st heat exchanger; a2 nd heat exchanger; a2 nd air flow path for exhausting air introduced from the indoor space to the outside after passing through the 2 nd heat exchanger; a refrigerant circuit connected to the compressor, the 1 st heat exchanger and the 2 nd heat exchanger through refrigerant pipes, and having a refrigerant flowing therein; and a control unit. The control unit detects whether or not a predetermined criterion indicating the possibility of frosting of the 2 nd heat exchanger is satisfied while the 2 nd heat exchanger functions as an evaporator, and controls the temperature of the refrigerant flowing through the 2 nd heat exchanger to be a temperature at which frosting of the 2 nd heat exchanger is not performed when the predetermined criterion is detected to be satisfied.

Description

换气装置、空调系统、换气方法以及换气系统Ventilation device, air conditioning system, ventilation method and ventilation system

技术领域Technical Field

本发明涉及换气装置、空调系统、换气方法以及换气系统。The invention relates to a ventilation device, an air conditioning system, a ventilation method and a ventilation system.

背景技术Background technique

历来,已知一种通过排气风扇及供气风扇进行室内的换气的同时,将通过第1热交换器与制冷剂进行热交换后的室外空气吹入室内,并将通过第2热交换器与制冷剂进行热交换后的室内空气排出到室外的换气空调装置(参照专利文献1、专利文献2)。Conventionally, there is known a ventilation and air conditioning device that ventilates the room by means of an exhaust fan and an air supply fan, blows outdoor air into the room after heat exchange with a refrigerant through a first heat exchanger, and discharges indoor air to the outside after heat exchange with a refrigerant through a second heat exchanger (see Patent Document 1 and Patent Document 2).

<现有技术文献><Prior Art Documents>

<专利文献><Patent Documents>

专利文献1:(日本)专利第5076745号公报Patent Document 1: (Japan) Patent No. 5076745

专利文献2:(日本)特开平3-20573号公报Patent Document 2: (Japanese) Patent Publication No. 3-20573

发明内容Summary of the invention

<本发明要解决的问题><Problems to be Solved by the Invention>

专利文献1所述的换气空调装置提出了通过利用预热加热器对供给到第2热交换器之前的空气进行预热,来抑制第2热交换器的结霜的技术。但是,关于抑制结霜的方法,可以想到各种方法。The ventilation and air conditioning device described in Patent Document 1 proposes a technique for suppressing frost formation on the second heat exchanger by preheating air before supplying the air to the second heat exchanger using a preheating heater. However, various methods are conceivable as a method of suppressing frost formation.

本发明的目的在于抑制结霜,使换气运转持续进行。An object of the present invention is to suppress frost formation and to continue ventilation operation.

<用于解决问题的手段><Methods for problem solving>

本发明提供一种换气装置,其包括:The present invention provides a ventilation device, comprising:

压缩机;compressor;

第1热交换器,作为冷凝器或蒸发器发挥功能;The first heat exchanger functions as a condenser or an evaporator;

第1空气流路,将从室外导入的空气经由所述第1热交换器之后向室内空间供气;The first air flow path supplies air introduced from the outside to the indoor space after passing through the first heat exchanger;

第2热交换器,作为冷凝器或蒸发器发挥功能;The second heat exchanger functions as a condenser or an evaporator;

第2空气流路,将从所述室内空间导入的空气经由所述第2热交换器后向所述室外排气;a second air flow path for exhausting the air introduced from the indoor space to the outside through the second heat exchanger;

制冷剂回路,通过制冷剂管道连接所述压缩机、所述第1热交换器及所述第2热交换器而成,有制冷剂在内部流动;及a refrigerant circuit, formed by connecting the compressor, the first heat exchanger, and the second heat exchanger via a refrigerant pipe, and having refrigerant flowing therein; and

控制部,在所述第2热交换器作为蒸发器发挥功能的期间,检测是否满足表示所述第2热交换器结霜的可能性的规定基准,并在检测出满足该规定基准的情况下,对所述第2热交换器中流动的所述制冷剂的温度进行控制,以成为使所述第2热交换器不结霜的温度。The control unit detects whether a prescribed criterion indicating the possibility of frost on the second heat exchanger is satisfied while the second heat exchanger functions as an evaporator, and controls the temperature of the refrigerant flowing in the second heat exchanger to a temperature at which frost is not formed on the second heat exchanger if the prescribed criterion is detected to be satisfied.

根据该换气装置,通过在满足规定基准的情况下控制制冷剂的温度来抑制结霜,能够实现向室内空间供气及向室外排气的换气运转的持续进行。According to this ventilator, by controlling the temperature of the refrigerant when a predetermined criterion is satisfied, frost formation is suppressed, and the ventilation operation of supplying air to the indoor space and exhausting air to the outdoors can be continued.

关于所述换气装置,还可以是,Regarding the ventilation device, it may also be that:

所述控制部,在所述第2热交换器作为蒸发器发挥功能的期间,检测是否满足表示所述第2热交换器结霜的可能性的规定基准,并在检测出满足该规定基准的情况下,为了控制所述第2热交换器中流动的所述制冷剂的温度,输出对设在所述室内空间的空调机进行控制的信号。The control unit detects whether a prescribed criterion indicating the possibility of frost on the second heat exchanger is satisfied while the second heat exchanger functions as an evaporator, and outputs a signal for controlling the air conditioner installed in the indoor space in order to control the temperature of the refrigerant flowing in the second heat exchanger when the prescribed criterion is detected to be satisfied.

根据该换气装置,通过根据该信号使空调机动作来调整室内空间的温度,通过控制制冷剂的温度而抑制结霜,能够实现有效率的结霜抑制。According to this ventilation device, the air conditioner is operated according to the signal to adjust the temperature of the indoor space, and frost formation is suppressed by controlling the temperature of the refrigerant, thereby realizing efficient frost suppression.

关于所述换气装置,还可以是,Regarding the ventilation device, it may also be that:

所述控制部,在满足所述规定基准的情况下,对设在所述室内空间的空调机,输出表示使该空调机中当前设定的温度上升的信号。The control unit outputs a signal indicating that a temperature currently set in the air conditioner is to be increased to the air conditioner installed in the indoor space when the predetermined criterion is satisfied.

根据该换气装置,根据该信号利用空调机使室内空间的气温上升,以使制冷剂的温度上升而抑制结霜,能够实现有效的结霜抑制。According to this ventilation device, the air conditioner raises the temperature of the indoor space in response to the signal to raise the temperature of the refrigerant to suppress frost formation, thereby achieving effective frost suppression.

关于所述换气装置,还可以是,Regarding the ventilation device, it may also be that:

所述制冷剂回路具有旁路管道,在所述第2热交换器作为蒸发器发挥功能的期间,不经由所述第1热交换器,而是使所述制冷剂经由所述旁路管道流入所述第2热交换器,The refrigerant circuit has a bypass pipe, and while the second heat exchanger functions as an evaporator, the refrigerant flows into the second heat exchanger through the bypass pipe without passing through the first heat exchanger.

所述控制部,在满足所述规定基准的情况下,进行使由所述压缩机压缩后的所述制冷剂经由所述旁路管道流入所述第2热交换器的控制。The control unit controls the refrigerant compressed by the compressor to flow into the second heat exchanger via the bypass pipe when the predetermined criterion is satisfied.

根据该换气装置,通过经由旁路管道使制冷剂流入第2热交换器,通过使制冷剂的温度上升而抑制结霜,能够实现高效率的结霜抑制。According to this ventilator, by allowing the refrigerant to flow into the second heat exchanger via the bypass pipe, frost formation is suppressed by raising the temperature of the refrigerant, thereby achieving efficient frost suppression.

关于所述换气装置,还可以包括:The ventilation device may further include:

第3空气流路,使从所述室内空间中的与所述第2空气流路不同的房间导入的空气,经由所述第2热交换器;及a third air flow path for passing air introduced from a room in the indoor space different from the second air flow path through the second heat exchanger; and

第1引导机构,对是否将空气经由所述第3空气流路引导至所述第2热交换器进行切换,The first guide mechanism switches whether to guide the air to the second heat exchanger via the third air flow path.

所述控制部,在满足所述规定基准的情况下,控制第1引导机构以将空气经由第3空气流路引导至第2热交换器。The control unit controls the first guide mechanism to guide the air to the second heat exchanger via the third air flow path when the predetermined criterion is satisfied.

根据该换气装置,由于是经由第3空气流路将空气引导至第2热交换器,从而,通过使第2热交换器中流动的制冷剂的温度上升而抑制结霜,能够实现高效率的结霜抑制。According to this ventilator, since the air is guided to the second heat exchanger via the third air flow path, frost formation is suppressed by increasing the temperature of the refrigerant flowing through the second heat exchanger, and thus frost formation can be suppressed efficiently.

关于所述换气装置,还可以是,Regarding the ventilation device, it may also be that:

所述换气装置还具有第2换气单元,其对经由所述第2空气流路流入所述第2热交换器的空气量进行调整,The ventilation device further includes a second ventilation unit that adjusts the amount of air flowing into the second heat exchanger via the second air flow path.

所述控制部,在满足所述规定基准的情况下,对所述第2换气单元进行使流入所述第2热交换器的空气量相较于满足所述规定基准之前而言增加的控制。The control unit controls the second ventilation unit to increase the amount of air flowing into the second heat exchanger when the predetermined criterion is satisfied, compared with a time before the predetermined criterion is satisfied.

根据该换气装置,通过使第2热交换器中流动的空气量增加,以使第2热交换器中流动的制冷剂的温度上升而抑制结霜,能够实现高效率的结霜抑制。According to this ventilator, the amount of air flowing through the second heat exchanger is increased to raise the temperature of the refrigerant flowing through the second heat exchanger to suppress frost formation, thereby achieving efficient frost formation suppression.

关于所述换气装置,还可以包括:The ventilation device may further include:

多个所述第2热交换器;及a plurality of said second heat exchangers; and

与每个所述第2热交换器对应的所述第2换气单元,The second ventilation unit corresponding to each of the second heat exchangers,

所述控制部,在多个所述第2热交换器作为蒸发器发挥功能的期间,在满足所述规定基准的情况下,使与多个所述第2热交换器中的任一个对应的所述第2换气单元进行使所述第2热交换器中流动的空气量相较于满足所述规定基准之前而言增加的控制。The control unit, during the period when the plurality of second heat exchangers function as evaporators and when the prescribed benchmark is satisfied, controls the second ventilation unit corresponding to any one of the plurality of second heat exchangers to increase the amount of air flowing in the second heat exchanger compared to before the prescribed benchmark is satisfied.

根据该换气装置,通过利用第2换气单元增加第2热交换器中流动的空气量,使第2热交换器中流动的制冷剂的温度上升而抑制结霜,能够实现高效率的结霜抑制。According to this ventilation device, the second ventilation unit increases the amount of air flowing through the second heat exchanger, thereby raising the temperature of the refrigerant flowing through the second heat exchanger to suppress frost formation, thereby achieving efficient frost suppression.

关于所述换气装置,还可以是,Regarding the ventilation device, it may also be that:

所述控制部,在对与多个所述第2热交换器中的任一个对应的所述第2换气单元进行增加空气量的控制的情况下,对与该多个所述第2热交换器中的其他所述第2热交换器对应的所述第2换气单元,进行使所述第2热交换器中流动的空气量相较于满足所述规定基准之前而言减少的控制。The control unit, while controlling the second ventilation unit corresponding to any one of the plurality of second heat exchangers to increase the amount of air, controls the second ventilation units corresponding to other second heat exchangers among the plurality of second heat exchangers to reduce the amount of air flowing in the second heat exchanger compared to before the prescribed benchmark is met.

根据该换气装置,通过对排出的空气量的总量进行调节,能够维持居室空间的舒适性。According to this ventilator, the comfort of the living space can be maintained by adjusting the total amount of exhausted air.

关于所述换气装置,还可以是,Regarding the ventilation device, it may also be that:

所述换气装置还具有第1换气单元,其对经由所述第1空气流路流入所述第1热交换器的空气量进行调整,The ventilation device further includes a first ventilation unit that adjusts the amount of air flowing into the first heat exchanger through the first air flow path.

所述控制部,在对与多个所述第2热交换器中的任一个对应的所述第2换气单元进行增加所述空气量的控制的情况下,根据对所述第2换气单元增加的所述空气量,对所述第1换气单元进行使所述第1热交换器中流动的所述空气量相较于满足所述规定基准之前而言增加的控制。The control unit, when controlling the second ventilation unit corresponding to any one of the plurality of second heat exchangers to increase the air volume, controls the first ventilation unit to increase the air volume flowing in the first heat exchanger compared to before the prescribed benchmark is met, based on the increased air volume in the second ventilation unit.

根据该换气装置,在第2供气单元的空气量增加的情况下,通过使第1换气单元也增加空气量,对供气的空气量及排气的空气量进行调整,从而能够维持居室空间的舒适性。According to this ventilator, when the air volume of the second air supply unit increases, the air volume of the first ventilator is also increased to adjust the air volume of supply and exhaust, thereby maintaining the comfort of the living space.

关于所述换气装置,还可以包括:The ventilation device may further include:

第1换气单元,对经由所述第1空气流路流入所述第1热交换器的空气量进行调整;及a first ventilation unit that adjusts the amount of air flowing into the first heat exchanger through the first air flow path; and

第2换气单元,对经由所述第2空气流路流入所述第2热交换器的空气量进行调整,The second ventilation unit adjusts the amount of air flowing into the second heat exchanger through the second air flow path.

所述控制部,在所述第2热交换器作为蒸发器发挥功能的期间,在从设在所述室内空间的空调机接收到表示进行除霜运转的信号的情况下,视为满足所述规定基准,相较于满足所述规定基准之前而言,对所述第1换气单元进行使流入所述第1热交换器的空气量增加的控制,同时对所述第2换气单元进行使流入所述第2热交换器的空气量增加的控制。When the control unit receives a signal indicating a defrost operation from an air conditioner installed in the indoor space during the period when the second heat exchanger functions as an evaporator, the control unit deems that the prescribed criterion is satisfied, and controls the first ventilation unit to increase the amount of air flowing into the first heat exchanger, and at the same time controls the second ventilation unit to increase the amount of air flowing into the second heat exchanger, compared to before the prescribed criterion is satisfied.

根据该换气装置,在空调机进行除霜运转的情况下,通过使第1换气单元及第2换气单元的空气量分别增加,能够抑制制热性能的降低,维持居室空间的舒适性。According to this ventilating device, when the air conditioner performs the defrosting operation, the air volumes of the first ventilating unit and the second ventilating unit are increased, thereby suppressing a decrease in heating performance and maintaining the comfort of the living space.

关于所述换气装置,还可以包括:The ventilation device may further include:

旁路流路,将通过所述第1热交换器进行热交换之后的空气引导至所述第2热交换器;及a bypass flow path for guiding the air after heat exchange in the first heat exchanger to the second heat exchanger; and

第2引导机构,对是否经由所述旁路流路将空气引导至所述第2热交换器进行切换,The second guide mechanism switches whether to guide the air to the second heat exchanger via the bypass flow path.

所述控制部,在满足所述规定基准的情况下,控制所述第2引导机构,以经由所述旁路流路将空气引导至所述第2热交换器。The control unit controls the second guide mechanism to guide the air to the second heat exchanger via the bypass flow path when the predetermined criterion is satisfied.

根据该换气装置,通过将空气经由旁路流路引导至所述第2热交换器,使第2热交换器中流动的制冷剂的温度上升而抑制结霜,能够实现高效率的结霜抑制。According to this ventilator, air is introduced to the second heat exchanger via the bypass flow path, so that the temperature of the refrigerant flowing through the second heat exchanger is increased to suppress frost formation, thereby achieving efficient frost formation suppression.

关于所述换气装置,还可以是,Regarding the ventilation device, it may also be that:

所述换气装置还具有第2换气单元,其对经由所述第2空气流路流入所述第2热交换器的空气量进行调整,The ventilation device further includes a second ventilation unit that adjusts the amount of air flowing into the second heat exchanger via the second air flow path.

所述控制部,在满足所述规定基准的情况下,使所述压缩机停止,并对所述第2换气单元进行使经由所述第2空气流路的空气流向所述第2热交换器流动的控制。The control unit stops the compressor and controls the second ventilation unit to flow the air passing through the second air flow path toward the second heat exchanger when the predetermined criterion is satisfied.

根据该换气装置,在使压缩机停止的基础上,通过使空气流向第2热交换器,使第2热交换器中流动的制冷剂的温度上升而抑制结霜,从而能够实现高效率的结霜抑制。According to this ventilator, after stopping the compressor, air is caused to flow to the second heat exchanger, thereby raising the temperature of the refrigerant flowing through the second heat exchanger to suppress frost formation, thereby achieving highly efficient frost suppression.

关于所述换气装置,还可以包括:The ventilation device may further include:

多个所述第2热交换器;及a plurality of said second heat exchangers; and

与每个所述第2热交换器对应的第2换气单元,a second ventilation unit corresponding to each of the second heat exchangers,

所述制冷剂回路还具有第1阀门部,其按照每个所述第2热交换器,对流入该第2热交换器的流路的开度进行调整,The refrigerant circuit further includes a first valve portion for adjusting the opening degree of a flow path flowing into the second heat exchanger for each of the second heat exchangers.

所述控制部,在从多个所述第2热交换器检测出的与温度相关的信息满足所述规定基准的情况下,进行按照规定的顺序关闭与满足所述规定基准的所述第2热交换器对应的多个所述第1阀门部的控制,并对与满足所述规定基准的所述第2热交换器对应的所述第2换气单元,进行使经由所述第2空气流路的空气流入所述第2热交换器的控制。The control unit, when the temperature-related information detected from the plurality of second heat exchangers satisfies the prescribed criterion, controls the plurality of first valve units corresponding to the second heat exchangers that satisfy the prescribed criterion to close in a prescribed order, and controls the second ventilation unit corresponding to the second heat exchanger that satisfies the prescribed criterion to allow air passing through the second air flow path to flow into the second heat exchanger.

根据该换气装置,通过按照规定的顺序关闭阀门部,能够抑制多个第2热交换器的制冷剂同时停止,从而能够维持居室空间的舒适性。According to this ventilator, by closing the valve portions in a predetermined order, it is possible to suppress the refrigerants in the plurality of second heat exchangers from being stopped at the same time, thereby maintaining the comfort of the living space.

关于所述换气装置,还可以包括:The ventilation device may further include:

第1换气单元,对经由所述第1空气流路流入所述第1热交换器的空气量进行调整;及a first ventilation unit that adjusts the amount of air flowing into the first heat exchanger through the first air flow path; and

第2换气单元,对经由所述第2空气流路流入所述第2热交换器的空气量进行调整,The second ventilation unit adjusts the amount of air flowing into the second heat exchanger through the second air flow path.

所述控制部,在满足所述规定基准的情况下,控制所述第1换气单元及所述第2换气单元,以使通过所述第2空气流路向所述室外排气的空气量变成多于通过所述第1空气流路向所述室内空间供气的空气量。The control unit controls the first ventilation unit and the second ventilation unit so that the amount of air exhausted to the outside through the second air flow path becomes larger than the amount of air supplied to the indoor space through the first air flow path when the predetermined reference is satisfied.

根据该换气装置,由于流入第2热交换器的空气增加,因此,第2热交换器中流动的制冷剂的温度上升而抑制结霜,能够实现高效率的结霜抑制。According to this ventilator, since the amount of air flowing into the second heat exchanger increases, the temperature of the refrigerant flowing through the second heat exchanger rises, and frost formation is suppressed, thereby achieving efficient frost suppression.

关于所述换气装置,还可以是,Regarding the ventilation device, it may also be that:

所述控制部,在满足所述规定基准的情况下,对所述第1热交换器进行控制,以使经由所述第1热交换器之后的空气的温度变成低于设在所述室内空间的空调机中设定的温度。The control unit controls the first heat exchanger so that the temperature of the air after passing through the first heat exchanger becomes lower than a temperature set in the air conditioner installed in the indoor space when the predetermined criterion is satisfied.

根据该换气装置,由于流入第2热交换器的制冷剂的温度上升,因此,能够实现有效率的结霜抑制。According to this ventilator, since the temperature of the refrigerant flowing into the second heat exchanger rises, efficient frost suppression can be achieved.

关于所述换气装置,还可以是,Regarding the ventilation device, it may also be that:

具有所述压缩机、所述第1热交换器、所述第2热交换器、所述制冷剂回路、与所述第2热交换器对应的第2换气单元的多个组合,A plurality of combinations of the compressor, the first heat exchanger, the second heat exchanger, the refrigerant circuit, and a second ventilation unit corresponding to the second heat exchanger,

所述控制部,在从多个所述第2热交换器检测出的与温度相关的信息满足所述规定基准的情况下,进行使与满足所述规定基准的所述第2热交换器对应的所述压缩机按照规定的顺序停止的控制,并对与满足所述规定基准的所述第2热交换器对应的所述第2换气单元,进行使经由所述第2空气流路的空气流入所述第2热交换器的控制。The control unit, when the temperature-related information detected from the plurality of second heat exchangers satisfies the prescribed criterion, controls the compressors corresponding to the second heat exchangers that satisfy the prescribed criterion to stop in a prescribed order, and controls the second ventilation unit corresponding to the second heat exchanger that satisfies the prescribed criterion to allow air passing through the second air flow path to flow into the second heat exchanger.

根据该换气装置,通过抑制多个第2热交换器的制冷剂同时停止,能够维持居室空间的舒适性。According to this ventilator, the comfort of the living space can be maintained by suppressing the simultaneous stop of the refrigerants in the plurality of second heat exchangers.

关于所述换气装置,还可以包括:The ventilation device may further include:

第1壳体,收容所述第1热交换器及所述第1空气流路的至少一部分;及a first housing accommodating the first heat exchanger and at least a portion of the first air flow path; and

第2壳体,收容所述第2热交换器及所述第2空气流路的至少一部分,a second housing accommodating the second heat exchanger and at least a portion of the second air flow path;

所述第1壳体与所述第2壳体能够分离。The first housing and the second housing are separable.

根据该换气装置,由于第1壳体与第2壳体是能够分离的,因此配置布局变得容易,而能够减轻设置时的负担。According to this ventilation device, since the first housing and the second housing are separable, the arrangement layout becomes easy and the burden at the time of installation can be reduced.

关于所述换气装置,还可以是,Regarding the ventilation device, it may also be that:

所述控制部,在满足所述规定基准的情况下,进行相较于满足所述规定基准之前而言降低所述压缩机的旋转数的控制。The control unit performs control to reduce the rotation speed of the compressor compared to before the predetermined criterion is satisfied, when the predetermined criterion is satisfied.

根据该换气装置,通过降低压缩机的旋转数,第2热交换器中流动的制冷剂的温度会上升,因此,能够实现有效率的结霜抑制。According to this ventilator, since the temperature of the refrigerant flowing through the second heat exchanger increases by reducing the rotation speed of the compressor, efficient frost suppression can be achieved.

关于所述换气装置,还可以是,Regarding the ventilation device, it may also be that:

所述制冷剂回路还具有第2阀门部,其设置在所述第1热交换器与所述第2热交换器之间,用于调整流路的开度,The refrigerant circuit further comprises a second valve portion, which is disposed between the first heat exchanger and the second heat exchanger and is used to adjust the opening of the flow path.

所述控制部,在满足所述规定基准的情况下,进行相较于满足所述规定基准之前而言使所述第2阀门部的所述开度增大的控制。The control unit performs control to increase the opening degree of the second valve unit compared to before the predetermined criterion is satisfied, when the predetermined criterion is satisfied.

关于所述换气装置,还可以是,Regarding the ventilation device, it may also be that:

所述换气装置还具备第3阀门部,在所述第2热交换器作为蒸发器发挥功能时,在所述制冷剂回路中的所述制冷剂流中,所述第3阀门部位于所述第2热交换器的下游,The ventilator further includes a third valve portion, wherein when the second heat exchanger functions as an evaporator, the third valve portion is located downstream of the second heat exchanger in the refrigerant flow in the refrigerant circuit.

所述控制部,进而,在所述第2热交换器作为蒸发器发挥功能时,在满足所述规定基准的情况下,进行与满足所述规定基准之前而言收紧所述第3阀门部的控制。Furthermore, when the second heat exchanger functions as an evaporator and the predetermined criterion is satisfied, the control unit performs control to tighten the third valve unit compared to before the predetermined criterion is satisfied.

关于所述换气装置,还可以包括:The ventilation device may further include:

第3热交换器,作为冷凝器或蒸发器发挥功能;The third heat exchanger functions as a condenser or an evaporator;

第3空气流路,将所述室外的空气与所述第3热交换器中流动的所述制冷剂进行热交换之后的空气,向所述室外进行排气;a third air flow path for exhausting the air after heat exchange between the outdoor air and the refrigerant flowing in the third heat exchanger to the outside of the room;

所述制冷剂回路中除了所述压缩机、所述第1热交换器及所述第2热交换器之外,还有所述第3热交换器通过所述制冷剂管道被连接。In addition to the compressor, the first heat exchanger, and the second heat exchanger, the refrigerant circuit further includes the third heat exchanger connected via the refrigerant pipe.

本发明提供一种空调系统,包括:The present invention provides an air conditioning system, comprising:

换气装置,其具有在热回收换气运转时作为压缩机及冷凝器或蒸发器发挥功能的第1热交换器、将从室外导入的空气经由所述第1热交换器之后向室内空间供气第1空气流路、作为冷凝器或蒸发器发挥功能的第2热交换器、将从所述室内空间导入的空气经由所述第2热交换器之后向所述室外排气第2空气流路、通过制冷剂管道连接所述压缩机及所述第1热交换器及所述第2热交换器而成,并有制冷剂在其内部流动的制冷剂回路;A ventilator having a first heat exchanger functioning as a compressor and a condenser or an evaporator during heat recovery ventilation operation, a first air flow path for supplying air introduced from the outside to an indoor space after passing through the first heat exchanger, a second heat exchanger functioning as a condenser or an evaporator, a second air flow path for exhausting air introduced from the indoor space to the outside after passing through the second heat exchanger, and a refrigerant circuit in which the compressor, the first heat exchanger, and the second heat exchanger are connected by a refrigerant pipe and a refrigerant flows therein;

空调机,其具有作为冷凝器或蒸发器发挥功能的第3热交换器、以及将所述室内空间的空气与第3热交换器中流动的制冷剂进行热交换之后的空气排出到所述室内空间的空调室内机;及an air conditioner having a third heat exchanger functioning as a condenser or an evaporator, and an air conditioner indoor unit for discharging air in the indoor space after heat exchange between the air in the indoor space and the refrigerant flowing in the third heat exchanger to the indoor space; and

控制部,检测是否满足表示所述第2热交换器结霜的可能性的规定基准,并在检测出满足该规定基准的情况下,根据为了成为使所述第2热交换器不结霜的温度而对所述第2热交换器中流动的所述制冷剂的温度进行控制的情况下所需的所述换气装置及所述空调机的消耗功率、及在所述第2热交换器结霜之后用于消除所述第2热交换器的结霜的所述换气装置及所述空调机进行运转时所需的消耗功率,来控制所述第2热交换器中流动的所述制冷剂的温度以成为使所述第2热交换器不结霜的温度,或者对所述第2热交换器结霜之后用于消除所述第2热交换器的结霜的运转进行控制。A control unit detects whether a prescribed criterion indicating the possibility of frost on the second heat exchanger is satisfied, and when detecting that the prescribed criterion is satisfied, controls the temperature of the refrigerant flowing in the second heat exchanger to a temperature at which the second heat exchanger is not frosted, or controls the operation for removing frost on the second heat exchanger after the second heat exchanger is frosted, based on the power consumption of the ventilation device and the air conditioner required for controlling the temperature of the refrigerant flowing in the second heat exchanger to a temperature at which the second heat exchanger is not frosted, and the power consumption required for operating the ventilation device and the air conditioner for removing frost on the second heat exchanger after the second heat exchanger is frosted.

根据该空调系统,通过在满足规定基准的情况下控制制冷剂的温度,能够实现有效的结霜的抑制。According to this air conditioning system, by controlling the temperature of the refrigerant while satisfying a predetermined standard, effective suppression of frost formation can be achieved.

本发明提供一种换气方法,其中,The present invention provides a ventilation method, wherein:

对具有作为压缩机、冷凝器或蒸发器发挥功能的第1热交换器、将从室外导入的空气经由所述第1热交换器之后向室内空间供气的第1空气流路、作为冷凝器或蒸发器发挥功能的第2热交换器、将从所述室内空间导入的空气经由所述第2热交换器之后向所述室外排气的第2空气流路、通过制冷剂管道连接所述压缩机及所述第1热交换器及所述第2热交换器而成并有制冷剂在内部流动的制冷剂回路的换气装置进行控制时,在所述第2热交换器作为蒸发器发挥功能的期间,检测是否满足表示所述第2热交换器结霜的可能性的规定基准,并在检测出满足该规定基准的情况下,控制所述第2热交换器中流动的所述制冷剂的温度,以成为使所述第2热交换器不结霜的温度。When controlling a ventilation device having a first heat exchanger functioning as a compressor, a condenser or an evaporator, a first air flow path for supplying air introduced from the outside to an indoor space after passing through the first heat exchanger, a second heat exchanger functioning as a condenser or an evaporator, a second air flow path for exhausting air introduced from the indoor space to the outside after passing through the second heat exchanger, and a refrigerant circuit formed by connecting the compressor, the first heat exchanger and the second heat exchanger through a refrigerant pipe and having a refrigerant flowing therein, it is detected whether a prescribed criterion indicating the possibility of frost on the second heat exchanger is satisfied while the second heat exchanger functions as an evaporator, and when it is detected that the prescribed criterion is satisfied, the temperature of the refrigerant flowing in the second heat exchanger is controlled to be a temperature at which frost is not formed on the second heat exchanger.

根据该换气方法,通过在满足规定基准的情况下控制制冷剂的温度,能够实现有效率的结霜抑制。According to this ventilation method, by controlling the temperature of the refrigerant while satisfying a predetermined standard, efficient frost suppression can be achieved.

本发明提供一种换气系统,包括:The present invention provides a ventilation system, comprising:

通过制冷剂管道连接压缩机、第1热交换器及第2热交换器而成并有制冷剂在其内部流动的制冷剂回路;经由所述第1热交换器将室外的空气向室内供气的供气风扇;经由所述第2热交换器将所述室内的空气向所述室外排气的排气风扇;及控制部,所述控制部,在使所述第2热交换器作为蒸发器发挥功能的情况下,启动所述压缩机,在判断为所述制冷剂回路的低压压力、或所述第2热交换器的蒸发温度、或所述室内的温度、或所述室外的温度低于与所述制冷剂回路的低压压力、或所述第2热交换器的蒸发温度、或所述室内的温度、或所述室外的温度相关的第1阈值时,进行使所述制冷剂回路的低压压力上升的第1控制。A refrigerant circuit comprising a compressor, a first heat exchanger and a second heat exchanger connected by a refrigerant pipe and having a refrigerant flowing therein; an air supply fan for supplying outdoor air to indoor air via the first heat exchanger; an exhaust fan for exhausting the indoor air to the outdoor air via the second heat exchanger; and a control unit, wherein the control unit starts the compressor while the second heat exchanger functions as an evaporator, and performs a first control for increasing the low pressure of the refrigerant circuit when it is determined that the low pressure of the refrigerant circuit, the evaporating temperature of the second heat exchanger, the indoor temperature, or the outdoor temperature is lower than a first threshold value related to the low pressure of the refrigerant circuit, the evaporating temperature of the second heat exchanger, the indoor temperature, or the outdoor temperature.

根据该换气系统,对于具备能够从排气中回收热能的制冷剂回路的换气系统,在使第2热交换器作为蒸发器发挥功能的情况下,能够保证使压缩机持续运转。According to this ventilation system, in the ventilation system including the refrigerant circuit capable of recovering heat energy from exhaust gas, when the second heat exchanger is made to function as an evaporator, it is possible to ensure that the compressor is continuously operated.

关于所述换气系统,优选为,Regarding the ventilation system, preferably,

所述制冷剂回路包括所述压缩机的吐出管道、与所述第2热交换器或与该第2热交换器相连的液体管连接的旁路管道、以及设在所述旁路管道中的阀门,所述控制部在所述第1控制状态下开通所述阀门。The refrigerant circuit includes a discharge pipe of the compressor, a bypass pipe connected to the second heat exchanger or a liquid pipe connected to the second heat exchanger, and a valve provided in the bypass pipe, and the control unit opens the valve in the first control state.

在此情况下,能够在第1控制状态下,将高温高压的气体制冷剂提供给第2热交换器。从而,能够抑制第2热交换器的结霜。In this case, the high-temperature and high-pressure gas refrigerant can be supplied to the second heat exchanger in the first control state. Therefore, frost formation on the second heat exchanger can be suppressed.

关于所述换气系统,优选为,Regarding the ventilation system, preferably,

所述控制部,在开通所述阀门的情况下,在判断为所述制冷剂回路的低压压力、或所述第2热交换器的饱和温度、或所述第2热交换器的吸入空气温度超过与所述制冷剂回路的低压压力、或所述第2热交换器的饱和温度、或所述第2热交换器的吸入空气温度相关的第2阈值时,关闭所述阀门。The control unit, when the valve is opened, closes the valve upon determining that the low pressure of the refrigerant circuit, the saturation temperature of the second heat exchanger, or the intake air temperature of the second heat exchanger exceeds a second threshold value related to the low pressure of the refrigerant circuit, the saturation temperature of the second heat exchanger, or the intake air temperature of the second heat exchanger.

在此情况下,能够在第1控制的执行中,在具备了使第2热交换器作为蒸发器发挥功能的条件的情况下、能够结束第1控制。In this case, when the condition for causing the second heat exchanger to function as an evaporator is satisfied during execution of the first control, the first control can be terminated.

关于所述换气系统,优选为,Regarding the ventilation system, preferably,

所述控制部,在所述第1控制状态下,使所述第2热交换器吸入相较于与所述吸入空气温度相关的第2阈值而言高温度的空气。The control unit causes the second heat exchanger to take in air having a temperature higher than a second threshold value related to the intake air temperature in the first control state.

在此情况下,在第1控制的执行中,能够使温度高于第2阈值的空气流入第2热交换器。由此,能够抑制第2热交换器的结霜。In this case, during the execution of the first control, air having a temperature higher than the second threshold value can be caused to flow into the second heat exchanger. This can suppress frost formation on the second heat exchanger.

关于所述换气系统,优选为,Regarding the ventilation system, preferably,

所述控制部,在所述第1控制状态下,调整所述供气风扇的吹出方向,以将从所述供气风扇吹出的空气引导向所述排气风扇的吸入侧。The control unit adjusts the blowing direction of the air supply fan in the first control state so as to guide the air blown out from the air supply fan to the suction side of the exhaust fan.

在此情况下,在第1控制的执行中,能够使温度高于第2阈值的空气流入第2热交换器。In this case, during execution of the first control, air having a temperature higher than the second threshold value can be caused to flow into the second heat exchanger.

关于所述换气系统,优选为,Regarding the ventilation system, preferably,

所述换气系统还具备空调机,其进行所述室内的空气调节,所述控制部,在所述第1控制状态下,通过所述空调机的调节,所述室内的空气温度变得高于所述第2阈值时,使所述排气风扇驱动。The ventilation system further includes an air conditioner that performs air conditioning in the room, and the control unit drives the exhaust fan when the air temperature in the room becomes higher than the second threshold value due to conditioning by the air conditioner in the first control state.

在此情况下,在第1控制的执行中,能够使温度高于第2阈值的空气流入第2热交换器。In this case, during execution of the first control, air having a temperature higher than the second threshold value can be caused to flow into the second heat exchanger.

附图说明BRIEF DESCRIPTION OF THE DRAWINGS

图1是表示实施方式1的换气装置及空调机的构成例的图。FIG. 1 is a diagram showing a configuration example of a ventilator and an air conditioner according to Embodiment 1. FIG.

图2是表示实施方式1的换气装置的排气单元进行的结霜抑制控制的流程图。FIG. 2 is a flowchart showing frost suppression control performed by the exhaust unit of the ventilation device according to Embodiment 1. FIG.

图3是表示实施方式1的变形例3的换气装置及空调机的构成例的图。FIG. 3 is a diagram showing a configuration example of a ventilator and an air conditioner according to a third modification of the first embodiment.

图4是表示实施方式2的换气装置及空调机的构成例的图。FIG. 4 is a diagram showing a configuration example of a ventilator and an air conditioner according to Embodiment 2. FIG.

图5是表示实施方式2的变形例1的制冷剂回路的图。FIG. 5 is a diagram showing a refrigerant circuit according to Modification 1 of Embodiment 2. FIG.

图6是表示实施方式3的换气装置、空调机及上位控制装置的构成例的图。FIG. 6 is a diagram showing a configuration example of a ventilation device, an air conditioner, and a host control device according to a third embodiment.

图7是表示实施方式3的空调机的除霜运转开始的情况下,在上位控制装置、换气装置及空调机之间进行的处理流程的时序图。7 is a sequence diagram showing a flow of processing performed among the host control device, the ventilation device, and the air conditioner when the defrosting operation of the air conditioner according to Embodiment 3 is started.

图8是表示在实施方式4的各个排气单元群有可能结霜的情况下,在上位控制装置、压缩机单元以及排气单元群之间进行的处理流程的时序图。8 is a timing chart showing a flow of processing performed among the host control device, the compressor unit, and the exhaust unit group when there is a possibility of frost formation on each exhaust unit group in Embodiment 4. FIG.

图9是例示包括实施方式7的上位控制装置的装置群的配置的图。FIG. 9 is a diagram illustrating an arrangement of a device group including a host control device according to the seventh embodiment.

图10是例示包括实施方式8的上位控制装置的装置群的配置的图。FIG. 10 is a diagram illustrating an arrangement of a device group including a host control device according to the eighth embodiment.

图11是例示实施方式11的制冷剂回路的图。FIG. 11 is a diagram illustrating a refrigerant circuit according to Embodiment 11. FIG.

图12是例示实施方式11的变形例的制冷剂回路的图。FIG. 12 is a diagram illustrating a refrigerant circuit according to a modified example of Embodiment 11. FIG.

图13是表示实施例12的上位控制设备的处理顺序的流程图。FIG. 13 is a flowchart showing the processing procedure of the upper control device of the twelfth embodiment.

图14是一实施方式的换气系统的示意性结构图。FIG. 14 is a schematic structural diagram of a ventilation system according to an embodiment.

图15是一实施例的换气系统的控制方框图。FIG. 15 is a control block diagram of a ventilation system according to an embodiment.

图16是表示一实施方式的换气系统的动作的流程图。FIG. 16 is a flowchart showing the operation of the ventilation system according to one embodiment.

图17是实施方式13的换气系统的示意性构成图。FIG. 17 is a schematic configuration diagram of a ventilation system according to Embodiment 13. FIG.

图18是实施方式14的换气系统的示意性构成图。FIG. 18 is a schematic configuration diagram of a ventilation system according to a fourteenth embodiment.

图19是表示实施方式14及15的换气系统在建筑物中的设置状态的示意性构成图。FIG. 19 is a schematic configuration diagram showing the installation state of the ventilation system of Embodiments 14 and 15 in a building.

图20是实施方式15的换气系统的示意性构成图。FIG. 20 is a schematic configuration diagram of a ventilation system according to a fifteenth embodiment.

图21是实施方式16的换气系统的示意性构成图。FIG. 21 is a schematic configuration diagram of a ventilation system according to a sixteenth embodiment.

图22是实施方式17的换气系统的示意性构成图。FIG. 22 is a schematic configuration diagram of a ventilation system according to a seventeenth embodiment.

图23是实施方式18的换气系统的示意性构成图。FIG. 23 is a schematic configuration diagram of a ventilation system according to Embodiment 18. FIG.

具体实施方式Detailed ways

以下,参照附图来说明本实施方式的换气装置、空调系统、换气方法以及换气系统。另外,以下的实施方式本质上是优选的例示,并不表示限定本发明、其应用物或其应用的范围。Hereinafter, the ventilation device, air conditioning system, ventilation method and ventilation system of the present embodiment will be described with reference to the drawings. In addition, the following embodiments are essentially preferred examples and do not limit the present invention, its application objects or the scope of its application.

(实施方式1)(Implementation Method 1)

图1是表示实施方式1的换气装置及空调机的构成例的图。图1所示的例子是为了进行室内空间的空气调节而具备换气装置1与空调机2的空调系统。Fig. 1 is a diagram showing a configuration example of a ventilator and an air conditioner according to Embodiment 1. The example shown in Fig. 1 is an air conditioning system including a ventilator 1 and an air conditioner 2 for performing air conditioning of an indoor space.

在本实施方式中,作为室内空间的一例,以具有居室空间R11与顶棚背面空间R12为例进行说明,但室内空间不限定于居室空间R11及顶棚背面空间R12,只要是建筑物的内部空间即可,例如,也可以具有地板下空间。In this embodiment, as an example of an indoor space, a living space R11 and a ceiling back space R12 are used for explanation, but the indoor space is not limited to the living space R11 and the ceiling back space R12, as long as it is an internal space of a building, for example, it may also have an underfloor space.

居室空间R11例如是办公室或住宅内部的居室。顶棚背面空间R12是邻接在居室空间R11上方的空间。由于顶棚背面空间R12位于居室空间R11的上方,因此有温空气聚集的倾向。The living space R11 is, for example, an office or a living room in a house. The ceiling back space R12 is a space adjacent to the upper part of the living space R11. Since the ceiling back space R12 is located above the living space R11, warm air tends to gather therein.

空调机2包括室外机70及2台空调室内机81、82。另外,本实施方式的空调室内机的台数并不限定2台,也可以是1台或3台以上。The air conditioner 2 includes an outdoor unit 70 and two air conditioner indoor units 81 and 82. The number of air conditioner indoor units in the present embodiment is not limited to two, and may be one or three or more.

空调机2是进行蒸汽压缩式的冷冻循环,并进行居室空间R11的制冷或制热的装置。本实施方式的空调机2是能够对居室空间R11进行制冷及制热两种操作的装置。但是,本实施方式中并不限定于能够制冷及制热的两者的空调机,例如也可以是仅能制冷的装置。The air conditioner 2 is a device that performs a vapor compression refrigeration cycle and cools or heats the living space R11. The air conditioner 2 of this embodiment is a device that can perform both cooling and heating operations on the living space R11. However, this embodiment is not limited to an air conditioner that can perform both cooling and heating, and for example, it can also be a device that can only cool.

室外机70与2台空调室内机81、82之间,由连通管道F5连接。连通管道F5包含(未图示的)液体制冷剂连通管道及气体制冷剂连通管道。由此,实现了制冷剂在室外机70与2台空调室内机81、82之间循环的制冷剂回路。当制冷剂在该制冷剂回路内循环时,在空调机2中进行蒸气压缩式冷冻循环。The outdoor unit 70 and the two air conditioner indoor units 81 and 82 are connected by a communication pipe F5. The communication pipe F5 includes a liquid refrigerant communication pipe and a gas refrigerant communication pipe (not shown). Thus, a refrigerant circuit in which the refrigerant circulates between the outdoor unit 70 and the two air conditioner indoor units 81 and 82 is realized. When the refrigerant circulates in the refrigerant circuit, a vapor compression refrigeration cycle is performed in the air conditioner 2.

室外机70被配置在室外。而且,室外机70具备热交换器,将与在该热交换器中流动的制冷剂进行热交换之后的空气排出到室外。The outdoor unit 70 is disposed outdoors and includes a heat exchanger, and discharges air to the outdoors after exchanging heat with a refrigerant flowing through the heat exchanger.

空调室内机81、82具有热交换器,将与在该热交换器中流动的制冷剂进行热交换之后的空气向居室空间R11吹出。在本实施方式中,空调室内机81、82是设置在居室空间R11的顶棚的顶棚设置式室内机。尤其是,本实施方式的空调室内机81、82为顶棚埋入式的空调室内机,从换气口93A、93B吹出热交换之后的空气。在本实施方式中,对换气口93A、93B设置在顶棚的例子进行说明,但关于换气口93A、93B的设置位置并无特别限定。另外,空调室内机81、82不限定于顶棚埋入式,也可以是顶棚悬挂式。另外,空调室内机81、82也可以是壁挂式或落地式等的顶棚设置式以外的空调室内机。The air conditioner indoor units 81 and 82 have a heat exchanger, and blow the air after heat exchange with the refrigerant flowing in the heat exchanger to the living space R11. In the present embodiment, the air conditioner indoor units 81 and 82 are ceiling-mounted indoor units arranged on the ceiling of the living space R11. In particular, the air conditioner indoor units 81 and 82 of the present embodiment are ceiling-embedded air conditioner indoor units, and the air after heat exchange is blown out from the ventilation ports 93A and 93B. In the present embodiment, an example in which the ventilation ports 93A and 93B are arranged on the ceiling is described, but there is no particular limitation on the setting position of the ventilation ports 93A and 93B. In addition, the air conditioner indoor units 81 and 82 are not limited to the ceiling-embedded type, but may also be ceiling-suspended type. In addition, the air conditioner indoor units 81 and 82 may also be wall-mounted or floor-standing air conditioner indoor units other than ceiling-mounted types.

换气装置1具备排气单元10、供气单元20、压缩机单元50、制冷剂回路F1、F2、F3、F4、供气流路P1及回气流路P2。The ventilator 1 includes an exhaust unit 10 , an air supply unit 20 , a compressor unit 50 , refrigerant circuits F1 , F2 , F3 , and F4 , a supply air passage P1 , and a return air passage P2 .

换气装置1是将导入的室外空气向居室空间R11供气,并将从室内空间(包含居室空间R11)导入的空气向室外排气的装置。由此,换气装置1实现居室空间R11的空气交换。The ventilator 1 is a device that supplies introduced outdoor air to the living space R11 and exhausts air introduced from the indoor space (including the living space R11) to the outside. Thus, the ventilator 1 realizes air exchange in the living space R11.

进而,本实施方式的换气装置1通过在排气单元10与供气单元20之间进行热交换,来抑制从室外导入的空气的温度与居室空间R11的温度之间的温度差。Furthermore, the ventilator 1 of the present embodiment performs heat exchange between the exhaust unit 10 and the supply unit 20 , thereby suppressing the temperature difference between the temperature of the air introduced from the outside and the temperature of the living space R11 .

供气流路P1(第1空气流路的一例),是用于将从室外导入的空气在经由具有第1热交换器22的供气单元20之后从换气口92向居室空间R11供气的流路。本实施方式对换气口92设置在顶棚的例子进行说明,但对于换气口92的设置位置并无特别限定。The air supply passage P1 (an example of the first air flow passage) is a passage for supplying air introduced from the outside to the living space R11 from the ventilation port 92 after passing through the air supply unit 20 having the first heat exchanger 22. In this embodiment, an example in which the ventilation port 92 is provided on the ceiling is described, but the installation position of the ventilation port 92 is not particularly limited.

回气流路P2(第2空气流路的一例),是用于将从居室空间R11的换气口91导入的空气(回气)经由具有第2热交换器12的排气单元10之后排出到室外的流路。本实施方式对换气口91设置在顶棚的例子进行说明,但对换气口91的设置位置并无特别限定。The return air flow path P2 (an example of the second air flow path) is a flow path for discharging the air (return air) introduced from the ventilation port 91 of the living space R11 to the outside through the exhaust unit 10 having the second heat exchanger 12. This embodiment describes an example in which the ventilation port 91 is provided on the ceiling, but the installation position of the ventilation port 91 is not particularly limited.

本实施方式的回气流路P2中,为了能够从多个房间导入空气,空气的导入目标分支为2个。分别称为第1回气支路P2A(第2空气流路的一例)及第2回气支路P2B(第3空气流路的一例)。In the return air flow path P2 of this embodiment, in order to be able to introduce air from a plurality of rooms, the air introduction destination is divided into two branches, which are respectively called the first return air branch path P2A (an example of the second air flow path) and the second return air branch path P2B (an example of the third air flow path).

第1回气支路(第2空气流路的一例)P2A是为了将从居室空间R11导入的空气经由具有第2热交换器12的排气单元10之后向室外排气而设置的空气流路。第1回气支路P2A从设在居室空间R11的顶棚的换气口91导入空气。另外,本实施方式对换气口91的位置设置在顶棚的例子进行说明,但也可以设置在地板下、墙壁等其他位置。The first return air branch (an example of the second air flow path) P2A is an air flow path provided for exhausting the air introduced from the living space R11 to the outside through the exhaust unit 10 having the second heat exchanger 12. The first return air branch P2A introduces air from the ventilation port 91 provided on the ceiling of the living space R11. In addition, the present embodiment describes an example in which the ventilation port 91 is provided on the ceiling, but it may also be provided at other locations such as under the floor or on the wall.

第2回气支路(第3空气流路的一例)P2B是为了将从顶棚背面空间R12导入的空气在经由具有第2热交换器12的排气单元10之后向室外排气而设置的空气流路。本实施方式的第2回气支路P2B,作为与第1回气支路P2A不同的空气导入目标的房间,对顶棚背面空间R12的例子进行说明。但是,空气的导入目标并不限定于顶棚背面空间R12,也可以是地板下空间。如此,第2回气支路P2B的空气的导入目标只要是室内空间中的与居室空间R11不同的室即可。The second air return branch (an example of the third air flow path) P2B is an air flow path provided to exhaust the air introduced from the ceiling back space R12 to the outside after passing through the exhaust unit 10 having the second heat exchanger 12. The second air return branch P2B of this embodiment is described as an example of the ceiling back space R12 as a room of the air introduction target different from the first air return branch P2A. However, the air introduction target is not limited to the ceiling back space R12, but may also be the underfloor space. In this way, the air introduction target of the second air return branch P2B can be any room in the indoor space that is different from the living space R11.

另外,在第2回气支路的前端部分设置有开闭风门40。开闭风门40通常处于关闭状态。而且,开闭风门40(第1引导机构的一例)能够,通过从设置在排气单元10中的控制部13经由信号线S2进行的控制,能够调整从顶棚背面空间R12导入的空气量。In addition, an opening and closing damper 40 is provided at the front end portion of the second return air branch. The opening and closing damper 40 is usually in a closed state. Moreover, the opening and closing damper 40 (an example of the first guide mechanism) can adjust the amount of air introduced from the ceiling back space R12 through control performed by the control unit 13 provided in the exhaust unit 10 via the signal line S2.

制冷剂回路F1、F2、F3、F4是通过制冷剂管道连接压缩机单元50、供气单元20的第1热交换器22及排气单元10的第2热交换器12而成并有制冷剂在内部流动的回路。The refrigerant circuits F1, F2, F3, and F4 are circuits in which refrigerant flows by connecting the compressor unit 50, the first heat exchanger 22 of the air supply unit 20, and the second heat exchanger 12 of the air exhaust unit 10 via refrigerant pipes.

在压缩机单元50的控制部52、供气单元20的控制部23及排气单元10的控制部13之间,通过图1中虚线所示的信号线S1进行连接。由此,可在压缩机单元50的控制部52、供气单元20的控制部23及排气单元10的控制部13之间进行信息的收发。以下所示的控制部13、23、52所示的处理可以通过(未图示)CPU读出程序来实现,也可以通过硬件连线来实现。在以下的实施方式所示的控制部及上位控制装置中也是同样。The control unit 52 of the compressor unit 50, the control unit 23 of the air supply unit 20, and the control unit 13 of the exhaust unit 10 are connected by the signal line S1 shown by the dotted line in FIG. 1. Thus, information can be sent and received between the control unit 52 of the compressor unit 50, the control unit 23 of the air supply unit 20, and the control unit 13 of the exhaust unit 10. The processing shown in the control units 13, 23, and 52 shown below can be implemented by the CPU reading the program (not shown), or can be implemented by hardware wiring. The same is true in the control unit and the upper control device shown in the following embodiments.

压缩机单元50具有驱动用电动机51及控制部52,通过对制冷剂回路F1、F2、F3、F4中的任一个的制冷剂进行压缩,由此进行使制冷剂回路F1、F2、F3、F4内的制冷剂循环的控制。例如,在排气单元10内的第2热交换器12作为蒸发器发挥功能的情况下,压缩机单元50通过对制冷剂回路F2内的制冷剂进行压缩,使制冷剂回路F1、F2、F3、F4内的制冷剂循环。The compressor unit 50 includes a driving motor 51 and a control unit 52, and controls the circulation of the refrigerant in any of the refrigerant circuits F1, F2, F3, and F4 by compressing the refrigerant in the refrigerant circuits F1, F2, F3, and F4. For example, when the second heat exchanger 12 in the exhaust unit 10 functions as an evaporator, the compressor unit 50 compresses the refrigerant in the refrigerant circuit F2 to circulate the refrigerant in the refrigerant circuits F1, F2, F3, and F4.

驱动用电动机51是用于使压缩制冷剂的压缩机旋转(驱动)的电动机。The driving motor 51 is a motor for rotating (driving) a compressor that compresses refrigerant.

控制部52控制压缩机单元50内的结构。例如,控制部52对驱动用电动机51输出用于使压缩机旋转(驱动)的指令。The control unit 52 controls the internal structure of the compressor unit 50. For example, the control unit 52 outputs a command to the driving motor 51 to rotate (drive) the compressor.

供气单元20具备风扇21、第1热交换器22、控制部23、温度检测部24,并导入外部空气(OA),向居室空间R11进行供气(SA)。The air supply unit 20 includes a fan 21, a first heat exchanger 22, a control unit 23, and a temperature detection unit 24, and introduces outside air (OA) to supply air (SA) to the living space R11.

风扇21发挥将导入的外部空气(OA)向居室空间R11供气(SA)的功能。The fan 21 has a function of supplying (SA) the introduced outside air (OA) to the living space R11.

第1热交换器22作为冷凝器或蒸发器发挥功能。The first heat exchanger 22 functions as a condenser or an evaporator.

温度检测部24检测室外的气温、第1热交换器22的表面温度、第1热交换器22中流动的制冷剂的温度。The temperature detection unit 24 detects the outdoor air temperature, the surface temperature of the first heat exchanger 22 , and the temperature of the refrigerant flowing through the first heat exchanger 22 .

控制部23控制供气单元20内部的结构。控制部23根据温度检测部14的检测结果进行各种控制。例如,控制部23根据温度检测部24的检测结果来调整第1热交换器22的作为冷凝器或蒸发器的功能。The control unit 23 controls the internal structure of the air supply unit 20. The control unit 23 performs various controls based on the detection result of the temperature detection unit 14. For example, the control unit 23 adjusts the function of the first heat exchanger 22 as a condenser or an evaporator based on the detection result of the temperature detection unit 24.

排气单元10具备风扇11、第2热交换器12、控制部13、温度检测部14,导入居室空间R11的回气(RA),并向室外排气(EA)。The exhaust unit 10 includes a fan 11, a second heat exchanger 12, a control unit 13, and a temperature detection unit 14, and introduces return air (RA) from the living space R11 and exhausts it to the outside (EA).

风扇11发挥将从居室空间R11导入的回气(RA)向室外排气(EA)的功能。The fan 11 has a function of exhausting return air (RA) introduced from the living space R11 to the outside (EA).

第2热交换器12作为冷凝器或蒸发器发挥功能。The second heat exchanger 12 functions as a condenser or an evaporator.

温度检测部14检测室内的气温、第2热交换器12的表面温度、第2热交换器12中流动的制冷剂的温度。进而,作为检测的室内的气温,例如包含经由(未图示)传感器部的居室空间R11内的空气的温度及顶棚背面空间R12内的空气的温度等。The temperature detection unit 14 detects the indoor temperature, the surface temperature of the second heat exchanger 12, and the temperature of the refrigerant flowing in the second heat exchanger 12. Furthermore, the indoor temperature to be detected includes, for example, the temperature of the air in the living space R11 and the temperature of the air in the ceiling back space R12 via the sensor unit (not shown).

控制部13控制排气单元10内部的结构。控制部13根据温度检测部14的检测结果进行各种控制。例如,控制部13根据温度检测部14的检测结果来调整第2热交换器12作为冷凝器或蒸发器的功能。The control unit 13 controls the internal structure of the exhaust unit 10. The control unit 13 performs various controls based on the detection result of the temperature detection unit 14. For example, the control unit 13 adjusts the function of the second heat exchanger 12 as a condenser or an evaporator based on the detection result of the temperature detection unit 14.

而且,本实施方式的控制部13根据温度检测部14的检测结果对开闭风门40进行控制,从而能够对从顶棚背面空间R12导入的空气量进行调整。Furthermore, the control unit 13 of the present embodiment controls the opening and closing damper 40 based on the detection result of the temperature detection unit 14, thereby being able to adjust the amount of air introduced from the ceiling rear space R12.

对气温低的情况下换气装置1进行的处理进行说明。在气温低的情况下,换气装置1在供气单元20中对从室外导入的外部空气(OA)加温之后,对居室空间R11进行供气(SA),并且在排气单元10中对从居室空间R11导入的回气(RA)降温之后,向室外进行排气(EA)。即,供气单元20内的第1热交换器22作为冷凝器发挥功能,并且排气单元10内的第2热交换器12作为蒸发器发挥功能。第2热交换器12作为蒸发器发挥功能,回使第2热交换器12中流动的制冷剂的温度下降,因此产生第2热交换器12冻结(结霜)的可能性。对此,在本实施方式中,进行为了避免第2热交换器12的冻结(结霜)、或者在假设结霜的情况下霜不成长的控制。在后述的实施方式中,将避免结霜的控制、以及假设结霜的情况下抑制结霜成长的控制中的至少一个以上的控制,称为抑制结霜的控制。The processing performed by the ventilator 1 when the temperature is low will be described. When the temperature is low, the ventilator 1 heats the outside air (OA) introduced from the outside in the air supply unit 20 and then supplies air to the living space R11 (SA), and cools the return air (RA) introduced from the living space R11 in the exhaust unit 10 and then exhausts air to the outside (EA). That is, the first heat exchanger 22 in the air supply unit 20 functions as a condenser, and the second heat exchanger 12 in the exhaust unit 10 functions as an evaporator. The second heat exchanger 12 functions as an evaporator, which lowers the temperature of the refrigerant flowing in the second heat exchanger 12, so there is a possibility that the second heat exchanger 12 freezes (frosts). In this regard, in this embodiment, control is performed to avoid freezing (frost) of the second heat exchanger 12 or to prevent frost from growing when frost is assumed. In the embodiments described below, at least one of the control to avoid frost and the control to suppress frost growth when frost is assumed is referred to as control to suppress frost.

具体而言,排气单元10的控制部13在第2热交换器12作为蒸发器发挥功能的期间,根据温度检测部14的检测结果,判定是否满足表示第2热交换器12结霜(冻结)的可能性的规定基准。作为表示第2热交换器12结霜(冻结)的可能性的规定基准,例如也可以是判定温度检测部14检测出的室外的气温是否为0度以下的基准。另外,在本实施方式中,规定基准不限定于室外的气温是否为0度以下,也可以作为判定室外的气温是否为第2热交换器12的动作最低温度的基准。Specifically, the control unit 13 of the exhaust unit 10 determines whether the predetermined reference indicating the possibility of frost (freeze) of the second heat exchanger 12 is satisfied based on the detection result of the temperature detection unit 14 during the period when the second heat exchanger 12 functions as an evaporator. As the predetermined reference indicating the possibility of frost (freeze) of the second heat exchanger 12, for example, it may be a reference for determining whether the outdoor temperature detected by the temperature detection unit 14 is below 0 degrees. In addition, in the present embodiment, the predetermined reference is not limited to whether the outdoor temperature is below 0 degrees, and it may also be a reference for determining whether the outdoor temperature is the minimum operating temperature of the second heat exchanger 12.

另外,规定基准也可以不是根据外部空气的气温的基准。例如,也可以将第2热交换器12的表面温度是否为规定的温度(例如0度)以下作为判定基准。作为另一例,也可以将第2热交换器12中流动的制冷剂的温度是否为规定的温度(例如0度)以下作为判定基准。在以后所示的说明中,表示规定基准的例子,但只要是表示第2热交换器12结霜(冻结)的可能性的基准,可以使用任意基准。例如,如后述的实施方式所示,也可以作为判定制冷剂回路F1、F2、F3、F4的低压压力是否低于规定的压力阈值的基准。In addition, the prescribed reference may not be a reference based on the temperature of the outside air. For example, whether the surface temperature of the second heat exchanger 12 is below a prescribed temperature (e.g., 0 degrees) may be used as a judgment reference. As another example, whether the temperature of the refrigerant flowing in the second heat exchanger 12 is below a prescribed temperature (e.g., 0 degrees) may be used as a judgment reference. In the description shown below, examples of prescribed references are shown, but any reference may be used as long as it is a reference that indicates the possibility of frost (freezing) of the second heat exchanger 12. For example, as shown in the embodiment described below, it may also be used as a reference for determining whether the low pressure of the refrigerant circuits F1, F2, F3, and F4 is lower than a prescribed pressure threshold.

在本实施方式中,对获取外部空气的温度或第2热交换器的表面温度等,并判定所获取的温度是否满足规定基准的例子进行说明。然而,本实施方式表示要获取的信息的一例,要获取的信息只要是能够判断是否满足规定基准的信息即可。例如,除了外部空气的温度以外,也可以获取第2热交换器12的表面温度、制冷剂的温度或者制冷剂的压力等。另外,也可以组合这些信息来进行是否满足规定基准的判定。另外,以下所示的实施方式及变形例也表示获取的信息的一例,只要能够判定是否满足规定基准,则可以是任意的信息。In this embodiment, an example of obtaining the temperature of the outside air or the surface temperature of the second heat exchanger, etc., and determining whether the obtained temperature meets the prescribed benchmark is described. However, this embodiment represents an example of information to be obtained, and the information to be obtained only needs to be information that can determine whether the prescribed benchmark is met. For example, in addition to the temperature of the outside air, the surface temperature of the second heat exchanger 12, the temperature of the refrigerant, or the pressure of the refrigerant, etc. can also be obtained. In addition, this information can also be combined to determine whether the prescribed benchmark is met. In addition, the embodiments and modified examples shown below also represent an example of information obtained, and any information can be used as long as it can determine whether the prescribed benchmark is met.

本实施方式的排气单元10的控制部13,在判定为满足规定基准的情况下,作为抑制第2热交换器12的结霜的控制,进行开通开闭风门40的控制,以作为抑制第2热交换器12的结霜的控制,将存在于顶棚背面空间R12的空气经由第2回气支路P2B引导至第2热交换器12。即,由于顶棚背面空间R12存在于居室空间R11的上方,因此会有温暖的空气集中。因此,在有第2热交换器12结霜的可能性的情况下,进行开通开闭风门40的控制。通过该控制,将存在于顶棚背面空间R12的温暖的空气与存在于居室空间R11的空气混合之后的空气,引导至第2热交换器12。The control unit 13 of the exhaust unit 10 of the present embodiment, when it is determined that the prescribed criterion is satisfied, controls the opening and closing damper 40 as a control to suppress the frosting of the second heat exchanger 12, so that the air existing in the ceiling back space R12 is guided to the second heat exchanger 12 via the second return air branch P2B as a control to suppress the frosting of the second heat exchanger 12. That is, since the ceiling back space R12 exists above the living space R11, warm air is concentrated there. Therefore, when there is a possibility of frosting of the second heat exchanger 12, the control of opening and closing damper 40 is performed. Through this control, the air after the warm air existing in the ceiling back space R12 and the air existing in the living space R11 are mixed is guided to the second heat exchanger 12.

本实施方式的控制部13,作为使第2热交换器12中流动的制冷剂的温度上升的控制的一例,进行使顶棚背面空间R12的温暖的空气流至第2热交换器12的控制。由此,能够抑制第2热交换器12结霜。The controller 13 of this embodiment controls warm air in the ceiling back space R12 to flow to the second heat exchanger 12 as an example of control to increase the temperature of the refrigerant flowing through the second heat exchanger 12. This can suppress frost formation on the second heat exchanger 12.

图2是表示本实施方式的换气装置1的排气单元10进行的结霜抑制控制的流程图。FIG. 2 is a flowchart showing frost suppression control performed by exhaust unit 10 of ventilation device 1 according to the present embodiment.

排气单元10的控制部13从温度检测部14获取外部空气的温度(S1201)。The control unit 13 of the exhaust unit 10 acquires the temperature of the outside air from the temperature detection unit 14 ( S1201 ).

排气单元10的控制部13,根据所获取的外部空气的温度来判断是否满足表示第2热交换器12冻结的可能性的规定基准(S1202)。The control unit 13 of the exhaust unit 10 determines whether a predetermined criterion indicating the possibility of freezing of the second heat exchanger 12 is satisfied based on the acquired temperature of the outside air (S1202).

排气单元10的控制部13,在判定为不满足规定基准的情况下(S1202:否),不经特别处理即结束处理。When the control unit 13 of the exhaust unit 10 determines that the predetermined criterion is not satisfied (S1202: No), the control unit 13 of the exhaust unit 10 ends the processing without performing any special processing.

另一方面,排气单元10的控制部13,在判定为满足规定基准的情况下(S1202:是),从温度检测部14获取顶棚背面空间R12内的空气的温度及从居室空间R11导入的空气的温度(S1203)。On the other hand, when the control unit 13 of the exhaust unit 10 determines that the predetermined criterion is satisfied (S1202: YES), it obtains the temperature of the air in the ceiling back space R12 and the temperature of the air introduced from the living space R11 from the temperature detection unit 14 (S1203).

排气单元10的控制部13判定顶棚背面空间R12的空气的温度是否高于居室空间R11的空气的温度(S1204)。控制部13,在判定为顶棚背面空间R12的空气的温度为居室空间R11的空气的温度以下的情况下(S1204:否),不进行与开闭风门40相关的控制而结束处理。另外,在不进行与开闭风门40相关的控制的情况下,也可以进行以下实施方式及变形例中说明的用于抑制结霜的控制。The control unit 13 of the exhaust unit 10 determines whether the temperature of the air in the ceiling back space R12 is higher than the temperature of the air in the living space R11 (S1204). When the control unit 13 determines that the temperature of the air in the ceiling back space R12 is lower than the temperature of the air in the living space R11 (S1204: No), the control unit 13 does not perform the control related to the opening and closing of the damper 40 and ends the process. In addition, when the control related to the opening and closing of the damper 40 is not performed, the control for suppressing frost described in the following embodiment and modified example may be performed.

另一方面,控制部13,在判断为顶棚背面空间R12的空气温度高于居室空间R11的空气温度的情况下(S1204:是),进行开通开闭风门40的控制(S1205)。On the other hand, when the control unit 13 determines that the air temperature of the ceiling rear space R12 is higher than the air temperature of the living space R11 (S1204: Yes), it performs control to open the damper 40 (S1205).

在本实施方式中,通过所述的处理顺序,在有第2热交换器12结霜的可能性的情况下,将有比居室空间R11温暖的空气存在的顶棚背面空间R12的空气引导至第2热交换器12。In the present embodiment, by the above-described processing sequence, when the second heat exchanger 12 is likely to be frosted, the air in the ceiling rear space R12 where air warmer than the living space R11 exists is guided to the second heat exchanger 12 .

即,第2热交换器12中流动的空气的温度会上升,因此能够使第2热交换器12中流动的制冷剂的温度上升。由此,能够降低第2热交换器12结霜的可能性。That is, the temperature of the air flowing through the second heat exchanger 12 increases, and thus it is possible to increase the temperature of the refrigerant flowing through the second heat exchanger 12. Thus, the possibility of frost formation on the second heat exchanger 12 can be reduced.

(实施方式1的变形例1)(Variation 1 of Implementation Example 1)

在所述的实施方式1中,作为对第2热交换器12中流动的空气的温度上升进行控制的一例,说明了通过将顶棚背面空间R12的空气引导到第2热交换器12来降低第2热交换器12结霜的可能性的方法。但是,使第2热交换器12中流动的空气的温度上升的控制方法并不限定于将顶棚背面空间R12的空气引导到第2热交换器12的方法,也可以使用其他的方法。对此,在实施方式1的变形例1中,对通过控制空调机2来提升居室空间R11内的空气的温度(室温)的例子进行说明。In the first embodiment described above, as an example of controlling the temperature rise of the air flowing through the second heat exchanger 12, a method of reducing the possibility of frosting of the second heat exchanger 12 by guiding the air of the ceiling back space R12 to the second heat exchanger 12 is described. However, the method of controlling the temperature rise of the air flowing through the second heat exchanger 12 is not limited to the method of guiding the air of the ceiling back space R12 to the second heat exchanger 12, and other methods may also be used. In this regard, in a modified example 1 of the first embodiment, an example of raising the temperature (room temperature) of the air in the living space R11 by controlling the air conditioner 2 is described.

在本变形例中,在排气单元10的控制部13与室外机70的控制部71之间,通过信号线进行连接。由此,室外机70的控制部71能够向排气单元10的控制部13输出控制信号。In this modification, the control unit 13 of the exhaust unit 10 and the control unit 71 of the outdoor unit 70 are connected via a signal line. Thus, the control unit 71 of the outdoor unit 70 can output a control signal to the control unit 13 of the exhaust unit 10 .

另外,在本变形例中,作为能够在排气单元10的控制部13与室外机70的控制部71之间进行信息收发的一个方式,对通过信号线进行连接的例子进行说明。但是,能够进行信息收发的方式不限于通过信号线连接的例子,可以通过(未图示)上位控制装置来进行控制信号的收发,也可以通过经由公用网络连接的云服务或服务器等进行控制信号的收发。In addition, in this modification, as a method of transmitting and receiving information between the control unit 13 of the exhaust unit 10 and the control unit 71 of the outdoor unit 70, an example of connection through a signal line is described. However, the method of transmitting and receiving information is not limited to the example of connection through a signal line, and control signals may be transmitted and received through a higher-level control device (not shown), or through a cloud service or server connected via a public network.

而且,本变形例的排气单元10的控制部13,在第2热交换器12作为蒸发器发挥功能的期间,检测是否满足表示第2热交换器12冻结的可能性的规定基准。Furthermore, the control unit 13 of the exhaust unit 10 of the present modification detects whether or not a predetermined criterion indicating the possibility of freezing of the second heat exchanger 12 is satisfied while the second heat exchanger 12 functions as an evaporator.

控制部13在判定为满足规定基准的情况下,为了使第2热交换器12中流动的制冷剂的温度上升,对空调机2的室外机70的控制部71输出使居室空间R11中当前设定的温度上升的控制信号。在本变形例中,通过使居室空间R11内的气温上升,可使第2热交换器12中流动的空气的温度上升,因此,能够使第2热交换器12中流动的制冷剂的温度上升。When it is determined that the predetermined reference is satisfied, the control unit 13 outputs a control signal to the control unit 71 of the outdoor unit 70 of the air conditioner 2 to increase the temperature currently set in the living space R11 in order to increase the temperature of the refrigerant flowing in the second heat exchanger 12. In this modified example, the temperature of the air flowing in the second heat exchanger 12 can be increased by increasing the air temperature in the living space R11, and thus the temperature of the refrigerant flowing in the second heat exchanger 12 can be increased.

这样,本变形例中的控制部13,作为使第2热交换器12中流动的制冷剂的温度上升的控制的一例,对控制部71输出使居室空间R11当前设定的温度上升的控制信号。由此,居室空间R11的室温上升,温暖的空气会流入第2热交换器12,从而可使第2热交换器12中流动的制冷剂的温度上升,能够抑制第2热交换器12结霜。In this way, the control unit 13 in this modified example outputs a control signal to the control unit 71 to increase the currently set temperature of the living space R11 as an example of control to increase the temperature of the refrigerant flowing in the second heat exchanger 12. As a result, the room temperature of the living space R11 increases, and warm air flows into the second heat exchanger 12, so that the temperature of the refrigerant flowing in the second heat exchanger 12 can be increased, and frost formation in the second heat exchanger 12 can be suppressed.

另外,本变形例说明了向空调机2的室外机70的控制部71输出使居室空间R11当前设定的温度上升的控制信号的例子。但是,本变形例向空调机2的室外机70的控制部71输出的控制信号并不限定于使居室空间R11当前设定的温度上升的控制信号,只要是用于使在第2热交换器12中流动的制冷剂的温度上升的控制信号即可。例如,控制部13也可以输为了使居室空间R11内的空气进行循环而提高风量的控制信号。In addition, this modification example describes an example in which a control signal for increasing the currently set temperature of the living space R11 is output to the control unit 71 of the outdoor unit 70 of the air conditioner 2. However, the control signal output to the control unit 71 of the outdoor unit 70 of the air conditioner 2 in this modification example is not limited to a control signal for increasing the currently set temperature of the living space R11, and any control signal may be used as long as it is a control signal for increasing the temperature of the refrigerant flowing in the second heat exchanger 12. For example, the control unit 13 may also output a control signal for increasing the air volume in order to circulate the air in the living space R11.

(实施方式1的变形例2)(Variation 2 of Implementation Example 1)

所述实施方式1以及变形例并不限定于使用以上方法。因此,在实施方式1的变形例2中,关于为了抑制结霜而控制风扇11的方法进行说明。The first embodiment and the modified example are not limited to the above method. Therefore, in the modified example 2 of the first embodiment, a method of controlling the fan 11 to suppress frost formation will be described.

本变形例的排气单元10的控制部13,在第2热交换器12作为蒸发器发挥功能的期间,判定是否满足表示第2热交换器12结霜的可能性的规定基准。The control unit 13 of the exhaust unit 10 of the present modification determines whether or not a predetermined criterion indicating the possibility of frost formation on the second heat exchanger 12 is satisfied while the second heat exchanger 12 functions as an evaporator.

控制部13在判定为满足规定基准的情况下,为了使第2热交换器12中流动的制冷剂的温度上升,对风扇11(第2换气单元的一例)进行相较于满足规定基准之前而言使第2热交换器12中流动的空气量增加的控制。When the control unit 13 determines that the prescribed criterion is satisfied, in order to increase the temperature of the refrigerant flowing in the second heat exchanger 12, the control unit 13 controls the fan 11 (an example of the second ventilation unit) to increase the amount of air flowing in the second heat exchanger 12 compared to before the prescribed criterion is satisfied.

这样,本变形例的控制部13,作为使第2热交换器12中流动的制冷剂的温度上升的控制的一例,对风扇11(第2换气单元的一例)输出相较于满足规定基准之前而言使第2热交换器12中流动的空气量增加的控制信号。由此,第2热交换器12中流动的温暖的空气量增加,因此能够使制冷剂的温度上升,能够抑制第2热交换器12结霜。Thus, the control unit 13 of this modification outputs a control signal to the fan 11 (an example of the second ventilation unit) to increase the amount of air flowing in the second heat exchanger 12 compared to before the predetermined reference is satisfied, as an example of control to increase the temperature of the refrigerant flowing in the second heat exchanger 12. As a result, the amount of warm air flowing in the second heat exchanger 12 increases, so that the temperature of the refrigerant can be increased, and frost formation in the second heat exchanger 12 can be suppressed.

另外,若对风扇11进行使第2热交换器12中流动的空气量增加的控制,居室空间R11内有可能变成负压。因此,控制部13也可以对供气单元20的控制部23输出用于使风扇21的风量增加的控制信号。Furthermore, if the fan 11 is controlled to increase the amount of air flowing through the second heat exchanger 12 , the pressure in the living space R11 may become negative. Therefore, the control unit 13 may output a control signal for increasing the air volume of the fan 21 to the control unit 23 of the air supply unit 20 .

(实施方式1的变形例3)(Variation 3 of Implementation Example 1)

所述的实施方式1及变形例并不限定于以上所述的方法。因此,在实施方式1的变形例3中,对在供气单元与排气单元之间设置用于使空气直接流动的旁路流路的方法进行说明。The first embodiment and the modified examples are not limited to the above-described method. Therefore, in the modified example 3 of the first embodiment, a method of providing a bypass flow path for directly flowing air between the air supply unit and the exhaust unit will be described.

图3是表示实施方式1的变形例3的换气装置及空调机的构成例的图。在图3所示的例子中,为了进行室内空间的空气调节,具备换气装置1A及空调机2。另外,在本变形例中,对于与实施方式1相同的结构标注相同的符号,在此省略其说明。Fig. 3 is a diagram showing a configuration example of a ventilator and an air conditioner according to a modification example 3 of the first embodiment. In the example shown in Fig. 3, a ventilator 1A and an air conditioner 2 are provided to perform air conditioning of an indoor space. In this modification example, the same reference numerals are given to the same configurations as those in the first embodiment, and their descriptions are omitted here.

如图3所示,在供气单元20与排气单元110之间设置有旁路流路P102。旁路流路P102由比供气流路P101更靠向供气单元20侧的第1旁路部分流路P102A、比回气流路P103更靠向排气单元110侧的第3旁路部分流路P102C、连接第1旁路部分流路P102A与第3旁路部分流路P102C的第2旁路部分流路P102B构成。As shown in Fig. 3, a bypass flow path P102 is provided between the air supply unit 20 and the exhaust unit 110. The bypass flow path P102 is composed of a first bypass partial flow path P102A closer to the air supply unit 20 than the supply flow path P101, a third bypass partial flow path P102C closer to the exhaust unit 110 than the return flow path P103, and a second bypass partial flow path P102B connecting the first bypass partial flow path P102A and the third bypass partial flow path P102C.

此外,在第2旁路部分流路P102B上设置有开闭风门140。开闭风门140通常处于关闭状态。并且,开闭风门140(第2引导机构的一例)根据从设置在排气单元110中的控制部113并经由信号线S3的控制,能够将经过供气单元20加热的空气直接引导至排气单元110。In addition, an opening and closing damper 140 is provided on the second bypass partial flow path P102B. The opening and closing damper 140 is usually in a closed state. In addition, the opening and closing damper 140 (an example of a second guide mechanism) can guide the air heated by the air supply unit 20 directly to the exhaust unit 110 according to the control of the control unit 113 provided in the exhaust unit 110 via the signal line S3.

供气单元20导入外部空气(OA)之后,通常经由第1旁路部分流路P102A及供气流路P101向居室空间R11供气(SA)。After the air supply unit 20 introduces the outside air (OA), it usually supplies air (SA) to the living space R11 through the first bypass partial flow path P102A and the supply air flow path P101.

排气单元110具备风扇11、第2热交换器12、控制部113、温度检测部14。经由回气流路P103及第3旁路部分流路P102C,导入居室空间R11的回气(RA)并向室外排气(EA)。The exhaust unit 110 includes a fan 11, a second heat exchanger 12, a control unit 113, and a temperature detector 14. Return air (RA) of the living space R11 is introduced through the return air flow path P103 and the third bypass partial flow path P102C and exhausted to the outside (EA).

本变形例的排气单元110的控制部113,在第2热交换器12作为蒸发器发挥功能的期间,检测是否满足表示第2热交换器12结霜的可能性的规定基准。The control unit 113 of the exhaust unit 110 of the present modification detects whether or not a predetermined criterion indicating the possibility of frost formation on the second heat exchanger 12 is satisfied while the second heat exchanger 12 functions as an evaporator.

控制部13在判定为满足规定基准的情况下,为了使第2热交换器12中流动的制冷剂的温度上升,进行开通开闭风门140的控制。When it is determined that the predetermined criterion is satisfied, the control unit 13 performs control to open the damper 140 in order to increase the temperature of the refrigerant flowing through the second heat exchanger 12 .

如上所述,本变形例中的控制部113,作为使第2热交换器12中流动的制冷剂的温度上升的控制的一例,进行开通开闭风门140的控制,以将空气通过旁路流路P102引导至第2热交换器12。由此,能够使经过排气单元110加热之后的空气直接流向第2热交换器12,因此能够抑制第2热交换器12结霜。As described above, the control unit 113 in this modification performs control to open the damper 140 as an example of control to increase the temperature of the refrigerant flowing in the second heat exchanger 12, so as to guide the air to the second heat exchanger 12 through the bypass flow path P102. As a result, the air heated by the exhaust unit 110 can flow directly to the second heat exchanger 12, so that the second heat exchanger 12 can be prevented from frosting.

(实施方式2)(Implementation Method 2)

在所述的实施方式及变形例中,说明了通过调整第2热交换器12中流动的空气而使第2热交换器12中流动的制冷剂的温度上升的例子。但是,作为使第2热交换器12中流动的制冷剂的温度上升的方法,也可以使用其他方法。因此,在本实施方式中,关于通过控制第2热交换器12中流动的制冷剂而使制冷剂的温度上升的方法进行说明。In the above-described embodiment and modification, an example is described in which the temperature of the refrigerant flowing in the second heat exchanger 12 is increased by adjusting the air flowing in the second heat exchanger 12. However, other methods may be used as a method of increasing the temperature of the refrigerant flowing in the second heat exchanger 12. Therefore, in this embodiment, a method of increasing the temperature of the refrigerant by controlling the refrigerant flowing in the second heat exchanger 12 is described.

图4是表示实施方式2的换气装置及空调机的构成例的图。在图4所示的例子中,为了进行室内空间的空气调节,具备换气装置1B及空调机2。另外,在本实施方式的结构中,对与实施方式1相同的结构标注相同的符号,在此省略其说明。Fig. 4 is a diagram showing a configuration example of a ventilator and an air conditioner according to Embodiment 2. In the example shown in Fig. 4, a ventilator 1B and an air conditioner 2 are provided to perform air conditioning of an indoor space. In the configuration of this embodiment, the same reference numerals are given to the same configurations as those in Embodiment 1, and their description is omitted here.

在压缩机单元50的控制部52、第1供气单元220A的控制部23、第2供气单元220B的控制部23及排气单元210的控制部213之间,由虚线所示的信号线S201进行连接。由此,能够在压缩机单元50的控制部52、第1供气单元220A的控制部23、第2供气单元220B的控制部23及排气单元210的控制部213之间进行信息的收发。The control unit 52 of the compressor unit 50, the control unit 23 of the first air supply unit 220A, the control unit 23 of the second air supply unit 220B, and the control unit 213 of the exhaust unit 210 are connected by a signal line S201 indicated by a dotted line. Thus, information can be sent and received between the control unit 52 of the compressor unit 50, the control unit 23 of the first air supply unit 220A, the control unit 23 of the second air supply unit 220B, and the control unit 213 of the exhaust unit 210.

换气装置1B具备排气单元210、第1供气单元220A、第2供气单元220B、压缩机单元50、制冷剂回路F1、F2、F3、F4、第1供气流路P201、第2供气流路P202及回气流路P203。The ventilator 1B includes an exhaust unit 210 , a first air supply unit 220A, a second air supply unit 220B, a compressor unit 50 , refrigerant circuits F1 , F2 , F3 , and F4 , a first air supply passage P201 , a second air supply passage P202 , and a return passage P203 .

第1供气流路P201(第1空气流路的一例),将从室外导入的空气经由具有第1热交换器22的第1供气单元220A之后,从换气口92A向居室空间R11供气。The first air supply passage P201 (an example of a first air flow passage) supplies air introduced from the outside to the living space R11 from the ventilation port 92A after passing through the first air supply unit 220A having the first heat exchanger 22 .

第2供气流路P202(第1空气流路的一例),将从室外导入的空气经由具有第1热交换器22的第2供气单元220B之后,从换气口92B向居室空间R11供气。The second air supply passage P202 (an example of the first air flow passage) supplies air introduced from the outside to the living space R11 from the ventilation port 92B after passing through the second air supply unit 220B having the first heat exchanger 22 .

回气流路P203(第2空气流路的一例),将从室内空间导入的空气经由具有第2热交换器12的排气单元210之后,向室外排气。The return air flow path P203 (an example of a second air flow path) exhausts the air introduced from the indoor space to the outside of the room after passing through the exhaust unit 210 including the second heat exchanger 12 .

第1供气单元220A及第2供气单元220B具备风扇21、第1热交换器22、控制部23、温度检测部24,获取外部空气(OA)并向居室空间R11供气(SA)。The first air supply unit 220A and the second air supply unit 220B include a fan 21, a first heat exchanger 22, a control unit 23, and a temperature detection unit 24, and take in outside air (OA) and supply air (SA) to the living space R11.

排气单元210具备风扇11、第2热交换器12、控制部213、温度检测部14,导入居室空间R11的回气(RA)并向室外排气(EA)。The exhaust unit 210 includes a fan 11, a second heat exchanger 12, a control unit 213, and a temperature detection unit 14, and introduces return air (RA) from the living space R11 and exhausts it to the outside (EA).

排气单元210的控制部213控制排气单元210内部的结构。例如,控制部213根据温度检测部14的检测结果,对压缩机单元50的控制部52输出控制信号。The control unit 213 of the exhaust unit 210 controls the internal structure of the exhaust unit 210. For example, the control unit 213 outputs a control signal to the control unit 52 of the compressor unit 50 based on the detection result of the temperature detection unit 14.

关于气温低的情况下换气装置1B进行的处理进行说明。与以上的实施方式一样,第1供气单元220A及第2供气单元220B的第1热交换器22作为冷凝器发挥功能,并且排气单元210内的第2热交换器12作为蒸发器发挥功能。通过使第2热交换器12作为蒸发器发挥功能,会使第2热交换器12中流动的制冷剂的温度下降,从而会产生第2热交换器12结霜的可能性。在此,在本实施方式中,进行抑制第2热交换器12的结霜的控制。The processing performed by the ventilation device 1B when the air temperature is low is described. As in the above embodiment, the first heat exchanger 22 of the first air supply unit 220A and the second air supply unit 220B functions as a condenser, and the second heat exchanger 12 in the exhaust unit 210 functions as an evaporator. By making the second heat exchanger 12 function as an evaporator, the temperature of the refrigerant flowing in the second heat exchanger 12 is reduced, so that the second heat exchanger 12 may be frosted. Here, in this embodiment, control is performed to suppress the frosting of the second heat exchanger 12.

具体而言,排气单元210的控制部213,在第2热交换器12作为蒸发器发挥功能的期间,根据温度检测部14的检测结果,判定是否满足表示第2热交换器12结霜的可能性的规定基准。作为表示第2热交换器12结霜的可能性的规定基准,例如可以是判定温度检测部14检测出的制冷剂的温度是否为0度以下的基准。另外,本实施方式中规定基准并不限定于根据制冷剂的温度的基准,也可以作为判定制冷剂的压力是否为规定的压力以下的基准。Specifically, the control unit 213 of the exhaust unit 210 determines whether a predetermined reference indicating the possibility of frost formation on the second heat exchanger 12 is satisfied based on the detection result of the temperature detection unit 14 during the period when the second heat exchanger 12 functions as an evaporator. As a predetermined reference indicating the possibility of frost formation on the second heat exchanger 12, for example, a reference for determining whether the temperature of the refrigerant detected by the temperature detection unit 14 is below 0 degrees may be used. In addition, the predetermined reference in the present embodiment is not limited to a reference based on the temperature of the refrigerant, and may also be used as a reference for determining whether the pressure of the refrigerant is below a predetermined pressure.

另外,规定基准也可以不是根据制冷剂的温度或压力的基准。例如,可以是根据外部空气的温度的基准,也可以是根据第2热交换器12的表面温度的基准。In addition, the predetermined reference may not be based on the temperature or pressure of the refrigerant, but may be based on the temperature of the outside air or the surface temperature of the second heat exchanger 12, for example.

本实施方式的排气单元210的控制部213,在判定为满足规定基准的情况下,作为抑制第2热交换器12结霜的控制,对压缩机单元50的控制部52,输出相较于满足规定基准之前而言使压缩机的旋转数降低的控制信号。The control unit 213 of the exhaust unit 210 of this embodiment, when it is determined that the prescribed standard is met, outputs a control signal to the control unit 52 of the compressor unit 50 to reduce the number of revolutions of the compressor compared to before the prescribed standard is met as a control to suppress frost on the second heat exchanger 12.

并且,压缩机单元50的控制部52,在接收到该控制信号时,将相较于满足规定基准之前而言使压缩机的旋转数降低的控制信号输出到用于驱动压缩机的驱动用电动机51。如上所述,压缩机的转速降低。从而,制冷剂回路F1、F2、F3、F4中流动的制冷剂的压力降低,因此,能够使第2热交换器12中流动的制冷剂的温度(蒸发温度)上升。Furthermore, the control unit 52 of the compressor unit 50, upon receiving the control signal, outputs a control signal to the drive motor 51 for driving the compressor, which reduces the number of revolutions of the compressor compared to before the predetermined reference is satisfied. As described above, the rotation speed of the compressor is reduced. As a result, the pressure of the refrigerant flowing through the refrigerant circuits F1, F2, F3, and F4 is reduced, and thus the temperature (evaporation temperature) of the refrigerant flowing through the second heat exchanger 12 can be increased.

本实施方式的控制部213,作为使第2热交换器12中流动的制冷剂的温度上升的控制的一例,对压缩机单元50的控制部52输出相较于满足规定基准之前而言使压缩机的旋转数降低的控制信号。由此,能够抑制第2热交换器12结霜。The control unit 213 of this embodiment outputs a control signal to the control unit 52 of the compressor unit 50 to reduce the number of revolutions of the compressor compared to before the predetermined reference is satisfied as an example of control to increase the temperature of the refrigerant flowing through the second heat exchanger 12. This can suppress frost formation on the second heat exchanger 12.

(实施方式2的变形例1)(Variation 1 of Implementation Example 2)

在实施方式2中,关于降低压缩机的旋转数而使第2热交换器12中流动的制冷剂的温度(蒸发温度)上升的例子进行了说明。然而,使第2热交换器12中流动的制冷剂的温度(蒸发温度)上升的方法并不限定于降低压缩机的旋转数的方法。因此,在变形例1中,关于在制冷剂回路中设置旁路流路(旁路管道的一例)的例子进行说明。本变形例1也与实施方式2同样,设置有2台供气单元及1台排气单元。In Embodiment 2, an example of increasing the temperature (evaporation temperature) of the refrigerant flowing in the second heat exchanger 12 by reducing the number of revolutions of the compressor is described. However, the method of increasing the temperature (evaporation temperature) of the refrigerant flowing in the second heat exchanger 12 is not limited to the method of reducing the number of revolutions of the compressor. Therefore, in Modification 1, an example of providing a bypass flow path (an example of a bypass pipe) in the refrigerant circuit is described. This Modification 1 is also provided with two air supply units and one exhaust unit, as in Embodiment 2.

图5是表示实施方式2的变形例1的制冷剂回路的图。在图5所示的例子中,表示了在排气单元310的第2热交换器12作为蒸发器发挥功能时的制冷剂的流动。另外,对与以上的实施方式相同的结构标注相同的符号,在此省略其说明。Fig. 5 is a diagram showing a refrigerant circuit of a modification 1 of embodiment 2. In the example shown in Fig. 5, the flow of the refrigerant when the second heat exchanger 12 of the exhaust unit 310 functions as an evaporator is shown. In addition, the same reference numerals are given to the same structures as those in the above embodiments, and their description is omitted here.

在图5所示的例子中,设置有供气单元320A、320B、排气单元310、压缩机单元350。In the example shown in FIG. 5 , air supply units 320A and 320B, an exhaust unit 310 , and a compressor unit 350 are provided.

供气单元320A、320B具备风扇21、第1热交换器22、控制部23、温度检测部24、驱动用电动机25及电动阀门26。The air supply units 320A and 320B include a fan 21 , a first heat exchanger 22 , a control unit 23 , a temperature detection unit 24 , a drive motor 25 , and an electric valve 26 .

驱动用电动机25通过控制部23的控制来控制风扇21的风量。The driving motor 25 is controlled by the control unit 23 to control the air volume of the fan 21 .

电动阀门26作为用于使制冷剂减压的膨胀阀门发挥功能,根据控制部23进行的控制来切换是否减压。电动阀门26以在第1热交换器22作为蒸发器发挥功能的情况下进行减压,在第1热交换器22作为冷凝器发挥功能的情况下不进行减压的方式发挥功能。The electric valve 26 functions as an expansion valve for decompressing the refrigerant, and switches whether to decompress the refrigerant according to the control of the control unit 23. The electric valve 26 functions so as to decompress the refrigerant when the first heat exchanger 22 functions as an evaporator, and does not decompress the refrigerant when the first heat exchanger 22 functions as a condenser.

排气单元310具备风扇11、第2热交换器12、控制部313、温度检测部14、驱动用电动机15及电动阀门16。The exhaust unit 310 includes a fan 11 , a second heat exchanger 12 , a control unit 313 , a temperature detection unit 14 , a drive motor 15 , and an electric valve 16 .

控制部313在第2热交换器12作为蒸发器发挥功能的期间,根据温度检测部14的检测结果,判定是否满足表示第2热交换器12结霜的可能性的规定基准。另外,规定基准与实施方式2相同,省略其说明。While the second heat exchanger 12 functions as an evaporator, the control unit 313 determines whether a predetermined criterion indicating the possibility of frost formation on the second heat exchanger 12 is satisfied based on the detection result of the temperature detection unit 14. The predetermined criterion is the same as that in the second embodiment, and its description is omitted.

本变形例的排气单元310的控制部313在判定为满足规定基准的情况下,作为抑制第2热交换器12结霜的控制,对压缩机单元350的控制部352输出用于使制冷剂流向旁路流路F6的控制信号。When determining that a predetermined criterion is satisfied, the control unit 313 of the exhaust unit 310 of this modification outputs a control signal for causing the refrigerant to flow to the bypass flow path F6 to the control unit 352 of the compressor unit 350 as a control to suppress frost formation on the second heat exchanger 12 .

驱动用电动机15通过控制部313的控制来控制风扇11的风量。The driving motor 15 is controlled by the control unit 313 to control the air volume of the fan 11 .

电动阀门16作为用于使制冷剂减压的膨胀阀门发挥功能,根据控制部313的控制对是否减压进行切换。电动阀门16以在第2热交换器12作为蒸发器发挥功能的情况下进行减压,在第2热交换器12作为冷凝器发挥功能的情况下不进行减压的方式发挥功能。The electric valve 16 functions as an expansion valve for decompressing the refrigerant, and switches whether to decompress the refrigerant according to the control of the control unit 313. The electric valve 16 functions in a manner that decompresses the refrigerant when the second heat exchanger 12 functions as an evaporator and does not decompress the refrigerant when the second heat exchanger 12 functions as a condenser.

压缩机单元350中设置有驱动用电动机51、控制部352、压缩机53、四通阀门54、电动阀门55及旁路用电动阀门56。The compressor unit 350 is provided with a driving motor 51 , a control unit 352 , a compressor 53 , a four-way valve 54 , an electric valve 55 , and a bypass electric valve 56 .

压缩机53压缩制冷剂回路中流动的制冷剂。The compressor 53 compresses the refrigerant flowing in the refrigerant circuit.

驱动用电动机51是用于使压缩机53驱动的致动器。本实施方式的驱动用电动机51通过由控制部352控制的旋转数驱动压缩机53。The driving motor 51 is an actuator for driving the compressor 53. The driving motor 51 of the present embodiment drives the compressor 53 at a rotation speed controlled by the control unit 352.

控制部352控制压缩机单元350内部的结构。例如,控制部352进行以下所示的驱动用电动机51及四通阀门54的控制。The control unit 352 controls the internal structure of the compressor unit 350. For example, the control unit 352 controls the drive motor 51 and the four-way valve 54 as described below.

四通阀门54作为从制冷剂回路F1及制冷剂回路F4切换由压缩机53压缩的制冷剂的流出目标的阀门发挥功能。例如,在根据控制部352的控制使第2热交换器12作为蒸发器发挥功能的情况下,四通阀门54将由压缩机53压缩的制冷剂切换成流向制冷剂回路F1。The four-way valve 54 functions as a valve for switching the outflow destination of the refrigerant compressed by the compressor 53 from the refrigerant circuit F1 and the refrigerant circuit F4. For example, when the second heat exchanger 12 functions as an evaporator under the control of the control unit 352, the four-way valve 54 switches the refrigerant compressed by the compressor 53 to flow to the refrigerant circuit F1.

电动阀门55根据控制部352的控制,作为进行制冷剂回路的开闭控制的阀门发挥功能。在第2热交换器12作为蒸发器发挥功能的情况下,电动阀门55处于无制冷剂流动的关闭状态。The electric valve 55 functions as a valve for performing opening and closing control of the refrigerant circuit under the control of the control unit 352. When the second heat exchanger 12 functions as an evaporator, the electric valve 55 is in a closed state in which no refrigerant flows.

在本变形例中,在第2热交换器12作为蒸发器发挥功能的情况下,为了使第2热交换器12中流动的制冷剂的温度上升,设有旁路流路F6,其用于使被压缩机53压缩的制冷剂直接流入第2热交换器12。In this modification, when the second heat exchanger 12 functions as an evaporator, in order to increase the temperature of the refrigerant flowing in the second heat exchanger 12 , a bypass flow path F6 is provided for allowing the refrigerant compressed by the compressor 53 to flow directly into the second heat exchanger 12 .

旁路流路F6作为在压缩机53与四通阀门54之间、与制冷剂回路F3之间进行旁路输送制冷剂的流路而设置。即,旁路流路F6在第2热交换器12作为蒸发器发挥功能期间,作为不经由第1热交换器22就使制冷剂流向第2热交换器12的管道发挥功能。The bypass flow path F6 is provided as a flow path for bypassing the refrigerant between the compressor 53 and the four-way valve 54 and between the refrigerant circuit F3. That is, the bypass flow path F6 functions as a pipe for allowing the refrigerant to flow to the second heat exchanger 12 without passing through the first heat exchanger 22 while the second heat exchanger 12 functions as an evaporator.

旁路用电动阀门56根据来自控制部352的控制,作为对是否将制冷剂流入旁路流路F6进行切换的阀门发挥功能。The bypass electric valve 56 functions as a valve that switches whether or not the refrigerant flows into the bypass flow path F6 according to control from the control unit 352 .

具体而言,首先,排气单元310的控制部313,在判定为满足表示第2热交换器12结霜的可能性的规定基准的情况下,对压缩机单元350的控制部352输出用于使制冷剂流向旁路流路F6的控制信号。Specifically, first, when determining that a predetermined criterion indicating the possibility of frost formation on the second heat exchanger 12 is satisfied, the control unit 313 of the exhaust unit 310 outputs a control signal for causing the refrigerant to flow to the bypass flow path F6 to the control unit 352 of the compressor unit 350 .

并且,压缩机单元350的控制部352,在从排气单元310的控制部313接收到用于使制冷剂流入旁路流路F6的控制信号的情况下,进行使旁路用电动阀门56成为开通状态的控制。Furthermore, when receiving a control signal for causing the refrigerant to flow into the bypass flow path F6 from the control unit 313 of the exhaust unit 310, the control unit 352 of the compressor unit 350 controls the bypass electric valve 56 to be in an open state.

在旁路用电动阀门56成为开通状态的情况下,经过压缩机53进行压缩而成为高温、高压气体的制冷剂经由旁路流路F6流入制冷剂回路F3。由此,制冷剂回路F3中流动的制冷剂的温度上升。然后,温度上升的制冷剂流入第2热交换器12。When the bypass electric valve 56 is in an open state, the refrigerant compressed by the compressor 53 to become a high-temperature, high-pressure gas flows into the refrigerant circuit F3 via the bypass flow path F6. As a result, the temperature of the refrigerant flowing in the refrigerant circuit F3 rises. Then, the refrigerant with a raised temperature flows into the second heat exchanger 12.

即,在本变形例中,在满足规定基准的情况下,进行使压缩机53压缩后的制冷剂经由旁路流路F6流入第2热交换器12的控制。由此,能够抑制第2热交换器12结霜。That is, in this modification, when a predetermined criterion is satisfied, control is performed to allow the refrigerant compressed by the compressor 53 to flow into the second heat exchanger 12 via the bypass flow path F6. Thus, frosting of the second heat exchanger 12 can be suppressed.

(实施方式2的变形例2)(Variation 2 of Implementation Example 2)

另外,作为使第2热交换器12中流动的制冷剂的温度上升的方法,也可以使用其他方法。因此,在实施方式2的变形例2中,对控制排气单元310内部的电动阀门16的例子进行说明。另外,实施方式2的变形例2的结构相当于从图5所示的制冷剂回路中除去旁路流路F6的结构。In addition, other methods may be used as a method of increasing the temperature of the refrigerant flowing in the second heat exchanger 12. Therefore, in the second modification of the second embodiment, an example of controlling the electric valve 16 inside the exhaust unit 310 is described. In addition, the structure of the second modification of the second embodiment is equivalent to the structure in which the bypass flow path F6 is removed from the refrigerant circuit shown in FIG.

在第2热交换器12作为蒸发器发挥功能的情况下,电动阀门16,根据控制部313的控制,作为用于使从第1热交换器22流出的高压液体的制冷剂成为容易蒸发的状态而进行减压的阀门部发挥功能。该电动阀门16的开度越小越减压,由此制冷剂的温度下降。换言之,电动阀门16的开度越大,制冷剂的温度越上升。When the second heat exchanger 12 functions as an evaporator, the electric valve 16 functions as a valve unit for reducing the pressure of the high-pressure liquid refrigerant flowing out of the first heat exchanger 22 so that it can be easily evaporated, according to the control of the control unit 313. The smaller the opening of the electric valve 16, the more the pressure is reduced, thereby reducing the temperature of the refrigerant. In other words, the larger the opening of the electric valve 16, the higher the temperature of the refrigerant.

对此,排气单元310的控制部313,在第2热交换器12作为蒸发器发挥功能的期间,根据温度检测部14的检测结果,判定是否满足表示第2热交换器12结霜的可能性的规定基准。另外,规定基准与实施方式2相同,省略其说明。In this regard, the control unit 313 of the exhaust unit 310 determines whether a predetermined standard indicating the possibility of frost formation on the second heat exchanger 12 is satisfied based on the detection result of the temperature detection unit 14 while the second heat exchanger 12 functions as an evaporator. The predetermined standard is the same as that in the second embodiment, and its description is omitted.

并且,控制部313在判定为满足规定基准的情况下,作为抑制第2热交换器12的结霜的控制,进行相较于满足规定基准之前而言使电动阀门16(第2阀门部的一例)的开度增大的控制。When determining that the predetermined criterion is satisfied, the control unit 313 performs control to increase the opening degree of the electric valve 16 (an example of the second valve unit) compared to before the predetermined criterion is satisfied as control to suppress frost formation on the second heat exchanger 12 .

即,在本变形例中,在满足规定基准的情况下,进行增大电动阀门16的开度、使第2热交换器12中流动的制冷剂的温度上升的控制。由此,能够抑制第2热交换器12结霜。That is, in this modification, when a predetermined criterion is satisfied, control is performed to increase the opening of the electric valve 16 to increase the temperature of the refrigerant flowing through the second heat exchanger 12. This can suppress frost formation on the second heat exchanger 12.

(实施方式3)(Implementation method 3)

在所述的实施方式及变形例中,说明了对排气单元内的控制部是否满足规定基准进行判定,并根据该判定结果进行控制的例子。然而,在所述的实施方式及变形例中,并不限定于由排气单元内的控制部进行控制的方法。例如,也可以由设置在空调机及换气装置的上位的上位控制装置进行控制。In the above-mentioned embodiments and modified examples, an example is described in which a control unit in the exhaust unit is judged whether it meets a predetermined standard, and an example is described in which control is performed according to the judgment result. However, in the above-mentioned embodiments and modified examples, the method of controlling by the control unit in the exhaust unit is not limited. For example, control may also be performed by a higher-level control device provided at a higher level than the air conditioner and the ventilation device.

图6是表示实施方式3的换气装置、空调机及上位控制装置的构成例的图。另外,对与所述实施方式相同的结构标注相同的符号,在此省略其说明。Fig. 6 is a diagram showing a configuration example of a ventilation device, an air conditioner, and a host control device according to Embodiment 3. In addition, the same reference numerals are attached to the same configurations as those in the above-mentioned embodiment, and the description thereof is omitted here.

在图6所示的例子中,为了进行换气装置1C及空调机2C之间的协同动作,设置有上位控制装置400。In the example shown in FIG. 6 , a host control device 400 is provided for performing cooperative operations between the ventilator 1C and the air conditioner 2C.

空调机2C包括室外机470及2台空调室内机81、82。另外,本实施方式中的空调室内机的数量不限定于2台,也可以是1台或3台以上。The air conditioner 2C includes an outdoor unit 470 and two air conditioner indoor units 81 and 82. In addition, the number of air conditioner indoor units in the present embodiment is not limited to two, and may be one or three or more.

室外机470,与(未图示)热交换器一同具备控制部471。The outdoor unit 470 includes a control unit 471 together with a heat exchanger (not shown).

控制部471进行空调机2C整体的控制。另外,控制部471在与上位控制装置400之间收发信息。并且,控制部471根据来自上位控制装置400的控制信号进行各种控制。The control unit 471 controls the entire air conditioner 2C. The control unit 471 also transmits and receives information to and from the host control device 400. The control unit 471 performs various controls based on control signals from the host control device 400.

换气装置1C具有第1排气单元410A、第2排气单元410B、第1供气单元420A、第2供气单元420B、压缩机单元450、制冷剂回路F401、F402、F403、F404、第1供气流路P401、第2供气流路P402、第1回气流路P403及第2回气流路P404。The ventilation device 1C has a first exhaust unit 410A, a second exhaust unit 410B, a first air supply unit 420A, a second air supply unit 420B, a compressor unit 450, a refrigerant circuit F401, F402, F403, F404, a first supply air passage P401, a second supply air passage P402, a first return air passage P403 and a second return air passage P404.

第1供气流路P401将从室外导入的空气经由具有第1热交换器22的第1供气单元420A之后,从换气口92A向居室空间R11供气。The first air supply passage P401 supplies air introduced from the outside to the living space R11 from the ventilation port 92A after passing through the first air supply unit 420A having the first heat exchanger 22 .

第2供气流路P402将从室外导入的空气经由具有第1热交换器22的第2供气单元420B之后,从换气口92B向居室空间R11供气。The second air supply path P402 supplies air introduced from the outside to the living space R11 from the ventilation port 92B after passing through the second air supply unit 420B having the first heat exchanger 22 .

第1回气流路P403将从室内空间的换气口91A导入的空气(回气)经由具有第2热交换器12的第1排气单元410A之后向室外排气。The first return air flow path P403 exhausts the air (return air) introduced from the ventilation port 91A of the indoor space to the outside through the first exhaust unit 410A including the second heat exchanger 12 .

第2回气流路P404将从室内空间的换气口91B导入的空气(回气)经由具有第2热交换器12的第2排气单元410B之后向室外排气。The second return air flow path P404 exhausts the air (return air) introduced from the ventilation port 91B of the indoor space to the outside through the second exhaust unit 410B having the second heat exchanger 12 .

制冷剂回路F401、F402、F403、F404是通过制冷剂管道连接压缩机单元450、第1供气单元420A及第2供气单元420B的第1热交换器22,及第1排气单元410及第2排气单元410B的第2热交换器12而成,并有制冷剂在内部流动的回路。The refrigerant circuits F401, F402, F403, and F404 are formed by connecting the compressor unit 450, the first heat exchanger 22 of the first air supply unit 420A and the second air supply unit 420B, and the second heat exchanger 12 of the first exhaust unit 410 and the second exhaust unit 410B through refrigerant pipes, and have a circuit in which the refrigerant flows.

压缩机单元450的控制部452、第1供气单元420A的控制部423A、第2供气单元420B的控制部423B、第1排气单元410A的控制部413A、及第2排气单元410B的控制部413B之间由虚线表示的信号线S401连接。由此,在控制部452、控制部423A、控制部423B、控制部413A以及控制部413B之间,能够进行信息的收发。The control unit 452 of the compressor unit 450, the control unit 423A of the first air supply unit 420A, the control unit 423B of the second air supply unit 420B, the control unit 413A of the first exhaust unit 410A, and the control unit 413B of the second exhaust unit 410B are connected by a signal line S401 indicated by a dotted line. Thus, information can be sent and received between the control unit 452, the control unit 423A, the control unit 423B, the control unit 413A, and the control unit 413B.

压缩机单元450的控制部452,将从控制部423A、控制部423B、控制部413A以及控制部413B接收到的换气装置1C的状况,发送给上位控制装置400。由此,上位控制装置400能够实现与换气装置1C的状况相应的控制。Control unit 452 of compressor unit 450 transmits the status of ventilation device 1C received from control units 423A, 423B, 413A, and 413B to host control device 400. Thus, host control device 400 can implement control according to the status of ventilation device 1C.

第1供气单元420A具备风扇21、第1热交换器22、控制部423A、温度检测部24,导入外部空气(OA),并从换气口92A向居室空间R11供气(SA)。The first air supply unit 420A includes a fan 21, a first heat exchanger 22, a control unit 423A, and a temperature detection unit 24, introduces outside air (OA), and supplies air (SA) to the living space R11 from the ventilation port 92A.

第2供气单元420B具备风扇21、第1热交换器22、控制部423B、温度检测部24,导入外部空气(OA),并从换气口92B向居室空间R11供气(SA)。The second air supply unit 420B includes a fan 21, a first heat exchanger 22, a control unit 423B, and a temperature detection unit 24, introduces outside air (OA), and supplies air (SA) to the living space R11 from the ventilation port 92B.

控制部423A及控制部423B控制各个供气单元内的结构。此外,控制部423A及控制部423B将各个供气单元内的温度检测部24等的检测结果发送给压缩机单元450的控制部452。压缩机单元450的控制部452,根据检测结果来识别当前的状况,并将该识别结果发送给上位控制装置400。由此,上位控制装置400能够识别第1供气单元420A及第2供气单元420B的状况。The control unit 423A and the control unit 423B control the structure in each air supply unit. In addition, the control unit 423A and the control unit 423B send the detection results of the temperature detection unit 24 and the like in each air supply unit to the control unit 452 of the compressor unit 450. The control unit 452 of the compressor unit 450 identifies the current status based on the detection results and sends the identification results to the upper control device 400. Thus, the upper control device 400 can identify the status of the first air supply unit 420A and the second air supply unit 420B.

第1排气单元410A具有风扇11(第2换气单元的一例)、第2热交换器12、控制部413A、温度检测部14,从居室空间R11的换气口91A导入回气(RA),并向室外排气(EA)。The first exhaust unit 410A includes a fan 11 (an example of a second ventilation unit), a second heat exchanger 12, a control unit 413A, and a temperature detection unit 14, introduces return air (RA) from the ventilation port 91A of the living space R11, and exhausts air to the outside (EA).

第2排气单元410B具有风扇11(第2换气单元的一例)、第2热交换器12、控制部413B、温度检测部14,从居室空间R11的换气口91B导入回气(RA),并向室外排气(EA)。The second exhaust unit 410B includes a fan 11 (an example of a second ventilation unit), a second heat exchanger 12, a control unit 413B, and a temperature detection unit 14, introduces return air (RA) from the ventilation port 91B of the living space R11, and exhausts air to the outside (EA).

控制部413A及控制部413B控制各个排气单元内的结构。进而,控制部413A及控制部413B将各个排气单元内的温度检测部14等的检测结果,发送给压缩机单元450的控制部452。压缩机单元450的控制部452根据检测结果来识别当前的状况,并将该识别结果发送给上位控制装置400。由此,上位控制装置400能够识别第1排气单元410A及第2排气单元410B的状况。The control unit 413A and the control unit 413B control the structure in each exhaust unit. Furthermore, the control unit 413A and the control unit 413B send the detection results of the temperature detection unit 14 and the like in each exhaust unit to the control unit 452 of the compressor unit 450. The control unit 452 of the compressor unit 450 identifies the current status based on the detection results and sends the identification results to the upper control device 400. Thus, the upper control device 400 can identify the status of the first exhaust unit 410A and the second exhaust unit 410B.

上位控制装置400为了使换气装置1C的运转与空调机2C的运转彼此协同,进行各种控制。The host control device 400 performs various controls to coordinate the operation of the ventilation device 1C and the operation of the air conditioner 2C with each other.

上位控制装置400从室外机470的控制部471接收空调机2C的状况,从压缩机单元450的控制部452接收换气装置1C的状况。并且,上位控制装置400根据空调机2C的状况以及换气装置1C的状况进行各种控制。The host control device 400 receives the status of the air conditioner 2C from the control unit 471 of the outdoor unit 470 and receives the status of the ventilator 1C from the control unit 452 of the compressor unit 450. The host control device 400 performs various controls based on the status of the air conditioner 2C and the status of the ventilator 1C.

例如,上位控制装置400,在根据从室外机470的控制部471接收到的信息识别出空调机2C正在进行除霜运转的情况下,进行用于提高换气装置1C的制热能力的控制。For example, when the upper control device 400 recognizes that the air conditioner 2C is performing a defrosting operation based on information received from the control unit 471 of the outdoor unit 470, it performs control to increase the heating capacity of the ventilation device 1C.

即,在空调机2C进行除霜运转时,空调机2C不发挥制热功能,因此有居室空间R11内的温度下降的可能性。另一方面,为了在空调机2C进行除霜运转的情况下补充空调机2C的功能低下,在使第1供气单元420A及第2供气单元420B的供气温度上升的情况下,通过制冷剂回路F401、F402、F403、F404连接的第1排气单元410A及第2排气单元410B的第2热交换器12的制冷剂的温度会降低。在这种情况下,会使第1排气单元410A及第2排气单元410B的第2热交换器12结霜的可能性提高。That is, when the air conditioner 2C performs the defrosting operation, the air conditioner 2C does not perform the heating function, so there is a possibility that the temperature in the living space R11 decreases. On the other hand, in order to compensate for the low function of the air conditioner 2C when the air conditioner 2C performs the defrosting operation, when the supply air temperature of the first air supply unit 420A and the second air supply unit 420B is increased, the temperature of the refrigerant in the second heat exchanger 12 of the first exhaust unit 410A and the second exhaust unit 410B connected through the refrigerant circuit F401, F402, F403, and F404 is reduced. In this case, the possibility of frost formation in the second heat exchanger 12 of the first exhaust unit 410A and the second exhaust unit 410B is increased.

因此,上位控制装置400在识别出空调机2C正在进行除霜运转的情况下,通过增加换气装置1C的供气排气的风量,提高制热能力,抑制居室空间R11内的温度下降。Therefore, when recognizing that the air conditioner 2C is performing the defrosting operation, the host control device 400 increases the air volume of the air supply and exhaust of the ventilator 1C to improve the heating capacity and suppress the temperature drop in the living space R11.

图7是表示在本实施方式的空调机2C开始了除霜运转的情况下,在上位控制装置400、换气装置1C以及空调机2C之间进行的处理流程的时序图。FIG. 7 is a sequence diagram showing a flow of processing performed among the host control device 400 , the ventilation device 1C, and the air conditioner 2C when the air conditioner 2C of the present embodiment starts the defrosting operation.

首先,空调机2C的室外机470内的控制部471在开始了除霜运转的情况下,将表示进行除霜运转的信号发送给上位控制装置400(S1701)。First, when the defrosting operation is started, the control unit 471 in the outdoor unit 470 of the air conditioner 2C transmits a signal indicating that the defrosting operation is to be performed to the host control device 400 (S1701).

然后,上位控制装置400,在根据接收到的信号识别出空调机2C中开始了除霜运转的意思的情况下,为了补偿除霜运转导致的功能下降,判断为进行换气装置1C的风量上升控制(S1702)。Then, when the upper control device 400 recognizes from the received signal that the defrosting operation has started in the air conditioner 2C, it determines to perform the air volume increase control of the ventilation device 1C in order to compensate for the function reduction caused by the defrosting operation (S1702).

并且,上位控制装置400向压缩机单元450的控制部452发送指示排气单元群(第1排气单元410A及第2排气单元410B)的风量上升的控制信号(S1703)。Then, the host control device 400 transmits a control signal to the control unit 452 of the compressor unit 450, instructing the exhaust unit group (the first exhaust unit 410A and the second exhaust unit 410B) to increase the air volume (S1703).

同样,压缩机单元450的控制部452对排气单元群(第1排气单元410A及第2排气单元410B)的控制部413A、413B的每一个,发送指示风量上升的控制信号(S1704)。Similarly, the control unit 452 of the compressor unit 450 transmits a control signal instructing an increase in air volume to each of the control units 413A and 413B of the exhaust unit group (the first exhaust unit 410A and the second exhaust unit 410B) (S1704).

排气单元群的控制部413A、413B根据接收到的控制信号,相较于空调机2C进行除霜运转之前而言,对风扇11(第2换气单元的一例)进行使流入第2热交换器12的空气量增加(风量上升)的控制(S1705)。Based on the received control signal, the control units 413A and 413B of the exhaust unit group control the fan 11 (an example of the second ventilation unit) to increase the amount of air flowing into the second heat exchanger 12 (increase the air volume) compared to before the air conditioner 2C performed the defrosting operation (S1705).

并且,上位控制装置400向压缩机单元450的控制部452发送指示供气单元群(第1供气单元420A及第2供气单元420B)的风量上升的控制信号(S1706)。Then, the host control device 400 transmits a control signal to the control unit 452 of the compressor unit 450, instructing the air supply unit group (the first air supply unit 420A and the second air supply unit 420B) to increase the air volume (S1706).

并且,压缩机单元450的控制部452对供气单元群(第1供气单元420A及第2供气单元420B)的控制部423A、423B分别发送指示风量上升的控制信号(S1707)。Then, the control unit 452 of the compressor unit 450 transmits a control signal instructing an increase in air volume to the control units 423A and 423B of the air supply unit group (the first air supply unit 420A and the second air supply unit 420B) respectively (S1707).

供气单元群的控制部423A、423B分别根据接收到的控制信号,相较于空调机2C进行除霜运转前而言,对风扇21(第1换气单元的一例)进行使流入第1热交换器22的空气量增加(风量上升)的控制(S1708)。The control units 423A and 423B of the air supply unit group respectively control the fan 21 (an example of the first ventilation unit) to increase the amount of air flowing into the first heat exchanger 22 (increase the air volume) compared to before the air conditioner 2C performs the defrost operation based on the received control signal (S1708).

在本实施方式中,不使换气装置1C的供气温度上升,而是增加供气排气风量,从而提高换气装置1C的制热能力,抑制居室空间R11的室温下降。另外,在本实施方式中,通过抑制换气装置1C的供气温度的上升,能够降低随着蒸发温度下降而产生的第2热交换器12结霜的可能性。In this embodiment, the supply air temperature of the ventilator 1C is not increased, but the supply and exhaust air volume is increased, thereby improving the heating capacity of the ventilator 1C and suppressing the decrease in the room temperature of the living space R11. In addition, in this embodiment, by suppressing the increase in the supply air temperature of the ventilator 1C, the possibility of frost on the second heat exchanger 12 caused by the decrease in the evaporation temperature can be reduced.

本实施方式的上位控制装置400为了补充空调机2C的结霜运转导致的能力下降,通过增加换气装置1C的供气排气量来降低第2热交换器12结霜的可能性,并且能够提高制热能力,抑制室温下降。In order to compensate for the reduced capacity caused by the frosting operation of the air conditioner 2C, the upper control device 400 of this embodiment reduces the possibility of frosting of the second heat exchanger 12 by increasing the air supply and exhaust volume of the ventilator 1C, thereby improving the heating capacity and suppressing the drop in room temperature.

本实施方式的上位控制装置400除了能够进行如上所述的协同控制以外,还能够进行各种控制。The host control device 400 of the present embodiment can perform various controls in addition to the cooperative control described above.

例如,上位控制装置400,在从排气单元群的控制部413A或控制部413B经由压缩机单元450的控制部452接收到外部大气的温度的情况下,也可以判定是否满足表示第2热交换器12结霜的可能性的规定基准。而且,在上位控制装置400判定为满足规定基准的情况下,也可以进行抑制第2热交换器12的结霜的控制。作为抑制第2热交换器12的结霜的控制,例如,上位控制装置400也可以向室外机470的控制部471发送使供暖设备的当前的设定温度上升的控制信号。For example, the upper control device 400 may determine whether or not a predetermined standard indicating the possibility of frost formation on the second heat exchanger 12 is satisfied when receiving the temperature of the outside air from the control unit 413A or the control unit 413B of the exhaust unit group via the control unit 452 of the compressor unit 450. Furthermore, when the upper control device 400 determines that the predetermined standard is satisfied, control may be performed to suppress frost formation on the second heat exchanger 12. As control to suppress frost formation on the second heat exchanger 12, for example, the upper control device 400 may send a control signal to the control unit 471 of the outdoor unit 470 to increase the current set temperature of the heating device.

另外,作为换气装置的结构,也可以包含本实施方式所示的上位控制装置400的结构。换言之,由上位控制装置400进行的处理也可以作为换气装置的功能。以下的实施方式也同样。In addition, the configuration of the ventilation device may include the configuration of the host control device 400 shown in this embodiment. In other words, the processing performed by the host control device 400 may also be a function of the ventilation device. The same applies to the following embodiments.

(实施方式4)(Implementation 4)

在实施方式3中,说明了上位控制装置400通过空调机2C进行除霜运转的情况下的协同控制。但是,上位控制装置400进行各种各样的协同控制。由此,在实施方式4中,关于有多个排气单元410的第2热交换器12结霜的可能性的情况下的控制进行说明。In Embodiment 3, cooperative control is described when the host control device 400 performs defrosting operation by the air conditioner 2C. However, the host control device 400 performs various cooperative controls. Therefore, in Embodiment 4, control is described when there is a possibility that the second heat exchanger 12 of the plurality of exhaust units 410 may be frosted.

在有多个排气单元410的第2热交换器12结霜的可能性的情况下,存在难以在多个排气单元410的第2热交换器12同时进行抑制结霜的控制的状况。因此,上位控制装置400进行调整,从而不进行在多个排气单元410的第2热交换器12中同时抑制结霜的控制。When there is a possibility of frost forming on the second heat exchangers 12 of the plurality of exhaust units 410, it is difficult to simultaneously perform control to suppress frost formation on the second heat exchangers 12 of the plurality of exhaust units 410. Therefore, the upper control device 400 performs adjustment so as not to simultaneously perform control to suppress frost formation on the second heat exchangers 12 of the plurality of exhaust units 410.

在本实施方式中,作为换气装置1C的结霜抑制的控制,进行使流入第2热交换器12的空气的量上升的控制。在多个排气单元410A、410B同时进行使流入第2热交换器12的空气的量上升的控制的情况下,居室空间R11可能会变成负压。In this embodiment, as control to suppress frost formation in the ventilator 1C, control is performed to increase the amount of air flowing into the second heat exchanger 12. When the plurality of exhaust units 410A and 410B simultaneously control to increase the amount of air flowing into the second heat exchanger 12, the living space R11 may have a negative pressure.

因此,在本实施方式中,对多个排气单元410A、410B中的一方实施使空气量上升来进行除霜抑制的控制,对另一方则是减少空气量。即,在本实施方式中,对多个排气单元410A、410B中的一方优先进行除霜抑制运转。进而,上位控制装置400通过进行维持排出的空气总量的调整,从而抑制居室空间R11成为负压。Therefore, in the present embodiment, the defrosting suppression control is performed by increasing the air volume for one of the plurality of exhaust units 410A and 410B, and the air volume is reduced for the other. That is, in the present embodiment, the defrosting suppression operation is performed preferentially for one of the plurality of exhaust units 410A and 410B. Furthermore, the upper control device 400 suppresses the negative pressure of the living space R11 by adjusting the total amount of exhausted air.

图8是表示在本实施方式的各个排气单元群中有可能结霜的情况下,在上位控制装置400、压缩机单元450以及排气单元群之间进行的处理的流程的时序图。FIG8 is a timing chart showing the flow of processing performed among the host control device 400, the compressor unit 450, and the exhaust unit groups when there is a possibility of frost formation in each exhaust unit group in the present embodiment.

首先,第1排气单元410A的控制部413A从温度检测部14获取外部空气的温度(S1801)。First, the control unit 413A of the first exhaust unit 410A acquires the temperature of the outside air from the temperature detection unit 14 ( S1801 ).

然后,控制部413A将检测出的外部空气的温度通知给压缩机单元450的控制部452(1802)。Then, the control unit 413A notifies the control unit 452 of the compressor unit 450 of the detected temperature of the outside air ( 1802 ).

并且,第2排气单元410B的控制部413B从温度检测部14获取外部空气的温度(S1811)。Then, the control unit 413B of the second exhaust unit 410B acquires the temperature of the outside air from the temperature detection unit 14 ( S1811 ).

然后,控制部413B将检测出的外部空气的温度通知给压缩机单元450的控制部452(1812)。Then, the control unit 413B notifies the control unit 452 of the compressor unit 450 of the detected temperature of the outside air (1812).

压缩机单元450的控制部452,根据从第1排气单元410A的控制部413A及第2排气单元410B的控制部413B接收到的、检测出的外部空气的温度,来判定是否满足表示第1排气单元410A及第2排气单元410B的第2热交换器12可能会结霜的规定基准(S1821)。在图8所示的例子中,对第1排气单元410A和第2排气单元410B的第2热交换器12分别判定为满足规定基准。另外,关于规定基准与以上的实施方式相同,省略其说明。The control unit 452 of the compressor unit 450 determines whether the prescribed criterion indicating that the second heat exchanger 12 of the first exhaust unit 410A and the second exhaust unit 410B may be frosted is satisfied (S1821) based on the temperature of the outside air received and detected from the control unit 413A of the first exhaust unit 410A and the control unit 413B of the second exhaust unit 410B. In the example shown in FIG. 8 , the second heat exchanger 12 of the first exhaust unit 410A and the second exhaust unit 410B is determined to satisfy the prescribed criterion. In addition, the prescribed criterion is the same as in the above embodiment, and its description is omitted.

压缩机单元450的控制部452将表示存在结霜可能性的判定结果通知给上位控制装置400(S1822)。The control unit 452 of the compressor unit 450 notifies the host control device 400 of the determination result indicating that there is a possibility of frost formation (S1822).

上位控制装置400根据接收到的判定结果,决定对第1排气单元410A及第2排气单元410B进行结霜抑制控制的顺序(S1831)。该顺序的确定方法可以采用任意方法。例如,可以控制为对结霜可能性高的一方先行进行结霜抑制,也可以按照预先分配给第1排气单元410A和第2排气单元410B的优先顺序来决定。图8所示的例子是决定为按照第1排气单元410A、第2排气单元410B的顺序进行结霜抑制的例子。The upper control device 400 determines the order of frost suppression control for the first exhaust unit 410A and the second exhaust unit 410B based on the received judgment result (S1831). The method for determining the order can be any method. For example, it can be controlled so that the frost suppression is first performed on the side with a higher possibility of frost, or it can be determined according to the priority order pre-assigned to the first exhaust unit 410A and the second exhaust unit 410B. The example shown in FIG. 8 is an example in which frost suppression is determined in the order of the first exhaust unit 410A and the second exhaust unit 410B.

上位控制装置400向压缩机单元450的控制部452发送表示第1排气单元410A的风量上升的指示的信号(S1832)。The host control device 400 transmits a signal indicating an instruction to increase the air volume of the first exhaust unit 410A to the control unit 452 of the compressor unit 450 (S1832).

然后,压缩机单元450的控制部452向第1排气单元410A的控制部413A发送表示风量上升的指示的信号(S1823)。Then, the control unit 452 of the compressor unit 450 transmits a signal indicating an instruction to increase the air volume to the control unit 413A of the first exhaust unit 410A (S1823).

由此,第1排气单元410A的控制部413A,相较于在S1801进行温度检测之前而言,对风扇11进行使流入第2热交换器12的空气量增加(风量上升)的控制(S1803)。Thus, the control unit 413A of the first exhaust unit 410A controls the fan 11 to increase the amount of air flowing into the second heat exchanger 12 (increase the air volume) compared to before the temperature detection in S1801 (S1803).

上位控制装置400在通过以上控制增加流入第2热交换器12的空气量之后,并经过规定时间(为了抑制结霜而预先确定的时间)之后,向压缩机单元450的控制部452发送表示第2排气单元410B的风量减少的指示的信号(S1833)。After increasing the amount of air flowing into the second heat exchanger 12 through the above control and after a specified time (a time predetermined to suppress frost formation) has passed, the upper control device 400 sends a signal (S1833) indicating a reduction in the air volume of the second exhaust unit 410B to the control unit 452 of the compressor unit 450.

然后,压缩机单元450的控制部452对第2排气单元410B的控制部413B发送表示风量减少的指示的信号(S1824)。Then, the control unit 452 of the compressor unit 450 transmits a signal indicating an instruction to reduce the air volume to the control unit 413B of the second exhaust unit 410B (S1824).

由此,第2排气单元410B的控制部413B,相较于在S1811进行温度检测之前而言,对风扇11进行使流入第2热交换器12的空气量减少(风量减少)的控制(S1813)。Thus, the control unit 413B of the second exhaust unit 410B controls the fan 11 to reduce the amount of air flowing into the second heat exchanger 12 (reducing the air volume) compared to before the temperature detection in S1811 (S1813).

在本实施方式中,通过使第1排气单元410A的风量上升的同时减小第2排气单元410B的风量,来维持空气的总排出量。然后,上位控制装置400更换进行结霜抑制的排气单元。In the present embodiment, the total exhaust volume of air is maintained by increasing the air volume of the first exhaust unit 410A and reducing the air volume of the second exhaust unit 410B. Then, the host control device 400 replaces the exhaust unit that performs frost suppression.

上位控制装置400向压缩机单元450的控制部452发送表示第1排气单元410A的风量减少的指示的信号(S1834)。The host control device 400 transmits a signal indicating a command to reduce the air volume of the first exhaust unit 410A to the control unit 452 of the compressor unit 450 (S1834).

然后,压缩机单元450的控制部452向第1排气单元410A的控制部413A发送表示风量减少的指示的信号(S1825)。Then, the control unit 452 of the compressor unit 450 transmits a signal indicating an instruction to reduce the air volume to the control unit 413A of the first exhaust unit 410A (S1825).

由此,第1排气单元410A的控制部413A,相较于在S1801进行温度检测之前而言,对风扇11进行使流入第2热交换器12的空气量减少(减少风量)的控制(S1804)。Thus, the control unit 413A of the first exhaust unit 410A controls the fan 11 to reduce the amount of air flowing into the second heat exchanger 12 (reduce the air volume) compared to before the temperature detection in S1801 (S1804).

上位控制装置400向压缩机单元450的控制部452发送表示第2排气单元410B的风量上升的指示的信号(S1835)。The host control device 400 transmits a signal indicating an instruction to increase the air volume of the second exhaust unit 410B to the control unit 452 of the compressor unit 450 (S1835).

然后,压缩机单元450的控制部452向第2排气单元410B的控制部413B发送表示风量上升的指示的信号(S1826)。Then, the control unit 452 of the compressor unit 450 transmits a signal indicating an instruction to increase the air volume to the control unit 413B of the second exhaust unit 410B (S1826).

由此,与通过S1811进行温度检测之前相比,第2排气单元410B的控制部413B对风扇11进行使流入第2热交换器12的空气量增加(风量上升)的控制(S1814)。Thus, the control unit 413B of the second exhaust unit 410B controls the fan 11 to increase the amount of air flowing into the second heat exchanger 12 (increase the air volume) compared to before the temperature detection in S1811 (S1814).

如上所述,本实施方式的压缩机单元450的控制部452及上位控制装置400,在多个第2热交换器12作为蒸发器发挥功能的期间,在判定为满足规定基准的情况下,对与多个第2热交换器12中的任一个对应的风扇11进行相较于满足规定基准前而言使流入第2热交换器12的空气量增加的控制。由此,流入第2热交换器12中的任一个的(温暖的)空气量会增加,从而能够实现结霜的抑制。As described above, the controller 452 of the compressor unit 450 and the upper control device 400 of the present embodiment, when it is determined that the predetermined reference is satisfied, controls the fan 11 corresponding to any one of the plurality of second heat exchangers 12 to increase the amount of air flowing into the second heat exchanger 12 compared to before the predetermined reference is satisfied during the period when the plurality of second heat exchangers 12 function as evaporators. As a result, the amount of (warm) air flowing into any one of the second heat exchangers 12 increases, thereby suppressing frost.

而且,上位控制装置400,在对与多个第2热交换器12中的任一个对应的风扇11进行使空气量增加的控制的情况下,对与其他的第2热交换器12对应的风扇11进行相较于满足所述规定基准之前而言使流入所述第2热交换器的空气量减少的控制。由此,能够维持从多个排气单元群排出的空气量,从而能够避免居室空间R11成为负压。Furthermore, the upper control device 400 controls the fans 11 corresponding to any one of the plurality of second heat exchangers 12 to increase the amount of air, and controls the fans 11 corresponding to other second heat exchangers 12 to reduce the amount of air flowing into the second heat exchanger compared to before the predetermined reference is satisfied. Thus, the amount of air exhausted from the plurality of exhaust unit groups can be maintained, thereby preventing the living space R11 from becoming negative pressure.

进而,本实施方式中,通过对多个排气单元的每一个,按照规定的顺序进行结霜抑制的控制,能够抑制多个排气单元的第2热交换器12结霜。Furthermore, in the present embodiment, by performing frost suppression control for each of the plurality of exhaust units in a predetermined order, it is possible to suppress frost formation on the second heat exchanger 12 of the plurality of exhaust units.

(实施方式5)(Implementation 5)

在实施方式4中,说明了在进行结霜抑制的控制时,进行用于维持从多个排气单元群排出的空气量的调整的例子。但是,作为避免负压的方法,并不限定于进行维持从多个排气单元群排出的空气量的调整的方法。因此,在实施方式5中,关于在使从排气单元群排出的空气量上升时,使供气单元群从室外导入的空气量上升的情况进行说明。另外,设定为本实施方式的结构具备与实施方式4相同的结构。In Embodiment 4, an example of adjusting the amount of air discharged from a plurality of exhaust unit groups when performing frost suppression control is described. However, as a method for avoiding negative pressure, it is not limited to the method of adjusting the amount of air discharged from a plurality of exhaust unit groups. Therefore, in Embodiment 5, a case is described in which the amount of air introduced from the outside of the air supply unit group is increased when the amount of air discharged from the exhaust unit group is increased. In addition, it is assumed that the structure of this embodiment has the same structure as that of Embodiment 4.

本实施方式的压缩机单元450的控制部452,与实施方式4同样,根据接收到的外部空气的温度来判定是否满足表示第1排气单元410A及第2排气单元410B的第2热交换器12结霜的可能性的规定基准。The control unit 452 of the compressor unit 450 of this embodiment determines whether the predetermined criterion indicating the possibility of frost formation on the second heat exchanger 12 of the first exhaust unit 410A and the second exhaust unit 410B is satisfied based on the temperature of the received outside air, similarly to the fourth embodiment.

并且,在压缩机单元450的控制部452判定为第1排气单元410A和第2排气单元410B中的任一个满足规定基准的情况下,上位控制装置400对该排气单元进行增加风量的指示。该指示的方法与实施方式4相同,省略其说明。When the control unit 452 of the compressor unit 450 determines that either the first exhaust unit 410A or the second exhaust unit 410B satisfies the predetermined standard, the host control device 400 instructs the exhaust unit to increase the air volume. The instruction method is the same as that in Embodiment 4, and its description is omitted.

上位控制装置400,在判定为第1排气单元410A及第2排气单元410B分别满足规定基准的情况下,决定对第1排气单元410A及第2排气单元410B进行结霜抑制的顺序。并且,上位控制装置400对第1排气单元410A及第2排气单元410B分别按照该顺序指示风量增加。When it is determined that the first exhaust unit 410A and the second exhaust unit 410B satisfy the predetermined criteria, the upper control device 400 determines the order in which the frost is suppressed in the first exhaust unit 410A and the second exhaust unit 410B. The upper control device 400 instructs the first exhaust unit 410A and the second exhaust unit 410B to increase the air volume in the order.

本实施方式的上位控制装置400,作为代替如实施方式4所示的进行风量减少指示的方式,对第1供气单元420A及第2供气单元420B的任一个以上进行风量增加指示。风量增加的指示,从上位控制装置400经由压缩机单元450的控制部452针对第1供气单元420A的控制部423A及第2供气单元420B的控制部423B的任一个以上进行。The upper control device 400 of this embodiment, instead of giving an instruction to decrease the air volume as shown in Embodiment 4, gives an instruction to increase the air volume to at least one of the first air supply unit 420A and the second air supply unit 420B. The instruction to increase the air volume is given from the upper control device 400 via the control unit 452 of the compressor unit 450 to at least one of the control unit 423A of the first air supply unit 420A and the control unit 423B of the second air supply unit 420B.

指示风量增加的对象,可以是第1供气单元420A及第2供气单元420B中的任一个,也可以是第1供气单元420A及第2供气单元420B的各个。但是,上位控制装置400以使第1排气单元410A及第2排气单元410B中排出的空气量与第1供气单元420A及第2供气单元420B导入的空气量成为相同的方式,进行调整。The object for which the air volume increase is instructed may be any one of the first air supply unit 420A and the second air supply unit 420B, or each of the first air supply unit 420A and the second air supply unit 420B. However, the upper control device 400 makes adjustments so that the air volume exhausted from the first exhaust unit 410A and the second exhaust unit 410B is the same as the air volume introduced into the first air supply unit 420A and the second air supply unit 420B.

如上所述,本实施方式的上位控制装置400,在对与排气单元群中包含的多个第2热交换器12中的任一个对应的风扇11进行使流入第2热交换器12的空气量增加的控制的情况下,根据增加的空气量,对供气单元群中包含的风扇21进行相较于满足规定基准之前而言使流入第1热交换器22的空气量增加的控制。由此,本实施方式中,由于导入的空气量与排出的空气量大致一致,因此能够抑制居室空间R11成为负压的情况。As described above, the upper control device 400 of this embodiment controls the fan 21 included in the air supply unit group to increase the amount of air flowing into the first heat exchanger 22 compared to before the predetermined reference is satisfied, when the fan 11 corresponding to any one of the plurality of second heat exchangers 12 included in the exhaust unit group is controlled to increase the amount of air flowing into the second heat exchanger 12. Thus, in this embodiment, since the amount of air introduced is substantially the same as the amount of air discharged, it is possible to suppress the situation where the living space R11 becomes negative pressure.

(实施方式6)(Implementation 6)

进行结霜抑制的方法不限定于以上的实施方式,也可以使用其他的方法。因此,在实施方式6中,关于在使压缩机单元的压缩机的动作停止之后,通过使空气流入第2热交换器12来进行结霜抑制的例子进行说明。The method of suppressing frost is not limited to the above embodiment, and other methods may be used. Therefore, in Embodiment 6, an example of suppressing frost by causing air to flow into the second heat exchanger 12 after stopping the operation of the compressor of the compressor unit will be described.

本实施方式的结构可以是任意的结构,也可以是设有如实施方式3的图6所示的上位控制装置400的结构。此外,在图6所示的例子中,示出了排气单元及供气单元各设有2台的例子,但也可以是排气单元及供气单元各设有1台。如上所述,排气单元及供气单元的台数可以是任意数量。The structure of this embodiment may be any structure, and may be a structure provided with a host control device 400 as shown in FIG6 of Embodiment 3. In addition, in the example shown in FIG6, an example is shown in which two exhaust units and two air supply units are provided, but one exhaust unit and one air supply unit may be provided. As described above, the number of exhaust units and air supply units may be any number.

在第2热交换器12作为蒸发器发挥功能期间,第1排气单元410A的控制部413A及第2排气单元410B的控制部413B从温度检测部14获取第2热交换器12的表面温度。然后,控制部413A及第2排气单元410B的控制部413B将检测出的第2热交换器12的表面温度发送给压缩机单元450的控制部452。While the second heat exchanger 12 functions as an evaporator, the control unit 413A of the first exhaust unit 410A and the control unit 413B of the second exhaust unit 410B acquire the surface temperature of the second heat exchanger 12 from the temperature detection unit 14. Then, the control unit 413A and the control unit 413B of the second exhaust unit 410B transmit the detected surface temperature of the second heat exchanger 12 to the control unit 452 of the compressor unit 450.

并且,压缩机单元450的控制部452根据第2热交换器12的表面温度,判定是否满足表示第2热交换器12结霜的可能性的规定基准。作为表示第2热交换器12结霜的可能性的规定基准,例如也可以是判定第2热交换器12的表面温度是否为0度以下的基准。另外,规定基准只要是表示第2热交换器12结霜的可能性的基准即可,可以是任意的基准。例如,规定基准可以是以上实施方式中所述的基准,例如也可以是根据制冷剂的温度或压力的基准。Furthermore, the control unit 452 of the compressor unit 450 determines whether a predetermined reference indicating the possibility of frost formation on the second heat exchanger 12 is satisfied based on the surface temperature of the second heat exchanger 12. As a predetermined reference indicating the possibility of frost formation on the second heat exchanger 12, for example, a reference for determining whether the surface temperature of the second heat exchanger 12 is below 0 degrees may be used. In addition, the predetermined reference may be any reference as long as it is a reference indicating the possibility of frost formation on the second heat exchanger 12. For example, the predetermined reference may be the reference described in the above embodiment, or may be a reference based on the temperature or pressure of the refrigerant.

本实施方式的压缩机单元450的控制部452,在判定为满足规定基准的情况下,将表示第2热交换器12有可能结霜的意思的判定结果通知给上位控制装置400。When determining that the predetermined criterion is satisfied, the control unit 452 of the compressor unit 450 of the present embodiment notifies the host control device 400 of the determination result indicating that there is a possibility of frost on the second heat exchanger 12 .

上位控制装置400根据该判定结果,对压缩机单元450的控制部452发送指示停止压缩机的控制信号。由此,压缩机单元450的控制部452进行使压缩机停止的控制。Based on the determination result, the host control device 400 transmits a control signal for instructing the controller 452 of the compressor unit 450 to stop the compressor. As a result, the controller 452 of the compressor unit 450 performs control to stop the compressor.

另外,上位控制装置400,根据判定结果,经由压缩机单元450的控制部452对第1排气单元410A的控制部413A及第2排气单元410B的控制部413B的分别输出控制信号,以继续进行使空气流入风扇11的第2热交换器12的控制。并且,如实施方式4所示,上位控制装置400也可以进行使风扇11的风量上升的控制。In addition, the upper control device 400 outputs control signals to the control unit 413A of the first exhaust unit 410A and the control unit 413B of the second exhaust unit 410B respectively via the control unit 452 of the compressor unit 450 according to the determination result, so as to continue to control the second heat exchanger 12 for causing air to flow into the fan 11. Furthermore, as shown in Embodiment 4, the upper control device 400 may also control the fan 11 to increase the air volume.

在本实施方式中,通过使压缩机单元450内部的压缩机停止的同时,使居室空间R11的空气流向第2热交换器12,以使第2热交换器12的表面的温度上升,从而能够抑制第2热交换器12结霜。In the present embodiment, the compressor in the compressor unit 450 is stopped and the air in the living space R11 is directed to the second heat exchanger 12 to increase the surface temperature of the second heat exchanger 12 , thereby suppressing frost on the second heat exchanger 12 .

(实施方式7)(Implementation 7)

在实施方式6中,说明了上位控制装置400控制1台压缩机单元450的例子。但是,上位控制装置400控制的压缩机单元的数量并不限定为1台。因此,在实施方式7中,关于上位控制装置400控制3台压缩机单元的例子进行说明。In Embodiment 6, an example is described in which the host control device 400 controls one compressor unit 450. However, the number of compressor units controlled by the host control device 400 is not limited to one. Therefore, in Embodiment 7, an example is described in which the host control device 400 controls three compressor units.

图9是例示包括实施方式7的上位控制装置500的装置群的配置的图。图9所示的例子中,至少包括起居室空间R501、R502、R503、化妆间R511、R512及管轴R521。Fig. 9 is a diagram illustrating an arrangement of a group of devices including the host control device 500 according to Embodiment 7. In the example shown in Fig. 9 , at least living room spaces R501, R502, and R503, dressing rooms R511 and R512, and a pipe axis R521 are included.

在化妆间R511、R512中分别设置有换气口595A、595B。Ventilation ports 595A and 595B are provided in dressing rooms R511 and R512, respectively.

另外,作为空调机2D,包括3台室外机571、572、573及8台空调室内机581、582、583、584、585、586、587、588。3台室外机571~573与8台空调室内机581~588之间通过(未图示)连通管道连接。In addition, the air conditioner 2D includes three outdoor units 571, 572, and 573 and eight indoor air conditioner units 581, 582, 583, 584, 585, 586, 587, and 588. The three outdoor units 571 to 573 and the eight indoor air conditioner units 581 to 588 are connected by connecting pipes (not shown).

另外,3台室外机571~573通过信号线与上位控制装置500连接。由此,3台室外机571~573能够按照上位控制装置500的控制进行空调控制。In addition, the three outdoor units 571 to 573 are connected to the host control device 500 via signal lines. Thus, the three outdoor units 571 to 573 can perform air conditioning control according to the control of the host control device 500.

第1换气装置1D_1是设在居室空间R501的换气装置,包括第1压缩机单元550A、第1供气单元520A及第1排气单元510A。The first ventilator 1D_1 is a ventilator provided in the living space R501, and includes a first compressor unit 550A, a first air supply unit 520A, and a first exhaust unit 510A.

第1供气单元520A从换气口592A进行供气(SA)。第1排气单元510A从换气口591A进行回气(RA)。第1压缩机单元550A、第1供气单元520A及第1排气单元510A通过连通管道F501连接。连通管道F501包括多个制冷剂连通管道。由此,能够使制冷剂在第1压缩机单元550A、第1供气单元520A及第1排气单元510A之间循环。The first air supply unit 520A supplies air (SA) from the ventilation port 592A. The first exhaust unit 510A returns air (RA) from the ventilation port 591A. The first compressor unit 550A, the first air supply unit 520A and the first exhaust unit 510A are connected by a connecting pipe F501. The connecting pipe F501 includes a plurality of refrigerant connecting pipes. Thus, the refrigerant can be circulated between the first compressor unit 550A, the first air supply unit 520A and the first exhaust unit 510A.

另外,第1压缩机单元550A、第1供气单元520A和第1排气单元510A之间通过(未图示)信号线连接。由此能够在单元之间进行信息收发。另外,第1压缩机单元550A、第1供气单元520A及第1排气单元510A内的结构与图6所示的压缩机单元450A、第1供气单元420A及第1排气单元410A为相同结构,省略其说明。In addition, the first compressor unit 550A, the first air supply unit 520A and the first exhaust unit 510A are connected by a signal line (not shown). This enables information to be sent and received between the units. In addition, the structures in the first compressor unit 550A, the first air supply unit 520A and the first exhaust unit 510A are the same as the compressor unit 450A, the first air supply unit 420A and the first exhaust unit 410A shown in Figure 6, and their description is omitted.

第2换气装置1D_2是设在居室空间R502的换气装置,包括第2压缩机单元550B、第2供气单元520B、第2排气单元510B。The second ventilator 1D_2 is a ventilator provided in the living space R502, and includes a second compressor unit 550B, a second air supply unit 520B, and a second exhaust unit 510B.

第2供气单元520B从换气口592B进行供气(SA)。第2排气单元510B从换气口591B进行回气(RA)。第2压缩机单元550B、第2供气单元520B及第2排气单元510B通过连通管道F502连接。连通管道F502包括多个制冷剂连通管道。由此,能够使制冷剂在第2压缩机单元550B、第2供气单元520B及第2排气单元510B之间循环。The second air supply unit 520B supplies air (SA) from the ventilation port 592B. The second exhaust unit 510B returns air (RA) from the ventilation port 591B. The second compressor unit 550B, the second air supply unit 520B and the second exhaust unit 510B are connected by a connecting pipe F502. The connecting pipe F502 includes a plurality of refrigerant connecting pipes. Thus, the refrigerant can be circulated between the second compressor unit 550B, the second air supply unit 520B and the second exhaust unit 510B.

另外,第2压缩机单元550B、第2供气单元520B及第2排气单元510B之间通过(未图示)信号线连接。由此能够在单元之间进行信息收发。另外,第2压缩机单元550B、第2供气单元520B及第2排气单元510B内的结构与图6所示的压缩机单元450A、第1供气单元420A及第1排气单元410A为相同结构,在此省略其说明。In addition, the second compressor unit 550B, the second air supply unit 520B and the second exhaust unit 510B are connected by a signal line (not shown). Thus, information can be sent and received between the units. In addition, the structure in the second compressor unit 550B, the second air supply unit 520B and the second exhaust unit 510B is the same structure as the compressor unit 450A, the first air supply unit 420A and the first exhaust unit 410A shown in Figure 6, and its description is omitted here.

第3换气装置1D_3是设在居室空间R503的换气装置,包括第3压缩机单元550C、第3供气单元520C、第3排气单元510C。The third ventilator 1D_3 is a ventilator provided in the living space R503, and includes a third compressor unit 550C, a third air supply unit 520C, and a third exhaust unit 510C.

第3供气单元520C从换气口592C进行供气(SA)。第3排气单元510C从换气口591C进行回气(RA)。第3压缩机单元550C、第3供气单元520C及第3排气单元510C通过连通管道F503连接。连通管道F503包括多个制冷剂连通管道。由此,能够使制冷剂在第3压缩机单元550C、第3供气单元520C及第3排气单元510C之间循环。The third air supply unit 520C supplies air (SA) from the ventilation port 592C. The third exhaust unit 510C returns air (RA) from the ventilation port 591C. The third compressor unit 550C, the third air supply unit 520C and the third exhaust unit 510C are connected by a connecting pipe F503. The connecting pipe F503 includes a plurality of refrigerant connecting pipes. Thus, the refrigerant can be circulated between the third compressor unit 550C, the third air supply unit 520C and the third exhaust unit 510C.

此外,第3压缩机单元550C、第3供气单元520C和第3排气单元510C之间通过(未图示)信号线连接。由此能够在单元之间进行信息的收发。另外,第3压缩机单元550C、第3供气单元520C及第3排气单元510C内的结构与图6所示的压缩机单元450A、第1供气单元420A及第1排气单元410A为相同结构,在此省略其说明。In addition, the third compressor unit 550C, the third air supply unit 520C and the third exhaust unit 510C are connected by a signal line (not shown). Thus, information can be sent and received between the units. In addition, the structure in the third compressor unit 550C, the third air supply unit 520C and the third exhaust unit 510C is the same structure as the compressor unit 450A, the first air supply unit 420A and the first exhaust unit 410A shown in Figure 6, and its description is omitted here.

如上所述,在本实施方式中,具有压缩机单元、供气单元、排气单元及连通管道的多个组合。另外,第1压缩机单元550A、第2压缩机单元550B及第3压缩机单元550C被配置在管轴R521。As described above, in this embodiment, there are a plurality of combinations of the compressor unit, the air supply unit, the exhaust unit, and the communication duct. In addition, the first compressor unit 550A, the second compressor unit 550B, and the third compressor unit 550C are arranged on the pipe axis R521.

上位控制装置500通过信号线与第1压缩机单元550A、第2压缩机单元550B及第3压缩机单元550C连接。由此,上位控制装置500能够识别第1换气装置1D_1~第3换气装置1D_3的各装置的状态,并且能够对各装置进行控制。The host control device 500 is connected to the first compressor unit 550A, the second compressor unit 550B, and the third compressor unit 550C via signal lines, so that the host control device 500 can recognize the state of each of the first to third ventilation devices 1D_1 to 1D_3 and can control each device.

通过以上结构,在第1排气单元510A~第3排气单元510C各自的第2热交换器12作为蒸发器发挥功能期间,第1压缩机单元550A~第3压缩机单元550C的(未图示)控制部从第1排气单元510A~第3排气单元510C分别接收第2热交换器12的表面温度。Through the above structure, while the second heat exchanger 12 of each of the first exhaust unit 510A to the third exhaust unit 510C functions as an evaporator, the control unit (not shown) of the first compressor unit 550A to the third compressor unit 550C receives the surface temperature of the second heat exchanger 12 from the first exhaust unit 510A to the third exhaust unit 510C, respectively.

并且,本实施方式的第1压缩机单元550A~第3压缩机单元550C的控制部,在第2热交换器12作为蒸发器发挥功能的期间,根据第2热交换器12的表面温度,判定是否满足表示第2热交换器12结霜的可能性的规定基准。另外,规定基准与所述的实施方式相同,在此省略其说明。Furthermore, the control unit of the first compressor unit 550A to the third compressor unit 550C of the present embodiment determines whether a predetermined criterion indicating the possibility of frost formation on the second heat exchanger 12 is satisfied based on the surface temperature of the second heat exchanger 12 during the period when the second heat exchanger 12 functions as an evaporator. In addition, the predetermined criterion is the same as that of the above-mentioned embodiment, and its description is omitted here.

第1压缩机单元550A~第3压缩机单元550C的控制部将表示是否满足规定基准的判定结果通知给上位控制装置400。The control units of the first to third compressor units 550A to 550C notify the host control device 400 of the determination results indicating whether or not the predetermined criteria are satisfied.

上位控制装置500在从判定结果判定出通过连通管道与满足规定基准的第2热交换器12连接的压缩机单元(例如,第1压缩机单元550A~第3压缩机单元550C)存在多个的情况下,作为抑制第2热交换器12结霜的控制,对该多个压缩机单元(例如,第1压缩机单元550A~第3压缩机单元550C)按照规定的顺序输出使压缩机停止的控制信号。由此,能够抑制多个压缩机单元同时使压缩机停止的情况。另外,规定的顺序可以是任意顺序,也可以是表面温度从低到高的顺序,还可以是基于预先设定的压缩机单元的优先顺序。When the upper control device 500 determines from the judgment result that there are multiple compressor units (for example, the first compressor unit 550A to the third compressor unit 550C) connected to the second heat exchanger 12 that meets the specified criteria through the connecting pipe, as a control to suppress frost on the second heat exchanger 12, the upper control device 500 outputs a control signal to stop the compressor in a specified order to the multiple compressor units (for example, the first compressor unit 550A to the third compressor unit 550C). Thereby, it is possible to suppress the situation where multiple compressor units stop the compressor at the same time. In addition, the specified order can be an arbitrary order, or it can be an order from low to high surface temperature, or it can be based on the priority order of the compressor units set in advance.

另外,上位控制装置500,针对与满足规定基准的第2热交换器12对应的风扇11,维持使来自居室空间R501~R503的空气流入第2热交换器12的控制。由此,能够使第2热交换器12中流动的制冷剂的温度上升。In addition, the host control device 500 maintains control of the fan 11 corresponding to the second heat exchanger 12 satisfying the predetermined criterion so that air from the living spaces R501 to R503 flows into the second heat exchanger 12. Thus, the temperature of the refrigerant flowing through the second heat exchanger 12 can be increased.

在本实施方式中,通过进行以上的控制,使流入第2热交换器12的制冷剂停止,并维持空气流入第2热交换器12,由此能够抑制第2热交换器12结霜。In the present embodiment, by performing the above control, the flow of the refrigerant into the second heat exchanger 12 is stopped, and the flow of air into the second heat exchanger 12 is maintained, thereby suppressing the frosting of the second heat exchanger 12 .

(第8实施方式)(Eighth Implementation Method)

在实施方式7中,说明了上位控制装置500按照规定顺序使多个压缩机单元停止的例子。与此相对,在实施方式8中,关于在1台压缩机上连接有多个供气单元及多个排气单元的例子进行说明。In Embodiment 7, an example is described in which the host control device 500 stops a plurality of compressor units in a predetermined order. In contrast, in Embodiment 8, an example is described in which a plurality of air supply units and a plurality of exhaust units are connected to one compressor.

图10是例示包括实施方式8的上位控制装置600的装置群的配置的图。并且,对图10所示的结构中的与所述实施例的结构相同的结构,标注相同的符号,并且省略其说明。FIG10 is a diagram illustrating an arrangement of a device group including a host control device 600 according to Embodiment 8. Among the configurations shown in FIG10 , configurations identical to those of the above-described embodiment are denoted by identical reference numerals and description thereof is omitted.

如图10所示,压缩机单元650通过连通管道F601与第1供气单元520A及第1排气单元510A连接,通过连通管道F602与第2供气单元520B及第2排气单元510B连接,通过连通管道F603与第3供气单元520C及第3排气单元510C连接。由此,能够使制冷剂通过由连通管道F601、F602、F603连接的各单元内循环。As shown in Fig. 10, the compressor unit 650 is connected to the first air supply unit 520A and the first exhaust unit 510A through a communication pipe F601, connected to the second air supply unit 520B and the second exhaust unit 510B through a communication pipe F602, and connected to the third air supply unit 520C and the third exhaust unit 510C through a communication pipe F603. Thus, the refrigerant can be circulated through each unit connected by the communication pipes F601, F602, and F603.

压缩机单元650、第1供气单元520A~第3供气单元520C及第1排气单元510A~第3排气单元510C之间通过(未图示)信号线连接,由此能够在单元之间进行信息的收发。另外,上位控制装置500与压缩机单元650之间也通过信号线连接,因此能够进行信息的收发。The compressor unit 650, the first air supply unit 520A to the third air supply unit 520C, and the first exhaust unit 510A to the third exhaust unit 510C are connected by a signal line (not shown), thereby enabling information to be sent and received between the units. In addition, the upper control device 500 and the compressor unit 650 are also connected by a signal line, thereby enabling information to be sent and received.

并且,在第1供气单元520A、第2供气单元520B及第3供气单元520C中设置有如图5所示的电动阀门26(第1阀门部的一例)。同样,在第1排气单元510A、第2排气单元510B及第3排气单元510C中设置有如图5所示的电动阀门16(第1阀门部的一例)。Furthermore, the first air supply unit 520A, the second air supply unit 520B, and the third air supply unit 520C are provided with the electric valve 26 (an example of the first valve unit) as shown in FIG5 . Similarly, the first exhaust unit 510A, the second exhaust unit 510B, and the third exhaust unit 510C are provided with the electric valve 16 (an example of the first valve unit) as shown in FIG5 .

在第1排气单元510A、第2排气单元510B及第3排气单元510C的第2热交换器12作为蒸发器发挥功能时,电动阀门16作为调整(调整制冷剂的压力)流入第2热交换器12的流路的开度的阀门发挥功能。When the second heat exchanger 12 of the first exhaust unit 510A, the second exhaust unit 510B, and the third exhaust unit 510C functions as an evaporator, the electric valve 16 functions as a valve that adjusts the opening of the flow path flowing into the second heat exchanger 12 (adjusts the pressure of the refrigerant).

(阀门部的一例)(An example of a valve part)

由此,上位控制装置600针对第1排气单元510A、第2排气单元510B及第3排气单元510C分别进行使电动阀门16成为关闭状态的控制,能够个别进行使制冷剂的流入停止的控制。Thus, the host control device 600 controls the first exhaust unit 510A, the second exhaust unit 510B, and the third exhaust unit 510C to close the electric valve 16 , and can individually control to stop the inflow of the refrigerant.

本实施方式的压缩机单元650的(未图示)控制部,在第2热交换器12作为蒸发器发挥功能的期间,根据第2热交换器12的表面温度,来判定是否满足表示第2热交换器12结霜的可能性的规定基准。另外,规定基准与以上的实施方式相同,省略其说明。并且,压缩机单元650的(未图示)控制部652将判定结果通知给上位控制装置600。The control unit (not shown) of the compressor unit 650 of this embodiment determines whether a predetermined reference indicating the possibility of frost formation on the second heat exchanger 12 is satisfied based on the surface temperature of the second heat exchanger 12 during the period when the second heat exchanger 12 functions as an evaporator. The predetermined reference is the same as that in the above embodiment, and its description is omitted. Furthermore, the control unit (not shown) 652 of the compressor unit 650 notifies the upper control device 600 of the determination result.

在本实施方式中,上位控制装置600根据判定结果,识别出满足规定基准的第2热交换器12存在多个的情况下,作为抑制第2热交换器12的结霜的控制,对包括满足规定基准的第2热交换器12在内的多个排气单元(例如,第1排气单元510A~第3排气单元510C),按照规定的顺序输出关闭电动阀门16的控制信号。由此,能够抑制制冷剂流入多个第2热交换器12的动作被同时停止。另外,规定的顺序可以是任意顺序,也可以是表面温度从低到高的顺序,还可以是基于预先设定的压缩机单元的优先顺序。In this embodiment, when the upper control device 600 recognizes that there are multiple second heat exchangers 12 that meet the specified criteria based on the judgment result, as a control to suppress frost formation on the second heat exchanger 12, a control signal for closing the electric valve 16 is output in a specified order for multiple exhaust units (for example, the first exhaust unit 510A to the third exhaust unit 510C) including the second heat exchanger 12 that meets the specified criteria. As a result, the actions of the refrigerant flowing into the multiple second heat exchangers 12 can be suppressed from being stopped at the same time. In addition, the specified order can be an arbitrary order, an order from low to high surface temperature, or a priority order based on a preset compressor unit.

另外,上位控制装置500针对与满足规定基准的第2热交换器12相对应的风扇11,维持将来自居室空间R501~R503的空气流入第2热交换器12的控制。In addition, the host control device 500 maintains control of causing the air from the living spaces R501 to R503 to flow into the second heat exchanger 12 for the fan 11 corresponding to the second heat exchanger 12 that satisfies the predetermined criterion.

在本实施方式中,通过进行如上所述的控制,使流入第2热交换器12的制冷剂停止,并维持空气流入第2热交换器12,因此能够抑制结霜。In the present embodiment, by performing the control as described above, the flow of the refrigerant into the second heat exchanger 12 is stopped, and the flow of air into the second heat exchanger 12 is maintained, so that frost formation can be suppressed.

(实施方式9)(Implementation method 9)

也可以使用以上的实施方式以外的方法来抑制第2热交换器12的结霜。因此,在实施方式9中,说明对供气风量与排气量之间进行调整的例子。It is also possible to use methods other than those in the above embodiment to suppress the frosting of the second heat exchanger 12. Therefore, in the ninth embodiment, an example of adjusting the supply air volume and the exhaust air volume will be described.

实施方式9的结构可以是以上实施方式的任意结构,例如也可以是图6所示的结构。因此,在本实施方式中,对具有图6所示的结构的情况进行说明。The structure of the ninth embodiment may be any structure of the above embodiments, and may be, for example, the structure shown in Fig. 6. Therefore, in this embodiment, the case of having the structure shown in Fig. 6 will be described.

而且,本实施方式的压缩机单元450的控制部452,在第2热交换器12作为蒸发器发挥功能的期间,根据第2热交换器12的表面温度,判定是否满足表示第2热交换器12结霜的可能性的规定基准。另外,规定基准与以上的实施方式相同,在此省略其说明。Furthermore, the control unit 452 of the compressor unit 450 of the present embodiment determines whether or not a prescribed criterion indicating the possibility of frost formation on the second heat exchanger 12 is satisfied based on the surface temperature of the second heat exchanger 12 during the period when the second heat exchanger 12 functions as an evaporator. The prescribed criterion is the same as that in the above embodiment, and its description is omitted here.

在本实施方式中,压缩机单元450的控制部452将判定结果通知给上位控制装置400。并且,在上位控制装置400识别出满足规定基准的第2热交换器12存在多个的情况下,作为抑制第2热交换器12结霜的控制,输出用于控制风扇11及风扇12的控制信号,以使排气单元群(例如,第1排气单元410A及第2排气单元410B)的风扇11(第2换气单元的一例)的合计供气风量比供气单元群(例如,第1供气单元420A及第2供气单元420B)的风扇21(第1换气单元的一例)的合计排气风量多。In the present embodiment, the control unit 452 of the compressor unit 450 notifies the upper control device 400 of the determination result. Furthermore, when the upper control device 400 recognizes that there are a plurality of second heat exchangers 12 that satisfy the prescribed criteria, as a control to suppress frost formation on the second heat exchanger 12, a control signal for controlling the fan 11 and the fan 12 is output so that the total air supply volume of the fan 11 (an example of the second ventilation unit) of the exhaust unit group (for example, the first exhaust unit 410A and the second exhaust unit 410B) is greater than the total exhaust volume of the fan 21 (an example of the first ventilation unit) of the air supply unit group (for example, the first air supply unit 420A and the second air supply unit 420B).

在本实施方式中,通过形成为排气的风量大于供气的风量的状态,抑制供气单元群的冷凝能力,提高排气单元群的第2热交换器12的蒸发温度,从而能够实现结霜抑制。In this embodiment, the exhaust air volume is set larger than the supply air volume, thereby suppressing the condensing capacity of the supply air unit group and increasing the evaporation temperature of the second heat exchanger 12 of the exhaust air unit group, thereby suppressing frost.

(实施方式10)(Implementation 10)

也可以使用以上实施方式以外的方法来抑制第2热交换器12的结霜。因此,在实施方式10中,说明对经由第1热交换器22之后的空气温度进行调整的例子。It is also possible to use methods other than those of the above embodiment to suppress frost formation on the second heat exchanger 12. Therefore, in the tenth embodiment, an example in which the temperature of air after passing through the first heat exchanger 22 is adjusted will be described.

实施方式10的结构可以是以上实施方式的任意结构,例如也可以是图6所示的结构。因此,在本实施方式中,对具有图6所示的结构的情况进行说明。The structure of the tenth embodiment may be any structure of the above embodiments, and may be, for example, the structure shown in Fig. 6. Therefore, in this embodiment, the case of having the structure shown in Fig. 6 will be described.

并且,本实施方式的压缩机单元450的控制部452,在第2热交换器12作为蒸发器发挥功能的期间,根据第2热交换器12的表面温度,判定是否满足表示第2热交换器12结霜的可能性的规定基准。另外,规定基准与以上的实施方式相同,省略其说明。并且,压缩机单元450的控制部452将判定结果通知给上位控制装置400。Furthermore, the control unit 452 of the compressor unit 450 of the present embodiment determines whether a predetermined reference indicating the possibility of frost formation on the second heat exchanger 12 is satisfied based on the surface temperature of the second heat exchanger 12 during the period when the second heat exchanger 12 functions as an evaporator. The predetermined reference is the same as that in the above embodiment, and its description is omitted. Furthermore, the control unit 452 of the compressor unit 450 notifies the upper control device 400 of the determination result.

在本实施方式中,上位控制装置400,在识别出满足规定基准的第2热交换器12存在多个的情况下,作为抑制第2热交换器12结霜的控制,对供气单元群(例如,第1供气单元420A及第2供气单元420B)的第1热交换器输出控制信号,该控制信号使经由第1热交换器22之后的空气的温度变得比设在居室空间R11的空调机2C的温度低。另外,从室外机470的控制部471获取空调机2C中设定的温度。In this embodiment, when the upper control device 400 recognizes that there are a plurality of second heat exchangers 12 that meet the prescribed criteria, it outputs a control signal to the first heat exchanger of the air supply unit group (for example, the first air supply unit 420A and the second air supply unit 420B) as a control to suppress frost formation on the second heat exchanger 12. The control signal makes the temperature of the air after passing through the first heat exchanger 22 lower than the temperature of the air conditioner 2C provided in the living space R11. In addition, the temperature set in the air conditioner 2C is obtained from the control unit 471 of the outdoor unit 470.

在本实施方式中,经由供气单元群的第1热交换器22之后的空气的温度(供气温度)比室内的设定温度低。由此,压缩机单元450的压缩机会以低旋转数运转,从而能够抑制第2热交换器12的蒸发温度下降。In this embodiment, the temperature of the air after passing through the first heat exchanger 22 of the air supply unit group (supply air temperature) is lower than the set indoor temperature. Therefore, the compressor of the compressor unit 450 is operated at a low rotation speed, and the evaporation temperature of the second heat exchanger 12 can be suppressed from decreasing.

(实施方式11)(Implementation 11)

也可以使用以上的实施方式以外的方法来抑制第2热交换器12的结霜。因此,在实施例11中,说明通过设在排气单元下游的电动阀门(第3阀门部的一例)来调整制冷剂压力的例子。It is also possible to use methods other than the above embodiment to suppress frost formation on the second heat exchanger 12. Therefore, in Example 11, an example of adjusting the refrigerant pressure by an electric valve (an example of a third valve portion) provided downstream of the exhaust unit will be described.

实施方式11的结构可以是以上实施方式的任意结构,例如也可以是图6所示的结构。因此,在本实施方式中,对具有图6所示的结构的情况进行说明。The structure of the eleventh embodiment may be any structure of the above embodiments, and may be, for example, the structure shown in Fig. 6. Therefore, in this embodiment, the case of having the structure shown in Fig. 6 will be described.

图11是表示实施方式11的制冷剂回路的图。图11所示的例子表示在排气单元410A、410B的第2热交换器12作为蒸发器发挥功能的情况下的制冷剂的流向。另外,对与以上的实施方式相同的结构标注相同的符号,在此省略其说明。Fig. 11 is a diagram showing a refrigerant circuit of Embodiment 11. The example shown in Fig. 11 shows the flow of the refrigerant when the second heat exchanger 12 of the exhaust units 410A and 410B functions as an evaporator. In addition, the same reference numerals are given to the same structures as those in the above embodiments, and their description is omitted here.

在图11所示的例子中,在排气单元410A、410B的第2热交换器12作为蒸发器发挥功能的情况下,在排气单元410A、410B各自的第2热交换器12的下游侧设有电动阀门601、602。In the example shown in FIG. 11 , when the second heat exchanger 12 of the exhaust units 410A and 410B functions as an evaporator, electric valves 601 and 602 are provided on the downstream side of the second heat exchanger 12 of the exhaust units 410A and 410B, respectively.

并且,本实施方式的压缩机单元450的控制部452,在第2热交换器12作为蒸发器发挥功能的期间,根据第2热交换器12的表面温度,判定是否满足表示第2热交换器12结霜的可能性的规定基准。另外,规定基准与以上的实施方式相同,在此省略其说明。压缩机单元450的控制部452将判定结果通知给上位控制装置400。Furthermore, the control unit 452 of the compressor unit 450 of the present embodiment determines whether a predetermined reference indicating the possibility of frost formation on the second heat exchanger 12 is satisfied based on the surface temperature of the second heat exchanger 12 during the period when the second heat exchanger 12 functions as an evaporator. The predetermined reference is the same as that in the above embodiment, and its description is omitted here. The control unit 452 of the compressor unit 450 notifies the upper control device 400 of the determination result.

在本实施方式中,上位控制装置400在识别出存在满足规定基准的第2热交换器12的情况下,对包含第2热交换器12的排气单元(例如,第1排气单元410A或第2排气单元410B)的控制部(控制部413A或控制部413B)输出相较于满足规定基准之前而言使电动阀门(电动阀门601或电动阀门602)收紧的控制信号。In this embodiment, when the upper control device 400 recognizes the existence of the second heat exchanger 12 that meets the specified criteria, it outputs a control signal to the control unit (control unit 413A or control unit 413B) of the exhaust unit (for example, the first exhaust unit 410A or the second exhaust unit 410B) including the second heat exchanger 12, thereby tightening the electric valve (electric valve 601 or electric valve 602) compared to before the specified criteria were met.

通过减小膨胀阀门(膨胀阀门161或膨胀阀门162)的开度,能够使位于膨胀阀门(膨胀阀门161或膨胀阀门162)的上游侧的第2热交换器12中流动的制冷剂的压力上升。由此,能够使第2热交换器12中流动的制冷剂的蒸发温度上升。从而,能够抑制第2热交换器12的结霜。By reducing the opening of the expansion valve (expansion valve 161 or expansion valve 162), the pressure of the refrigerant flowing in the second heat exchanger 12 located on the upstream side of the expansion valve (expansion valve 161 or expansion valve 162) can be increased. As a result, the evaporation temperature of the refrigerant flowing in the second heat exchanger 12 can be increased. Thus, frost formation in the second heat exchanger 12 can be suppressed.

另外,图11中表示了旁路流路F6,但在本实施方式中,可以与采用以上实施方式中的旁路流路F6的控制进行组合,也可以不进行组合。11 shows a bypass flow path F6, but in the present embodiment, the bypass flow path F6 may be used in combination with the control in the above embodiment, or may not be used in combination.

(实施方式11的变形例)(Variation of Implementation Example 11)

在实施方式11中,说明了采用在第2热交换器12的下游收对电动阀门601、602进行收紧的方法来抑制结霜的例子。实施方式11中,不仅对在第2热交换器12下游侧调整电动阀门601、602到方法进行了说明,还对在制冷剂回路中设置室外机的排气单元730并对该排气单元730进行控制的情况进行了说明。In Embodiment 11, an example of suppressing frost formation by tightening the electric valves 601 and 602 downstream of the second heat exchanger 12 is described. In Embodiment 11, not only the method of adjusting the electric valves 601 and 602 on the downstream side of the second heat exchanger 12 is described, but also the case of providing an exhaust unit 730 of an outdoor unit in the refrigerant circuit and controlling the exhaust unit 730 is described.

图12是表示实施方式11的变形例的制冷剂回路的图。在图12所示的例子中,表示了在图11所示的制冷剂回路中还设置有排气单元730的例子。另外,除了设有排气单元730以外,其他结构与实施方式11相同,省略其说明。Fig. 12 is a diagram showing a refrigerant circuit of a modified example of Embodiment 11. In the example shown in Fig. 12, an example is shown in which an exhaust unit 730 is further provided in the refrigerant circuit shown in Fig. 11. In addition, except for the exhaust unit 730, other structures are the same as those of Embodiment 11, and the description thereof is omitted.

排气单元730具有风扇11、第3热交换器732、控制部733、温度检测部14、驱动用电动机15及电动阀门16。The exhaust unit 730 includes a fan 11 , a third heat exchanger 732 , a control unit 733 , a temperature detection unit 14 , a drive motor 15 , and an electric valve 16 .

排气单元730作为室外机发挥功能。即,排气单元730设置在用于将室外的空气与第3热交换器732中流动的制冷剂进行热交换之后的空气向室外排气的流路(第4空气流路的一例)上。The exhaust unit 730 functions as an outdoor unit. That is, the exhaust unit 730 is provided on a flow path (an example of a fourth air flow path) for exhausting the air after heat exchange between the outdoor air and the refrigerant flowing through the third heat exchanger 732 to the outside.

而且,本实施方式的压缩机单元450的控制部452,在第2热交换器12作为蒸发器发挥功能的期间,根据第2热交换器12的表面温度,判定是否满足表示第2热交换器12结霜的可能性的规定基准。另外,规定基准与以上的实施方式相同,省略其说明。压缩机单元450的控制部452将判定结果通知给上位控制装置400。Furthermore, the control unit 452 of the compressor unit 450 of the present embodiment determines whether a predetermined criterion indicating the possibility of frost formation on the second heat exchanger 12 is satisfied based on the surface temperature of the second heat exchanger 12 during the period when the second heat exchanger 12 functions as an evaporator. The predetermined criterion is the same as that in the above embodiment, and its description is omitted. The control unit 452 of the compressor unit 450 notifies the upper control device 400 of the determination result.

在本实施方式中,上位控制装置400在识别出存在满足规定基准的第2热交换器12的情况下,进行与实施方式11相同的控制,并进行使排气单元730的第3热交换器732在进行热交换时相较于第2热交换器12而言以较低蒸发温度进行热交换。In this embodiment, when the upper control device 400 recognizes the existence of the second heat exchanger 12 that meets the specified criteria, it performs the same control as embodiment 11 and causes the third heat exchanger 732 of the exhaust unit 730 to perform heat exchange at a lower evaporation temperature than the second heat exchanger 12 during heat exchange.

如图12所示,经由排气单元730的第3热交换器732的制冷剂流与经由排气单元410A、410B的第2热交换器12的制冷剂流相互连接。因此,能够降低第3热交换器732的蒸发温度,从而能够使第2热交换器12的蒸发温度上升。由此,能够抑制第2热交换器12的结霜。As shown in Fig. 12, the refrigerant flow through the third heat exchanger 732 of the exhaust unit 730 and the refrigerant flow through the second heat exchanger 12 of the exhaust units 410A and 410B are connected to each other. Therefore, the evaporation temperature of the third heat exchanger 732 can be lowered, and the evaporation temperature of the second heat exchanger 12 can be increased. As a result, frost formation on the second heat exchanger 12 can be suppressed.

另外,在以上的实施方式及变形例中,说明了由压缩机单元450的控制部452及上位控制装置500分担处理的方法,但并不限定于由压缩机单元450的控制部452及上位控制装置500分担处理的方法,也可以由压缩机单元450的控制部452及上位控制装置500中的任一方进行判定及其他设备的控制。进而,并不限定于由压缩机单元450的控制部452及上位控制装置500进行处理的方法,也可以由进行集中管理的服务器或云服务进行以上实施方式的处理。In addition, in the above embodiments and modified examples, a method in which the control unit 452 of the compressor unit 450 and the upper control device 500 share the processing is described, but it is not limited to the method in which the control unit 452 of the compressor unit 450 and the upper control device 500 share the processing, and the determination and control of other devices may be performed by either the control unit 452 of the compressor unit 450 or the upper control device 500. Furthermore, it is not limited to the method in which the control unit 452 of the compressor unit 450 and the upper control device 500 perform the processing, and the processing of the above embodiments may be performed by a server or cloud service that performs centralized management.

(实施方式12)(Implementation 12)

也可以使用以上的实施方式以外的方法来抑制第2热交换器12结霜。因此,在实施例12中,说明在考虑消费功率的基础上切换控制的例子。It is also possible to use methods other than the above-described embodiment to suppress frost formation on the second heat exchanger 12. Therefore, in Example 12, an example of switching control in consideration of power consumption will be described.

实施方式12的结构可以是以上实施方式的任意结构,例如也可以是图6所示的结构。因此,在本实施方式中,对具有图6所示的结构的情况进行说明。上位控制装置400在热回收换气运转时进行如下所示的控制。The structure of the twelfth embodiment may be any structure of the above embodiments, for example, it may be the structure shown in Fig. 6. Therefore, in this embodiment, the case of having the structure shown in Fig. 6 is described. The upper control device 400 performs the following control during the heat recovery ventilation operation.

而且,本实施方式的压缩机单元450的控制部452,在第2热交换器12作为蒸发器发挥功能的期间,根据第2热交换器12的表面温度,判定是否满足表示第2热交换器12结霜的可能性的规定基准。压缩机单元450的控制部452将判定结果通知给上位控制装置400。Furthermore, the control unit 452 of the compressor unit 450 of the present embodiment determines whether a predetermined standard indicating the possibility of frost formation on the second heat exchanger 12 is satisfied based on the surface temperature of the second heat exchanger 12 while the second heat exchanger 12 functions as an evaporator. The control unit 452 of the compressor unit 450 notifies the host control device 400 of the determination result.

作为规定基准,可以根据第2热交换器12中流动的制冷剂的温度或该制冷剂的压力来进行判定,也可以采用与以上实施方式相同方式。As the predetermined criterion, determination may be made based on the temperature of the refrigerant flowing through the second heat exchanger 12 or the pressure of the refrigerant, and the same method as in the above embodiment may be adopted.

在本实施方式中,上位控制装置400,在识别出满足规定基准的第2热交换器12存在多个的情况下,判定是进行结霜抑制的控制,还是允许结霜继而在结霜后进行除霜运转。根据上位控制装置400的判定结果,排气单元群(例如,第1排气单元410A及第2排气单元410B)进行结霜抑制的控制,或者允许结霜继而在结霜后进行除霜运转。In this embodiment, when the host control device 400 recognizes that there are multiple second heat exchangers 12 that meet the specified criteria, it determines whether to perform frost suppression control or allow frost and then perform defrost operation after frost. According to the determination result of the host control device 400, the exhaust unit group (for example, the first exhaust unit 410A and the second exhaust unit 410B) performs frost suppression control or allows frost and then performs defrost operation after frost.

图13是表示本实施例的上位控制装置400的处理顺序的流程图。FIG. 13 is a flowchart showing the processing procedure of the host control device 400 according to the present embodiment.

首先,本实施方式的压缩机单元450的控制部452,从各个排气单元群接收与第2热交换器12有关的检测结果(S2101)。检测结果为第2热交换器12中流动的制冷剂的温度或该制冷剂的压力。First, the control unit 452 of the compressor unit 450 of the present embodiment receives detection results related to the second heat exchanger 12 from each exhaust unit group (S2101). The detection result is the temperature of the refrigerant flowing through the second heat exchanger 12 or the pressure of the refrigerant.

压缩机单元450的控制部452,根据检测结果,判定是否满足规定基准(S2102)。例如,作为表示第2热交换器12结霜的可能性的规定基准,可以将所检测出的制冷剂的(蒸发)温度是否小于规定的温度t作为基准,或可以将所检测出的制冷剂的(蒸发)压力是否小于规定的压力p作为基准。在判定为不满足规定基准的情况下(S2102:否),再次从S2101开始进行处理。另外,规定的温度t、压力p作为是否有结霜的可能性的基准,是根据实施方式确定的值,省略其说明。另外,可以按每个规定的时间(例如,×分钟)进行该判定。The control unit 452 of the compressor unit 450 determines whether the prescribed criterion is met based on the detection result (S2102). For example, as a prescribed criterion indicating the possibility of frost on the second heat exchanger 12, whether the detected (evaporation) temperature of the refrigerant is less than the prescribed temperature t can be used as a criterion, or whether the detected (evaporation) pressure of the refrigerant is less than the prescribed pressure p can be used as a criterion. In the case where it is determined that the prescribed criterion is not met (S2102: No), the process starts again from S2101. In addition, the prescribed temperature t and pressure p as a criterion for whether there is a possibility of frost are values determined according to the implementation method, and their description is omitted. In addition, the judgment can be made at each prescribed time (for example, × minutes).

压缩机单元450的控制部452,在判定为满足规定基准的情况下(S2102:是),将判定结果通知给上位控制装置400。When determining that the predetermined criterion is satisfied ( S2102 : YES), the control unit 452 of the compressor unit 450 notifies the host control device 400 of the determination result.

然后,上位控制装置400控制第2热交换器12中流动的制冷剂的温度来执行结霜抑制,并计算用于维持当前的居室空间R11的温度等的消耗功率E1(S2103)。Then, the host control device 400 controls the temperature of the refrigerant flowing through the second heat exchanger 12 to perform frost suppression, and calculates the power consumption E1 for maintaining the current temperature of the living space R11 (S2103).

进而,上位控制装置400进行除霜运转的同时,计算用于维持当前的居室空间R11的温度等的消耗功率E2(S2104)。Furthermore, the host control device 400 calculates the power consumption E2 for maintaining the current temperature of the living space R11 while performing the defrosting operation (S2104).

例如,在本实施方式中,为了计算消耗功率E1及消耗功率E2而预先设定的消耗功率的计算模型被预先存储在上位控制装置500。然后,上位控制装置500通过将输入信息(例如,室温/外部气温、风扇11、21的风量、制冷剂的压力、压缩机的旋转数等:居室空间的状况的一例)输入到消耗功率的计算模型,来计算消耗功率。另外,消耗功率的计算方法并不限定于使用计算模型的方法,也可以使用其他的方法。For example, in this embodiment, a power consumption calculation model preset for calculating power consumption E1 and power consumption E2 is pre-stored in the upper control device 500. Then, the upper control device 500 calculates power consumption by inputting input information (e.g., room temperature/outside temperature, air volume of fans 11 and 21, pressure of refrigerant, number of revolutions of compressor, etc.: an example of the condition of the living space) into the power consumption calculation model. In addition, the method for calculating power consumption is not limited to the method using the calculation model, and other methods may also be used.

然后,上位控制装置400判断消耗功率E1是否小于消耗功率E2(S2105)。上位控制装置400,在判定为消耗功率E1小于消耗功率E2的情况下(S2105:是),对排气单元群输出用于抑制结霜的控制信号(S2106)。另外,用于抑制结霜的方法只要是以上实施方式所示的处理即可,省略其说明。之后,上位控制装置500再次从S2101开始进行处理。Then, the upper control device 400 determines whether the power consumption E1 is less than the power consumption E2 (S2105). When the upper control device 400 determines that the power consumption E1 is less than the power consumption E2 (S2105: Yes), it outputs a control signal for suppressing frost to the exhaust unit group (S2106). In addition, the method for suppressing frost can be any of the processes shown in the above embodiment, and its description is omitted. After that, the upper control device 500 starts the process again from S2101.

然后,上位控制装置400,在判定为消耗功率E1在消耗功率E2以上(不小于)的情况下(S2105:否),允许排气单元群的结霜,并在根据检测结果判定为已结霜之后,输出用于执行除霜运转的控制信号(S2107)。另外,关于进行除霜运转的方法,对公知方法不设限,可以使用任何方法,在此省略其说明。Then, when it is determined that the power consumption E1 is greater than (not less than) the power consumption E2 (S2105: No), the upper control device 400 allows the exhaust unit group to be frosted, and after it is determined that frosting has occurred based on the detection result, it outputs a control signal for executing the defrosting operation (S2107). In addition, regarding the method of performing the defrosting operation, there is no limitation to the known method, and any method can be used, and its description is omitted here.

然后,本实施方式的上位控制装置400经由压缩机单元450的控制部452,从各个排气单元群接收与第2热交换器12相关的检测结果(S2108)。检测结果为第2热交换器12中流动的制冷剂的温度或该制冷剂的压力。Then, the host control device 400 of this embodiment receives the detection result related to the second heat exchanger 12 from each exhaust unit group via the control unit 452 of the compressor unit 450 (S2108). The detection result is the temperature of the refrigerant flowing in the second heat exchanger 12 or the pressure of the refrigerant.

上位控制装置400,根据检测结果,判定是否满足除霜结束基准(S2109)。例如,作为第2热交换器12的除霜结束基准,可以将检测出的制冷剂的(蒸发)温度是否大于规定的温度t+α作为基准,或者可以将检测出的制冷剂的(蒸发)压力是否小于规定的压力p+β作为基准。另外,除霜结束基准只要是能够判断除霜已完成的基准即可,可以使用任意的基准。另外,变量α、β是根据实施方式而决定的正数,在此省略其说明。判定是否满足除霜结束基准(S2109)。在判定为并未满足除霜结束基准的情况下(S2109:否),再次从S2108开始进行处理。另外,可以按每个规定的时间(例如,y分钟)进行该判定。The upper control device 400 determines whether the defrost end criterion (S2109) is met based on the detection result. For example, as the defrost end criterion for the second heat exchanger 12, whether the detected (evaporation) temperature of the refrigerant is greater than the specified temperature t+α can be used as a criterion, or whether the detected (evaporation) pressure of the refrigerant is less than the specified pressure p+β can be used as a criterion. In addition, the defrost end criterion can be any criterion as long as it can be used to determine whether the defrost is completed. In addition, the variables α and β are positive numbers determined according to the implementation method, and their description is omitted here. Determine whether the defrost end criterion (S2109) is met. When it is determined that the defrost end criterion is not met (S2109: No), the process starts again from S2108. In addition, this determination can be made at each specified time (for example, y minutes).

另一方面,上位控制装置400,根据检测结果,在判定为满足除霜结束基准的情况下(S2109:是),向排气单元群输出用于结束除霜运转的控制信号(S2110),并结束处理。然后,上位控制装置500再次从S2101开始进行处理。On the other hand, when the host control device 400 determines that the defrosting end criterion is satisfied based on the detection result (S2109: Yes), it outputs a control signal for ending the defrosting operation to the exhaust unit group (S2110) and ends the process. Then, the host control device 500 starts the process again from S2101.

本实施方式的上位控制装置500,通过进行所述控制,在判定为满足规定基准的情况下,为了成为使第2热交换器12不结霜的温度,能够根据控制第2热交换器12中流动的制冷剂温度时所需的消耗功率、以及在第2热交换器12结霜之后进行用于消除第2热交换器12的结霜的运转时所需的消耗功率,来控制第2热交换器12中流动的制冷剂的温度以成为使第2热交换器12不结霜的温度,或者对第2热交换器12结霜之后消除第2热交换器12的结霜的运转进行控制。The upper control device 500 of the present embodiment, by performing the above-mentioned control, when it is determined that the prescribed benchmark is met, can control the temperature of the refrigerant flowing in the second heat exchanger 12 to a temperature at which the second heat exchanger 12 is not frosted, or control the operation of eliminating frost on the second heat exchanger 12 after the second heat exchanger 12 is frosted, based on the power consumption required for controlling the temperature of the refrigerant flowing in the second heat exchanger 12 and the power consumption required for the operation of eliminating frost on the second heat exchanger 12 after the second heat exchanger 12 is frosted.

由此,在本实施方式中,能够抑制排气单元群的结霜或者抑制进行除霜时的消耗功率。Therefore, in the present embodiment, it is possible to suppress frost formation on the exhaust unit group or to suppress power consumption during defrosting.

在以上的实施方式及变形例中,说明了供气单元为收容第1热交换器22及空气的流路(第1空气流路的一例)的至少一部分的壳体(第1壳体的一例)、排气单元为收容第2热交换器12及空气的流路(第2空气流路的一例)的至少一部分的壳体(第2壳体的一例),且各个壳体分离的例子。In the above embodiments and modifications, an example is described in which the air supply unit is a shell (an example of a first shell) that accommodates the first heat exchanger 22 and at least a portion of the air flow path (an example of the first air flow path), and the exhaust unit is a shell (an example of a second shell) that accommodates the second heat exchanger 12 and at least a portion of the air flow path (an example of the second air flow path), and the shells are separated.

由此,能够将排气单元与供气单元分别配置在分离的位置。由此,关于能够进行热回收的换气装置,与以往相比能够提高配置的自由度。Thus, the exhaust unit and the air supply unit can be arranged at separate positions. Thus, the degree of freedom in arrangement of the ventilation device capable of heat recovery can be increased compared to the related art.

然而,以上的实施方式及变形例并不限定于供气单元及排气单元的外壳分离的例子,供气单元及排气单元也可以是一体结构。即,第1热交换器22与第2热交换器12通过制冷剂回路相连接,并且在设置有与第1热交换器22对应的风扇21及与第2热交换器12对应的风扇的情况下,能够应用如以上实施方式及变形例中所示的风量调整或制冷剂的温度调整。由此,以上的实施方式及变形例所示的方法也可以应用于供气单元及排气单元为一体结构的情况。However, the above embodiments and modified examples are not limited to the example in which the shells of the air supply unit and the exhaust unit are separated, and the air supply unit and the exhaust unit may also be an integrated structure. That is, the first heat exchanger 22 is connected to the second heat exchanger 12 through a refrigerant circuit, and in the case where a fan 21 corresponding to the first heat exchanger 22 and a fan corresponding to the second heat exchanger 12 are provided, the air volume adjustment or the refrigerant temperature adjustment as shown in the above embodiments and modified examples can be applied. Therefore, the method shown in the above embodiments and modified examples can also be applied to the case in which the air supply unit and the exhaust unit are an integrated structure.

(换气系统的概要)(Overview of the ventilation system)

空调系统启动压缩机,将供气单元的第1热交换器作为冷凝器使用,并将排气单元的第2热交换器作为蒸发器使用,从而能够一边将排气(室内空气)的热量回收到制冷剂回路内的制冷剂,一边对室内进行换气。在空调系统中,在将排气流入的第2热交换器作为蒸发器使用的情况下,若排气(室内空气)的温度低于规定值,则会在第2热交换器上产生结霜,制冷剂回路的低压压力降低。在这种情况下,难以使已起动的压缩机持续运转。The air conditioning system starts the compressor, uses the first heat exchanger of the air supply unit as a condenser, and uses the second heat exchanger of the exhaust unit as an evaporator, so that the heat of the exhaust gas (indoor air) can be recovered to the refrigerant in the refrigerant circuit while ventilating the room. In the air conditioning system, when the second heat exchanger into which the exhaust gas flows is used as an evaporator, if the temperature of the exhaust gas (indoor air) is lower than a specified value, frost will form on the second heat exchanger, and the low pressure of the refrigerant circuit will decrease. In this case, it is difficult to keep the started compressor running.

在后面所示的实施方式中,关于具备制冷剂回路的换气系统,在热交换器被用作蒸发器的情况下,可确实实现压缩机的持续运转。In the embodiments described below, regarding a ventilation system including a refrigerant circuit, when a heat exchanger is used as an evaporator, continuous operation of the compressor can be surely achieved.

图14是本发明的换气系统的示意性结构图。图15是本发明的换气系统的控制方框图。此外,在以下的说明中,将实施方式13的换气系统1E(参照图17)称为第13换气系统1F,将实施方式14中的换气系统1E(参照图18、图19)称为第14换气系统1G,将实施方式15的换气系统1E(参照图20)称为第15换气系统1H,将实施方式16的换气系统1E(参照图21)称为第16换气系统1I,将实施方式17的换气系统1E(参照图22)称为第17换气系统1J,将实施方式18的换气系统1E(参照图23)称为第18换气系统1K。在以下的说明中,仅记载为“换气系统1E”的情况,表示对第13~第18的各换气系统1F~1K中共用的结构进行说明。FIG. 14 is a schematic diagram of the ventilation system of the present invention. FIG. 15 is a control block diagram of the ventilation system of the present invention. In the following description, the ventilation system 1E of the 13th embodiment (see FIG. 17) is referred to as the 13th ventilation system 1F, the ventilation system 1E of the 14th embodiment (see FIG. 18 and FIG. 19) is referred to as the 14th ventilation system 1G, the ventilation system 1E of the 15th embodiment (see FIG. 20) is referred to as the 15th ventilation system 1H, the ventilation system 1E of the 16th embodiment (see FIG. 21) is referred to as the 16th ventilation system 1I, the ventilation system 1E of the 17th embodiment (see FIG. 22) is referred to as the 17th ventilation system 1J, and the ventilation system 1E of the 18th embodiment (see FIG. 23) is referred to as the 18th ventilation system 1K. In the following description, only the case of recording "the ventilation system 1E" indicates that the structure common to each of the ventilation systems 1F to 1K of the 13th to 18th embodiments is described.

图14所示的换气系统1E是本发明的换气装置的一个实施方式,其设置在楼房或工厂等建筑物中,实现该建筑物中对象空间的换气。换气系统1E包括供气单元1020、排气单元1030、压缩机单元1040及制冷剂回路1050。The ventilation system 1E shown in FIG14 is an embodiment of the ventilation device of the present invention, which is installed in a building such as a building or a factory to ventilate the target space in the building. The ventilation system 1E includes an air supply unit 1020, an exhaust unit 1030, a compressor unit 1040 and a refrigerant circuit 1050.

如图14所示,供气单元1020具备第1壳体1021、供气风扇1022及第1热交换器1023。本实施方式的第1壳体1021是由具有绝热性的板部件构成的立方体状的箱体,在侧面形成有吸入口1024及吹出口1025。供气风扇1022及第1热交换器1023配置在第1壳体1021内。供气单元1020驱动供气风扇1022时,将室外(以下,称为室外1000S2,参照图17、图19)的空气(外部空气OA)导入第1壳体1021的内部,使导入的空气与第1热交换器1023内的制冷剂进行热交换之后,将该空气(供气SA)从吹出口1025向室内(以下,称为室内1000S1,参照图17、图19)供气。换气系统1E具有供气流路P1001(第1空气流路的一例),其用于将导入的外部空气OA经由第1壳体1021并从吹出口1025向室内1000S1供气。As shown in FIG. 14 , the air supply unit 1020 includes a first housing 1021, an air supply fan 1022, and a first heat exchanger 1023. The first housing 1021 of the present embodiment is a cubic box body composed of a heat-insulating plate member, and a suction port 1024 and a blow-out port 1025 are formed on the side. The air supply fan 1022 and the first heat exchanger 1023 are arranged in the first housing 1021. When the air supply unit 1020 drives the air supply fan 1022, air (external air OA) from the outside (hereinafter referred to as the outdoor 1000S2, refer to FIG. 17 and FIG. 19) is introduced into the inside of the first housing 1021, and after the introduced air is heat-exchanged with the refrigerant in the first heat exchanger 1023, the air (supply air SA) is supplied from the blow-out port 1025 to the room (hereinafter referred to as the indoor 1000S1, refer to FIG. 17 and FIG. 19). The ventilation system 1E has an air supply path P1001 (an example of a first air flow path) for supplying introduced external air OA to the room 1000S1 from the blow-off port 1025 via the first housing 1021 .

第1热交换器1023构成以下说明的制冷剂回路1050。第1热交换器1023为交叉翅片管式或微通道式的热交换器,用于使第1热交换器1023内流动的制冷剂与室外1000S2的空气(外部空气OA)进行热交换。The first heat exchanger 1023 constitutes a refrigerant circuit 1050 described below. The first heat exchanger 1023 is a cross-fin-tube type or microchannel type heat exchanger for performing heat exchange between the refrigerant flowing in the first heat exchanger 1023 and the air (outside air OA) of the outdoor 1000S2.

供气单元1020具备供气温度传感器1026及外部空气温度传感器1027。供气温度传感器1026配置在通过第1壳体1021内的第1热交换器1023之后的空气流中,用于检测供气SA的温度T1(以下,称为吹出空气温度T1)。外部空气温度传感器1027配置在通过第1壳体1021内的第1热交换器1023之前的空气流中,用于检测外部空气OA的温度T2(以下,称为外部空气温度T2)。The air supply unit 1020 includes an air supply temperature sensor 1026 and an external air temperature sensor 1027. The air supply temperature sensor 1026 is disposed in the air flow after passing through the first heat exchanger 1023 in the first housing 1021, and is used to detect the temperature T1 of the supply air SA (hereinafter referred to as the blown air temperature T1). The external air temperature sensor 1027 is disposed in the air flow before passing through the first heat exchanger 1023 in the first housing 1021, and is used to detect the temperature T2 of the external air OA (hereinafter referred to as the external air temperature T2).

供气单元1020具备第1热交换温度传感器1055及第1制冷剂温度传感器1056。第1热交换温度传感器1055检测第1热交换器1023的(换言之,第1热交换器1023内的制冷剂的)温度Tb1。第1制冷剂温度传感器1056检测通过第1热交换器1023之后(出口)的制冷剂的温度Ta2。另外,第1热交换温度传感器1055可以是检测第1热交换器1023内的压力的压力传感器,在此情况下,根据压力的检测值换算出第1热交换器1023内的制冷剂温度。The air supply unit 1020 includes a first heat exchange temperature sensor 1055 and a first refrigerant temperature sensor 1056. The first heat exchange temperature sensor 1055 detects a temperature Tb1 of the first heat exchanger 1023 (in other words, a temperature of the refrigerant in the first heat exchanger 1023). The first refrigerant temperature sensor 1056 detects a temperature Ta2 of the refrigerant after passing through the first heat exchanger 1023 (at the outlet). In addition, the first heat exchange temperature sensor 1055 may be a pressure sensor for detecting the pressure in the first heat exchanger 1023. In this case, the refrigerant temperature in the first heat exchanger 1023 is calculated based on the detected value of the pressure.

排气单元1030具备第2壳体1031、排气风扇1032及第2热交换器1033。本实施方式的第2壳体1031是由具有绝热性的板部件构成的立方体状的箱体,在侧面形成有吸入口1034及吹出口1035。排气风扇1032及第2热交换器1033配置在第2壳体1031内。排气单元1030驱动排气风扇1032时,将室内1000S1的空气(回气RA)导入第2壳体1031的内部,并使导入的空气与第2热交换器1033内的制冷剂进行热交换之后,将该空气(排气EA)从吹出口1035向室外1000S2排出。换气系统1E具有回气流路P1002(第2空气流路的一例),其用于将室内1000S1的空气(回气RA)经由第2壳体1031从吹出口1035向室外1000S2排出。The exhaust unit 1030 includes a second housing 1031, an exhaust fan 1032, and a second heat exchanger 1033. The second housing 1031 of the present embodiment is a cubic box body composed of a heat-insulating plate member, and has a suction port 1034 and a blow-out port 1035 formed on the side. The exhaust fan 1032 and the second heat exchanger 1033 are arranged in the second housing 1031. When the exhaust unit 1030 drives the exhaust fan 1032, the air (return air RA) of the room 1000S1 is introduced into the interior of the second housing 1031, and after the introduced air is heat-exchanged with the refrigerant in the second heat exchanger 1033, the air (exhaust air EA) is discharged from the blow-out port 1035 to the outside 1000S2. The ventilation system 1E includes a return air flow path P1002 (an example of a second air flow path) for discharging the air (return air RA) in the room 1000S1 to the outside 1000S2 from the air outlet 1035 via the second casing 1031 .

第2热交换器1033构成以下说明的制冷剂回路1050。第2热交换器1033为交叉翅片管式或微通道式的热交换器,用于使第2热交换器1033内流动的制冷剂与室内1000S1的空气(回气RA)进行热交换。The second heat exchanger 1033 constitutes a refrigerant circuit 1050 described below. The second heat exchanger 1033 is a cross-fin-tube type or microchannel type heat exchanger for performing heat exchange between the refrigerant flowing in the second heat exchanger 1033 and the air (return air RA) in the room 1000S1.

排气单元1030具有回气温度传感器1036。回气温度传感器1036配置在第2壳体1031内的通过第2热交换器1033之前的空气流中,用于检测流入第2热交换器1033的空气的温度T3。在以下的说明中,将该温度T3称为吸入空气温度T3。在本发明中,将仅使从室内1000S1导入的空气通过第2热交换器1033时的吸入空气温度T3,设为室内1000S1的空气的温度。另外,也可以由设置在室内1000S1的传感器(未图示)检测室内1000S1的温度。The exhaust unit 1030 has a return air temperature sensor 1036. The return air temperature sensor 1036 is arranged in the air flow before passing through the second heat exchanger 1033 in the second shell 1031, and is used to detect the temperature T3 of the air flowing into the second heat exchanger 1033. In the following description, this temperature T3 is referred to as the intake air temperature T3. In the present invention, the intake air temperature T3 when only the air introduced from the indoor 1000S1 passes through the second heat exchanger 1033 is set as the temperature of the air in the indoor 1000S1. In addition, the temperature of the indoor 1000S1 can also be detected by a sensor (not shown) provided in the indoor 1000S1.

排气单元1030具备第2热交换温度传感器1057及第2制冷剂温度传感器1058。第2热交换温度传感器1057用于检测第2热交换器1033的(换言之,第2热交换器1033内的制冷剂的)温度Tb2。第2制冷剂温度传感器1058用于检测通过第2热交换器1033之后(出口)的制冷剂的温度Tb3。另外,第2热交换温度传感器1057可以是检测第2热交换器1033内的压力的压力传感器,在此情况下,根据压力的检测值换算出第1热交换器1023内的制冷剂温度。The exhaust unit 1030 is provided with a second heat exchange temperature sensor 1057 and a second refrigerant temperature sensor 1058. The second heat exchange temperature sensor 1057 is used to detect the temperature Tb2 of the second heat exchanger 1033 (in other words, the refrigerant in the second heat exchanger 1033). The second refrigerant temperature sensor 1058 is used to detect the temperature Tb3 of the refrigerant after passing through the second heat exchanger 1033 (at the outlet). In addition, the second heat exchange temperature sensor 1057 may be a pressure sensor for detecting the pressure in the second heat exchanger 1033. In this case, the refrigerant temperature in the first heat exchanger 1023 is calculated based on the detected value of the pressure.

压缩机单元1040具备第3壳体1041、压缩机1042、四通切换阀门1043及膨胀阀门1044。另外,本实施方式的压缩机单元1040具备第3壳体1041,但也可以省略第3壳体1041。在这种情况下,优选在供气单元1020的第1壳体1021或排气单元1030的第2壳体1031中收容压缩机1042以及四通切换阀门1043。另外,虽然本实施方式的换气系统1E将膨胀阀门1044收容在压缩机单元1040中,但膨胀阀门1044也可以收容在供气单元1020的第1壳体1021或排气单元1030的第2壳体1031中。The compressor unit 1040 includes a third housing 1041, a compressor 1042, a four-way switching valve 1043, and an expansion valve 1044. In addition, the compressor unit 1040 of the present embodiment includes the third housing 1041, but the third housing 1041 may be omitted. In this case, it is preferred that the compressor 1042 and the four-way switching valve 1043 are accommodated in the first housing 1021 of the air supply unit 1020 or the second housing 1031 of the exhaust unit 1030. In addition, although the ventilation system 1E of the present embodiment accommodates the expansion valve 1044 in the compressor unit 1040, the expansion valve 1044 may also be accommodated in the first housing 1021 of the air supply unit 1020 or the second housing 1031 of the exhaust unit 1030.

压缩机单元1040具备低压压力传感器1052、吐出压力传感器1053及吐出温度传感器1054。低压压力传感器1052用于检测被吸入到压缩机1042的制冷剂的压力PL。在以下的说明中,也将该压力PL称为低压压力PL。吐出压力传感器1053检测从压缩机1042吐出的制冷剂的压力PH。在以下的说明中,也将该压力PH称为高压压力PH。吐出温度传感器1054检测儿从压缩机1042吐出的制冷剂的温度Ta1。The compressor unit 1040 includes a low pressure sensor 1052, a discharge pressure sensor 1053, and a discharge temperature sensor 1054. The low pressure sensor 1052 is used to detect the pressure PL of the refrigerant sucked into the compressor 1042. In the following description, this pressure PL is also referred to as the low pressure PL. The discharge pressure sensor 1053 detects the pressure PH of the refrigerant discharged from the compressor 1042. In the following description, this pressure PH is also referred to as the high pressure PH. The discharge temperature sensor 1054 detects the temperature Ta1 of the refrigerant discharged from the compressor 1042.

压缩机1042吸入低压的气体状制冷剂,吐出高压的气体状制冷剂。压缩机1042具备能够通过逆变器控制来调整运转旋转数的电动机。压缩机1042是可变容量型(能力可变型),可通过对马达进行逆变器控制来变更容量(能力)。但是,压缩机1042也可以是固定容量型。另外,本发明的换气系统1E中使用的压缩机1042也可以并列连接2台以上的压缩机而构成。The compressor 1042 inhales low-pressure gaseous refrigerant and discharges high-pressure gaseous refrigerant. The compressor 1042 has an electric motor whose operating speed can be adjusted by inverter control. The compressor 1042 is a variable capacity type (capacity variable type), and the capacity (capacity) can be changed by inverter control of the motor. However, the compressor 1042 can also be a fixed capacity type. In addition, the compressor 1042 used in the ventilation system 1E of the present invention can also be composed of two or more compressors connected in parallel.

四通切换阀门1043使制冷剂管道中的制冷剂流反转,将压缩机1042吐出的制冷剂切换提供给第1热交换器1023及第2热交换器1033中的一方。由此,换气系统1E能够切换进行对外部空气OA进行冷却的冷却运转模式(以下,也称为第1运转模式M1)及对外部空气OA进行加热的加热运转模式(以下,也称为第2运转模式M2)。膨胀阀门1044由能够调节制冷剂流量及压力的电动阀门构成。在换气系统1E中,通过控制膨胀阀门1044的开度,对提供给第1热交换器1023或第2热交换器1033的制冷剂的压力进行调节。The four-way switching valve 1043 reverses the refrigerant flow in the refrigerant pipe, and switches the refrigerant discharged from the compressor 1042 to one of the first heat exchanger 1023 and the second heat exchanger 1033. As a result, the ventilation system 1E can switch between a cooling operation mode (hereinafter, also referred to as the first operation mode M1) for cooling the outside air OA and a heating operation mode (hereinafter, also referred to as the second operation mode M2) for heating the outside air OA. The expansion valve 1044 is composed of an electric valve that can adjust the refrigerant flow rate and pressure. In the ventilation system 1E, the pressure of the refrigerant provided to the first heat exchanger 1023 or the second heat exchanger 1033 is adjusted by controlling the opening of the expansion valve 1044.

制冷剂回路1050包括压缩机1042、四通切换阀门1043、膨胀阀门1044、第1热交换器1023、第2热交换器1033、以及连接这些的制冷剂管道1051(液体管1051L及气体管1051G)。制冷剂回路1050使制冷剂在第1热交换器1023与第2热交换器1033之间循环。The refrigerant circuit 1050 includes a compressor 1042, a four-way switching valve 1043, an expansion valve 1044, a first heat exchanger 1023, a second heat exchanger 1033, and a refrigerant pipe 1051 (a liquid pipe 1051L and a gas pipe 1051G) connecting these. The refrigerant circuit 1050 circulates the refrigerant between the first heat exchanger 1023 and the second heat exchanger 1033.

在具有所述结构的换气系统1E中,在通过供气单元1020对外部空气OA进行冷却并供气(第1运转模式M1)的情况下,四通切换阀门1043保持图14中实线所示的状态。从压缩机1042吐出的高温高压的气体状制冷剂经由四通切换阀门1043流入排气单元1030的第2热交换器1033。此时,第2热交换器1033作为冷凝器发挥功能,第2热交换器1033中流动的制冷剂借助排气风扇1032的动作而与回气RA进行热交换,产生冷凝、液化。液化的制冷剂在膨胀阀门1044被减压并流入第1热交换器1023。此时,第1热交换器1023作为蒸发器发挥功能,在第1热交换器1023中,制冷剂与外部空气OA进行热交换而蒸发。通过制冷剂的蒸发而被冷却的外部空气OA,通过供气风扇1022,作为供气SA被供给到室内1000S1。在第1热交换器1023中蒸发的制冷剂,经由制冷剂管道1051(气体管1051G)返回到压缩机单元1040,并经由四通切换阀门1043被吸入到压缩机1042。In the ventilation system 1E having the above structure, when the air supply unit 1020 cools the outside air OA and supplies air (the first operation mode M1), the four-way switching valve 1043 maintains the state shown by the solid line in FIG. 14. The high-temperature and high-pressure gaseous refrigerant discharged from the compressor 1042 flows into the second heat exchanger 1033 of the exhaust unit 1030 through the four-way switching valve 1043. At this time, the second heat exchanger 1033 functions as a condenser, and the refrigerant flowing in the second heat exchanger 1033 exchanges heat with the return air RA by the operation of the exhaust fan 1032, condenses, and liquefies. The liquefied refrigerant is decompressed at the expansion valve 1044 and flows into the first heat exchanger 1023. At this time, the first heat exchanger 1023 functions as an evaporator, and the refrigerant exchanges heat with the outside air OA in the first heat exchanger 1023 and evaporates. The outside air OA cooled by the evaporation of the refrigerant is supplied to the indoor 1000S1 as the supply air SA through the supply air fan 1022. The refrigerant evaporated in the first heat exchanger 1023 returns to the compressor unit 1040 via the refrigerant pipe 1051 (gas pipe 1051G), and is sucked into the compressor 1042 via the four-way switching valve 1043.

在具有所述结构的换气系统1E中,在通过供气单元1020对外部空气OA进行加热并供气(第2运转模式M2)的情况下,四通切换阀门1043保持图14中虚线所是的状态。从压缩机1042吐出的高温高压的气体状制冷剂经由四通切换阀门1043流入供气单元1020的第1热交换器1023。此时,第1热交换器1023作为冷凝器发挥功能,在第1热交换器1023中,制冷剂与外部空气OA进行热交换而产生冷凝、液化。通过制冷剂的冷凝而被加热的外部空气OA,通过供气风扇1022被提供给室内1000S1。在第1热交换器1023中液化的制冷剂,经由制冷剂管道1051(液体管1051L)到达压缩机单元1040,并在膨胀阀门1044被减压成为规定的低压,进而流入第2热交换器1033。此时,第2热交换器1033作为蒸发器发挥功能,在第2热交换器1033中,制冷剂与回气RA进行热交换而蒸发。在第2热交换器1033中蒸发、气体化的制冷剂经由四通切换阀门1043被吸入到压缩机1042。In the ventilation system 1E having the above structure, when the air supply unit 1020 heats the outside air OA and supplies air (second operation mode M2), the four-way switching valve 1043 maintains the state indicated by the dotted line in FIG. 14. The high-temperature and high-pressure gaseous refrigerant discharged from the compressor 1042 flows into the first heat exchanger 1023 of the air supply unit 1020 through the four-way switching valve 1043. At this time, the first heat exchanger 1023 functions as a condenser, and the refrigerant exchanges heat with the outside air OA in the first heat exchanger 1023 to condense and liquefy. The outside air OA heated by the condensation of the refrigerant is supplied to the indoor 1000S1 through the air supply fan 1022. The refrigerant liquefied in the first heat exchanger 1023 reaches the compressor unit 1040 through the refrigerant pipe 1051 (liquid pipe 1051L), is reduced to a predetermined low pressure at the expansion valve 1044, and then flows into the second heat exchanger 1033. At this time, the second heat exchanger 1033 functions as an evaporator, and the refrigerant evaporates by exchanging heat with the return air RA in the second heat exchanger 1033. The refrigerant evaporated and gasified in the second heat exchanger 1033 is sucked into the compressor 1042 via the four-way switching valve 1043.

(关于控制部)(About the Control Department)

图15是换气系统1E的控制方框图。如图15所示,换气系统1E具有控制部1018。控制部1018是用于控制换气系统1E的动作的装置,例如由CPU等处理器、RAM、ROM等具备存储器的微型计算机构成。控制部1018也可以使用LSI、ASIC、FPGA等作为硬件来实现。控制部1018通过由处理器执行存储器中安装的程序来发挥规定的功能。FIG15 is a control block diagram of the ventilation system 1E. As shown in FIG15, the ventilation system 1E has a control unit 1018. The control unit 1018 is a device for controlling the operation of the ventilation system 1E, and is composed of, for example, a processor such as a CPU, a microcomputer having a memory such as a RAM, a ROM, etc. The control unit 1018 can also be implemented as hardware using an LSI, an ASIC, an FPGA, etc. The control unit 1018 performs a predetermined function by executing a program installed in the memory by the processor.

控制部1018与供气风扇1022、排气风扇1032、压缩机1042、四通切换阀门1043及膨胀阀门1044连接。控制部1018与供气温度传感器1026、外部空气温度传感器1027、回气温度传感器1036、低压压力传感器1052、吐出压力传感器1053、吐出温度传感器1054、第1热交换温度传感器1055、第1制冷剂温度传感器1056、第2热交换温度传感器1057及第2制冷剂温度传感器1058连接。控制部1018根据所述各传感器的检测值,对供气风扇1022、排气风扇1032、压缩机1042、四通切换阀门1043、膨胀阀门1044及低压压力上升机构1080的动作进行控制。The control unit 1018 is connected to the air supply fan 1022, the exhaust fan 1032, the compressor 1042, the four-way switching valve 1043, and the expansion valve 1044. The control unit 1018 is connected to the air supply temperature sensor 1026, the outside air temperature sensor 1027, the return air temperature sensor 1036, the low pressure sensor 1052, the discharge pressure sensor 1053, the discharge temperature sensor 1054, the first heat exchange temperature sensor 1055, the first refrigerant temperature sensor 1056, the second heat exchange temperature sensor 1057, and the second refrigerant temperature sensor 1058. The control unit 1018 controls the operation of the air supply fan 1022, the exhaust fan 1032, the compressor 1042, the four-way switching valve 1043, the expansion valve 1044, and the low pressure increasing mechanism 1080 based on the detection values of the sensors.

控制部1018,在第2运转模式M2下的运转中,根据吐出压力传感器1053的检测值(高压压力PH),计算作为蒸发器发挥功能的第2热交换器1033的饱和温度TS。控制部1018根据低压压力传感器1052的检测值,获取制冷剂回路1050的低压压力PL。控制部1018根据第2热交换温度传感器1057的检测值(温度Tb2),获取第2热交换器1033的蒸发温度TE。或者,控制部1018根据所获取的低压压力PL,获取第2热交换器1033的蒸发温度TE。The control unit 1018 calculates the saturation temperature TS of the second heat exchanger 1033 functioning as an evaporator based on the detection value (high pressure PH) of the discharge pressure sensor 1053 during operation in the second operation mode M2. The control unit 1018 obtains the low pressure PL of the refrigerant circuit 1050 based on the detection value of the low pressure sensor 1052. The control unit 1018 obtains the evaporation temperature TE of the second heat exchanger 1033 based on the detection value (temperature Tb2) of the second heat exchange temperature sensor 1057. Alternatively, the control unit 1018 obtains the evaporation temperature TE of the second heat exchanger 1033 based on the obtained low pressure PL.

如上所述,本发明的换气系统1E,作为用户可选择的运转模式,具有第1运转模式M1及第2运转模式M2。在用户选择第1运转模式M1并已开始换气系统1E的运行的情况下,控制部1018通过对四通切换阀门1043进行切换,而能够将第1热交换器1023作为蒸发器使用,并将第2热交换器1033作为冷凝器使用。在用户选择第2运转模式M2并已开始换气系统1E的运行的情况下,控制部1018通过对四通切换阀门1043进行切换,而能够将第1热交换器1023作为冷凝器使用,并将第2热交换器1033作为蒸发器使用。另外,在本说明中所说的“用户选择第2运转模式M2并已开始换气系统1E的运转的情况下”包括四通切换阀门1043的切换已经完毕的情况以及四通切换阀门1043的切换尚未完毕的情况。As described above, the ventilation system 1E of the present invention has the first operation mode M1 and the second operation mode M2 as the operation modes selectable by the user. When the user selects the first operation mode M1 and the operation of the ventilation system 1E is started, the control unit 1018 can use the first heat exchanger 1023 as an evaporator and the second heat exchanger 1033 as a condenser by switching the four-way switching valve 1043. When the user selects the second operation mode M2 and the operation of the ventilation system 1E is started, the control unit 1018 can use the first heat exchanger 1023 as a condenser and the second heat exchanger 1033 as an evaporator by switching the four-way switching valve 1043. In addition, "when the user selects the second operation mode M2 and the operation of the ventilation system 1E is started" mentioned in this description includes the case where the switching of the four-way switching valve 1043 has been completed and the case where the switching of the four-way switching valve 1043 has not been completed.

本发明的换气系统1E,在选择第2运转模式M2并已起动的情况下,控制部1018有时会执行低压压力上升控制(第1控制)。另外,在以下的说明中,将控制部1018执行低压压力上升控制的情况下的换气系统1E的运转模式,称作低压压力上升模式M3。控制部1018,在用户选择第2运转模式M2并已开始换气系统1E的运转的情况下,起动压缩机1042,检测制冷剂回路1050的低压压力PL或第2热交换器1033的蒸发温度TE。控制部1018,在判断为低压压力PL或蒸发温度TE分别低于各所设定的阈值(在本说明中称为第1阈值)的情况下,将换气系统1E的运转模式切换成低压压力上升模式M3,以执行低压压力上升控制。另外,控制部1018,在未判断为所述低压压力PL或蒸发温度TE低于第1阈值的情况下,则无需将换气系统1E的运转模式切换成低压压力上升模式M3(不执行低压压力上升控制)。In the ventilation system 1E of the present invention, when the second operation mode M2 is selected and started, the control unit 1018 sometimes performs low pressure pressure increase control (first control). In addition, in the following description, the operation mode of the ventilation system 1E when the control unit 1018 performs the low pressure pressure increase control is referred to as the low pressure pressure increase mode M3. When the user selects the second operation mode M2 and the operation of the ventilation system 1E is started, the control unit 1018 starts the compressor 1042 and detects the low pressure PL of the refrigerant circuit 1050 or the evaporation temperature TE of the second heat exchanger 1033. When it is determined that the low pressure PL or the evaporation temperature TE is lower than each set threshold value (referred to as the first threshold value in this description), the control unit 1018 switches the operation mode of the ventilation system 1E to the low pressure pressure increase mode M3 to perform the low pressure pressure increase control. Furthermore, when the control unit 1018 does not determine that the low pressure PL or the evaporation temperature TE is lower than the first threshold, it is not necessary to switch the operation mode of the ventilation system 1E to the low pressure increase mode M3 (not executing the low pressure increase control).

具备制冷剂回路1050的换气系统1E,在第2运转模式M2下运行的情况下,通过将第1热交换器1023作为冷凝器使用,并将第2热交换器1033作为蒸发器使用,能够将排气EA的热量回收到制冷剂回路1050内的制冷剂中。在这种情况的换气系统1E中,当排气EA的温度下降时,有时会在第2热交换器1033上产生结霜,在此情况下,制冷剂回路1050的低压压力PL会下降,而将难以使压缩机1042持续运转。控制部1018,通过在这种情况下选择低压压力上升模式M3,能够使压缩机1042持续运转。另外,此处所说的“压缩机的持续运转”意味着,在压缩机起动后,不会出现因制冷剂回路的低压压力的下降等导致无法持续运转(不得不停止)的状态,而能够使运转持续进行。The ventilation system 1E having the refrigerant circuit 1050 can recover the heat of the exhaust gas EA into the refrigerant in the refrigerant circuit 1050 by using the first heat exchanger 1023 as a condenser and the second heat exchanger 1033 as an evaporator when operating in the second operation mode M2. In the ventilation system 1E in this case, when the temperature of the exhaust gas EA drops, frost may sometimes form on the second heat exchanger 1033. In this case, the low pressure PL of the refrigerant circuit 1050 drops, and it will be difficult to keep the compressor 1042 running continuously. The control unit 1018 can keep the compressor 1042 running continuously by selecting the low pressure increase mode M3 in this case. In addition, the "continuous operation of the compressor" mentioned here means that after the compressor is started, there will be no state where the compressor cannot be continuously operated (has to be stopped) due to the drop of the low pressure of the refrigerant circuit, and the operation can be continued.

控制部1018中存储有第1阈值X,其用于在选择第2运转模式M2并已起动换气系统1E的情况下,判断是否具备能够以第2运转模式M2进行运转的条件。在本发明的换气系统1E中,作为第1阈值X,存储有作为与制冷剂回路1050的低压压力PL相关的第1阈值X的压力阈值X1、作为与第2热交换器1033的蒸发温度TE相关的第1阈值X的制冷剂温度阈值X2、作为与室内1000S1的空气温度即吸入空气温度T3相关的第1阈值X的室内温度阈值X3、作为与室外1000S2的空气温度即外部空气温度T2相关的第1阈值的外部空气温度阈值X4。另外,本实施方式的控制部1018中作为第1阈值X存储有压力阈值X1、制冷剂温度阈值X2、室内温度阈值X3及室外空气温度阈值X4,但本发明的换气系统1E也可以在控制部1018中存储各阈值X1~X4中的某一个。The control unit 1018 stores a first threshold value X for determining whether the conditions for operating in the second operation mode M2 are met when the second operation mode M2 is selected and the ventilation system 1E is started. In the ventilation system 1E of the present invention, as the first threshold value X, a pressure threshold value X1 as the first threshold value X related to the low pressure PL of the refrigerant circuit 1050, a refrigerant temperature threshold value X2 as the first threshold value X related to the evaporation temperature TE of the second heat exchanger 1033, an indoor temperature threshold value X3 as the first threshold value X related to the air temperature of the room 1000S1, i.e., the suction air temperature T3, and an outside air temperature threshold value X4 as the first threshold value related to the air temperature of the outdoor 1000S2, i.e., the outside air temperature T2 are stored. In addition, the control unit 1018 of this embodiment stores the pressure threshold X1, the refrigerant temperature threshold X2, the indoor temperature threshold X3 and the outdoor air temperature threshold X4 as the first threshold X, but the ventilation system 1E of the present invention can also store one of the thresholds X1~X4 in the control unit 1018.

控制部1018中存储有第2阈值Y,其用于在该控制部1018执行低压压力上升控制时(换言之,当换气系统1E以低压增压模式M3运转时),判断是否具备能够以第2运转模式M2运转的条件。在本发明的换气系统1E中,作为第2阈值Y,存储有作为与制冷剂回路1050的低压压力PL相关的第2阈值Y的压力阈值Y1、作为与第2热交换器1033的饱和温度TS相关的第2阈值Y的饱和温度阈值Y2、作为与第2热交换器1033的吸入空气温度T3相关的第2阈值Y的空气温度阈值Y3。另外,本实施方式的控制部1018中作为第2阈值Y存储有压力阈值Y1、饱和温度阈值Y2以及空气温度阈值Y3,但本发明的换气系统1E也可以在控制部1018中存储压力阈值Y1、或饱和温度阈值Y2、或空气温度阈值Y3中的至少任一个。The control unit 1018 stores a second threshold value Y, which is used to determine whether the condition for operating in the second operation mode M2 is met when the control unit 1018 performs the low pressure pressure increase control (in other words, when the ventilation system 1E operates in the low pressure boost mode M3). In the ventilation system 1E of the present invention, as the second threshold value Y, a pressure threshold value Y1 as the second threshold value Y related to the low pressure PL of the refrigerant circuit 1050, a saturation temperature threshold value Y2 as the second threshold value Y related to the saturation temperature TS of the second heat exchanger 1033, and an air temperature threshold value Y3 as the second threshold value Y related to the intake air temperature T3 of the second heat exchanger 1033 are stored. In addition, the control unit 1018 of the present embodiment stores the pressure threshold value Y1, the saturation temperature threshold value Y2, and the air temperature threshold value Y3 as the second threshold value Y, but the ventilation system 1E of the present invention may store at least one of the pressure threshold value Y1, the saturation temperature threshold value Y2, or the air temperature threshold value Y3 in the control unit 1018.

(关于换气系统运转开始时的控制)(Regarding control at the start of ventilation system operation)

换气系统1E,按照图16所示的流程,由控制部1018控制运转开始时的动作。The operation of the ventilation system 1E at the start of operation is controlled by the control unit 1018 according to the flow shown in FIG. 16 .

如图16所示,当换气系统1E的运转开始时,首先,控制部1018判断是否选择了第2运转模式M2并已起动(S2501)。在步骤(S2501)中,控制部1018判断为选择了第2运转模式M2并已起动的情况下(是),执行下一个步骤(S2502)。另外,在步骤(S2501)中,控制部1018判断为并未选择第2运转模式M2及起动的情况下(否),控制部1018结束运转开始时的控制。在步骤(S2502)中,控制部1018使压缩机1042起动,并进入下一个步骤(S2503)。As shown in FIG. 16 , when the operation of the ventilation system 1E starts, first, the control unit 1018 determines whether the second operation mode M2 is selected and started (S2501). In step (S2501), if the control unit 1018 determines that the second operation mode M2 is selected and started (yes), the next step (S2502) is executed. In addition, in step (S2501), if the control unit 1018 determines that the second operation mode M2 is not selected and started (no), the control unit 1018 ends the control at the start of the operation. In step (S2502), the control unit 1018 starts the compressor 1042 and enters the next step (S2503).

在步骤(S2503)中,控制部1018关于制冷剂回路1050的低压压力PL进行判断。在步骤(S2503)中,在控制部1018判断为低压压力PL并不低于与该低压压力PL相关的第1阈值X(压力阈值X1)的情况下(否),执行下一个步骤(S2504)。在步骤(S2503)中,在控制部1018判断为低压压力PL低于第1阈值X(压力阈值X1)的情况下(是),执行下一个步骤(S2507)。In step (S2503), the control unit 1018 determines the low pressure PL of the refrigerant circuit 1050. In step (S2503), when the control unit 1018 determines that the low pressure PL is not lower than the first threshold value X (pressure threshold value X1) related to the low pressure PL (No), the next step (S2504) is executed. In step (S2503), when the control unit 1018 determines that the low pressure PL is lower than the first threshold value X (pressure threshold value X1) (Yes), the next step (S2507) is executed.

在步骤(S2504)中,控制部1018关于第2热交换器1033的蒸发温度TE进行判断。在步骤(S2504)中,控制部1018判断为蒸发温度TE并不低于与该蒸发温度TE相关的第1阈值X(制冷剂温度阈值X2)的情况下(否),执行下一个步骤(S2505)。在步骤(S2504)中,控制部1018判断为蒸发温度TE低于第1阈值X(制冷剂温度阈值X2)的情况下(是),执行下一个步骤(S2507)。In step (S2504), the control unit 1018 determines the evaporation temperature TE of the second heat exchanger 1033. In step (S2504), if the control unit 1018 determines that the evaporation temperature TE is not lower than the first threshold value X (refrigerant temperature threshold value X2) related to the evaporation temperature TE (No), the next step (S2505) is executed. In step (S2504), if the control unit 1018 determines that the evaporation temperature TE is lower than the first threshold value X (refrigerant temperature threshold value X2) (Yes), the next step (S2507) is executed.

在步骤(S2505)中,控制部1018关于室内1000S1的空气温度即吸入空气温度T3进行判断。在步骤(S2505)中,在控制部1018判断为吸入空气温度T3并不低于与该吸入空气温度T3相关的第1阈值X(室内温度阈值X3)的情况下(否),执行下一个步骤(S2506)。在步骤(S2505)中,在控制部1018判断为吸入空气温度T3低于第1阈值X(室内温度阈值X3)的情况下(是),执行下一个步骤(S2507)。In step (S2505), the control unit 1018 determines the air temperature of the room 1000S1, that is, the intake air temperature T3. In step (S2505), if the control unit 1018 determines that the intake air temperature T3 is not lower than the first threshold value X (indoor temperature threshold value X3) associated with the intake air temperature T3 (no), the next step (S2506) is executed. In step (S2505), if the control unit 1018 determines that the intake air temperature T3 is lower than the first threshold value X (indoor temperature threshold value X3) (yes), the next step (S2507) is executed.

在步骤(S2506)中,控制部1018关于室外1000S2的空气温度即室外空气温度T2进行判断。在步骤(S2506)中,控制部1018判断为外部空气温度T2并不低于与该外部空气温度T2相关的第1阈值X(外部空气温度阈值X4)的情况下(否),执行下一个步骤(S2512)。在步骤(S2506)中,在控制部1018判断为外部空气温度T2低于第1阈值X(外部空气温度阈值X4)的情况下(是),执行下一个的步骤(S2507)。In step (S2506), the control unit 1018 determines the air temperature of the outdoor 1000S2, that is, the outdoor air temperature T2. In step (S2506), if the control unit 1018 determines that the external air temperature T2 is not lower than the first threshold value X (external air temperature threshold value X4) related to the external air temperature T2 (no), the next step (S2512) is executed. In step (S2506), if the control unit 1018 determines that the external air temperature T2 is lower than the first threshold value X (external air temperature threshold value X4) (yes), the next step (S2507) is executed.

在步骤(S2507)中,控制部1018执行低压压力上升控制。具体而言,在步骤(S2507)中,控制部1018将换气系统1E的运转模式切换为低压压力上升模式M3,并使该换气系统1E运转。在控制部1018执行了低压压力上升控制的情况下,换气系统1E使用后面说明的低压压力上升机构1080。控制部1018在低压压力上升控制的执行开始后,进一步执行步骤(S2508)。In step (S2507), the control unit 1018 performs low pressure pressure increase control. Specifically, in step (S2507), the control unit 1018 switches the operation mode of the ventilation system 1E to the low pressure pressure increase mode M3, and operates the ventilation system 1E. When the control unit 1018 performs the low pressure pressure increase control, the ventilation system 1E uses the low pressure pressure increase mechanism 1080 described later. After the execution of the low pressure pressure increase control is started, the control unit 1018 further performs step (S2508).

在步骤(S2508)中,控制部1018在低压压力上升控制的执行中,关于制冷剂回路1050的低压压力PL进行判断。在步骤(S2508)中,控制部1018判断为低压压力PL并未超过与该低压压力PL相关的第2阈值Y(压力阈值Y1)的情况下(否),执行步骤(S2509)。在步骤(S2508)中,控制部1018判断为低压压力PL超过压力阈值Y1的情况下(是),执行步骤(S2511)。In step (S2508), the control unit 1018 determines the low pressure PL of the refrigerant circuit 1050 during the execution of the low pressure rise control. In step (S2508), if the control unit 1018 determines that the low pressure PL does not exceed the second threshold value Y (pressure threshold value Y1) related to the low pressure PL (no), step (S2509) is executed. In step (S2508), if the control unit 1018 determines that the low pressure PL exceeds the pressure threshold value Y1 (yes), step (S2511) is executed.

在步骤(S2509)中,控制部1018关于第2热交换器1033的饱和温度TS进行判断。在步骤(S2509)中,判断为饱和温度TS并未超过与该饱和温度TS相关的第2阈值Y(饱和温度阈值Y2)的情况下(否),执行步骤(S2510)。在步骤(S2509)中,判断为饱和温度TS超过饱和温度阈值Y2的情况下(是),执行步骤(S2511)。In step (S2509), the control unit 1018 determines the saturation temperature TS of the second heat exchanger 1033. In step (S2509), if it is determined that the saturation temperature TS does not exceed the second threshold value Y (saturation temperature threshold value Y2) related to the saturation temperature TS (No), step (S2510) is executed. In step (S2509), if it is determined that the saturation temperature TS exceeds the saturation temperature threshold value Y2 (Yes), step (S2511) is executed.

在步骤(S2510)中,控制部1018关于第2热交换器1033的吸入空气温度T3进行判断。在步骤(S2510)中,判断为吸入空气温度T3并未超过与该吸入空气温度T3相关的第2阈值Y(空气温度阈值Y3)的情况下(否),返回步骤(S2508)。在步骤(S2510)中,控制部1018判断为吸入空气温度T3超过空气温度阈值Y3的情况下(是),执行步骤(S2511)。In step (S2510), the control unit 1018 makes a judgment about the intake air temperature T3 of the second heat exchanger 1033. In step (S2510), if it is judged that the intake air temperature T3 does not exceed the second threshold value Y (air temperature threshold value Y3) related to the intake air temperature T3 (no), the control unit 1018 returns to step (S2508). In step (S2510), if the control unit 1018 judges that the intake air temperature T3 exceeds the air temperature threshold value Y3 (yes), the control unit 1018 executes step (S2511).

在步骤(S2511)中,控制部1018结束低压压力上升控制。控制部1018结束低压压力上升控制后,执行步骤(S2512)。在步骤(S2512)中,控制部1018将换气系统1E的运转模式切换为第2运转模式M2,使该换气系统1E运转。通过以上处理,结束由控制部1018进行的运转开始时的动作的控制(图16所示的流程)。In step (S2511), the control unit 1018 ends the low pressure pressure increase control. After the control unit 1018 ends the low pressure pressure increase control, step (S2512) is executed. In step (S2512), the control unit 1018 switches the operation mode of the ventilation system 1E to the second operation mode M2, and operates the ventilation system 1E. Through the above processing, the control of the operation at the start of operation performed by the control unit 1018 (the flow shown in Figure 16) is ended.

各步骤(S2508)~(S2510)的判断条件是判断是否能够在第2运转模式M2下使压缩机1042确实地持续运转的条件。换言之,在步骤(S2508)~(S2510)中,满足任一个条件的情况下,即具备在第2运转模式M2下能够使压缩机1042确实地持续运转的条件。换气系统1E,通过执行低压压力上升控制(第1控制),可达到能够使压缩机1042确实地持续运转的条件。换气系统1E,通过在具备了能够使压缩机1042确实地持续运转的条件之后开始第2运转模式M2下的运转,能够使压缩机1042确实地持续运转。并且,在本发明中,通过根据步骤(S2503)中的低压压力PL的判断、根据步骤(S2504)中的蒸发温度TE的判断、根据步骤(S2505)中的吸入空气温度T3的判断、以及根据步骤(S2506)中的外部空气温度T2的判断,来进行是否进入步骤(S2507)的判断,但也可以仅通过步骤(S2503)~(S2506)中的任一个进行判断。在本发明中,通过步骤(S2508)中的低压压力PL的判断、步骤(S2509)中的饱和温度TS的判断、以及步骤(S2510)中的吸入空气温度T3的判断,来进行是否进入步骤(S2511)的判断,但也可以仅通过步骤(S2508)至(S2510)中的任一个进行判断。The judgment conditions of each step (S2508) to (S2510) are conditions for judging whether the compressor 1042 can be reliably and continuously operated in the second operation mode M2. In other words, in steps (S2508) to (S2510), when any one of the conditions is satisfied, the condition for the compressor 1042 to be reliably and continuously operated in the second operation mode M2 is met. The ventilation system 1E can achieve the condition for the compressor 1042 to be reliably and continuously operated by executing the low pressure pressure increase control (first control). The ventilation system 1E can achieve the condition for the compressor 1042 to be reliably and continuously operated by starting the operation in the second operation mode M2 after the condition for the compressor 1042 to be reliably and continuously operated is met. Furthermore, in the present invention, the judgment of whether to proceed to step (S2507) is performed by judging the low pressure PL in step (S2503), judging the evaporation temperature TE in step (S2504), judging the intake air temperature T3 in step (S2505), and judging the outside air temperature T2 in step (S2506), but the judgment may be performed only by any one of steps (S2503) to (S2506). In the present invention, the judgment of whether to proceed to step (S2511) is performed by judging the low pressure PL in step (S2508), judging the saturation temperature TS in step (S2509), and judging the intake air temperature T3 in step (S2510), but the judgment may be performed only by any one of steps (S2508) to (S2510).

(关于换气系统的详细实施方式)(Detailed implementation of the ventilation system)

如图15所示,本发明的换气系统1E包括低压压力上升机构1080。在以下所述的第1至第6换气系统1F~1K中,低压压力上升机构1080的结构各不相同。在换气系统1E选择第2运转模式M2并已起动的情况下,在执行所述低压压力上升控制(参照图16)时使用低压压力上升机构1080。在以下的说明中,对第1至第6换气系统1F~1K的相同部分标注相同符号,并省略标有相同符号的部分的重复说明。As shown in FIG15 , the ventilation system 1E of the present invention includes a low pressure pressure increasing mechanism 1080. In the first to sixth ventilation systems 1F to 1K described below, the structure of the low pressure pressure increasing mechanism 1080 is different. When the ventilation system 1E selects the second operation mode M2 and is started, the low pressure pressure increasing mechanism 1080 is used when executing the low pressure pressure increasing control (refer to FIG16 ). In the following description, the same parts of the first to sixth ventilation systems 1F to 1K are marked with the same symbols, and repeated description of the parts marked with the same symbols is omitted.

(关于第13换气系统1F)(About the 13th Ventilation System 1F)

图17表示本发明的换气系统1E的实施方式13的第13换气系统1F。图17所示的第13换气系统1F具有供气单元1020、排气单元1030及压缩机单元1040。第13换气系统1F中供气单元1020、排气单元1030以及压缩机单元1040为一体结构。另外,本实施方式所示的第13换气系统1F中虽然将供气单元1020、排气单元1030以及压缩机单元1040构成为一体,但本发明的换气系统1E中也可以将供气单元1020(第1热交换器1023及供气风扇1022)、排气单元1030(第2热交换器1033及排气风扇1032)以及压缩机单元1040(压缩机1042)分别分开配置。FIG. 17 shows a thirteenth ventilation system 1F of the thirteenth embodiment of the ventilation system 1E of the present invention. The thirteenth ventilation system 1F shown in FIG. 17 includes an air supply unit 1020, an exhaust unit 1030, and a compressor unit 1040. In the thirteenth ventilation system 1F, the air supply unit 1020, the exhaust unit 1030, and the compressor unit 1040 are an integrated structure. In addition, although the air supply unit 1020, the exhaust unit 1030, and the compressor unit 1040 are configured as an integrated structure in the thirteenth ventilation system 1F shown in this embodiment, the air supply unit 1020 (the first heat exchanger 1023 and the air supply fan 1022), the exhaust unit 1030 (the second heat exchanger 1033 and the exhaust fan 1032), and the compressor unit 1040 (the compressor 1042) may be separately configured in the ventilation system 1E of the present invention.

第13换气系统1F例如可以设置在室外1000S2。在图17所示的第13换气系统1F中,将供气单元1020的吹出口1025及排气单元1030的吸入口1034直接设置在建筑物1000B的外壁面。另外,在本实施方式中例示了将第13换气系统1F配置在室外1000S2的情况,但也可以将第13换气系统1F的整体或一部分配置在室内1000S1。The 13th ventilation system 1F can be set, for example, outdoors 1000S2. In the 13th ventilation system 1F shown in FIG17, the outlet 1025 of the air supply unit 1020 and the inlet 1034 of the exhaust unit 1030 are directly set on the outer wall surface of the building 1000B. In addition, in this embodiment, the case where the 13th ventilation system 1F is arranged outdoors 1000S2 is illustrated, but the whole or part of the 13th ventilation system 1F can also be arranged indoors 1000S1.

如图17所示,第13换气系统1F具备作为第1低压压力上升机构1080的空调机1081。空调机1081具备包括室内机1081a、室外机1081b、制冷剂管道1081c的制冷剂回路1081d。As shown in Fig. 17, the thirteenth ventilation system 1F includes an air conditioner 1081 as a first low pressure increasing mechanism 1080. The air conditioner 1081 includes a refrigerant circuit 1081d including an indoor unit 1081a, an outdoor unit 1081b, and a refrigerant pipe 1081c.

(关于空调机)(About air conditioners)

空调机1081被设置在建筑物1000B中,以实现空调对象空间(室内1000S1)的空气调节。空调机1081通过进行蒸汽压缩式的冷冻循环运转来对空调对象空间进行制冷制热。另外,在本实施方式中,例示了进行蒸汽压缩式的冷冻循环运转的空调机1081,但作为低压压力上升机构1080,空调机的方式并不限定于此,例如也可以是利用由热源装置提供的冷水、热水来实现对象空间的空气调节的空调机。The air conditioner 1081 is installed in the building 1000B to realize air conditioning of the air-conditioned space (indoor 1000S1). The air conditioner 1081 cools and heats the air-conditioned space by performing a vapor compression refrigeration cycle operation. In addition, in this embodiment, the air conditioner 1081 that performs a vapor compression refrigeration cycle operation is illustrated, but as the low-pressure pressure increasing mechanism 1080, the air conditioner is not limited to this, for example, it can also be an air conditioner that uses cold water or hot water provided by a heat source device to realize air conditioning of the target space.

空调机1081的室内机1081a被配置在室内1000S1,并且室外机1081b被配置在室外1000S2。室内机1081a及室外机1081b通过制冷剂管道1081c连接。空调机1081具有空调用制冷剂回路1081d。空调用制冷剂回路1081d包括压缩机、四通切换阀门、室外热交换器、膨胀阀门、室内热交换器等(均未图示)。空调用制冷剂回路1081d通过制冷剂管道1081c使制冷剂在室内机1081a与室外机1081b之间循环。空调用制冷剂回路1081d与第13换气系统1F所具有的制冷剂回路1050分离,构成独立的回路。空调机1081检测室内1000S1的温度。The indoor unit 1081a of the air conditioner 1081 is arranged in the indoor 1000S1, and the outdoor unit 1081b is arranged in the outdoor 1000S2. The indoor unit 1081a and the outdoor unit 1081b are connected by a refrigerant pipe 1081c. The air conditioner 1081 has a refrigerant circuit 1081d for air conditioning. The refrigerant circuit 1081d for air conditioning includes a compressor, a four-way switching valve, an outdoor heat exchanger, an expansion valve, an indoor heat exchanger, etc. (none of which are shown in the figure). The refrigerant circuit 1081d for air conditioning circulates the refrigerant between the indoor unit 1081a and the outdoor unit 1081b through the refrigerant pipe 1081c. The refrigerant circuit 1081d for air conditioning is separated from the refrigerant circuit 1050 of the 13th ventilation system 1F to form an independent circuit. The air conditioner 1081 detects the temperature of the indoor 1000S1.

在第13换气系统1F中,通过在执行低压压力上升控制时使空调机1081运转,以使室内1000S1的温度上升。在第13换气系统1F中,在控制部1018判断为空调机1081检测出的室内1000S1的空气的温度超过第2阈值Y(与吸入空气温度T3相关的空气温度阈值Y3)的情况下(参照图15),开始排气风扇1032的运转。在第13换气系统1F中,通过以上,将温度高于与吸入空气温度T3相关的空气温度阈值Y3的空气吸入到第2热交换器1033。在第13换气系统1F中,通过使空调机1081运转,来抑制第2热交换器1033的结霜。在第13换气系统1F中,通过空调机1081,能够使作为蒸发器发挥功能的第2热交换器1033的吸入空气温度T3上升,由此,能够抑制第2热交换器1033结霜,并能够抑制制冷剂回路1050的低压压力PL下降。In the 13th ventilation system 1F, the temperature of the indoor 1000S1 is increased by operating the air conditioner 1081 when the low pressure pressure increase control is performed. In the 13th ventilation system 1F, when the control unit 1018 determines that the temperature of the air in the indoor 1000S1 detected by the air conditioner 1081 exceeds the second threshold value Y (the air temperature threshold value Y3 related to the intake air temperature T3) (refer to FIG. 15), the exhaust fan 1032 is started to operate. In the 13th ventilation system 1F, air having a temperature higher than the air temperature threshold value Y3 related to the intake air temperature T3 is sucked into the second heat exchanger 1033 through the above. In the 13th ventilation system 1F, the frost of the second heat exchanger 1033 is suppressed by operating the air conditioner 1081. In the 13th ventilation system 1F, the air conditioner 1081 can increase the intake air temperature T3 of the second heat exchanger 1033 functioning as an evaporator, thereby suppressing frost on the second heat exchanger 1033 and suppressing a decrease in the low pressure PL of the refrigerant circuit 1050.

在第13换气系统1F中,在选择第2运转模式M2并已启动的情况下,控制部1018可以强制启动空调机1081。在第13换气系统1F中,在选择第2运转模式M2并已启动的情况下,控制部1018也可以向用户提供催促其启动空调机1081的信息,从而由用户启动空调机1081。另外,在第13换气系统1F与空调机1081不联动的情况下,控制部1018可以在向用户提供了催促启动空调机1081的信息之后,并经过规定时间之后使排气风扇1032运转并对吸入空气温度T3进行测量,控制部1018根据该测量值使空调机1081启动。在第13换气系统1F中,构成为控制部1018能够检测空调机1081的运转状态,在选择第2运转模式M2并已起动的情况下,当控制部1018检测出空调机1081正在运转时,控制部1018可以执行低压压力上升控制。In the 13th ventilation system 1F, when the second operation mode M2 is selected and started, the control unit 1018 can forcibly start the air conditioner 1081. In the 13th ventilation system 1F, when the second operation mode M2 is selected and started, the control unit 1018 can also provide information to urge the user to start the air conditioner 1081, so that the user starts the air conditioner 1081. In addition, when the 13th ventilation system 1F and the air conditioner 1081 are not linked, the control unit 1018 can operate the exhaust fan 1032 and measure the intake air temperature T3 after providing the user with information urging the user to start the air conditioner 1081 and after a predetermined time has passed, and the control unit 1018 starts the air conditioner 1081 based on the measured value. In the 13th ventilation system 1F, the control unit 1018 is configured to detect the operating status of the air conditioner 1081. When the second operating mode M2 is selected and started, when the control unit 1018 detects that the air conditioner 1081 is operating, the control unit 1018 can perform low pressure increase control.

在第13换气系统1F中,在低压压力上升控制已结束时,控制部1018可以使空调机1081停止,控制部1018也可以使空调机1081持续运转。In the thirteenth ventilation system 1F, when the low pressure pressure increase control is completed, the control unit 1018 may stop the air conditioner 1081, or the control unit 1018 may continue to operate the air conditioner 1081.

(关于第14换气系统1G)(About the 14th ventilation system 1G)

图18是本发明的实施方式14的换气系统的示意性结构图。图19是表示本发明的实施方式14及15的换气系统被设置在建筑物中的状态的示意性结构图。图18及图19所示的第14换气系统1G是本发明的换气系统1E的实施方式14。第14换气系统1G与第13换气系统1F的不同之处在于它包括作为第2低压压力上升机构1080的第2低压压力上升机构1082。FIG. 18 is a schematic structural diagram of a ventilation system according to Embodiment 14 of the present invention. FIG. 19 is a schematic structural diagram showing a state in which the ventilation systems according to Embodiments 14 and 15 of the present invention are installed in a building. The 14th ventilation system 1G shown in FIGS. 18 and 19 is Embodiment 14 of the ventilation system 1E of the present invention. The 14th ventilation system 1G is different from the 13th ventilation system 1F in that it includes a second low pressure pressure increasing mechanism 1082 as the second low pressure pressure increasing mechanism 1080.

如图18所示,第14换气系统1G具备第2低压压力上升机构1082。第2低压压力上升机构1082由旁路管道1082a及阀门1082b构成。阀门1082b例如是电动阀门、电磁阀门等。旁路管道1082a是用于旁路连接压缩机1042的吐出管道45与液体管1051L的管道。旁路管道1082a能够将压缩机1042吐出的高温高压的气体状制冷剂,经由液体管1051L提供给第2热交换器1033。阀门1082b可切换旁路管道1082a中的制冷剂流。在阀门1082b开通的情况下,能够使气体状制冷剂在旁路管道1082a中流动,而在阀门1082b关闭的情况下,能够阻止气体状制冷剂在旁路管道1082a中流动。As shown in FIG. 18 , the 14th ventilation system 1G is provided with a second low pressure pressure increasing mechanism 1082. The second low pressure pressure increasing mechanism 1082 is composed of a bypass pipe 1082a and a valve 1082b. The valve 1082b is, for example, an electric valve, an electromagnetic valve, etc. The bypass pipe 1082a is a pipe for bypassing the discharge pipe 45 and the liquid pipe 1051L connecting the compressor 1042. The bypass pipe 1082a can provide the high-temperature and high-pressure gaseous refrigerant discharged from the compressor 1042 to the second heat exchanger 1033 via the liquid pipe 1051L. The valve 1082b can switch the refrigerant flow in the bypass pipe 1082a. When the valve 1082b is opened, the gaseous refrigerant can flow in the bypass pipe 1082a, and when the valve 1082b is closed, the gaseous refrigerant can be prevented from flowing in the bypass pipe 1082a.

第14换气系统1G通过使阀门1082b开通,经由旁路管道1082a将气体状制冷剂提供给第2热交换器1033,由此使该第2热交换器1033中流动的制冷剂的温度上升,从而能够抑制第2热交换器1033结霜。在第14换气系统1G中,通过第2低压压力上升机构1082,能够使作为蒸发器发挥功能的第2热交换器1033的出口处的饱和温度TS上升,从而能够抑制第2热交换器1033结霜,并能够抑制制冷剂回路1050的低压压力PL降低。The 14th ventilation system 1G opens the valve 1082b and supplies the gaseous refrigerant to the second heat exchanger 1033 through the bypass pipe 1082a, thereby increasing the temperature of the refrigerant flowing in the second heat exchanger 1033, thereby suppressing frost on the second heat exchanger 1033. In the 14th ventilation system 1G, the saturation temperature TS at the outlet of the second heat exchanger 1033 functioning as an evaporator can be increased by the second low-pressure pressure increasing mechanism 1082, thereby suppressing frost on the second heat exchanger 1033 and suppressing a decrease in the low-pressure PL of the refrigerant circuit 1050.

在第14换气系统1G中,控制部1018通过关闭阀门1082b来结束低压压力上升控制。In the fourteenth ventilation system 1G, the control unit 1018 ends the low pressure increase control by closing the valve 1082b.

(关于第15换气系统1H)(About the 15th ventilation system 1H)

图20是本发明的实施方式15的换气系统的示意性结构图。图19及图20所示的第15换气系统1H是本发明的换气系统1E的实施方式15。如图20所示,第15换气系统1H与第13及第14换气系统1F、1G的不同之处在于它包括作为第3低压压力上升机构1080的第3低压压力上升机构1083。FIG20 is a schematic structural diagram of a ventilation system according to Embodiment 15 of the present invention. The fifteenth ventilation system 1H shown in FIGS. 19 and 20 is Embodiment 15 of the ventilation system 1E of the present invention. As shown in FIG20 , the fifteenth ventilation system 1H is different from the thirteenth and fourteenth ventilation systems 1F and 1G in that it includes a third low pressure pressure increasing mechanism 1083 as the third low pressure pressure increasing mechanism 1080.

第15换气系统1H具备第3低压压力上升机构1083。第3低压压力上升机构1083由旁路管道1083a及风门1083b。旁路管道1083a形成在第3壳体1041内,连通第1壳体1021的排出侧与第2壳体的吸入侧。旁路管道1083a能够将由供气单元1020生成的空气流(供气SA)的一部分提供给排气单元1030中的排气风扇1032的吸入侧。风门1083b包括能够对旁路管道1083a中的供气SA的流动进行开闭的阀门体及开闭机构。在风门1083b开通的情况下,能够使供气SA在旁路管道1083a中流动,而在风门1083b关闭的情况下,能够阻止供气SA在旁路管道1083a中的流动。The 15th ventilation system 1H is provided with a third low pressure pressure increasing mechanism 1083. The third low pressure pressure increasing mechanism 1083 is composed of a bypass duct 1083a and a damper 1083b. The bypass duct 1083a is formed in the third housing 1041, and connects the discharge side of the first housing 1021 and the suction side of the second housing. The bypass duct 1083a can supply a part of the air flow (supply air SA) generated by the air supply unit 1020 to the suction side of the exhaust fan 1032 in the exhaust unit 1030. The damper 1083b includes a valve body and an opening and closing mechanism that can open and close the flow of the supply air SA in the bypass duct 1083a. When the damper 1083b is opened, the supply air SA can flow in the bypass duct 1083a, and when the damper 1083b is closed, the flow of the supply air SA in the bypass duct 1083a can be blocked.

在第15换气系统1H中,控制部1018判断为由供气温度传感器1026检测出的吹出空气温度T1超过第2阈值Y(与吸入空气温度T3相关的空气温度阈值Y3)的情况下(参照图15),开通风门1083b。第15换气系统1H通过开通风门1083b,经由旁路管道1083a将供气SA提供给第2热交换器1033的吸入侧,能够使该第2热交换器1033的吸入空气温度T3上升。在第15换气系统1H中,能够通过第3低压压力上升机构1083,使作为蒸发器发挥功能的第2热交换器1033的吸入空气温度T3上升,由此,能够抑制第2热交换器1033结霜,并能够抑制制冷剂回路1050的低压压力PL降低。In the 15th ventilation system 1H, when the control unit 1018 determines that the blown air temperature T1 detected by the supply air temperature sensor 1026 exceeds the second threshold value Y (the air temperature threshold value Y3 related to the intake air temperature T3) (refer to FIG. 15), the damper 1083b is opened. The 15th ventilation system 1H can increase the intake air temperature T3 of the second heat exchanger 1033 by opening the damper 1083b and supplying the supply air SA to the intake side of the second heat exchanger 1033 via the bypass duct 1083a. In the 15th ventilation system 1H, the intake air temperature T3 of the second heat exchanger 1033 functioning as an evaporator can be increased by the third low pressure increasing mechanism 1083, thereby suppressing the frost formation of the second heat exchanger 1033 and suppressing the decrease of the low pressure PL of the refrigerant circuit 1050.

在第15换气系统1H中,控制部1018通过关闭风门1083b来结束低压压力上升控制。In the fifteenth ventilation system 1H, the control unit 1018 ends the low pressure increase control by closing the damper 1083b.

(关于第16换气系统1I)(About the 16th ventilation system 1I)

图21是本发明的实施方式16的换气系统的示意性结构图。图21所示的第16换气系统1I是本发明的换气系统1E的实施方式16。如图21所示,第16换气系统1I中低压压力上升机构1080的结构与第13~第15换气系统1F~1H不同。第16换气系统1I与所述第13~第15换气系统1F~1H的不同之处在于,其供气单元1020、排气单元1030及压缩机单元1040分别被分离配置在室内1000S1。在第16换气系统1I中,供气单元1020、排气单元1030及压缩机单元1040被配置在作为室内1000S1的换气对象空间的房间R1的顶棚背面的空间(以下,称为顶棚背面R2)。另外,在本实施方式中例示了将第16换气系统1I配置在室内1000S1的情况,但也可以将第16换气系统1I的整体或一部分配置在室外1000S2。FIG. 21 is a schematic structural diagram of a ventilation system according to Embodiment 16 of the present invention. The 16th ventilation system 1I shown in FIG. 21 is Embodiment 16 of the ventilation system 1E of the present invention. As shown in FIG. 21 , the structure of the low pressure increasing mechanism 1080 in the 16th ventilation system 1I is different from that in the 13th to 15th ventilation systems 1F to 1H. The 16th ventilation system 1I is different from the 13th to 15th ventilation systems 1F to 1H in that the air supply unit 1020, the exhaust unit 1030, and the compressor unit 1040 are separately arranged in the room 1000S1. In the 16th ventilation system 1I, the air supply unit 1020, the exhaust unit 1030, and the compressor unit 1040 are arranged in the space behind the ceiling of the room R1 which is the ventilation target space of the room 1000S1 (hereinafter referred to as the ceiling back R2). In addition, in the present embodiment, the case where the sixteenth ventilation system 1I is arranged in the room 1000S1 is exemplified, but the whole or a part of the sixteenth ventilation system 1I may be arranged in the outdoor 1000S2.

在第16换气系统1I中,供气单元1020构成供气风路1028的一部分。供气风路1028是连通室内1000S1与室外1000S2的风路。供气风路1028由第1供气管道1028a、第2供气管道1028b及供气单元1020构成。第1供气管道1028a连接室外1000S2与供气单元1020。具体而言,第1供气管道1028a具有作为其一端的吸入口1028c,吸入口1028c连接于建筑物1000B的外壁的开口,从而连通到室外1000S2。第1供气管道1028a的另一端连接于供气单元1020。第2供气管道1028b连接供气单元1020与室内1000S1。具体而言,第2供气管道1028b具有作为其一端的吹出口1028d,吹出口1028d连接于室内1000S1的顶棚面的开口,从而连通到室内1000S1。第2供气管道1028b的另一端连接于供气单元1020。In the 16th ventilation system 1I, the air supply unit 1020 constitutes a part of the air supply air path 1028. The air supply air path 1028 is an air path connecting the indoor 1000S1 and the outdoor 1000S2. The air supply air path 1028 is composed of a first air supply duct 1028a, a second air supply duct 1028b and the air supply unit 1020. The first air supply duct 1028a connects the outdoor 1000S2 and the air supply unit 1020. Specifically, the first air supply duct 1028a has an air inlet 1028c as one end thereof, and the air inlet 1028c is connected to an opening of the outer wall of the building 1000B, thereby connecting to the outdoor 1000S2. The other end of the first air supply duct 1028a is connected to the air supply unit 1020. The second air supply duct 1028b connects the air supply unit 1020 and the indoor 1000S1. Specifically, the second air supply duct 1028b has an outlet 1028d as one end thereof, and the outlet 1028d is connected to an opening of the ceiling surface of the room 1000S1, thereby communicating with the room 1000S1. The other end of the second air supply duct 1028b is connected to the air supply unit 1020.

在第16换气系统1I中,排气单元1030构成排气风路1038的一部分。排气风路1038是连通室内1000S1与室外1000S2的风路。排气风路1038由第1排气管道1038a、第2排气管道1038b及排气单元1030构成。第1排气管道1038a连接室外1000S2与排气单元1030。具体而言,第1排气管道1038a具有作为其一端的排气口1038c,排气口1038c连接于建筑物1000B的外壁的开口,从而连通到室外1000S2。第1排气管道1038a的另一端连接于排气单元1030。第2排气管道1038b连接排气单元1030与室内1000S1。具体而言,第2排气管道1038b具有作为其一端的吸入口1038d,吸入口1038d连接于室内1000S1的顶棚面的开口,从而连通到室内1000S1。第2排气管道1038b的另一端连接于排气单元1030。In the 16th ventilation system 1I, the exhaust unit 1030 constitutes a part of the exhaust air passage 1038. The exhaust air passage 1038 is an air passage connecting the indoor 1000S1 and the outdoor 1000S2. The exhaust air passage 1038 is composed of a first exhaust duct 1038a, a second exhaust duct 1038b, and the exhaust unit 1030. The first exhaust duct 1038a connects the outdoor 1000S2 and the exhaust unit 1030. Specifically, the first exhaust duct 1038a has an exhaust port 1038c as one end thereof, and the exhaust port 1038c is connected to an opening of the outer wall of the building 1000B, thereby connecting to the outdoor 1000S2. The other end of the first exhaust duct 1038a is connected to the exhaust unit 1030. The second exhaust duct 1038b connects the exhaust unit 1030 and the indoor 1000S1. Specifically, the second exhaust duct 1038b has a suction port 1038d as one end thereof, and the suction port 1038d is connected to an opening of the ceiling surface of the room 1000S1, thereby communicating with the room 1000S1. The other end of the second exhaust duct 1038b is connected to the exhaust unit 1030.

第16换气系统1I具备第4低压压力上升机构1084。第4低压压力上升机构1084由旁路管道1084a及风门1084b构成。旁路管道1084a连接与供气单元1020的吹出侧相连的第2供气管道1028b以及与排气单元1030的吸入侧相连的第2排气管道1038b。旁路管道1084a能够将由供气单元1020生成的空气流(供气SA)的一部分提供给排气单元1030中的排气风扇1032的吸入侧。风门1084b包括能够对旁路管道1084a中的供气SA的流动进行开闭的阀门体及开闭机构。在风门1084b开通的情况下,能够使供气SA在旁路管道1084a中流动,而在风门1084b关闭的情况下,能够阻止供气SA在旁路管道1084a中的流动。The 16th ventilation system 1I is provided with a 4th low pressure pressure increasing mechanism 1084. The 4th low pressure pressure increasing mechanism 1084 is composed of a bypass duct 1084a and a damper 1084b. The bypass duct 1084a connects the 2nd air supply duct 1028b connected to the blow-out side of the air supply unit 1020 and the 2nd exhaust duct 1038b connected to the suction side of the exhaust unit 1030. The bypass duct 1084a can supply a part of the air flow (supply air SA) generated by the air supply unit 1020 to the suction side of the exhaust fan 1032 in the exhaust unit 1030. The damper 1084b includes a valve body and an opening and closing mechanism that can open and close the flow of the supply air SA in the bypass duct 1084a. When the damper 1084b is opened, the supply air SA can flow in the bypass duct 1084a, and when the damper 1084b is closed, the flow of the supply air SA in the bypass duct 1084a can be blocked.

在第16换气系统1I中,控制部1018判断为由供气温度传感器1026检测出的吹出空气温度T1超过第2阈值Y(与吸入空气温度T3相关的空气温度阈值Y3)的情况下,开通风门1084b。第16换气系统1I通过开通风门1084b,经由旁路管道1084a将供气SA供给到第2热交换器1033的吸入侧,从而能够使该第2热交换器1033的吸入空气温度T3上升。在第16换气系统1I中,能够通过第4低压压力上升机构1084,使作为蒸发器发挥功能的第2热交换器1033的吸入空气温度T3上升,由此,能够抑制第2热交换器1033结霜,并能够抑制制冷剂回路1050的低压压力PL降低。In the sixteenth ventilation system 1I, when the control unit 1018 determines that the blown air temperature T1 detected by the supply air temperature sensor 1026 exceeds the second threshold value Y (the air temperature threshold value Y3 related to the intake air temperature T3), the damper 1084b is opened. The sixteenth ventilation system 1I supplies the supply air SA to the intake side of the second heat exchanger 1033 via the bypass duct 1084a by opening the damper 1084b, thereby increasing the intake air temperature T3 of the second heat exchanger 1033. In the sixteenth ventilation system 1I, the intake air temperature T3 of the second heat exchanger 1033 functioning as an evaporator can be increased by the fourth low pressure increasing mechanism 1084, thereby suppressing the frosting of the second heat exchanger 1033 and suppressing the decrease in the low pressure PL of the refrigerant circuit 1050.

在第16换气系统1I中,控制部1018通过关闭风门1084b来结束低压压力上升控制。In the sixteenth ventilation system 1I, the control unit 1018 ends the low pressure increase control by closing the damper 1084b.

(关于第17换气系统1J)(About the 17th ventilation system 1J)

图22是本发明的实施方式17的换气系统的示意性结构图。图22所示的第17换气系统1J是本发明的换气系统1E的第17实施方式。如图22所示,第17换气系统1J的低压压力上升机构1080的结构与第16换气系统1I不同。第17换气系统1J包括作为第5低压压力上升机构1080的第5低压压力上升机构1085。FIG22 is a schematic diagram of the structure of a ventilation system according to Embodiment 17 of the present invention. The seventeenth ventilation system 1J shown in FIG22 is the seventeenth embodiment of the ventilation system 1E of the present invention. As shown in FIG22, the structure of the low pressure pressure increasing mechanism 1080 of the seventeenth ventilation system 1J is different from that of the sixteenth ventilation system 1I. The seventeenth ventilation system 1J includes a fifth low pressure pressure increasing mechanism 1085 as the fifth low pressure pressure increasing mechanism 1080.

第5低压压力上升机构1085由吸气管道1085a、风门1085b及顶棚背面温度传感器1085c构成。吸气管道1085a连接于第2排气管道1038b,并在顶棚背面R2开放,通过排气风扇1032的驱动,能够将顶棚背面R2的空气导入到排气单元1030。在第17换气系统1J中,能够使导入到排气单元1030的顶棚背面R2的空气,在第2热交换器1033中流动。风门1085b是能够对吸气管道1085a中的空气的流动进行开闭的阀门。在风门1085b开通的情况下,能够将顶棚背面R2的空气吸入到吸气管道1085a,而在风门1085b关闭的情况下,可以阻止吸气管道1085a中的空气流动。The fifth low pressure increasing mechanism 1085 is composed of an air intake duct 1085a, a damper 1085b and a ceiling back temperature sensor 1085c. The air intake duct 1085a is connected to the second exhaust duct 1038b and is open at the ceiling back R2. By driving the exhaust fan 1032, the air at the ceiling back R2 can be introduced into the exhaust unit 1030. In the seventeenth ventilation system 1J, the air introduced into the ceiling back R2 of the exhaust unit 1030 can flow in the second heat exchanger 1033. The damper 1085b is a valve that can open and close the flow of air in the air intake duct 1085a. When the damper 1085b is opened, the air at the ceiling back R2 can be sucked into the air intake duct 1085a, and when the damper 1085b is closed, the air flow in the air intake duct 1085a can be blocked.

在第17换气系统1J中,顶棚背面温度传感器1085c连接于控制部1018。顶棚背面温度传感器1085c能够检测顶棚背面R2的空气的温度。在第17换气系统1J中,控制部1018判断为顶棚背面R2的空气的温度T4超过第2阈值Y(与吸入空气温度T3相关的空气温度阈值Y3)的情况下,开通风门1085b,经由吸气管道1085a使顶棚背面R2的空气在第2热交换器1033中流动。In the seventeenth ventilation system 1J, the ceiling back temperature sensor 1085c is connected to the control unit 1018. The ceiling back temperature sensor 1085c can detect the temperature of the air on the ceiling back R2. In the seventeenth ventilation system 1J, when the control unit 1018 determines that the temperature T4 of the air on the ceiling back R2 exceeds the second threshold value Y (the air temperature threshold value Y3 related to the intake air temperature T3), the air door 1085b is opened to allow the air on the ceiling back R2 to flow through the second heat exchanger 1033 via the intake duct 1085a.

第17换气系统1J,通过开通风门1085b,经由吸气管道1085a将顶棚背面R2的空气提供给第2热交换器1033的吸入侧,从而能够使该第2热交换器1033的吸入空气温度T3上升。在第17换气系统1J中,通过第5低压压力上升机构1085,能够使作为蒸发器发挥功能的第2热交换器1033的吸入空气温度T3上升,由此,能够抑制第2热交换器1033结霜,并能够抑制制冷剂回路1050的低压压力PL降低。The seventeenth ventilation system 1J, by opening the air door 1085b, supplies the air from the ceiling back R2 to the suction side of the second heat exchanger 1033 through the suction duct 1085a, thereby increasing the suction air temperature T3 of the second heat exchanger 1033. In the seventeenth ventilation system 1J, the fifth low-pressure pressure increasing mechanism 1085 can increase the suction air temperature T3 of the second heat exchanger 1033 functioning as an evaporator, thereby suppressing frost on the second heat exchanger 1033 and suppressing a decrease in the low-pressure PL of the refrigerant circuit 1050.

在第17换气系统1J中,控制部1018通过关闭风门1085b来结束低压压力上升控制。In the seventeenth ventilation system 1J, the control unit 1018 ends the low pressure increase control by closing the damper 1085b.

(关于第18换气系统1K)(About the 18th ventilation system 1K)

图23是本发明的实施方式18的换气系统的示意性结构图。图23所示的第18换气系统1K是本发明的换气系统1E的实施方式18。如图23所示,第18换气系统1K的低压压力上升机构1080的结构与第16及第17换气系统1I、1J不同。Fig. 23 is a schematic structural diagram of a ventilation system according to Embodiment 18 of the present invention. The eighteenth ventilation system 1K shown in Fig. 23 is Embodiment 18 of the ventilation system 1E of the present invention. As shown in Fig. 23, the structure of the low pressure pressure increasing mechanism 1080 of the eighteenth ventilation system 1K is different from that of the sixteenth and seventeenth ventilation systems 1I and 1J.

第18换气系统1K具备作为第6低压压力上升机构1080的第6低压压力上升机构1086。第6低压压力上升机构1086包括以能够围着旋转轴转动的方式构成的百叶板1086a及用于使该百叶板1086a转动的机构(未图示)。百叶板1086a配置在室内1000S1中的吹出口1028d附近。百叶板1086a被构成为能够在收容位置1000P1与动作位置1000P2之间转动的方式,在该收容位置1000P1不变更从吹出口1028d吹出的供气SA的吹出方向,在该动作位置1000P2变更从吹出口1028d吹出的供气SA的吹出方向。The 18th ventilation system 1K is provided with a 6th low pressure pressure increasing mechanism 1086 as the 6th low pressure pressure increasing mechanism 1080. The 6th low pressure pressure increasing mechanism 1086 includes a louver 1086a configured to be rotatable around a rotation axis and a mechanism (not shown) for rotating the louver 1086a. The louver 1086a is arranged near the blow-out port 1028d in the room 1000S1. The louver 1086a is configured to be rotatable between a storage position 1000P1 in which the blow-out direction of the supply air SA blown out from the blow-out port 1028d is not changed and an operating position 1000P2 in which the blow-out direction of the supply air SA blown out from the blow-out port 1028d is changed.

在第18换气系统1K中,控制部1018判断为由供气温度传感器1026检测出的吹出空气温度T1超过第2阈值Y(与吸入空气温度T3相关的空气温度阈值Y3)的情况下,使百叶板1086a从收容位置1000P1向动作位置1000P2转动。在第18换气系统1K中,从吹出口1028d吹出的供气SA被百叶板1086a抵挡而改变其吹出方向,并流向吸入口1038d。在第18换气系统1K中,通过从吸入口1038d积极吸入温度比室内1000S1的空气高的供气SA,以使第2热交换器1033的吸入空气温度T3上升。在第18换气系统1K中,能够通过第6低压压力上升机构1086使作为蒸发器发挥功能的第2热交换器1033的吸入空气温度T3上升,由此,能够抑制第2热交换器1033结霜,并能够抑制制冷剂回路1050的低压压力PL降低。In the 18th ventilation system 1K, when the control unit 1018 determines that the blown air temperature T1 detected by the supply air temperature sensor 1026 exceeds the second threshold value Y (the air temperature threshold value Y3 related to the intake air temperature T3), the louver 1086a is rotated from the storage position 1000P1 to the operation position 1000P2. In the 18th ventilation system 1K, the supply air SA blown out from the blow-out port 1028d is blocked by the louver 1086a and its blowing direction is changed, and it flows to the suction port 1038d. In the 18th ventilation system 1K, the supply air SA having a higher temperature than the air in the room 1000S1 is actively sucked from the suction port 1038d, so that the intake air temperature T3 of the second heat exchanger 1033 is increased. In the 18th ventilation system 1K, the intake air temperature T3 of the second heat exchanger 1033 functioning as an evaporator can be increased by the sixth low-pressure pressure increasing mechanism 1086, thereby suppressing frost on the second heat exchanger 1033 and suppressing a decrease in the low-pressure PL of the refrigerant circuit 1050.

在第18换气系统1K中,控制部1018通过将百叶板1086a的转动位置从动作位置1000P2变更为收容位置1000P1,来结束低压压力上升控制。In the eighteenth ventilation system 1K, the control unit 1018 ends the low pressure increase control by changing the rotation position of the louver 1086a from the operating position 1000P2 to the storage position 1000P1.

[实施方式的作用效果][Effects of the Embodiments]

(1)以上实施方式所示的换气系统1E,由制冷剂管道1051连接压缩机1042、第1热交换器1023及第2热交换器1033,包括内部有制冷剂流动的制冷剂回路1050、经由第1热交换器1023将室外1000S2的空气向室内1000S1供气的供气风扇1022、经由第2热交换器1033将室内1000S1的空气向室外1000S2排气的排气风扇1032、控制部1018。控制部1018,在使第2热交换器1033作为蒸发器发挥功能的情况下,启动压缩机1042,在判断为制冷剂回路1050的低压压力PL、或第2热交换器1033的蒸发温度TE、或室内1000S1的温度(吸入空气温度T3)、或室外1000S2的温度(外部空气温度T2)低于与制冷剂回路1050的低压压力PL、或第2热交换器1033的蒸发温度TE、或吸入空气温度T3、或外部空气温度T2相关的第1阈值X时,进行使制冷剂回路1050的低压压力PL上升的低压压力上升控制。(1) The ventilation system 1E shown in the above embodiment is connected to the compressor 1042, the first heat exchanger 1023 and the second heat exchanger 1033 by the refrigerant pipe 1051, and includes a refrigerant circuit 1050 with refrigerant flowing inside, an air supply fan 1022 for supplying air from the outdoor 1000S2 to the indoor 1000S1 via the first heat exchanger 1023, an exhaust fan 1032 for exhausting air from the indoor 1000S1 to the outdoor 1000S2 via the second heat exchanger 1033, and a control unit 1018. The control unit 1018 starts the compressor 1042 while making the second heat exchanger 1033 function as an evaporator, and when it is determined that the low pressure PL of the refrigerant circuit 1050, or the evaporation temperature TE of the second heat exchanger 1033, or the temperature of the indoor 1000S1 (intake air temperature T3), or the temperature of the outdoor 1000S2 (external air temperature T2) is lower than the first threshold value X related to the low pressure PL of the refrigerant circuit 1050, or the evaporation temperature TE of the second heat exchanger 1033, or the intake air temperature T3, or the external air temperature T2, the low pressure increasing control is performed to increase the low pressure PL of the refrigerant circuit 1050.

根据所述结构的换气系统1E,关于具备能够从排气EA进行热回收的制冷剂回路1050的换气系统,在使第2热交换器1033作为蒸发器发挥功能的情况下,能够使压缩机1042确实地持续运转。According to the ventilation system 1E having the above-described structure, the compressor 1042 can be reliably and continuously operated while the second heat exchanger 1033 is made to function as an evaporator, in the ventilation system having the refrigerant circuit 1050 capable of recovering heat from the exhaust gas EA.

(2)所述实施方式所示的第14换气系统1G中,制冷剂回路1050具有用于对压缩机1042的吐出管道45和第2热交换器1033或与该第2热交换器1033相连的液体管1051L进行连接的旁路管道1082a、以及设在旁路管道1082a中的阀门1082b。在第14换气系统1G中,控制部1018在低压压力上升控制(第1控制)下开通阀门1082b。(2) In the 14th ventilation system 1G shown in the above embodiment, the refrigerant circuit 1050 includes a bypass pipe 1082a for connecting the discharge pipe 45 of the compressor 1042 and the second heat exchanger 1033 or the liquid pipe 1051L connected to the second heat exchanger 1033, and a valve 1082b provided in the bypass pipe 1082a. In the 14th ventilation system 1G, the control unit 1018 opens the valve 1082b under the low pressure pressure increase control (first control).

在此情况下,能够在低压压力上升控制下将高温高压的气体制冷剂提供给第2热交换器1033。由此,能够抑制第2热交换器1033结霜。In this case, the high-temperature and high-pressure gas refrigerant can be supplied to the second heat exchanger 1033 under the low-pressure pressure increase control. Thus, frost formation on the second heat exchanger 1033 can be suppressed.

(3)在所述实施方式所示的第14换气系统1G中,控制部1018,在阀门1082b开通的情况下,判断为制冷剂回路1050的低压压力PL、或第2热交换器1033的饱和温度TS、或排气风扇1032的吸入空气温度T3超过与制冷剂回路1050的低压压力PL、或第2热交换器1033的饱和温度TS、或第2热交换器1033的吸入空气温度T3相关的第2阈值Y时,关闭阀门1082b。(3) In the 14th ventilation system 1G shown in the embodiment, the control unit 1018, when the valve 1082b is open, determines that the low pressure PL of the refrigerant circuit 1050, the saturation temperature TS of the second heat exchanger 1033, or the intake air temperature T3 of the exhaust fan 1032 exceeds the second threshold value Y related to the low pressure PL of the refrigerant circuit 1050, the saturation temperature TS of the second heat exchanger 1033, or the intake air temperature T3 of the second heat exchanger 1033, the valve 1082b is closed.

在此情况下,在低压压力上升控制的执行中,在已具备使第2热交换器1033作为蒸发器发挥功能的条件的情况下,能够结束低压压力上升控制。In this case, when the conditions for causing the second heat exchanger 1033 to function as an evaporator are met during execution of the low pressure pressure increase control, the low pressure pressure increase control can be ended.

(4)在所述实施方式所示的各换气系统1F、1H~1K中,控制部1018,在进行低压压力上升控制的低压压力上升模式M3下,使第2热交换器1033吸入温度比与吸入空气温度T3相关的第2阈值Y(空气温度阈值Y3)高的温度的空气。(4) In each ventilation system 1F, 1H to 1K shown in the embodiment, the control unit 1018 causes the second heat exchanger 1033 to inhale air having a temperature higher than the second threshold value Y (air temperature threshold value Y3) related to the inhaled air temperature T3 in the low pressure pressure increase mode M3 for performing low pressure pressure increase control.

在此情况下,在低压压力上升控制的执行中,能够使温度比第2阈值Y(空气温度阈值Y3)高的空气流入第2热交换器1033。由此,能够抑制第2热交换器1033结霜。In this case, during execution of the low pressure increase control, air having a temperature higher than the second threshold value Y (air temperature threshold value Y3) can be caused to flow into the second heat exchanger 1033. Thus, frost formation on the second heat exchanger 1033 can be suppressed.

(5)在所述实施方式所示的第18换气系统1K中,控制部1018,在进行低压压力上升控制的低压压力上升模式M3下,调整供气风扇1022的吹出方向,以将从供气风扇1022吹出的空气导向排气风扇1032的吸入侧。(5) In the eighteenth ventilation system 1K shown in the above embodiment, the control unit 1018 adjusts the blowing direction of the air supply fan 1022 in the low pressure pressure increase mode M3 for performing low pressure pressure increase control so as to guide the air blown out from the air supply fan 1022 to the suction side of the exhaust fan 1032.

在此情况下,在低压压力上升控制的执行中,能够使温度比与吸入空气温度T3相关的第2阈值Y(空气温度阈值Y3)高的空气流入第2热交换器1033。In this case, during execution of the low pressure increase control, air having a temperature higher than the second threshold value Y (air temperature threshold value Y3 ) associated with the intake air temperature T3 can be caused to flow into the second heat exchanger 1033 .

(6)在所述实施方式所示的第13换气系统1F中,还具备用于进行室内1000S1的空气调节的空调机1081,控制部1018在进行低压压力上升控制的低压压力上升模式M3下,在通过空调机1081的调节而使室内1000S1的空气温度变得高于第2阈值Y(空气温度阈值Y3)时,使排气风扇1032驱动。(6) In the 13th ventilation system 1F shown in the embodiment, there is also an air conditioner 1081 for performing air conditioning in the indoor room 1000S1. The control unit 1018 drives the exhaust fan 1032 when the air temperature of the indoor room 1000S1 becomes higher than the second threshold value Y (air temperature threshold value Y3) through the adjustment of the air conditioner 1081 in the low pressure pressure increase mode M3 for performing low pressure pressure increase control.

在此情况下,在低压压力上升控制的执行中,能够使温度比与吸入空气温度T3相关的第2阈值Y(空气温度阈值Y3)高的空气流入第2热交换器1033。In this case, during execution of the low pressure increase control, air having a temperature higher than the second threshold value Y (air temperature threshold value Y3 ) associated with the intake air temperature T3 can be caused to flow into the second heat exchanger 1033 .

以上的实施方式及变形例示出了抑制结霜的方法的例子。以上的实施方式及变形例所示的方法并不仅限于该方法的使用,也可以与其他实施方式及变形例所示的1个以上的方法进行组合使用。The above embodiments and modified examples show examples of methods for suppressing frost. The methods shown in the above embodiments and modified examples are not limited to the use of this method, and can be used in combination with one or more methods shown in other embodiments and modified examples.

根据以上的实施方式及变形例,通过进行如上所述的控制,能够抑制(例如,对第2热交换器)结霜(起霜),可使依靠向室内空间供气并向室外排气的换气运转不停止地持续进行。所谓抑制结霜,并不限定于避免结霜,而是意味着即使在已结霜的情况下,进行防止霜成长的控制。在实施方式及变形例的换气装置或换气系统中,通过抑制结霜并持续进行换气运转,能够维持居室空间的舒适性。According to the above embodiments and variations, by performing the control as described above, frost formation (for example, on the second heat exchanger) can be suppressed, and the ventilation operation that relies on supplying air to the indoor space and exhausting air to the outdoors can be continued without stopping. The so-called suppression of frost formation is not limited to avoiding frost formation, but means that even in the case of frost formation, control is performed to prevent frost growth. In the ventilation device or ventilation system of the embodiment and variation, by suppressing frost formation and continuing the ventilation operation, the comfort of the living space can be maintained.

以上的实施方式及变形例所示的供气单元及排气单元的数量表示一例。供气单元的数量及排气单元的数量,可根据居室空间而定。例如,供气单元的数量可以是1个或多个,排气单元的数量也可以是1个或多个。此外,以上的实施方式及变形例中示出的控制部是表示一个方式,可以包含于任何设备中。The number of air supply units and exhaust units shown in the above embodiments and modified examples is an example. The number of air supply units and the number of exhaust units can be determined according to the living space. For example, the number of air supply units can be one or more, and the number of exhaust units can also be one or more. In addition, the control unit shown in the above embodiments and modified examples represents one method and can be included in any device.

以上说明了实施方式,但是应当理解,在不脱离权利要求的趣旨及范围的前提下,可以在形式或细节上进行各种变更。也可以通过与其他实施方式的一部分或全部进行组合或置换等而实现各种变形及改良。The above describes the embodiments, but it should be understood that various changes can be made in form or detail without departing from the spirit and scope of the claims. Various modifications and improvements can also be achieved by combining or replacing part or all of other embodiments.

本申请根据2021年12月17日提交的日本国专利申请2021-204798号及2021-205609号主张优先权,并在本申请中援用以上日本国专利申请的全部内容。This application claims priority based on Japanese patent applications No. 2021-204798 and No. 2021-205609 filed on December 17, 2021, and all contents of the above Japanese patent applications are cited in this application.

符号说明Symbol Description

1、1A、1B、1C、1D_1、1D_2、1D_3换气装置1.1A, 1B, 1C, 1D_1, 1D_2, 1D_3 ventilation device

2、2C空调机2.2C air conditioner

10、110、210、310、410A、410B、510A、510B、510C、730排气单元10, 110, 210, 310, 410A, 410B, 510A, 510B, 510C, 730 exhaust units

11风扇11 Fan

12第2热交换器12 2nd heat exchanger

13、113、213、313、413A、413B控制部13, 113, 213, 313, 413A, 413B control unit

14温度检测部14 Temperature detection unit

15驱动用电动机15 Driving motor

16电动阀门16 Electric valve

20、220A、220B、320A、320B、420A、420B、520A、520B、520C供气单元20, 220A, 220B, 320A, 320B, 420A, 420B, 520A, 520B, 520C air supply unit

21风扇21 Fan

22第1热交换器221st heat exchanger

23、423A、423B控制部23, 423A, 423B control unit

24温度检测部24 Temperature detection unit

25驱动用电动机25 Drive motor

26电动阀门26 Electric valve

40开闭风门40 Open and close damper

50、350、450、550A、550B、550C、650压缩机单元50, 350, 450, 550A, 550B, 550C, 650 compressor units

51驱动用电动机51 Drive motor

52、452控制部52, 452 control unit

53压缩机53 compressor

54四通阀门54 four-way valve

55电动阀门55 Electric valve

56旁路用电动阀门56 Bypass Electric Valve

70、470、571、572、573室外机70, 470, 571, 572, 573 outdoor units

71、471控制部71, 471 control unit

81、82、581、582、583、584、585、586、587、588空调室内机81, 82, 581, 582, 583, 584, 585, 586, 587, 588 air conditioner indoor units

400、500、600上位控制装置400, 500, 600 upper control device

601、602电动阀门601, 602 electric valve

732第3热交换器732 3rd heat exchanger

733控制部733 Control Department

F1、F2、F3、F4、F401、F402、F403、F404制冷剂回路F1, F2, F3, F4, F401, F402, F403, F404 refrigerant circuit

F5、F501、F502、F503、F601、F602、F603连通管道F5, F501, F502, F503, F601, F602, F603 connecting pipes

F6旁路流路F6 bypass flow path

P1、P101供气流路P1, P101 air supply path

P2、P103回气流路P2, P103 return air flow

P2A第1回气支路P2A No. 1 return air branch

P2B第2回气支路P2B Second return air branch

P102旁路流路P102 bypass flow path

P201、P401第1供气流路P201, P401 1st air supply path

P202、P402第2供气流路P202, P402 Second air supply path

P203回气流路P203 Return air flow

P403第1回气流路P403 1st return air flow path

P404第2回气流路P404 Second return air flow path

1E换气系统1E Ventilation System

1F第13换气系统1F No. 13 Ventilation System

1G第14换气系统1G No. 14 ventilation system

1H第15换气系统1H No. 15 ventilation system

1I第16换气系统1I No. 16 Ventilation System

1J第17换气系统1J No. 17 ventilation system

1K第18换气系统1K No. 18 ventilation system

1018控制部1018 Control Department

1022供气风扇1022 air supply fan

1023第1热交换器1023 No.1 Heat Exchanger

1032排气风扇1032 Exhaust Fan

1033第2热交换器1033 2nd heat exchanger

1042压缩机1042 compressor

1045吐出管道1045 spit out pipe

1050制冷剂回路1050 Refrigerant circuit

1051制冷剂管道1051 Refrigerant Pipe

1051L液体管1051L Liquid Tube

1080低压压力上升机构1080 Low pressure rise mechanism

1081空调机1081 Air Conditioner

1082a旁路管道1082a bypass pipe

1082b阀门1082b valve

1000S1室内1000S1 Indoor

1000S2室外1000S2 Outdoor

PL低压压力PL low pressure

TE蒸发温度TE Evaporation Temperature

TS饱和温度TS saturation temperature

T2室外温度T2 Outdoor temperature

T3吸入空气温度T3 Intake air temperature

X第1阈值X1st threshold

Y第2阈值Y 2nd Threshold

Y3空气温度阈值(与吸入空气温度相关的第2阈值)Y3 air temperature threshold (second threshold related to intake air temperature)

SA供气(从供气风扇吹出的空气)SA air supply (air blown from the air supply fan)

Claims (33)

1. A ventilation device, comprising:
A compressor;
A1 st heat exchanger functioning as a condenser or an evaporator;
a 1 st air flow path for supplying air introduced from the outside to the indoor space after passing through the 1 st heat exchanger;
A2 nd heat exchanger functioning as a condenser or an evaporator;
A 2 nd air flow path for exhausting the air introduced from the indoor space to the outside after passing through the 2 nd heat exchanger;
A refrigerant circuit in which the compressor, the 1 st heat exchanger, and the 2 nd heat exchanger are connected by refrigerant pipes, and in which a refrigerant flows; and
And a control unit that detects whether or not a predetermined criterion indicating a possibility of frosting of the 2 nd heat exchanger is satisfied while the 2 nd heat exchanger is functioning as an evaporator, and when it is detected that the predetermined criterion is satisfied, controls the temperature of the refrigerant flowing through the 2 nd heat exchanger so as to be a temperature at which frosting of the 2 nd heat exchanger is not performed.
2. The ventilation device according to claim 1, wherein,
The control unit detects whether or not the predetermined criterion is satisfied while the 2 nd heat exchanger is functioning as an evaporator, and outputs a signal for controlling an air conditioner provided in the indoor space to control the temperature of the refrigerant flowing through the 2 nd heat exchanger when the predetermined criterion is detected to be satisfied.
3. A ventilation device according to claim 2, wherein,
When the predetermined criterion is satisfied, the control unit outputs a signal indicating that the temperature currently set in the air conditioner is to be raised to the air conditioner provided in the indoor space.
4. A ventilation device according to claim 2, wherein,
The ventilator further includes a 2 nd ventilation unit that adjusts an amount of air flowing into the 2 nd heat exchanger via the 2 nd air flow path,
The control unit drives the 2 nd ventilation unit when the air temperature of the indoor space becomes higher than a 2 nd threshold value after outputting a signal for controlling the air conditioner.
5. The ventilation device according to claim 1, wherein,
The refrigerant circuit has a bypass line that flows the refrigerant into the 2 nd heat exchanger without passing through the 1 st heat exchanger while the 2 nd heat exchanger functions as an evaporator,
The control unit controls the refrigerant compressed by the compressor to flow into the 2 nd heat exchanger through the bypass pipe when the predetermined criterion is satisfied.
6. The ventilation device according to claim 5, wherein,
The control unit performs control to close a valve for allowing the refrigerant compressed by the compressor to flow into the 2 nd heat exchanger through the bypass line when it is determined that the low pressure of the refrigerant circuit, the saturation temperature of the 2 nd heat exchanger, or the suction air temperature of the 2 nd heat exchanger exceeds a 2 nd threshold value related to the low pressure of the refrigerant circuit, the saturation temperature of the 2 nd heat exchanger, or the suction air temperature of the 2 nd heat exchanger after the control to flow into the 2 nd heat exchanger through the bypass line.
7. The ventilation device of claim 1, further comprising:
A 3 rd air flow path for passing air introduced from a room different from the 2 nd air flow path in the indoor space through the 2 nd heat exchanger; and
A 1 st guide mechanism for switching whether or not to guide the air to the 2 nd heat exchanger via the 3 rd air flow path,
The control unit controls the 1 st guide mechanism to guide the air to the 2 nd heat exchanger via the 3 rd air flow path when the predetermined criterion is satisfied.
8. The ventilation device according to claim 1, wherein,
The ventilator further has a 2 nd ventilation unit that adjusts the amount of air flowing into the 2 nd heat exchanger through the 2 nd air flow path,
The control unit performs control to increase the amount of air flowing into the 2 nd heat exchanger in the 2 nd ventilation unit when the predetermined criterion is satisfied, as compared with before the predetermined criterion is satisfied.
9. The ventilation device of claim 8, further comprising:
a plurality of said 2 nd heat exchangers; and
The 2 nd ventilation units corresponding to each of the 2 nd heat exchangers,
The control unit performs control to increase the amount of air flowing into the 2 nd heat exchanger, when the predetermined criterion is satisfied, with respect to the 2 nd ventilation unit corresponding to any one of the plurality of 2 nd heat exchangers, as compared with before the predetermined criterion is satisfied, while the plurality of 2 nd heat exchangers function as evaporators.
10. A ventilation device according to claim 9, wherein,
The control unit is configured to control, when the 2 nd ventilation unit corresponding to any one of the plurality of 2 nd heat exchangers is controlled to increase the air amount, the 2 nd ventilation unit corresponding to the other 2 nd heat exchanger of the plurality of 2 nd heat exchangers to reduce the air amount flowing into the 2 nd heat exchanger as compared with before the predetermined standard is satisfied.
11. A ventilation device according to claim 9, wherein,
The ventilator further includes a1 st ventilation unit that adjusts an amount of air flowing into the 1 st heat exchanger through the 1 st air flow path,
The control unit controls the 1 st ventilation unit to increase the air amount flowing into the 1 st heat exchanger in comparison with the air amount before the predetermined criterion is satisfied, based on the air amount increased for the 2 nd ventilation unit, when the control unit controls the 2 nd ventilation unit corresponding to any one of the plurality of 2 nd heat exchangers to increase the air amount.
12. The ventilation device of claim 1, further comprising:
A 1 st ventilation unit that adjusts an amount of air flowing into the 1 st heat exchanger via the 1 st air flow path; and
A2 nd ventilation unit configured to adjust an amount of air flowing into the 2 nd heat exchanger via the 2 nd air flow path,
The control unit is configured to, when a signal indicating that defrosting operation is to be performed is received from an air conditioner provided in the indoor space while the 2 nd heat exchanger is functioning as an evaporator, consider that the predetermined criterion is satisfied, perform control to increase the amount of air flowing into the 1 st heat exchanger for the 1 st ventilation unit and to increase the amount of air flowing into the 2 nd heat exchanger for the 2 nd ventilation unit, as compared with before the predetermined criterion is satisfied.
13. The ventilation device of claim 1, further comprising:
a bypass flow path for guiding the air heat-exchanged by the 1 st heat exchanger to the 2 nd heat exchanger; and
A2 nd guide mechanism for switching whether or not to guide the air to the 2 nd heat exchanger via the bypass flow path,
The control unit controls the 2 nd guide mechanism to guide air to the 2 nd heat exchanger via the bypass flow path when the predetermined criterion is satisfied.
14. The ventilation device of claim 1, wherein,
The control unit adjusts the air flow by a flow adjustment mechanism so as to guide the air blown into the indoor space from the 1 st air flow path to the suction side of the 2 nd air flow path when the predetermined criterion is satisfied.
15. The ventilation device according to claim 1, wherein,
The ventilation device further includes a 2 nd ventilation unit that adjusts an amount of air flowing into the 2 nd heat exchanger via the 2 nd air flow path,
The control unit stops the compressor and controls the 2 nd ventilation unit to allow air passing through the 2 nd air flow path to flow into the 2 nd heat exchanger when the predetermined criterion is satisfied.
16. The ventilation device of claim 1, further comprising:
a plurality of said 2 nd heat exchangers; and
A2 nd ventilation unit corresponding to each of the 2 nd heat exchangers,
The refrigerant circuit further includes a1 st valve portion for adjusting an opening of a flow path flowing into the 2 nd heat exchanger for each of the 2 nd heat exchangers,
The control unit performs control of closing the 1 st valve units corresponding to the 2 nd heat exchangers satisfying the predetermined reference in a predetermined order and performing control of flowing air passing through the 2 nd air flow path into the 2 nd heat exchanger for the 2 nd ventilation unit corresponding to the 2 nd heat exchanger satisfying the predetermined reference when the temperature-related information detected from the 2 nd heat exchangers satisfies the predetermined reference.
17. The ventilation device of claim 1, further comprising:
A 1 st ventilation unit that adjusts an amount of air flowing into the 1 st heat exchanger via the 1 st air flow path; and
A2 nd ventilation unit configured to adjust an amount of air flowing into the 2 nd heat exchanger via the 2 nd air flow path,
The control unit controls the 1 st ventilation unit and the 2 nd ventilation unit so that an amount of air discharged to the outside through the 2 nd air flow path becomes larger than an amount of air supplied to the indoor space through the 1 st air flow path when the predetermined criterion is satisfied.
18. The ventilation device according to claim 1, wherein,
The control unit controls the 1 st heat exchanger so that the temperature of the air passing through the 1 st heat exchanger becomes lower than the temperature set by the air conditioner provided in the indoor space when the predetermined criterion is satisfied.
19. The ventilation device according to claim 1, wherein,
The ventilator includes a plurality of combinations of the compressor, the 1 st heat exchanger, the 2 nd heat exchanger, the refrigerant circuit, and the 2 nd ventilation unit corresponding to the 2 nd heat exchanger,
The control unit controls the 2 nd ventilation unit corresponding to the 2 nd heat exchanger satisfying the predetermined reference and controls the air flowing into the 2 nd heat exchanger through the 2 nd air flow path while controlling the compressors corresponding to the 2 nd heat exchanger satisfying the predetermined reference to stop in a predetermined order when the temperature-related information detected from the plurality of 2 nd heat exchangers satisfies the predetermined reference.
20. The ventilation device according to any one of claims 1 to 19, wherein,
The control unit determines, as a predetermined criterion indicating a possibility of frosting of the 2 nd heat exchanger, whether or not the low pressure of the refrigerant circuit, the evaporation temperature of the 2 nd heat exchanger, or the temperature of the indoor space, or the outdoor temperature is lower than a1 st threshold value related to the low pressure of the refrigerant circuit, the evaporation temperature of the 2 nd heat exchanger, or the temperature of the indoor space, or the outdoor temperature.
21. The ventilation device of any one of claims 1 to 20, further comprising:
a1 st casing that accommodates the 1 st heat exchanger and at least a part of the 1 st air flow path; and
A 2 nd casing accommodating the 2 nd heat exchanger and at least a part of the 2 nd air flow path,
The 1 st housing is separable from the 2 nd housing.
22. A ventilation device according to claim 21, wherein,
The control unit performs control to reduce the rotation number of the compressor in comparison with the rotation number before the predetermined criterion is satisfied when the predetermined criterion is satisfied.
23. A ventilation device according to claim 21, wherein,
The refrigerant circuit has a 2 nd valve portion provided between the 1 st heat exchanger and the 2 nd heat exchanger for adjusting an opening degree of a flow path,
The control unit performs control to increase the opening degree of the 2 nd valve unit in comparison with that before the predetermined criterion is satisfied when the predetermined criterion is satisfied.
24. The ventilation device according to claim 1, wherein,
The ventilation device further includes a3 rd valve portion, the 3 rd valve portion being located downstream of the 2 nd heat exchanger in the refrigerant flow in the refrigerant circuit with respect to the 2 nd heat exchanger when the 2 nd heat exchanger functions as an evaporator,
The control unit further performs control to tighten the 3 rd valve portion when the predetermined criterion is satisfied when the 2 nd heat exchanger functions as an evaporator, as compared with before the predetermined criterion is satisfied.
25. The ventilation device of claim 24, further comprising:
a 3 rd heat exchanger functioning as a condenser or an evaporator; and
A4 th air flow path for discharging the air after heat exchange between the outdoor air and the refrigerant flowing through the 3 rd heat exchanger to the outside,
In the refrigerant circuit, the 3 rd heat exchanger is connected to the compressor, the 1 st heat exchanger, and the 2 nd heat exchanger through the refrigerant pipe.
26. An air conditioning system, wherein,
The air conditioning system comprises a ventilation device, an air conditioner and a control part,
The ventilation device includes:
a 1 st heat exchanger functioning as a compressor, a condenser, or an evaporator during a heat recovery ventilation operation;
a 1 st air flow path for supplying air introduced from the outside to the indoor space after passing through the 1 st heat exchanger;
A2 nd heat exchanger functioning as a condenser or an evaporator;
A2 nd air flow path for exhausting air introduced from the indoor space to the outside after passing through the 2 nd heat exchanger; and
A refrigerant circuit formed by connecting the compressor, the 1 st heat exchanger and the 2 nd heat exchanger through refrigerant pipes, and having a refrigerant flowing therein,
The air conditioner includes:
a 3 rd heat exchanger functioning as a condenser or an evaporator; and
An air conditioning indoor unit configured to exchange heat between air in the indoor space and refrigerant flowing through the 3 rd heat exchanger, to discharge air into the indoor space,
The control unit detects whether or not a predetermined criterion indicating a possibility of frosting of the 2 nd heat exchanger is satisfied, and when the predetermined criterion is satisfied, controls the temperature of the refrigerant flowing through the 2 nd heat exchanger to be a temperature at which the 2 nd heat exchanger does not frost, or controls operation for frosting of the 2 nd heat exchanger after frosting of the 2 nd heat exchanger, based on power consumption of the ventilation device and the air conditioner required for controlling the temperature of the refrigerant flowing through the 2 nd heat exchanger to be a temperature at which the 2 nd heat exchanger does not frost, and power consumption required for operating the ventilation device and the air conditioner for removing frosting of the 2 nd heat exchanger after frosting of the 2 nd heat exchanger.
27. A ventilation method, wherein,
When a ventilation device including a1 st heat exchanger functioning as a compressor, a condenser, or an evaporator, a1 st air passage for supplying air introduced from the outside to an indoor space after passing through the 1 st heat exchanger, a2 nd heat exchanger functioning as a condenser or an evaporator, a2 nd air passage for discharging air introduced from the indoor space to the outside after passing through the 2 nd heat exchanger, and a refrigerant circuit connecting the compressor and the 1 st heat exchanger and the 2 nd heat exchanger through a refrigerant pipe and having a refrigerant flowing therein is controlled, while the 2 nd heat exchanger functions as an evaporator, it is detected whether a predetermined criterion indicating a possibility of frosting of the 2 nd heat exchanger is satisfied, and when it is detected that the predetermined criterion is satisfied, a temperature of the refrigerant flowing in the 2 nd heat exchanger is controlled so as to be a temperature at which frosting of the 2 nd heat exchanger is not caused.
28. A ventilation system, comprising:
A refrigerant circuit formed by connecting a compressor, a1 st heat exchanger and a 2 nd heat exchanger through refrigerant pipelines, wherein the refrigerant flows in the refrigerant circuit;
A supply fan for supplying outdoor air to the indoor via the 1 st heat exchanger;
an exhaust fan for exhausting the indoor air to the outside via the 2 nd heat exchanger; and
The control part is used for controlling the control part to control the control part,
The control unit starts the compressor when the 2 nd heat exchanger is caused to function as an evaporator, and when it is determined that the low pressure of the refrigerant circuit, the evaporation temperature of the 2 nd heat exchanger, the indoor temperature, or the outdoor temperature is lower than a1 st threshold value related to the low pressure of the refrigerant circuit, the evaporation temperature of the 2 nd heat exchanger, the indoor temperature, or the outdoor temperature, performs 1 st control to raise the low pressure of the refrigerant circuit.
29. The ventilation system of claim 28, wherein,
The refrigerant circuit has a discharge pipe of the compressor, a bypass pipe connected to the 2 nd heat exchanger or a liquid pipe connected to the 2 nd heat exchanger, and a valve provided in the bypass pipe,
The control part opens the valve in the 1 st control state.
30. The ventilation system of claim 29, wherein,
The control unit closes the valve when it is determined that the low pressure of the refrigerant circuit, or the saturation temperature of the 2 nd heat exchanger, or the suction air temperature of the 2 nd heat exchanger exceeds a2 nd threshold value related to the low pressure of the refrigerant circuit, or the saturation temperature of the 2 nd heat exchanger, or the suction air temperature of the 2 nd heat exchanger, when the valve is opened.
31. The ventilation system of claim 28, wherein,
The control unit causes the 2 nd heat exchanger to suck air having a higher temperature than a2 nd threshold value related to a sucked air temperature in the 1 st control state.
32. The ventilation system of claim 31, wherein,
The control unit adjusts the blowing direction of the air supply fan so as to guide the air blown from the air supply fan to the suction side of the exhaust fan in the 1 st control state.
33. The ventilation system of claim 31, wherein,
The ventilation system further includes an air conditioner that adjusts the indoor air,
The control unit drives the exhaust fan when the indoor air temperature becomes higher than the 2 nd threshold value by the air conditioner in the 1 st control state.
CN202280082974.1A 2021-12-17 2022-09-30 Ventilation device, air conditioning system, ventilation method, and ventilation system Pending CN118401787A (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2021-204798 2021-12-17
JP2021-205609 2021-12-17
JP2021204798 2021-12-17
PCT/JP2022/036876 WO2023112428A1 (en) 2021-12-17 2022-09-30 Ventilator, air-conditioning system, ventilation method, and ventilation system

Publications (1)

Publication Number Publication Date
CN118401787A true CN118401787A (en) 2024-07-26

Family

ID=91999784

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202280082974.1A Pending CN118401787A (en) 2021-12-17 2022-09-30 Ventilation device, air conditioning system, ventilation method, and ventilation system

Country Status (1)

Country Link
CN (1) CN118401787A (en)

Similar Documents

Publication Publication Date Title
JP5858061B2 (en) Ventilation equipment
EP3067635B1 (en) Air conditioning device
JP6017068B2 (en) Air conditioner
US20120303165A1 (en) Control system and method for both energy saving and comfort control in an air conditioning system
JP2008209034A (en) Air conditioning ventilator
JP5984964B2 (en) Air conditioning system
EP3792565B1 (en) Air conditioning system
JP2012141113A (en) Air conditioning/water heating device system
US20240337401A1 (en) Ventilation apparatus, air conditioning system, and ventilation system
KR20130112335A (en) A air conditioning system without an outside-equipment
JP5724476B2 (en) Refrigeration cycle equipment
KR200474579Y1 (en) Air handling unit
JP7438342B2 (en) air conditioner
US20250044003A1 (en) Ventilation apparatus and ventilation method
CN118401787A (en) Ventilation device, air conditioning system, ventilation method, and ventilation system
JP2004053094A (en) Air conditioner
KR101303239B1 (en) Air conditioner and method for controlling the same
JP6490095B2 (en) Air conditioning system
JP6745895B2 (en) Air conditioning system
JP7018775B2 (en) Air conditioning system
JP6938950B2 (en) Air conditioning system
KR101965182B1 (en) Air conditioner and method for controlling the same
US20240210049A1 (en) Ventilator
JP7590654B2 (en) Ventilation system
JP5485114B2 (en) Air conditioning system

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination