[go: up one dir, main page]

CN118317115A - Data decoding method and device for equal bit precision prediction, mapping and segment coding - Google Patents

Data decoding method and device for equal bit precision prediction, mapping and segment coding Download PDF

Info

Publication number
CN118317115A
CN118317115A CN202410577930.7A CN202410577930A CN118317115A CN 118317115 A CN118317115 A CN 118317115A CN 202410577930 A CN202410577930 A CN 202410577930A CN 118317115 A CN118317115 A CN 118317115A
Authority
CN
China
Prior art keywords
data
sub
decoding
value range
interval
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202410577930.7A
Other languages
Chinese (zh)
Inventor
林涛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Tianhe Electronic Information Co ltd
Original Assignee
Shanghai Tianhe Electronic Information Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Tianhe Electronic Information Co ltd filed Critical Shanghai Tianhe Electronic Information Co ltd
Priority to CN202410577930.7A priority Critical patent/CN118317115A/en
Publication of CN118317115A publication Critical patent/CN118317115A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/90Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using coding techniques not provided for in groups H04N19/10-H04N19/85, e.g. fractals
    • H04N19/91Entropy coding, e.g. variable length coding [VLC] or arithmetic coding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/169Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
    • H04N19/184Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being bits, e.g. of the compressed video stream
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/42Methods or arrangements for coding, decoding, compressing or decompressing digital video signals characterised by implementation details or hardware specially adapted for video compression or decompression, e.g. dedicated software implementation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/44Decoders specially adapted therefor, e.g. video decoders which are asymmetric with respect to the encoder

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Compression, Expansion, Code Conversion, And Decoders (AREA)
  • Compression Or Coding Systems Of Tv Signals (AREA)

Abstract

本发明提供了一种保持同样比特精度的预测运算方式;同时,为了克服该方式产生的增加了后续熵解码的复杂度的卷绕效应,提供了一种卷绕效应修正映射,有效去除卷绕效应;此外,提供了一种分区间多倍数基本比特单位熵解码方式,对映射后的预测残差进行低复杂度的有效熵解码。

The present invention provides a prediction operation method that maintains the same bit accuracy; at the same time, in order to overcome the warping effect generated by this method that increases the complexity of subsequent entropy decoding, a warping effect correction mapping is provided to effectively remove the warping effect; in addition, a multiple basic bit unit entropy decoding method between partitions is provided to perform low-complexity effective entropy decoding on the mapped prediction residual.

Description

等比特精度预测、映射和分段编码的数据解码方法和装置Data decoding method and device for equal bit precision prediction, mapping and segment coding

技术领域Technical Field

本发明涉及一种对数据进行有损或无损压缩的编码及解码系统,特别是图像和视频数据的编码及解码的方法和装置。The present invention relates to a coding and decoding system for lossy or lossless compression of data, in particular to a method and device for coding and decoding image and video data.

背景技术Background technique

随着人类社会进入人工智能、大数据、虚拟现实、增强现实、混合现实、云计算、移动计算、云-移动计算、超高清(4K)和特超高清(8K)视频图像分辨率、4G/5G通讯的时代,对各种数据,包括大数据、图像数据、视频数据、以及各种新形态的数据,进行超高压缩比和极高质量的数据压缩成为必不可少的技术。As human society enters the era of artificial intelligence, big data, virtual reality, augmented reality, mixed reality, cloud computing, mobile computing, cloud-mobile computing, ultra-high definition (4K) and ultra-ultra-high definition (8K) video image resolution, and 4G/5G communications, ultra-high compression ratio and extremely high quality data compression for various data, including big data, image data, video data, and various new forms of data has become an indispensable technology.

数据集是由数据的样值也称元素(例如:字节、比特、像素、像素分量、空间采样点、变换域系数)组成的排列成一定空间(一维、二维、或多维)形状的有限数据的集合(例如:一个一维数据队列、一个二维数据文件、一帧图像、一个视频序列、一个变换域、一个变换块、多个变换块、一个三维场景、一个持续变化的三维场景的序列)。对数据集,特别是二维或以上数据集进行数据压缩的编码(以及相应的解码)时,通常把此数据集划分成若干具有预定形状的子集,称为编码块(从解码的角度也就是解码块,统称为编解码块),以编解码块为单位,按照预定的时间顺序,一块一块进行编码或解码。在任一时刻,正在编码中的编码块称为当前编码块。在任一时刻,正在解码中的解码块称为当前解码块。当前编码块或当前解码块统称为当前编解码块或简称为当前块。正在编码或解码中的样值称为当前编码样值或当前解码样值,简称为当前样值也称为当前元素。A data set is a set of finite data arranged in a certain spatial (one-dimensional, two-dimensional, or multi-dimensional) shape, composed of data sample values, also called elements (e.g., bytes, bits, pixels, pixel components, spatial sampling points, transform domain coefficients) (e.g., a one-dimensional data queue, a two-dimensional data file, a frame of image, a video sequence, a transform domain, a transform block, multiple transform blocks, a three-dimensional scene, a sequence of continuously changing three-dimensional scenes). When encoding (and correspondingly decoding) a data set, especially a two-dimensional or larger data set, for data compression, the data set is usually divided into several subsets with a predetermined shape, called coding blocks (from the perspective of decoding, also called decoding blocks, collectively referred to as coding and decoding blocks), and the coding or decoding is performed one by one in a predetermined time sequence, with coding and decoding blocks as units. At any time, the coding block being encoded is called the current coding block. At any time, the decoding block being decoded is called the current decoding block. The current coding block or the current decoding block is collectively referred to as the current coding and decoding block or simply the current block. The sample value being encoded or decoded is called the current coding sample value or the current decoding sample value, referred to as the current sample value or the current element.

对于具有一定形状(不一定限于正方形或矩形或三角形,可以是任何合理的其他形状)的一个编解码块,在很多场合需要将其划分成更精细的基元(基本单元),按照预定的时间顺序,一个基元一个基元进行编码或解码。对一个基元内的所有样值,通常施行同一类型的编码或解码操作。在任一时刻,正在编码或解码中的基元称为当前基元。对一个基元进行编码的结果是一个或多个编码参数,最后产生含这些编码参数的压缩数据码流。对一个基元进行解码就是解析所述压缩数据码流获得一个或多个编码参数,从所述一个或多个编码参数复原出重构的数据的样值。For a codec block with a certain shape (not necessarily limited to square, rectangle or triangle, but can be any other reasonable shape), it is necessary to divide it into finer primitives (basic units) in many cases, and encode or decode one primitive at a time in a predetermined order. For all sample values in a primitive, the same type of encoding or decoding operation is usually performed. At any time, the primitive being encoded or decoded is called the current primitive. The result of encoding a primitive is one or more encoding parameters, and finally a compressed data code stream containing these encoding parameters is generated. Decoding a primitive is to parse the compressed data code stream to obtain one or more encoding parameters, and restore the sample values of the reconstructed data from the one or more encoding parameters.

基元的例包括编解码块(整个块作为一个基元)、子块、微块、串、字节串、alpha(阿尔法)串、像素串、样值串、索引串、线条。Examples of primitives include codec blocks (the entire block is considered a primitive), sub-blocks, micro-blocks, strings, byte strings, alpha strings, pixel strings, sample strings, index strings, and lines.

很多常见的数据集D的一个显著特点是数据集的当前元素Di与其他元素之间有相关性。在这种情形,预测运算,也常称为匹配或差分或DPCM等,可以有效降低数据集的熵,提高后续熵编码阶段的编码效率。A notable feature of many common data sets D is that there is a correlation between the current element Di of the data set and other elements. In this case, the prediction operation, also often called matching or difference or DPCM, can effectively reduce the entropy of the data set and improve the coding efficiency of the subsequent entropy coding stage.

最常见的基本预测运算是对当前元素Di,编码器按照预定规则确定一个预测值Pi,计算预测残差Ri=Di-Pi,然后对Ri进行熵编码,并且将熵编码结果写入压缩数据码流,传送到解码器。解码器从压缩数据码流经熵解码等步骤获得Ri,按照与编码器同样的预定规则确定一个预测值Pi,然后计算出当前元素Di=Ri+Pi。The most common basic prediction operation is that for the current element Di, the encoder determines a prediction value Pi according to a predetermined rule, calculates the prediction residual Ri = Di-Pi, then entropy codes Ri, and writes the entropy coding result into the compressed data stream and transmits it to the decoder. The decoder obtains Ri from the compressed data stream through entropy decoding and other steps, determines a prediction value Pi according to the same predetermined rule as the encoder, and then calculates the current element Di = Ri + Pi.

现有技术中,Di和Pi通常具有同样的n比特的比特精度,因而Ri具有n+1比特的比特精度,即预测运算扩大了数据的取值范围,预测残差Ri的取值范围比原始数据Di的取值范围大了一倍。Ri比Di多消耗一个比特,使取值范围加倍,这是预测运算产生的负面作用,既影响了编码效率的提高,也增加甚至显著增加了编解码的实现复杂度和功耗(即电力消耗),降低了编解码器的处理效率。例如,在CPU,GPU等通用处理器中,处理器是以若干固定的比特精度,如8比特,16比特,32比特,64比特,128比特,进行数据处理,增加一个比特常常导致数据的比特精度加倍,如从8比特,16比特,32比特,64比特分别变为16比特,32比特,64比特,128比特,而现代的处理器都具有单指令并行处理多个数据的能力,1个128比特的处理器的一条指令可以同时处理16个8比特数据或8个16比特数据或4个32比特数据或2个64比特数据或1个128比特数据。因此,处理的比特精度加倍直接导致并行处理能力减半、处理效率减半和处理功耗加倍。这是预测编码中存在的一个严重问题。In the prior art, Di and Pi usually have the same bit precision of n bits, so Ri has a bit precision of n+1 bits, that is, the prediction operation expands the value range of the data, and the value range of the prediction residual Ri is twice as large as the value range of the original data Di. Ri consumes one more bit than Di, doubling the value range, which is a negative effect of the prediction operation, which not only affects the improvement of coding efficiency, but also increases or even significantly increases the implementation complexity and power consumption (i.e., power consumption) of the codec, and reduces the processing efficiency of the codec. For example, in general-purpose processors such as CPUs and GPUs, the processors process data with a fixed bit precision, such as 8 bits, 16 bits, 32 bits, 64 bits, and 128 bits. Adding one bit often results in doubling the bit precision of the data, such as changing from 8 bits, 16 bits, 32 bits, and 64 bits to 16 bits, 32 bits, 64 bits, and 128 bits, respectively. Modern processors have the ability to process multiple data in parallel with a single instruction. One instruction of a 128-bit processor can simultaneously process 16 8-bit data, 8 16-bit data, 4 32-bit data, 2 64-bit data, or 1 128-bit data. Therefore, doubling the bit precision of processing directly leads to halving the parallel processing capability, halving the processing efficiency, and doubling the processing power consumption. This is a serious problem in predictive coding.

发明内容Summary of the invention

为了解决预测编码中的这一问题,本发明提供了一种保持同样比特精度的预测运算方式;同时,为了克服该方式产生的增加了后续熵编码的复杂度的卷绕效应,提供了一种卷绕效应修正映射,有效去除卷绕效应;此外,提供了一种分区间多倍数基本比特单位熵编码方式,对映射后的预测残差进行低复杂度的有效熵编码。In order to solve this problem in predictive coding, the present invention provides a prediction operation method that maintains the same bit accuracy; at the same time, in order to overcome the warping effect generated by this method that increases the complexity of subsequent entropy coding, a warping effect correction mapping is provided to effectively remove the warping effect; in addition, a multiple basic bit unit entropy coding method between partitions is provided to perform low-complexity effective entropy coding on the mapped prediction residual.

本发明的编码方法或装置的最基本的特有技术特征是至少包括下列功能之一或其组合:The most basic unique technical feature of the encoding method or device of the present invention is to include at least one of the following functions or a combination thereof:

1)对当前元素和其具有同样比特精度的预测值进行完全可逆等比特精度预测运算,获得与所述当前元素具有同样所述比特精度的预测残差。完全可逆等比特精度预测运算简称为等精度预测运算的例包括减法运算后丢弃最高比特仅保留所述最高比特外的所有其他比特,其完全可逆的逆运算是加法运算后丢弃最高比特仅保留所述最高比特外的所有其他比特。1) Perform a fully reversible equal bit precision prediction operation on the current element and its predicted value with the same bit precision to obtain a prediction residual with the same bit precision as the current element. An example of a fully reversible equal bit precision prediction operation, referred to as an equal precision prediction operation, includes a subtraction operation followed by discarding the highest bit and retaining all other bits except the highest bit, and a fully reversible inverse operation is an addition operation followed by discarding the highest bit and retaining all other bits except the highest bit.

传统的非等精度预测运算总是会在原取值范围的基础上扩展出新的附加取值范围,导致比特精度的增加。例如,如果Di和Pi的原取值范围都是[0, 255],则Ri的取值范围变为[-255, 255],扩展出新的附加取值范围[-255, -1]。Traditional non-equal precision prediction operations always expand a new additional value range based on the original value range, resulting in an increase in bit precision. For example, if the original value ranges of Di and Pi are both [0, 255], the value range of Ri becomes [-255, 255], expanding a new additional value range of [-255, -1].

等精度预测运算本质上通过以预定规则将附加取值范围“卷绕”回到原取值范围或其一部分的方式,达到保持原取值范围和原比特精度不变的目的。例如,将附加取值范围[-255, -1]“卷绕”回到原取值范围的一部分[1, 255]。The equal-precision prediction operation essentially achieves the purpose of keeping the original value range and the original bit precision unchanged by "wrapping" the additional value range back to the original value range or a part of it according to a predetermined rule. For example, the additional value range [-255, -1] is "wrapped" back to a part of the original value range [1, 255].

等精度预测运算的这种卷绕效应将预测残差的取值范围的一端之外的值变为取值范围的另一端之内的值。例如,将预测残差的取值范围[0, 255]的0端之外的值-1,-2,-3,… …变为取值范围的255端之内的值255,254,253,… …。This wrapping effect of equal-precision prediction operation changes the values outside one end of the prediction residual value range to values within the other end of the value range. For example, the values -1, -2, -3, ... outside the 0 end of the prediction residual value range [0, 255] are changed to values 255, 254, 253, ... within the 255 end of the value range.

等精度预测运算可能在不少情况下将预测残差原本取值集聚(即取这些值的数据较多)的一个连续区间分裂为取值范围中的两个互相分离的子范围,增加了后续对预测残差进行熵编码的复杂度。例如,将原本取值集聚的一个区间[-7, 7]分裂为取值范围中的两个互相分离的子范围[0, 7]和[249, 255],导致熵编码时需要分别对数值进行判断和操作,增加了熵编码的复杂度。In many cases, the equal-precision prediction operation may split a continuous interval where the prediction residuals are originally clustered (i.e., there are more data taking these values) into two separate sub-ranges in the value range, increasing the complexity of subsequent entropy coding of the prediction residuals. For example, splitting an interval [-7, 7] where the values are originally clustered into two separate sub-ranges [0, 7] and [249, 255] in the value range requires the values to be judged and operated separately during entropy coding, increasing the complexity of entropy coding.

2)对所述预测残差进行卷绕效应修正映射,将原本连续的区间却因卷绕效应而互相分离的取值范围中的两个子范围以预定方式重组为一个连通区间,以去除所述等精度预测运算产生的卷绕效应,降低后续熵编码的复杂度。卷绕效应修正映射的例包括将两个互相分离的子范围的值0,1,2,… … 和255,254,253,… …分别映射为0,2,4,… … 和1,3,5,… …,重组为一个连通区间0,1,2,3,4,5,… …。2) Performing warping effect correction mapping on the prediction residual, reorganizing two sub-ranges in the value range that were originally continuous but separated from each other due to the warping effect into a connected interval in a predetermined manner, so as to remove the warping effect generated by the equal-precision prediction operation and reduce the complexity of subsequent entropy coding. An example of warping effect correction mapping includes mapping the values of two separated sub-ranges 0, 1, 2, ... … and 255, 254, 253, ... … to 0, 2, 4, ... … and 1, 3, 5, ... …, respectively, and reorganizing them into a connected interval 0, 1, 2, 3, 4, 5, ... ….

3)对映射后预测残差进行分区间多倍数基本比特单位熵编码:将映射后预测残差的取值范围分为K(2 ≤ K ≤ 100)个区间,对所述K个区间的值,分别使用码长(即比特数)为Vk的码字进行熵编码,其中1 ≤ k ≤ K,每个Vk都是一个预定的大于1的整数常数比特数C,称为基本比特单位,的整数倍;至少将表示预测残差的信息写入压缩数据码流。分区间多倍数基本比特单位熵编码的例包括K=3,C=4,V1=4,V2=8,V3=16。 3) Performing entropy coding of multiple basic bit units in partitioned intervals on the mapped prediction residual: Divide the value range of the mapped prediction residual into K (2 ≤ K ≤ 100) intervals, and entropy coding the values of the K intervals using codewords with a code length (i.e., number of bits) of V k , where 1 ≤ k ≤ K, and each V k is an integer multiple of a predetermined integer constant bit number C greater than 1, called a basic bit unit; at least writing information representing the prediction residual into the compressed data bit stream. Examples of partitioned interval multiple basic bit unit entropy coding include K = 3, C = 4, V 1 = 4, V 2 = 8, and V 3 = 16.

本发明的解码方法或装置的最基本的特有技术特征是至少包括下列功能之一或其组合:The most basic unique technical feature of the decoding method or device of the present invention is to include at least one of the following functions or a combination thereof:

1)解析压缩数据码流,至少获得表示数据的值的信息,对数据进行分区间多倍数基本比特单位熵解码:将数据的取值范围分为K(2 ≤ K ≤ 100)个区间,对所述K个区间的值,分别使用码长(即比特数)为Vk的码字进行熵解码,获得数据的值,其中1 ≤ k ≤ K,每个Vk都是一个预定的大于1的整数常数比特数C,称为基本比特单位,的整数倍。1) Parse the compressed data code stream to obtain at least the information representing the value of the data, and perform entropy decoding on the data in multiple basic bit units: divide the value range of the data into K (2 ≤ K ≤ 100) intervals, and use code words with a code length (i.e., number of bits) of V k to perform entropy decoding on the values of the K intervals to obtain the value of the data, where 1 ≤ k ≤ K, and each V k is an integer multiple of a predetermined integer constant bit number C greater than 1, called the basic bit unit.

2)对数据进行卷绕效应修正逆映射,将数据的取值范围的一个连通区间以预定方式重组为取值范围中互相分离的两个子范围。2) Performing a convolution effect corrected inverse mapping on the data, reorganizing a connected interval of the data value range into two separate sub-ranges in the value range in a predetermined manner.

3)对当前元素的残差数据和其具有同样比特精度的预测值进行等比特精度预测补偿运算,获得与所述残差数据具有同样所述比特精度的当前元素。3) Performing equal bit precision prediction compensation operation on the residual data of the current element and its predicted value with the same bit precision to obtain the current element with the same bit precision as the residual data.

根据本发明的一个方面,提供了一种数据压缩的编码方法或装置,至少包括完成下列功能和操作之一或其组合的步骤或模块:According to one aspect of the present invention, a data compression encoding method or device is provided, comprising at least steps or modules for performing one or a combination of the following functions and operations:

1)对当前元素和其具有同样比特精度的预测值进行完全可逆等比特精度预测运算,获得与所述当前元素具有同样所述比特精度的预测残差;1) performing a fully reversible equal bit precision prediction operation on the current element and its predicted value with the same bit precision to obtain a prediction residual with the same bit precision as the current element;

2)对数据的取值范围进行卷绕效应修正映射,将原本连续的区间却因卷绕效应而互相分离的取值范围中的两个子范围以预定方式重组为一个连通区间,以去除等精度预测运算产生的卷绕效应;2) Perform a wrap-up effect correction mapping on the value range of the data, and reorganize the two sub-ranges in the value range that were originally continuous but separated from each other due to the wrap-up effect into a connected interval in a predetermined manner to remove the wrap-up effect caused by the equal-precision prediction operation;

3)对数据进行分区间多倍数基本比特单位熵编码:将数据的取值范围分为K(2 ≤K ≤ 100)个区间,对所述K个区间的值,分别使用码长即比特数为Vk的码字进行熵编码,其中1 ≤ k ≤ K,每个Vk都是一个预定的大于1的整数常数比特数C,称为基本比特单位,的整数倍;至少将表示所述数据的信息写入压缩数据码流。3) Perform entropy coding of multiple basic bit units in intervals: Divide the value range of the data into K (2 ≤ K ≤ 100) intervals, and perform entropy coding on the values of the K intervals using code words with a code length , i.e., a number of bits, respectively, where 1 ≤ k ≤ K, and each V k is an integer multiple of a predetermined integer constant bit number C greater than 1, called the basic bit unit; at least write the information representing the data into the compressed data code stream.

从第一个角度,本发明提供了一种对数据进行压缩的编码方法,其特征在于至少包括下列步骤之一或其组合:From a first perspective, the present invention provides a coding method for compressing data, characterized in that it includes at least one of the following steps or a combination thereof:

1)对当前元素和其具有同样比特精度的预测值进行完全可逆等比特精度预测运算,获得与所述当前元素具有同样所述比特精度的预测残差;1) performing a fully reversible equal bit precision prediction operation on the current element and its predicted value with the same bit precision to obtain a prediction residual with the same bit precision as the current element;

2)对数据的取值范围进行卷绕效应修正映射,将原本连续的区间却因卷绕效应而互相分离的取值范围中的两个子范围以预定方式重组为一个连通区间,以去除等精度预测运算产生的卷绕效应;2) Perform a wrap-up effect correction mapping on the value range of the data, and reorganize the two sub-ranges in the value range that were originally continuous but separated from each other due to the wrap-up effect into a connected interval in a predetermined manner to remove the wrap-up effect caused by the equal-precision prediction operation;

3)对数据进行分区间多倍数基本比特单位熵编码:将数据的取值范围分为K(2 ≤K ≤ 100)个区间,对所述K个区间的值,分别使用码长即比特数为Vk的码字进行熵编码,其中1 ≤ k ≤ K,每个Vk都是一个预定的大于1的整数常数比特数C,称为基本比特单位,的整数倍;至少将表示所述数据的信息写入压缩数据码流。3) Perform entropy coding of multiple basic bit units in intervals: Divide the value range of the data into K (2 ≤ K ≤ 100) intervals, and perform entropy coding on the values of the K intervals using code words with a code length , i.e., a number of bits, respectively, where 1 ≤ k ≤ K, and each V k is an integer multiple of a predetermined integer constant bit number C greater than 1, called the basic bit unit; at least write the information representing the data into the compressed data code stream.

从第二个角度,本发明提供了一种对数据进行压缩的编码装置,其特征在于至少包括下列模块之一或其组合:From a second perspective, the present invention provides a coding device for compressing data, characterized in that it includes at least one of the following modules or a combination thereof:

1)等比特精度预测运算模块:对当前元素和其具有同样比特精度的预测值进行完全可逆等比特精度预测运算,获得与所述当前元素具有同样所述比特精度的预测残差;1) Equal bit precision prediction operation module: performs a fully reversible equal bit precision prediction operation on the current element and its predicted value with the same bit precision to obtain a prediction residual with the same bit precision as the current element;

2)卷绕效应修正映射模块:对数据的取值范围进行卷绕效应修正映射,将原本连续的区间却因卷绕效应而互相分离的取值范围中的两个子范围以预定方式重组为一个连通区间,以去除等精度预测运算产生的卷绕效应;2) Wrapping effect correction mapping module: performs wrapping effect correction mapping on the value range of the data, and reorganizes two sub-ranges in the value range that were originally continuous but separated from each other due to the wrapping effect into a connected interval in a predetermined manner to remove the wrapping effect caused by the equal-precision prediction operation;

3)分区间多倍数基本比特单位熵编码模块:对数据进行分区间多倍数基本比特单位熵编码:将数据的取值范围分为满足2 ≤ K ≤ 100的K个区间,对所述K个区间的值,分别使用码长即比特数为Vk的码字进行熵编码,其中1 ≤ k ≤ K,每个Vk都是一个预定的大于1的整数常数比特数C,称为基本比特单位,的整数倍;至少将表示所述数据的信息写入压缩数据码流。3) Inter-partition multiple basic bit unit entropy coding module: perform inter-partition multiple basic bit unit entropy coding on the data: divide the value range of the data into K intervals satisfying 2 ≤ K ≤ 100, and perform entropy coding on the values of the K intervals using code words with a code length, i.e., a number of bits, respectively, where 1 ≤ k ≤ K, and each V k is an integer multiple of a predetermined integer constant bit number C greater than 1, called the basic bit unit; at least write the information representing the data into the compressed data code stream.

根据本发明的另一个方面,还提供了一种数据压缩的解码方法或装置,至少包括完成下列功能和操作之一或其组合的步骤或模块:According to another aspect of the present invention, a data compression decoding method or device is also provided, which includes at least steps or modules for performing one or a combination of the following functions and operations:

1)解析压缩数据码流,至少获得表示数据的值的信息,对数据进行分区间多倍数基本比特单位熵解码:将数据的取值范围分为满足2 ≤ K ≤ 100的K个区间,对所述K个区间的值,分别使用码长即比特数为Vk的码字进行熵解码,获得数据的值,其中1 ≤ k ≤ K,每个Vk都是一个预定的大于1的整数常数比特数C,称为基本比特单位,的整数倍;1) Parse the compressed data code stream to obtain at least information representing the value of the data, and perform entropy decoding on the data in multiple basic bit units: divide the value range of the data into K intervals satisfying 2 ≤ K ≤ 100, and perform entropy decoding on the values of the K intervals using code words with a code length, i.e., a bit number of V k , to obtain the value of the data, where 1 ≤ k ≤ K, and each V k is an integer multiple of a predetermined integer constant bit number C greater than 1, called the basic bit unit;

2)对数据进行卷绕效应修正逆映射,将数据的取值范围的一个连通区间以预定方式重组为取值范围中互相分离的两个子范围;2) Performing a convolution effect correction inverse mapping on the data, reorganizing a connected interval of the data value range into two separate sub-ranges in the value range in a predetermined manner;

3)对当前元素的残差数据和其具有同样比特精度的预测值进行等比特精度预测补偿运算,获得与所述残差数据具有同样所述比特精度的当前元素。3) Performing equal bit precision prediction compensation operation on the residual data of the current element and its predicted value with the same bit precision to obtain the current element with the same bit precision as the residual data.

从第三个角度,本发明提供了一种对数据进行压缩的解码方法,其特征在于至少包括下列步骤之一或其组合:From a third perspective, the present invention provides a method for decoding compressed data, characterized in that it includes at least one of the following steps or a combination thereof:

1)解析压缩数据码流,至少获得表示数据的值的信息,对数据进行分区间多倍数基本比特单位熵解码:将数据的取值范围分为满足2 ≤ K ≤ 100的K个区间,对所述K个区间的值,分别使用码长即比特数为Vk的码字进行熵解码,获得数据的值,其中1 ≤ k ≤ K,每个Vk都是一个预定的大于1的整数常数比特数C,称为基本比特单位,的整数倍;1) Parse the compressed data code stream to obtain at least information representing the value of the data, and perform entropy decoding on the data in multiple basic bit units: divide the value range of the data into K intervals satisfying 2 ≤ K ≤ 100, and perform entropy decoding on the values of the K intervals using code words with a code length, i.e., a bit number of V k , to obtain the value of the data, where 1 ≤ k ≤ K, and each V k is an integer multiple of a predetermined integer constant bit number C greater than 1, called the basic bit unit;

2)对数据进行卷绕效应修正逆映射,将数据的取值范围的一个连通区间以预定方式重组为取值范围中互相分离的两个子范围;2) Performing a convolution effect correction inverse mapping on the data, reorganizing a connected interval of the data value range into two separate sub-ranges in the value range in a predetermined manner;

3)对当前元素的残差数据和其具有同样比特精度的预测值进行等比特精度预测补偿运算,获得与所述残差数据具有同样所述比特精度的当前元素。3) Performing equal bit precision prediction compensation operation on the residual data of the current element and its predicted value with the same bit precision to obtain the current element with the same bit precision as the residual data.

从第四个角度,本发明提供了一种对数据进行压缩的解码装置,其特征在于至少包括下列模块之一或其组合:From a fourth perspective, the present invention provides a decoding device for compressing data, characterized in that it includes at least one of the following modules or a combination thereof:

1)分区间多倍数基本比特单位熵解码模块:解析压缩数据码流,至少获得表示数据的值的信息,对数据进行分区间多倍数基本比特单位熵解码:将数据的取值范围分为满足2 ≤ K ≤ 100的K个区间,对所述K个区间的值,分别使用码长即比特数为Vk的码字进行熵解码,获得数据的值,其中1 ≤ k ≤ K,每个Vk都是一个预定的大于1的整数常数比特数C,称为基本比特单位,的整数倍;1) Inter-partition multiple basic bit unit entropy decoding module: parse the compressed data code stream to obtain at least information representing the value of the data, and perform inter-partition multiple basic bit unit entropy decoding on the data: divide the value range of the data into K intervals satisfying 2 ≤ K ≤ 100, and use code words with a code length of V k , i.e., the number of bits, to perform entropy decoding on the values of the K intervals to obtain the value of the data, where 1 ≤ k ≤ K, and each V k is an integer multiple of a predetermined integer constant bit number C greater than 1, called the basic bit unit;

2)卷绕效应修正逆映射模块:对数据进行卷绕效应修正逆映射,将数据的取值范围的一个连通区间以预定方式重组为取值范围中互相分离的两个子范围;2) Convolution effect correction inverse mapping module: performs convolution effect correction inverse mapping on the data, and reorganizes a connected interval of the data value range into two separate sub-ranges in the value range in a predetermined manner;

3)等比特精度预测补偿运算模块:对当前元素的残差数据和其具有同样比特精度的预测值进行等比特精度预测补偿运算,获得与所述残差数据具有同样所述比特精度的当前元素。3) Equal bit precision prediction and compensation operation module: performs equal bit precision prediction and compensation operation on the residual data of the current element and its predicted value with the same bit precision, to obtain the current element with the same bit precision as the residual data.

本发明适用于对数据进行有损压缩的编码和解码,本发明也同样适用于对数据进行无损压缩的编码和解码。本发明适用于一维数据如字符串数据或字节串数据或一维图形或分维图形的编码和解码,本发明也同样适用于二维或以上数据如图像或视频数据的编码和解码。The present invention is applicable to encoding and decoding of lossy compressed data, and the present invention is also applicable to encoding and decoding of lossless compressed data. The present invention is applicable to encoding and decoding of one-dimensional data such as string data or byte string data or one-dimensional graphics or fractal graphics, and the present invention is also applicable to encoding and decoding of two-dimensional or more data such as image or video data.

本发明中,数据压缩所涉及的数据包括下列类型的数据之一或其组合:In the present invention, the data involved in data compression includes one or a combination of the following types of data:

1)一维数据;1) One-dimensional data;

2)二维数据;2) Two-dimensional data;

3)多维数据;3) Multidimensional data;

4)图形;4) Graphics;

5)分维图形;5) Fractal graphics;

6)图像;6) Image;

7)图像的序列;7) Sequence of images;

8)视频;8) Video;

9)三维场景;9) Three-dimensional scene;

10)持续变化的三维场景的序列;10) Sequences of continuously changing three-dimensional scenes;

11)虚拟现实的场景;11) Virtual reality scenes;

12)持续变化的虚拟现实的场景的序列12) Sequence of continuously changing virtual reality scenes

13)像素形式的图像;13) Images in pixel form;

14)图像的变换域数据;14) Transform domain data of the image;

15)二维或二维以上字节的集合;15) A collection of bytes of two or more dimensions;

16)二维或二维以上比特的集合;16) A set of bits of two or more dimensions;

17)像素的集合;17) A collection of pixels;

18)像素分量的集合。18) A collection of pixel components.

本发明中,在数据是图像、图像的序列、视频等的情形,编码块或解码块是图像的一个编码区域或一个解码区域,包括以下至少一种:整幅图像、图像的子图像、条带slice、片块tile、宏块、最大编码单元LCU、编码树单元CTU、编码单元CU、CU的子区域、子编码单元SubCU、预测单元PU、PU的子区域、子预测单元SubPU、变换单元TU、TU的子区域、子变换单元SubTU。In the present invention, when the data is an image, a sequence of images, a video, etc., a coding block or a decoding block is a coding area or a decoding area of an image, including at least one of the following: an entire image, a sub-image of an image, a slice, a tile, a macroblock, a maximum coding unit LCU, a coding tree unit CTU, a coding unit CU, a sub-area of a CU, a sub-coding unit SubCU, a prediction unit PU, a sub-area of a PU, a sub-prediction unit SubPU, a transform unit TU, a sub-area of a TU, and a sub-transform unit SubTU.

本发明中,数据压缩所涉及的编解码块的基元包括下列情形之一或其组合:编解码块、子块、微块、串、字节串、alpha(阿尔法)串、像素串、样值串、索引串、线条、匹配块、匹配子块、匹配微块、匹配串、匹配像素串、匹配样值串、匹配索引串、匹配条、匹配线条、偏移串、坐标串、不可预测像素、不可预测像素串、坐标或不可预测像素串。In the present invention, the primitives of the codec block involved in data compression include one of the following situations or a combination thereof: codec block, sub-block, micro-block, string, byte string, alpha string, pixel string, sample string, index string, line, matching block, matching sub-block, matching micro-block, matching string, matching pixel string, matching sample string, matching index string, matching bar, matching line, offset string, coordinate string, unpredictable pixel, unpredictable pixel string, coordinate or unpredictable pixel string.

以上通过若干特定的具体实例说明本发明的技术特征。本领域技术人员可由本说明书所揭示的内容轻易地了解本发明的其他优点与功效。本发明还可以通过另外不同的具体实施方式加以实施或应用,本说明书中的各项细节也可以基于不同观点与应用,在不背离本发明的精神下进行各种修饰或改变。The technical features of the present invention are described above by using several specific examples. Those skilled in the art can easily understand other advantages and effects of the present invention from the contents disclosed in this specification. The present invention can also be implemented or applied through other different specific embodiments, and the details in this specification can also be modified or changed in various ways based on different viewpoints and applications without departing from the spirit of the present invention.

附图说明BRIEF DESCRIPTION OF THE DRAWINGS

图1是本发明的编码方法或装置的示意图。FIG. 1 is a schematic diagram of an encoding method or device according to the present invention.

图2是本发明的解码方法或装置的示意图。FIG. 2 is a schematic diagram of a decoding method or device of the present invention.

具体实施方式Detailed ways

以下是本发明的更多的实施细节或变体。The following are more implementation details or variations of the present invention.

实施或变体例1Implementation or variant example 1

所述编码方法或装置中,所述等比特精度预测运算是减法运算后丢弃最高比特仅保留所述最高比特外的所有其他比特;In the encoding method or device, the equal bit precision prediction operation is to discard the highest bit after the subtraction operation and retain all other bits except the highest bit;

所述解码方法或装置中,所述等比特精度预测补偿运算是加法运算后丢弃最高比特仅保留所述最高比特外的所有其他比特。In the decoding method or device, the equal bit precision prediction compensation operation is to discard the highest bit after the addition operation and retain all other bits except the highest bit.

实施或变体例2Implementation or variant example 2

所述编码方法或装置中,所述卷绕效应修正映射是如下映射:In the encoding method or device, the warping effect correction mapping is the following mapping:

将取值范围中的由j组成的一个子范围{j: 0 ≤ j < J, J=I/2而I是一个预定偶数}={0, 1, 2, 依此类推, J-3, J-2, J-1}映射为由数值i组成的连通区间{i: 0 ≤i < I }中的偶数值i=2j,也就是将j映射为i=2j;将取值范围中的由H-1-j组成的一个子范围{H-1-j: 0 ≤ j < J}={H-1, H-2, H-3, 依此类推, H-J+2, H-J+1, H-J}映射为所述连通区间中的奇数值i=2j + 1,也就是将H-1-j映射为i=2j + 1,其中H大于或等于I;A sub-range of j in the value range {j: 0 ≤ j < J, J = I/2 and I is a predetermined even number} = {0, 1, 2, and so on, J-3, J-2, J-1} is mapped to an even value i = 2j in a connected interval {i: 0 ≤ i < I } composed of values i, that is, j is mapped to i = 2j; a sub-range of H-1-j in the value range {H-1-j: 0 ≤ j < J} = {H-1, H-2, H-3, and so on, H-J+2, H-J+1, H-J} is mapped to an odd value i = 2j + 1 in the connected interval, that is, H-1-j is mapped to i = 2j + 1, where H is greater than or equal to I;

显然,所述子范围{0, 1, 2, 依此类推, J-3, J-2, J-1}和{H-1, H-2, H-3, 依此类推, H-J+2, H-J+1, H-J}是取值范围中互相分离的两个子范围,所述卷绕效应修正映射将取值范围中互相分离的所述两个子范围重组为一个连通区间;Obviously, the sub-ranges {0, 1, 2, and so on, J-3, J-2, J-1} and {H-1, H-2, H-3, and so on, H-J+2, H-J+1, H-J} are two mutually separated sub-ranges in the value range, and the wrap-up effect correction mapping reorganizes the two mutually separated sub-ranges in the value range into a connected interval;

所述解码方法或装置中,所述卷绕效应修正逆映射是如下映射:In the decoding method or device, the warping effect correction inverse mapping is the following mapping:

将由数值i组成的连通区间{i: 0 ≤ i < I,I=2J是一个预定偶数}中的偶数值i=2j映射为取值范围中的由j组成的一个子范围{j: 0 ≤ j < J}={0, 1, 2, 依此类推,J-3, J-2, J-1},也就是将i=2j映射为j;将所述连通区间中的奇数值i=2j + 1映射为取值范围中的由H-1-j组成的一个子范围{H-1-j: 0 ≤ j < J}={H-1, H-2, H-3, 依此类推, H-J+2, H-J+1, H-J},也就是将i=2j + 1映射为H-1-j,其中H大于或等于I;Mapping an even value i=2j in a connected interval {i: 0 ≤ i < I, I=2J is a predetermined even number} composed of values i to a subrange composed of j in a value range {j: 0 ≤ j < J}={0, 1, 2, and so on, J-3, J-2, J-1}, that is, mapping i=2j to j; mapping an odd value i=2j + 1 in the connected interval to a subrange composed of H-1-j in a value range {H-1-j: 0 ≤ j < J}={H-1, H-2, H-3, and so on, H-J+2, H-J+1, H-J}, that is, mapping i=2j + 1 to H-1-j, where H is greater than or equal to I;

显然,所述子范围{0, 1, 2, 依此类推, J-3, J-2, J-1}和{H-1, H-2, H-3, 依此类推, H-J+2, H-J+1, H-J}是取值范围中互相分离的两个子范围,所述卷绕效应修正逆映射将取值范围的一个连通区间重组为取值范围中互相分离的所述两个子范围。Obviously, the sub-ranges {0, 1, 2, and so on, J-3, J-2, J-1} and {H-1, H-2, H-3, and so on, H-J+2, H-J+1, H-J} are two separate sub-ranges in the value range, and the winding effect corrected inverse mapping reorganizes a connected interval of the value range into the two separate sub-ranges in the value range.

实施或变体例3Implementation or variant example 3

所述编码方法或装置或者解码方法或装置中,所述K大于或等于3,所述C为4,所述V1为4,所述V2为8,所述V3为16。In the encoding method or device or the decoding method or device, K is greater than or equal to 3, C is 4, V1 is 4, V2 is 8, and V3 is 16.

实施或变体例4Implementation or variant example 4

所述编码方法或装置或者解码方法或装置中,所述K大于或等于3,所述C为4,所述V1为4,所述V2为8,所述V3为16,将数据的取值范围或其一个子范围[0, N],其中255 ≤ N≤ 390,分为下列3个区间:In the encoding method or device or the decoding method or device, K is greater than or equal to 3, C is 4, V1 is 4, V2 is 8, and V3 is 16, and the data value range or a subrange thereof [0, N], where 255 ≤ N ≤ 390, is divided into the following three intervals:

区间1是[0, 7],Interval 1 is [0, 7],

区间2是[8, 133]或[8, 134],Interval 2 is [8, 133] or [8, 134],

区间3是[134, N-1]或[135, N],Interval 3 is [134, N-1] or [135, N],

对区间1的值,使用形式为0xxx,其中x为0或1,的码长为4比特的码字进行熵编解码,For values in interval 1, entropy encoding and decoding is performed using codewords of the form 0xxx, where x is 0 or 1 and the code length is 4 bits.

对区间2的值,使用除了11111110和11111111之外或除了11111111之外的形式为1xxxxxxx,其中x为0或1,的码长为8比特的码字进行熵编解码,For values in interval 2, entropy encoding and decoding is performed using code words of the form 1xxxxxxx, where x is 0 or 1, and the code length is 8 bits, except for 111111110 and 11111111 or except for 111111111.

对区间3的值,使用形式为11111110xxxxxxxx或11111111xxxxxxxx,其中x为0或1,的码长为16比特的码字进行熵编解码。For values in interval 3, entropy encoding and decoding is performed using a codeword in the form of 11111110xxxxxxxx or 111111111xxxxxxxx, where x is 0 or 1 and the code length is 16 bits.

实施或变体例5Implementation or variant example 5

所述编码方法或装置中,在编码块层次,可选地采用或不采用所述等比特精度预测运算和/或所述卷绕效应修正映射和/或所述分区间多倍数基本比特单位熵编码对所述编码块进行编码;In the encoding method or device, at the encoding block level, the equal bit precision prediction operation and/or the warping effect correction mapping and/or the multiple basic bit unit entropy coding between partitions are optionally adopted or not adopted to encode the encoding block;

所述解码方法或装置中,在解码块层次,可选地采用或不采用所述等比特精度预测补偿运算和/或所述卷绕效应修正逆映射和/或所述分区间多倍数基本比特单位熵解码对所述解码块进行解码。In the decoding method or device, at the decoding block level, the equal bit precision prediction compensation operation and/or the warping effect correction inverse mapping and/or the inter-partition multiple basic bit unit entropy decoding are optionally used or not used to decode the decoding block.

Claims (6)

1.一种数据压缩的解码方法,其特征在于:1. A data compression decoding method, characterized in that: 1)解析压缩数据码流,至少获得表示数据的值的信息,对数据进行分区间多倍数基本比特单位熵解码:将数据的取值范围分为满足2 ≤ K ≤ 100的K个区间,对所述K个区间的值,分别使用码长即比特数为Vk的码字进行熵解码,获得数据的值,其中1 ≤ k ≤ K,每个Vk都是一个预定的大于1的整数常数比特数C,称为基本比特单位,的整数倍;1) Parse the compressed data code stream to obtain at least information representing the value of the data, and perform entropy decoding on the data in multiple basic bit units: divide the value range of the data into K intervals satisfying 2 ≤ K ≤ 100, and perform entropy decoding on the values of the K intervals using code words with a code length, i.e., a bit number of V k , to obtain the value of the data, where 1 ≤ k ≤ K, and each V k is an integer multiple of a predetermined integer constant bit number C greater than 1, called the basic bit unit; 2)对数据进行卷绕效应修正逆映射,将数据的取值范围的一个连通区间以预定方式重组为取值范围中互相分离的两个子范围;2) Performing a convolution effect correction inverse mapping on the data, reorganizing a connected interval of the data value range into two separate sub-ranges in the value range in a predetermined manner; 3)对当前元素的残差数据和其具有同样比特精度的预测值进行等比特精度预测补偿运算,获得与所述残差数据具有同样所述比特精度的当前元素;3) performing an equal bit precision prediction compensation operation on the residual data of the current element and its predicted value with the same bit precision to obtain the current element with the same bit precision as the residual data; 所述等比特精度预测补偿运算是加法运算后丢弃最高比特仅保留所述最高比特外的所有其他比特;The equal bit precision prediction compensation operation is to discard the highest bit after the addition operation and only retain all other bits except the highest bit; 所述卷绕效应修正逆映射是如下映射:The warping effect corrected inverse mapping is the following mapping: 将由数值i组成的连通区间{i: 0 ≤ i < I,I=2J是一个预定偶数}中的偶数值i=2j映射为取值范围中的由j组成的一个子范围{j: 0 ≤ j < J}={0, 1, 2, 依此类推, J-3, J-2, J-1},也就是将i=2j映射为j;将所述连通区间中的奇数值i=2j + 1映射为取值范围中的由H-1-j组成的一个子范围{H-1-j: 0 ≤ j < J}={H-1, H-2, H-3, 依此类推, H-J+2, H-J+1, H-J},也就是将i=2j + 1映射为H-1-j,其中H大于或等于I;Mapping an even value i=2j in a connected interval {i: 0 ≤ i < I, I=2J is a predetermined even number} composed of values i to a subrange composed of j in a value range {j: 0 ≤ j < J}={0, 1, 2, and so on, J-3, J-2, J-1}, that is, mapping i=2j to j; mapping an odd value i=2j + 1 in the connected interval to a subrange composed of H-1-j in a value range {H-1-j: 0 ≤ j < J}={H-1, H-2, H-3, and so on, H-J+2, H-J+1, H-J}, that is, mapping i=2j + 1 to H-1-j, where H is greater than or equal to I; 显然,所述子范围{0, 1, 2, 依此类推, J-3, J-2, J-1}和{H-1, H-2, H-3, 依此类推, H-J+2, H-J+1, H-J}是取值范围中互相分离的两个子范围,所述卷绕效应修正逆映射将取值范围的一个连通区间重组为取值范围中互相分离的所述两个子范围;Obviously, the sub-ranges {0, 1, 2, and so on, J-3, J-2, J-1} and {H-1, H-2, H-3, and so on, H-J+2, H-J+1, H-J} are two mutually separated sub-ranges in the value range, and the warping effect corrected inverse mapping reorganizes a connected interval of the value range into the two mutually separated sub-ranges in the value range; 所述K大于或等于3,所述C为4,V1为4,V2为8,V3为16,将数据的取值范围或其一个子范围[0, N],其中255 ≤ N ≤ 390,分为下列3个区间:The K is greater than or equal to 3, the C is 4, V1 is 4, V2 is 8, and V3 is 16. The data value range or a subrange thereof [0, N], where 255 ≤ N ≤ 390, is divided into the following three intervals: 区间1是[0, 7],Interval 1 is [0, 7], 区间2是[8, 133]或[8, 134],Interval 2 is [8, 133] or [8, 134], 区间3是[134, N-1]或[135, N],Interval 3 is [134, N-1] or [135, N], 对区间1的值,使用形式为0xxx,其中x为0或1,的码长为4比特的码字进行熵解码,For values in interval 1, entropy decoding is performed using codewords of the form 0xxx, where x is 0 or 1 and the code length is 4 bits. 对区间2的值,使用除了11111110和11111111之外或除了11111111之外的形式为1xxxxxxx,其中x为0或1,的码长为8比特的码字进行熵解码,For values in interval 2, entropy decoding is performed using code words of the form 1xxxxxxx, where x is 0 or 1, and the code length is 8 bits, except 111111110 and 11111111 or except 111111111. 对区间3的值,使用形式为11111110xxxxxxxx或11111111xxxxxxxx,其中x为0或1,的码长为16比特的码字进行熵解码。For values in interval 3, entropy decoding is performed using a codeword of the form 11111110xxxxxxxx or 111111111xxxxxxxx, where x is 0 or 1 and the code length is 16 bits. 2.根据权利要求1所述的解码方法,其特征在于,在数据是从图像、图像的序列、视频产生的情形,解码块是图像的一个解码区域,包括以下至少一种:整幅图像、图像的子图像、条带slice、片块tile、宏块、最大编码单元LCU、编码树单元CTU、编码单元CU、CU的子区域、子编码单元SubCU、预测单元PU、PU的子区域、子预测单元SubPU、变换单元TU、TU的子区域、子变换单元SubTU。2. The decoding method according to claim 1 is characterized in that, in the case where data is generated from an image, a sequence of images, or a video, a decoding block is a decoding area of an image, including at least one of the following: an entire image, a sub-image of an image, a slice, a tile, a macroblock, a maximum coding unit LCU, a coding tree unit CTU, a coding unit CU, a sub-area of a CU, a sub-coding unit SubCU, a prediction unit PU, a sub-area of a PU, a sub-prediction unit SubPU, a transform unit TU, a sub-area of a TU, and a sub-transform unit SubTU. 3.根据权利要求1所述的解码方法,其特征在于:3. The decoding method according to claim 1, characterized in that: 在解码块层次,允许仅对一部分解码块采用所述等比特精度预测补偿运算和/或所述卷绕效应修正逆映射和/或所述分区间多倍数基本比特单位熵解码对所述解码块进行解码。At the decoding block level, it is allowed to decode only a part of the decoding blocks by using the equal bit precision prediction compensation operation and/or the warping effect correction inverse mapping and/or the multiple basic bit unit entropy decoding between partitions to decode the decoding blocks. 4.一种数据压缩的解码装置,其特征在于:4. A data compression decoding device, characterized in that: 1)分区间多倍数基本比特单位熵解码模块:解析压缩数据码流,至少获得表示数据的值的信息,对数据进行分区间多倍数基本比特单位熵解码:将数据的取值范围分为满足2≤ K ≤ 100的K个区间,对所述K个区间的值,分别使用码长即比特数为Vk的码字进行熵解码,获得数据的值,其中1 ≤ k ≤ K,每个Vk都是一个预定的大于1的整数常数比特数C,称为基本比特单位,的整数倍;1) Inter-partition multiple basic bit unit entropy decoding module: parse the compressed data code stream to obtain at least information representing the value of the data, and perform inter-partition multiple basic bit unit entropy decoding on the data: divide the value range of the data into K intervals satisfying 2≤ K ≤ 100, and use code words with a code length of V k , i.e., the number of bits, to perform entropy decoding on the values of the K intervals to obtain the value of the data, where 1 ≤ k ≤ K, and each V k is an integer multiple of a predetermined integer constant bit number C greater than 1, called the basic bit unit; 2)卷绕效应修正逆映射模块:对数据进行卷绕效应修正逆映射,将数据的取值范围的一个连通区间以预定方式重组为取值范围中互相分离的两个子范围;2) Convolution effect correction inverse mapping module: performs convolution effect correction inverse mapping on the data, and reorganizes a connected interval of the data value range into two separate sub-ranges in the value range in a predetermined manner; 3)等比特精度预测补偿运算模块:对当前元素的残差数据和其具有同样比特精度的预测值进行等比特精度预测补偿运算,获得与所述残差数据具有同样所述比特精度的当前元素;3) Equal bit precision prediction and compensation operation module: performs equal bit precision prediction and compensation operation on the residual data of the current element and its predicted value with the same bit precision, to obtain the current element with the same bit precision as the residual data; 所述等比特精度预测补偿运算是加法运算后丢弃最高比特仅保留所述最高比特外的所有其他比特;The equal bit precision prediction compensation operation is to discard the highest bit after the addition operation and only retain all other bits except the highest bit; 所述卷绕效应修正逆映射是如下映射:The warping effect corrected inverse mapping is the following mapping: 将由数值i组成的连通区间{i: 0 ≤ i < I,I=2J是一个预定偶数}中的偶数值i=2j映射为取值范围中的由j组成的一个子范围{j: 0 ≤ j < J}={0, 1, 2, 依此类推, J-3, J-2, J-1},也就是将i=2j映射为j;将所述连通区间中的奇数值i=2j + 1映射为取值范围中的由H-1-j组成的一个子范围{H-1-j: 0 ≤ j < J}={H-1, H-2, H-3, 依此类推, H-J+2, H-J+1, H-J},也就是将i=2j + 1映射为H-1-j,其中H大于或等于I;Mapping an even value i=2j in a connected interval {i: 0 ≤ i < I, I=2J is a predetermined even number} composed of values i to a subrange composed of j in a value range {j: 0 ≤ j < J}={0, 1, 2, and so on, J-3, J-2, J-1}, that is, mapping i=2j to j; mapping an odd value i=2j + 1 in the connected interval to a subrange composed of H-1-j in a value range {H-1-j: 0 ≤ j < J}={H-1, H-2, H-3, and so on, H-J+2, H-J+1, H-J}, that is, mapping i=2j + 1 to H-1-j, where H is greater than or equal to I; 显然,所述子范围{0, 1, 2, 依此类推, J-3, J-2, J-1}和{H-1, H-2, H-3, 依此类推, H-J+2, H-J+1, H-J}是取值范围中互相分离的两个子范围,所述卷绕效应修正逆映射将取值范围的一个连通区间重组为取值范围中互相分离的所述两个子范围;Obviously, the sub-ranges {0, 1, 2, and so on, J-3, J-2, J-1} and {H-1, H-2, H-3, and so on, H-J+2, H-J+1, H-J} are two mutually separated sub-ranges in the value range, and the warping effect corrected inverse mapping reorganizes a connected interval of the value range into the two mutually separated sub-ranges in the value range; 所述K大于或等于3,所述C为4,V1为4,V2为8,V3为16,将数据的取值范围或其一个子范围[0, N],其中255 ≤ N ≤ 390,分为下列3个区间:The K is greater than or equal to 3, the C is 4, V1 is 4, V2 is 8, and V3 is 16. The data value range or a subrange thereof [0, N], where 255 ≤ N ≤ 390, is divided into the following three intervals: 区间1是[0, 7],Interval 1 is [0, 7], 区间2是[8, 133]或[8, 134],Interval 2 is [8, 133] or [8, 134], 区间3是[134, N-1]或[135, N],Interval 3 is [134, N-1] or [135, N], 对区间1的值,使用形式为0xxx,其中x为0或1,的码长为4比特的码字进行熵解码,For values in interval 1, entropy decoding is performed using codewords of the form 0xxx, where x is 0 or 1 and the code length is 4 bits. 对区间2的值,使用除了11111110和11111111之外或除了11111111之外的形式为1xxxxxxx,其中x为0或1,的码长为8比特的码字进行熵解码,For values in interval 2, entropy decoding is performed using code words of the form 1xxxxxxx, where x is 0 or 1, and the code length is 8 bits, except 111111110 and 11111111 or except 111111111. 对区间3的值,使用形式为11111110xxxxxxxx或11111111xxxxxxxx,其中x为0或1,的码长为16比特的码字进行熵解码。For values in interval 3, entropy decoding is performed using a codeword of the form 11111110xxxxxxxx or 111111111xxxxxxxx, where x is 0 or 1 and the code length is 16 bits. 5.根据权利要求4所述的解码装置,其特征在于,在数据是从图像、图像的序列、视频产生的情形,解码块是图像的一个解码区域,包括以下至少一种:整幅图像、图像的子图像、条带slice、片块tile、宏块、最大编码单元LCU、编码树单元CTU、编码单元CU、CU的子区域、子编码单元SubCU、预测单元PU、PU的子区域、子预测单元SubPU、变换单元TU、TU的子区域、子变换单元SubTU。5. The decoding device according to claim 4 is characterized in that, in the case where data is generated from an image, a sequence of images, or a video, a decoding block is a decoding area of an image, including at least one of the following: an entire image, a sub-image of an image, a slice, a tile, a macroblock, a maximum coding unit LCU, a coding tree unit CTU, a coding unit CU, a sub-area of a CU, a sub-coding unit SubCU, a prediction unit PU, a sub-area of a PU, a sub-prediction unit SubPU, a transform unit TU, a sub-area of a TU, and a sub-transform unit SubTU. 6.根据权利要求4所述的解码装置,其特征在于:6. The decoding device according to claim 4, characterized in that: 在解码块层次,允许仅对一部分解码块采用所述等比特精度预测补偿运算和/或所述卷绕效应修正逆映射和/或所述分区间多倍数基本比特单位熵解码对所述解码块进行解码。At the decoding block level, it is allowed to decode only a part of the decoding blocks by using the equal bit precision prediction compensation operation and/or the warping effect correction inverse mapping and/or the multiple basic bit unit entropy decoding between partitions to decode the decoding blocks.
CN202410577930.7A 2019-01-23 2019-01-23 Data decoding method and device for equal bit precision prediction, mapping and segment coding Pending CN118317115A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202410577930.7A CN118317115A (en) 2019-01-23 2019-01-23 Data decoding method and device for equal bit precision prediction, mapping and segment coding

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202410577930.7A CN118317115A (en) 2019-01-23 2019-01-23 Data decoding method and device for equal bit precision prediction, mapping and segment coding
CN201910065374.4A CN111479116B (en) 2019-01-23 2019-01-23 Data compression method and device for equal bit precision prediction, mapping and segmented coding

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CN201910065374.4A Division CN111479116B (en) 2019-01-23 2019-01-23 Data compression method and device for equal bit precision prediction, mapping and segmented coding

Publications (1)

Publication Number Publication Date
CN118317115A true CN118317115A (en) 2024-07-09

Family

ID=71743364

Family Applications (2)

Application Number Title Priority Date Filing Date
CN202410577930.7A Pending CN118317115A (en) 2019-01-23 2019-01-23 Data decoding method and device for equal bit precision prediction, mapping and segment coding
CN201910065374.4A Active CN111479116B (en) 2019-01-23 2019-01-23 Data compression method and device for equal bit precision prediction, mapping and segmented coding

Family Applications After (1)

Application Number Title Priority Date Filing Date
CN201910065374.4A Active CN111479116B (en) 2019-01-23 2019-01-23 Data compression method and device for equal bit precision prediction, mapping and segmented coding

Country Status (1)

Country Link
CN (2) CN118317115A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112307968B (en) * 2020-10-30 2022-11-08 天地伟业技术有限公司 Face recognition feature compression method

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2941019B2 (en) * 1990-09-07 1999-08-25 キヤノン株式会社 Camera using film with magnetic storage
US20040020099A1 (en) * 2001-03-13 2004-02-05 Osborn John H. Method and apparatus to provide precision aiming assistance to a shooter
US9998726B2 (en) * 2012-06-20 2018-06-12 Nokia Technologies Oy Apparatus, a method and a computer program for video coding and decoding
CN105100814B (en) * 2014-05-06 2020-07-14 同济大学 Image coding and decoding method and device
WO2017201141A1 (en) * 2016-05-17 2017-11-23 Arris Enterprises Llc Template matching for jvet intra prediction

Also Published As

Publication number Publication date
CN111479116A (en) 2020-07-31
CN111479116B (en) 2024-12-20

Similar Documents

Publication Publication Date Title
TWI344797B (en) System and method for compressing digital data
CN110996105B (en) Variable rate compression method and variable rate decompression method
CN110896483B (en) Method for compressing and decompressing image data
EP1946246A2 (en) Extended amplitude coding for clustered transform coefficients
CN112399181B (en) Image coding and decoding method, device and storage medium
CN103716634B (en) Data compression method and device using error plane coding
CN110087090A (en) Using data encoding, the coding/decoding method of mixing String matching and intra prediction
CN111131826B (en) Data compression method and device for fixed-length code unit containing multiple encoding parameter variable-length codes
CN111641827A (en) Data compression method and device for prediction residual entropy coding by switching multiple schemes
CN105163130B (en) A kind of Lossless Image Compression Algorithm method based on discrete Tchebichef orthogonal polynomial
JP2014212374A (en) Image encoding device, image encoding method, image encoding program, and recording medium
CN111479116B (en) Data compression method and device for equal bit precision prediction, mapping and segmented coding
CN118354094A (en) Video image encoding and decoding method and device, electronic equipment and computer storage medium
CN110545437B (en) Coefficient encoding, decoding method, electronic device and medium
CN105472395B (en) A Lossless Image Compression Method Based on Discrete Krawtchouk Orthogonal Polynomials
CN112449191A (en) Method for compressing a plurality of images, method and apparatus for decompressing an image
CN107770543B (en) Data compression method and device for sequentially increasing truncation values in multi-category matching parameters
CN110290382A (en) A method for encoding and decoding residual data
CN112601086B (en) Method and device for mixed encoding and decoding of string length parameters
CN100399833C (en) High-speed image compression device using last non-zero detection circuit
CN103491375B (en) JPEG compression system based on bin DCT algorithm
CN108989800B (en) Data compression method and apparatus for generating a compressed data byte stream in byte units
CN104113763A (en) Optimized integer transform radix applied to image coding
TWI860651B (en) Methods, devices and apparatuses for encoding and decoding
WO2022120829A1 (en) Image encoding and decoding methods and apparatuses, and image processing apparatus and mobile platform

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination