[go: up one dir, main page]

CN118315422B - Semiconductor device and method for manufacturing the same - Google Patents

Semiconductor device and method for manufacturing the same Download PDF

Info

Publication number
CN118315422B
CN118315422B CN202410718649.0A CN202410718649A CN118315422B CN 118315422 B CN118315422 B CN 118315422B CN 202410718649 A CN202410718649 A CN 202410718649A CN 118315422 B CN118315422 B CN 118315422B
Authority
CN
China
Prior art keywords
pad
layer
drain
metal layer
source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202410718649.0A
Other languages
Chinese (zh)
Other versions
CN118315422A (en
Inventor
陈昭铭
邓厚超
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangdong Zhineng Semiconductor Co.,Ltd.
Original Assignee
Guangdong Zhineng Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangdong Zhineng Technology Co Ltd filed Critical Guangdong Zhineng Technology Co Ltd
Priority to CN202410718649.0A priority Critical patent/CN118315422B/en
Publication of CN118315422A publication Critical patent/CN118315422A/en
Application granted granted Critical
Publication of CN118315422B publication Critical patent/CN118315422B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D30/00Field-effect transistors [FET]
    • H10D30/40FETs having zero-dimensional [0D], one-dimensional [1D] or two-dimensional [2D] charge carrier gas channels
    • H10D30/47FETs having zero-dimensional [0D], one-dimensional [1D] or two-dimensional [2D] charge carrier gas channels having 2D charge carrier gas channels, e.g. nanoribbon FETs or high electron mobility transistors [HEMT]
    • H10D30/471High electron mobility transistors [HEMT] or high hole mobility transistors [HHMT]
    • H10D30/472High electron mobility transistors [HEMT] or high hole mobility transistors [HHMT] having lower bandgap active layer formed on top of wider bandgap layer, e.g. inverted HEMT
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D1/00Resistors, capacitors or inductors
    • H10D1/60Capacitors
    • H10D1/68Capacitors having no potential barriers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D30/00Field-effect transistors [FET]
    • H10D30/01Manufacture or treatment
    • H10D30/015Manufacture or treatment of FETs having heterojunction interface channels or heterojunction gate electrodes, e.g. HEMT
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D64/00Electrodes of devices having potential barriers
    • H10D64/01Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D64/00Electrodes of devices having potential barriers
    • H10D64/20Electrodes characterised by their shapes, relative sizes or dispositions 
    • H10D64/23Electrodes carrying the current to be rectified, amplified, oscillated or switched, e.g. sources, drains, anodes or cathodes
    • H10D64/251Source or drain electrodes for field-effect devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D84/00Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers
    • H10D84/80Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers characterised by the integration of at least one component covered by groups H10D12/00 or H10D30/00, e.g. integration of IGFETs
    • H10D84/811Combinations of field-effect devices and one or more diodes, capacitors or resistors

Landscapes

  • Junction Field-Effect Transistors (AREA)

Abstract

The invention relates to a semiconductor device and a preparation method thereof, wherein the semiconductor device comprises a functional layer, a dielectric layer, an electrode structure, a bonding pad structure and a regulating structure, wherein a first two-dimensional carrier gas is formed in a first functional region of the functional layer; the dielectric layer is formed above the functional layer; the electrode structure comprises a source electrode structure, a drain electrode structure and a grid electrode structure, and the source electrode structure and the drain electrode structure are respectively and electrically connected with the first two-dimensional carrier; the surface of the pad structure is exposed out of the upper surface of the dielectric layer and comprises a source electrode pad, a drain electrode pad and a grid electrode pad respectively; the regulation structure comprises a regulation metal layer formed on the dielectric layer, and the regulation metal layer and the drain electrode structure and/or the drain electrode bonding pad form a first capacitor. The embodiment of the invention realizes the switching speed control of the device, avoids using an external capacitor, and reduces the preparation cost of the device and the complexity of circuit design.

Description

一种半导体器件及其制备方法Semiconductor device and method for manufacturing the same

技术领域Technical Field

本发明涉及一种半导体技术领域,特别地涉及一种半导体器件及其制备方法。The present invention relates to the field of semiconductor technology, and in particular to a semiconductor device and a method for preparing the same.

背景技术Background Art

III-V族氮化物是重要的半导体材料,例如AlN、GaN、InN及这些材料的化合物,如AlGaN、InGaN、AlInGaN等,III-V族氮化物具有直接带隙、宽禁带、高击穿电场强度等优点。近年来,以GaN为代表的III族氮化物半导体制备的高电子迁移率晶体管 (High ElectronMobility Transistors,简称 HEMT)广泛应用在发光器件、电力电子、射频器件等领域。HEMT通常包括耗尽型和增强型两类,对于耗尽型的HEMT,由于其为常开型器件,因而在应用时通常与低压增强型器件联合构成共源共栅结构(Cascode)器件。图1是现有技术中的Cascode器件原理示意图。Cascode器件包括高压耗尽型晶体管(如耗尽型HEMT)Q2和低压增强型晶体管(如MOSFET)Q1。在将Cascode器件作为功率开关连接在应用电路中时,其漏极D和源极S接入电路中,栅极G连接驱动电路。当Cascode器件的栅极G接收到的驱动信号为高电平时,MOSFET Q1导通,Cascode器件中的HEMT Q2与MOSFET Q1都处于导通状态,因而整个Cascode器件处于低电阻状态,可以流过较大的电流。当栅极G接收到的驱动信号为低电平时, Cascode器件的MOSFET Q1断开,Cascode器件处于高电阻状态,器件可以承受较高的电压。从前述Cascode器件的工作原理可见,Cascode器件的开关状态由MOSFET Q1控制。III-V nitrides are important semiconductor materials, such as AlN, GaN, InN and compounds of these materials, such as AlGaN, InGaN, AlInGaN, etc. III-V nitrides have the advantages of direct band gap, wide bandgap, high breakdown electric field strength, etc. In recent years, high electron mobility transistors (HEMTs) prepared from III-nitride semiconductors represented by GaN have been widely used in light-emitting devices, power electronics, radio frequency devices and other fields. HEMTs usually include two types: depletion type and enhancement type. For depletion type HEMTs, since they are normally-on devices, they are usually combined with low-voltage enhancement type devices to form a common source and common gate structure (Cascode) device when used. Figure 1 is a schematic diagram of the principle of the Cascode device in the prior art. The Cascode device includes a high-voltage depletion type transistor (such as a depletion type HEMT) Q2 and a low-voltage enhancement type transistor (such as a MOSFET) Q1. When the Cascode device is connected to the application circuit as a power switch, its drain D and source S are connected to the circuit, and the gate G is connected to the drive circuit. When the driving signal received by the gate G of the Cascode device is at a high level, MOSFET Q1 is turned on, and both the HEMT Q2 and MOSFET Q1 in the Cascode device are in the on state, so the entire Cascode device is in a low resistance state and a large current can flow through it. When the driving signal received by the gate G is at a low level, the MOSFET Q1 of the Cascode device is disconnected, the Cascode device is in a high resistance state, and the device can withstand a higher voltage. From the working principle of the aforementioned Cascode device, it can be seen that the switching state of the Cascode device is controlled by MOSFET Q1.

在实际应用中,功率器件开关时的dv/dt或di/dt(即开关速度)太大时会造成系统的电磁干扰(EMI)超标,同时也会导致负载电路的电压尖峰应力超标而损坏负载电路,因而需要能够调节功率器件的开关速度以使其满足要求。晶体管的开关速度一般可以通过栅极电阻调节漏栅电容Cdg的充放电时长来实现,但是由于Cascode器件整体内部的漏栅电容Cdg较小,并且Cascode器件栅极电阻只能间接控制HEMT,因而该方式对开关速度的调节效果不够理想。In practical applications, when the dv/dt or di/dt (i.e., switching speed) of a power device is too large, the electromagnetic interference (EMI) of the system will exceed the standard, and the voltage spike stress of the load circuit will exceed the standard and damage the load circuit. Therefore, it is necessary to be able to adjust the switching speed of the power device to meet the requirements. The switching speed of the transistor can generally be achieved by adjusting the charge and discharge time of the drain-gate capacitance Cdg through the gate resistor. However, since the drain-gate capacitance Cdg inside the Cascode device is relatively small, and the gate resistor of the Cascode device can only indirectly control the HEMT, this method is not ideal for adjusting the switching speed.

发明内容Summary of the invention

针对现有技术中存在的技术问题,本发明提出了一种半导体器件及其制备方法,用于实现器件开关速度的调节。In view of the technical problems existing in the prior art, the present invention provides a semiconductor device and a preparation method thereof, which are used to adjust the switching speed of the device.

根据本发明的一个方面,本发明提供了一种半导体器件,包括功能层、介质层、电极结构、焊盘结构以及调控结构;其中,所述功能层中的第一功能区中形成有第一二维载流子气;所述介质层形成在所述功能层上方;所述电极结构形成在所述第一功能区,包括源极结构、漏极结构和栅极结构,所述源极结构和漏极结构分别与所述第一二维载流子气电连接;所述焊盘结构的表面露出所述介质层上表面,分别包括源极焊盘、漏极焊盘和栅极焊盘,所述源极焊盘、漏极焊盘和栅极焊盘分别经过介质孔与源极结构、漏极结构和栅极结构对应电连接以构成器件的源极、漏极和栅极;所述调控结构包括形成在所述介质层的调控金属层,所述调控金属层与所述漏极形成第一电容。According to one aspect of the present invention, the present invention provides a semiconductor device, including a functional layer, a dielectric layer, an electrode structure, a pad structure and a control structure; wherein a first two-dimensional carrier gas is formed in a first functional area in the functional layer; the dielectric layer is formed above the functional layer; the electrode structure is formed in the first functional area, including a source structure, a drain structure and a gate structure, and the source structure and the drain structure are electrically connected to the first two-dimensional carrier gas respectively; the surface of the pad structure exposes the upper surface of the dielectric layer, and includes a source pad, a drain pad and a gate pad respectively, and the source pad, the drain pad and the gate pad are electrically connected to the source structure, the drain structure and the gate structure respectively through dielectric holes to form the source, drain and gate of the device; the control structure includes a control metal layer formed on the dielectric layer, and the control metal layer forms a first capacitor with the drain.

可选地,所述漏极焊盘包括露出所述介质层上表面的第一区和与所述第一区并列地置于介质层内部的第二区,所述调控金属层为位于介质层上表面的调控端焊盘,所述调控端焊盘位于漏极焊盘第二区上方的介质层上表面,其中,所述调控端焊盘与所述漏极焊盘第二区形成所述第一电容。Optionally, the drain pad includes a first area exposed on the upper surface of the dielectric layer and a second area placed inside the dielectric layer in parallel with the first area, and the control metal layer is a control end pad located on the upper surface of the dielectric layer, and the control end pad is located on the upper surface of the dielectric layer above the second area of the drain pad, wherein the control end pad and the second area of the drain pad form the first capacitor.

可选地,所述调控金属层包括位于介质层上表面的调控端焊盘和形成在介质层内部或上表面的第一金属层,所述调控端焊盘经过介质孔与所述第一金属层电连接;当所述第一金属层位于介质层内部时,所述第一金属层位于所述漏极焊盘下方预置距离和/或所述第一金属层位于所述漏极结构上方预置距离;当所述第一金属层位于介质层上表面时,所述漏极焊盘包括露出所述介质层上表面的第一区和与所述第一区并列地置于介质层内部的第二区,所述第一金属层位于漏极焊盘第二区的上方预置距离;其中,所述第一金属层与所述漏极焊盘和/或所述漏极结构形成所述第一电容。Optionally, the regulation metal layer includes a regulation end pad located on the upper surface of the dielectric layer and a first metal layer formed inside or on the upper surface of the dielectric layer, and the regulation end pad is electrically connected to the first metal layer through a dielectric hole; when the first metal layer is located inside the dielectric layer, the first metal layer is located a preset distance below the drain pad and/or the first metal layer is located a preset distance above the drain structure; when the first metal layer is located on the upper surface of the dielectric layer, the drain pad includes a first area exposed on the upper surface of the dielectric layer and a second area placed inside the dielectric layer in parallel with the first area, and the first metal layer is located a preset distance above the second area of the drain pad; wherein the first metal layer and the drain pad and/or the drain structure form the first capacitor.

可选地,所述第一金属层的部分区域延伸到栅极结构上方预置距离和/或所述第一金属层的部分区域延伸到栅极焊盘下方预置距离,其中,所述第一金属层与所述栅极结构和/或所述栅极焊盘形成第二电容。Optionally, a portion of the first metal layer extends to a preset distance above the gate structure and/or a portion of the first metal layer extends to a preset distance below the gate pad, wherein the first metal layer forms a second capacitor with the gate structure and/or the gate pad.

可选地,所述第一金属层的部分区域延伸到源极结构上方预置距离和/或所述第一金属层的部分区域延伸到源极焊盘下方预置距离,其中,所述第一金属层与所述源极结构和/或所述源极焊盘形成第三电容。Optionally, a portion of the first metal layer extends to a preset distance above the source structure and/or a portion of the first metal layer extends to a preset distance below the source pad, wherein the first metal layer forms a third capacitor with the source structure and/or the source pad.

可选地,所述半导体器件还包括第二金属层,所述第二金属层经过介质孔与所述调控端焊盘或所述第一金属层电连接;所述第二金属层位于所述栅极结构上方预置距离和/或所述第二金属层位于栅极焊盘下方预置距离,其中,所述第二金属层与所述栅极结构和/所述栅极焊盘形成第二电容。Optionally, the semiconductor device also includes a second metal layer, which is electrically connected to the regulating end pad or the first metal layer through a dielectric hole; the second metal layer is located a preset distance above the gate structure and/or the second metal layer is located a preset distance below the gate pad, wherein the second metal layer and the gate structure and/or the gate pad form a second capacitor.

可选地,所述半导体器件还包括第三金属层,所述第三金属层经过介质孔与所述调控端焊盘或所述第一金属层电连接;所述第三金属层位于所述源极结构上方预置距离和/所述第三金属层位于所述源极焊盘下方预置距离,其中,所述第三金属层与所述源极结构和/所述源极焊盘形成第三电容。Optionally, the semiconductor device also includes a third metal layer, which is electrically connected to the regulating end pad or the first metal layer through a dielectric hole; the third metal layer is located a preset distance above the source structure and/or the third metal layer is located a preset distance below the source pad, wherein the third metal layer and the source structure and/or the source pad form a third capacitor.

可选地,所述调控结构还包括第一条状金属层,其形成在所述介质层,其第一端与所述第一金属层电连接,其第二端与所述调控端焊盘电连接,其中,所述第一条状金属层构成具有预置阻值的第一电阻。Optionally, the control structure also includes a first strip metal layer formed on the dielectric layer, a first end of which is electrically connected to the first metal layer, and a second end of which is electrically connected to the control end pad, wherein the first strip metal layer constitutes a first resistor with a preset resistance value.

可选地,位于介质层上表面的调控端焊盘为多个,所述第一条状金属层包括与第一端相距不同距离的连接点,每个调控端焊盘分别与对应的连接点电连接;其中,每个连接点电与第一条状金属层第一端之间的条状金属层构成各自预置阻值的第一电阻。Optionally, there are multiple regulating end pads located on the upper surface of the dielectric layer, and the first strip metal layer includes connection points at different distances from the first end, and each regulating end pad is electrically connected to the corresponding connection point; wherein each connection point is electrically connected to the strip metal layer between the first end of the first strip metal layer to form a first resistor with a preset resistance value.

可选地,所述调控结构还包括第一电极和一个或多个第二电极;其中,所述第一电极和所述一个或多个第二电极形成在所述功能层的第二功能区,并与所述第二功能区内部的第二二维载流子气欧姆连接,所述第一电极与所述第一金属层电连接;当所述第二电极为一个时,其通过介质孔与所述调控端焊盘电连接,当所述第二电极为多个时,所述调控端焊盘为对应的多个,每个第二电极分别通过介质孔与对应的调控端焊盘电连接;其中,所述第一电极与每个所述第二电极之间分别通过第二二维载流子构成各自预置阻值的第一电阻。Optionally, the control structure also includes a first electrode and one or more second electrodes; wherein, the first electrode and the one or more second electrodes are formed in the second functional area of the functional layer, and are ohmically connected to the second two-dimensional carrier gas inside the second functional area, and the first electrode is electrically connected to the first metal layer; when the second electrode is one, it is electrically connected to the control end pad through a dielectric hole, and when the second electrode is multiple, the control end pad is a corresponding multiple, and each second electrode is electrically connected to the corresponding control end pad through a dielectric hole; wherein, the first electrode and each of the second electrodes respectively form a first resistor with a preset resistance through the second two-dimensional carrier.

可选地,所述调控结构还包括二极管,其中,二极管阳极和二极管阴极形成在所述功能层的第三功能区,所述二极管阴极与第三功能区中的第三二维载流子气欧姆连接,所述二极管阳极与第三功能区中的第三二维载流子气肖特基连接,所述二极管阳极与所述调控端焊盘电连接,所述二极管阴极与所述第一金属层电连接。Optionally, the control structure also includes a diode, wherein a diode anode and a diode cathode are formed in the third functional region of the functional layer, the diode cathode is ohmically connected to the third two-dimensional carrier gas in the third functional region, the diode anode is Schottky connected to the third two-dimensional carrier gas in the third functional region, the diode anode is electrically connected to the control end pad, and the diode cathode is electrically connected to the first metal layer.

可选地,所述半导体器件还包括第二条状金属层,其形成在所述介质层,其第一端与所述第一金属层电连接,其第二端与所述二极管阴极电连接,所述第二条状金属层构成预置阻值的第二电阻。Optionally, the semiconductor device further comprises a second strip metal layer formed on the dielectric layer, a first end of which is electrically connected to the first metal layer, and a second end of which is electrically connected to the cathode of the diode, and the second strip metal layer constitutes a second resistor with a preset resistance.

可选地,所述半导体器件还包括第三电极和第四电极,其中,所述第三电极和第四电极形成在所述功能层的第四功能区,并与所述第四功能区内部的第四二维载流子气欧姆连接,所述第三电极与所述第一金属层电连接,所述第四电极与所述二极管阴极电连接;所述第三电极和所述第四电极之间通过第四二维载流子构成预置阻值的第二电阻。Optionally, the semiconductor device also includes a third electrode and a fourth electrode, wherein the third electrode and the fourth electrode are formed in a fourth functional region of the functional layer and are ohmically connected to a fourth two-dimensional carrier gas inside the fourth functional region, the third electrode is electrically connected to the first metal layer, and the fourth electrode is electrically connected to a cathode of the diode; a second resistor with a preset resistance is formed between the third electrode and the fourth electrode through the fourth two-dimensional carrier.

可选地,所述第一功能区、所述第二功能区、所述第三功能区和所述第四功能区之间包括电绝缘的隔离区,所述隔离区的深度大于二维载流子气所在区域的深度。Optionally, an electrically insulating isolation region is included between the first functional region, the second functional region, the third functional region and the fourth functional region, and a depth of the isolation region is greater than a depth of a region where the two-dimensional carrier gas is located.

可选地,所述的功能层至少包括沟道层和势垒层,在所述沟道层中靠近所述势垒层的区域形成有二维载流子气;所述沟道层和势垒层为III-V族化合物。Optionally, the functional layer at least includes a channel layer and a barrier layer, and a two-dimensional carrier gas is formed in a region of the channel layer close to the barrier layer; the channel layer and the barrier layer are III-V group compounds.

根据本发明的另一个方面,本发明还提供了一种半导体器件,包括第一晶体管和第二晶体管,其中,所述第一晶体管为前述的半导体器件,所述第二晶体管为增强型硅基晶体管;所述第一晶体管的漏极作为器件整体的第一极,所述第一晶体管的源极与所述第二晶体管的漏极电连接,所述第二晶体管的源极为器件整体的第二极;所述第一晶体管的栅极与所述第二晶体管的源极电连接;所述第一晶体管的调控端焊盘与所述第二晶体管的栅极电连接;所述第二晶体管的栅极为器件整体的控制极,用于连接驱动电路;其中,在通过驱动电路控制所述半导体器件的接通或断开时,通过调节驱动电路中的与调控端焊盘连接的电阻的阻值调节所述半导体器件的开关速度。According to another aspect of the present invention, the present invention also provides a semiconductor device, including a first transistor and a second transistor, wherein the first transistor is the aforementioned semiconductor device, and the second transistor is an enhancement-type silicon-based transistor; the drain of the first transistor serves as the first electrode of the device as a whole, the source of the first transistor is electrically connected to the drain of the second transistor, and the source of the second transistor is the second electrode of the device as a whole; the gate of the first transistor is electrically connected to the source of the second transistor; the control terminal pad of the first transistor is electrically connected to the gate of the second transistor; the gate of the second transistor is the control electrode of the device as a whole, and is used to connect to a drive circuit; wherein, when the semiconductor device is controlled to be turned on or off by the drive circuit, the switching speed of the semiconductor device is adjusted by adjusting the resistance value of the resistor connected to the control terminal pad in the drive circuit.

根据本发明的另一个方面,本发明还提供了一种半导体器件的制备方法,其中包括:According to another aspect of the present invention, the present invention also provides a method for preparing a semiconductor device, comprising:

提供半导体外延片作为功能层,所述功能层至少包括沟道层和势垒层,在所述沟道层中靠近所述势垒层的区域形成有二维载流子气;所述沟道层和势垒层为III-V族化合物;A semiconductor epitaxial wafer is provided as a functional layer, wherein the functional layer at least comprises a channel layer and a barrier layer, wherein a two-dimensional carrier gas is formed in a region of the channel layer close to the barrier layer; and the channel layer and the barrier layer are III-V group compounds;

在所述功能层的第一功能区中形成电极结构,所述电极结构包括源极结构、漏极结构和栅极结构,所述源极结构和漏极结构分别与第一二维载流子气电连接;forming an electrode structure in the first functional region of the functional layer, the electrode structure comprising a source structure, a drain structure and a gate structure, the source structure and the drain structure being electrically connected to the first two-dimensional carrier gas respectively;

在所述电极结构上方沉积预置厚度的第一介质层;Depositing a first dielectric layer of a preset thickness above the electrode structure;

在所述第一介质层上方沉积金属以得到第一金属层,其中,所述第一金属层位于所述漏极结构上方,或者所述第一金属层位于所述漏极结构上方且部分区域延伸到栅极结构和/或源极结构上方;Depositing metal on the first dielectric layer to obtain a first metal layer, wherein the first metal layer is located above the drain structure, or the first metal layer is located above the drain structure and a portion of the first metal layer extends to the gate structure and/or the source structure;

在所述第一金属层上方以及其未覆盖金属的第一介质层上方沉积第二介质层;Depositing a second dielectric layer on the first metal layer and on the first dielectric layer not covered with metal;

自所述第二介质层向下刻蚀分别与源极结构、漏极结构、栅极结构和第一金属层相连通的介质孔;以及Etching dielectric holes respectively connected to the source structure, the drain structure, the gate structure and the first metal layer from the second dielectric layer downwards; and

在所述介质孔内及在所述第二介质层上表面沉积金属以得到焊盘结构,所述焊盘结构分别包括源极焊盘、漏极焊盘、栅极焊盘和调控端焊盘,所述源极焊盘、漏极焊盘、栅极焊盘和调控端焊盘分别经过介质孔与源极结构、漏极结构、栅极结构和第一金属层对应电连接以构成器件的源极、漏极、栅极和调控结构;Depositing metal in the dielectric hole and on the upper surface of the second dielectric layer to obtain a pad structure, wherein the pad structure includes a source pad, a drain pad, a gate pad and a control end pad, and the source pad, the drain pad, the gate pad and the control end pad are respectively electrically connected to the source structure, the drain structure, the gate structure and the first metal layer through the dielectric hole to form the source, the drain, the gate and the control structure of the device;

其中,所述第一金属层和/或所述调控端焊盘与漏极结构和/或漏极焊盘形成第一电容。Wherein, the first metal layer and/or the regulating terminal pad and the drain structure and/or the drain pad form a first capacitor.

根据本发明的另一个方面,本发明还提供了一种半导体器件的制备方法,其中包括:According to another aspect of the present invention, the present invention also provides a method for preparing a semiconductor device, comprising:

提供半导体外延片作为功能层,所述功能层至少包括沟道层和势垒层,在所述沟道层中靠近所述势垒层的区域形成有二维载流子气;所述沟道层和势垒层为III-V族化合物;A semiconductor epitaxial wafer is provided as a functional layer, wherein the functional layer at least comprises a channel layer and a barrier layer, wherein a two-dimensional carrier gas is formed in a region of the channel layer close to the barrier layer; and the channel layer and the barrier layer are III-V group compounds;

在所述功能层的第一功能区中形成电极结构,所述电极结构包括源极结构、漏极结构和栅极结构,所述源极结构和漏极结构分别与第一二维载流子气电连接;forming an electrode structure in the first functional region of the functional layer, the electrode structure comprising a source structure, a drain structure and a gate structure, the source structure and the drain structure being electrically connected to the first two-dimensional carrier gas respectively;

在所述电极结构上方沉积预置厚度的第一介质层;Depositing a first dielectric layer of a preset thickness above the electrode structure;

刻蚀所述第一介质层以分别得到与源极结构、漏极结构和栅极结构相连通的介质孔;Etching the first dielectric layer to obtain dielectric holes connected to the source structure, the drain structure and the gate structure respectively;

在所述介质孔内及在所述第一介质层上表面沉积金属以得到焊盘结构,所述焊盘结构分别包括源极焊盘、漏极焊盘和栅极焊盘,所述源极焊盘、漏极焊盘和栅极焊盘分别经过介质孔与源极结构、漏极结构、栅极结构对应电连接以构成器件的源极、漏极和栅极;Depositing metal in the dielectric hole and on the upper surface of the first dielectric layer to obtain a pad structure, wherein the pad structure includes a source pad, a drain pad and a gate pad, and the source pad, the drain pad and the gate pad are respectively electrically connected to the source structure, the drain structure and the gate structure through the dielectric hole to form the source, the drain and the gate of the device;

在所述焊盘结构上方及未沉积金属的第一介质层上表面沉积第二介质层;以及Depositing a second dielectric layer above the pad structure and on the upper surface of the first dielectric layer where no metal is deposited; and

在与所述漏极焊盘的第二区相对的所述第二介质层上表面沉积金属以得到调控端焊盘;以及刻蚀所述第二介质层以露出所述焊盘结构中未与所述调控端焊盘相对的第一区、源极焊盘和栅极焊盘;Depositing metal on the upper surface of the second dielectric layer opposite to the second region of the drain pad to obtain a regulating terminal pad; and etching the second dielectric layer to expose the first region of the pad structure not opposite to the regulating terminal pad, the source pad and the gate pad;

或者,自与漏极焊盘第二区相对的所述第二介质层上表面向下刻蚀第一深度得到第一介质孔,分别自与漏极焊盘第一区、源极焊盘和栅极焊盘相对的所述第二介质层上表面向下刻蚀第二深度直至露出所述漏极焊盘第一区、源极焊盘和栅极焊盘以得到对应的多个第二介质孔,其中第一深度小于第二深度;至少在所述第一介质孔内沉积金属以得到调控端焊盘;所述调控端焊盘与所述漏极焊盘第二区形成第一电容。Alternatively, a first dielectric hole is obtained by etching downwards to a first depth from the upper surface of the second dielectric layer opposite to the second area of the drain pad, and a second depth is respectively etched downwards from the upper surface of the second dielectric layer opposite to the first area of the drain pad, the source pad and the gate pad until the first area of the drain pad, the source pad and the gate pad are exposed to obtain corresponding multiple second dielectric holes, wherein the first depth is less than the second depth; metal is deposited at least in the first dielectric hole to obtain a regulating end pad; the regulating end pad forms a first capacitor with the second area of the drain pad.

本发明在半导体器件内部集成了与漏极形成的电容,通过该电容能够有效地控制器件的开关速度,并且该电容击穿电压与器件的击穿电压相匹配,在应用时既不需要额外增加外置电容,节省了物料,也避免了外置电容与器件本身电压不匹配而造成的故障,降低了器件成本和电路设计时的复杂程度。The present invention integrates a capacitor formed with the drain electrode inside the semiconductor device, through which the switching speed of the device can be effectively controlled, and the breakdown voltage of the capacitor matches the breakdown voltage of the device. When applied, there is no need to add an additional external capacitor, which saves materials and avoids malfunctions caused by the mismatch between the external capacitor and the voltage of the device itself, thereby reducing the device cost and the complexity of circuit design.

附图说明BRIEF DESCRIPTION OF THE DRAWINGS

下面,将结合附图对本发明的优选实施方式进行进一步详细的说明,其中:The preferred embodiments of the present invention will be further described in detail below with reference to the accompanying drawings, wherein:

图1是现有技术中的Cascode器件原理示意图;FIG1 is a schematic diagram of the principle of a Cascode device in the prior art;

图2是根据本发明一个实施例的一种半导体器件的结构原理示意图;FIG2 is a schematic diagram of the structural principle of a semiconductor device according to an embodiment of the present invention;

图3是根据本发明实施例一的半导体器件的电气原理图;3 is an electrical schematic diagram of a semiconductor device according to Embodiment 1 of the present invention;

图4是根据本发明实施例一的半导体器件的上表面结构示意图;4 is a schematic diagram of the upper surface structure of a semiconductor device according to Embodiment 1 of the present invention;

图5是沿图4中的A-A’线剖开后的部分结构示意图;FIG5 is a schematic diagram of a partial structure cut along line A-A' in FIG4;

图6是根据本发明实施例一的半导体器件的制备方法流程图;6 is a flow chart of a method for manufacturing a semiconductor device according to Embodiment 1 of the present invention;

图7是采用本发明实施例一的半导体器件构成Cascode器件时的电气原理图;7 is an electrical schematic diagram of a cascode device formed by using a semiconductor device according to Embodiment 1 of the present invention;

图8是根据本发明实施例二的半导体器件的上表面结构示意图;8 is a schematic diagram of the upper surface structure of a semiconductor device according to Embodiment 2 of the present invention;

图9是沿图8中的B-B’线剖开后的部分结构示意图;FIG9 is a schematic diagram of a portion of the structure cut along line B-B' in FIG8;

图10根据本发明实施例二的半导体器件的制备方法流程图;10 is a flow chart of a method for manufacturing a semiconductor device according to Embodiment 2 of the present invention;

图11是沿图8中的B-B’线剖开后的部分结构示意图;FIG11 is a schematic diagram of a portion of the structure cut along line B-B' in FIG8;

图12是根据本发明实施例三的半导体器件的电气原理图;12 is an electrical schematic diagram of a semiconductor device according to Embodiment 3 of the present invention;

图13是沿图8中的B-B’线剖开后的部分结构示意图;FIG13 is a schematic diagram of a partial structure cut along the line B-B' in FIG8;

图14是根据本发明实施例四的半导体器件的电气原理图;14 is an electrical schematic diagram of a semiconductor device according to a fourth embodiment of the present invention;

图15是根据本发明实施例五的半导体器件的部分剖开后的结构示意图;15 is a schematic diagram of a partially cutaway structure of a semiconductor device according to a fifth embodiment of the present invention;

图16是根据本发明实施例五的半导体器件的电气原理图;16 is an electrical schematic diagram of a semiconductor device according to a fifth embodiment of the present invention;

图17是根据本发明实施例六的半导体器件的部分剖开后的结构示意图;17 is a schematic diagram of a partially cutaway structure of a semiconductor device according to a sixth embodiment of the present invention;

图18是根据本发明实施例七的半导体器件的电气原理示意图;18 is a schematic diagram of the electrical principle of a semiconductor device according to Embodiment 7 of the present invention;

图19是根据本发明实施例七的半导体器件的上表面结构示意图;19 is a schematic diagram of the upper surface structure of a semiconductor device according to Embodiment 7 of the present invention;

图20是根据本发明的一个实施例一种电阻结构示意图;FIG20 is a schematic diagram of a resistor structure according to an embodiment of the present invention;

图21是根据本发明实施例七的另一种半导体器件的上表面结构示意图;21 is a schematic diagram of the top surface structure of another semiconductor device according to Embodiment 7 of the present invention;

图22是根据本发明实施例八的半导体器件的部分剖开后的结构示意图;22 is a schematic diagram of a partially cutaway structure of a semiconductor device according to an eighth embodiment of the present invention;

图23是根据本发明实施例九的半导体器件的电气原理示意图;23 is a schematic diagram of the electrical principle of a semiconductor device according to Embodiment 9 of the present invention;

图24是根据本发明实施例九的半导体器件的部分剖开后的结构示意图;以及FIG24 is a schematic diagram of a partially cutaway structure of a semiconductor device according to a ninth embodiment of the present invention; and

图25是根据本发明实施例十的半导体器件的电气原理示意图。FIG. 25 is a schematic diagram of an electrical principle of a semiconductor device according to a tenth embodiment of the present invention.

具体实施方式DETAILED DESCRIPTION

为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。In order to make the purpose, technical solution and advantages of the embodiments of the present invention clearer, the technical solution in the embodiments of the present invention will be clearly and completely described below in conjunction with the drawings in the embodiments of the present invention. Obviously, the described embodiments are part of the embodiments of the present invention, not all of the embodiments. Based on the embodiments of the present invention, all other embodiments obtained by ordinary technicians in this field without creative work are within the scope of protection of the present invention.

在以下的详细描述中,可以参看作为本申请一部分用来说明本申请的特定实施例的各个说明书附图。本申请附图中所示的结构仅用以示意器件的原理,并不表示实际器件的真实尺寸和/或位置关系。本申请的各个特定实施例在以下进行了足够详细地描述,使得具备本领域相关知识和技术的普通技术人员能够根据本领域的常识实施本申请的技术方案。应当理解,在本申请各个特定实施例的启示下,本领域的普通技术人员还能够利用其它实施例对本申请的实施例进行结构、逻辑或者电性的改变。In the following detailed description, reference may be made to the various specification drawings that are part of the present application and are used to illustrate specific embodiments of the present application. The structures shown in the drawings of the present application are only used to illustrate the principles of the device and do not represent the actual size and/or positional relationship of the actual device. The various specific embodiments of the present application are described in sufficient detail below so that ordinary technicians with relevant knowledge and skills in the field can implement the technical solutions of the present application according to the common sense in the field. It should be understood that under the inspiration of the various specific embodiments of the present application, ordinary technicians in the field can also use other embodiments to make structural, logical or electrical changes to the embodiments of the present application.

图2是根据本发明实施例的一种半导体器件的结构原理示意图。所述半导体器件的结构包括功能层10、介质层20以及电极。其中,功能层10包括衬底100及外延层110。所述衬底100的材料例如为本征GaN或诸如硅(Si)、碳化硅(SiC)或蓝宝石(Al2O3)等材料。当衬底100为非本征衬底时,还可以进一步引入缓冲层以减少晶格差异带来的影响。缓冲层可以是氮化铝(AlN)、氮化镓(GaN)、氮化镓铝(AlGaN)、氮化镓铟(InGaN)、氮化铟铝(AlInN) 和氮化镓铟铝(AlGaInN) 中的一种或多种,用以减小衬底100与外延层110 之间的晶格常数和热膨胀系数等差异带来的影响,有效避免氮化物外延层出现龟裂等情况。缓冲层为可选结构,并且缓冲层可以为多层结构,其中每一层由不同的材料组成。当使用的衬底为硅(Si)时,衬底和缓冲层之间还可以引入成核层,用以避免回熔(melt-back)效应。当使用的衬底为蓝宝石或者碳化硅时也可以引入成核层来提高外延层的质量。FIG2 is a schematic diagram of the structural principle of a semiconductor device according to an embodiment of the present invention. The structure of the semiconductor device includes a functional layer 10, a dielectric layer 20 and an electrode. The functional layer 10 includes a substrate 100 and an epitaxial layer 110. The material of the substrate 100 is, for example, intrinsic GaN or materials such as silicon (Si), silicon carbide (SiC) or sapphire (Al 2 O 3 ). When the substrate 100 is a non-intrinsic substrate, a buffer layer may be further introduced to reduce the influence of lattice differences. The buffer layer may be one or more of aluminum nitride (AlN), gallium nitride (GaN), aluminum gallium nitride (AlGaN), indium gallium nitride (InGaN), aluminum indium nitride (AlInN) and aluminum gallium indium nitride (AlGaInN), to reduce the influence of differences in lattice constants and thermal expansion coefficients between the substrate 100 and the epitaxial layer 110, and effectively avoid cracking of the nitride epitaxial layer. The buffer layer is an optional structure, and the buffer layer may be a multilayer structure, in which each layer is composed of different materials. When the substrate used is silicon (Si), a nucleation layer may be introduced between the substrate and the buffer layer to avoid a melt-back effect. When the substrate used is sapphire or silicon carbide, a nucleation layer may also be introduced to improve the quality of the epitaxial layer.

外延层110包括沟道层和势垒层,所述沟道层的材料例如为GaN,所述势垒层的材料例如为AlGaN,沟道层和势垒层构成了异质结,其中提供有二维载流子气,如二维电子气(2DEG)或二维空穴气(2DHG)。构成异质结的所述沟道层和所述势垒层的材料还可以是其他III-V族半导体材料,如AlN、GaN、InN及这些材料的化合物,如AlGaN、InGaN、AlInGaN 等。The epitaxial layer 110 includes a channel layer and a barrier layer, wherein the material of the channel layer is, for example, GaN, and the material of the barrier layer is, for example, AlGaN, and the channel layer and the barrier layer constitute a heterojunction, wherein a two-dimensional carrier gas is provided, such as a two-dimensional electron gas (2DEG) or a two-dimensional hole gas (2DHG). The material of the channel layer and the barrier layer constituting the heterojunction may also be other III-V semiconductor materials, such as AlN, GaN, InN, and compounds of these materials, such as AlGaN, InGaN, AlInGaN, etc.

在外延层110上方为钝化层200,钝化层200可以作为栅极介质层,钝化层200的材料例如为氮化硅、氧化硅、氧化铪或者氧化铝等。第三介质层203可以为单层结构,也可以为多层结构,如靠近势垒层的为氮化硅,靠近电极的为氧化硅。值得说明的是不同设备制备的同一种材料或者同一设备不同工艺参数制备出来的同种材料,如果其电学性能差异较大,也可以算是不同的层。外延层110上方的多层介质构成了介质层20,所用的材料包括氧化硅、氮化硅和氧化铝等。Above the epitaxial layer 110 is a passivation layer 200, which can be used as a gate dielectric layer. The material of the passivation layer 200 is, for example, silicon nitride, silicon oxide, hafnium oxide or aluminum oxide. The third dielectric layer 203 can be a single-layer structure or a multi-layer structure, such as silicon nitride near the barrier layer and silicon oxide near the electrode. It is worth noting that the same material prepared by different equipment or the same material prepared by the same equipment with different process parameters can be regarded as different layers if their electrical properties are greatly different. The multi-layer dielectric above the epitaxial layer 110 constitutes the dielectric layer 20, and the materials used include silicon oxide, silicon nitride and aluminum oxide.

在本发明中,为了区分用来形成如电阻、二极管等其他器件时使用的功能层的区域,将用来获得半导体器件(如HEMT)有源区结构的功能层区域称为第一功能区,其中的二维载流子气称为第一二维载流子气。不同的功能区之间通过隔离区绝缘。例如为根据所需的面积大小及位置,在功能层上刻蚀出深度超过二维载流子气的隔离槽,而后在隔离槽中填充介质,得到一个电绝缘的隔离区,或者也可以通过从顶层向下注入绝缘离子的方式得到一个电绝缘的隔离区。In the present invention, in order to distinguish the region of the functional layer used to form other devices such as resistors and diodes, the region of the functional layer used to obtain the active region structure of the semiconductor device (such as HEMT) is referred to as the first functional region, and the two-dimensional carrier gas therein is referred to as the first two-dimensional carrier gas. Different functional regions are insulated by isolation regions. For example, according to the required area size and position, an isolation groove with a depth exceeding the two-dimensional carrier gas is etched on the functional layer, and then a dielectric is filled in the isolation groove to obtain an electrically insulating isolation region, or an electrically insulating isolation region can be obtained by injecting insulating ions from the top layer downward.

第一功能区中形成有电极结构,如图中的源极结构31、漏极结构32和栅极结构33,所述源极结构31和漏极结构32分别与第一二维载流子气111电连接。An electrode structure is formed in the first functional area, such as a source structure 31 , a drain structure 32 and a gate structure 33 in the figure. The source structure 31 and the drain structure 32 are electrically connected to the first two-dimensional carrier gas 111 , respectively.

所述半导体器件还包括用于打线的焊盘结构40。焊盘结构40的上表面和介质层20上表面可以基本处于同一平面上,也可以不处于同一平面。并且焊盘结构40的上表面和介质层20的上表面也可以是凹凸不平的面。介质层20可以部分覆盖焊盘结构40的上表面,只要满足焊盘结构40的上表面有足够的空间用于与外部形成电连接即可。焊盘结构40包括源极焊盘41、漏极焊盘42、栅极焊盘43,所述源极焊盘41、漏极焊盘42和栅极焊盘43分别经过介质孔与源极结构31、漏极结构32和栅极结构33对应电连接以构成器件的源极S、漏极D和栅极G。其中,为了表示出焊盘结构与电极结构的连接关系,图2同时示出了焊盘结构40与电极结构30,然而需要说明的是,图2仅是原理图,并不表示真实的位置关系,根据器件的打线需要,焊盘在器件表面的位置及数量根据需要而定,同类焊盘通常可以为多个。图中所示的电极结构为一个元胞的电极结构,实际的器件内部会有多个相同结构的元胞,多个元胞的同类电极结构分别通过介质孔与表面的同类焊盘电连接,以下的说明相同,不再赘述。The semiconductor device also includes a pad structure 40 for wire bonding. The upper surface of the pad structure 40 and the upper surface of the dielectric layer 20 may be basically on the same plane, or may not be on the same plane. And the upper surface of the pad structure 40 and the upper surface of the dielectric layer 20 may also be uneven surfaces. The dielectric layer 20 may partially cover the upper surface of the pad structure 40, as long as there is enough space on the upper surface of the pad structure 40 to form an electrical connection with the outside. The pad structure 40 includes a source pad 41, a drain pad 42, and a gate pad 43. The source pad 41, the drain pad 42, and the gate pad 43 are respectively electrically connected to the source structure 31, the drain structure 32, and the gate structure 33 through the dielectric hole to form the source S, the drain D, and the gate G of the device. In order to show the connection relationship between the pad structure and the electrode structure, FIG. 2 shows the pad structure 40 and the electrode structure 30 at the same time. However, it should be noted that FIG. 2 is only a schematic diagram and does not represent the actual positional relationship. According to the wiring requirements of the device, the position and number of the pads on the device surface are determined according to the requirements, and there can usually be multiple pads of the same type. The electrode structure shown in the figure is the electrode structure of a cell. There will be multiple cells of the same structure inside the actual device. The same electrode structures of multiple cells are electrically connected to the same pads on the surface through dielectric holes. The following description is the same and will not be repeated.

实施例一Embodiment 1

图3是根据本发明实施例一的半导体器件的电气原理图。本实施例中的半导体器件内部结构中集成的调控结构构成第一电容C1,第一电容C1的一端为漏极D,另一端为调控端C,用于在应用时与其他元器件电连接。Fig. 3 is an electrical schematic diagram of a semiconductor device according to Embodiment 1 of the present invention. The integrated control structure in the internal structure of the semiconductor device in this embodiment constitutes a first capacitor C1, one end of the first capacitor C1 is a drain electrode D, and the other end is a control terminal C, which is used to be electrically connected to other components when used.

图4是根据本发明实施例一的半导体器件的上表面结构示意图。实施例一中的调控结构由一个金属焊盘构成,即为图4中露出所述介质层20上表面的调控端焊盘51,其作为调控金属层的一个实施方式。图5是沿图4中的A-A’线剖开后的部分结构示意图。在本实施例中,漏极焊盘42包括露出所述介质层20上表面的第一区A1和与其并列地置于介质层20内部的第二区A2,调控端焊盘51位于所述第二区A2上方预置距离,所述调控端焊盘51与所述漏极焊盘第二区A2之间填充有介质。其中,通过设置漏极焊盘第二区A2与调控端焊盘51的相对面积及二者之间的距离和介质的种类,可以得到具有相应电容量的第一电容C1,在一个实施例中,漏极焊盘第二区A2与调控端焊盘51形成的第一电容C1的电容量在0.1-100pF之间。FIG4 is a schematic diagram of the upper surface structure of a semiconductor device according to an embodiment of the present invention. The control structure in the embodiment of the present invention is composed of a metal pad, that is, the control terminal pad 51 exposed on the upper surface of the dielectric layer 20 in FIG4, which is an embodiment of the control metal layer. FIG5 is a schematic diagram of a partial structure after being cut along the A-A' line in FIG4. In this embodiment, the drain pad 42 includes a first area A1 exposed on the upper surface of the dielectric layer 20 and a second area A2 placed inside the dielectric layer 20 in parallel therewith, and the control terminal pad 51 is located at a preset distance above the second area A2, and a dielectric is filled between the control terminal pad 51 and the second area A2 of the drain pad. Among them, by setting the relative area of the second area A2 of the drain pad and the control terminal pad 51 and the distance between the two and the type of the dielectric, a first capacitor C1 with a corresponding capacitance can be obtained. In one embodiment, the capacitance of the first capacitor C1 formed by the second area A2 of the drain pad and the control terminal pad 51 is between 0.1-100pF.

图6是根据本发明实施例一的半导体器件的制备方法流程图。在本实施例中,所述方法包括以下步骤:FIG6 is a flow chart of a method for preparing a semiconductor device according to Embodiment 1 of the present invention. In this embodiment, the method comprises the following steps:

步骤S11,提供半导体外延片作为半导体器件的功能层。参见图2,在本实施例中,首先在衬底100表面依次采用外延工艺外延沟道层和势垒层得到外延层110。另外,还可以在外延沟道层和势垒层之前,在衬底100表面沉积一层或多层的氮化铝(AlN)、氮化镓(GaN)、氮化镓铝(AlGaN)、氮化镓铟(InGaN)、氮化铟铝(AlInN)和氮化镓铟铝(AlGaInN)等作为缓冲层,用以减小衬底100与外延层110 之间的晶格常数和热膨胀系数等差异带来的影响。更好地,还可以先在衬底100表面沉积成核层,而后再依次沉积缓冲层和外延层110。另外还可以在外延层110上表面沉积钝化层200,用以作为栅极介质层。Step S11, providing a semiconductor epitaxial wafer as a functional layer of a semiconductor device. Referring to FIG. 2, in this embodiment, first, an epitaxial channel layer and a barrier layer are sequentially epitaxially grown on the surface of a substrate 100 using an epitaxial process to obtain an epitaxial layer 110. In addition, before the epitaxial channel layer and the barrier layer are formed, one or more layers of aluminum nitride (AlN), gallium nitride (GaN), aluminum gallium nitride (AlGaN), indium gallium nitride (InGaN), aluminum indium nitride (AlInN) and aluminum gallium indium nitride (AlGaInN) may be deposited on the surface of the substrate 100 as a buffer layer to reduce the influence of differences in lattice constant and thermal expansion coefficient between the substrate 100 and the epitaxial layer 110. Preferably, a nucleation layer may be deposited on the surface of the substrate 100 first, and then a buffer layer and an epitaxial layer 110 may be deposited in sequence. In addition, a passivation layer 200 may be deposited on the upper surface of the epitaxial layer 110 to serve as a gate dielectric layer.

步骤S12,在半导体外延片的第一功能区中形成电极结构。结合图2所示的结构,形成电极结构的具体步骤例如包括:首先在当前的半导体外延片的钝化层200上沉积一层第三介质层203;而后在用于形成电极的区域刻蚀第三介质层203得到用于生成漏极结构32和源极结构31的介质孔;而后在介质孔内沉积金属,再进行退火工艺使金属与外延层110形成欧姆接触,从而使得到的漏极结构32和源极结构31能够与外延层110中的二维载流子气电连接;而后在用于形成栅极的区域刻蚀第三介质层203,得到用于生成栅极结构33的介质孔,其中,该介质孔的侧壁可以有多个阶梯,而后在介质孔内沉积栅极金属,从而得到具有场板的栅极结构33。Step S12, forming an electrode structure in the first functional area of the semiconductor epitaxial wafer. In combination with the structure shown in FIG2 , the specific steps of forming the electrode structure include, for example: first, depositing a third dielectric layer 203 on the passivation layer 200 of the current semiconductor epitaxial wafer; then etching the third dielectric layer 203 in the region for forming the electrode to obtain a dielectric hole for generating the drain structure 32 and the source structure 31; then depositing metal in the dielectric hole, and then performing an annealing process to form an ohmic contact between the metal and the epitaxial layer 110, so that the obtained drain structure 32 and the source structure 31 can be electrically connected to the two-dimensional carrier gas in the epitaxial layer 110; then etching the third dielectric layer 203 in the region for forming the gate to obtain a dielectric hole for generating the gate structure 33, wherein the sidewall of the dielectric hole may have multiple steps, and then depositing the gate metal in the dielectric hole, so as to obtain the gate structure 33 with a field plate.

步骤S13,在所述电极结构上方沉积一层预置厚度的第一介质层201。Step S13, depositing a first dielectric layer 201 with a preset thickness on the electrode structure.

步骤S14,刻蚀第一介质层201得到多个与各类电极结构连通的介质孔。Step S14: etching the first dielectric layer 201 to obtain a plurality of dielectric holes connected to various electrode structures.

步骤S15,在第一介质层201上表面和介质孔内沉积金属以得到焊盘结构40,所述焊盘结构分别包括源极焊盘41、漏极焊盘42和栅极焊盘43,所述源极焊盘41、漏极焊盘42和栅极焊盘43分别经过介质孔与源极结构31、漏极结构32和栅极结构33对应电连接以构成器件的源极S、漏极D、栅极G,即得到图2所示的结构。Step S15, depositing metal on the upper surface of the first dielectric layer 201 and in the dielectric holes to obtain a pad structure 40, wherein the pad structure includes a source pad 41, a drain pad 42 and a gate pad 43, respectively. The source pad 41, the drain pad 42 and the gate pad 43 are respectively electrically connected to the source structure 31, the drain structure 32 and the gate structure 33 through the dielectric holes to form the source S, the drain D and the gate G of the device, that is, the structure shown in FIG. 2 is obtained.

步骤S16, 在所述焊盘结构40上方及未沉积金属的第一介质层201上表面沉积预置厚度的第二介质层202。Step S16, depositing a second dielectric layer 202 of a preset thickness above the pad structure 40 and on the upper surface of the first dielectric layer 201 where no metal is deposited.

步骤S171, 在与所述第二介质层202下方的漏极焊盘42的第二区A2相对的所述第二介质层202上表面沉积金属以得到调控端焊盘51。Step S171, depositing metal on the upper surface of the second dielectric layer 202 opposite to the second area A2 of the drain pad 42 below the second dielectric layer 202 to obtain a regulating terminal pad 51.

步骤S181, 刻蚀所述第二介质层202以露出所述焊盘结构中未与所述调控端焊盘51相对的第一区A1,以及露出源极焊盘41和栅极焊盘43。Step S181, etching the second dielectric layer 202 to expose the first area A1 of the pad structure that is not opposite to the regulating end pad 51, and to expose the source pad 41 and the gate pad 43.

或者,在步骤S172,刻蚀所述第二介质层202得到多个介质孔,其中,在与漏极焊盘42的第二区A2相对的区域向下刻蚀所述第二介质层202第一深度得到较浅的第一介质孔,在与漏极焊盘42的第一区A1以及源极焊盘41和栅极焊盘43相对的区域向下刻蚀所述第二介质层202直至到达焊盘金属得到第二介质孔,刻蚀的深度为第二深度,第二深度大于第一深度,从而露出漏极焊盘42的第一区A1以及源极焊盘41和栅极焊盘43。Alternatively, in step S172, the second dielectric layer 202 is etched to obtain a plurality of dielectric holes, wherein the second dielectric layer 202 is etched downward to a first depth in an area opposite to the second area A2 of the drain pad 42 to obtain a shallower first dielectric hole, and the second dielectric layer 202 is etched downward to a area opposite to the first area A1 of the drain pad 42 and the source pad 41 and the gate pad 43 until the pad metal is reached to obtain a second dielectric hole, and the etching depth is a second depth, which is greater than the first depth, thereby exposing the first area A1 of the drain pad 42 and the source pad 41 and the gate pad 43.

步骤S182,在当前第二介质层202的多个介质孔内沉积金属,其中,漏极焊盘42的第二区A2上方的第一介质孔内的金属构成调控端焊盘51,其他第二介质孔内的金属加厚了其当前的焊盘,从而得到平整的器件表面。Step S182, depositing metal in multiple dielectric holes of the current second dielectric layer 202, wherein the metal in the first dielectric hole above the second area A2 of the drain pad 42 constitutes the regulating terminal pad 51, and the metal in other second dielectric holes thickens the current pads, thereby obtaining a flat device surface.

图7是采用本发明实施例一的半导体器件构成Cascode器件时的电气原理图。在本实施例中,当本实施例中的半导体器件作为HEMT Q2与MOSFET Q1构成级联的Cascode器件时,在器件封装时,将图3中的调控端C(对应于图4和图5中的调控端焊盘51)通过打线的方式电连接到MOSFET Q1的栅极,从而使得Cascode器件中增加了漏栅电容Cdg。当与驱动电路的栅极电阻配合时,能够有效地调节Cascode器件的开关速度,既不需要额外增加外置电容,也不需要考虑外置电容与HEMT Q2的电压匹配问题,既节省了物料,减少了器件的制备工序,也避免了外置电容与器件本身电压不匹配而造成的故障。FIG7 is an electrical schematic diagram of a Cascode device formed by using the semiconductor device of the first embodiment of the present invention. In this embodiment, when the semiconductor device in this embodiment is used as a cascode device cascaded with HEMT Q2 and MOSFET Q1, when the device is packaged, the control terminal C in FIG3 (corresponding to the control terminal pad 51 in FIG4 and FIG5) is electrically connected to the gate of MOSFET Q1 by wire bonding, thereby increasing the drain-gate capacitance Cdg in the Cascode device. When combined with the gate resistance of the driving circuit, the switching speed of the Cascode device can be effectively adjusted, and there is no need to add an additional external capacitor, nor to consider the voltage matching problem between the external capacitor and the HEMT Q2, which saves materials, reduces the preparation process of the device, and avoids failures caused by the mismatch between the external capacitor and the voltage of the device itself.

实施例二Embodiment 2

图8是根据本发明实施例二的半导体器件的上表面结构示意图。图9是沿图8中的B-B’线剖开后的部分结构示意图。在本实施例中,所述调控结构的调控金属层包括露出所述介质层20上表面的调控端焊盘51和形成在介质层内部的第一金属层52,所述调控端焊盘51经过介质孔与所述第一金属层52电连接。在本实施例中,所述第一金属层52位于所述漏极焊盘42下方预置距离,二者之间正对的区域形成第一电容C1。第一金属层52也可以在介质层20中位于漏极结构32上方预置距离,第一金属层52与漏极结构32正对的区域形成第一电容C1。当第一金属层52在介质层20中既位于漏极结构32上方,同时也与漏极焊盘42的下方,则所述第一电容C1由两部分电容构成。基于此结构得到的所述半导体器件的电气原理图如图3所示。需要说明的是,本实施例中的第一电容C1的绝大部分电容量是由前述几种结构构成的电容提供,然而可以得知的是,即使第一金属层52没有与漏极结构32或漏极焊盘42形成正对的关系,也会形成很小电容量的电容,因而本发明中的第一电容C1的实际电容量是所有电容的电容总量,但是由于第一金属层52在没有与漏极结构32或漏极焊盘42形成正对的关系时的电容量非常小,因而本发明在说明第一电容C1的构成时,仅说明提供主要电容量的结构,其他结构则忽略不再说明。FIG8 is a schematic diagram of the upper surface structure of a semiconductor device according to Embodiment 2 of the present invention. FIG9 is a schematic diagram of a portion of the structure after being cut along the B-B' line in FIG8. In this embodiment, the regulating metal layer of the regulating structure includes a regulating end pad 51 exposed on the upper surface of the dielectric layer 20 and a first metal layer 52 formed inside the dielectric layer, and the regulating end pad 51 is electrically connected to the first metal layer 52 through a dielectric hole. In this embodiment, the first metal layer 52 is located at a preset distance below the drain pad 42, and the area directly facing the two forms a first capacitor C1. The first metal layer 52 can also be located at a preset distance above the drain structure 32 in the dielectric layer 20, and the area directly facing the first metal layer 52 and the drain structure 32 forms a first capacitor C1. When the first metal layer 52 is located both above the drain structure 32 and below the drain pad 42 in the dielectric layer 20, the first capacitor C1 is composed of two capacitors. The electrical schematic diagram of the semiconductor device obtained based on this structure is shown in FIG3. It should be noted that, in the present embodiment, most of the capacitance of the first capacitor C1 is provided by the capacitors formed by the aforementioned structures. However, it can be known that even if the first metal layer 52 does not form a directly opposite relationship with the drain structure 32 or the drain pad 42, a capacitor with very small capacitance will be formed. Therefore, the actual capacitance of the first capacitor C1 in the present invention is the total capacitance of all capacitors. However, since the capacitance of the first metal layer 52 is very small when it does not form a directly opposite relationship with the drain structure 32 or the drain pad 42, when describing the composition of the first capacitor C1, the present invention only describes the structure that provides the main capacitance, and other structures are ignored and no longer described.

图10是根据本发明实施例二的半导体器件的制备方法流程图。在本实施例中,步骤S21至步骤S23与图6所示的方法中的步骤S11至步骤S13相同,在此不再赘述,在本实施例中,所述方法在步骤S23之后包括:FIG10 is a flow chart of a method for preparing a semiconductor device according to a second embodiment of the present invention. In this embodiment, steps S21 to S23 are the same as steps S11 to S13 in the method shown in FIG6 , and are not described in detail here. In this embodiment, the method includes, after step S23:

步骤S24,在所述第一介质层201上方沉积金属以得到第一金属层52。Step S24: depositing metal on the first dielectric layer 201 to obtain a first metal layer 52.

步骤S25,在所述第一金属层52上方以及未覆盖金属的第一介质层201上方沉积第二介质层202。Step S25: depositing a second dielectric layer 202 on the first metal layer 52 and on the first dielectric layer 201 not covered with metal.

步骤S26,自所述第二介质层202向下刻蚀介质孔,包括分别与源极结构31、漏极结构32、栅极结构33和第一金属层52相连通的介质孔。Step S26, etching dielectric holes downward from the second dielectric layer 202, including dielectric holes respectively connected to the source structure 31, the drain structure 32, the gate structure 33 and the first metal layer 52.

步骤S27,在所述介质孔内及所述第二介质层202上表面沉积金属以得到焊盘结构,所述焊盘结构分别包括源极焊盘41、漏极焊盘42、栅极焊盘43和调控端焊盘51,所述源极焊盘41、漏极焊盘42、栅极焊盘43和调控端焊盘51分别经过介质孔与源极结构31、漏极结构32、栅极结构33和第一金属层52对应电连接以构成器件的源极S、漏极D、栅极G和调控结构。参见图8及图9,其中,为了方便图示第一金属层52的位置,图9中并未示出介质孔。在本实施例中,所述第一金属层52位于漏极焊盘43下方,当然也可以控制所述第一金属层52在第一介质层201上的位置,使第一金属层52与漏极结构33相对,或者同时与漏极结构33和漏极焊盘43相对,第一金属层52与漏极形成的第一电容C1的一端为漏极D,另一端为第一金属层52,而金属层52与第一调控端焊盘51电连接构成等电位,因而将所述第一电容C1的非漏极端引到表面,从而方便与其他元件电连接。Step S27, depositing metal in the dielectric hole and on the upper surface of the second dielectric layer 202 to obtain a pad structure, the pad structure respectively includes a source pad 41, a drain pad 42, a gate pad 43 and a control terminal pad 51, the source pad 41, the drain pad 42, the gate pad 43 and the control terminal pad 51 are respectively electrically connected to the source structure 31, the drain structure 32, the gate structure 33 and the first metal layer 52 through the dielectric hole to form the source S, drain D, gate G and control structure of the device. See Figures 8 and 9, wherein, in order to facilitate the illustration of the position of the first metal layer 52, the dielectric hole is not shown in Figure 9. In this embodiment, the first metal layer 52 is located below the drain pad 43. Of course, the position of the first metal layer 52 on the first dielectric layer 201 can also be controlled so that the first metal layer 52 is opposite to the drain structure 33, or is opposite to the drain structure 33 and the drain pad 43 at the same time. One end of the first capacitor C1 formed by the first metal layer 52 and the drain is the drain D, and the other end is the first metal layer 52. The metal layer 52 is electrically connected to the first regulating end pad 51 to form an equipotential, so that the non-drain end of the first capacitor C1 is brought to the surface, thereby facilitating electrical connection with other components.

实施例三Embodiment 3

实施例三的半导体器件的上表面结构示意图与图8相同,图11是沿图8中的B-B’线剖开后的部分结构示意图。在本实施例中,所述第一金属层52形成在介质层20内部,位于所述漏极焊盘42下方预置距离,且其部分区域延伸到栅极结构33上方预置距离。因而所述第一金属层52与其上方的所述漏极焊盘42形成第一电容C1,同时所述第一金属层52与其下方的栅极结构33形成第二电容C2,第一金属层52通过介质孔与所述调控端焊盘51电连接一起构成等电位。图12是根据本发明实施例三的半导体器件的电气原理图。本实施例中的第一电容C1的一端和第二电容C2的一端共同电连接在调控端C上,第一电容C1的另一端为漏极D,第二电容C2的另一端为栅极G,通过调整第一金属层52与栅极结构33的距离和相对面积可以得到对应的电容量。其中,第二电容C2的大小为0.1-1000pF。本实施例在器件的漏极D和栅极G之间插入第一金属层52,减少了栅极结构33与漏极焊盘42的相对面积,因而降低了器件本身的漏栅电容Cdg,从而降低了该器件的开关损耗。The upper surface structural schematic diagram of the semiconductor device of the third embodiment is the same as FIG8, and FIG11 is a partial structural schematic diagram after being cut along the B-B' line in FIG8. In the present embodiment, the first metal layer 52 is formed inside the dielectric layer 20, located at a preset distance below the drain pad 42, and a part of its area extends to a preset distance above the gate structure 33. Therefore, the first metal layer 52 forms a first capacitor C1 with the drain pad 42 above it, and the first metal layer 52 forms a second capacitor C2 with the gate structure 33 below it, and the first metal layer 52 is electrically connected to the regulating end pad 51 through the dielectric hole to form an equipotential. FIG12 is an electrical schematic diagram of a semiconductor device according to the third embodiment of the present invention. In the present embodiment, one end of the first capacitor C1 and one end of the second capacitor C2 are electrically connected to the regulating end C, the other end of the first capacitor C1 is the drain D, and the other end of the second capacitor C2 is the gate G. The corresponding capacitance can be obtained by adjusting the distance and relative area between the first metal layer 52 and the gate structure 33. Among them, the size of the second capacitor C2 is 0.1-1000pF. In this embodiment, a first metal layer 52 is inserted between the drain D and the gate G of the device, which reduces the relative area between the gate structure 33 and the drain pad 42, thereby reducing the drain-gate capacitance Cdg of the device itself, thereby reducing the switching loss of the device.

在另一个方案中,通过设置第一金属层52在介质层20中的位置,可以将所述第一金属层52的部分区域延伸到栅极焊盘43下方预置距离,从而减小器件本身的漏栅电容Cdg。In another solution, by setting the position of the first metal layer 52 in the dielectric layer 20 , a portion of the first metal layer 52 can be extended to a preset distance below the gate pad 43 , thereby reducing the drain-gate capacitance Cdg of the device itself.

在本实施例中,当本实施例中的半导体器件作为HEMT Q2与MOSFET Q1构成级联的Cascode器件时,在器件封装时,将图12中的调控端C(对应于图8中的调控端焊盘51)通过打线的方式电连接到MOSFET Q1的栅极,从而使得Cascode器件中增加了漏栅电容Cdg,当与驱动电路的栅极电阻配合时,能够有效地调节Cascode器件的开关速度。另外,本实施例中的HEMT Q2本身的漏栅电容Cdg小,因而还进一步地降低了该器件的开关损耗。In this embodiment, when the semiconductor device in this embodiment is used as a cascode device cascaded with HEMT Q2 and MOSFET Q1, when the device is packaged, the control terminal C in FIG. 12 (corresponding to the control terminal pad 51 in FIG. 8 ) is electrically connected to the gate of MOSFET Q1 by wire bonding, so that the drain-gate capacitance Cdg is added to the cascode device, and when it cooperates with the gate resistance of the driving circuit, the switching speed of the cascode device can be effectively adjusted. In addition, the drain-gate capacitance Cdg of the HEMT Q2 itself in this embodiment is small, thereby further reducing the switching loss of the device.

实施例四Embodiment 4

实施例四的半导体器件的上表面结构示意图与图8相同,图13是沿图8中的B-B’线剖开后的部分结构示意图。在本实施例中,所述第一金属层52位于漏极焊盘42下方,且其部分区域延伸到源极结构31上方预置距离,因而所述第一金属层52与其上方的所述漏极焊盘42形成第一电容C1,同时所述第一金属层52与其下方的源极结构31形成第三电容C3。第一金属层52通过介质孔与介质层20上表面的所述调控端焊盘51电连接一起构成等电位,因而本实施例中的第一电容C1的一端和第三电容C1的一端共同电连接在一起作为调控端C,第一电容C1的另一端为漏极D,第三电容C3的另一端为源极S,因而本实施例四的半导体器件的电气原理图如图14所示。通过调整第一金属层52与源极结构31的距离和相对面积可以得到对应的电容量。其中,第三电容C3的大小为0.1-10000pF。The upper surface structural schematic diagram of the semiconductor device of the fourth embodiment is the same as FIG8, and FIG13 is a partial structural schematic diagram after being cut along the B-B' line in FIG8. In the present embodiment, the first metal layer 52 is located below the drain pad 42, and a part of its area extends to a preset distance above the source structure 31, so that the first metal layer 52 and the drain pad 42 above it form a first capacitor C1, and the first metal layer 52 and the source structure 31 below it form a third capacitor C3. The first metal layer 52 is electrically connected to the regulating end pad 51 on the upper surface of the dielectric layer 20 through the dielectric hole to form an equipotential, so that one end of the first capacitor C1 and one end of the third capacitor C1 in the present embodiment are electrically connected together as the regulating end C, the other end of the first capacitor C1 is the drain D, and the other end of the third capacitor C3 is the source S, so the electrical schematic diagram of the semiconductor device of the fourth embodiment is shown in FIG14. The corresponding capacitance can be obtained by adjusting the distance and relative area between the first metal layer 52 and the source structure 31. The third capacitor C3 has a value of 0.1-10000 pF.

在本实施例中,由于第一金属层52的位置,减小了源极结构31与漏极焊盘42之间的相对面积,将器件的漏极和源极之间的漏源电容Cds部分地转化为C1和C3串联的电容,从而降低了器件本身的漏源电容Cds。In this embodiment, due to the position of the first metal layer 52, the relative area between the source structure 31 and the drain pad 42 is reduced, and the drain-source capacitance Cds between the drain and source of the device is partially converted into a capacitance of C1 and C3 in series, thereby reducing the drain-source capacitance Cds of the device itself.

当本实施例中的半导体器件作为HEMT Q2与MOSFET Q1构成级联的Cascode器件时,在器件封装时,将图14中的调控端C(对应于调控端焊盘51)通过打线的方式电连接到MOSFET Q1的栅极,从而使得Cascode器件中增加了漏栅电容Cdg,当与驱动电路的栅极电阻配合时,能够有效地调节Cascode器件的开关速度。另外,由于本实施例中的HEMT Q2本身的漏源电容低,从而能够获得更低的动态中点电位。所述的中点是指HEMT Q2的源极与MOSFETQ1漏极的连接点。当Cascode器件在关断时,当漏源电压Vds升高到HEMT器件的关断阈值Vth的绝对值时,HEMT Q2的沟道关断,进入HEMT Q2的本身漏源电容Cds和MOSFET Q1的本身电容Coss(指MOSFET Q1本身的漏源电容和漏栅电容的总和)的电容匹配过程,MOSFET Q1的漏源Vds电压(中点电位)的大小与HEMT Q2本身的漏源电容Cds相关,HEMT Q2本身的漏源电容Cds越小,中点电位越低。如果中点电位过高,将导致MOSFET Q1发生雪崩。因而,HEMT Q2本身的漏源电容Cds越小,Cascode器件的可靠性越高。本实施例在HEMT Q2的内部通过第一金属层52降低了HEMT Q2本身的漏源电容Cds,从而提高了器件在应用时的可靠性。When the semiconductor device in this embodiment is used as a cascode device cascaded with HEMT Q2 and MOSFET Q1, when the device is packaged, the control terminal C (corresponding to the control terminal pad 51) in FIG. 14 is electrically connected to the gate of MOSFET Q1 by wire bonding, so that the drain-gate capacitance Cdg is added to the cascode device, and when it is matched with the gate resistance of the driving circuit, the switching speed of the cascode device can be effectively adjusted. In addition, since the drain-source capacitance of HEMT Q2 itself in this embodiment is low, a lower dynamic midpoint potential can be obtained. The midpoint refers to the connection point between the source of HEMT Q2 and the drain of MOSFETQ1. When the Cascode device is turned off, when the drain-source voltage Vds rises to the absolute value of the turn-off threshold Vth of the HEMT device, the channel of HEMT Q2 is turned off, and the capacitance matching process of the drain-source capacitance Cds of HEMT Q2 itself and the capacitance Coss of MOSFET Q1 itself (referring to the sum of the drain-source capacitance and the drain-gate capacitance of MOSFET Q1 itself) is entered. The magnitude of the drain-source Vds voltage (midpoint potential) of MOSFET Q1 is related to the drain-source capacitance Cds of HEMT Q2 itself. The smaller the drain-source capacitance Cds of HEMT Q2 itself, the lower the midpoint potential. If the midpoint potential is too high, it will cause MOSFET Q1 to avalanche. Therefore, the smaller the drain-source capacitance Cds of HEMT Q2 itself, the higher the reliability of the Cascode device. In this embodiment, the drain-source capacitance Cds of HEMT Q2 itself is reduced by the first metal layer 52 inside HEMT Q2, thereby improving the reliability of the device when it is used.

实施例五Embodiment 5

图15是根据本发明实施例五的半导体器件的部分剖开后的结构示意图。在本实施例中,半导体器件的上表面结构示意图与图8相同,在本实施例中,所述第一金属层52的部分区域依次延伸到源极结构31和栅极结构32上方的预置距离,因而所述第一金属层52与其上方的所述漏极焊盘42形成第一电容C1,同时,所述第一金属层52与其下方的栅极结构32形成第二电容C2,所述第一金属层52与其下方的源极结构31形成第三电容C3。第一金属层52通过介质孔与介质层20上表面的所述调控端焊盘51电连接一起构成等电位,因而本实施例中的第一电容C1的一端、第二电容C2的一端和第三电容C1的一端共同电连接在一起作为调控端C,第一电容C1的另一端为漏极D,第二电容C2的另一端为栅极G,第三电容C3的另一端为源极S,因而本实施例五的半导体器件的电气原理图如图16所示。FIG15 is a schematic diagram of the structure of a semiconductor device according to the fifth embodiment of the present invention after partial sectioning. In this embodiment, the schematic diagram of the upper surface structure of the semiconductor device is the same as FIG8. In this embodiment, the partial area of the first metal layer 52 extends to the preset distance above the source structure 31 and the gate structure 32 in sequence, so that the first metal layer 52 and the drain pad 42 above it form a first capacitor C1, and at the same time, the first metal layer 52 and the gate structure 32 below it form a second capacitor C2, and the first metal layer 52 and the source structure 31 below it form a third capacitor C3. The first metal layer 52 is electrically connected to the control terminal pad 51 on the upper surface of the dielectric layer 20 through the dielectric hole to form an equipotential, so that one end of the first capacitor C1, one end of the second capacitor C2 and one end of the third capacitor C1 in this embodiment are electrically connected together as the control terminal C, the other end of the first capacitor C1 is the drain D, the other end of the second capacitor C2 is the gate G, and the other end of the third capacitor C3 is the source S, so the electrical schematic diagram of the semiconductor device of the fifth embodiment is shown in FIG16.

在本实施例中,在集成第一电容C1的同时,还降低了HEMT本身的漏栅电容Cdg,可以降低器件的开关损耗,同时也降低了HEMT本身的漏源电容Cds,从而在构成级联器件时,将调控端C与MOSFET的栅极电连接在一起,既能调节级联器件的开关速度,还能减小开关损耗,降低中点电位,提高器件的可靠性。In this embodiment, while integrating the first capacitor C1, the drain-gate capacitance Cdg of the HEMT itself is also reduced, which can reduce the switching loss of the device. At the same time, the drain-source capacitance Cds of the HEMT itself is also reduced. Therefore, when forming a cascade device, the control terminal C is electrically connected to the gate of the MOSFET, which can not only adjust the switching speed of the cascade device, but also reduce the switching loss, reduce the midpoint potential, and improve the reliability of the device.

实施例六Embodiment 6

在前述实施例五中,形成第一电容C1、第二电容C2和第三电容C3的金属层为同一个金属层,当然也可以为分离的多个金属层。图17是根据本发明实施例六的半导体器件的部分剖开后的结构示意图。本实施例在栅极结构33上方预置距离增加第二金属层53,从而得到第二电容C2。又例如,在源极结构31上方预置距离增加第三金属层54,从而得到第三电容C3。第二金属层53和第三金属层54可通过介质孔与表面的调控端焊盘51电连接,从而得到图16所示的电气连接关系。In the aforementioned fifth embodiment, the metal layer forming the first capacitor C1, the second capacitor C2 and the third capacitor C3 is the same metal layer, and of course, it can also be a plurality of separate metal layers. Figure 17 is a schematic diagram of the structure of a semiconductor device according to the sixth embodiment of the present invention after partial dissection. In this embodiment, a second metal layer 53 is added at a preset distance above the gate structure 33, thereby obtaining a second capacitor C2. For another example, a third metal layer 54 is added at a preset distance above the source structure 31, thereby obtaining a third capacitor C3. The second metal layer 53 and the third metal layer 54 can be electrically connected to the regulating end pad 51 on the surface through the dielectric hole, thereby obtaining the electrical connection relationship shown in Figure 16.

其中,第二金属层53也可以设置在栅极焊盘43的下方,第三金属层54也可以设置在源极焊盘41的下方。The second metal layer 53 may also be disposed below the gate pad 43 , and the third metal layer 54 may also be disposed below the source pad 41 .

实施例七Embodiment 7

图18是根据本发明实施例七的半导体器件的电气原理示意图。在本实施例中,在半导体器件中集成的调控结构中的调控金属层包括位于介质层20上表面的调控端焊盘51和形成在介质层20上表面的金属层,为了区分形成在介质层20内部的第一金属层52,将形成在介质层20上表面的金属层命名为第四金属层55。对应地,本实施例中的调控结构包括形成电阻的结构,参见图18,第一电阻R1与第一电容C1串联,从而更加方便地调节或控制器件的开关速率。图19是本发明实施例七的半导体器件的上表面结构示意图。在本实施例中,在图6所示的步骤S171中,在与所述第二介质层202下方的漏极焊盘42的第二区A2相对的所述第二介质层202上表面沉积的第四金属层55,同时在其他位置沉积的金属层作为调控端焊盘51,或者,在步骤S172刻蚀所述第二介质层202时,还在焊盘结构之外的其他区域刻蚀出一个介质孔,在步骤S182中在所述介质孔中沉积得到的金属层作为调控端焊盘51,在与漏极焊盘42的第二区A2相对的区域刻蚀所述第二介质层202得到较浅的第一介质孔中沉积第四金属层55,在前述沉积金属时还在第二介质层202的上表面沉积第一条状金属层62,其中,第四金属层55与其下部的、位于介质层20中的漏极焊盘42的第二区A2形成第一电容C1,其结构与图5的结构相同,不同在于,图5中与漏极焊盘42第二区A2形成第一电容C1的结构为调控端焊盘51,而本实施例中的是第四金属层55,并且第一条状金属层62的第一端6201与第四金属层55连接在一起,该连接点即对应于图18中的连接点C’。第一条状金属层62的第二端6202与调控端焊盘51连接在一起,从而得到图18所示的电气原理图中的电气连接关系。FIG18 is a schematic diagram of the electrical principle of a semiconductor device according to Embodiment 7 of the present invention. In this embodiment, the control metal layer in the control structure integrated in the semiconductor device includes a control terminal pad 51 located on the upper surface of the dielectric layer 20 and a metal layer formed on the upper surface of the dielectric layer 20. In order to distinguish the first metal layer 52 formed inside the dielectric layer 20, the metal layer formed on the upper surface of the dielectric layer 20 is named as the fourth metal layer 55. Correspondingly, the control structure in this embodiment includes a structure for forming a resistor. Referring to FIG18, the first resistor R1 is connected in series with the first capacitor C1, so as to more conveniently adjust or control the switching rate of the device. FIG19 is a schematic diagram of the upper surface structure of the semiconductor device according to Embodiment 7 of the present invention. In this embodiment, in step S171 shown in FIG. 6, the fourth metal layer 55 is deposited on the upper surface of the second dielectric layer 202 opposite to the second area A2 of the drain pad 42 below the second dielectric layer 202, and the metal layer deposited at other positions is used as the regulating terminal pad 51, or, when etching the second dielectric layer 202 in step S172, a dielectric hole is also etched in other areas outside the pad structure, and in step S182, the metal layer deposited in the dielectric hole is used as the regulating terminal pad 51, and the second dielectric layer 202 is etched in the area opposite to the second area A2 of the drain pad 42 to obtain a shallower first A fourth metal layer 55 is deposited in a dielectric hole, and a first strip metal layer 62 is also deposited on the upper surface of the second dielectric layer 202 during the aforementioned metal deposition, wherein the fourth metal layer 55 and the second area A2 of the drain pad 42 located in the dielectric layer 20 below it form a first capacitor C1, and its structure is the same as that of FIG5 , except that the structure forming the first capacitor C1 with the second area A2 of the drain pad 42 in FIG5 is the regulating end pad 51, while in this embodiment it is the fourth metal layer 55, and the first end 6201 of the first strip metal layer 62 is connected to the fourth metal layer 55, and the connection point corresponds to the connection point C' in FIG18. The second end 6202 of the first strip metal layer 62 is connected to the regulating end pad 51, thereby obtaining the electrical connection relationship in the electrical schematic diagram shown in FIG18.

在本实施例中,通过控制形成第一条状金属层62的长度、宽度及厚度可以得到相应的阻值,从而得到预置阻值的第一电阻R1。In this embodiment, the corresponding resistance value can be obtained by controlling the length, width and thickness of the first strip-shaped metal layer 62 , thereby obtaining the first resistor R1 with a preset resistance value.

为了节省在表面的占有面积,本实施例中的第一条状金属层62呈折线形,其两个端点分别为电阻的两端。In order to save the occupied area on the surface, the first strip-shaped metal layer 62 in this embodiment is in a zigzag shape, and its two end points are respectively the two ends of the resistor.

在一些实施例中,第一条状金属层62可分别连接有多个阻值连接点,每个阻值连接点与介质层20上表面的一个调控端焊盘电连接,如图20所示的第二调控端焊盘621和第三调控端焊盘622。每个阻值连接点分别与所述第一条状金属层第一端6201相距不同距离,具有不同的阻值,因而每个对应的调控端焊盘对应一个具体的电阻阻值,如图20所示,图中的电阻有三个不同的阻值。In some embodiments, the first strip metal layer 62 may be connected to a plurality of resistance connection points, each of which is electrically connected to a control end pad on the upper surface of the dielectric layer 20, such as the second control end pad 621 and the third control end pad 622 shown in FIG20. Each resistance connection point is at a different distance from the first end 6201 of the first strip metal layer, and has a different resistance value, so each corresponding control end pad corresponds to a specific resistance value, as shown in FIG20, and the resistor in the figure has three different resistance values.

在将本实施例中的半导体器件作为HEMT Q2与MOSFET Q1构成级联的Cascode器件时,根据需要将调控端焊盘51、第二调控端焊盘621或第三调控端焊盘622与MOSFET Q1的栅极电连接,在与驱动电路相配合的情况下能够进一步有效地调整器件开关速度。When the semiconductor device in this embodiment is used as a cascode device cascaded with HEMT Q2 and MOSFET Q1, the control terminal pad 51, the second control terminal pad 621 or the third control terminal pad 622 is electrically connected to the gate of MOSFET Q1 as needed, and the switching speed of the device can be further effectively adjusted in cooperation with the driving circuit.

当第一电容C1为通过介质层20内部的第一金属层52与漏极形成时,参考图10所示的流程,在步骤S27中在介质孔内及在第二介质层202上表面沉积金属以得到焊盘结构时还同时得到第一条状金属层62,其第一端6201通过介质孔与所述第一金属层52连接,其第二端与所述调控端焊盘51连接。When the first capacitor C1 is formed by the first metal layer 52 inside the dielectric layer 20 and the drain, referring to the process shown in FIG. 10 , in step S27, when metal is deposited in the dielectric hole and on the upper surface of the second dielectric layer 202 to obtain a pad structure, a first strip metal layer 62 is also obtained at the same time, wherein the first end 6201 is connected to the first metal layer 52 through the dielectric hole, and the second end is connected to the regulating end pad 51.

在另一些实施例中,第一条状金属层62也可以位于介质层20内部,例如,参考图10所示的流程图,在步骤S24在所述第一介质层201上沉积金属以得到第一金属层52的同时得到沉积得到第一条状金属层62,第一金属层52和第一条状金属层62的第一端6201相连接,在步骤S26刻蚀所述第二介质层202得到的介质孔中,一个介质孔与第一条状金属层62的第二端6202相连通,因而在步骤S27在介质孔内沉积金属时,可与表面的调控端焊盘51电连接。因而器件的上表面结构与图8所示的器件上表面结构相同。当需要多个阻值的电阻时,可将每个阻值连接点经过介质孔与介质层20上表面的一个调控端焊盘电连接,得到的器件上表面结构图如图21所示。其中,调控端焊盘51、第二调控端焊盘621或第三调控端焊盘622分别对于不同的电阻阻值。In some other embodiments, the first strip metal layer 62 may also be located inside the dielectric layer 20. For example, referring to the flowchart shown in FIG. 10, in step S24, metal is deposited on the first dielectric layer 201 to obtain the first metal layer 52, and the first metal layer 52 is deposited to obtain the first end 6201 of the first strip metal layer 62. The first metal layer 52 is connected to the first end 6201 of the first strip metal layer 62. In the dielectric hole obtained by etching the second dielectric layer 202 in step S26, one dielectric hole is connected to the second end 6202 of the first strip metal layer 62. Therefore, when metal is deposited in the dielectric hole in step S27, it can be electrically connected to the control terminal pad 51 on the surface. Therefore, the upper surface structure of the device is the same as the upper surface structure of the device shown in FIG. 8. When multiple resistance values are required, each resistance connection point can be electrically connected to a control terminal pad on the upper surface of the dielectric layer 20 through the dielectric hole, and the obtained device upper surface structure diagram is shown in FIG. 21. Among them, the control terminal pad 51, the second control terminal pad 621 or the third control terminal pad 622 are respectively for different resistance values.

实施例八Embodiment 8

实施例八的器件的电气原理与实施例七中的相似,不同在于,本实施例中的电阻在功能层10的第二功能区130利用二维载流子气形成。具体地,参见图22,图22是根据本发明实施例八的半导体器件的部分剖开后的结构示意图。在本实施例中,在提供半导体外延片后,在所述半导体外延片形成隔离区140,所述隔离区140的深度大于二维载流子气所在区域的深度,所述隔离区140将所述功能层的区域至少隔离有与所述第一功能区120绝缘的第二功能区130。其中,在第一功能区120中形成有电极结构30的同时,在第二功能区130形成第一电极71和第二电极72。具体地,向下刻蚀第二功能区至少到达第二二维载流子气112,而后在刻蚀的区域生成金属得到第一电极71和第二电极72,第一电极71和第二电极72能够通过第二二维载流子气112导电。The electrical principle of the device of the eighth embodiment is similar to that of the seventh embodiment, except that the resistor in the present embodiment is formed by using a two-dimensional carrier gas in the second functional region 130 of the functional layer 10. Specifically, refer to FIG. 22, which is a schematic diagram of the structure of a semiconductor device according to the eighth embodiment of the present invention after partial cross-section. In the present embodiment, after providing a semiconductor epitaxial wafer, an isolation region 140 is formed on the semiconductor epitaxial wafer, the depth of the isolation region 140 is greater than the depth of the region where the two-dimensional carrier gas is located, and the isolation region 140 isolates the region of the functional layer from at least the second functional region 130 insulated from the first functional region 120. Wherein, while the electrode structure 30 is formed in the first functional region 120, the first electrode 71 and the second electrode 72 are formed in the second functional region 130. Specifically, the second functional region is etched downward to at least reach the second two-dimensional carrier gas 112, and then a metal is generated in the etched region to obtain the first electrode 71 and the second electrode 72, and the first electrode 71 and the second electrode 72 can be conductive through the second two-dimensional carrier gas 112.

参考图10,在步骤S24之前,刻蚀所述第一介质层201以得到连通所述第一电极71的介质孔,在步骤S24,在所述第一介质层201上沉积金属得到第一金属层52的同时在所述介质孔沉积金属,以使第一金属层52与所述第一电极71电连接;在步骤S26中,在刻蚀所述第二介质层202时得到的一个与第二电极72相连通的介质孔,当在步骤S27在所述介质孔内及在所述第二介质层202上表面沉积金属以得到焊盘结构时,调控端焊盘51通过介质孔与所述第二电极72电连接。Referring to Figure 10, before step S24, the first dielectric layer 201 is etched to obtain a dielectric hole connected to the first electrode 71. In step S24, metal is deposited on the first dielectric layer 201 to obtain the first metal layer 52 and at the same time, metal is deposited in the dielectric hole to electrically connect the first metal layer 52 to the first electrode 71. In step S26, a dielectric hole connected to the second electrode 72 is obtained when the second dielectric layer 202 is etched. When metal is deposited in the dielectric hole and on the upper surface of the second dielectric layer 202 to obtain a pad structure in step S27, the regulating end pad 51 is electrically connected to the second electrode 72 through the dielectric hole.

在本实施例中,介质层20中的第一金属层52与上表面的漏极焊盘构成第一电容C1,所述第一电极71与第一金属层52经介质孔电连接,第二电极72经介质孔引到介质层20上表面,并与上表面的调控端焊盘51电连接,此时得到的器件上表面结构与图8所示的器件上表面结构相同。In this embodiment, the first metal layer 52 in the dielectric layer 20 and the drain pad on the upper surface constitute a first capacitor C1, the first electrode 71 is electrically connected to the first metal layer 52 via the dielectric hole, the second electrode 72 is led to the upper surface of the dielectric layer 20 via the dielectric hole, and is electrically connected to the regulating end pad 51 on the upper surface. At this time, the device upper surface structure obtained is the same as the device upper surface structure shown in Figure 8.

另外,为了得到多个阻值,可在第二功能区130中生成多个电极,如图22所示还包括第三电极73,其中,第一电极71和第三电极73构成一个阻值的电阻,第一电极71和第二电极72构成一个阻值的电阻,同样,通过介质孔将第三电极73引到介质层20上表面,并与介质层20上表面沉积的第二调控端焊盘621电连接。在将本实施例中的半导体器件作为HEMT Q2与MOSFET Q1构成级联的Cascode器件时,根据需要将调控端焊盘51或第二调控端焊盘621与MOSFET Q1的栅极电连接。In addition, in order to obtain multiple resistance values, multiple electrodes can be generated in the second functional area 130, and as shown in FIG. 22, a third electrode 73 is also included, wherein the first electrode 71 and the third electrode 73 constitute a resistor with a resistance value, and the first electrode 71 and the second electrode 72 constitute a resistor with a resistance value. Similarly, the third electrode 73 is led to the upper surface of the dielectric layer 20 through the dielectric hole and is electrically connected to the second control terminal pad 621 deposited on the upper surface of the dielectric layer 20. When the semiconductor device in this embodiment is used as a cascode device cascaded with the HEMT Q2 and the MOSFET Q1, the control terminal pad 51 or the second control terminal pad 621 is electrically connected to the gate of the MOSFET Q1 as needed.

实施例九Embodiment 9

图23是根据本发明实施例九的半导体器件的电气原理示意图。在本实施例中,在半导体器件中集成有第一电阻R1和二极管D1,第一电阻R1和二极管D1并联后与第一电容C1串联,第一电阻R1和二极管D1分别用于单独控制器件的开和关的速率。在应用场景中,当将本实施例中的半导体器件与MOSFET构成级联Cascode器件时,将调控端C与MOSFET的栅极电连接,在关断过程中,通过第一电阻R1与第一电容C1的配合能够控制级联Cascode器件的关断速率,在开通过程时,通过二极管D1和第一电容C1能控制级联Cascode器件的开通速率,实现了器件开和关的速率的单独控制。Figure 23 is an electrical schematic diagram of a semiconductor device according to Embodiment 9 of the present invention. In this embodiment, a first resistor R1 and a diode D1 are integrated in the semiconductor device. The first resistor R1 and the diode D1 are connected in parallel and then connected in series with the first capacitor C1. The first resistor R1 and the diode D1 are used to individually control the opening and closing rates of the device. In the application scenario, when the semiconductor device in this embodiment is used to form a cascaded Cascode device with a MOSFET, the control terminal C is electrically connected to the gate of the MOSFET. During the shutdown process, the turn-off rate of the cascaded Cascode device can be controlled by the cooperation of the first resistor R1 and the first capacitor C1. During the opening process, the opening rate of the cascaded Cascode device can be controlled by the diode D1 and the first capacitor C1, thereby realizing the individual control of the opening and closing rates of the device.

图24是根据本发明实施例九的半导体器件中的二极管的结构示意图。本实施例可与前述的各个集成有电阻的实施例的结构相组合,为了简明,本实施例只图示了二极管的结构示意图。在第三功能区150中形成有二极管D1。其中,通过隔离区160将第三功能区150与第一功能区120电绝缘。在第一功能区120形成电极结构30的同时,在第三功能区150中形成二极管D1。具体地,在刻蚀半导体体外延片时,向下刻蚀第三功能区150至少到达第三二维载流子气113,而后在刻蚀的区域生长金属得到二极管阴极81和二极管阳极82,二极管阴极81与第三功能区150形成欧姆接触,二极管阳极82与第三功能区150形成肖特基接触,从而使得在二极管阴极81和二极管阳极82之间能够通过第三二维载流子气113进行电流的单向传输。FIG24 is a schematic diagram of the structure of a diode in a semiconductor device according to Embodiment 9 of the present invention. This embodiment can be combined with the structures of the aforementioned embodiments with integrated resistors. For simplicity, this embodiment only illustrates a schematic diagram of the structure of a diode. A diode D1 is formed in the third functional region 150. The third functional region 150 is electrically insulated from the first functional region 120 by the isolation region 160. While the electrode structure 30 is formed in the first functional region 120, a diode D1 is formed in the third functional region 150. Specifically, when etching the semiconductor epitaxial wafer, the third functional region 150 is etched downward to at least reach the third two-dimensional carrier gas 113, and then a metal is grown in the etched area to obtain a diode cathode 81 and a diode anode 82, the diode cathode 81 forms an ohmic contact with the third functional region 150, and the diode anode 82 forms a Schottky contact with the third functional region 150, so that the current can be unidirectionally transmitted between the diode cathode 81 and the diode anode 82 through the third two-dimensional carrier gas 113.

参考图10,在步骤S24之前,刻蚀所述第一介质层201以得到连通所述二极管阴极81的介质孔,在步骤S24,在所述第一介质层201上沉积金属得到第一金属层52的同时,在所述介质孔沉积金属,以使第一金属层52与所述二极管阴极81电连接;在步骤S26中,在刻蚀所述第二介质层202时得到的一个介质孔与二极管阳极82相连通,当在步骤S27在所述介质孔内及在所述第二介质层202上表面沉积金属以得到焊盘结构时,调控端焊盘51与所述二极管阳极82电连接。Referring to Figure 10, before step S24, the first dielectric layer 201 is etched to obtain a dielectric hole connected to the diode cathode 81. In step S24, while depositing metal on the first dielectric layer 201 to obtain the first metal layer 52, metal is deposited in the dielectric hole to electrically connect the first metal layer 52 to the diode cathode 81. In step S26, a dielectric hole obtained when etching the second dielectric layer 202 is connected to the diode anode 82. When metal is deposited in the dielectric hole and on the upper surface of the second dielectric layer 202 to obtain a pad structure in step S27, the regulating end pad 51 is electrically connected to the diode anode 82.

本实施例中的二极管阳极82通过介质孔引到介质层20的上表面,与上表面的调控端焊盘51电连接,所述二极管阴极通过介质孔与第一金属层52电连接,当然也可以与图20中的第一电极71电连接,同理,所述二极管阴极81也可以通过介质孔与第二电极72电连接,从而得到图23所示的电气连接关系。The diode anode 82 in this embodiment is led to the upper surface of the dielectric layer 20 through the dielectric hole, and is electrically connected to the regulating end pad 51 on the upper surface. The diode cathode is electrically connected to the first metal layer 52 through the dielectric hole, and of course can also be electrically connected to the first electrode 71 in Figure 20. Similarly, the diode cathode 81 can also be electrically connected to the second electrode 72 through the dielectric hole, thereby obtaining the electrical connection relationship shown in Figure 23.

在将本实施例中的半导体器件作为HEMT Q2与MOSFET Q1构成级联的Cascode器件时,将调控端焊盘51与MOSFET Q1的栅极电连接,从而在Cascode器件中增加了由第一电容C1和第一电阻R1、二极管D1构成的调控结构,在与驱动电路相配合的情况下能够分别有效地单独调控器件的开和关的速度。When the semiconductor device in this embodiment is used as a cascode device cascaded with the HEMT Q2 and the MOSFET Q1, the control terminal pad 51 is electrically connected to the gate of the MOSFET Q1, so that a control structure consisting of the first capacitor C1, the first resistor R1, and the diode D1 is added to the cascode device, and the on and off speeds of the device can be effectively and separately controlled in cooperation with the drive circuit.

实施例十Embodiment 10

图25是根据本发明实施例十的半导体器件的电气原理示意图。在本实施例中,在半导体器件中集成的调控结构包括第一电阻R1、第二电阻R2和二极管D1,其中,第二电阻R2和二极管D1串联后再与第一电阻R1并联,而后与第一电容C1串联。第二电阻R2和二极管D1构成的支路和第一电阻R1分别用于单独控制器件的开和关的速率。实施例十的半导体器件的结构可通过在实施例九中的半导体器件的结构中再形成一个电阻而实现,电阻也可以是实施例七或实施例八中的结构,在此不再赘述。25 is a schematic diagram of the electrical principle of a semiconductor device according to Embodiment 10 of the present invention. In this embodiment, the control structure integrated in the semiconductor device includes a first resistor R1, a second resistor R2 and a diode D1, wherein the second resistor R2 and the diode D1 are connected in series and then connected in parallel with the first resistor R1, and then connected in series with the first capacitor C1. The branch formed by the second resistor R2 and the diode D1 and the first resistor R1 are respectively used to separately control the opening and closing rates of the device. The structure of the semiconductor device of Embodiment 10 can be realized by forming another resistor in the structure of the semiconductor device in Embodiment 9, and the resistor can also be the structure in Embodiment 7 or Embodiment 8, which will not be repeated here.

需要说明的是,实施例七至实施例十中集成的电容还可以是实施例二至实施例六中集成的任意一种电容结构,具体可参考相关实施例,在此不再赘述。It should be noted that the capacitor integrated in the seventh to tenth embodiments may also be any capacitor structure integrated in the second to sixth embodiments. For details, please refer to the relevant embodiments and will not be described in detail here.

在本发明提供的半导体器件或应用所述半导体器件构成的Cascode级联器件中,由于其内部集成了调控结构,其中至少包括漏栅电容Cdg,因而不需要在器件的外部增加额外的电容,节省了物料成本。而且,由于该漏栅电容Cdg集成在高压器件中,其击穿电压参数与器件匹配,解决了外加电容的参数不易与器件参数匹配的问题,降低了电路设计的复杂度。In the semiconductor device provided by the present invention or the cascode cascade device formed by using the semiconductor device, since the control structure is integrated inside, including at least the drain-gate capacitor Cdg, there is no need to add additional capacitors outside the device, saving material costs. Moreover, since the drain-gate capacitor Cdg is integrated in the high-voltage device, its breakdown voltage parameters match the device, solving the problem that the parameters of the external capacitor are not easy to match the device parameters, and reducing the complexity of the circuit design.

上述实施例仅供说明本发明之用,而并非是对本发明的限制,有关技术领域的普通技术人员,在不脱离本发明范围的情况下,还可以做出各种变化和变型,因此,所有等同的技术方案也应属于本发明公开的范畴。The above embodiments are only used to illustrate the present invention, but not to limit the present invention. Ordinary technicians in the relevant technical field can make various changes and modifications without departing from the scope of the present invention. Therefore, all equivalent technical solutions should also fall within the scope of the present invention.

Claims (15)

1.一种半导体器件,其特征在于,包括:1. A semiconductor device, comprising: 功能层,其中的第一功能区中形成有第一二维载流子气;a functional layer, wherein a first two-dimensional carrier gas is formed in a first functional region; 介质层,其形成在所述功能层上方;a dielectric layer formed above the functional layer; 电极结构,其形成在所述第一功能区,包括源极结构、漏极结构和栅极结构,所述源极结构和所述漏极结构分别与所述第一二维载流子气电连接;an electrode structure, formed in the first functional area, comprising a source structure, a drain structure and a gate structure, wherein the source structure and the drain structure are electrically connected to the first two-dimensional carrier gas respectively; 焊盘结构,其表面露出所述介质层上表面,分别包括源极焊盘、漏极焊盘和栅极焊盘,所述源极焊盘、所述漏极焊盘和所述栅极焊盘分别经过介质孔与所述源极结构、所述漏极结构和所述栅极结构对应电连接以构成器件的源极、漏极和栅极;以及A pad structure, the surface of which is exposed to the upper surface of the dielectric layer, and includes a source pad, a drain pad and a gate pad, respectively, wherein the source pad, the drain pad and the gate pad are respectively electrically connected to the source structure, the drain structure and the gate structure through dielectric holes to form the source, drain and gate of the device; and 调控结构,其包括形成在所述介质层上表面的调控金属层,所述调控金属层与所述漏极形成第一电容;A regulating structure, comprising a regulating metal layer formed on the upper surface of the dielectric layer, wherein the regulating metal layer and the drain electrode form a first capacitor; 所述漏极焊盘包括露出所述介质层上表面的第一区和与所述第一区并列地置于介质层内部的第二区,所述调控金属层为位于介质层上表面的调控端焊盘,所述调控端焊盘位于漏极焊盘第二区上方的介质层上表面,其中,所述调控端焊盘与所述漏极焊盘第二区形成所述第一电容。The drain pad includes a first area exposed on the upper surface of the dielectric layer and a second area placed inside the dielectric layer in parallel with the first area. The control metal layer is a control end pad located on the upper surface of the dielectric layer. The control end pad is located on the upper surface of the dielectric layer above the second area of the drain pad, wherein the control end pad and the second area of the drain pad form the first capacitor. 2.一种半导体器件,其特征在于,包括:2. A semiconductor device, comprising: 功能层,其中的第一功能区中形成有第一二维载流子气;a functional layer, wherein a first two-dimensional carrier gas is formed in a first functional region; 介质层,其形成在所述功能层上方;a dielectric layer formed above the functional layer; 电极结构,其形成在所述第一功能区,包括源极结构、漏极结构和栅极结构,所述源极结构和所述漏极结构分别与所述第一二维载流子气电连接;an electrode structure, formed in the first functional area, comprising a source structure, a drain structure and a gate structure, wherein the source structure and the drain structure are electrically connected to the first two-dimensional carrier gas respectively; 焊盘结构,其表面露出所述介质层上表面,分别包括源极焊盘、漏极焊盘和栅极焊盘,所述源极焊盘、所述漏极焊盘和所述栅极焊盘分别经过介质孔与所述源极结构、所述漏极结构和所述栅极结构对应电连接以构成器件的源极、漏极和栅极;以及A pad structure, the surface of which is exposed to the upper surface of the dielectric layer, and includes a source pad, a drain pad and a gate pad, respectively, wherein the source pad, the drain pad and the gate pad are respectively electrically connected to the source structure, the drain structure and the gate structure through dielectric holes to form the source, drain and gate of the device; and 调控结构,其包括形成在所述介质层的调控金属层,所述调控金属层与所述漏极形成第一电容;A regulating structure, comprising a regulating metal layer formed on the dielectric layer, wherein the regulating metal layer and the drain electrode form a first capacitor; 所述调控金属层包括位于介质层上表面的调控端焊盘和形成在介质层内部或上表面的第一金属层,所述调控端焊盘经过介质孔与所述第一金属层电连接;当所述第一金属层位于介质层内部时,所述第一金属层位于所述漏极焊盘下方预置距离和/或所述第一金属层位于所述漏极结构上方预置距离;当所述第一金属层位于介质层上表面时,所述漏极焊盘包括露出所述介质层上表面的第一区和与所述第一区并列地置于介质层内部的第二区,所述第一金属层位于漏极焊盘第二区的上方预置距离;其中,所述第一金属层与所述漏极焊盘和/或所述漏极结构形成所述第一电容;The regulating metal layer includes a regulating end pad located on the upper surface of the dielectric layer and a first metal layer formed inside or on the upper surface of the dielectric layer, and the regulating end pad is electrically connected to the first metal layer through a dielectric hole; when the first metal layer is located inside the dielectric layer, the first metal layer is located at a preset distance below the drain pad and/or the first metal layer is located at a preset distance above the drain structure; when the first metal layer is located on the upper surface of the dielectric layer, the drain pad includes a first area exposed on the upper surface of the dielectric layer and a second area placed inside the dielectric layer in parallel with the first area, and the first metal layer is located at a preset distance above the second area of the drain pad; wherein the first metal layer and the drain pad and/or the drain structure form the first capacitor; 所述调控结构还包括第一条状金属层,其形成在所述介质层上表面或者内部,其第一端与所述第一金属层电连接,其第二端与所述调控端焊盘电连接,其中,所述第一条状金属层构成具有预置阻值的第一电阻。The control structure also includes a first strip metal layer, which is formed on the upper surface or inside the dielectric layer, whose first end is electrically connected to the first metal layer, and whose second end is electrically connected to the control end pad, wherein the first strip metal layer constitutes a first resistor with a preset resistance value. 3.根据权利要求2所述的半导体器件,其特征在于,所述第一金属层的部分区域延伸到栅极结构上方预置距离和/或所述第一金属层的部分区域延伸到栅极焊盘下方预置距离,其中,所述第一金属层与所述栅极结构和/或所述栅极焊盘形成第二电容。3. The semiconductor device according to claim 2 is characterized in that a partial area of the first metal layer extends to a preset distance above the gate structure and/or a partial area of the first metal layer extends to a preset distance below the gate pad, wherein the first metal layer forms a second capacitor with the gate structure and/or the gate pad. 4.根据权利要求2所述的半导体器件,其特征在于,所述第一金属层的部分区域延伸到源极结构上方预置距离和/或所述第一金属层的部分区域延伸到源极焊盘下方预置距离,其中,所述第一金属层与所述源极结构和/或所述源极焊盘形成第三电容。4. The semiconductor device according to claim 2 is characterized in that a partial area of the first metal layer extends to a preset distance above the source structure and/or a partial area of the first metal layer extends to a preset distance below the source pad, wherein the first metal layer forms a third capacitor with the source structure and/or the source pad. 5.根据权利要求2所述的半导体器件,其特征在于,还包括第二金属层,所述第二金属层经过介质孔与所述调控端焊盘或所述第一金属层电连接;所述第二金属层位于所述栅极结构上方预置距离和/或所述第二金属层位于栅极焊盘下方预置距离,其中,所述第二金属层与所述栅极结构和/或所述栅极焊盘形成第二电容;和/或还包括第三金属层,所述第三金属层经过介质孔与所述调控端焊盘或所述第一金属层电连接;所述第三金属层位于所述源极结构上方预置距离和/或所述第三金属层位于所述源极焊盘下方预置距离,其中,所述第三金属层与所述源极结构和/或所述源极焊盘形成第三电容。5. The semiconductor device according to claim 2 is characterized in that it also includes a second metal layer, which is electrically connected to the control end pad or the first metal layer through a dielectric hole; the second metal layer is located at a preset distance above the gate structure and/or the second metal layer is located at a preset distance below the gate pad, wherein the second metal layer and the gate structure and/or the gate pad form a second capacitor; and/or also includes a third metal layer, which is electrically connected to the control end pad or the first metal layer through a dielectric hole; the third metal layer is located at a preset distance above the source structure and/or the third metal layer is located at a preset distance below the source pad, wherein the third metal layer and the source structure and/or the source pad form a third capacitor. 6.根据权利要求2所述的半导体器件,其特征在于,位于介质层上表面的调控端焊盘为多个,所述第一条状金属层包括与第一端相距不同距离的连接点,每个调控端焊盘分别与对应的连接点电连接;其中,每个连接点电与第一条状金属层第一端之间的条状金属层构成各自预置阻值的第一电阻。6. The semiconductor device according to claim 2 is characterized in that there are multiple control end pads located on the upper surface of the dielectric layer, the first strip metal layer includes connection points at different distances from the first end, and each control end pad is electrically connected to the corresponding connection point; wherein each connection point is electrically connected to the strip metal layer between the first end of the first strip metal layer to form a first resistor with a preset resistance value. 7.根据权利要求2所述的半导体器件,其特征在于,所述调控结构还包括第一电极和一个或多个第二电极;其中,所述第一电极和所述一个或多个第二电极形成在所述功能层的第二功能区,并与所述第二功能区内部的第二二维载流子气欧姆连接,所述第一电极与所述第一金属层电连接;当所述第二电极为一个时,其通过介质孔与所述调控端焊盘电连接,当所述第二电极为多个时,所述调控端焊盘为对应的多个,每个第二电极分别通过介质孔与对应的调控端焊盘电连接;其中,所述第一电极与每个所述第二电极之间分别通过第二二维载流子构成各自预置阻值的第一电阻。7. The semiconductor device according to claim 2 is characterized in that the control structure also includes a first electrode and one or more second electrodes; wherein the first electrode and the one or more second electrodes are formed in the second functional area of the functional layer, and are ohmically connected to the second two-dimensional carrier gas inside the second functional area, and the first electrode is electrically connected to the first metal layer; when the second electrode is one, it is electrically connected to the control end pad through a dielectric hole, and when the second electrode is multiple, the control end pad is a corresponding multiple, and each second electrode is electrically connected to the corresponding control end pad through a dielectric hole; wherein the first electrode and each of the second electrodes respectively form a first resistor with a preset resistance through the second two-dimensional carrier. 8.根据权利要求7所述的半导体器件,其特征在于,所述调控结构还包括二极管,其中,二极管阳极和二极管阴极形成在所述功能层的第三功能区,所述二极管阴极与第三功能区中的第三二维载流子气欧姆连接,所述二极管阳极与第三功能区中的第三二维载流子气肖特基连接,所述二极管阳极与所述调控端焊盘电连接,所述二极管阴极与所述第一金属层电连接。8. The semiconductor device according to claim 7 is characterized in that the control structure also includes a diode, wherein a diode anode and a diode cathode are formed in the third functional area of the functional layer, the diode cathode is ohmically connected to the third two-dimensional carrier gas in the third functional area, the diode anode is Schottky connected to the third two-dimensional carrier gas in the third functional area, the diode anode is electrically connected to the control end pad, and the diode cathode is electrically connected to the first metal layer. 9.根据权利要求8所述的半导体器件,其特征在于,还包括第二条状金属层,其第一端与所述第一金属层电连接,其第二端与所述二极管阴极电连接,所述第二条状金属层构成预置阻值的第二电阻。9. The semiconductor device according to claim 8, further comprising a second strip metal layer, a first end of which is electrically connected to the first metal layer, and a second end of which is electrically connected to the cathode of the diode, and the second strip metal layer constitutes a second resistor with a preset resistance. 10.根据权利要求8所述的半导体器件,其特征在于,还包括第三电极和第四电极,其中,所述第三电极和第四电极形成在所述功能层的第四功能区,并与所述第四功能区内部的第四二维载流子气欧姆连接,所述第三电极与所述第一金属层电连接,所述第四电极与所述二极管阴极电连接;所述第三电极和所述第四电极之间通过第四二维载流子构成预置阻值的第二电阻。10. The semiconductor device according to claim 8 is characterized in that it also includes a third electrode and a fourth electrode, wherein the third electrode and the fourth electrode are formed in the fourth functional area of the functional layer and are ohmically connected to the fourth two-dimensional carrier gas inside the fourth functional area, the third electrode is electrically connected to the first metal layer, and the fourth electrode is electrically connected to the cathode of the diode; a second resistor with a preset resistance is formed between the third electrode and the fourth electrode through the fourth two-dimensional carrier. 11.根据权利要求10所述的半导体器件,其特征在于,所述第一功能区、所述第二功能区、所述第三功能区和所述第四功能区之间包括电绝缘的隔离区,所述隔离区的深度大于二维载流子气所在区域的深度。11 . The semiconductor device according to claim 10 , wherein an electrically insulating isolation region is included between the first functional region, the second functional region, the third functional region and the fourth functional region, and a depth of the isolation region is greater than a depth of a region where the two-dimensional carrier gas is located. 12.根据权利要求1或2所述的半导体器件,其特征在于,所述的功能层至少包括沟道层和势垒层,在所述沟道层中靠近所述势垒层的区域形成有二维载流子气;所述沟道层和所述势垒层为III-V族化合物。12. The semiconductor device according to claim 1 or 2, characterized in that the functional layer comprises at least a channel layer and a barrier layer, a two-dimensional carrier gas is formed in a region of the channel layer close to the barrier layer; and the channel layer and the barrier layer are III-V compounds. 13.一种半导体器件,包括第一晶体管和第二晶体管,其特征在于,所述第一晶体管为权利要求1-12任一所述的半导体器件,所述第二晶体管为增强型硅基晶体管;所述第一晶体管的漏极作为器件整体的第一极,所述第一晶体管的源极与所述第二晶体管的漏极电连接,所述第二晶体管的源极为器件整体的第二极;所述第一晶体管的栅极与所述第二晶体管的源极电连接;所述第一晶体管的调控端焊盘与所述第二晶体管的栅极电连接;所述第二晶体管的栅极为器件整体的控制极,用于连接驱动电路;13. A semiconductor device, comprising a first transistor and a second transistor, wherein the first transistor is the semiconductor device according to any one of claims 1 to 12, and the second transistor is an enhancement-mode silicon-based transistor; the drain of the first transistor serves as the first electrode of the entire device, the source of the first transistor is electrically connected to the drain of the second transistor, and the source of the second transistor is the second electrode of the entire device; the gate of the first transistor is electrically connected to the source of the second transistor; the regulating terminal pad of the first transistor is electrically connected to the gate of the second transistor; the gate of the second transistor is the control electrode of the entire device, and is used to connect to a drive circuit; 其中,在通过驱动电路控制所述半导体器件的接通或断开时,通过调节驱动电路中的与调控端焊盘连接的电阻的阻值调节所述半导体器件的开关速度。When the semiconductor device is controlled to be turned on or off by a driving circuit, the switching speed of the semiconductor device is adjusted by adjusting the resistance value of the resistor connected to the regulating terminal pad in the driving circuit. 14.一种半导体器件的制备方法,其特征在于,包括:14. A method for preparing a semiconductor device, comprising: 提供半导体外延片作为功能层,所述功能层至少包括沟道层和势垒层,在所述沟道层中靠近所述势垒层的区域形成有二维载流子气;所述沟道层和所述势垒层为III-V族化合物;A semiconductor epitaxial wafer is provided as a functional layer, wherein the functional layer at least comprises a channel layer and a barrier layer, wherein a two-dimensional carrier gas is formed in a region of the channel layer close to the barrier layer; and the channel layer and the barrier layer are III-V group compounds; 在所述功能层的第一功能区中形成电极结构,所述电极结构包括源极结构、漏极结构和栅极结构,所述源极结构和漏极结构分别与所述二维载流子气电连接;forming an electrode structure in the first functional region of the functional layer, the electrode structure comprising a source structure, a drain structure and a gate structure, the source structure and the drain structure being electrically connected to the two-dimensional carrier gas respectively; 在所述电极结构上方沉积预置厚度的第一介质层;Depositing a first dielectric layer of a preset thickness above the electrode structure; 在所述第一介质层上方沉积金属以得到第一金属层,其中,所述第一金属层位于所述漏极结构上方,或者所述第一金属层位于所述漏极结构上方且部分区域延伸到栅极结构和/或源极结构上方;Depositing metal on the first dielectric layer to obtain a first metal layer, wherein the first metal layer is located above the drain structure, or the first metal layer is located above the drain structure and a portion of the first metal layer extends to the gate structure and/or the source structure; 在所述第一金属层上方以及其未覆盖金属的第一介质层上方沉积第二介质层;Depositing a second dielectric layer on the first metal layer and on the first dielectric layer not covered with metal; 自所述第二介质层向下刻蚀分别与源极结构、漏极结构、栅极结构和第一金属层相连通的介质孔;以及Etching dielectric holes respectively connected to the source structure, the drain structure, the gate structure and the first metal layer from the second dielectric layer downwards; and 在所述介质孔内及在所述第二介质层上表面沉积金属以得到焊盘结构,所述焊盘结构分别包括源极焊盘、漏极焊盘、栅极焊盘和调控端焊盘,所述源极焊盘、漏极焊盘、栅极焊盘和调控端焊盘分别经过介质孔与源极结构、漏极结构、栅极结构和第一金属层对应电连接以构成器件的源极、漏极、栅极和调控结构;Depositing metal in the dielectric hole and on the upper surface of the second dielectric layer to obtain a pad structure, wherein the pad structure includes a source pad, a drain pad, a gate pad and a control end pad, and the source pad, the drain pad, the gate pad and the control end pad are respectively electrically connected to the source structure, the drain structure, the gate structure and the first metal layer through the dielectric hole to form the source, the drain, the gate and the control structure of the device; 其中,所述第一金属层与漏极结构和/或漏极焊盘形成第一电容;Wherein, the first metal layer and the drain structure and/or the drain pad form a first capacitor; 所述半导体器件还包括第一条状金属层,其形成在所述介质层上表面或者内部,其第一端与所述第一金属层电连接,其第二端与所述调控端焊盘电连接,其中,所述第一条状金属层构成具有预置阻值的第一电阻。The semiconductor device also includes a first strip metal layer, which is formed on the upper surface or inside the dielectric layer, and whose first end is electrically connected to the first metal layer and whose second end is electrically connected to the regulating end pad, wherein the first strip metal layer constitutes a first resistor with a preset resistance value. 15.一种半导体器件的制备方法,其特征在于,包括:15. A method for preparing a semiconductor device, comprising: 提供半导体外延片作为功能层,所述功能层至少包括沟道层和势垒层,在所述沟道层中靠近所述势垒层的区域形成有二维载流子气;所述沟道层和所述势垒层为III-V族化合物;A semiconductor epitaxial wafer is provided as a functional layer, wherein the functional layer at least comprises a channel layer and a barrier layer, wherein a two-dimensional carrier gas is formed in a region of the channel layer close to the barrier layer; and the channel layer and the barrier layer are III-V group compounds; 在所述功能层的第一功能区中形成电极结构,所述电极结构包括源极结构、漏极结构和栅极结构,所述源极结构和漏极结构分别与所述二维载流子气电连接;forming an electrode structure in the first functional region of the functional layer, the electrode structure comprising a source structure, a drain structure and a gate structure, the source structure and the drain structure being electrically connected to the two-dimensional carrier gas respectively; 在所述电极结构上方沉积预置厚度的第一介质层;Depositing a first dielectric layer of a preset thickness above the electrode structure; 刻蚀所述第一介质层以分别得到与源极结构、漏极结构和栅极结构相连通的介质孔;Etching the first dielectric layer to obtain dielectric holes connected to the source structure, the drain structure and the gate structure respectively; 在所述介质孔内及在所述第一介质层上表面沉积金属以得到焊盘结构,所述焊盘结构分别包括源极焊盘、漏极焊盘和栅极焊盘,所述源极焊盘、漏极焊盘和栅极焊盘分别经过介质孔与源极结构、漏极结构、栅极结构对应电连接以构成器件的源极、漏极和栅极;Depositing metal in the dielectric hole and on the upper surface of the first dielectric layer to obtain a pad structure, wherein the pad structure includes a source pad, a drain pad and a gate pad, and the source pad, the drain pad and the gate pad are respectively electrically connected to the source structure, the drain structure and the gate structure through the dielectric hole to form the source, the drain and the gate of the device; 在所述焊盘结构上方及未沉积金属的第一介质层上表面沉积第二介质层;以及Depositing a second dielectric layer above the pad structure and on the upper surface of the first dielectric layer where no metal is deposited; and 在与所述漏极焊盘的第二区相对的所述第二介质层上表面沉积金属以得到调控端焊盘;以及刻蚀所述第二介质层以露出所述焊盘结构中未与所述调控端焊盘相对的第一区、源极焊盘和栅极焊盘;Depositing metal on the upper surface of the second dielectric layer opposite to the second region of the drain pad to obtain a regulating terminal pad; and etching the second dielectric layer to expose the first region of the pad structure that is not opposite to the regulating terminal pad, the source pad, and the gate pad; 或者,自与漏极焊盘第二区相对的所述第二介质层上表面向下刻蚀第一深度得到第一介质孔,分别自与漏极焊盘第一区、源极焊盘和栅极焊盘相对的所述第二介质层上表面向下刻蚀第二深度直至露出所述漏极焊盘第一区、源极焊盘和栅极焊盘以得到对应的多个第二介质孔,其中第一深度小于第二深度;至少在所述第一介质孔内沉积金属以得到调控端焊盘;所述调控端焊盘与所述漏极焊盘第二区形成第一电容。Alternatively, a first dielectric hole is obtained by etching downwards to a first depth from the upper surface of the second dielectric layer opposite to the second area of the drain pad, and a second depth is respectively etched downwards from the upper surface of the second dielectric layer opposite to the first area of the drain pad, the source pad and the gate pad until the first area of the drain pad, the source pad and the gate pad are exposed to obtain corresponding multiple second dielectric holes, wherein the first depth is less than the second depth; metal is deposited at least in the first dielectric hole to obtain a regulating end pad; the regulating end pad forms a first capacitor with the second area of the drain pad.
CN202410718649.0A 2024-06-05 2024-06-05 Semiconductor device and method for manufacturing the same Active CN118315422B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202410718649.0A CN118315422B (en) 2024-06-05 2024-06-05 Semiconductor device and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202410718649.0A CN118315422B (en) 2024-06-05 2024-06-05 Semiconductor device and method for manufacturing the same

Publications (2)

Publication Number Publication Date
CN118315422A CN118315422A (en) 2024-07-09
CN118315422B true CN118315422B (en) 2024-10-11

Family

ID=91733279

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202410718649.0A Active CN118315422B (en) 2024-06-05 2024-06-05 Semiconductor device and method for manufacturing the same

Country Status (1)

Country Link
CN (1) CN118315422B (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116504759A (en) * 2023-06-30 2023-07-28 广东致能科技有限公司 A kind of semiconductor device and its preparation method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5691267B2 (en) * 2010-07-06 2015-04-01 サンケン電気株式会社 Semiconductor device
CN106898604A (en) * 2017-01-24 2017-06-27 上海电力学院 The gallium nitride device encapsulating structure of Cascode

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116504759A (en) * 2023-06-30 2023-07-28 广东致能科技有限公司 A kind of semiconductor device and its preparation method

Also Published As

Publication number Publication date
CN118315422A (en) 2024-07-09

Similar Documents

Publication Publication Date Title
US20230420526A1 (en) Wide bandgap transistors with gate-source field plates
US8637905B2 (en) Semiconductor device and fabrication method thereof
CN100580954C (en) Wide Bandgap High Electron Mobility Transistor with Source-Connected Field Plate
EP1921669B1 (en) GaN based HEMTs with buried field plates
CN101410985B (en) high efficiency and/or high power density wide bandgap transistors
CN105283958B (en) The cascode structure of GaN HEMT
EP2434546A1 (en) A transistor with a field plate
US20220376098A1 (en) Field effect transistor with selective modified access regions
KR20140112272A (en) High Electron Mobility Transistor and method of manufacturing the same
CN118315422B (en) Semiconductor device and method for manufacturing the same
US11869964B2 (en) Field effect transistors with modified access regions
CN118553776A (en) Semiconductor device and method for manufacturing the same
CN221613895U (en) Bidirectional power device packaging structure
KR102686096B1 (en) GaN RF HEMT Structure and fabrication method of the same
KR20240005070A (en) Field effect transistor with modified access areas

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CP03 Change of name, title or address

Address after: 3rd Floor, Building A, Haina Baichuan Headquarters Building, No. 6 Baoxing Road, Haibin Community, Xin'an Street, Bao'an District, Shenzhen City, Guangdong Province 518100

Patentee after: Guangdong Zhineng Semiconductor Co.,Ltd.

Country or region after: China

Address before: Room 501, 505, 506, Building 4, No. 18 Shenzhou Road, Huangpu District, Guangzhou City, Guangdong Province (self assigned number D)

Patentee before: Guangdong Zhineng Technology Co.,Ltd.

Country or region before: China

CP03 Change of name, title or address