[go: up one dir, main page]

CN118380482B - Back contact solar cell, battery module and photovoltaic system - Google Patents

Back contact solar cell, battery module and photovoltaic system Download PDF

Info

Publication number
CN118380482B
CN118380482B CN202410821423.3A CN202410821423A CN118380482B CN 118380482 B CN118380482 B CN 118380482B CN 202410821423 A CN202410821423 A CN 202410821423A CN 118380482 B CN118380482 B CN 118380482B
Authority
CN
China
Prior art keywords
type doped
doped polysilicon
polysilicon layer
metal electrode
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202410821423.3A
Other languages
Chinese (zh)
Other versions
CN118380482A (en
Inventor
王永谦
陈刚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang Aiko Solar Energy Technology Co Ltd
Original Assignee
Zhejiang Aiko Solar Energy Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang Aiko Solar Energy Technology Co Ltd filed Critical Zhejiang Aiko Solar Energy Technology Co Ltd
Priority to CN202410821423.3A priority Critical patent/CN118380482B/en
Publication of CN118380482A publication Critical patent/CN118380482A/en
Application granted granted Critical
Publication of CN118380482B publication Critical patent/CN118380482B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10FINORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
    • H10F77/00Constructional details of devices covered by this subclass
    • H10F77/20Electrodes
    • H10F77/206Electrodes for devices having potential barriers
    • H10F77/211Electrodes for devices having potential barriers for photovoltaic cells
    • H10F77/219Arrangements for electrodes of back-contact photovoltaic cells
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10FINORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
    • H10F10/00Individual photovoltaic cells, e.g. solar cells
    • H10F10/10Individual photovoltaic cells, e.g. solar cells having potential barriers
    • H10F10/14Photovoltaic cells having only PN homojunction potential barriers
    • H10F10/146Back-junction photovoltaic cells, e.g. having interdigitated base-emitter regions on the back side
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10FINORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
    • H10F77/00Constructional details of devices covered by this subclass
    • H10F77/30Coatings
    • H10F77/306Coatings for devices having potential barriers
    • H10F77/311Coatings for devices having potential barriers for photovoltaic cells
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10FINORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
    • H10F77/00Constructional details of devices covered by this subclass
    • H10F77/93Interconnections
    • H10F77/933Interconnections for devices having potential barriers
    • H10F77/935Interconnections for devices having potential barriers for photovoltaic devices or modules

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

本发明适用于太阳能电池技术领域,提供一种背接触太阳能电池、电池组件及光伏系统,背接触太阳能电池包括:硅基底,硅基底具有相对设置的背面和正面;P型掺杂多晶硅层,位于硅基底的背面的第一区域;N型掺杂多晶硅层,位于硅基底的背面的第二区域;设于第一区域、并与P型掺杂多晶硅层接触的第一金属电极;设于第二区域、并与N型掺杂多晶硅层接触的第二金属电极;第一金属电极的金属晶体进入P型掺杂多晶硅层的深度大于第二金属电极的金属晶体进入N型掺杂多晶硅层的深度。本发明的背接触太阳能电池可以提升金属电极与P型掺杂多晶硅层的接触效果,从而提高金属电极与P型掺杂多晶硅层的导电性能,提高电池转换效率。

The present invention is applicable to the technical field of solar cells, and provides a back-contact solar cell, a battery assembly and a photovoltaic system. The back-contact solar cell comprises: a silicon substrate, the silicon substrate having a back side and a front side arranged oppositely; a P-type doped polysilicon layer, located in a first region on the back side of the silicon substrate; an N-type doped polysilicon layer, located in a second region on the back side of the silicon substrate; a first metal electrode arranged in the first region and in contact with the P-type doped polysilicon layer; a second metal electrode arranged in the second region and in contact with the N-type doped polysilicon layer; the depth of the metal crystals of the first metal electrode entering the P-type doped polysilicon layer is greater than the depth of the metal crystals of the second metal electrode entering the N-type doped polysilicon layer. The back-contact solar cell of the present invention can improve the contact effect between the metal electrode and the P-type doped polysilicon layer, thereby improving the conductivity of the metal electrode and the P-type doped polysilicon layer, and improving the battery conversion efficiency.

Description

一种背接触太阳能电池、电池组件及光伏系统Back contact solar cell, battery module and photovoltaic system

技术领域Technical Field

本发明涉及太阳能电池技术领域,具体涉及一种背接触太阳能电池、电池组件及光伏系统。The present invention relates to the technical field of solar cells, and in particular to a back-contact solar cell, a cell assembly and a photovoltaic system.

背景技术Background Art

太阳能电池发电为一种可持续的清洁能源来源,其利用半导体的光生伏特效应可以将太阳光转化成电能,而转化效率为太阳电池性能的重要指标。IBC(Interdigitatedback contact)太阳能电池,也即叉指型背接触电池,其正/负电极均设计于电池的背面,使得前表面彻底避免了金属栅线的遮挡,杜绝了金属栅线遮挡所带来的光学损失,同时电极宽度可设计的较现有更宽,降低了串联电阻损失,从而大幅提高电池转化效率。另外,由于正面无电极的设计下,产品外观更优美,适合于多种应用场景。Solar cell power generation is a sustainable source of clean energy. It uses the photovoltaic effect of semiconductors to convert sunlight into electrical energy, and the conversion efficiency is an important indicator of solar cell performance. IBC (Interdigitated back contact) solar cells, also known as interdigitated back contact cells, have positive and negative electrodes designed on the back of the cell, so that the front surface is completely free from the shading of metal grid lines, eliminating the optical loss caused by the shading of metal grid lines. At the same time, the electrode width can be designed to be wider than the current one, reducing the series resistance loss, thereby greatly improving the cell conversion efficiency. In addition, due to the design of no electrode on the front, the product appearance is more beautiful and suitable for a variety of application scenarios.

现有技术中,背接触太阳能电池的背面形成交错设置的P区和N区,通常地,P区对应的金属电极进入P型掺杂多晶硅层的深度与N区对应的金属电极进入N型掺杂多晶硅层的深度相等,由于P型掺杂多晶硅层与金属电极接触效果相对较差,使得P型掺杂多晶硅层与金属电极导电性能差,影响电池的转换效率。In the prior art, the back side of a back-contact solar cell forms an alternating P-zone and N-zone. Usually, the depth of the metal electrode corresponding to the P-zone penetrating into the P-type doped polysilicon layer is equal to the depth of the metal electrode corresponding to the N-zone penetrating into the N-type doped polysilicon layer. Since the contact effect between the P-type doped polysilicon layer and the metal electrode is relatively poor, the conductivity of the P-type doped polysilicon layer and the metal electrode is poor, which affects the conversion efficiency of the battery.

发明内容Summary of the invention

本发明提供一种背接触太阳能电池,旨在解决现有技术的背接触太阳能电池存在P型掺杂多晶硅层与金属电极接触效果差,影响电池转换效率的问题。The present invention provides a back-contact solar cell, aiming to solve the problem in the prior art that the back-contact solar cell has poor contact effect between a P-type doped polysilicon layer and a metal electrode, thereby affecting the cell conversion efficiency.

本发明是这样实现的,提供一种背接触太阳能电池,包括:The present invention is implemented by providing a back contact solar cell, comprising:

硅基底,所述硅基底具有相对设置的背面和正面;A silicon substrate having a back surface and a front surface arranged opposite to each other;

P型掺杂多晶硅层,位于所述硅基底的背面的第一区域;A P-type doped polysilicon layer, located in a first region on the back side of the silicon substrate;

N型掺杂多晶硅层,位于所述硅基底的背面的第二区域,且所述第一区域异于所述第二区域;An N-type doped polysilicon layer is located in a second region on the back side of the silicon substrate, and the first region is different from the second region;

设于所述第一区域、并与所述P型掺杂多晶硅层接触的第一金属电极;A first metal electrode disposed in the first region and in contact with the P-type doped polysilicon layer;

设于所述第二区域、并与所述N型掺杂多晶硅层接触的第二金属电极;A second metal electrode disposed in the second region and in contact with the N-type doped polysilicon layer;

其中,所述第一金属电极的金属晶体进入所述P型掺杂多晶硅层的深度大于所述第二金属电极的金属晶体进入所述N型掺杂多晶硅层的深度。The depth of metal crystals of the first metal electrode penetrating into the P-type doped polysilicon layer is greater than the depth of metal crystals of the second metal electrode penetrating into the N-type doped polysilicon layer.

优选的,所述第一金属电极的金属晶体进入所述P型掺杂多晶硅层的深度与所述第二金属电极的金属晶体进入所述N型掺杂多晶硅层的深度的比值为1~4,且不等于1。Preferably, the ratio of the depth of the metal crystals of the first metal electrode penetrating into the P-type doped polysilicon layer to the depth of the metal crystals of the second metal electrode penetrating into the N-type doped polysilicon layer is 1-4 and is not equal to 1.

优选的,所述第一金属电极的金属晶体进入所述P型掺杂多晶硅层的深度与所述第二金属电极的金属晶体进入所述N型掺杂多晶硅层的深度的比值为1~2,且不等于1。Preferably, the ratio of the depth of the metal crystals of the first metal electrode penetrating into the P-type doped polysilicon layer to the depth of the metal crystals of the second metal electrode penetrating into the N-type doped polysilicon layer is 1-2 and is not equal to 1.

优选的,所述第一金属电极的金属晶体进入所述P型掺杂多晶硅层的深度为2~300nm;所述第二金属电极的金属晶体进入所述N型掺杂多晶硅层的深度为1~200nm。Preferably, the metal crystals of the first metal electrode penetrate into the P-type doped polysilicon layer to a depth of 2 to 300 nm; and the metal crystals of the second metal electrode penetrate into the N-type doped polysilicon layer to a depth of 1 to 200 nm.

优选的,所述第一金属电极与所述第二金属电极均包括银、玻璃料及有机材料,且所述第一金属电极中的玻璃料含量大于所述第二金属电极中的玻璃料含量。Preferably, both the first metal electrode and the second metal electrode include silver, glass frit and organic material, and the content of glass frit in the first metal electrode is greater than that in the second metal electrode.

优选的,所述P型掺杂多晶硅层的折射率小于所述N型掺杂多晶硅层的折射率。Preferably, the refractive index of the P-type doped polysilicon layer is smaller than the refractive index of the N-type doped polysilicon layer.

优选的,还包括位于所述P型掺杂多晶硅层背面与所述N型掺杂多晶硅层背面的背面钝化膜层,所述第一金属电极的金属晶体穿过所述背面钝化膜层进入所述P型掺杂多晶硅层,所述第二金属电极的金属晶体穿过所述背面钝化膜层进入所述N型掺杂多晶硅。Preferably, it also includes a back passivation film layer located on the back side of the P-type doped polysilicon layer and the back side of the N-type doped polysilicon layer, and the metal crystals of the first metal electrode pass through the back passivation film layer to enter the P-type doped polysilicon layer, and the metal crystals of the second metal electrode pass through the back passivation film layer to enter the N-type doped polysilicon.

优选的,所述P型掺杂多晶硅层的平均晶粒尺寸大于所述N型掺杂多晶硅层的平均晶粒尺寸。Preferably, an average grain size of the P-type doped polysilicon layer is greater than an average grain size of the N-type doped polysilicon layer.

优选的,所述P型掺杂多晶硅层的平均晶粒尺寸与所述N型掺杂多晶硅层的平均晶粒尺寸的比值为1~4,且不等于1。Preferably, the ratio of the average grain size of the P-type doped polysilicon layer to the average grain size of the N-type doped polysilicon layer is 1-4 and is not equal to 1.

优选的,所述N型掺杂多晶硅层的厚度大于所述P型掺杂多晶硅层的厚度。Preferably, the thickness of the N-type doped polysilicon layer is greater than the thickness of the P-type doped polysilicon layer.

优选的,所述N型掺杂多晶硅层的厚度与所述P型掺杂多晶硅层的厚度的比值为1~2,且不等于1。Preferably, the ratio of the thickness of the N-type doped polysilicon layer to the thickness of the P-type doped polysilicon layer is 1-2, and is not equal to 1.

本发明还提供一种电池组件,包括上述的背接触太阳能电池。The present invention also provides a battery assembly, comprising the above-mentioned back-contact solar cell.

本发明还提供一种光伏系统,包括上述的电池组件。The present invention also provides a photovoltaic system, comprising the above-mentioned battery assembly.

本发明提供的一种背接触太阳能电池通过将第一金属电极的金属晶体进入P型掺杂多晶硅层的深度设置成大于第二金属电极的金属晶体进入N型掺杂多晶硅层的深度,在第二金属电极的金属晶体进入N型掺杂多晶硅层的深度不变的前提下,增加第一金属电极的金属晶体进入P型掺杂多晶硅层的深度,可以增加第一金属电极的金属晶体与P型掺杂多晶硅层的接触面积,提升第一金属电极与P型掺杂多晶硅层的接触效果,实现良好的欧姆接触,提高第一金属电极与P型掺杂多晶硅层的导电性能,从而提高电池转换效率。A back-contact solar cell provided by the present invention increases the contact area between the metal crystals of the first metal electrode and the P-type doped polysilicon layer, thereby improving the contact effect between the first metal electrode and the P-type doped polysilicon layer, achieving good ohmic contact, and improving the conductivity of the first metal electrode and the P-type doped polysilicon layer, thereby improving the battery conversion efficiency.

附图说明BRIEF DESCRIPTION OF THE DRAWINGS

图1为本发明实施例提供的一种背接触太阳能电池的示意图;FIG1 is a schematic diagram of a back-contact solar cell provided by an embodiment of the present invention;

图2为本发明实施例提供的一种背接触太阳能电池部分结构的示意图;FIG2 is a schematic diagram of a partial structure of a back contact solar cell provided by an embodiment of the present invention;

图3为本发明实施例提供的一种背接触太阳能电池的第一金属电极的金属晶体进入P型掺杂多晶硅层的扫描电子显微镜的照片;3 is a scanning electron microscope photograph of a metal crystal of a first metal electrode of a back contact solar cell provided by an embodiment of the present invention entering a P-type doped polysilicon layer;

图4为本发明实施例提供的一种背接触太阳能电池的第二金属电极的金属晶体进入N型掺杂多晶硅层的扫描电子显微镜的照片。4 is a scanning electron microscope photograph of a metal crystal of a second metal electrode of a back contact solar cell provided by an embodiment of the present invention entering an N-type doped polysilicon layer.

具体实施方式DETAILED DESCRIPTION

为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。In order to make the purpose, technical solution and advantages of the present invention more clearly understood, the present invention is further described in detail below in conjunction with the accompanying drawings and embodiments. It should be understood that the specific embodiments described herein are only used to explain the present invention and are not intended to limit the present invention.

本发明实施例提供的一种背接触太阳能电池通过将第一金属电极的金属晶体进入P型掺杂多晶硅层的深度设置成大于第二金属电极的金属晶体进入N型掺杂多晶硅层的深度,相比第二金属电极,增加第一金属电极的金属晶体进入P型掺杂多晶硅层的深度,可以增加第一金属电极的金属晶体与P型掺杂多晶硅层的接触面积,提升第一金属电极与P型掺杂多晶硅层的接触效果,实现良好的欧姆接触,提高第一金属电极与P型掺杂多晶硅层导电性能,从而提高电池转换效率。A back-contact solar cell provided by an embodiment of the present invention increases the contact area between the metal crystals of the first metal electrode and the P-type doped polysilicon layer, improves the contact effect between the first metal electrode and the P-type doped polysilicon layer, achieves good ohmic contact, and improves the conductivity of the first metal electrode and the P-type doped polysilicon layer, thereby improving the battery conversion efficiency.

请参照图1,本发明实施例提供的一种背接触太阳能电池,包括:Referring to FIG. 1 , a back-contact solar cell provided by an embodiment of the present invention includes:

硅基底1,硅基底1具有相对设置的背面和正面;A silicon substrate 1, wherein the silicon substrate 1 has a back surface and a front surface that are oppositely arranged;

P型掺杂多晶硅层2,位于硅基底1的背面的第一区域;A P-type doped polysilicon layer 2, located in a first region on the back side of the silicon substrate 1;

N型掺杂多晶硅层3,位于硅基底1的背面的第二区域,且第一区域异于第二区域;The N-type doped polysilicon layer 3 is located in a second region on the back side of the silicon substrate 1, and the first region is different from the second region;

设于第一区域、并与P型掺杂多晶硅层2接触的第一金属电极6;A first metal electrode 6 disposed in the first region and in contact with the P-type doped polysilicon layer 2;

设于第二区域、并与N型掺杂多晶硅层3接触的第二金属电极7;A second metal electrode 7 disposed in the second region and in contact with the N-type doped polysilicon layer 3;

其中,第一金属电极6的金属晶体进入P型掺杂多晶硅层2的深度d3大于第二金属电极7的金属晶体进入N型掺杂多晶硅层3的深度d4。The depth d3 of the metal crystals of the first metal electrode 6 penetrating into the P-type doped polysilicon layer 2 is greater than the depth d4 of the metal crystals of the second metal electrode 7 penetrating into the N-type doped polysilicon layer 3 .

如图1所示,硅基底1的背面为下侧,正面为上侧。虚线L1和虚线L2仅是为了区分第一区域和第二区域,并不是背接触太阳能电池中实际存在的。参照图1,虚线L1左侧的区域即为第一区域,虚线L2右侧的区域即为第二区域,第一区域与第二区域分别为不同区域。P型掺杂多晶硅层2位于硅基底1的背面的第一区域,N型掺杂多晶硅层3位于硅基底1的背面的第二区域;P型掺杂多晶硅层2位于硅基底1背面的虚线L1左侧的区域;N型掺杂多晶硅层3位于硅基底1背面的虚线L2右侧的区域。As shown in FIG1 , the back side of the silicon substrate 1 is the lower side, and the front side is the upper side. The dotted line L1 and the dotted line L2 are only used to distinguish the first area from the second area, and do not actually exist in the back contact solar cell. Referring to FIG1 , the area on the left side of the dotted line L1 is the first area, and the area on the right side of the dotted line L2 is the second area, and the first area and the second area are different areas. The P-type doped polysilicon layer 2 is located in the first area on the back side of the silicon substrate 1, and the N-type doped polysilicon layer 3 is located in the second area on the back side of the silicon substrate 1; the P-type doped polysilicon layer 2 is located in the area on the left side of the dotted line L1 on the back side of the silicon substrate 1; the N-type doped polysilicon layer 3 is located in the area on the right side of the dotted line L2 on the back side of the silicon substrate 1.

本发明实施例中,提供的一种背接触太阳能电池通过将第一金属电极6的金属晶体进入P型掺杂多晶硅层2的深度d3设置成大于第二金属电极7的金属晶体进入N型掺杂多晶硅层3的深度d4,在第二金属电极7的金属晶体进入N型掺杂多晶硅层3的深度不变的前提下,增加第一金属电极6的金属晶体进入P型掺杂多晶硅层3的深度,可以增加第一金属电极6的金属晶体与P型掺杂多晶硅层2的接触面积,提升第一金属电极6与P型掺杂多晶硅层2的接触效果,因而提高了第一金属电极6与P型掺杂多晶硅层2的导电性能,从而提高电池转换效率。In an embodiment of the present invention, a back-contact solar cell is provided, in which the depth d3 of the metal crystals of the first metal electrode 6 entering the P-type doped polysilicon layer 2 is set to be greater than the depth d4 of the metal crystals of the second metal electrode 7 entering the N-type doped polysilicon layer 3. On the premise that the depth of the metal crystals of the second metal electrode 7 entering the N-type doped polysilicon layer 3 remains unchanged, the depth of the metal crystals of the first metal electrode 6 entering the P-type doped polysilicon layer 3 is increased, and the contact area between the metal crystals of the first metal electrode 6 and the P-type doped polysilicon layer 2 is increased, thereby improving the contact effect between the first metal electrode 6 and the P-type doped polysilicon layer 2, thereby improving the conductivity of the first metal electrode 6 and the P-type doped polysilicon layer 2, thereby improving the battery conversion efficiency.

本发明实施例中,具体可以利用不同烧穿能力的浆料来印刷第一金属电极6及第二金属电极7,从而控制金属电极的金属晶体进入P型掺杂多晶硅层2及N型掺杂多晶硅层3的深度。具体的,第一金属电极6的浆料烧穿能力大于第二金属电极7的浆料烧穿能力,可以使第一金属电极6的金属晶体进入P型掺杂多晶硅层2的深度大于第二金属电极7的金属晶体进入N型掺杂多晶硅层3的深度。In the embodiment of the present invention, the first metal electrode 6 and the second metal electrode 7 can be printed by using slurries with different burn-through capabilities, so as to control the depth of metal crystals of the metal electrodes entering the P-type doped polysilicon layer 2 and the N-type doped polysilicon layer 3. Specifically, the burn-through capability of the slurry of the first metal electrode 6 is greater than the burn-through capability of the slurry of the second metal electrode 7, so that the depth of metal crystals of the first metal electrode 6 entering the P-type doped polysilicon layer 2 is greater than the depth of metal crystals of the second metal electrode 7 entering the N-type doped polysilicon layer 3.

作为本发明的一个实施例,所述第一金属电极6与所述第二金属电极7均包括银、玻璃料及有机材料,且所述第一金属电极6中的玻璃料含量大于所述第二金属电极7中的玻璃料含量。As an embodiment of the present invention, both the first metal electrode 6 and the second metal electrode 7 include silver, glass frit and organic material, and the content of the glass frit in the first metal electrode 6 is greater than that in the second metal electrode 7 .

本实施例中,第一金属电极6与第二金属电极7均包括银、玻璃料及有机材料组分;其中,玻璃料包括PbO、Bi2O3、ZnO、SiO2、MgO中的至少一种,且第一金属电极6中的玻璃料含量大于第二金属电极7中的玻璃料含量,使第一金属电极6的浆料烧穿能力大于第二金属电极7的浆料烧穿能力,从而使第一金属电极6的金属晶体进入P型掺杂多晶硅层2的深度大于第二金属电极7的金属晶体进入N型掺杂多晶硅层3的深度。In this embodiment, the first metal electrode 6 and the second metal electrode 7 both include silver, glass frit and organic material components; wherein the glass frit includes at least one of PbO, Bi 2 O 3 , ZnO, SiO 2 , and MgO, and the glass frit content in the first metal electrode 6 is greater than the glass frit content in the second metal electrode 7, so that the slurry burn-through ability of the first metal electrode 6 is greater than the slurry burn-through ability of the second metal electrode 7, so that the depth of the metal crystals of the first metal electrode 6 entering the P-type doped polysilicon layer 2 is greater than the depth of the metal crystals of the second metal electrode 7 entering the N-type doped polysilicon layer 3.

作为本发明的一个实施例,第一金属电极6的金属晶体进入P型掺杂多晶硅层2的深度d3为2~300nm;第二金属电极7的金属晶体进入N型掺杂多晶硅层3的深度d4为1~200nm。其中,第一金属电极6的金属晶体进入P型掺杂多晶硅层2的深度d3及第二金属电极7的金属晶体进入N型掺杂多晶硅层3的深度d4可以根据实际需要进行灵活设置。其中,第一金属电极6的金属晶体进入P型掺杂多晶硅层2的深度d3及第二金属电极7的金属晶体进入N型掺杂多晶硅层3的深度d4均可由扫描电子显微镜测量得到。As an embodiment of the present invention, the depth d3 of the metal crystals of the first metal electrode 6 entering the P-type doped polysilicon layer 2 is 2 to 300 nm; the depth d4 of the metal crystals of the second metal electrode 7 entering the N-type doped polysilicon layer 3 is 1 to 200 nm. The depth d3 of the metal crystals of the first metal electrode 6 entering the P-type doped polysilicon layer 2 and the depth d4 of the metal crystals of the second metal electrode 7 entering the N-type doped polysilicon layer 3 can be flexibly set according to actual needs. The depth d3 of the metal crystals of the first metal electrode 6 entering the P-type doped polysilicon layer 2 and the depth d4 of the metal crystals of the second metal electrode 7 entering the N-type doped polysilicon layer 3 can both be measured by a scanning electron microscope.

例如,第一金属电极6的金属晶体进入P型掺杂多晶硅层2的深度d3可以为2nm、或者10 nm、或者30nm、或者50nm、或者70nm、或者90nm、或者100nm、或者110nm、或者120nm、或者140nm、或者160nm、或者200nm、或者240nm、或者260nm、或者280nm、或者300nm。第二金属电极7的金属晶体进入N型掺杂多晶硅层3的深度d4可以为1nm、或者5nm、或者20nm、或者30nm、或者50nm、或者80nm、或者90nm、或者100nm、或者120nm、或者130nm、或者150nm、或者160nm、或者180m、或者190nm、或者200nm。For example, the depth d3 of the metal crystals of the first metal electrode 6 entering the P-type doped polysilicon layer 2 can be 2nm, or 10nm, or 30nm, or 50nm, or 70nm, or 90nm, or 100nm, or 110nm, or 120nm, or 140nm, or 160nm, or 200nm, or 240nm, or 260nm, or 280nm, or 300nm. The depth d4 of the metal crystals of the second metal electrode 7 entering the N-type doped polysilicon layer 3 can be 1nm, or 5nm, or 20nm, or 30nm, or 50nm, or 80nm, or 90nm, or 100nm, or 120nm, or 130nm, or 150nm, or 160nm, or 180nm, or 190nm, or 200nm.

作为本发明的一个实施例,第一金属电极6的金属晶体进入P型掺杂多晶硅层2的深度d3与第二金属电极7的金属晶体进入N型掺杂多晶硅层3的深度d4的比值为1~4,且不等于1。As an embodiment of the present invention, the ratio of the depth d3 of the metal crystals of the first metal electrode 6 penetrating into the P-type doped polysilicon layer 2 to the depth d4 of the metal crystals of the second metal electrode 7 penetrating into the N-type doped polysilicon layer 3 is 1-4 and is not equal to 1.

本实施例中,第一金属电极6的金属晶体进入P型掺杂多晶硅层2的深度d3与第二金属电极7的金属晶体进入N型掺杂多晶硅层3的深度d4的比值大于1且小于等于4,这样既可以减少P型掺杂多晶硅层2的金属化损伤,减小P区方阻,提升电池效率,且可以保证金属电极与P型掺杂多晶硅层2的良好接触,提升电池转换效率。In this embodiment, the ratio of the depth d3 of the metal crystals of the first metal electrode 6 entering the P-type doped polysilicon layer 2 to the depth d4 of the metal crystals of the second metal electrode 7 entering the N-type doped polysilicon layer 3 is greater than 1 and less than or equal to 4. This can reduce the metallization damage of the P-type doped polysilicon layer 2, reduce the square resistance of the P region, and improve the battery efficiency, and can ensure good contact between the metal electrode and the P-type doped polysilicon layer 2, thereby improving the battery conversion efficiency.

例如,第一金属电极6的金属晶体进入P型掺杂多晶硅层2的深度d3与第二金属电极7的金属晶体进入N型掺杂多晶硅层3的深度d4的比值可以为:For example, the ratio of the depth d3 of the metal crystals of the first metal electrode 6 penetrating into the P-type doped polysilicon layer 2 to the depth d4 of the metal crystals of the second metal electrode 7 penetrating into the N-type doped polysilicon layer 3 may be:

1.01、或者1.05、或者1.1、或者1.15、或者1.2、或者1.25、或者1.3、或者1.35、或者1.4、或者1.45、或者1.5、或者1.55、或者1.6、或者1.65、或者1.7、或者1.75、或者1.8、或者1.85、或者1.9、或者1.92、或者2、或者2.2、或者2.5、或者2.7、或者2.8、或者3.0、或者3.3、或者3.5、或者4.0。1.01, or 1.05, or 1.1, or 1.15, or 1.2, or 1.25, or 1.3, or 1.35, or 1.4, or 1.45, or 1.5, or 1.55, or 1.6, or 1.65, or 1.7, or 1.75, or 1.8, or 1.85, or 1.9, or 1.92, or 2, or 2.2, or 2.5, or 2.7, or 2.8, or 3.0, or 3.3, or 3.5, or 4.0.

作为本发明的一个实施例,第一金属电极6的金属晶体进入P型掺杂多晶硅层2的深度d3与第二金属电极7的金属晶体进入N型掺杂多晶硅层3的深度d4的比值为1~2,且不等于1。As an embodiment of the present invention, the ratio of the depth d3 of the metal crystals of the first metal electrode 6 penetrating into the P-type doped polysilicon layer 2 to the depth d4 of the metal crystals of the second metal electrode 7 penetrating into the N-type doped polysilicon layer 3 is 1-2 and is not equal to 1.

本实施例中,第一金属电极6的金属晶体进入P型掺杂多晶硅层2的深度d3与第二金属电极7的金属晶体进入N型掺杂多晶硅层3的深度d4的比值大于1且小于等于2,这样既可保证金属电极与P型掺杂多晶硅层2的良好接触,而且便于第一金属电极6的金属晶体进入P型掺杂多晶硅层2的深度d3及第二金属电极7的金属晶体进入N型掺杂多晶硅层3的深度d4的工艺控制。In this embodiment, the ratio of the depth d3 of the metal crystals of the first metal electrode 6 entering the P-type doped polysilicon layer 2 to the depth d4 of the metal crystals of the second metal electrode 7 entering the N-type doped polysilicon layer 3 is greater than 1 and less than or equal to 2. This can not only ensure good contact between the metal electrodes and the P-type doped polysilicon layer 2, but also facilitate the process control of the depth d3 of the metal crystals of the first metal electrode 6 entering the P-type doped polysilicon layer 2 and the depth d4 of the metal crystals of the second metal electrode 7 entering the N-type doped polysilicon layer 3.

作为本发明的一个实施例,第一金属电极6的金属晶体进入P型掺杂多晶硅层2的深度为2~300nm;第二金属电极7的金属晶体进入N型掺杂多晶硅层3的深度为1~200nm,避免第一金属电极6的金属晶体进入P型掺杂多晶硅层2的深度及第二金属电极7的金属晶体进入N型掺杂多晶硅层3的深度过深或过浅。其中,第一金属电极6的金属晶体进入P型掺杂多晶硅层2的深度d3及第二金属电极7的金属晶体进入N型掺杂多晶硅层3的深度d4可以根据实际需要进行灵活设置。As an embodiment of the present invention, the depth of the metal crystals of the first metal electrode 6 entering the P-type doped polysilicon layer 2 is 2 to 300 nm; the depth of the metal crystals of the second metal electrode 7 entering the N-type doped polysilicon layer 3 is 1 to 200 nm, so as to prevent the metal crystals of the first metal electrode 6 from entering the P-type doped polysilicon layer 2 and the metal crystals of the second metal electrode 7 from entering the N-type doped polysilicon layer 3 from being too deep or too shallow. Among them, the depth d3 of the metal crystals of the first metal electrode 6 entering the P-type doped polysilicon layer 2 and the depth d4 of the metal crystals of the second metal electrode 7 entering the N-type doped polysilicon layer 3 can be flexibly set according to actual needs.

例如,第一金属电极6的金属晶体进入P型掺杂多晶硅层2的深度d3可以为2nm、或者10nm、或者30nm、或者50nm、或者70nm、或者90nm、或者100nm、或者110nm、或者120nm、或者140nm、或者160nm、或者200nm、或者240nm、或者260nm、或者280nm、或者300nm。第二金属电极7的金属晶体进入N型掺杂多晶硅层3的深度d4可以为1nm、或者5nm、或者20nm、或者30nm、或者50nm、或者80nm、或者90nm、或者100nm、或者120nm、或者130nm、或者150nm、或者160nm、或者180m、或者190nm、或者200nm。For example, the depth d3 of the metal crystals of the first metal electrode 6 entering the P-type doped polysilicon layer 2 can be 2nm, or 10nm, or 30nm, or 50nm, or 70nm, or 90nm, or 100nm, or 110nm, or 120nm, or 140nm, or 160nm, or 200nm, or 240nm, or 260nm, or 280nm, or 300nm. The depth d4 of the metal crystals of the second metal electrode 7 entering the N-type doped polysilicon layer 3 can be 1nm, or 5nm, or 20nm, or 30nm, or 50nm, or 80nm, or 90nm, or 100nm, or 120nm, or 130nm, or 150nm, or 160nm, or 180nm, or 190nm, or 200nm.

示例性地,如图3所示,P型掺杂多晶硅层2的厚度d2为105nm,第一金属电极6的金属晶体进入P型掺杂多晶硅层2的深度d3为55.6nm;如图4所示,N型掺杂多晶硅层2的厚度为107nm,第二金属电极7的金属晶体进入N型掺杂多晶硅层3的深度d4为45.6nm。Exemplarily, as shown in FIG3 , the thickness d2 of the P-type doped polysilicon layer 2 is 105 nm, and the depth d3 of the metal crystals of the first metal electrode 6 entering the P-type doped polysilicon layer 2 is 55.6 nm; as shown in FIG4 , the thickness of the N-type doped polysilicon layer 2 is 107 nm, and the depth d4 of the metal crystals of the second metal electrode 7 entering the N-type doped polysilicon layer 3 is 45.6 nm.

作为本发明的一个实施例,N型掺杂多晶硅层3的厚度d1大于P型掺杂多晶硅层2的厚度d2。As an embodiment of the present invention, the thickness d1 of the N-type doped polysilicon layer 3 is greater than the thickness d2 of the P-type doped polysilicon layer 2 .

本实施例中,通过将N型掺杂多晶硅层3的厚度d1设置成大于P型掺杂多晶硅层2的厚度d2,与N型掺杂多晶硅层3的厚度d1相比,减小P型掺杂多晶硅层2的厚度d2,降低P型掺杂多晶硅层2的蚀刻难度,降低图案化工艺难度,便于对P型掺杂多晶硅层进行图案化工艺;而且,减小P型掺杂多晶硅层2的厚度d2,可以降低硼扩散难度,有利于硼扩散工艺,便于制备较高浓度的P型掺杂多晶硅层2;而且,N型掺杂多晶硅层3的厚度d1大于P型掺杂多晶硅层2的厚度d2,N型掺杂多晶硅相比P型掺杂多晶硅层2更厚,可以增强钝化效果,提升电池效率。In the present embodiment, by setting the thickness d1 of the N-type doped polysilicon layer 3 to be greater than the thickness d2 of the P-type doped polysilicon layer 2, the thickness d2 of the P-type doped polysilicon layer 2 is reduced compared with the thickness d1 of the N-type doped polysilicon layer 3, thereby reducing the etching difficulty of the P-type doped polysilicon layer 2 and the difficulty of the patterning process, thereby facilitating the patterning process of the P-type doped polysilicon layer; moreover, reducing the thickness d2 of the P-type doped polysilicon layer 2 can reduce the difficulty of boron diffusion, which is beneficial to the boron diffusion process and facilitates the preparation of a P-type doped polysilicon layer 2 with a higher concentration; moreover, the thickness d1 of the N-type doped polysilicon layer 3 is greater than the thickness d2 of the P-type doped polysilicon layer 2, and the N-type doped polysilicon is thicker than the P-type doped polysilicon layer 2, thereby enhancing the passivation effect and improving the battery efficiency.

作为本发明的一个实施例,N型掺杂多晶硅层3的厚度d1与P型掺杂多晶硅层2的厚度d2的比值为1~2,且不等于1。As an embodiment of the present invention, the ratio of the thickness d1 of the N-type doped polysilicon layer 3 to the thickness d2 of the P-type doped polysilicon layer 2 is 1-2 and is not equal to 1.

本实施例中,N型掺杂多晶硅层3的厚度d1与P型掺杂多晶硅层2的厚度d2的比值大于1且小于等于2,这样既可以降低P型掺杂多晶硅层2的蚀刻难度,便于对P型掺杂多晶硅层2进行图案化工艺,且有利于硼扩散工艺,降低硼扩散难度,便于制备较高浓度的P型掺杂多晶硅层2。In this embodiment, the ratio of the thickness d1 of the N-type doped polysilicon layer 3 to the thickness d2 of the P-type doped polysilicon layer 2 is greater than 1 and less than or equal to 2. This can reduce the etching difficulty of the P-type doped polysilicon layer 2 and facilitate the patterning process of the P-type doped polysilicon layer 2, and is beneficial to the boron diffusion process, reducing the difficulty of boron diffusion and facilitating the preparation of a P-type doped polysilicon layer 2 with a higher concentration.

例如,N型掺杂多晶硅层3的厚度d1与P型掺杂多晶硅层2的厚度d2比值可以为:For example, the ratio of the thickness d1 of the N-type doped polysilicon layer 3 to the thickness d2 of the P-type doped polysilicon layer 2 may be:

1.01、或者1.05、或者1.1、或者1.15、或者1.2、或者1.25、或者1.3、或者1.35、或者1.4、或者1.45、或者1.5、或者1.55、或者1.6、或者1.65、或者1.7、或者1.75、或者1.8、或者1.85、或者1.9、或者1.92、或者2。1.01, or 1.05, or 1.1, or 1.15, or 1.2, or 1.25, or 1.3, or 1.35, or 1.4, or 1.45, or 1.5, or 1.55, or 1.6, or 1.65, or 1.7, or 1.75, or 1.8, or 1.85, or 1.9, or 1.92, or 2.

可选的,在d1和d2的比值为1至2的情况下,N型掺杂多晶硅层3的厚度d1为100nm至600nm,P型掺杂多晶硅层2的厚度d2可以为50nm至300nm。d1和d2在上述范围内,P型掺杂多晶硅层2和N型掺杂多晶硅层3均易于达到良好的掺杂效果,两者均具有良好的钝化效果,同时保证金属化损伤较小且接触电阻较小,且成本相对较低;另外,可以降低P型掺杂多晶硅的蚀刻难度,便于对P型掺杂多晶硅进行图案化工艺,利于N型掺杂多晶硅层3的制备,且有利于硼扩散工艺,降低硼扩散难度,便于制备高浓度的P型掺杂多晶硅层2。Optionally, when the ratio of d1 to d2 is 1 to 2, the thickness d1 of the N-type doped polysilicon layer 3 is 100nm to 600nm, and the thickness d2 of the P-type doped polysilicon layer 2 can be 50nm to 300nm. When d1 and d2 are within the above range, both the P-type doped polysilicon layer 2 and the N-type doped polysilicon layer 3 are easy to achieve good doping effects, both have good passivation effects, and at the same time ensure that the metallization damage is small and the contact resistance is small, and the cost is relatively low; in addition, the etching difficulty of the P-type doped polysilicon can be reduced, which is convenient for the patterning process of the P-type doped polysilicon, which is beneficial to the preparation of the N-type doped polysilicon layer 3, and is beneficial to the boron diffusion process, reducing the difficulty of boron diffusion, and facilitating the preparation of a high-concentration P-type doped polysilicon layer 2.

作为本发明的一个实施例,P型掺杂多晶硅层2的折射率小于N型掺杂多晶硅层3的折射率。As an embodiment of the present invention, the refractive index of the P-type doped polysilicon layer 2 is smaller than the refractive index of the N-type doped polysilicon layer 3 .

可以理解,N型掺杂多晶硅层3的折射率不变,减小P型掺杂多晶硅层2的折射率,使P型掺杂多晶硅层2的折射率小于N型掺杂多晶硅层3的折射率,这样可以减少P区的寄生吸收效应,从而可以进一步提升电池效率。P型掺杂多晶硅层2的折射率及N型掺杂多晶硅层3的折射率根据实际需要灵活设置,只需满足P型掺杂多晶硅层2的折射率小于N型掺杂多晶硅层3的折射率即可。It can be understood that the refractive index of the N-type doped polysilicon layer 3 remains unchanged, and the refractive index of the P-type doped polysilicon layer 2 is reduced, so that the refractive index of the P-type doped polysilicon layer 2 is less than the refractive index of the N-type doped polysilicon layer 3, which can reduce the parasitic absorption effect of the P region, thereby further improving the battery efficiency. The refractive index of the P-type doped polysilicon layer 2 and the refractive index of the N-type doped polysilicon layer 3 are flexibly set according to actual needs, and it is only necessary to satisfy that the refractive index of the P-type doped polysilicon layer 2 is less than the refractive index of the N-type doped polysilicon layer 3.

作为本发明的一个实施例,P型掺杂多晶硅层2的平均晶粒尺寸大于N型掺杂多晶硅层3的平均晶粒尺寸。As an embodiment of the present invention, the average grain size of the P-type doped polysilicon layer 2 is greater than the average grain size of the N-type doped polysilicon layer 3 .

本实施例中,P型掺杂多晶硅层2的平均晶粒尺寸及N型掺杂多晶硅层3的平均晶粒尺寸具体可利用X射线衍射仪(X-Ray Diffraction,XRD)、扫描电子显微镜(ScanningElectronic Microscopy,SEM)或透射电子显微镜(Transmission Electron Microscope,TEM)测量得到。其中,P型掺杂多晶硅层2的平均晶粒尺寸大于N型掺杂多晶硅层3的平均晶粒尺寸,可以理解为,单位面积内的P型掺杂多晶硅层2的所有晶粒尺寸的平均值大于单位面积内的N型掺杂多晶硅层3的所有晶粒尺寸的平均值;也就是说,在单位面积内,N型掺杂多晶硅层3中的晶粒数量更多,相较于单位面积的N型掺杂多晶硅层3而言,单位面积的P型掺杂多晶硅层2中具有更少的晶界数量,因而可以提高P型掺杂多晶硅层2的致密程度,减小P型掺杂多晶硅层2的方阻,减小电流损失,从而进一步提高电池效率。而且,P型掺杂多晶硅层2中具有更少的晶界数量,可以减少电池金属化过程中对P型掺杂多晶硅层2的金属化损伤,同样利于提高电池效率。In this embodiment, the average grain size of the P-type doped polysilicon layer 2 and the average grain size of the N-type doped polysilicon layer 3 can be measured by an X-ray diffraction (XRD), a scanning electron microscope (SEM) or a transmission electron microscope (TEM). Among them, the average grain size of the P-type doped polysilicon layer 2 is greater than the average grain size of the N-type doped polysilicon layer 3, which can be understood as the average value of all grain sizes of the P-type doped polysilicon layer 2 per unit area is greater than the average value of all grain sizes of the N-type doped polysilicon layer 3 per unit area; that is, within a unit area, the number of grains in the N-type doped polysilicon layer 3 is greater, and compared with the N-type doped polysilicon layer 3 per unit area, the P-type doped polysilicon layer 2 per unit area has fewer grain boundaries, thereby improving the compactness of the P-type doped polysilicon layer 2, reducing the square resistance of the P-type doped polysilicon layer 2, and reducing current loss, thereby further improving battery efficiency. Moreover, the P-type doped polysilicon layer 2 has fewer grain boundaries, which can reduce the metallization damage to the P-type doped polysilicon layer 2 during the battery metallization process, which is also conducive to improving battery efficiency.

在实际应用中,P型掺杂多晶硅层2及N型掺杂多晶硅层3在制备过程中,可以先沉积本征非晶硅,然后进行掺杂扩散,掺杂扩散过程中进行高温处理,通过控制P型掺杂多晶硅层2及N型掺杂多晶硅层3的扩散温度及扩散时间,即可控制P型掺杂多晶硅层2及N型掺杂多晶硅层3的晶粒平均尺寸。例如,可以将P型掺杂多晶硅层2的掺杂扩散温度设置更高,扩散时间更长,这样可以使制得的P型掺杂多晶硅层2的平均晶粒尺寸大于N型掺杂多晶硅层3的平均晶粒尺寸。In practical applications, during the preparation process of the P-type doped polysilicon layer 2 and the N-type doped polysilicon layer 3, intrinsic amorphous silicon can be first deposited, and then doping diffusion can be performed. During the doping diffusion process, high-temperature treatment can be performed. By controlling the diffusion temperature and diffusion time of the P-type doped polysilicon layer 2 and the N-type doped polysilicon layer 3, the average grain size of the P-type doped polysilicon layer 2 and the N-type doped polysilicon layer 3 can be controlled. For example, the doping diffusion temperature of the P-type doped polysilicon layer 2 can be set higher and the diffusion time can be set longer, so that the average grain size of the prepared P-type doped polysilicon layer 2 can be larger than the average grain size of the N-type doped polysilicon layer 3.

作为本发明的一个实施例,P型掺杂多晶硅层2的平均晶粒尺寸与N型掺杂多晶硅层3的平均晶粒尺寸的比值为1~4,且不等于1。As an embodiment of the present invention, the ratio of the average grain size of the P-type doped polysilicon layer 2 to the average grain size of the N-type doped polysilicon layer 3 is 1-4 and is not equal to 1.

本实施例中,P型掺杂多晶硅层2的晶粒尺寸与N型掺杂多晶硅层3的晶粒尺寸比值为大于1且小于等于4,这样可以确保P型掺杂多晶硅层2的平均晶粒尺寸与N型掺杂多晶硅层3的平均晶粒尺寸相差在合适范围内,既可以减小P区方阻,提升电池效率,且便于实现P型掺杂多晶硅层2及N型掺杂多晶硅层3的制备。In this embodiment, the ratio of the grain size of the P-type doped polysilicon layer 2 to the grain size of the N-type doped polysilicon layer 3 is greater than 1 and less than or equal to 4. This can ensure that the average grain size of the P-type doped polysilicon layer 2 and the average grain size of the N-type doped polysilicon layer 3 are within a suitable range, which can reduce the square resistance of the P region and improve the battery efficiency, and facilitate the preparation of the P-type doped polysilicon layer 2 and the N-type doped polysilicon layer 3.

作为本发明的一个实施例,P型掺杂多晶硅层2的平均晶粒尺寸为50~600 nm;N型掺杂多晶硅层3的平均晶粒尺寸为10~400nm,便于实现P型掺杂多晶硅层2及N型掺杂多晶硅层3的制备。As an embodiment of the present invention, the average grain size of the P-type doped polysilicon layer 2 is 50-600 nm; the average grain size of the N-type doped polysilicon layer 3 is 10-400 nm, which facilitates the preparation of the P-type doped polysilicon layer 2 and the N-type doped polysilicon layer 3.

请参照图2,作为本发明的一个实施例,P型掺杂多晶硅层2靠近硅基底1的表面与N型掺杂多晶硅层3靠近硅基底1的表面存在第一高度差h1,P型掺杂多晶硅层2靠近硅基底1的表面,相比N型掺杂多晶硅层3靠近硅基底1的表面,更远离硅基底1的正面。Please refer to Figure 2, as an embodiment of the present invention, there is a first height difference h1 between the surface of the P-type doped polysilicon layer 2 close to the silicon substrate 1 and the surface of the N-type doped polysilicon layer 3 close to the silicon substrate 1, and the surface of the P-type doped polysilicon layer 2 close to the silicon substrate 1 is farther away from the front side of the silicon substrate 1 than the surface of the N-type doped polysilicon layer 3 close to the silicon substrate 1.

本实施例中,硅基底1靠近P型掺杂多晶硅层2的表面与靠近N型掺杂多晶硅层3的表面不在同一平面上;P型掺杂多晶硅层2靠近硅基底1的表面比N型掺杂多晶硅层3中靠近硅基底1的表面,更远离硅基底1的正面,P型掺杂多晶硅层2靠近硅基底1的表面相比N型掺杂多晶硅层3靠近硅基底1的表面,存在第一高度差h1。对P型掺杂多晶硅层2和N型掺杂多晶硅层3的相对位置控制的更为精准,位置参照作用更精准;而且,在后一种掺杂多晶硅层制作前,对前一个先做的掺杂多晶硅层中需要刻蚀的部分,刻蚀得更为干净,而且,对于第一区域和第二区域之间间隙的P型掺杂多晶硅层2、N型掺杂多晶硅层3均刻蚀的更为干净,电学性能更好。其中,第一高度差h1可以根据实际需要进行灵活设置,在此不做限定。In this embodiment, the surface of the silicon substrate 1 close to the P-type doped polysilicon layer 2 and the surface close to the N-type doped polysilicon layer 3 are not on the same plane; the surface of the P-type doped polysilicon layer 2 close to the silicon substrate 1 is farther away from the front of the silicon substrate 1 than the surface of the N-type doped polysilicon layer 3 close to the silicon substrate 1, and there is a first height difference h1 between the surface of the P-type doped polysilicon layer 2 close to the silicon substrate 1 and the surface of the N-type doped polysilicon layer 3 close to the silicon substrate 1. The relative position control of the P-type doped polysilicon layer 2 and the N-type doped polysilicon layer 3 is more accurate, and the position reference function is more accurate; and before the latter doped polysilicon layer is made, the part to be etched in the first doped polysilicon layer is etched more cleanly, and the P-type doped polysilicon layer 2 and the N-type doped polysilicon layer 3 in the gap between the first region and the second region are etched more cleanly, and the electrical performance is better. Among them, the first height difference h1 can be flexibly set according to actual needs and is not limited here.

作为本发明的一个实施例,P型掺杂多晶硅层2靠近硅基底1的表面与N型掺杂多晶硅层3远离硅基底1的表面存在第二高度差h2,P型掺杂多晶硅层2靠近硅基底1的表面相比N型掺杂多晶硅层3远离硅基底1的表面更远离硅基底1的正面。As an embodiment of the present invention, there is a second height difference h2 between the surface of the P-type doped polysilicon layer 2 close to the silicon substrate 1 and the surface of the N-type doped polysilicon layer 3 away from the silicon substrate 1, and the surface of the P-type doped polysilicon layer 2 close to the silicon substrate 1 is farther away from the front side of the silicon substrate 1 than the surface of the N-type doped polysilicon layer 3 away from the silicon substrate 1.

本实施例中,P型掺杂多晶硅层2远离硅基底1的表面相比N型掺杂多晶硅层3远离硅基底1的表面更远离硅基底1的正面,P型掺杂多晶硅层2远离硅基底1的表面与N型掺杂多晶硅层3远离硅基底1的表面存在第二高度差h2,实现P型掺杂多晶硅层2与N型掺杂多晶硅层3良好的隔离效果,电学隔离效果好,短路或漏电风险更低。第二高度差h2可以根据实际需要进行灵活设置,在此不做限定。In this embodiment, the surface of the P-type doped polysilicon layer 2 away from the silicon substrate 1 is farther away from the front of the silicon substrate 1 than the surface of the N-type doped polysilicon layer 3 away from the silicon substrate 1. There is a second height difference h2 between the surface of the P-type doped polysilicon layer 2 away from the silicon substrate 1 and the surface of the N-type doped polysilicon layer 3 away from the silicon substrate 1, so that the P-type doped polysilicon layer 2 and the N-type doped polysilicon layer 3 are well isolated, the electrical isolation effect is good, and the risk of short circuit or leakage is lower. The second height difference h2 can be flexibly set according to actual needs and is not limited here.

作为本发明的一个实施例,硅基底1的正面还可设置有绒面结构(图未示),利用绒面结构,可以实现良好的陷光效果,提升背接触太阳能电池的转换效率。As an embodiment of the present invention, the front side of the silicon substrate 1 may also be provided with a velvet structure (not shown). The velvet structure can achieve a good light trapping effect and improve the conversion efficiency of the back contact solar cell.

作为本发明的一个实施例,背接触太阳能电池的正面还设置有正面钝化减反膜层9,进一步减少光反射,以进一步提升背接触太阳能电池的转换效率。As an embodiment of the present invention, a front passivation anti-reflection film layer 9 is further provided on the front side of the back-contact solar cell to further reduce light reflection, so as to further improve the conversion efficiency of the back-contact solar cell.

作为本发明的一个实施例,背接触太阳能电池还包括位于P型掺杂多晶硅层2背面与N型掺杂多晶硅层3背面的背面钝化膜层5,第一金属电极6的金属晶体穿过背面钝化膜层5进入P型掺杂多晶硅层2,第二金属电极7的金属晶体穿过背面钝化膜层5进入N型掺杂多晶硅3。通过设置背面钝化膜层5,进一步提升电池背面钝化效果,以进一步提升背接触太阳能电池的转换效率。As an embodiment of the present invention, the back-contact solar cell further includes a back passivation film layer 5 located on the back of the P-type doped polysilicon layer 2 and the back of the N-type doped polysilicon layer 3. The metal crystals of the first metal electrode 6 pass through the back passivation film layer 5 to enter the P-type doped polysilicon layer 2, and the metal crystals of the second metal electrode 7 pass through the back passivation film layer 5 to enter the N-type doped polysilicon 3. By providing the back passivation film layer 5, the back passivation effect of the cell is further improved, so as to further improve the conversion efficiency of the back-contact solar cell.

作为本发明的一个实施例,硅基底1还设有位于P型掺杂多晶硅层2与N型掺杂多晶硅层3之间的沟槽8。利用沟槽8对P型掺杂多晶硅层2与N型掺杂多晶硅层3进行物理隔离,可以进一步提升P型掺杂多晶硅层2与N型掺杂多晶硅层3的隔离效果,进一步降低短路或漏电风险。其中,沟槽8的宽度可以根据实际需要进行灵活设置,在此不做限定。As an embodiment of the present invention, the silicon substrate 1 is further provided with a groove 8 between the P-type doped polysilicon layer 2 and the N-type doped polysilicon layer 3. The P-type doped polysilicon layer 2 and the N-type doped polysilicon layer 3 are physically isolated by the groove 8, which can further enhance the isolation effect between the P-type doped polysilicon layer 2 and the N-type doped polysilicon layer 3, and further reduce the risk of short circuit or leakage. Among them, the width of the groove 8 can be flexibly set according to actual needs, and is not limited here.

本发明实施例还提供一种电池组件,该电池组件包括上述实施例的背接触太阳能电池。需要说明的是,电池组件与背接触太阳能电池具有相同或相似的有益效果,且两者之间相关之处可以相互参照,为了避免重复,此处不再赘述。本发明实施例还提供一种光伏系统,该光伏系统包括上述实施例的电池组件。需要说明的是,电池组件与背接触太阳能电池具有相同或相似的有益效果,且两者之间相关之处可以相互参照,为了避免重复,此处不再赘述。An embodiment of the present invention further provides a battery assembly, which includes the back-contact solar cell of the above embodiment. It should be noted that the battery assembly and the back-contact solar cell have the same or similar beneficial effects, and the relevant parts between the two can be referenced to each other. In order to avoid repetition, they will not be repeated here. An embodiment of the present invention further provides a photovoltaic system, which includes the battery assembly of the above embodiment. It should be noted that the battery assembly and the back-contact solar cell have the same or similar beneficial effects, and the relevant parts between the two can be referenced to each other. In order to avoid repetition, they will not be repeated here.

本发明实施例提供的一种背接触太阳能电池通过将第一金属电极的金属晶体进入P型掺杂多晶硅层的深度设置成大于第二金属电极的金属晶体进入N型掺杂多晶硅层的深度,在第二金属电极的金属晶体进入N型掺杂多晶硅层的深度不变的前提下,增加第一金属电极的金属晶体进入P型掺杂多晶硅层的深度,可以增加第一金属电极的金属晶体与P型掺杂多晶硅层的接触面积,提升第一金属电极与P型掺杂多晶硅层的接触效果,实现良好的欧姆接触,提高第一金属电极与P型掺杂多晶硅层导电性能,从而提高电池转换效率。A back-contact solar cell provided by an embodiment of the present invention increases the contact area between the metal crystals of the first metal electrode and the P-type doped polysilicon layer, thereby improving the contact effect between the first metal electrode and the P-type doped polysilicon layer, achieving good ohmic contact, and improving the conductivity of the first metal electrode and the P-type doped polysilicon layer, thereby improving the battery conversion efficiency.

以上仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。The above are only preferred embodiments of the present invention and are not intended to limit the present invention. Any modifications, equivalent substitutions and improvements made within the spirit and principles of the present invention should be included in the protection scope of the present invention.

Claims (12)

1.一种背接触太阳能电池,其特征在于,包括:1. A back contact solar cell, comprising: 硅基底,所述硅基底具有相对设置的背面和正面;A silicon substrate having a back surface and a front surface arranged opposite to each other; P型掺杂多晶硅层,位于所述硅基底的背面的第一区域;A P-type doped polysilicon layer, located in a first region on the back side of the silicon substrate; N型掺杂多晶硅层,位于所述硅基底的背面的第二区域,且所述第一区域异于所述第二区域;An N-type doped polysilicon layer is located in a second region on the back side of the silicon substrate, and the first region is different from the second region; 设于所述第一区域、并与所述P型掺杂多晶硅层接触的第一金属电极;A first metal electrode disposed in the first region and in contact with the P-type doped polysilicon layer; 设于所述第二区域、并与所述N型掺杂多晶硅层接触的第二金属电极;A second metal electrode disposed in the second region and in contact with the N-type doped polysilicon layer; 其中,所述第一金属电极的金属晶体进入所述P型掺杂多晶硅层的深度大于所述第二金属电极的金属晶体进入所述N型掺杂多晶硅层的深度;所述P型掺杂多晶硅层的平均晶粒尺寸大于所述N型掺杂多晶硅层的平均晶粒尺寸。Among them, the depth of metal crystals of the first metal electrode entering the P-type doped polysilicon layer is greater than the depth of metal crystals of the second metal electrode entering the N-type doped polysilicon layer; the average grain size of the P-type doped polysilicon layer is greater than the average grain size of the N-type doped polysilicon layer. 2.根据权利要求1所述的背接触太阳能电池,其特征在于,所述第一金属电极的金属晶体进入所述P型掺杂多晶硅层的深度与所述第二金属电极的金属晶体进入所述N型掺杂多晶硅层的深度的比值为1~4,且不等于1。2. The back-contact solar cell according to claim 1 is characterized in that the ratio of the depth of the metal crystals of the first metal electrode penetrating into the P-type doped polysilicon layer to the depth of the metal crystals of the second metal electrode penetrating into the N-type doped polysilicon layer is 1~4 and is not equal to 1. 3.根据权利要求1所述的背接触太阳能电池,其特征在于,所述第一金属电极的金属晶体进入所述P型掺杂多晶硅层的深度与所述第二金属电极的金属晶体进入所述N型掺杂多晶硅层的深度的比值为1~2,且不等于1。3. The back-contact solar cell according to claim 1 is characterized in that the ratio of the depth of the metal crystals of the first metal electrode penetrating into the P-type doped polysilicon layer to the depth of the metal crystals of the second metal electrode penetrating into the N-type doped polysilicon layer is 1~2 and is not equal to 1. 4.根据权利要求1所述的背接触太阳能电池,其特征在于,所述第一金属电极的金属晶体进入所述P型掺杂多晶硅层的深度为2~300nm;所述第二金属电极的金属晶体进入所述N型掺杂多晶硅层的深度为1~200nm。4. The back-contact solar cell according to claim 1 is characterized in that the depth of the metal crystals of the first metal electrode penetrating into the P-type doped polysilicon layer is 2~300nm; the depth of the metal crystals of the second metal electrode penetrating into the N-type doped polysilicon layer is 1~200nm. 5.根据权利要求1所述的背接触太阳能电池,其特征在于,所述第一金属电极与所述第二金属电极均包括银、玻璃料及有机材料,且所述第一金属电极中的玻璃料含量大于所述第二金属电极中的玻璃料含量。5 . The back-contact solar cell according to claim 1 , wherein the first metal electrode and the second metal electrode both comprise silver, glass frit and organic material, and the glass frit content in the first metal electrode is greater than the glass frit content in the second metal electrode. 6.根据权利要求1所述的背接触太阳能电池,其特征在于,所述P型掺杂多晶硅层的折射率小于所述N型掺杂多晶硅层的折射率。6 . The back-contact solar cell according to claim 1 , wherein a refractive index of the P-type doped polysilicon layer is smaller than a refractive index of the N-type doped polysilicon layer. 7.根据权利要求1所述的背接触太阳能电池,其特征在于,还包括位于所述P型掺杂多晶硅层背面与所述N型掺杂多晶硅层背面的背面钝化膜层,所述第一金属电极的金属晶体穿过所述背面钝化膜层进入所述P型掺杂多晶硅层,所述第二金属电极的金属晶体穿过所述背面钝化膜层进入所述N型掺杂多晶硅。7. The back-contact solar cell according to claim 1 is characterized in that it also includes a back passivation film layer located on the back side of the P-type doped polysilicon layer and the back side of the N-type doped polysilicon layer, and the metal crystals of the first metal electrode pass through the back passivation film layer to enter the P-type doped polysilicon layer, and the metal crystals of the second metal electrode pass through the back passivation film layer to enter the N-type doped polysilicon. 8.根据权利要求1所述的背接触太阳能电池,其特征在于,所述P型掺杂多晶硅层的平均晶粒尺寸与所述N型掺杂多晶硅层的平均晶粒尺寸的比值为1~4,且不等于1。8 . The back-contact solar cell according to claim 1 , wherein a ratio of an average grain size of the P-type doped polysilicon layer to an average grain size of the N-type doped polysilicon layer is 1 to 4 and is not equal to 1. 9.根据权利要求1所述的背接触太阳能电池,其特征在于,所述N型掺杂多晶硅层的厚度大于所述P型掺杂多晶硅层的厚度。9 . The back-contact solar cell according to claim 1 , wherein a thickness of the N-type doped polysilicon layer is greater than a thickness of the P-type doped polysilicon layer. 10.根据权利要求9所述的背接触太阳能电池,其特征在于,所述N型掺杂多晶硅层的厚度与所述P型掺杂多晶硅层的厚度的比值为1~2,且不等于1。10 . The back-contact solar cell according to claim 9 , wherein a ratio of a thickness of the N-type doped polysilicon layer to a thickness of the P-type doped polysilicon layer is 1-2 and is not equal to 1. 11.一种电池组件,其特征在于,包括如权利要求1~10任意一项所述的背接触太阳能电池。11. A battery assembly, characterized in that it comprises a back-contact solar cell as described in any one of claims 1 to 10. 12.一种光伏系统,其特征在于,包括如权利要求11所述的电池组件。12. A photovoltaic system, comprising the battery assembly according to claim 11.
CN202410821423.3A 2024-06-24 2024-06-24 Back contact solar cell, battery module and photovoltaic system Active CN118380482B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202410821423.3A CN118380482B (en) 2024-06-24 2024-06-24 Back contact solar cell, battery module and photovoltaic system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202410821423.3A CN118380482B (en) 2024-06-24 2024-06-24 Back contact solar cell, battery module and photovoltaic system

Publications (2)

Publication Number Publication Date
CN118380482A CN118380482A (en) 2024-07-23
CN118380482B true CN118380482B (en) 2024-09-27

Family

ID=91911098

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202410821423.3A Active CN118380482B (en) 2024-06-24 2024-06-24 Back contact solar cell, battery module and photovoltaic system

Country Status (1)

Country Link
CN (1) CN118380482B (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN217881529U (en) * 2022-06-23 2022-11-22 浙江爱旭太阳能科技有限公司 P-type IBC solar cell, cell module and photovoltaic system
CN118263349A (en) * 2024-05-30 2024-06-28 隆基绿能科技股份有限公司 Semiconductor structure, solar cell and manufacturing method thereof, photovoltaic module

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8242354B2 (en) * 2008-12-04 2012-08-14 Sunpower Corporation Backside contact solar cell with formed polysilicon doped regions
KR20100089473A (en) * 2009-02-04 2010-08-12 (주)제스솔라 High efficiency back contact solar cell and method for manufacturing the same
CN107146819B (en) * 2017-06-22 2023-05-23 南京南大光电工程研究院有限公司 Novel thin film solar cell
CN111524982A (en) * 2019-02-01 2020-08-11 泰州隆基乐叶光伏科技有限公司 Solar cell
CN116722057A (en) * 2022-05-26 2023-09-08 浙江晶科能源有限公司 Solar cell manufacturing method, solar cell and photovoltaic module
CN219626673U (en) * 2023-03-16 2023-09-01 浙江爱旭太阳能科技有限公司 Back contact solar cell, cell module and photovoltaic system
CN116364795A (en) * 2023-04-18 2023-06-30 晶科能源(海宁)有限公司 Solar cell, preparation method thereof and photovoltaic module
CN117038753A (en) * 2023-08-29 2023-11-10 天合光能股份有限公司 Solar cell silver aluminum grid line preparation method, solar cell, preparation method and application

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN217881529U (en) * 2022-06-23 2022-11-22 浙江爱旭太阳能科技有限公司 P-type IBC solar cell, cell module and photovoltaic system
CN118263349A (en) * 2024-05-30 2024-06-28 隆基绿能科技股份有限公司 Semiconductor structure, solar cell and manufacturing method thereof, photovoltaic module

Also Published As

Publication number Publication date
CN118380482A (en) 2024-07-23

Similar Documents

Publication Publication Date Title
CN109728103B (en) Solar cell
CN113330583B (en) Crystalline silicon solar cell, preparation method thereof and photovoltaic module
CN111952417A (en) A kind of solar cell and preparation method thereof
CN210926046U (en) Solar cell
CN114613865A (en) Solar cell and preparation method thereof
CN114613866A (en) Solar cell and preparation method thereof
CN111477720A (en) A kind of N-type back junction solar cell with passivated contact and preparation method thereof
CN110021673A (en) A kind of double-sided solar battery and preparation method thereof
CN117832291A (en) Solar cell and photovoltaic module
CN101325225B (en) Emitter electrode structure capable of improving crystal silicon solar battery shortwave response
TW201906180A (en) Photovoltaic element and method of producing the same
WO2025066518A1 (en) Solar cell and preparation method therefor, and photovoltaic module
CN118380482B (en) Back contact solar cell, battery module and photovoltaic system
CN219350239U (en) Solar cell
JP2024112747A (en) Solar cell and its manufacturing method, photovoltaic module
CN101325224A (en) An Emitter Structure for Improving the Efficiency of Crystalline Silicon Solar Cells
CN108461570A (en) A kind of crystal silicon double-side solar cell structure
CN113437161A (en) Solar cell, preparation method thereof and photovoltaic module
CN222776546U (en) Back contact solar cell, battery assembly and photovoltaic system
CN222706909U (en) Back contact solar cell, battery module and photovoltaic system
CN115101620B (en) A P-type HBC battery structure and its preparation method
CN220731541U (en) Solar cell
CN214753783U (en) A solar cell stack passivation structure
CN118610280A (en) Back contact solar cell, battery module and photovoltaic system
CN214753796U (en) Cell structure, solar cell and photovoltaic module

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant