CN118320076A - 使用抗ox40抗体与抗tim3抗体的组合治疗癌症的方法 - Google Patents
使用抗ox40抗体与抗tim3抗体的组合治疗癌症的方法 Download PDFInfo
- Publication number
- CN118320076A CN118320076A CN202410292008.3A CN202410292008A CN118320076A CN 118320076 A CN118320076 A CN 118320076A CN 202410292008 A CN202410292008 A CN 202410292008A CN 118320076 A CN118320076 A CN 118320076A
- Authority
- CN
- China
- Prior art keywords
- seq
- antibody
- variable region
- chain variable
- heavy chain
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K16/00—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
- C07K16/18—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
- C07K16/28—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
- C07K16/2878—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the NGF-receptor/TNF-receptor superfamily, e.g. CD27, CD30, CD40, CD95
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
- A61P35/02—Antineoplastic agents specific for leukemia
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
- A61P35/04—Antineoplastic agents specific for metastasis
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P37/00—Drugs for immunological or allergic disorders
- A61P37/02—Immunomodulators
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K16/00—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
- C07K16/18—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
- C07K16/28—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
- C07K16/2803—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K2039/505—Medicinal preparations containing antigens or antibodies comprising antibodies
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K2039/505—Medicinal preparations containing antigens or antibodies comprising antibodies
- A61K2039/507—Comprising a combination of two or more separate antibodies
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/20—Immunoglobulins specific features characterized by taxonomic origin
- C07K2317/24—Immunoglobulins specific features characterized by taxonomic origin containing regions, domains or residues from different species, e.g. chimeric, humanized or veneered
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/30—Immunoglobulins specific features characterized by aspects of specificity or valency
- C07K2317/34—Identification of a linear epitope shorter than 20 amino acid residues or of a conformational epitope defined by amino acid residues
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/50—Immunoglobulins specific features characterized by immunoglobulin fragments
- C07K2317/56—Immunoglobulins specific features characterized by immunoglobulin fragments variable (Fv) region, i.e. VH and/or VL
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/70—Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
- C07K2317/73—Inducing cell death, e.g. apoptosis, necrosis or inhibition of cell proliferation
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/70—Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
- C07K2317/73—Inducing cell death, e.g. apoptosis, necrosis or inhibition of cell proliferation
- C07K2317/732—Antibody-dependent cellular cytotoxicity [ADCC]
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/70—Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
- C07K2317/75—Agonist effect on antigen
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/70—Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
- C07K2317/76—Antagonist effect on antigen, e.g. neutralization or inhibition of binding
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/90—Immunoglobulins specific features characterized by (pharmaco)kinetic aspects or by stability of the immunoglobulin
- C07K2317/92—Affinity (KD), association rate (Ka), dissociation rate (Kd) or EC50 value
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A50/00—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
- Y02A50/30—Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Immunology (AREA)
- Organic Chemistry (AREA)
- Medicinal Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Molecular Biology (AREA)
- Genetics & Genomics (AREA)
- Biophysics (AREA)
- Biochemistry (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Pharmacology & Pharmacy (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- General Chemical & Material Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Engineering & Computer Science (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Oncology (AREA)
- Hematology (AREA)
- Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
- Peptides Or Proteins (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
Abstract
提供了使用结合人OX40(ACT35、CD134或TNFRSF4)的非竞争性激动剂抗OX40抗体及其抗原结合片段与抗TIM3抗体或其抗原结合片段的组合来治疗癌症或增加、增强或刺激免疫反应的方法。
Description
本申请是申请日为2020年11月19日、申请号为2020800756154、发明名称为“使用抗OX40抗体与抗TIM3抗体的组合治疗癌症的方法”的发明专利申请的分案申请。
技术领域
本文公开了一种使用结合人OX40的抗体或其抗原结合片段与结合人TIM3的抗体或抗原结合的组合治疗癌症的方法。
背景技术
OX40(也称为ACT35、CD134或TNFRSF4)是约50KD的I型跨膜糖蛋白,并且是肿瘤坏死因子受体超家族(TNFRSF)的成员(Croft,2010;Gough和Weinberg,2009)。成熟的人OX40由249个氨基酸(AA)残基组成,具有37个AA的胞质尾和185个AA的胞外区。OX40的胞外结构域含有三个完整的和一个不完整的富含半胱氨酸的结构域(CRD)。OX40的胞内结构域含有一个保守的信号传导相关的QEE基序,其介导与几种TNFR相关因子(TRAF)(包括TRAF2、TRAF3和TRAF5)的结合,允许OX40连接至胞内激酶(Arch和Thompson,1998;Willoughby等人,2017)。
OX40最初是在激活的大鼠CD4+T细胞上发现,随后从T细胞克隆鼠和人同源物(al-Shamkhani等人,1996;Calderhead等人,1993)。除了在激活的CD4+T细胞(包括T辅助(Th)1细胞、Th2细胞、Th17细胞以及调节性T(Treg)细胞)上表达之外,还在激活的CD8+T细胞、自然杀伤(NK)T细胞、嗜中性粒细胞和NK细胞的表面上发现OX40表达(Croft,2010)。相反,在幼稚CD4+和CD8+T细胞以及大多数静息记忆T细胞上发现低OX40表达(Croft,2010;Soroosh等人,2007)。OX40在幼稚T细胞上的表面表达是瞬时的。TCR激活后,T细胞上的OX40表达在24小时内大幅增加且在2-3天内达到峰值,持续5-6天(Gramaglia等人,1998)。
OX40的配体(OX40L,也称为gp34、CD252或TNFSF4)是OX40的唯一配体。与其他TNFSF(肿瘤坏死因子超家族)成员相似,OX40L是II型糖蛋白,其含有183个AA,具有23个AA的胞内结构域和133个AA的胞外结构域(Croft,2010;Gough和Weinberg,2009)。OX40L在细胞表面上自然形成同源三聚体复合物。配体三聚体主要通过受体的CRD1、CRD2和部分CRD3区域但不涉及CRD4在配体单体-单体界面处与三个拷贝的OX40相互作用(Compaan和Hymowitz,2006)。OX40L主要在激活的抗原呈递细胞(APC)上表达,包括激活的B细胞(Stuber等人,1995)、成熟的常规树突细胞(DC)(Ohshima等人,1997)、浆细胞样DC(pDC)(Ito等人,2004)、巨噬细胞(Weinberg等人,1999)和朗格汉斯细胞(Sato等人,2002)。此外,已发现OX40L在其他细胞类型上表达,例如NK细胞、肥大细胞、激活T细胞的亚群以及血管内皮细胞和平滑肌细胞(Croft,2010;Croft等人,2009)。
经由三聚体OX40L的连接的OX40三聚化或通过激动性抗体的二聚化有助于衔接分子TRAF2、TRAF3和/或TRAF5向其胞内QEE基序的募集和对接(Arch和Thompson,1998;Willoughby等人,2017)。TRAF2和TRAF3的募集和对接可进一步导致经典NF-κB1和非经典NF-κB2途径的激活,其在T细胞的存活、分化、扩增、细胞因子产生和效应子功能的调节中起关键作用(Croft,2010;Gramaglia等人,1998;Huddleston等人,2006;Rogers等人,2001;Ruby和Weinberg,2009;Song等人,2005a;Song等人,2005b;Song等人,2008)。
在正常组织中,OX40的表达低且主要在淋巴器官中的淋巴细胞上(Durkop等人,1995)。然而,免疫细胞上OX40表达的上调在患有病理疾患的动物模型和人类患者中经常观察到(Redmond和Weinberg,2007),例如自身免疫性疾病(Carboni等人,2003;Jacquemin等人,2015;Szypowska等人,2014)和癌症(Kjaergaard等人,2000;Vetto等人,1997;Weinberg等人,2000)。值得注意的是,OX40表达的增加与结直肠癌和皮肤黑素瘤患者中更长的存活相关,并且与远处转移和更晚期肿瘤特征的发生负相关(Ladanyi等人,2004;Petty等人,2002;Sarff等人,2008)。还显示抗OX40抗体治疗可在各种小鼠模型中引起抗肿瘤功效(Aspeslagh等人,2016),表明OX40作为免疫治疗靶标的潜力。在Curti等人进行的癌症患者的第一项临床试验中,使用激动性抗OX40单克隆抗体观察到抗肿瘤功效和肿瘤特异性T细胞激活的证据,表明OX40抗体可用于加强抗肿瘤T细胞反应(Curti等人,2013)。
主要在小鼠肿瘤模型中研究了激动性抗OX40抗体在介导抗肿瘤功效中的作用机制(Weinberg等人,2000)。直到最近,激动性抗OX40抗体在肿瘤中的作用机制归因于它们在效应T细胞中触发共刺激信号传导途径的能力,以及对Treg细胞的分化和功能的抑制作用(Aspeslagh等人,2016;Ito等人,2006;St Rose等人,2013;Voo等人,2013)。最近的研究表明,在动物肿瘤模型和癌症患者中,肿瘤浸润性Treg比效应T细胞(CD4+和CD8+)和外周Treg表达更高水平的OX40(Lai等人,2016;Marabelle等人,2013b;Montler等人,2016;Soroosh等人,2007;Timperi等人,2016)。因此,在通过抗体依赖性细胞毒性(ADCC)和/或抗体依赖性细胞吞噬作用(ADCP)耗竭肿瘤内OX40+Treg细胞中,抗OX40抗体触发抗肿瘤反应所借助的次级效应依赖于它们的Fc介导的效应子功能(Aspeslagh等人,2016;Bulliard等人,2014;Marabelle等人,2013a;Marabelle等人,2013b;Smyth等人,2014)。这项工作证明,具有Fc介导的效应子功能的激动性抗OX40抗体可优先耗竭肿瘤内Treg并改善肿瘤微环境(TME)中CD8+效应T细胞与Treg的比率,从而改善抗肿瘤免疫反应,增加肿瘤消退和改善存活(Bulliard等人,2014;Carboni等人,2003;Jacquemin等人,2015;Marabelle等人,2013b)。基于这些发现,存在开发具有激动活性和Fc介导的效应子功能的激动性抗OX40抗体的未满足的医学需要。
迄今为止,临床中的激动性抗OX40抗体主要是阻断OX40-OX40L相互作用的配体竞争性抗体(例如WO2016196228A1)。由于OX40-OX40L相互作用对于增强有效的抗肿瘤免疫是必需的,因此阻断OX40-OX40L限制了这些配体竞争性抗体的功效。因此,特异性结合OX40而不干扰OX40与OX40L相互作用的OX40激动剂抗体在治疗癌症和自身免疫性病症中具有效用。
在癌症和病毒感染中,TIM3信号传导的激活促进免疫细胞功能障碍,导致癌症的过度生长或延长的病毒感染。肿瘤浸润淋巴细胞(TIL)、巨噬细胞和肿瘤细胞中TIM3表达的上调已经在许多类型的癌症中有所报道,例如肺癌(Zhuang X等人,Am J Clin Pathol2012 137:978-985)、肝癌(Li H等人,Hepatology 2012 56:1342-1351)、胃癌(Jiang等人,PLoS One 2013 8:e81799)、肾癌(Komohara等人,Cancer Immunol Res.2015 3:999-1000)、乳腺癌(Heon EK等人,2015Biochem Biophys Res Commun.464:360-6)、结肠癌(Xu等人,Oncotarget 2015)、黑素细胞癌(Gros A等人,2014J Clin Invest.2014 124:2246-2259)和宫颈癌(Cao等人,PLoS One 2013 8:e53834)。TIM3在那些癌症中的表达增加与患者存活结果的不良预后相关。TIM3信号传导的上调不仅在对癌症的免疫耐受中发挥重要作用,而且对慢性病毒感染也发挥重要作用。在HIV和HCV感染期间,TIM3在T细胞上的表达与健康人中的表达相比显著更高,并且与病毒载量和疾病进展正相关(Jones RB等人,2008JExp Med.205:2763-79;Sakhdari A等人,2012PLoS One 7:e40146;Golden-Mason L等人,2009J Virol.83:9122-30;2012Moorman JP等人,J Immunol.189:755-66)。另外,单独或与PD-1/PD-L1阻断组合的TIM3受体的阻断可在体外和体内拯救功能上“耗竭的”T细胞(Dietze KK等人,2013PLoS Pathog 9:e1003798;Golden-Mason L等人,2009J Virol.83:9122-30)。因此,治疗剂对TIM3信号传导的调节可以拯救免疫细胞(例如T细胞、NK细胞和巨噬细胞)免于耐受,从而诱导有效的免疫反应以根除肿瘤或慢性病毒感染。
发明内容
本公开涉及激动性抗OX40抗体和抗原结合片段与抗TIM3抗体和抗原结合片段的组合,以及使用这些抗体的组合治疗癌症的方法。
在一个实施方案中,本公开提供与抗TIM3抗体或其抗原结合片段组合的激动性抗OX40抗体。在一方面,本公开的OX40抗体不与OX40L竞争,或干扰OX40与其配体OX40L的结合。
本公开包括以下实施方案。
一种癌症治疗方法,所述方法包括向受试者施用有效量的非竞争性抗OX40抗体或其抗原结合片段与抗TIM3抗体或其抗原结合片段的组合。
所述方法,其中所述OX40抗体特异性结合人OX40且包含:
(i)重链可变区和轻链可变区,所述重链可变区包含:(a)SEQ ID NO:3的HCDR(重链互补决定区)1,(b)SEQ ID NO:24的HCDR2,和(c)SEQ ID NO:5的HCDR3,所述轻链可变区包含:(d)SEQ ID NO:25的LCDR(轻链互补决定区)1,(e)SEQ ID NO:19的LCDR2,和(f)SEQID NO:8的LCDR3;
(ii)重链可变区和轻链可变区,所述重链可变区包含:(a)SEQ ID NO:3的HCDR1,(b)SEQ ID NO:18的HCDR2,和(c)SEQ ID NO:5的HCDR3;所述轻链可变区包含:(d)SEQ IDNO:6的LCDR1,(e)SEQ ID NO:19的LCDR2,和(f)SEQ ID NO:8的LCDR3;
(iii)重链可变区和轻链可变区,所述重链可变区包含:(a)SEQ ID NO:3的HCDR1,(b)SEQ ID NO:13的HCDR2,和(c)SEQ ID NO:5的HCDR3;所述轻链可变区包含:(d)SEQ IDNO:6的LCDR1,(e)SEQ ID NO:7的LCDR2,和(f)SEQ ID NO:8的LCDR3;或
(iv)重链可变区和轻链可变区,所述重链可变区包含:(a)SEQ ID NO:3的HCDR1,(b)SEQ ID NO:4的HCDR2,和(c)SEQ ID NO:5的HCDR3;所述轻链可变区包含:(d)SEQ IDNO:6的LCDR1,(e)SEQ ID NO:7的LCDR2,和(f)SEQ ID NO:8的LCDR3,与抗TIM3抗体或其抗原结合片段组合。
所述方法,其中所述OX40抗体或抗原结合包含:
(i)包含SEQ ID NO:26的重链可变区(VH)和包含SEQ ID NO:28的轻链可变区(VL);
(ii)包含SEQ ID NO:20的重链可变区(VH)和包含SEQ ID NO:22的轻链可变区(VL);
(iii)包含SEQ ID NO:14的重链可变区(VH)和包含SEQ ID NO:16的轻链可变区(VL);或
(iv)包含SEQ ID NO:9的重链可变区(VH)和包含SEQ ID NO:11的轻链可变区(VL)。
所述方法,其中所述抗TIM3抗体或其抗原结合片段包含特异性结合人TIM3的抗体抗原结合结构域,并且包含重链可变区和轻链可变区,所述重链可变区包含:SEQ ID NO:32的HCDR1、SEQ ID NO:33的HCDR2和SEQ ID NO:34的HCDR3;所述轻链可变区包含:SEQ IDNO:35的LCDR1、SEQ ID NO:36的LCDR2和SEQ ID NO:37的LCDR3。
所述方法,其中所述抗TIM3抗体包含特异性结合人TIM3的抗体抗原结合结构域,并且包含含有SEQ ID NO:38的氨基酸序列的重链可变区(VH)和含有SEQ ID NO:40的氨基酸序列的轻链可变区(VL)。
所述方法,其中所述抗OX40抗体或抗原结合片段是选自由Fab、Fab'-SH、Fv、scFv和(Fab')2片段组成的群组的抗体片段。
所述方法,其中所述抗TIM3抗体或抗原结合片段是选自由Fab、Fab'-SH、Fv、scFv和(Fab')2片段组成的群组的抗体片段。
所述方法,其中所述癌症是乳腺癌、结肠癌、头颈癌、胃癌、肾癌、肝癌、小细胞肺癌、非小细胞肺癌、卵巢癌、皮肤癌、间皮瘤、淋巴瘤、白血病、骨髓瘤或肉瘤。
所述方法,其中所述乳腺癌是转移性乳腺癌。
所述方法,其中所述治疗在所述治疗停止后在所述受试者中导致持续的抗癌反应。
一种增加、增强或刺激免疫反应或功能的方法,所述方法包括向受试者施用有效量的非竞争性抗OX40抗体或其抗原结合片段与抗TIM3抗体或其抗原结合片段的组合。
所述方法,其中所述OX40抗体特异性结合人OX40且包含:
(i)重链可变区和轻链可变区,所述重链可变区包含:(a)SEQ ID NO:3的HCDR(重链互补决定区)1,(b)SEQ ID NO:24的HCDR2,和(c)SEQ ID NO:5的HCDR3,所述轻链可变区包含:(d)SEQ ID NO:25的LCDR(轻链互补决定区)1,(e)SEQ ID NO:19的LCDR2,和(f)SEQID NO:8的LCDR3;
(ii)重链可变区和轻链可变区,所述重链可变区包含:(a)SEQ ID NO:3的HCDR1,(b)SEQ ID NO:18的HCDR2,和(c)SEQ ID NO:5的HCDR3;所述轻链可变区包含:(d)SEQ IDNO:6的LCDR1,(e)SEQ ID NO:19的LCDR2,和(f)SEQ ID NO:8的LCDR3;
(iii)重链可变区和轻链可变区,所述重链可变区包含:(a)SEQ ID NO:3的HCDR1,(b)SEQ ID NO:13的HCDR2,和(c)SEQ ID NO:5的HCDR3;所述轻链可变区包含:(d)SEQ IDNO:6的LCDR1,(e)SEQ ID NO:7的LCDR2,和(f)SEQ ID NO:8的LCDR3;或
(iv)重链可变区和轻链可变区,所述重链可变区包含:(a)SEQ ID NO:3的HCDR1,(b)SEQ ID NO:4的HCDR2,和(c)SEQ ID NO:5的HCDR3;所述轻链可变区包含:(d)SEQ IDNO:6的LCDR1,(e)SEQ ID NO:7的LCDR2,和(f)SEQ ID NO:8的LCDR3,与抗TIM3抗体组合。
所述方法,其中所述OX40抗体或其抗原结合片段包含:
(i)包含SEQ ID NO:26的重链可变区(VH)和包含SEQ ID NO:28的轻链可变区(VL);
(ii)包含SEQ ID NO:20的重链可变区(VH)和包含SEQ ID NO:22的轻链可变区(VL);
(iii)包含SEQ ID NO:14的重链可变区(VH)和包含SEQ ID NO:16的轻链可变区(VL);或
(iv)包含SEQ ID NO:9的重链可变区(VH)和包含SEQ ID NO:11的轻链可变区(VL)。
所述方法,其中所述抗TIM3抗体或其抗原结合片段包含特异性结合人TIM3的抗体抗原结合结构域,并且包含重链可变区和轻链可变区,所述重链可变区包含:SEQ ID NO:32的HCDR1、SEQ ID NO:33的HCDR2和SEQ ID NO:34的HCDR3;所述轻链可变区包含:SEQ IDNO:35的LCDR1、SEQ ID NO:36的LCDR2和SEQ ID NO:37的LCDR3。
所述方法,其中所述抗TIM3抗体包含特异性结合人TIM3的抗体抗原结合结构域,并且包含含有SEQ ID NO:38的氨基酸序列的重链可变区(VH)和含有SEQ ID NO:40的氨基酸序列的轻链可变区(VL)。
所述方法,其中所述抗OX40抗体或抗原结合片段是选自由Fab、Fab'-SH、Fv、scFv和(Fab')2片段组成的群组的抗体片段。
所述方法,其中所述抗TIM3抗体或抗原结合片段是选自由Fab、Fab'-SH、Fv、scFv和(Fab')2片段组成的群组的抗体片段。
所述方法,其中刺激免疫反应与T细胞、NK细胞和巨噬细胞相关。
所述方法,其中刺激免疫反应的特征在于对抗原刺激的反应性增加。
所述方法,其中所述T细胞具有增加的细胞因子分泌、增殖或细胞溶解活性。
所述方法,其中所述T细胞是CD4+和CD8+T细胞。
所述方法,其中所述施用在所述治疗停止后在所述受试者中导致持续的免疫反应。
在一个实施方案中,抗体或其抗原结合片段包含一个或多个互补决定区(CDR),其具有选自由SEQ ID NO:3、SEQ ID NO:4、SEQ ID NO:5、SEQ ID NO:6、SEQ ID NO:7、SEQ IDNO:8、SEQ ID NO:13、SEQ ID NO:18、SEQ ID NO:19、SEQ ID NO:24和SEQ ID NO:25组成的群组的氨基酸序列。
在另一个实施方案中,所述抗体或其抗原结合片段包含:(a)重链可变区,其包含具有选自由SEQ ID NO:3、SEQ ID NO:4、SEQ ID NO:13、SEQ ID NO:18、SEQ ID NO:24和SEQID NO:5组成的群组的氨基酸序列的一个或多个互补决定区(HCDR);和/或(b)轻链可变区,其包含具有选自由SEQ ID NO:6、SEQ ID NO:25、SEQ ID NO:7、SEQ ID NO:19和SEQ ID NO:8组成的群组的氨基酸序列的一个或多个互补决定区(LCDR)。
在另一个实施方案中,所述抗体或其抗原结合片段包含:(a)重链可变区,其包含三个互补决定区(HCDR),其为具有SEQ ID NO:3的氨基酸序列的HCDR1;具有SEQ ID NO:4、SEQ ID NO:13、SEQ ID NO:18或SEQ ID NO:24的氨基酸序列的HCDR2;和具有SEQ ID NO:5的氨基酸序列的HCDR3;和/或(b)轻链可变区,其包含三个互补决定区(LCDR),其为具有SEQID NO:6或SEQ ID NO:25的氨基酸序列的LCDR1;具有SEQ ID NO:7或SEQ ID NO:19的氨基酸序列的LCDR2;和具有SEQ ID NO:8的氨基酸序列的LCDR3。
在另一个实施方案中,所述抗体或其抗原结合片段包含:(a)重链可变区,其包含三个互补决定区(HCDR),其为具有SEQ ID NO:3的氨基酸序列的HCDR1、具有SEQ ID NO:4的氨基酸序列的HCDR2和具有SEQ ID NO:5的氨基酸序列的HCDR3;或具有SEQ ID NO:3的氨基酸序列的HCDR1、具有SEQ ID NO:13的氨基酸序列的HCDR2和具有SEQ ID NO:5的氨基酸序列的HCDR3;或具有SEQ ID NO:3的氨基酸序列的HCDR1、具有SEQ ID NO:18的氨基酸序列的HCDR2和具有SEQ ID NO:5的氨基酸序列的HCDR3;或具有SEQ ID NO:3的氨基酸序列的HCDR1、具有SEQ ID NO:24的氨基酸序列的HCDR2和具有SEQ ID NO:5的氨基酸序列的HCDR3;和/或(b)轻链可变区,其包含三个互补决定区(LCDR),其为具有SEQ ID NO:6的氨基酸序列的LCDR1、具有SEQ ID NO:7的氨基酸序列的LCDR2和具有SEQ ID NO:8的氨基酸序列的LCDR3;或具有SEQ ID NO:6的氨基酸序列的LCDR1、具有SEQ ID NO:19的氨基酸序列的LCDR2和具有SEQ ID NO:8的氨基酸序列的LCDR3;或具有SEQ ID NO:25的氨基酸序列的LCDR1、具有SEQ ID NO:19的氨基酸序列的LCDR2和具有SEQ ID NO:8的氨基酸序列的LCDR3。
在另一个实施方案中,本公开的抗体或抗原结合片段包含:重链可变区和轻链可变区,所述重链可变区包含具有SEQ ID NO:3的氨基酸序列的HCDR1、具有SEQ ID NO:4的氨基酸序列的HCDR2和具有SEQ ID NO:5的氨基酸序列的HCDR3;所述轻链可变区包含具有SEQID NO:6的氨基酸序列的LCDR1、具有SEQ ID NO:7的氨基酸序列的LCDR2和具有SEQ ID NO:8的氨基酸序列的LCDR3。
在一个实施方案中,本公开的抗体或抗原结合片段包含:重链可变区和轻链可变区,所述重链可变区包含具有SEQ ID NO:3的氨基酸序列的HCDR1、具有SEQ ID NO:13的氨基酸序列的HCDR2和具有SEQ ID NO:5的氨基酸序列的HCDR3;所述轻链可变区包含具有SEQID NO:6的氨基酸序列的LCDR1、具有SEQ ID NO:7的氨基酸序列的LCDR2和具有SEQ ID NO:8的氨基酸序列的LCDR3。
在另一个实施方案中,本公开的抗体或抗原结合片段包含:重链可变区和轻链可变区,所述重链可变区包含具有SEQ ID NO:3的氨基酸序列的HCDR1、具有SEQ ID NO:18的氨基酸序列的HCDR2和具有SEQ ID NO:5的氨基酸序列的HCDR3;所述轻链可变区包含具有SEQ ID NO:6的氨基酸序列的LCDR1、具有SEQ ID NO:19的氨基酸序列的LCDR2和具有SEQID NO:8的氨基酸序列的LCDR3。
在另一个实施方案中,本公开的抗体或抗原结合片段包含:重链可变区和轻链可变区,所述重链可变区包含具有SEQ ID NO:3的氨基酸序列的HCDR1、具有SEQ ID NO:24的氨基酸序列的HCDR2和具有SEQ ID NO:5的氨基酸序列的HCDR3;所述轻链可变区包含具有SEQ ID NO:25的氨基酸序列的LCDR1、具有SEQ ID NO:19的氨基酸序列的LCDR2和具有SEQID NO:8的氨基酸序列的LCDR3。
在一个实施方案中,本公开的抗体或其抗原结合片段包含:(a)重链可变区,其具有SEQ ID NO:9、SEQ ID NO:14、SEQ ID NO:20或SEQ ID NO:26的氨基酸序列,或与SEQ IDNO:9、SEQ ID NO:14、SEQ ID NO:20或SEQ ID NO:26中的任一个至少95%、96%、97%、98%或99%一致的氨基酸序列;和/或(b)轻链可变区,其具有SEQ ID NO:11、SEQ ID NO:16、SEQID NO:22或SEQ ID NO:28的氨基酸序列,或与SEQ ID NO:11、SEQ ID NO:16、SEQ ID NO:22或SEQ ID NO:28中的任一个至少95%、96%、97%、98%或99%一致的氨基酸序列。
在另一个实施方案中,本公开的抗体或其抗原结合片段包含:(a)重链可变区,其具有SEQ ID NO:9、SEQ ID NO:14、SEQ ID NO:20或SEQ ID NO:26的氨基酸序列,或在SEQID NO:9、SEQ ID NO:14、SEQ ID NO:20或SEQ ID NO:26的氨基酸序列中具有一个、两个或三个氨基酸取代的氨基酸序列;和/或(b)轻链可变区,其具有SEQ ID NO:11、SEQ ID NO:16、SEQ ID NO:22或SEQ ID NO:28的氨基酸序列,或在SEQ ID NO:11、SEQ ID NO:16、SEQID NO:22或SEQ ID NO:28的氨基酸中具有一个、两个、三个、四个或五个氨基酸取代的氨基酸序列。在另一个实施方案中,氨基酸取代是保守氨基酸取代。
在一个实施方案中,本公开的抗体或其抗原结合片段包含:
(a)具有SEQ ID NO:9的氨基酸序列的重链可变区和具有SEQ ID NO:11的氨基酸序列的轻链可变区;或
(b)具有SEQ ID NO:14的氨基酸序列的重链可变区和具有SEQ ID NO:16的氨基酸序列的轻链可变区;或
(c)具有SEQ ID NO:20的氨基酸序列的重链可变区和具有SEQ ID NO:22的氨基酸序列的轻链可变区;或
(d)具有SEQ ID NO:26的氨基酸序列的重链可变区和具有SEQ ID NO:28的氨基酸序列的轻链可变区。
在一个实施方案中,本公开的抗体属于IgG1、IgG2、IgG3或IgG4同种型。在一个更具体的实施方案中,本公开的抗体包含野生型人IgG1(也称为人IgG1wt或huIgG1)或IgG2的Fc结构域。在另一个实施方案中,本公开的抗体包含具有S228P和/或R409K取代(根据EU编号系统)的人IgG4的Fc结构域。
在一个实施方案中,本公开的抗体以1×10-6M至1×10-10M的结合亲和力(KD)结合OX40。在另一个实施方案中,本公开的抗体以约1×10-6M、约1×10-7M、约1×10-8M、约1×10- 9M或约1×10-10M的结合亲和力(KD)结合OX40。
在另一个实施方案中,本发明的抗人OX40抗体显示对食蟹猴OX40的跨物种结合活性。
在一个实施方案中,本公开的抗OX40抗体结合OX40-OX40L相互作用界面之外的人OX40的表位。在另一个实施方案中,本公开的抗OX40抗体不与OX40配体竞争结合OX40。在又另一个实施方案中,本公开的抗OX40抗体不阻断OX40与其配体OX40L之间的相互作用。
本公开的抗体是激动性的并且显著增强免疫反应。本发明提供了测试抗OX40抗体的激动能力的方法。在一个实施方案中,本公开的抗体可以在混合淋巴细胞反应(MLR)测定中显著刺激原代T细胞产生IL-2。
在一个实施方案中,本公开的抗体具有强的Fc介导的效应子功能。抗体介导NK细胞对OX40Hi靶细胞如调节性T细胞(Treg细胞)的抗体依赖性细胞毒性(ADCC)。在一方面,本公开提供了基于不同OX40表达水平评价抗OX40抗体介导的特定T细胞亚群的体外耗竭的方法。
本公开的抗体或抗原结合片段不阻断OX40-OX40L相互作用。此外,OX40抗体在体内表现出剂量依赖性抗肿瘤活性,如动物模型中所示。剂量依赖性活性不同于阻断OX40-OX40L相互作用的抗OX40抗体的活性谱。
本公开涉及分离的核酸,其包含编码抗体或抗原结合片段的氨基酸序列的核苷酸序列。在一个实施方案中,分离的核酸包含SEQ ID NO:10、SEQ ID NO:15、SEQ ID NO:21或SEQ ID NO:27的VH核苷酸序列,或与SEQ ID NO:10、SEQ ID NO:15、SEQ ID NO:21或SEQ IDNO:27具有至少95%、96%、97%、98%或99%一致性的核苷酸序列,并且编码本公开的抗体或抗原结合片段的VH区。替代地或另外地,分离的核酸包含SEQ ID NO:12、SEQ ID NO:17、SEQ ID NO:23或SEQ ID NO:29的VL核苷酸序列,或与SEQ ID NO:12、SEQ ID NO:17、SEQ IDNO:23或SEQ ID NO:29具有至少95%、96%、97%、98%或99%一致性的核苷酸序列,并且编码本公开的抗体或抗原结合片段的VL区。
在另一方面,本公开涉及包含OX40抗体或其抗原结合片段和任选存在的药学上可接受的赋形剂的药物组合物。
在又另一方面,本公开涉及治疗受试者的疾病的方法,所述方法包括向有需要的受试者施用治疗有效量的OX40抗体或其抗原结合片段,或OX40抗体药物组合物。在另一个实施方案中,待由抗体或抗原结合片段治疗的疾病是癌症或自身免疫性疾病。
本公开涉及抗体或其抗原结合片段或OX40抗体药物组合物用于治疗疾病如癌症或自身免疫性疾病的用途。
附图说明
图1是OX40-mIgG2a、OX40-huIgG1和OX40-His构建体的示意图。OX40 ECD:OX40胞外结构域。N:N末端。C:C末端。
图2显示通过表面等离子体共振(SPR)对纯化的嵌合(ch445)和人源化(445-1、445-2、445-3和445-3IgG4)抗OX40抗体的亲和力测定。
图3显示通过流式细胞术测定OX40结合。将OX40阳性HuT78/OX40细胞与各种抗OX40抗体(抗体ch445、445-1、445-2、445-3和445-3IgG4)一起孵育并进行FACS分析。结果以平均荧光强度(MFI,Y轴)显示。
图4显示通过流式细胞术测定的OX40抗体的结合。HuT78/OX40和HuT78/cynoOX40细胞用抗体445-3染色,并通过流式细胞术测定平均荧光强度(MFI,显示在Y轴)。
图5描述了通过表面等离子体共振(SPR)测定445-3Fab对OX40野生型和点突变体的亲和力。
图6显示抗体445-3与其OX40上的表位之间的详细相互作用。抗体445-3和OX40分别以浅灰色和黑色描绘。氢键或盐桥、π-π堆积和范德华(VDW)相互作用分别用虚线、双虚线和实线表示。
图7表明抗体445-3不干扰OX40L结合。在染色HEK293/OX40L细胞之前,将OX40-小鼠IgG2a(OX40-mIgG2a)融合蛋白与人IgG(+HuIgG)、抗体445-3(+445-3)或抗体1A7.gr1(+1A7.gr1,参见US 2015/0307617)以1:1的摩尔比预孵育。OX40L与OX40-mIgG2a/抗OX40抗体复合物的结合是通过将HEK293/OX40L细胞与OX40-mIgG2a/抗OX40抗体复合物共孵育,接着与抗小鼠IgG二抗反应并进行流式细胞术来测定。结果以两次重复的平均值±SD显示。统计显著性:*:P<0.05;**:P<0.01。
图8显示OX40/445-3Fab与报道的OX40/OX40L复合物(PDB代码:2HEV)的结构比对。OX40L以白色显示,445-3Fab以灰色显示,OX40以黑色显示。
图9A-B显示抗OX40抗体445-3结合TCR刺激诱导IL-2产生。将OX40阳性HuT78/OX40细胞(图9A)与人工抗原呈递细胞(APC)系(HEK293/OS8低-FcγRI)在抗OX40抗体存在下共培养过夜,并且将IL-2产生用作T细胞刺激的读出(图9B)。通过ELISA检测培养上清液中的IL-2。结果以三次重复的平均值±SD显示。
图10表明抗OX40抗体增强MLR反应。在抗OX40抗体(0.1-10μg/ml)存在下,将体外分化的树突细胞(DC)与同种异体CD4+T细胞共培养2天。通过ELISA检测上清液中的IL-2。所有测试均重复进行四次,结果显示为平均值±SD。统计显著性:*:P<0.05;**:P<0.01。
图11表明抗OX40抗体445-3诱导ADCC。在抗OX40抗体(0.004-3μg/ml)或对照存在下,使用NK92MI/CD16V细胞作为效应细胞和HuT78/OX40细胞作为靶细胞进行ADCC测定。在检测乳酸脱氢酶(LDH)释放之前,将相等数目的效应细胞和靶细胞共培养5小时。如实施例12所述,基于制造商的方案计算细胞毒性百分比(Y轴)。结果以三次重复的平均值±SD显示。
图12A-12C显示抗OX40抗体445-3与NK细胞组合增加体外激活的PBMC中CD8+效应T细胞对Treg的比率。用PHA-L(1μg/ml)预激活人PBMC,然后在抗OX40抗体或对照存在下与NK92MI/CD16V细胞共培养。通过流式细胞术测定不同T细胞亚群的百分比。进一步计算CD8+效应T细胞与Treg的比率。图12A显示CD8+/总T细胞的比率。图12B是Treg/总T细胞的比率。图12C显示CD8+/Treg的比率。数据以两次重复的平均值±SD显示。显示了在指定浓度下445-3和1A7.gr1之间的统计显著性。*:P<0.05;**:P<0.01。
图13A-13B显示抗OX40抗体445-3而非1A7.gr1在OX40人源化小鼠的MC38结直肠癌同基因模型中显示剂量依赖性抗肿瘤活性。将MC38鼠结肠癌细胞(2×107个)皮下植入雌性人OX40转基因小鼠中。根据肿瘤体积随机化后,按照指示每周一次向动物腹膜内注射抗OX40抗体或同种型对照,进行三次。图13A比较了增加剂量的445-3抗体与增加剂量的1A7.gr1抗体和肿瘤生长的减少。图13B显示了用该特定剂量治疗的所有小鼠的数据。数据表示为每组6只小鼠的平均肿瘤体积±平均值的标准误差(SEM)。统计显著性:*:P<0.05相对于同种型对照。
图14A-14B是在OX40抗体中进行的氨基酸改变的表格。
图15显示OX40抗体与抗TIM3抗体组合在转移性乳腺癌的小鼠模型中的功效。
图16表明OX40抗体与抗TIM3抗体组合在肾癌小鼠模型中是有效的。
定义
除非在本文件的其它地方明确定义,否则本文使用的所有其它技术和科学术语具有本领域普通技术人员通常理解的含义。
如本文(包括所附权利要求)中所使用,词语的单数形式(例如“一(a/an)”和“所述”)包括其对应的复数指示物,除非上下文另有明确规定。
术语“或”用于表示术语“和/或”,并且可与术语“和/或”互换使用,除非上下文另有明确规定。
本文所用的术语“抗癌剂”是指可用于治疗细胞增殖性病症如癌症的任何剂,包括但不限于细胞毒性剂、化疗剂、放疗和放疗剂、靶向抗癌剂和免疫治疗剂。
术语“OX40”是指约50KD的I型跨膜糖蛋白,它是肿瘤坏死因子受体超家族的成员。OX40也称为ACT35、CD134或TNFRSF4。人OX40的氨基酸序列(SEQ ID NO:1)也可以在登录号NP_003318下找到,并且编码OX40蛋白的核苷酸序列是登录号:X75962.1。术语“OX40配体”或“OX40L”是指OX40的唯一配体,并且可与gp34、CD252或TNFSF4互换。
当应用于动物、人、实验受试者、细胞、组织、器官或生物流体时,本文的术语“施用(administration)”、“施用(administering)”、“治疗(treating)”和“治疗(treatment)”是指使外源性药物、治疗剂、诊断剂或组合物与动物、人、受试者、细胞、组织、器官或生物流体接触。细胞的处理包括试剂与细胞的接触,以及试剂与流体的接触,其中流体与细胞接触。术语“施用”和“治疗”还意指例如通过试剂、诊断剂、结合化合物或通过另一细胞对细胞进行的体外和离体处理。本文的术语“受试者”包括任何生物体,优选动物,更优选哺乳动物(例如大鼠、小鼠、狗、猫、兔),最优选人。在一方面,治疗任何疾病或病症是指改善疾病或病症(即,减缓或阻止或减少疾病或其至少一种临床症状的发展)。在另一方面,“治疗(treat、treating或treatment)”是指减轻或改善至少一种身体参数,包括患者可能无法辨别的那些。在又另一方面,“治疗”是指在身体上(例如,可辨别的症状的稳定)、生理上(例如,身体参数的稳定)或两者上调节疾病或病症。在又另一方面,“治疗”是指预防或延迟疾病或病症的发作或发展或进展。
在本公开的上下文中,术语“受试者”是哺乳动物,例如灵长类动物,优选高等灵长类动物,例如人(例如患有本文所述的病症或处于患有本文所述的病症的风险中的患者)。
本文所用的术语“亲和力”是指抗体和抗原之间相互作用的强度。在抗原内,抗体“臂”的可变区通过非共价力与抗原在许多位点相互作用;相互作用越多,亲和力越强。
本文所用的术语“抗体”是指免疫球蛋白家族的多肽,其可以非共价地、可逆地和以特异性方式结合相应的抗原。例如,天然存在的IgG抗体是包含通过二硫键相互连接的至少两条重(H)链和两条轻(L)链的四聚体。每条重链包含重链可变区(本文缩写为VH)和重链恒定区。重链恒定区包含三个结构域CH1、CH2和CH3。每条轻链包含轻链可变区(本文缩写为VL)和轻链恒定区。轻链恒定区包含一个结构域CL。VH和VL区可以进一步细分为高变区,称为互补决定区(CDR),其间散布有更保守的区域,称为框架区(FR)。每个VH和VL由从氨基末端到羧基末端按以下顺序排列的三个CDR和四个FR组成:FR1、CDR1、FR2、CDR2、FR3、CDR3和FR4。重链和轻链的可变区含有与抗原相互作用的结合结构域。抗体的恒定区可介导免疫球蛋白与宿主组织或因子(包括免疫系统的各种细胞(例如效应细胞)和经典补体系统的第一组分(C1q))的结合。
术语“抗体”包括但不限于单克隆抗体、人抗体、人源化抗体、嵌合抗体和抗独特型(抗Id)抗体。抗体可以是任何同种型/类别(例如IgG、IgE、IgM、IgD、IgA和IgY)或亚类(例如IgG1、IgG2、IgG3、IgG4、IgA1和IgA2)。
在一些实施方案中,抗OX40抗体包含至少一个抗原结合位点或至少一个可变区。在一些实施方案中,抗OX40抗体包含来自本文所述的OX40抗体的抗原结合片段。在一些实施方案中,抗OX40抗体是分离的或重组的。
术语“单克隆抗体”或“mAb”或“Mab”在本文中是指基本上同质的抗体群体,即群体中包含的抗体分子在氨基酸序列上是一致的,除了可以少量存在的可能的天然存在的突变。相反,常规(多克隆)抗体制剂通常包括在其可变结构域,特别是其互补决定区(CDR)中具有不同的氨基酸序列的多种不同抗体,所述抗体通常对不同的表位具有特异性。修饰语“单克隆”表示从基本上同质的抗体群体获得的抗体的特征,并且不应被解释为需要通过任何特定方法产生抗体。单克隆抗体(mAb)可以通过本领域技术人员已知的方法获得。参见例如Kohler等人,Nature 1975 256:495-497;美国专利第4,376,110号;Ausubel等人,CURRENT PROTOCOLS IN MOLECULAR BIOLOGY 1992;Harlow等人,ANTIBODIES:ALABORATORY MANUAL,Cold spring Harbor Laboratory 1988;以及Colligan等人,CURRENTPROTOCOLS IN IMMUNOLOGY 1993。本文公开的抗体可以是任何免疫球蛋白类别,包括IgG、IgM、IgD、IgE、IgA及其任何亚类例如IgG1、IgG2、IgG3、IgG4。产生单克隆抗体的杂交瘤可以在体外或体内培养。可以在体内生产中获得高滴度的单克隆抗体,其中将来自个体杂交瘤的细胞经腹膜内注射到小鼠(如原始致敏的Balb/c小鼠)中以产生含有高浓度的所需抗体的腹水。同种型IgM或IgG的单克隆抗体可使用本领域技术人员熟知的柱色谱法从这些腹水或培养上清液中纯化。
通常,基本抗体结构单元包含四聚体。每个四聚体包括两对相同的多肽链,每对具有一条“轻链”(约25kDa)和一条“重链”(约50-70kDa)。每条链的氨基末端部分包括主要负责抗原识别的约100-110或更多个氨基酸的可变区。重链的羧基末端部分可以限定主要负责效应子功能的恒定区。通常,人轻链分为κ和λ轻链。此外,人重链通常分为α、δ、ε、γ或μ,并且分别将抗体的同种型限定为IgA、IgD、IgE、IgG和IgM。在轻链和重链中,可变区和恒定区通过约12个或更多个氨基酸的“J”区连接,重链还包括约10个或更多个氨基酸的“D”区。
每个轻链/重链(VL/VH)对的可变区形成抗体结合位点。因此,通常完整抗体具有两个结合位点。除了在双功能或双特异性抗体中,两个结合位点通常是相同的。
通常,重链和轻链的可变结构域都包含三个高变区,也称为“互补决定区(CDR)”,它们位于相对保守的框架区(FR)之间。CDR通常通过框架区对齐,使得能够结合特定表位。通常,从N末端到C末端,轻链和重链可变结构域都包含FR-1(或FR1)、CDR-1(或CDR1)、FR-2(FR2)、CDR-2(CDR2)、FR-3(或FR3)、CDR-3(CDR3)和FR-4(或FR4)。CDR和框架区的位置可以使用本领域中各种熟知的定义来确定,例如Kabat、Chothia和AbM(参见例如Johnson等人,Nucleic Acids Res.,29:205-206(2001);Chothia和Lesk,J.Mol.Biol.,196:901-917(1987);Chothia等人,Nature,342:877-883(1989);Chothia等人,J.Mol.Biol.,227:799-817(1992);Al-Lazikani等人,J.Mol.Biol.,273:927-748(1997))。抗原结合位点的定义也描述于以下中:Ruiz等人,Nucleic Acids Res.,28:219-221(2000);和Lefranc,M.P.,Nucleic Acids Res.,29:207-209(2001);MacCallum等人,J.Mol.Biol.,262:732-745(1996);和Martin等人,Proc.Natl.Acad.Sci.USA,86:9268-9272(1989);Martin等人,Methods Enzymol.,203:121-153(1991);和Rees等人,于Sternberg M.J.E.(编著),Protein Structure Prediction,Oxford University Press,Oxford,141-172(1996)。在组合的Kabat和Chothia编号方案中,在一些实施方案中,CDR对应于作为Kabat CDR、Chothia CDR或二者的一部分的氨基酸残基。例如,CDR对应于VH,例如哺乳动物VH,例如人VH中的氨基酸残基26-35(HC CDR1)、50-65(HC CDR2)和95-102(HC CDR3);和VL,例如哺乳动物VL,例如人VL中的氨基酸残基24-34(LC CDR1)、50-56(LC CDR2)和89-97(LC CDR3)。
术语“高变区”指负责抗原结合的抗体的氨基酸残基。高变区包含来自“CDR”(即轻链可变区中的VL-CDR1、VL-CDR2和VL-CDR3以及重链可变结构域中的VH-CDR1、VH-CDR2和VH-CDR3)的氨基酸残基。参见,Kabat等人(1991)Sequences of Proteins ofImmunological Interest,第5版Public Health Service,National Institutes ofHealth,Bethesda,Md.(通过序列定义抗体的CDR区);还参见Chothia和Lesk(1987)J.Mol.Biol.196:901-917(通过结构定义抗体的CDR区)。术语“框架”或“FR”残基是指除本文定义为CDR残基的高变区残基之外的那些可变结构域残基。
除非另有说明,否则“抗原结合片段”指抗体的抗原结合片段,即保留与全长抗体结合的抗原特异性结合的能力的抗体片段,例如保留一个或多个CDR区的片段。抗原结合片段的实例包括但不限于Fab、Fab'、F(ab')2和Fv片段;双抗体;线性抗体;单链抗体分子,例如单链Fv(ScFv);纳米抗体和由抗体片段形成的多特异性抗体。
抗体与靶蛋白“特异性结合”,是指与其它蛋白相比,该抗体表现出与该靶标的优先结合,但该特异性不需要绝对的结合特异性。如果抗体的结合决定了样品中靶蛋白的存在,例如不产生不希望的结果如假阳性,则认为该抗体对其预期靶标具有“特异性”。用于本公开的抗体或其抗原结合片段将以为与非靶蛋白的亲和力至少两倍大,优选至少10倍大,更优选至少20倍大,最优选至少100倍大的亲和力结合靶蛋白。如果本文的抗体结合包含给定氨基酸序列(例如人OX40分子的氨基酸序列)的多肽但不结合缺乏该给定氨基酸序列的蛋白质,其被认为特异性结合包含该序列的多肽。
术语“人抗体”在本文中是指仅包含人免疫球蛋白蛋白序列的抗体。如果在小鼠、小鼠细胞或来源于小鼠细胞的杂交瘤中产生,人抗体可以含有鼠糖链。类似地,“小鼠抗体”或“大鼠抗体”分别指仅包含小鼠或大鼠免疫球蛋白蛋白序列的抗体。
术语“人源化抗体”意指含有来自非人(例如鼠)抗体以及人抗体的序列的抗体形式。这些抗体含有源自非人免疫球蛋白的最小序列。一般而言,人源化抗体将包含基本上所有的至少一个,通常两个可变结构域,其中所有或基本上所有的高变环对应于非人免疫球蛋白的那些,并且所有或基本上所有的FR区是人免疫球蛋白序列的那些。人源化抗体还任选地包含免疫球蛋白恒定区的至少一部分(Fc),通常是人免疫球蛋白的恒定区。当需要区分人源化抗体和亲本啮齿类动物抗体时,将前缀“hum”、“hu”、“Hu”或“h”添加到抗体克隆名称中。啮齿类动物抗体的人源化形式通常包含与亲本啮齿类动物抗体相同的CDR序列,但可以包括某些氨基酸取代以增加亲和力,增加人源化抗体的稳定性,除去翻译后修饰或出于其它原因。
如本文所用,术语“非竞争性”是指抗体可结合受体且不干扰配体结合受体。
术语“相应的人种系序列”是指编码人可变区氨基酸序列或子序列的核酸序列,其与由人种系免疫球蛋白可变区序列编码的所有其它已知可变区氨基酸序列相比,与参考可变区氨基酸序列或子序列具有最高确定的氨基酸序列一致性。相应的人种系序列也可以指与所有其它评估的可变区氨基酸序列相比,与参考可变区氨基酸序列或子序列具有最高氨基酸序列一致性的人可变区氨基酸序列或子序列。相应的人种系序列可以是仅框架区、仅互补决定区、框架和互补决定区、可变区段(如上定义)、或包含可变区的序列或子序列的其它组合。可以使用本文所述的方法确定序列一致性,例如使用BLAST、ALIGN或本领域已知的另一种比对算法比对两个序列。相应的人种系核酸或氨基酸序列可以与参考可变区核酸或氨基酸序列具有至少约90%、91%、92%、93%、94%、95%、96%、97%、98%、99%或100%序列一致性。
术语“平衡解离常数(KD,M)”是指解离速率常数(kd,时间-1)除以缔合速率常数(ka,时间-1,M-l)。可以使用本领域中任何已知的方法测量平衡解离常数。本公开的抗体通常具有小于约10-7或10-8M,例如小于约10-9M或10-10M,在一些方面,小于约10-11M、10-12M或10-13M的平衡解离常数。
本文中的术语“癌症”或“肿瘤”具有本领域所理解的最广泛的含义,并且是指哺乳动物中通常以不受调节的细胞生长为特征的生理疾患。在本公开的上下文中,癌症不限于某些类型或位置。
术语“组合疗法”是指施用两种或更多种治疗剂以治疗本公开中所述的治疗疾患或病症。这种施用涵盖以基本上同时的方式共同施用这些治疗剂。这种施用还涵盖在多个或分开的容器(例如,胶囊、粉末和液体)中共同施用每种活性成分。粉末和/或液体可在施用前重构或稀释至所需剂量。此外,这种施用还涵盖以顺序方式,在大约相同的时间或在不同的时间使用每种类型的治疗剂。在任一情况下,治疗方案将提供药物组合在治疗本文所述的疾患或病症中的有益效果。
在本公开的上下文中,当提及氨基酸序列时,术语“保守取代”意指用新氨基酸取代原始氨基酸,所述新氨基酸基本上不改变抗体或片段的化学、物理和/或功能性质,例如其与OX40的结合亲和力。具体地,氨基酸的常见保守取代示于下表中并且是本领域熟知的。
示例性保守氨基酸取代
原始氨基酸残基 | 单字母和三字母代码 | 保守取代 |
丙氨酸 | A或Ala | Gly;Ser |
精氨酸 | R或Arg | Lys;His |
天冬酰胺 | N或Asn | Gln;His |
天冬氨酸 | D或Asp | Gln;Asn |
半胱氨酸 | C或Cys | Ser;Ala |
谷氨酰胺 | Q或Gln | Asn |
谷氨酸 | E或Glu | Asp;Gln |
甘氨酸 | G或Gly | Ala |
组氨酸 | H或His | Asn;Gln |
异亮氨酸 | I或Ile | Leu;Val |
亮氨酸 | L或Leu | Ile;val |
赖氨酸 | K或Lys | Arg;His |
蛋氨酸 | M或Met | Leu;Ile;Tyr |
苯丙氨酸 | F或Phe | Tyr;Met;Leu |
脯氨酸 | P或Pro | Ala |
丝氨酸 | S或Ser | Thr |
苏氨酸 | T或Thr | Ser |
色氨酸 | W或Trp | Tyr;Phe |
酪氨酸 | Y或Tyr | Trp;Phe |
缬氨酸 | V或Val | Ile;Leu |
适于测定序列一致性百分比和序列相似性的算法的实例是BLAST算法,其分别描述于Altschul等人,Nuc.Acids Res.25:3389-3402,1977;和Altschul等人,J.Mol.Biol.215:403-410,1990中。用于进行BLAST分析的软件可通过国家生物技术信息中心(National Center for Biotechnology Information)公开获得。该算法包括首先通过鉴定查询序列中长度为W的短字鉴定高得分序列对(HSP),当与数据库序列中相同长度的字比对时,所述短字匹配或满足一些正值阈值得分T。T被称为邻域字得分阈值。这些初始邻域字命中充当用于启动搜索以找到含有它们的较长HSP的值。字命中沿着每个序列在两个方向上延伸,只要累积比对得分可以增加。对于核苷酸序列,使用参数M(一对匹配残基的奖励得分;总是>0)和N(错配残基的惩罚得分;总是<0)计算累积得分。对于氨基酸序列,使用评分矩阵来计算累积得分。在以下情况下,字命中在每个方向上的延伸将停止:累积比对得分从其最大实现值下降数量X;由于一个或多个负得分残基比对的累积,累积得分趋于零或更低;或者到达任一序列的末端。BLAST算法参数W、T和X决定了比对的灵敏度和速度。BLASTN程序(用于核苷酸序列)默认使用字长(W)11,期望值(E)10,M=5,N=-4和两条链的比较。对于氨基酸序列,BLAST程序默认使用字长3,期望值(E)10,并且BLOSUM62评分矩阵(参见Henikoff和Henikoff,(1989)Proc.Natl.Acad.Sci.USA 89:10915)比对(B)50,期望值(E)10,M=5,N=-4,并比较两条链。
BLAST算法还对两个序列之间的相似性进行统计分析(参见例如Karlin和Altschul,Proc.Natl.Acad.Sci.USA 90:5873-5787,1993)。BLAST算法提供的一种相似性度量是最小总和概率(P(N)),其提供了两个核苷酸或氨基酸序列之间偶然发生匹配的概率的指示。例如,如果测试核酸与参考核酸比较中的最小总和概率小于约0.2,更优选小于约0.01,最优选小于约0.001,则认为该核酸与参考序列相似。
也可以使用E.Meyers和W.Miller,Comput.Appl.Biosci.4:11-17,(1988)的算法,其已并入ALIGN程序(版本2.0)中,使用PAM120权重残基表,空位长度罚分12且空位罚分4确定两个氨基酸序列之间的一致性百分比。另外,可以使用Needleman和Wunsch,J.Mol.Biol.48:444-453,(1970),已并入GCG软件包中的GAP程序中的算法,使用BLOSUM62矩阵或PAM250矩阵,且空位权重16、14、12、10、8、6或4且长度权重1、2、3、4、5或6确定两个氨基酸序列之间的一致性百分比。
术语“核酸”在本文中可与术语“多核苷酸”互换使用,并且是指单链或双链形式的脱氧核糖核苷酸或核糖核苷酸及其聚合物。该术语包括含有已知核苷酸类似物或修饰的主链残基或键的核酸,它们是合成的、天然存在的和非天然存在的,具有与参考核酸相似的结合特性,并且以与参考核苷酸相似的方式代谢。此类类似物的实例包括但不限于硫代磷酸酯、氨基磷酸酯、甲基膦酸酯、手性甲基膦酸酯、2-O-甲基核糖核苷酸、肽-核酸(PNA)。
在核酸的上下文中,术语“可操作地连接”是指两个或更多个多核苷酸(例如,DNA)片段之间的功能关系。通常,它是指转录调节序列与转录序列的功能关系。例如,如果启动子或增强子序列在合适的宿主细胞或其它表达系统中刺激或调节编码序列的转录,则该启动子或增强子序列与编码序列可操作地连接。通常,可操作地连接转录序列的启动子转录调节序列与转录序列物理邻接,即它们是顺式作用的。然而,一些转录调节序列(如增强子)不需要在物理上与它们增强转录的编码序列邻接或紧密相邻。
在一些方面,本公开提供组合物,例如药学上可接受的组合物,其包含与至少一种药学上可接受的赋形剂一起配制的本文所述的抗OX40抗体。如本文所用,术语“药学上可接受的赋形剂”包括生理学上相容的任何和所有溶剂、分散介质、等渗剂和吸收延迟剂等。赋形剂可适用于静脉内、肌内、皮下、肠胃外、直肠、脊柱或表皮施用(例如通过注射或输注)。
本文公开的组合物可以是多种形式。这些包括例如液体、半固体和固体剂型,例如液体溶液(例如可注射和输注溶液)、分散液或悬浮液、脂质体和栓剂。合适的形式取决于预期的施用方式和治疗应用。典型的合适组合物是可注射或输注溶液的形式。一种合适的施用模式是肠胃外(例如静脉内、皮下、腹膜内、肌内)。在一些实施方案中,通过静脉内输注或注射施用抗体。在某些实施方案中,通过肌内或皮下注射施用抗体。
本文所用的术语“治疗有效量”是指当施用于受试者以治疗疾病或疾病或病症的至少一种临床症状时,足以对疾病、病症或症状进行此类治疗的抗体的量。“治疗有效量”可随抗体、疾病、病症和/或疾病或病症的症状、疾病、病症和/或疾病或病症的症状的严重性、待治疗的受试者的年龄和/或待治疗的受试者的体重而变化。在任何给定的情况下,合适的量对于本领域技术人员是显而易见的,或者可以通过常规实验确定。在联合治疗的情况下,“治疗有效量”是指用于有效治疗疾病、病症或疾患的组合物体的总量。
如本文所用,短语“与…组合”意指在施用抗TIM3抗体的同时、之前或之后向受试者施用抗OX40抗体。在某些实施方案中,抗TIM3抗体作为与抗OX40抗体的共同制剂施用。
具体实施方式
抗TIM3抗体
T细胞免疫球蛋白结构域和粘蛋白结构域3(TIM3、HAVCR2或CD366)是33KD的I型跨膜糖蛋白,它是含有T细胞免疫球蛋白和粘蛋白结构域的家族的成员,其在促进慢性病毒感染和肿瘤逃避免疫监视中的T细胞耗竭中起重要作用(Monney等人,2002Nature 415:536-541;Sanchez-Fueyo A等人,2003Nat Immunol.4:1093-101;Sabatos CA等人,2003NatImmunol.4:1102-10;Anderson等人,2006Curr Opin Immunol.18:665-669)。在小鼠和人中克隆并表征编码TIM3的基因和cDNA(Monney等人,2002Nature 415:536-541;McIntire等人,2001Nat.Immunol.2:1109-1116)。成熟的人TIM3含有280个氨基酸残基(NCBI登录号:NP_116171.3)。其胞外结构域由氨基酸残基1-181组成,跨膜结构域和胞质C末端尾包含残基182-280。在胞质结构域中没有发现已知的抑制性信号传导基序,例如基于免疫受体酪氨酸的抑制性基序(ITIM)和酪氨酸转换基序(ITSM)。
本公开的抗TIM3抗体可见于WO2018/036561。本文还提供了抗TIM3抗体,其包含特异性结合人TIM3的抗体抗原结合结构域,并且包含重链可变区(VH)和轻链可变区(VL),所述重链可变区包含互补决定区(CDR):包含SEQ ID NO:32中所示氨基酸序列的HCDR1、包含SEQ ID NO:33中所示氨基酸序列的HCDR2和包含SEQ ID NO:34中所示氨基酸序列的HCDR3;所述轻链可变区(VL)包含:包含SEQ ID NO:35中所示氨基酸序列的LCDR1、包含SEQ ID NO:36中所示氨基酸序列的LCDR2和包含SEQ ID NO:37中所示氨基酸序列的LCDR3。在另一个实施方案中,抗TIM3抗体包含特异性结合人TIM3的抗体抗原结合结构域,并且包含含有SEQID NO:38的氨基酸序列的重链可变区(VH)和含有SEQ ID NO:40的氨基酸序列的轻链可变区(VL)。
抗OX40抗体
本公开提供特异性结合人OX40的抗体、抗原结合片段。此外,本公开提供了具有期望的药代动力学特征和其他期望属性并因此可用于降低癌症的可能性或治疗癌症的抗体。本公开还提供了包含抗体的药物组合物以及制备和使用此类药物组合物用于预防和治疗癌症和相关病症的方法。
本公开提供特异性结合OX40的抗体或其抗原结合片段。本公开的抗体或抗原结合片段包括但不限于如下所述产生的抗体或其抗原结合片段。
本公开提供特异性结合OX40的抗体或抗原结合片段,其中所述抗体或抗体片段(例如,抗原结合片段)包含具有SEQ ID NO:14、20或26的氨基酸序列的VH结构域(表3)。本公开还提供特异性结合OX40的抗体或抗原结合片段,其中所述抗体或抗原结合片段包含具有表3中所列的VH CDR中的任一个的氨基酸序列的VH CDR。在一方面,本公开提供特异性结合OX40的抗体或抗原结合片段,其中所述抗体包含(或替代地,由其组成)一个、两个、三个或更多个具有表3中所列的VH CDR中的任一个的氨基酸序列的VH CDR。
本公开提供特异性结合OX40的抗体或抗原结合片段,其中所述抗体或抗原结合片段包含具有SEQ ID NO:16、22或28的氨基酸序列的VL结构域(表3)。本公开还提供特异性结合OX40的抗体或抗原结合片段,其中所述抗体或抗原结合片段包含具有表3中所列的VLCDR中的任一个的氨基酸序列的VL CDR。具体地,本公开提供特异性结合OX40的抗体或抗原结合片段,所述抗体或抗原结合片段包含(或替代地,由其组成)一个、两个、三个或更多个具有表3中所列的VL CDR中的任一个的氨基酸序列的VL CDR。
本公开的其他抗体或其抗原结合片段包括已经突变的氨基酸,但在CDR区中与表3中描述的序列中描绘的CDR区具有至少60%、70%、80%、90%、95%或99%一致性。在一些方面,其包括突变氨基酸序列,其中当与表3中描述的序列中描绘的CDR区相比时,在CDR区中突变不超过1、2、3、4或5个氨基酸。
本公开的其它抗体包括其中氨基酸或编码氨基酸的核酸已经突变;但与表3所述序列具有至少60%、70%、80%、90%、95%或99%一致性的那些。在一些方面,其包括突变氨基酸序列,其中当与表3中描述的序列中描绘的可变区相比时,在可变区中突变不超过1、2、3、4或5个氨基酸,同时保留基本上相同的治疗活性。
本公开还提供编码特异性结合OX40的抗体的VH、VL、全长重链和全长轻链的核酸序列。这样的核酸序列可以优化用于在哺乳动物细胞中表达。
表位和结合相同表位的抗体的鉴定
本公开提供了结合人OX40的表位的抗体及其抗原结合片段。在某些方面,抗体和抗原结合片段可以结合OX40的相同表位。
本公开还提供与表3中所述的抗OX40抗体结合相同表位的抗体及其抗原结合片段。因此,可以基于其在结合测定中与其它抗体交叉竞争(例如,以统计学显著的方式竞争性抑制其结合)的能力来鉴定另外的抗体及其抗原结合片段。测试抗体抑制本公开的抗体及其抗原结合片段与OX40结合的能力证明测试抗体可与该抗体或其抗原结合片段竞争结合OX40。不受任一种理论的束缚,这样的抗体可以与它所竞争的抗体或其抗原结合片段结合OX40上的相同或相关(例如,结构上相似或空间上邻近的)表位。在某个方面,与本公开的抗体或其抗原结合片段结合OX40上的相同表位的抗体是人或人源化单克隆抗体。这样的人或人源化单克隆抗体可以如本文所述制备和分离。
Fc区框架的进一步改变
在其它方面,通过用不同的氨基酸残基替换至少一个氨基酸残基来改变Fc区,以改变抗体的效应子功能。例如,可以用不同的氨基酸残基替换一个或多个氨基酸,使得抗体对效应配体具有改变的亲和力,但保留亲本抗体的抗原结合能力。与其亲和力改变的效应配体可以是例如Fc受体或补体的C1组分。这种方法描述于例如Winter等人的美国专利第5,624,821号和第5,648,260号中。
在另一方面,一个或多个氨基酸残基可以被一个或多个不同的氨基酸残基替换,使得抗体具有改变的C1q结合和/或降低的或消除的补体依赖性细胞毒性(CDC)。该方法描述于例如Idusogie等人的美国专利第6,194,551号中。
在又另一方面,改变一个或多个氨基酸残基,从而改变抗体固定补体的能力。该方法描述于例如Bodmer等人的PCT公开WO 94/29351中。在一个具体方面,对于IgG1亚类和κ同种型,本公开的抗体或其抗原结合片段的一个或多个氨基酸被一个或多个同种异型氨基酸残基替换。如Jefferis等人,MAbs.1:332-338(2009)所述,同种异型氨基酸残基还包括但不限于IgG1、IgG2和IgG3亚类的重链恒定区以及κ同种型的轻链恒定区。
在另一方面,通过修饰一个或多个氨基酸来修饰Fc区以增加抗体介导抗体依赖性细胞毒性(ADCC)的能力和/或增加抗体对Fcγ受体的亲和力。这种方法描述于例如Presta的PCT公开WO 00/42072中。此外,人IgG1上对FcγRI、FcγRII、FcγRIII和FcRn的结合位点已经作图,并且已经描述了具有改善的结合的变体(参见Shields等人,J.Biol.Chem.276:6591-6604,2001)。
在又另一方面,抗体的糖基化被修饰。例如,可以制备无糖基化抗体(即,抗体缺乏或具有降低的糖基化)。可以改变糖基化以例如增加抗体对“抗原”的亲和力。这种糖修饰可通过例如改变抗体序列内的一个或多个糖基化位点来实现。例如,可以进行一个或多个氨基酸取代,导致消除一个或多个可变区框架糖基化位点,从而消除该位点的糖基化。这种无糖基化可以增加抗体对抗原的亲和力。这种方法描述于例如Co等人的美国专利第5,714,350号和第6,350,861号中。
另外地或替代地,可以制备具有改变的糖基化类型的抗体,例如具有减少量的岩藻糖基残基的低岩藻糖基化抗体或具有增加的二等分GlcNac结构的抗体。已经证明这种改变的糖基化模式增加抗体的ADCC能力。这种糖修饰可通过例如在具有改变的糖基化机制的宿主细胞中表达抗体来实现。具有改变的糖基化机制的细胞已经在本领域中描述并且可以用作宿主细胞,在其中表达重组抗体从而产生具有改变的糖基化的抗体。例如,Hang等人的EP 1,176,195描述了具有功能性破坏的FUT8基因的细胞系,该基因编码岩藻糖基转移酶,使得在这样的细胞系中表达的抗体表现出低岩藻糖基化。Presta的PCT公开WO 03/035835描述了变体CHO细胞系Lecl3细胞,其具有降低的将岩藻糖连接至Asn(297)连接的糖的能力,也导致在该宿主细胞中表达的抗体的低岩藻糖基化(也参见Shields等人,(2002)J.Biol.Chem.277:26733-26740)。Umana等人的PCT公开WO 99/54342描述了经工程化以表达糖蛋白修饰的糖基转移酶(例如,β(1,4)-N乙酰氨基葡萄糖基转移酶III(GnTIII))的细胞系,使得在工程化的细胞系中表达的抗体表现出增加的二等分GlcNac结构,这导致抗体的ADCC活性增加(也参见Umana等人,Nat.Biotech.17:176-180,1999)。
另一方面,如果需要降低ADCC,许多以前的报道显示人抗体亚类IgG4仅具有适度的ADCC,几乎没有CDC效应子功能(Moore G L等人.2010MAbs,2:181-189)。另一方面,发现天然IgG4在应激条件如在酸性缓冲液中或在升高的温度下较不稳定(Angal,S.1993MolImmunol,30:105-108;Dall'Acqua,W.等人,1998Biochemistry,37:9266-9273;Aalberse等人,2002Immunol,105:9-19)。降低的ADCC可以通过将抗体可操作地连接至IgG4来实现,所述IgG4被工程化为具有改变组合以具有降低的或无效的FcγR结合或C1q结合活性,从而降低或消除ADCC和CDC效应子功能。考虑到抗体作为生物药物的物理化学性质,IgG4的一个不太合乎需要的固有性质是其两条重链在溶液中动态分离形成半抗体,这导致通过称为“Fab臂交换”的过程在体内产生双特异性抗体(Van der Neut Kolfschoten M等人,2007Science,317:1554-157)。228位(EU编号系统)丝氨酸突变为脯氨酸似乎抑制IgG4重链分离(Angal,S.1993Mol Immunol,30:105-108;Aalberse等人,2002Immunol,105:9-19)。据报道,铰链区和γFc区中的一些氨基酸残基对抗体与Fcγ受体的相互作用具有影响(Chappel S M等人,1991Proc.Natl.Acad.Sci.USA,88:9036-9040;Mukherjee,J等人,1995FASEB J,9:115-119;Armour,K.L.等人,1999Eur J Immunol,29:2613-2624;Clynes,R.A.等人,2000Nature Medicine,6:443-446;Arnold J.N.,2007Annu Rev immunol,25:21-50)。此外,在人群中一些很少出现的IgG4同种型也可以引起不同的物理化学性质(Brusco,A.等人,1998Eur J Immunogenet,25:349-55;Aalberse等人,2002Immunol,105:9-19)。为了产生具有低ADCC、CDC和不稳定性的OX40抗体,可以修饰人IgG4的铰链区和Fc区并引入许多改变。这些修饰的IgG4 Fc分子可见于SEQ ID NO:83-88,Li等人的美国专利第8,735,553号。
OX40抗体产生
抗OX40抗体及其抗原结合片段可通过本领域中已知的任何方式产生,包括但不限于抗体四聚体的重组表达、化学合成和酶消化,而全长单克隆抗体可通过例如杂交瘤或重组产生来获得。重组表达可以来自本领域已知的任何合适的宿主细胞,例如哺乳动物宿主细胞、细菌宿主细胞、酵母宿主细胞、昆虫宿主细胞等。
本公开还提供了编码本文所述的抗体的多核苷酸,例如编码包含本文所述的互补决定区的重链或轻链可变区或区段的多核苷酸。在一些方面,编码重链可变区的多核苷酸与选自由SEQ ID NO:15、21或27组成的群组的多核苷酸具有至少85%、89%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%或100%核酸序列一致性。在一些方面,编码轻链可变区的多核苷酸与选自由SEQ ID NO:17、23或29组成的群组的多核苷酸具有至少85%、89%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%或100%核酸序列一致性。
本公开的多核苷酸可以编码抗OX40抗体的可变区序列。它们还可以编码抗体的可变区和恒定区。一些多核苷酸序列编码包含示例性抗OX40抗体中一个的重链和轻链的可变区的多肽。一些其它多核苷酸编码分别与鼠抗体中一个的重链和轻链的可变区基本上一致的两个多肽区段。
本公开还提供了用于产生抗OX40抗体的表达载体和宿主细胞。表达载体的选择取决于载体在其中表达的预期宿主细胞。通常,表达载体含有可操作地连接到编码抗OX40抗体链或抗原结合片段的多核苷酸的启动子和其它调节序列(例如增强子)。在一些方面,使用诱导型启动子来阻止插入序列的表达,除非在诱导条件的控制下。诱导型启动子包括例如阿拉伯糖、lacZ、金属硫蛋白启动子或热激启动子。转化生物体的培养物可以在非诱导条件下扩增,而不会使群体偏向于其表达产物更能被宿主细胞耐受的编码序列。除启动子外,其它调节元件也可以是有效表达抗OX40抗体或抗原结合片段所必需或期望的。这些元件通常包括ATG起始密码子和相邻的核糖体结合位点或其它序列。此外,表达效率可通过包含适于所用细胞系统的增强子而增强(参见,例如Scharf等人,Results Probl.CellDiffer.20:125,1994;和Bittner等人,Meth.Enzymol.,153:516,1987)。例如,SV40增强子或CMV增强子可用于增加哺乳动物宿主细胞中的表达。
用于携带和表达抗OX40抗体链的宿主细胞可以是原核或真核的。大肠杆菌是一种可用于克隆和表达本公开的多核苷酸的原核宿主。其它适用的微生物宿主包括杆菌,如枯草芽孢杆菌(Bacillus subtilis),和其它肠杆菌科,如沙门氏菌属、沙雷氏菌属和各种假单胞菌属。在这些原核宿主中,还可以制备表达载体,其通常含有与宿主细胞相容的表达控制序列(例如,复制起点)。此外,将存在任何数量的各种公知的启动子,例如乳糖启动子系统、色氨酸(trp)启动子系统、β-内酰胺酶启动子系统或来自噬菌体λ的启动子系统。启动子通常控制表达,任选地与操纵子序列一起,并具有核糖体结合位点序列等,用于启动和完成转录和翻译。其它微生物如酵母也可用于表达抗OX40多肽。也可以使用昆虫细胞与杆状病毒载体的组合。
在其它方面,哺乳动物宿主细胞用于表达和产生本公开的抗OX40多肽。例如,它们可以是表达内源免疫球蛋白基因的杂交瘤细胞系或携带外源表达载体的哺乳动物细胞系。这些包括任何正常死亡或正常或异常无限增殖动物或人细胞。例如,已经开发了许多能够分泌完整免疫球蛋白的合适宿主细胞系,包括CHO细胞系、各种COS细胞系、HEK 293细胞、骨髓瘤细胞系、转化的B细胞和杂交瘤。使用哺乳动物组织细胞培养物表达多肽一般在例如Winnacker,From Genes to Clones,VCH Publishers,NY,N.Y.,1987中讨论。用于哺乳动物宿主细胞的表达载体可以包括表达控制序列,例如复制起点、启动子和增强子(参见例如Queen等人,Immunol.Rev.89:49-68,1986),以及必要的加工信息位点,例如核糖体结合位点、RNA剪接位点、聚腺苷酸化位点和转录终止子序列。这些表达载体通常含有来源于哺乳动物基因或哺乳动物病毒的启动子。合适的启动子可以是组成型的、细胞类型特异性的、阶段特异性的和/或可调节的或可调控的。有用的启动子包括但不限于金属硫蛋白启动子、组成型腺病毒主要晚期启动子、地塞米松诱导型MMTV启动子、SV40启动子、MRP polIII启动子、组成型MPSV启动子、四环素诱导型CMV启动子(例如人立即早期CMV启动子)、组成型CMV启动子和本领域已知的启动子-增强子组合。
检测和诊断方法
本公开的抗体或抗原结合片段可用于多种应用,包括但不限于用于检测OX40的方法。在一方面,抗体或抗原结合片段可用于检测生物样品中OX40的存在。本文所用的术语“检测”包括定量或定性检测。在某些方面,生物样品包括细胞或组织。在其它方面,此类组织包括相对于其它组织以更高水平表达OX40的正常和/或癌性组织。
在一方面,本公开提供了检测生物样品中OX40的存在的方法。在某些方面,所述方法包括在允许抗体与抗原结合的条件下使生物样品与抗OX40抗体接触,并检测抗体与抗原之间是否形成复合物。生物样品可以包括但不限于尿或血液样品。
还包括诊断与OX40表达相关的病症的方法。在某些方面,所述方法包括使测试细胞与抗OX40抗体接触;通过检测抗OX40抗体与OX40多肽的结合来确定测试细胞中OX40的表达水平(定量地或定性地);以及将测试细胞中的表达水平与对照细胞(例如,与测试细胞相同组织来源的正常细胞或非OX40表达细胞)中的OX40表达水平进行比较,其中与对照细胞相比,测试细胞中较高水平的OX40表达表明存在与OX40表达相关的病症。
治疗方法
本公开的抗体或抗原结合片段可用于多种应用,包括但不限于用于治疗OX40相关病症或疾病的方法。在一方面,OX40相关病症或疾病是癌症。
在一方面,本公开提供了治疗癌症的方法。在某些方面,所述方法包括向有需要的患者施用有效量的抗OX40抗体或抗原结合片段。癌症可包括但不限于乳腺癌、结肠癌、头颈癌、胃癌、肾癌、肝癌、小细胞肺癌、非小细胞肺癌、卵巢癌、皮肤癌、间皮瘤、淋巴瘤、白血病、骨髓瘤和肉瘤。
本公开的抗体或抗原结合片段可以通过任何合适的方式施用,包括肠胃外、肺内和鼻内,并且如果需要局部治疗、病灶内施用。肠胃外输注包括肌内、静脉内、动脉内、腹膜内或皮下施用。给药可以通过任何合适的途径,例如通过注射,例如静脉内或皮下注射,部分取决于施用是短暂的还是长期的。本文考虑了各种给药方案,包括但不限于在不同时间点单次或多次施用、推注施用和脉冲输注。
本公开的抗体或抗原结合片段将以符合良好医学实践的方式配制、给药和施用。在本文中考虑的因素包括所治疗的具体病症、所治疗的具体哺乳动物、个体患者的临床疾患、病症的原因、药剂的递送部位、施用方法、施用时间表和执业医师已知的其它因素。抗体不需要,但任选地与一种或多种目前用于预防或治疗所述病症的药剂一起配制。这类其它药剂的有效量取决于制剂中存在的抗体的量、病症或治疗的类型和上述其它因素。这些通常以与本文所述相同的剂量和施用途径使用,或以本文所述剂量的约1-99%使用,或以通过经验/临床确定合适的任何剂量和任何途径使用。
对于疾病的预防或治疗,本公开的抗体或抗原结合片段的适当剂量将取决于待治疗的疾病的类型、抗体的类型、疾病的严重程度和病程、出于预防还是治疗目的施用抗体、先前疗法、患者的临床病史和对抗体的反应、以及主治医师的判断。抗体适合在一次或一系列治疗中施用给患者。取决于疾病的类型和严重程度,约1μg/kg至100mg/kg的抗体可以是用于施用给患者的初始候选剂量,无论是例如通过一次或多次分开施用,还是通过连续输注。取决于上述因素,一个典型的日剂量可以为约1μg/kg至100mg/kg或更多。对于几天或更长时间内的重复施用,这取决于疾患,治疗通常会持续直到出现所需的疾病症状抑制。这样的剂量可以间歇地施用,例如每周或每三周(例如使得患者接受约2至约20剂量,或例如约6剂量的抗体)。可以施用初始较高的负荷剂量,随后施用一个或多个较低的剂量。然而,其它剂量方案可能是有用的。这种疗法的进展容易通过常规技术和测定来监测。
组合疗法
在一方面,本公开的OX40抗体可以与其他治疗剂组合使用,例如抗TIM3抗体。可以与本公开的OX40抗体一起使用的其他治疗剂包括但不限于化疗剂(例如,紫杉醇或紫杉醇药剂;(例如,)、多西他赛;卡铂;拓扑替康;顺铂;伊立替康、阿霉素、来那度胺、5-氮杂胞苷、异环磷酰胺、奥沙利铂、培美曲塞二钠、环磷酰胺、依托泊苷、地西他滨、氟达拉滨、长春新碱、苯达莫司汀、苯丁酸氮芥、白消安、吉西他滨、美法仑、喷司他丁、米托蒽醌、培美曲塞二钠)、酪氨酸激酶抑制剂(例如EGFR抑制剂(例如厄洛替尼)、多激酶抑制剂(例如MGCD265、RGB-286638)、CD-20靶向剂(例如利妥昔单抗、奥法木单抗、RO5072759、LFB-R603)、CD52靶向剂(例如阿仑单抗)、泼尼松龙、达贝泊汀α、来那度胺、Bcl-2抑制剂(例如奥利默森钠)、极光激酶抑制剂(例如MLN8237、TAK-901)、蛋白酶体抑制剂(例如硼替佐米)、CD-19靶向剂(例如MEDI-551、MOR208)、MEK抑制剂(例如ABT-348)、JAK-2抑制剂(例如INCB018424)、mTOR抑制剂(例如坦罗莫司、依维莫司)、BCR/ABL抑制剂(例如伊马替尼)、ET-A受体拮抗剂(例如ZD4054)、TRAIL受体2(TR-2)激动剂(例如CS-1008)、HGF/SF抑制剂(例如AMG 102)、EGEN-001、Polo样激酶1抑制剂(例如BI 672)。
如本文公开的抗OX40抗体与抗TIM3抗体组合可以以各种已知的方式施用,例如口服、局部、直肠、肠胃外、通过吸入喷雾或经由植入的贮库,但在任何给定情况下最合适的途径将取决于特定的宿主、以及施用活性成分的疾患的性质和严重程度。本文所用的术语“肠胃外”包括皮下、皮内、静脉内、肌内、关节内、动脉内、滑膜内、胸骨内、鞘内、病灶内和颅内注射或输注技术。
抗OX40抗体和抗TIM3抗体的组合可以通过不同途径施用。每种抗体可以肠胃外施用,例如皮下、皮内、静脉内或腹膜内施用,而与其它抗体无关。
在一个实施方案中,抗OX40抗体或抗TIM3抗体基于患者的需要每天一次(每天一次,QD)、每天两次(每天两次,BID)、每天三次、每天四次或每天五次施用。
药物组合物和制剂
还提供了组合物,包括药物制剂,其包含抗OX40抗体或抗原结合片段,或包含编码抗OX40抗体或抗原结合片段的序列的多核苷酸。在某些实施方案中,组合物包含结合OX40的一种或多种抗体或抗原结合片段,或包含编码结合OX40的一种或多种抗体或抗原结合片段的序列的一种或多种多核苷酸。这些组合物还可包含合适的载体,例如药学上可接受的赋形剂,包括本领域熟知的缓冲剂。
本文所述的OX40抗体或抗原结合片段的药物制剂通过将具有所需纯度的此类抗体或抗原结合片段与一种或多种任选的药学上可接受的载体混合来制备(Remington'sPharmaceutical Sciences,第16版,Osol,A.编辑(1980)),呈冻干制剂或水溶液的形式。药学上可接受的载体在所采用的剂量和浓度下通常对接受者无毒,并且包括但不限于:缓冲剂,例如磷酸盐、柠檬酸盐和其它有机酸;抗氧化剂,包括抗坏血酸和蛋氨酸;防腐剂(例如十八烷基二甲基苄基氯化铵;氯化六甲双铵;苯扎氯铵;苄索氯铵;苯酚、丁基或苄基醇;对羟基苯甲酸烷基酯,例如对羟基苯甲酸甲酯或对羟基苯甲酸丙酯;儿茶酚;间苯二酚;环己醇;3-戊醇;和间甲酚);低分子量(小于约10个残基)多肽;蛋白质,例如血清白蛋白、明胶或免疫球蛋白;亲水性聚合物,例如聚乙烯吡咯烷酮;氨基酸,例如甘氨酸、谷氨酰胺、天冬酰胺、组氨酸、精氨酸或赖氨酸;单糖、二糖和其它碳水化合物,包括葡萄糖、甘露糖或糊精;螯合剂如EDTA;糖,例如蔗糖、甘露糖醇、海藻糖或山梨糖醇;成盐抗衡离子如钠;金属络合物(例如Zn-蛋白络合物);和/或非离子表面活性剂如聚乙二醇(PEG)。本文的示例性药学上可接受的载体还包括间质药物分散剂,例如可溶性中性活性透明质酸酶糖蛋白(sHASEGP),例如人可溶性PH-20透明质酸酶糖蛋白,例如rHuPH20(BaxterInternational,Inc.)。在美国专利号US 7,871,607和2006/0104968中描述了某些示例性sHASEGP和使用方法,包括rHuPH20。在一方面,sHASEGP与一种或多种另外的糖胺聚糖酶如软骨素酶组合。
示例性冻干抗体制剂描述于美国专利第6,267,958号中。水性抗体制剂包括美国专利第6,171,586号和WO2006/044908中描述的那些,后一种制剂包括组氨酸-乙酸盐缓冲液。
可以制备缓释制剂。缓释制剂的合适实例包括含有抗体的固体疏水性聚合物的半透性基质,该基质为成形制品的形式,例如薄膜或微胶囊。
用于体内施用的制剂通常是无菌的。无菌可以容易地实现,例如通过无菌过滤膜过滤。
实施例
实施例1:抗OX40单克隆抗体的产生
基于稍作修改的常规杂交瘤融合技术产生抗OX40单克隆抗体(de St Groth和Sheidegger,1980J Immunol Methods 35:1;Mechetner,2007Methods Mol Biol 378:1)。选择在酶联免疫吸附测定(ELISA)和荧光激活细胞分选(FACS)测定中具有高结合活性的抗体用于进一步表征。
用于免疫和结合测定的OX40重组蛋白
编码全长人OX40的cDNA(SEQ ID NO:1)由Sino Biological(中国北京)基于GenBank序列(登录号:X75962.1)合成。对由OX-40(SEQ ID NO:2)的氨基酸(AA)1-216组成的信号肽和胞外结构域(ECD)的编码区进行PCR扩增,并将其克隆到内部开发的表达载体中,其C末端与小鼠IgG2a的Fc结构域、人IgG1野生型重链的Fc结构域或His标签融合,分别得到三种重组融合蛋白表达质粒OX40-mIgG2a、OX40-huIgG1和OX40-His。OX40融合蛋白的示意图如图1所示。为了产生重组融合蛋白,将OX40-mIgG2a、OX40-huIgG1和OX40-His表达质粒瞬时转染到293G细胞中,并在装有旋转振荡器的CO2培养箱中培养7天。收集含有重组蛋白的上清液并通过离心澄清。使用蛋白A柱(目录号:17-5438-02,GE Life Sciences)纯化OX40-mIgG2a和OX40-huIgG1。使用Ni琼脂糖柱(目录号:17-5318-02,GE Life Science)纯化OX40-His。将OX40-mIgG2a、OX40-huIgG和OX40-His蛋白用磷酸盐缓冲盐水(PBS)透析,并以小等分试样储存在-80℃冰箱中。
稳定表达细胞系
为了产生表达全长人OX40(OX40)或猕猴OX40(cynoOX40)的稳定细胞系,将这些基因克隆到逆转录病毒载体pFB-Neo(目录号:217561,Agilent,USA)中。基于先前描述的方案(Zhang等人,2005)进行逆转录病毒转导。HuT78和HEK293细胞分别用含有人OX40或cynoOX40的病毒进行逆转录病毒转导,以产生HuT78/OX40、HEK293/OX40和HuT78/cynoOX40细胞系。
免疫、杂交瘤融合和克隆
8-12周龄Balb/c小鼠(来自HFK BIOSCIENCE CO.,LTD,中国北京)用200μL含有10μg OX40-mIgG2a和快速抗体免疫佐剂(目录号:KX0210041,中国北京康碧泉)的混合抗原腹膜内免疫。在三周内重复该过程。第二次免疫后两周,通过ELISA和FACS评价小鼠血清的OX40结合。血清筛选后10天,通过i.p.注射10μg OX40-mIgG2a加强免疫具有最高抗OX40抗体血清滴度的小鼠。加强免疫后三天,分离脾细胞并使用标准技术(Somat Cell Genet,1977 3:231)与鼠骨髓瘤细胞系SP2/0细胞(ATCC,Manassas VA)融合。
通过ELISA和FACS评估抗体的OX40结合活性
杂交瘤克隆的上清液最初通过ELISA筛选,如(Methods in Molecular Biology(2007)378:33-52)中所述,并进行了一些修改。简言之,将OX40-His蛋白在96孔板中在4℃包被过夜。用PBS/0.05%Tween-20洗涤后,在室温下用PBS/3% BSA封闭平板2小时。随后,用PBS/0.05% Tween-20洗涤平板,并在室温下与细胞上清液一起孵育1小时。使用HRP连接的抗小鼠IgG抗体(目录号:115035-008,Jackson ImmunoResearch Inc,过氧化物酶亲和纯化山羊抗小鼠IgG,Fcγ片段特异性)和底物(目录号:00-4201-56,eBioscience,USA)在450nm波长处产生颜色吸光度信号,其通过使用读板仪(SpectraMax Paradigm,MolecularDevices/PHERAstar,BMG LABTECH)测量。用间接ELISA从融合筛选中挑选出阳性亲本克隆。使用上述HuT78/OX40和HuT78/cynoOX40细胞通过FACS进一步验证ELISA阳性克隆。将表达OX40的细胞(105个细胞/孔)与ELISA阳性杂交瘤上清液一起孵育,然后与抗小鼠IgG660抗体(目录号:50-4010-82,eBioscience,USA)结合。使用流式细胞仪(GuavaeasyCyte 8HT,Merck-Millipore,USA)定量细胞荧光。
对来自在ELISA和FACS筛选中均显示阳性信号的杂交瘤的条件培养基进行功能测定,以鉴定在基于人免疫细胞的测定中具有良好功能活性的抗体(参见以下部分)。进一步亚克隆和表征具有所需功能活性的抗体。
杂交瘤的亚克隆和对无血清或低血清培养基的适应
如上所述通过ELISA、FACS和功能测定进行初步筛选后,通过有限稀释亚克隆阳性杂交瘤克隆以确保克隆性。通过功能测定验证最佳抗体亚克隆,并使其适于在含3% FBS的CDM4MAb培养基(目录号:SH30801.02,Hyclone,USA)中生长。
单克隆抗体的表达和纯化
使表达最佳抗体克隆的杂交瘤细胞在CDM4MAb培养基(目录号:SH30801.02,Hyclone)中培养并在CO2培养箱中在37℃下孵育5至7天。通过离心收集条件培养基,并通过0.22μm膜过滤,然后纯化。按照制造商的指南,将上清液中的鼠抗体应用并结合到蛋白A柱(目录号:17-5438-02,GE Life Sciences)。该程序通常产生纯度高于90%的抗体。将蛋白A亲和纯化的抗体用PBS透析,或者如果需要,使用HiLoad 16/60Superdex 200柱(目录号:28-9893-35,GE Life Sciences)进一步纯化以除去聚集物。通过测量280nm处的吸光度来测定蛋白质浓度。将最终抗体制剂以等分试样储存在-80℃冰箱中。
实施例2:抗OX40抗体的克隆和序列分析
根据制造商的方案,使用Ultrapure RNA试剂盒(目录号:74104,QIAGEN,德国)收获鼠杂交瘤克隆以制备总细胞RNA。使用来自Invitrogen的cDNA合成试剂盒(目录号:18080-051)合成第一链cDNA,并使用PCR试剂盒(目录号:CW0686,CWBio,中国北京)进行杂交瘤抗体的VH和VL的PCR扩增。用于重链可变区(VH)和轻链可变区(VL)的抗体cDNA克隆的寡聚引物由Invitrogen(中国北京)基于先前报道的序列(Brocks等人,2001Mol Med 7:461)合成。PCR产物直接用于测序或亚克隆到pEASY-Blunt克隆载体(目录号:CB101TransGen,中国),然后由Genewiz(中国北京)测序。从DNA测序结果推导出VH和VL区的氨基酸序列。
基于Kabat(Wu和Kabat 1970J.Exp.Med.132:211-250)系统通过序列注释和通过计算机程序序列分析来定义鼠抗体的互补决定区(CDR)。代表性最佳克隆Mu445(VH和VL)的氨基酸序列列于表1(SEQ ID NO.9和11)。Mu445的CDR序列列于表2(SEQ ID NO.3-8)。
表1.Mu445 VH和VL区的氨基酸序列
表2.小鼠单克隆抗体Mu445 VH和VL区的CDR序列(氨基酸)
实施例3:鼠抗人OX40抗体445的人源化
抗体人源化和工程化
对于Mu445的人源化,通过与IMGT中人免疫球蛋白基因数据库的序列比较,搜索人种系IgG基因中与Mu445可变区的cDNA序列具有高度同源性的序列。选择以高频率存在于人抗体库(Glanville等人,2009PNAS106:20216-20221)中并与Mu445高度同源的人IGHV和IGKV基因作为人源化的模板。
通过CDR移植进行人源化(Methods in Molecular Biology,AntibodyEngineering,Methods and Protocols,Vol 248:Humana Press),并通过使用内部开发的表达载体将人源化抗体工程化为人IgG1野生型形式。在最初一轮人源化中,通过模拟3D结构分析指导框架区中从鼠氨基酸残基突变为人氨基酸残基,并且在第一版本的人源化抗体445中保留了对于维持CDR的规范结构具有结构重要性的鼠框架残基(参见445-1,表3)。445-1的六个CDR具有HCDR1(SEQ ID NO:3)、HCDR2(SEQ ID NO:13)、HCDR3(SEQ ID NO:5)以及LCDR1(SEQ ID NO:6)、LCDR2(SEQ ID NO:7)和LCDR3(SEQ ID NO:8)的氨基酸序列。445-1的重链可变区具有由SEQ ID NO:15的核苷酸序列编码的(VH)SEQ ID NO:14的氨基酸序列,且轻链可变区具有由SEQ ID NO:17的核苷酸序列编码的(VL)SEQ ID NO:16的氨基酸序列。具体地,将Mu445的LCDR(SEQ ID NO:6-8)移植到人种系可变基因IGVK1-39的框架中,保留两个鼠框架残基(I44和Y71)(SEQ ID NO:16)。将HCDR1(SEQ ID NO:3)、HCDR2(SEQ ID NO:13)和HCDR3(SEQ ID NO:5)移植到人种系可变基因IGHV1-69的框架中,保留两个鼠框架残基(L70和S72)(SEQ ID NO:14)。在445人源化变体(445-1)中,仅移植了Kabat HCDR2的N末端一半,因为根据模拟的3D结构,预测只有N末端一半对抗原结合是重要的。
使用内部开发的表达载体将445-1构建为人源化全长抗体,所述表达载体分别含有人野生型IgG1(IgG1wt)和κ链的恒定区,具有容易适应的亚克隆位点。通过将上述两种构建体共转染到293G细胞中表达445-1抗体,并用蛋白A柱(目录号:17-5438-02,GE LifeSciences)纯化。将纯化的抗体在PBS中浓缩至0.5-10mg/mL,并以等分试样储存在-80℃冰箱中。
使用445-1抗体,进行几个单氨基酸变化,将VH和VL框架区中保留的鼠残基转化为相应的人种系残基,如VL中的I44P和Y71F以及VH中的L70I和S72A。此外,在CDR中进行几个单氨基酸变化以降低潜在的异构化风险并提高人源化水平。例如,在LCDR2中进行T51A和D50E的改变,在HCDR2中进行D56E、G57A和N61A的改变。使用在特定位置含有突变的引物和定点诱变试剂盒(目录号:AP231-11,TransGen,中国北京)进行所有人源化变化。通过测序验证所需的变化。
针对与OX40的结合和热稳定性评价445-1抗体中的氨基酸变化。包含SEQ ID NO:3的HCDR1、SEQ ID NO:18的HCDR2、SEQ ID NO:5的HCDR3、SEQ ID NO:6的LCDR1、SEQ ID NO:19的LCDR2和SEQ ID NO:8的LCDR3的抗体445-2(参见表3)由上述特定改变的组合构建。在比较两种抗体时,结果显示两种抗体445-2和445-1表现出相当的结合亲和力(参见下表4和表5)。
从445-2抗体开始,在VL框架区中进行几个额外的氨基酸变化以进一步改善结合亲和力/动力学,例如氨基酸G41D和K42G的变化。此外,为了降低免疫原性风险和增加热稳定性,在VH和VL的CDR中进行几个单氨基酸变化,例如LCDR1中的S24R和HCDR2中的A61N。与445-2相比,所得变化显示出改善的结合活性或热稳定性。
人源化445抗体通过在CDR和框架区中引入特定的氨基酸变化而进一步工程化,以改善用于人类治疗用途的分子和生物物理特性。考虑因素包括除去有害的翻译后修饰、改善的热稳定性(Tm)、表面疏水性和等电点(pIs),同时保持结合活性。
包含SEQ ID NO:3的HCDR1、SEQ ID NO:24的HCDR2、SEQ ID NO:5的HCDR3、SEQ IDNO:25的LCDR1、SEQ ID NO:19的LCDR2和SEQ ID NO:8的LCDR3的人源化单克隆抗体445-3(参见表3)由上述成熟过程构建,并详细表征。也将抗体445-3制成包含人IgG2的野生型重链的Fc结构域的IgG2版本(445-3IgG2)和包含具有S228P和R409K突变的人IgG4的Fc结构域的IgG4版本(445-3IgG4)。结果显示445-3和445-2表现出相当的结合亲和力(参见表4和表5)。
表3.445抗体序列
实施例4:通过SPR测定抗OX40抗体的结合动力学和亲和力
使用BIAcoreTMT-200(GE Life Sciences)通过SPR测定来表征抗OX40抗体的结合动力学和亲和力。简言之,将抗人IgG抗体固定在活化的CM5生物传感器芯片(目录号:BR100530,GE Life Sciences)上。使具有人IgG Fc区的抗体流过芯片表面并被抗人IgG抗体捕获。然后使具有His标签的重组OX40蛋白(目录号:10481-H08H,Sino Biological)的连续稀释液流过芯片表面,并通过使用一对一Langmuir结合模型(BIA评估软件,GE LifeSciences)分析表面等离子体共振信号的变化以计算缔合速率(ka)和解离速率(kd)。平衡解离常数(KD)计算为比率kd/ka。抗OX40抗体的SPR测定的结合谱的结果总结于图2和表4中。抗体445-3(9.47nM)的平均KD的结合谱略好于抗体445-2(13.5nM)和445-1(17.1nM),并且与ch445相似。445-3IgG4的结合谱与445-3(具有IgG1 Fc)相似,表明IgG4和IgG1之间Fc的改变不改变445-3抗体的特异性结合。
表4.通过SPR测定的抗OX40抗体的结合亲和力
*ch445包含与人IgG1wt/κ恒定区融合的Mu445可变结构域
实施例5:测定抗OX40抗体与在HuT78细胞上表达的OX40的结合亲和力
为了评价抗OX40抗体结合活细胞表面上表达的OX40的结合活性,如实施例1中所述用人OX40转染HuT78细胞以产生OX40表达系。将活HuT78/OX40细胞接种于96孔板中,并与连续稀释的各种抗OX40抗体一起孵育。山羊抗人IgG-FITC(目录号:A0556,Beyotime)用作二抗以检测抗体与细胞表面的结合。通过用GraphPad Prism将剂量反应数据拟合至四参数逻辑模型来确定与人OX40的剂量依赖性结合的EC50值。如图3和表5所示,OX40抗体与OX40具有高亲和力。还发现本公开的OX40抗体具有通过流式细胞术测量的相对较高的最高水平的荧光强度(参见表5的最后一列),表明抗体从OX40的较慢解离,这是更期望的结合谱。
表5.人源化445变体与OX40的剂量依赖性结合的EC50
实施例6:测定抗OX40抗体的交叉反应性
为了评价抗体445-3与人和食蟹猴(cyno)OX40的交叉反应性,将表达人OX40(HuT78/OX40)和cyno OX40(HuT78/cynoOX40)的细胞接种在96孔板中,并与OX40抗体的一系列稀释液一起孵育。山羊抗人IgG-FITC(目录号:A0556,Beyotime)用作检测的二抗。通过用GraphPad Prism将剂量反应数据拟合至四参数逻辑模型来确定与人和食蟹猴天然OX40的剂量依赖性结合的EC50值。结果示于图4和下表6中。抗体445-3与人和食蟹猴OX40交叉反应,具有类似EC50值,如下所示。
表6.抗体445-3与人和食蟹猴OX40结合的EC50
细胞系 | 445-3的EC50(ug/mL) | 最高(MFI) |
HuT78/OX40 | 0.174 | 575 |
HuT78/cynoOX40 | 0.171 | 594 |
实施例7:OX40与445-3Fab的共结晶和结构测定
为了理解OX40与本公开的抗体的结合机制,解析了OX40和445-3的Fab的共晶体结构。在残基T148和N160处引入突变以阻断OX40的糖基化并改善蛋白质的同质性。将编码突变体人OX40(残基M1-D170,具有两个突变位点T148A和N160A)的DNA克隆到包含六-His标签的表达载体中,并将该构建体瞬时转染到293G细胞中用于在37℃下蛋白质表达持续7天。收获细胞,收集上清液并与His标签亲和树脂在4℃下一起孵育1小时。用含有20mM Tris,pH8.0、300mM NaCl和30mM咪唑的缓冲液冲洗树脂三次。然后用含有20mM Tris,pH 8.0、300mMNaCl和250mM咪唑的缓冲液洗脱OX40蛋白,接着用Superdex 200(GE Healthcare)在含有20mM Tris,pH 8.0、100mM NaCl的缓冲液中进一步纯化。
将445-3Fab的重链和轻链编码序列克隆到在重链的C末端包含六-His标签的表达载体中,并且将这些瞬时共转染到293G细胞中用于在37℃下蛋白质表达持续7天。445-3Fab的纯化步骤与上述突变体OX40蛋白所用的纯化步骤相同。
将纯化的OX40和445-3Fab以1:1的摩尔比混合并在冰上孵育30分钟,随后用Superdex 200(GE Healthcare)在含有20mM Tris,pH8.0、100mM NaCl的缓冲液中进一步纯化。收集复合物峰并浓缩至约30mg/ml。
通过将蛋白质复合物与贮库溶液以1:1的体积比混合来进行共晶体筛选。共晶体由用含有0.1M HEPES,pH 7.0、1% PEG 2,000MME和0.95M琥珀酸钠的贮库溶液在20℃下通过蒸气扩散培养的悬滴获得。
使用尼龙环收获共晶体,并将晶体浸入补充有20%甘油的贮库溶液中,持续10秒。在上海同步辐射装置(Shanghai Synchrotron Radiation Facility)的BL17U1收集衍射数据,并用XDS程序处理。使用IgG Fab的结构(PDB的链C和D:5CZX)和OX40的结构(PDB的链R:2HEV)作为分子置换搜索模型,用程序PHASER解析相。Phenix.refine图形界面用于对X射线数据进行刚体、TLS和限制精修,随后使用COOT程序进行调整,并在Phenix.refine程序中进一步精修。X射线数据收集和精修统计总结在表7中。
表7.数据收集和精修统计
括号中的值是指最高分辨率壳(resolution shell)。
a R合并=∑∑i|I(h)i-<I(h)>|/∑∑i|I(h)i|,其中<I(h)>是等效物的平均强度。
b R工作=∑|Fo-Fc|/∑|Fo|,其中Fo和Fc分别是观测和计算的结构因子振幅。
c R自由=∑|Fo-Dc|/∑|Fo|,使用测试数据集计算,从观察到的反射中随机选择总数据的5%。
实施例8:通过SPR鉴定抗体445-3的表位
根据OX40和抗体445-3Fab的共晶体结构,我们选择并产生了人OX40蛋白中的一系列单突变以进一步鉴定本公开的抗OX40抗体的关键表位。用定点诱变试剂盒(目录号:AP231-11,TransGen)对人OX40/IgG1融合构建体进行单点突变。通过测序验证所需突变。OX40突变体的表达和制备通过转染到293G细胞中来实现,并使用蛋白A柱(目录号:17-5438-02,GE Life Sciences)纯化。
使用BIAcore 8K(GE Life Sciences)通过SPR测定来表征OX40点突变体与445-3Fab的结合亲和力。简言之,使用EDC和NHS将OX40突变体和野生型OX40固定在CM5生物传感器芯片(目录号:BR100530,GE Life Sciences)上。然后使用180s的接触时间和600s的解离时间,以30μl/min将HBS-EP+缓冲液(目录号:BR-1008-26,GE Life Sciences)中的445-3Fab连续稀释液流过芯片表面。使用一对一Langmuir结合模型(BIA评估软件,GE LifeSciences)分析表面等离子体共振信号的变化以计算缔合速率(ka)和解离速率(kd)。平衡解离常数(KD)计算为比率kd/ka。突变体的KD移位倍数计算为突变体KD/WT KD的比率。图5和表8总结了通过SPR测定的表位鉴定图谱。结果表明OX40中残基H153、I165和E167突变为丙氨酸显著降低抗体445-3与OX40的结合,而残基T154和D170突变为丙氨酸使抗体445-3与OX40的结合适度降低。
抗体445-3与OX40的残基H153、T154、I165、E167和D170之间的详细相互作用示于图6中。OX40上H153的侧链被相互作用界面上445-3的小口袋包围,与重链S31和重链G102形成氢键并与重链Y101形成π-π堆积。E167的侧链与重链Y50和重链N52形成氢键,而D170分别与重链S31和重链K28形成氢键和盐桥,其可以进一步稳定复合物。T154与重链Y105、I165和重链R59之间的范德华(VDW)相互作用导致抗体445-3与OX40的高亲和力。
总之,OX40的残基H153、I165和E167被鉴定为与抗体445-3相互作用的重要残基。此外,OX40的氨基酸T154和D170也是抗体445-3的重要接触残基。该数据表明抗体445-3的表位是OX40的残基H153、T154、I165、E167和D170。这些表位位于序列HTLQPASNSSDAICEDRD(SEQ ID NO:30)中,其中重要的接触残基用粗体和下划线标出。
表8.通过SPR测定的抗体445-3的表位鉴定
突变体 | 突变体KD/WT KD |
H153A | 未检测到结合 |
T154A | 8 |
Q156A | 1.9 |
S161A | 1.1 |
S162A | 0.6 |
I165A | 28 |
E167A | 135 |
D170A | 8 |
显著影响:未检测到结合,或突变体KD/WT KD值大于10。中度影响:突变体KD/WT KD值在5和10之间。非显著影响:突变体KD/WT KD值小于5。
实施例9:抗OX40抗体445-3不阻断OX40-OX40L相互作用。
为了确定抗体445-3是否干扰OX40-OX40L相互作用,建立了基于细胞的流式细胞术测定。在该测定中,将抗体445-3、参考抗体1A7.gr1、对照huIgG或单独的培养基与具有鼠IgG2a Fc的人OX40融合蛋白(OX40-mIgG2a)预孵育。然后将抗体和融合蛋白复合物加入到表达OX40L的HEK293细胞中。如果OX40抗体不干扰OX40-OX40L相互作用,则OX40抗体-OX40mIgG2a复合物仍将结合至表面OX40L,且此相互作用可使用抗小鼠Fc二抗检测到。
如图7所示,即使在高浓度下,抗体445-3也不降低OX40与OX40L的结合,表明445-3不干扰OX40-OX40L相互作用。这表明445-3不在OX40L结合位点结合或不会结合足够接近以空间阻碍OX40L结合。相反,阳性对照抗体1A7.gr1完全阻断OX40与OX40L的结合,如图7所示。
此外,解析OX40与445-3Fab复合物的共晶体结构,并与OX40/OX40L复合物(PDB代码:2HEV)对齐,如图8所示。OX40配体三聚体主要通过OX40的CRD1(富含半胱氨酸的结构域)、CRD2和部分CRD3区域与OX40相互作用(Compaan和Hymowitz,2006),而抗体445-3仅通过CRD4区域与OX40相互作用。总之,445-3抗体和OX40L三聚体在OX40的不同相应区域结合,而抗体445-3不干扰OX40/OX40L相互作用。该结果与上述实施例中描述的表位作图数据相关。OX40的CRD4在氨基酸127-167处,并且抗体445-3的表位与该区域部分重叠。OX40 CRD4(氨基酸127-167)的序列如下所示,445-3表位的部分重叠用粗体和下划线表示:PCPPGHFSPGDNQACKPWTNCTLAGKHTLQPASNSSDAICE(SEQ ID NO:31)。
实施例10:抗OX40抗体445-3的激动活性
为了研究抗体445-3的激动功能,将OX40阳性T细胞系HuT78/OX40与人工抗原呈递细胞(APC)系(HEK293/OS8低-FcγRI)在存在或不存在445-3或1A7.gr1的情况下共培养过夜,使用IL-2产生作为T细胞刺激的读出。在HEK293/OS8低-FcγRI细胞中,将编码膜结合抗CD3抗体OKT3(OS8)(如美国专利第8,735,553号中所公开的)和人FcγRI(CD64)的基因稳定地共转染到HEK293细胞中。由于抗OX40抗体诱导的免疫激活依赖于抗体交联(Voo等人,2013),因此HEK293/OS8低-FcγRI上的FcγRI提供了在抗OX40抗体与OX40和FcγRI双重接合时抗OX40抗体介导的OX40交联的基础。如图9所示,抗OX40抗体445-3在以剂量依赖性方式增强TCR信号传导方面高度有效,EC50为0.06ng/ml。还观察到参考Ab 1A7.gr1的稍弱的活性。相反,对照人IgG(10μg/mL)或空白显示对IL-2产生没有影响。
实施例11:抗OX40抗体445-3在混合淋巴细胞反应(MLR)测定中促进免疫反应
为了确定抗体445-3是否能刺激T细胞激活,如前所述(Tourkova等人,2001)建立混合淋巴细胞反应(MLR)测定。简言之,通过与GM-CSF和IL-4培养,然后进行LPS刺激,从人PBMC衍生的CD14+骨髓细胞诱导成熟DC。接着,在抗OX40 445-3抗体(0.1-10μg/ml)存在下将丝裂霉素C处理的DC与同种异体CD4+T细胞共培养2天。通过ELISA检测共培养物中的IL-2产生作为MLR反应的读出。
如图10所示,抗体445-3显著促进IL-2产生,表明445-3激活CD4+T细胞的能力。相反,参考抗体1A7.gr1在MLR测定中显示出显著(P<0.05)较弱的活性。
实施例12:抗OX40抗体445-3显示ADCC活性
建立基于乳酸脱氢酶(LDH)释放的ADCC测定以研究抗体445-3是否能够杀死表达OX40Hi的靶细胞。通过将CD16v158(V158等位基因)和FcRγ基因共转染到NK细胞系NK92MI(ATCC,Manassas VA)中产生NK92MI/CD16V细胞系作为效应细胞。将表达OX40的T细胞系HuT78/OX40用作靶细胞。在抗OX40抗体(0.004-3μg/ml)或对照抗体存在下,将相等数目(3×104个)的靶细胞和效应细胞共培养5小时。使用CytoTox 96非放射性细胞毒性测定试剂盒(Promega,Madison,WI)通过LDH释放来评价细胞毒性。通过下式计算特异性裂解。
如图11所示,抗体445-3显示出通过ADCC以剂量依赖性方式杀死OX40Hi靶标的高效力(EC50:0.027μg/mL)。抗体445-3的ADCC效应类似于1A7.gr1对照抗体。相反,与对照人IgG或空白相比,具有S228P和R409K突变的IgG4 Fc形式的445-3(445-3-IgG4)未显示任何显著的ADCC效应。结果与先前的发现一致,即IgG4 Fc对于ADCC是弱的或沉默的(An Z等人,mAbs2009)。
实施例13:抗OX40抗体445-3在体外优先耗竭CD4+Treg并增加CD8+Teff/Treg比率
在几种动物肿瘤模型中已经显示,抗OX40抗体可以耗竭肿瘤浸润性OX40Hi Treg并且增加CD8+T细胞与Treg的比率(Bulliard等人,2014;Carboni等人,2003;Jacquemin等人,2015;Marabelle等人,2013b)。因此,免疫反应增强,导致肿瘤消退和改善存活。
鉴于体外激活的或肿瘤内CD4+Foxp3+Treg比其它T细胞亚群优先表达OX40的事实(Lai等人,2016;Marabelle等人,2013b;Montler等人,2016;Soroosh等人,2007;Timperi等人,2016),建立基于人PBMC的测定以研究抗体445-3杀死OX40Hi细胞,特别是Treg的能力。简言之,通过PHA-L(1μg/mL)将PBMC预激活1天以诱导OX40表达,并用作靶细胞。然后在抗OX40抗体(0.001-10μg/mL)或安慰剂存在下,将效应NK92MI/CD16V细胞(如实施例12中所述,5×104个)与相等数目的靶细胞共培养过夜。通过流式细胞术测定每个T细胞亚群的百分比。如图12A和12B所示,用抗体445-3处理以剂量依赖性方式诱导CD8+T细胞百分比的增加和CD4+Foxp3+Treg百分比的降低。结果,CD8+T细胞与Treg的比率大大提高(图12C)。用1A7.gr1处理获得较弱的结果。该结果证明了445-3通过增强CD8+T细胞功能但限制Treg介导的免疫耐受来诱导抗肿瘤免疫的治疗应用。
实施例14:抗OX40抗体445-3在小鼠肿瘤模型中发挥剂量依赖性抗肿瘤活性
在小鼠肿瘤模型中显示抗OX40抗体445-3的功效。将鼠MC38结肠肿瘤细胞皮下植入人OX40转基因C57小鼠(Biocytogen,中国北京)中。在植入肿瘤细胞后,每周测量肿瘤体积两次并使用下式以mm3为单位计算:V=0.5(a×b2),其中a和b分别是肿瘤的长径和短径。当肿瘤达到约190mm3大小的平均体积时,将小鼠随机分成7组,并每周腹膜内注射一次445-3或1A7.gr1抗体,持续3周。施用人IgG作为同种型对照。部分消退(PR)定义为在三次连续测量中,肿瘤体积小于在给药的第一天起始肿瘤体积的50%。使用下式计算肿瘤生长抑制(TGI):
治疗t=时间t时的治疗肿瘤体积
治疗t0=时间0时的治疗肿瘤体积
安慰剂t=时间t时的安慰剂肿瘤体积
安慰剂t0=时间0时的安慰剂肿瘤体积
结果表明,445-3以0.4mg/kg、2mg/kg和10mg/kg剂量作为腹膜内注射具有剂量依赖性抗肿瘤功效。施用445-3导致53%(0.4mg/kg)、69%(2mg/kg)和94%(10mg/kg)肿瘤生长抑制,并且导致从基线的0%(0.4mg/kg)、17%(2mg/kg)和33%(10mg/kg)部分消退。相反,没有观察到抗体1A7.gr1达成的部分消退。体内数据表明配体非阻断抗体445-3比OX40-OX40L阻断抗体1A7.gr1更适合于抗肿瘤疗法(图13A和13B,表9)。
表9.445-3和1A7.gr1在鼠MC38结肠肿瘤小鼠模型中的功效
实施例15:抗OX40抗体的氨基酸改变
选择几个氨基酸进行改变以改善OX40抗体。进行氨基酸改变以改善亲和力或增加人源化。设计PCR引物组用于适当的氨基酸改变,合成并用于修饰抗OX40抗体。例如,重链中K28T和轻链中S24R的改变导致通过FACS测定的EC50比原始445-2抗体增加1.7倍。重链中Y27G和轻链中S24R的改变导致通过Biacore测定的KD比原始445-2抗体增加1.7倍。这些变化总结在图14A-14B中。
实施例16:OX40抗体与抗TIM3抗体组合在MMTV-PyMT同基因小鼠模型中
MMTV-PyMT是小鼠乳腺癌转移模型,其中MMTV-LTR用于在乳腺中过表达多瘤病毒中间T抗原。小鼠发展出高度转移性肿瘤,并且该模型通常用于研究乳腺癌进展。
向雌性FVB/N小鼠乳房内植入1×106个MMTV-PyMT肿瘤细胞,这些肿瘤细胞由MMTV-PyMT转基因小鼠中自发发展的肿瘤产生。接种后8天,将动物随机分成4组,每组15只动物。然后用媒介物(PBS)治疗小鼠作为阳性对照。
OX86是先前在WO2016/057667中公开的大鼠抗小鼠OX40抗体,其进一步用小鼠IgG2a恒定区工程化以降低其免疫原性并且还在小鼠研究中保持其Fc介导的功能。OX86的VH和VL区在下文提供。如先前在科学文献中报道的,OX86具有类似于抗体445-3的作用机制,因为它不阻断OX40和OX40配体之间的相互作用(al-Shamkhani Al等人,EuroJ.Immunol(1996)26(8);1695-9,Zhang,P.等人,Cell Reports 27,3117-3123)。
鼠特异性抗TIM3抗体(RMT3-23)购自Bioxcell(New Hampshire,目录号为BP0115),并以3mg/kg每周一次通过腹膜内注射施用。OX86与RMT3-23组合作为组合疗法以如上针对单一疗法所公开的相同剂量施用。每周两次使用卡尺在两个维度上测定肿瘤体积和体重,并且使用下式以mm3为单位表示:V=0.5(a×b2),其中a和b分别为肿瘤的长径和短径。数据表示为平均肿瘤体积±平均值的标准误差(SEM)。使用下式计算肿瘤生长抑制(TGI):
治疗t=时间t时的治疗肿瘤体积
治疗t0=时间0时的治疗肿瘤体积
安慰剂t=时间t时的安慰剂肿瘤体积
安慰剂t0=时间0时的安慰剂肿瘤体积
MMTV-PyMT同基因模型对OX86与RMT3-23组合治疗的反应示于图15和表10中。在第21天,OX86和RTM3-23各自作为单一药剂施用抑制肿瘤生长,TGI分别为31%和-5%。相反,OX86与RTM3-23组合显著改善抗肿瘤活性,TGI为63%,比OX86作为单一药剂施用时增加32%,并且比作用类似于PBS对照的RTM3-23 TGI明显增加(p<0.001,组合相对于媒介物;p<0.01,组合相对于OX86单一疗法;并且p<0.001,组合相对于RMT3-23单一疗法)。
该数据表明OX40抗体与抗TIM3抗体的组合比单独施用任一药剂更有效。在整个研究中,组合疗法对任何治疗组中的动物体重没有显著影响。
表10.抗OX40和抗TIM3抗体在鼠乳腺癌模型中的组合功效
a所有剂量每周施用一次。b不适用
实施例17:OX40抗体与抗TIM3抗体组合在小鼠肾癌模型中
雌性BALB/c小鼠在右侧腹皮下植入100μL PBS中的2×105个肾癌(Renca)细胞。接种后8天,根据接种顺序将动物随机分成4组,每组15只动物。接种后8天,将动物随机分成4组,每组15只动物。然后用媒介物(PBS)治疗小鼠作为对照。作为单一药剂疗法,通过腹膜内注射以0.4mg/kg每周一次(QW)施用鼠特异性抗OX40抗体(OX86)。通过腹膜内注射以3mg/kgQW施用鼠特异性抗TIM3抗体(RMT3-23,如上所述)。作为组合疗法,OX86抗体与RMT3-23组合以与上述各单独抗体相同的剂量和途径施用。每周两次检查小鼠的肿瘤体积和体重。
Renca同基因小鼠模型对OX86与RMT3-23组合治疗的反应示于图16和表11中。在第17天,OX86和RTM3-23单一疗法各自抑制肿瘤生长,TGI分别为61%和2%。作为单一药剂的RTM3-23治疗与PBS对照非常相似。相反,用OX86与RTM3-23组合的治疗显示显著改善的抗肿瘤活性,TGI为80%(p<0.001,组合相对于媒介物)。该数据表明,OX40抗体与抗TIM3抗体组合在该小鼠肾癌模型中是有效的。在整个研究中,在任何治疗组中都没有观察到对动物体重的显著影响。
表11.OX86和TIM3抗体在Renca同基因模型中的组合功效
a所有剂量每周施用一次。b不适用
更具体地,本申请提供下列各项:
1.一种癌症治疗方法,所述方法包括向受试者施用有效量的非竞争性抗OX40抗体或其抗原结合片段与抗TIM3抗体或其抗原结合片段的组合。
2.根据项1所述的方法,其中所述OX40抗体特异性结合人OX40且包含:
(i)重链可变区和轻链可变区,所述重链可变区包含:(a)SEQ ID NO:3的HCDR(重链互补决定区)1,(b)SEQ ID NO:24的HCDR2,和(c)SEQ ID NO:5的HCDR3,所述轻链可变区包含:(d)SEQ ID NO:25的LCDR(轻链互补决定区)1,(e)SEQ ID NO:19的LCDR2,和(f)SEQID NO:8的LCDR3;
(ii)重链可变区和轻链可变区,所述重链可变区包含:(a)SEQ ID NO:3的HCDR1,(b)SEQ ID NO:18的HCDR2,和(c)SEQ ID NO:5的HCDR3;所述轻链可变区包含:(d)SEQ IDNO:6的LCDR1,(e)SEQ ID NO:19的LCDR2,和(f)SEQ ID NO:8的LCDR3;
(iii)重链可变区和轻链可变区,所述重链可变区包含:(a)SEQ ID NO:3的HCDR1,(b)SEQ ID NO:13的HCDR2,和(c)SEQ ID NO:5的HCDR3;所述轻链可变区包含:(d)SEQ IDNO:6的LCDR1,(e)SEQ ID NO:7的LCDR2,和(f)SEQ ID NO:8的LCDR3;或
(iv)重链可变区和轻链可变区,所述重链可变区包含:(a)SEQ ID NO:3的HCDR1,(b)SEQ ID NO:4的HCDR2,和(c)SEQ ID NO:5的HCDR3;所述轻链可变区包含:(d)SEQ IDNO:6的LCDR1,(e)SEQ ID NO:7的LCDR2,和(f)SEQ ID NO:8的LCDR3,与抗TIM3抗体或其抗原结合片段组合。
3.根据项1所述的方法,其中所述OX40抗体或抗原结合包含:
(i)包含SEQ ID NO:26的重链可变区(VH)和包含SEQ ID NO:28的轻链可变区(VL);
(ii)包含SEQ ID NO:20的重链可变区(VH)和包含SEQ ID NO:22的轻链可变区(VL);
(iii)包含SEQ ID NO:14的重链可变区(VH)和包含SEQ ID NO:16的轻链可变区(VL);或
(iv)包含SEQ ID NO:9的重链可变区(VH)和包含SEQ ID NO:11的轻链可变区(VL)。
4.根据项1所述的方法,其中所述抗TIM3抗体或其抗原结合片段包含特异性结合人TIM3的抗体抗原结合结构域,并且包含重链可变区和轻链可变区,所述重链可变区包含:SEQ ID NO:32的HCDR1、SEQ ID NO:33的HCDR2和SEQ ID NO:34的HCDR3;所述轻链可变区包含:SEQ ID NO:35的LCDR1、SEQ ID NO:36的LCDR2和SEQ ID NO:37的LCDR3。
5.根据项1所述的方法,其中所述抗TIM3抗体包含特异性结合人TIM3的抗体抗原结合结构域,并且包含含有SEQ ID NO:38的氨基酸序列的重链可变区(VH)和含有SEQ IDNO:40的氨基酸序列的轻链可变区(VL)。
6.根据项1所述的方法,其中所述抗OX40抗体或抗原结合片段是选自由Fab、Fab'-SH、Fv、scFv和(Fab')2片段组成的群组的抗体片段。
7.根据项1所述的方法,其中所述抗TIM3抗体或抗原结合片段是选自由Fab、Fab'-SH、Fv、scFv和(Fab')2片段组成的群组的抗体片段。
8.根据项1所述的方法,其中所述癌症是乳腺癌、结肠癌、头颈癌、胃癌、肾癌、肝癌、小细胞肺癌、非小细胞肺癌、卵巢癌、皮肤癌、间皮瘤、淋巴瘤、白血病、骨髓瘤或肉瘤。
9.根据项8所述的方法,其中所述乳腺癌是转移性乳腺癌。
10.根据项1至9中任一项所述的方法,其中所述治疗在所述治疗停止后在所述受试者中导致持续的抗癌反应。
11.一种增加、增强或刺激免疫反应或功能的方法,所述方法包括向受试者施用有效量的非竞争性抗OX40抗体或其抗原结合片段与抗TIM3抗体或其抗原结合片段的组合。
12.根据项11所述的方法,其中所述OX40抗体特异性结合人OX40且包含:
(i)重链可变区和轻链可变区,所述重链可变区包含:(a)SEQ ID NO:3的HCDR(重链互补决定区)1,(b)SEQ ID NO:24的HCDR2,和(c)SEQ ID NO:5的HCDR3,所述轻链可变区包含:(d)SEQ ID NO:25的LCDR(轻链互补决定区)1,(e)SEQ ID NO:19的LCDR2,和(f)SEQID NO:8的LCDR3;
(ii)重链可变区和轻链可变区,所述重链可变区包含:(a)SEQ ID NO:3的HCDR1,(b)SEQ ID NO:18的HCDR2,和(c)SEQ ID NO:5的HCDR3;所述轻链可变区包含:(d)SEQ IDNO:6的LCDR1,(e)SEQ ID NO:19的LCDR2,和(f)SEQ ID NO:8的LCDR3;
(iii)重链可变区和轻链可变区,所述重链可变区包含:(a)SEQ ID NO:3的HCDR1,(b)SEQ ID NO:13的HCDR2,和(c)SEQ ID NO:5的HCDR3;所述轻链可变区包含:(d)SEQ IDNO:6的LCDR1,(e)SEQ ID NO:7的LCDR2,和(f)SEQ ID NO:8的LCDR3;或
(iv)重链可变区和轻链可变区,所述重链可变区包含:(a)SEQ ID NO:3的HCDR1,(b)SEQ ID NO:4的HCDR2,和(c)SEQ ID NO:5的HCDR3;所述轻链可变区包含:(d)SEQ IDNO:6的LCDR1,(e)SEQ ID NO:7的LCDR2,和(f)SEQ ID NO:8的LCDR3,与抗TIM3抗体组合。
13.根据项11所述的方法,其中所述OX40抗体或其抗原结合片段包含:
(i)包含SEQ ID NO:26的重链可变区(VH)和包含SEQ ID NO:28的轻链可变区(VL);
(ii)包含SEQ ID NO:20的重链可变区(VH)和包含SEQ ID NO:22的轻链可变区(VL);
(iii)包含SEQ ID NO:14的重链可变区(VH)和包含SEQ ID NO:16的轻链可变区(VL);或
(iv)包含SEQ ID NO:9的重链可变区(VH)和包含SEQ ID NO:11的轻链可变区(VL)。
14.根据项11所述的方法,其中所述抗TIM3抗体或其抗原结合片段包含特异性结合人TIM3的抗体抗原结合结构域,并且包含重链可变区和轻链可变区,所述重链可变区包含:SEQ ID NO:32的HCDR1、SEQ ID NO:33的HCDR2和SEQ ID NO:34的HCDR3;所述轻链可变区包含:SEQ ID NO:35的LCDR1、SEQ ID NO:36的LCDR2和SEQ ID NO:37的LCDR3。
15.根据项11所述的方法,其中所述抗TIM3抗体包含特异性结合人TIM3的抗体抗原结合结构域,并且包含含有SEQ ID NO:38的氨基酸序列的重链可变区(VH)和含有SEQ IDNO:40的氨基酸序列的轻链可变区(VL)。
16.根据项11所述的方法,其中所述抗OX40抗体或抗原结合片段是选自由Fab、Fab'-SH、Fv、scFv和(Fab')2片段组成的群组的抗体片段。
17.根据项11所述的方法,其中所述抗TIM3抗体或抗原结合片段是选自由Fab、Fab'-SH、Fv、scFv和(Fab')2片段组成的群组的抗体片段。
18.根据项11所述的方法,其中刺激免疫反应与T细胞、NK细胞和巨噬细胞相关。
19.根据项18所述的方法,其中刺激所述免疫反应的特征在于对抗原刺激的反应性增加。
20.根据项18所述的方法,其中所述T细胞具有增加的细胞因子分泌、增殖或细胞溶解活性。
21.根据项18至20中任一项所述的方法,其中所述T细胞是CD4+和CD8+T细胞。
22.根据项11至21中任一项所述的方法,其中所述施用在所述治疗停止后在所述受试者中导致持续的免疫反应。
参考文献
1.al-Shamkhani,A.,Birkeland,M.L.,Puklavec,M.,Brown,M.H.,James,W.,andBarclay,A.N.(1996).OX40 is differentially expressed on activated rat andmouse T cells and is the sole receptor for the OX40 ligand.Europeanjournal ofimmunology 26,1695-1699.
2.An Z,Forrest G,Moore R,Cukan M,Haytko P,Huang L,Vitelli S,Zhao JZ,Lu P,Hua J,Gibson CR,Harvey BR,Montgomery D,Zaller D,Wang F,Strohl W.(2009).IgG2m4,an engineered antibody isotype with reduced Fc function.MAbs.1,572-579.
3.Arch,R.H.,and Thompson,C.B.(1998).4-1BB and Ox40 are members of atumor necrosis factor(TNF)-nerve growth factor receptor subfamily that bindTNF receptor-associated factors and activate nuclear factor kappaB.Molecularand cellular biology 18,558-565.
4.Aspeslagh,S.,Postel-Vinay,S.,Rusakiewicz,S.,Soria,J.C.,Zitvogel,L.,and Marabelle,A.(2016).Rationale for anti-OX40 cancer immunotherapy.Eur JCancer 52,50-66.
5.Bulliard,Y.,Jolicoeur,R.,Zhang,J,Dranoff,G.,Wilson,N.S.,andBrogdon,J.L.(2014).OX40 engagement depletes intratumoral Tregs via activatingFcgammaRs,leading to antitumor efficacy.Immunology and cell biology 92,475-480.
6.Calderhead,D M.,Buhlmann,J E.,van den Eertwegh,A.J.,Claassen,E.,Noelle,R.J.,and Fell,H.P.(1993).Cloning of mouse Ox40:a T cell activationmarker that may mediate T-B cell interactions J Immunol 151,5261-5271.
7.Carboni,S.,Aboul-Enein,F.,Waltzinger,C.,Killeen,N.,Lassmann,H.,andPcna-Rossi,C.(2003).CDl34 plays a crucial role in the pathogenesis of EAE andis upregulated in the CNS of patients with multiple sclerosis Journak ofneuroimmunology 145,1-11.
8.Compaan,D M.,and Hymowitz,S.G.(2006).The crystal structure of thecostimulatory OX40-OX40L complex Structure 14,1321-1330.
9.Croft,M.(2010).Control of immunity by the TNFR-related moleculeOX40(CD134).Annual review of immunology 28,57-78.
10.Croft,M.,So,T.,Duan,W.,and Soroosh,P.(2009).The significance ofOX40 and OX40L to T-cell biology and immune disease.Immunological reviews229,173-191.
11.Curti,B.D.,Kovacsovics-Bankowski,M.,Morris,N.,Walker,E.,Chisholm,L.,Floyd,K.,Walker,J.,Gonzalez,I.,Meeuwsen,T.,Fox,B.A.,etal.(2013).OX40 is apotentimmune-stimulating target in late-stage cancer patients.Cancer research73,7189-7198.
12.Durkop,H.,Latza,U.,Himmelreich,P.,and Stein,H.(1995).Expression ofthe human OX40(hOX40)antigen in normal and neoplastic tissues.British journalof haematology 91,927-931.
13.Gough,M.J.,and Weinberg,A.D.(2009).OX40(CD134)and OX40L.Advancesin experimental medicine and biology 647,94-107.
14.Gramaglia,I.,Weinberg,A.D.,Lemon,M.,and Croft,M.(1998).Ox-40ligand:a potent costimulatory molecule for sustaining primary CD4 T cellrespoases.J Immunol161,6510-6517.
15.Guo,Z.,Cheng,D.,Xia,Z.,Luan,M.,Wu,L.,Wang,G.,and Zhang,S.(2013).Combined TIM-3blockade and CD 137activation affords the long-term protectionin a murine model of ovarian cancer Journal of translatioral medicine 11,215.
16.Hori,S.,Nomura,T.,and Sakaguchi,S.(2003).Control of regulatory Tcell development by the transcription factor Foxp3 Science 299,1057-1061.
17.Huddleston,C.A.,Weinberg,A.D.,and Parker,D.C(2006).OX40(CD134)engagement d rives differentiation of CD4+T cells to efiector cells.Europeanjournal of immunology 36,1093-1103.
18.Ito,T.,Amakawa,R.,Inaba,M,Hori,T.,Ota,M.,Nakamura,K.,Takebayashi,M.,Miyaji,M.,Yoshimura,T.,1naba,K.,and Fukuhara,S.(2004).Plasmacytoiddendritic cells regulate Th cell responses through OX40ligand and type I IFNsJ Immunol172,4253-4259.
19.Ito,T.,Wang,Y.H.,Duramad,O.,Hanabuchi,S.,Perng,O.A,Gilliet,M.,Qin,F.X.,and Liu,Y.J.(2006).OX40 ligand shuts down IL-10-producing regulatory Tcells Proceedings of the National Academy of Sciences of the United States ofAmerica 103,13138-13143.
20.Jacquemin,C.,Schmitt,N.,Contin-Bordes,C.,Liu,Y.,Narayanan,P.,Seneschal,J.,Maurouard,T.,Dougall,D.,Davizon,E.S.,Dumortier,H.,et al.(2015).OX40 Ligand Contributes to Human Lupus Pathogenesis by Promoting TFollicular Helper Response Immunity 42,1159-1170.
21Kjaergaard,J.,Tanaka,J.,Kim,J.A.,Rothchild,K.,Weinberg,A.,and Shu,S.(2000).Therapeutic efficacy of OX-40 receptor antibody depends on tumorimmunogenicity and anatomic site of tumor growth.Cancer research 60,5514-5521.
22.Ladanyi,A.,Somlai,B.,Gilde,K.,Fejos,Z.,Gaudi,I,and Timar,J.(2004).T-cell activation marker expression on tumor-infiltrating lymphocytes asprognostic factor in cutaneous malignant melanoma Clinical cancer research:anofficial journal of the American Association for Cancer Research 10,521-530.
23.Lai,C.,August,S.,Albibas,A.,Behar,R.,Cho,S.Y.,Polak,M.E.,Theaker,J.,MacLeod,A.S.,French,R.R.,Glennie,M.J.,et al.(2016).OX40+Regulatory T Cellsin Cutaneous Squamous Cell Carcinoma Suppress Effector T-Cell Responses andAssociate with Metastatic Potential.Clinical cancer research:an officialjournal of the American Association for Cancer Research 22,4236-4248.
24.Marabelle,A.,Kohrt,H.,and Levy,R.(2013a).Intratumoral anti-CTLA-4therapy:enhancing efficacy while avoiding toxicity.Clinical cancer research:an official journal of the American Association for Cancer Research 19,5261-5263.
25.Marabelle,A,Kohrt,H.,Sagiv-Barfi,I.,Ajami,B.,Axtell,R.C.,Zhou,G.,Rajapaksa,R.,Green,M.R.,Torchia,J.,Brody,J.,et al.(2013b).Depleting tumor-specific Tregs at a single site eradicates disseminated tumors.The Journal ofclinical investigation 123,2447-2463.
26.Montler,R.,Bell,R.B.,Thalhofer,C.,Leidner,R.,Feng,Z.,Fox,B.A.,Cheng,A.C.,Bui,T.G.,Tucker,C.,Hoen,H.,and Weinberg,A.(2016).OX40,PD-1andCTLA-4 are selectively expressed on tumor-infiltrating T cells in head andneck cancer.Clinical&translatioual immunology 5,e70.
27.Morris,N.P.,Peters,C.,Montler,R.,Hu,H.M.,Curti,B.D.,Urba,W.J.,andWeinberg,A.D.(2007).Development and characterization of recombinant human Fc:OX40L fusion protein linked via a coiled-coil trimerization domain.Molecularimmunology 44,3112-3121.
28.Ohshima,Y.,Tanaka,Y.,Tozawa,H.,Takahashi,Y.,Maliszewski,C.,andDelespesse,G.(1997).Expression and function of OX40 ligand on human dendritic cells.J Immunol 159,3838-3848.
29.Petty,J.K.,He,K.,Corless,C.L.,Vetto,J.T.,and Weinberg,A.D.(2002)Survival in human colorectal cancer correlates with expression of the T-cellcostimulatory molecule oX-40(CD134).American journal of surgery 183,512-518.
30.Redmond,W.L.,and Weinberg,A.D.(2007).Targeting OX40 and OX40L forthe treatment of autoimmunity and cancer.Critical reviews in immunology 27,415-436.
31.Rogers,P.R.,Song,J.,Gramaglia,I.,Killeen,N.,and Croft,M.(2001).OX40 promores Bcl-xL and Bcl-2 expression and is essential for long-termsurvival of CD4 T cells.Immunity 15,445-455.
32.Ruby,C.E.,and Weinberg,A.D.(2009).OX40-enhanced tumor rejectionand effector T cell differentiation decreases with age.J Immunol 182,1481-1489.
33.Sarff,M.,Edwards,D.,Dhungel,B.,Wegmann,K.W.,Corless,C.,Weinberg,A.D.,and Vetto,J.T.(2008).OX40(CD134)expression in sentinel lymph nodescorrelates with prognostic features of primary melanomas.American journal ofsurgery 195,621-625;discussion 625.
34.Sato,T.,Ishii,N.,Murata,K.,Kikuchi,K.,Nakagawa,S.,Ndhlovu,L.C.,andSugamura,K.(2002).Consequences of OX40-OX40 ligand interactions in langerhanscell function:enhanced contact hypersensitivity responses in OX40L-transganicmice.European journal of immunology 32,3326-3335.
35.Smyth,M.J.,N giow,S.F.,and Teng,M.W.(2014).Targeting regulatory Tcells in tumor immunotherapy Immunology and cell biology 92,473-474.
36.Song,A.,Tang,X.,Harms,K.M.,and Croft,M.(2005a).OX40 and Bcl-xLpromote the persistence of CD8 T cells to recall tumor-associated antigen.JImmurol 175,3534-3541.
37.Song,J.,So,T.,Cheng,M.,Tang,X.,and Croft,M.(2005b).Sustainedsurvivin expression from OX40 costimulatory signals driVes T cell clonalexpansion.Immunity 22,621-631.
38.Song,J.,So,T.,and Croft,M.(2008).Activation of NF-kappaB1 by OX40contributes to antigen-driven T cell expansion and survival.J Immunol 180,7240-7248.
39.Soroosh,P.,Ine,S.,Sugamura,K.,and Ishii,N.(2007).Differentialrequirements for OX40 signals on generation of effector and central memoryCD4+ T cells J Jmmunol 179,5014-5023.
40.St Rose,M.C.,Taylor,R.A.,Bandyopadhyay,S.,Qui,H.Z.,Hagymasi,A.T.,Vella,A.T.,and Adler,A.J.(2013).CD134/CD137 dual costimulation-elicited IFN-gamma maximizes effector T-cell function butlimits Treg expansion.Immunologyand cell biology 91,173-183.
41.Stuber,E.,Neurath,M.,Calderhead,D.,Fell,H.P.,and Strober,W.(1995).Cross-linking of OX40 ligand,a member of the TNF/N GF cytokine family,induces proliferation and differentiation in murine splenic B cells.Immunity2,507-521.
42.Szypowska,A.,Stelmaszczyk-Emmel,A.,Demkow,U.,and Luczynski,W.(2014).High expression of OX40(CD134)and 4-1BB(CD137)molecules on CD4(+)CD25(high)cells in children with type 1 diabetes.Advances in medical sciences 59,39-43.
43.Timperi,E.,Pacella,I.,Schinzari,V.,Focaccetti,C.,Sacco,L.,Farelli,F.,Caronna,R.,Del Bene,G.,Longo,F.,Ciardi,A.,et al.(2016).Regulatory T cellswith multiple suppressive and potentially pro-tumor activities accumulate inhuman colorectal cancer.Oncoimmunology 5,e1175800.
44.Tourkova,I.L.,Yurkovetsky,Z.R.,Shurin,M.R.,and Shurin,G.V.(2001).Mechanisms of dendtitic cell-induced T cell proliferation in the primary MLRassay.Immunology letters 78,75-82.
45.Vetto,J.T.,Lum,S.,Morris,A.,Sicotte,M.,Davis,J.,Lemon,M.,andWeinberg,A.(1997).Presence of the T-cell activation marker OX-40 on tumorinfiltrating lymphocytes anddraining lymph node cells from patients withmelanoma and head and neck cancers.American journal of surgery 174,258-265.
46.Voo,K.S.,Bover,L.,Harline,M.L.,Vien,L.T.,Facchinetti,V.,Arima,K.,Kwak,L.W.,and Liu,Y.J.(2013).Antibodies targeting human OX40 expand effectorT cells andblock inducible and natural regulatory T cell function.J Immunol191,364l-3650.
47.Weinberg,A.D.,Rivera,M.M.,Prell,R.,Morris,A.,Ramstad,T.,Vetto,J.T.,Urba,W.J.,Alvord,G.,Bunce,C.,and Shields,J.(2000).Engagement of the OX-40 receptor in vivo enhances antitumor immunity.J Immunol 164,2160-2169.
48.Weinberg,A.D.,Wegmann,K.W.,Funatake,C.,and Whitham,R.H.(1999).Blocking OX-40/OX-40 ligand interaction in vitro and in vivo leads todecreased T cell function and amelioration of experimental allergicencephalomyelitis.J Immunol 162,1818-1826.
49.Willoughby,J.,Griffiths,J.,Tews,I.,and Cragg,M.S.(2017).OX40:Structure and function-What questions remain?Molecular immunology 83,13-22.
50.Zander,R.A.,Obeng-Adjei,N.,Guthmiller,J.J.,Kulu,D.I.,Li,J.,Ongoiba,A.,Traore,B.,Crompton,P.D.,and Butler,N.S.(2015).PD-1 Co-inhibitoryand OX40 Co-stimulatory Crosstalk Regulates Helper T Cell Difierentiation andAnti-Plasmodium Humoral Immunity.Cell hostµbe 17,628-641.
51.Zhang,T.,Lemoi,B.A.,and Sentman,C.L.(2005).Chimeric NK-receptor-bearing T cells mediate antitumor immunotherapy.Blood 106,1544-1551.
52.Zhang,P.,Tu H.G.,Wei.J.,Chaparro-Riggers J.,Salek-Ardakani S.,Yeung Y.A.(2019)Ligand-Blocking and Membrane-Proximal Domain Targeting Anti-OX40 Antibodies Mediate Potent T Cell-Stimulatory and Anti-TumorActivity.Cell Reports 27,3117-3123.
53.al-Shamkhani A1,Birkeland ML,Puklavec M,Brown MH,James W,BarclayAN.(1996)OX40 is differentially expressed on activated rat and mouse T cellsand is the sole receptor for the OX40 ligand.European Journal of Immunology26(8):1695-9.
Claims (10)
1.一种癌症治疗方法,所述方法包括向受试者施用有效量的非竞争性抗OX40抗体或其抗原结合片段与抗TIM3抗体或其抗原结合片段的组合。
2.根据权利要求1所述的方法,其中所述OX40抗体特异性结合人OX40且包含:
(i)重链可变区和轻链可变区,所述重链可变区包含:(a)SEQ ID NO:3的HCDR(重链互补决定区)1,(b)SEQ ID NO:24的HCDR2,和(c)SEQ ID NO:5的HCDR3,所述轻链可变区包含:(d)SEQ ID NO:25的LCDR(轻链互补决定区)1,(e)SEQ ID NO:19的LCDR2,和(f)SEQ ID NO:8的LCDR3;
(ii)重链可变区和轻链可变区,所述重链可变区包含:(a)SEQ ID NO:3的HCDR1,(b)SEQ ID NO:18的HCDR2,和(c)SEQ ID NO:5的HCDR3;所述轻链可变区包含:(d)SEQ ID NO:6的LCDR1,(e)SEQ ID NO:19的LCDR2,和(f)SEQ ID NO:8的LCDR3;
(iii)重链可变区和轻链可变区,所述重链可变区包含:(a)SEQ ID NO:3的HCDR1,(b)SEQ ID NO:13的HCDR2,和(c)SEQ ID NO:5的HCDR3;所述轻链可变区包含:(d)SEQ ID NO:6的LCDR1,(e)SEQ ID NO:7的LCDR2,和(f)SEQ ID NO:8的LCDR3;或
(iv)重链可变区和轻链可变区,所述重链可变区包含:(a)SEQ ID NO:3的HCDR1,(b)SEQ ID NO:4的HCDR2,和(c)SEQ ID NO:5的HCDR3;所述轻链可变区包含:(d)SEQ ID NO:6的LCDR1,(e)SEQ ID NO:7的LCDR2,和(f)SEQ ID NO:8的LCDR3,与抗TIM3抗体或其抗原结合片段组合。
3.根据权利要求1所述的方法,其中所述OX40抗体或抗原结合包含:
(i)包含SEQ ID NO:26的重链可变区(VH)和包含SEQ ID NO:28的轻链可变区(VL);
(ii)包含SEQ ID NO:20的重链可变区(VH)和包含SEQ ID NO:22的轻链可变区(VL);
(iii)包含SEQ ID NO:14的重链可变区(VH)和包含SEQ ID NO:16的轻链可变区(VL);或
(iv)包含SEQ ID NO:9的重链可变区(VH)和包含SEQ ID NO:11的轻链可变区(VL)。
4.根据权利要求1所述的方法,其中所述抗TIM3抗体或其抗原结合片段包含特异性结合人TIM3的抗体抗原结合结构域,并且包含重链可变区和轻链可变区,所述重链可变区包含:SEQ ID NO:32的HCDR1、SEQ ID NO:33的HCDR2和SEQ ID NO:34的HCDR3;所述轻链可变区包含:SEQ ID NO:35的LCDR1、SEQ ID NO:36的LCDR2和SEQ ID NO:37的LCDR3。
5.根据权利要求1所述的方法,其中所述抗TIM3抗体包含特异性结合人TIM3的抗体抗原结合结构域,并且包含含有SEQ ID NO:38的氨基酸序列的重链可变区(VH)和含有SEQ IDNO:40的氨基酸序列的轻链可变区(VL)。
6.根据权利要求1所述的方法,其中所述抗OX40抗体或抗原结合片段是选自由Fab、Fab'-SH、Fv、scFv和(Fab')2片段组成的群组的抗体片段。
7.根据权利要求1所述的方法,其中所述抗TIM3抗体或抗原结合片段是选自由Fab、Fab'-SH、Fv、scFv和(Fab')2片段组成的群组的抗体片段。
8.根据权利要求1所述的方法,其中所述癌症是乳腺癌、结肠癌、头颈癌、胃癌、肾癌、肝癌、小细胞肺癌、非小细胞肺癌、卵巢癌、皮肤癌、间皮瘤、淋巴瘤、白血病、骨髓瘤或肉瘤。
9.根据权利要求8所述的方法,其中所述乳腺癌是转移性乳腺癌。
10.根据权利要求1至9中任一项所述的方法,其中所述治疗在所述治疗停止后在所述受试者中导致持续的抗癌反应。
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNPCT/CN2019/120040 | 2019-11-21 | ||
CN2019120040 | 2019-11-21 | ||
CN202080075615.4A CN114641500B (zh) | 2019-11-21 | 2020-11-19 | 使用抗ox40抗体与抗tim3抗体的组合治疗癌症的方法 |
PCT/CN2020/130003 WO2021098758A1 (en) | 2019-11-21 | 2020-11-19 | Methods of cancer treatment using anti-ox40 antibodies in combination with anti-tim3 antibodies |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202080075615.4A Division CN114641500B (zh) | 2019-11-21 | 2020-11-19 | 使用抗ox40抗体与抗tim3抗体的组合治疗癌症的方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN118320076A true CN118320076A (zh) | 2024-07-12 |
Family
ID=75980301
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202410292008.3A Pending CN118320076A (zh) | 2019-11-21 | 2020-11-19 | 使用抗ox40抗体与抗tim3抗体的组合治疗癌症的方法 |
CN202080075615.4A Active CN114641500B (zh) | 2019-11-21 | 2020-11-19 | 使用抗ox40抗体与抗tim3抗体的组合治疗癌症的方法 |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202080075615.4A Active CN114641500B (zh) | 2019-11-21 | 2020-11-19 | 使用抗ox40抗体与抗tim3抗体的组合治疗癌症的方法 |
Country Status (12)
Country | Link |
---|---|
US (1) | US20230002501A1 (zh) |
EP (1) | EP4061845A4 (zh) |
JP (1) | JP2023503399A (zh) |
KR (1) | KR20220103105A (zh) |
CN (2) | CN118320076A (zh) |
AU (1) | AU2020387990A1 (zh) |
BR (1) | BR112022008184A2 (zh) |
CA (1) | CA3157319A1 (zh) |
IL (1) | IL293117A (zh) |
MX (1) | MX2022006149A (zh) |
WO (1) | WO2021098758A1 (zh) |
ZA (1) | ZA202204252B (zh) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
MX2020012567A (es) | 2018-05-23 | 2021-01-29 | Beigene Ltd | Anticuerpos anti-ox40 y metodos de uso. |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB201116092D0 (en) * | 2011-09-16 | 2011-11-02 | Bioceros B V | Antibodies and uses thereof |
JOP20200096A1 (ar) * | 2014-01-31 | 2017-06-16 | Children’S Medical Center Corp | جزيئات جسم مضاد لـ tim-3 واستخداماتها |
TW201619200A (zh) * | 2014-10-10 | 2016-06-01 | 麥迪紐有限責任公司 | 人類化抗-ox40抗體及其用途 |
AU2016271111B2 (en) * | 2015-05-29 | 2022-04-28 | Bristol-Myers Squibb Company | Antibodies against OX40 and uses thereof |
CA3006963A1 (en) * | 2015-12-03 | 2017-06-08 | Ludwig Institute For Cancer Research Ltd. | Anti-ox40 antibodies and methods of use thereof |
KR102460525B1 (ko) * | 2016-08-26 | 2022-11-01 | 베이진 엘티디 | 항-tim-3 항체 및 그의 용도 |
CN111542544A (zh) * | 2017-11-01 | 2020-08-14 | 百时美施贵宝公司 | 用于治疗癌症的免疫刺激性激动性抗体 |
CN110092832B (zh) * | 2018-01-29 | 2020-03-31 | 康源博创生物科技(北京)有限公司 | 抗ox40抗体及其用途 |
MX2020012567A (es) * | 2018-05-23 | 2021-01-29 | Beigene Ltd | Anticuerpos anti-ox40 y metodos de uso. |
-
2020
- 2020-11-19 CN CN202410292008.3A patent/CN118320076A/zh active Pending
- 2020-11-19 AU AU2020387990A patent/AU2020387990A1/en active Pending
- 2020-11-19 WO PCT/CN2020/130003 patent/WO2021098758A1/en unknown
- 2020-11-19 EP EP20889435.2A patent/EP4061845A4/en active Pending
- 2020-11-19 IL IL293117A patent/IL293117A/en unknown
- 2020-11-19 BR BR112022008184A patent/BR112022008184A2/pt unknown
- 2020-11-19 CA CA3157319A patent/CA3157319A1/en active Pending
- 2020-11-19 MX MX2022006149A patent/MX2022006149A/es unknown
- 2020-11-19 KR KR1020227015822A patent/KR20220103105A/ko active Pending
- 2020-11-19 CN CN202080075615.4A patent/CN114641500B/zh active Active
- 2020-11-19 JP JP2022527137A patent/JP2023503399A/ja active Pending
- 2020-11-19 US US17/778,689 patent/US20230002501A1/en active Pending
-
2022
- 2022-04-14 ZA ZA2022/04252A patent/ZA202204252B/en unknown
Also Published As
Publication number | Publication date |
---|---|
CA3157319A1 (en) | 2021-05-27 |
BR112022008184A2 (pt) | 2022-07-12 |
KR20220103105A (ko) | 2022-07-21 |
EP4061845A4 (en) | 2023-12-13 |
IL293117A (en) | 2022-07-01 |
US20230002501A1 (en) | 2023-01-05 |
WO2021098758A1 (en) | 2021-05-27 |
AU2020387990A1 (en) | 2022-06-02 |
CN114641500B (zh) | 2024-03-29 |
CN114641500A (zh) | 2022-06-17 |
EP4061845A1 (en) | 2022-09-28 |
JP2023503399A (ja) | 2023-01-30 |
ZA202204252B (en) | 2023-01-25 |
MX2022006149A (es) | 2022-06-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20240409655A1 (en) | Anti-ox40 antibodies and methods of use | |
US20230002500A1 (en) | Methods of cancer treatment using anti-ox40 antibodies in combination with anti-tigit antibodies | |
US20230212291A1 (en) | Methods of cancer treatment using anti-ox40 antibodies in combination with anti-pd1 or anti-pdl1 antibodies | |
CN114641500B (zh) | 使用抗ox40抗体与抗tim3抗体的组合治疗癌症的方法 | |
US20230002499A1 (en) | Methods of cancer treatment with anti-ox40 antibody in combination with chemotherapeutic agents | |
EA046633B1 (ru) | Способы лечения рака с применением антител к ox40 в комбинации с антителами к tigit | |
EA047307B1 (ru) | Способы лечения рака с применением антител к ox40 в комбинации с антителами к tim3 | |
EA045547B1 (ru) | Антитела к ox40 и способы применения |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
REG | Reference to a national code |
Ref country code: HK Ref legal event code: DE Ref document number: 40109079 Country of ref document: HK |