CN118311650A - Microseismic sensor positioning method, device, system and storage medium - Google Patents
Microseismic sensor positioning method, device, system and storage medium Download PDFInfo
- Publication number
- CN118311650A CN118311650A CN202410225168.6A CN202410225168A CN118311650A CN 118311650 A CN118311650 A CN 118311650A CN 202410225168 A CN202410225168 A CN 202410225168A CN 118311650 A CN118311650 A CN 118311650A
- Authority
- CN
- China
- Prior art keywords
- coordinates
- source
- sensor
- microseismic
- objective function
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 46
- 238000012544 monitoring process Methods 0.000 claims abstract description 34
- 238000012545 processing Methods 0.000 claims description 18
- 238000012937 correction Methods 0.000 claims description 17
- 238000004590 computer program Methods 0.000 claims description 16
- 239000011159 matrix material Substances 0.000 claims description 15
- 238000000354 decomposition reaction Methods 0.000 claims description 4
- 239000011435 rock Substances 0.000 abstract description 9
- 238000005259 measurement Methods 0.000 abstract description 3
- 230000009286 beneficial effect Effects 0.000 abstract 1
- 230000006870 function Effects 0.000 description 29
- 230000000694 effects Effects 0.000 description 6
- 230000008569 process Effects 0.000 description 6
- 238000010276 construction Methods 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 238000012806 monitoring device Methods 0.000 description 3
- 101001121408 Homo sapiens L-amino-acid oxidase Proteins 0.000 description 2
- 102100026388 L-amino-acid oxidase Human genes 0.000 description 2
- 230000001133 acceleration Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 230000004807 localization Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000012216 screening Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01V—GEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
- G01V1/00—Seismology; Seismic or acoustic prospecting or detecting
- G01V1/16—Receiving elements for seismic signals; Arrangements or adaptations of receiving elements
- G01V1/20—Arrangements of receiving elements, e.g. geophone pattern
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01V—GEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
- G01V1/00—Seismology; Seismic or acoustic prospecting or detecting
- G01V1/28—Processing seismic data, e.g. for interpretation or for event detection
- G01V1/288—Event detection in seismic signals, e.g. microseismics
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A90/00—Technologies having an indirect contribution to adaptation to climate change
- Y02A90/30—Assessment of water resources
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Environmental & Geological Engineering (AREA)
- Remote Sensing (AREA)
- Acoustics & Sound (AREA)
- Geology (AREA)
- General Life Sciences & Earth Sciences (AREA)
- General Physics & Mathematics (AREA)
- Geophysics (AREA)
- Business, Economics & Management (AREA)
- Emergency Management (AREA)
- Geophysics And Detection Of Objects (AREA)
Abstract
本发明提供了一种微震传感器定位方法、装置、系统及存储介质,涉及岩爆设备技术领域,该方法包括:获取预设震源的震源坐标和震源波形;根据震源坐标、震源波形和监测区地质信息构建目标函数,优化目标函数得到传感器的初始坐标;根据震源坐标和初始坐标,利用双差算法得到传感器的目标坐标。本发明的有益效果:通过获取震源坐标和震源波形,并通过监测区的地质信息构建目标函数,快速得到传感器低精度的初始坐标,而后利用双差算法,对初始坐标进行进一步的修正,实现了微震传感器定位智能化,有效避免人工测量误差和传感器防止不规范导致的定位不准确及定位效率低的问题,增加了微震传感器定位效率,进而有效提高了岩爆预警的准确性和可靠性。
The present invention provides a method, device, system and storage medium for positioning a microseismic sensor, and relates to the technical field of rock burst equipment. The method comprises: obtaining the source coordinates and source waveform of a preset source; constructing an objective function according to the source coordinates, source waveform and geological information of the monitoring area, optimizing the objective function to obtain the initial coordinates of the sensor; and obtaining the target coordinates of the sensor using a double difference algorithm according to the source coordinates and the initial coordinates. The beneficial effects of the present invention are as follows: by obtaining the source coordinates and source waveform, and constructing an objective function through the geological information of the monitoring area, the low-precision initial coordinates of the sensor are quickly obtained, and then the initial coordinates are further corrected using a double difference algorithm, thereby realizing the intelligent positioning of the microseismic sensor, effectively avoiding the problems of inaccurate positioning and low positioning efficiency caused by artificial measurement errors and non-standardization of sensors, increasing the positioning efficiency of the microseismic sensor, and thereby effectively improving the accuracy and reliability of rock burst warning.
Description
技术领域Technical Field
本发明涉及岩爆设备技术领域,具体而言,涉及一种微震传感器定位方法、装置、系统及存储介质。The present invention relates to the technical field of rock burst equipment, and in particular to a microseismic sensor positioning method, device, system and storage medium.
背景技术Background technique
岩爆是一种常见的地质灾害,对矿山、隧道、水电等工程造成很大的危害。为了预防和减轻岩爆事故的发生,需要进行微震监测,并及时发出预警信号,因此,进行微震监测的微震传感器位置尤为重要,即使微震传感器出现轻微的误差,也可能会导致岩爆事故监测失误。Rockburst is a common geological disaster that causes great harm to mines, tunnels, hydropower and other projects. In order to prevent and mitigate the occurrence of rockburst accidents, microseismic monitoring is required and early warning signals are issued in a timely manner. Therefore, the location of the microseismic sensor for microseismic monitoring is particularly important. Even a slight error in the microseismic sensor may lead to errors in monitoring rockburst accidents.
目前,通常采用全站仪等高精度测量仪器才能得到较精确的微震传感器坐标。但是在地下施工过程中,微震传感器可能随施工的进行而出现位移,在每次施工后需要利用全站仪等高精度测量仪器重新测定对微震传感器进行测定,才能进行准确的微震定位和预警,费时费力,导致监测成本增加。At present, high-precision measuring instruments such as total stations are usually used to obtain more accurate microseismic sensor coordinates. However, during underground construction, microseismic sensors may move as construction progresses. After each construction, high-precision measuring instruments such as total stations need to be used to re-measure the microseismic sensors in order to accurately locate and warn of microseisms, which is time-consuming and labor-intensive, leading to increased monitoring costs.
发明内容Summary of the invention
本发明解决的问题是如何提高微震传感器定位效率。The problem solved by the present invention is how to improve the positioning efficiency of microseismic sensors.
为解决上述问题,本发明提供一种微震传感器定位方法、装置、系统及存储介质。In order to solve the above problems, the present invention provides a microseismic sensor positioning method, device, system and storage medium.
第一方面,本发明提供了一种微震传感器定位方法,包括:In a first aspect, the present invention provides a microseismic sensor positioning method, comprising:
获取预设震源的震源坐标和震源波形;Obtaining the source coordinates and source waveform of a preset source;
根据所述震源坐标、所述震源波形和监测区地质信息构建目标函数,求解所述目标函数得到所述传感器的初始坐标;Constructing an objective function according to the earthquake source coordinates, the earthquake source waveform and the geological information of the monitoring area, and solving the objective function to obtain the initial coordinates of the sensor;
根据所述震源坐标和所述初始坐标,利用双差算法得到所述传感器的目标坐标。The target coordinates of the sensor are obtained by using a double difference algorithm according to the source coordinates and the initial coordinates.
可选地,所述根据所述震源坐标、所述震源波形和监测区地质信息构建目标函数,包括:Optionally, constructing an objective function according to the earthquake source coordinates, the earthquake source waveform and geological information of the monitoring area includes:
根据预设地质标准和所述监测区地质信息得到所述震源波形的波速和衰减系数,根据所述震源波形得到所述震源波形的频率;Obtaining the wave velocity and attenuation coefficient of the seismic source waveform according to preset geological standards and geological information of the monitoring area, and obtaining the frequency of the seismic source waveform according to the seismic source waveform;
基于所述波速、所述衰减系数、所述频率和所述震源坐标得到所述预设震源到任意两个所述传感器的距离差;Obtaining a distance difference from the preset seismic source to any two of the sensors based on the wave velocity, the attenuation coefficient, the frequency and the seismic source coordinates;
根据所述距离差和波的传播公式构建所述目标函数。The objective function is constructed according to the distance difference and the wave propagation formula.
可选地,所述基于所述波速、所述衰减系数、所述频率和所述震源坐标得到所述预设震源到任意两个所述传感器的距离差,包括:Optionally, obtaining the distance difference between the preset seismic source and any two of the sensors based on the wave velocity, the attenuation coefficient, the frequency and the seismic source coordinates includes:
根据所述所述波速、所述衰减系数和所述频率得到所述传感器的信号衰减程度;Obtaining the signal attenuation degree of the sensor according to the wave speed, the attenuation coefficient and the frequency;
所述震源坐标分别与任意两个所述传感器坐标作差,得到第一距离和第二距离;Subtract the source coordinates from any two of the sensor coordinates to obtain a first distance and a second distance;
基于所述信号衰减程度,将所述第一距离和所述第二距离作差,得到所述距离差。Based on the signal attenuation degree, the first distance is subtracted from the second distance to obtain the distance difference.
可选地,所述根据所述距离差和波的传播公式构建所述目标函数,包括:Optionally, constructing the objective function according to the distance difference and a wave propagation formula includes:
利用第一公式构建所述目标函数,所述第一公式包括:The objective function is constructed using a first formula, wherein the first formula includes:
其中,Θ表示所述目标函数,n表示预设震源的数量,Ri表示传感器i与预设震源的距离,Rj表示传感器j与预设震源的距离,x0、y0、z0表示所述震源坐标,xi、yi、zi表示传感器i的初始坐标,xj、yj、zj表示传感器j的初始坐标。Among them, Θ represents the objective function, n represents the number of preset seismic sources, R i represents the distance between sensor i and the preset seismic source, R j represents the distance between sensor j and the preset seismic source, x 0 , y 0 , z 0 represent the seismic source coordinates, x i , y i , z i represent the initial coordinates of sensor i, and x j , y j , z j represent the initial coordinates of sensor j.
可选地,所述根据所述震源坐标和所述初始坐标,利用双差算法得到所述传感器的目标坐标,包括:Optionally, obtaining the target coordinates of the sensor by using a double difference algorithm according to the source coordinates and the initial coordinates includes:
获取任意两个所述传感器的残差,将两个所述传感器的残差作差得到双差;Obtaining the residuals of any two of the sensors, and subtracting the residuals of the two sensors to obtain a double difference;
对所述双差进行泰勒展开,并基于泰勒展开后的双差构建定位矩阵;Performing Taylor expansion on the double differences, and constructing a positioning matrix based on the double differences after Taylor expansion;
求解所述定位矩阵得到所述传感器的目标坐标。The positioning matrix is solved to obtain the target coordinates of the sensor.
可选地,所述求解所述定位矩阵得到所述传感器的目标坐标,包括:Optionally, solving the positioning matrix to obtain the target coordinates of the sensor includes:
利用奇异值分解法求解所述定位矩阵,得到所述传感器的定位修正值;Solving the positioning matrix using a singular value decomposition method to obtain a positioning correction value of the sensor;
将所述初始坐标与所述定位修正值做和得到所述传感器的目标坐标。The target coordinates of the sensor are obtained by summing the initial coordinates with the positioning correction value.
可选地,所述预设震源包括历史震源和标定震源,所述获取预设震源的震源坐标和震源波形,包括:Optionally, the preset seismic source includes a historical seismic source and a calibrated seismic source, and the step of obtaining the seismic source coordinates and seismic source waveform of the preset seismic source includes:
获取所述历史震源的震源坐标,根据所述历史震源的发生时间,查找监测数据,得到所述历史震源的震源波形;Acquire the epicenter coordinates of the historical epicenter, search for monitoring data according to the occurrence time of the historical epicenter, and obtain the epicenter waveform of the historical epicenter;
或设定所述标定震源,获取所述标定震源的震源坐标,并在所述标定震源的震源坐标处发出震动信号,所述传感器在采集到所述震动信号后生成所述标定震源的震源波形。Or the calibration source is set, the source coordinates of the calibration source are obtained, and a vibration signal is sent at the source coordinates of the calibration source, and the sensor generates a source waveform of the calibration source after collecting the vibration signal.
本发明中,通过获取震源坐标和震源波形,并通过震源坐标、震源波形和监测区的地质信息构建目标函数,可以快速得到传感器低精度的初始坐标,而后利用双差算法,对初始坐标进行进一步的修正,得到更精确的目标坐标,实现了微震传感器定位智能化,有效避免人工测量误差和传感器防止不规范导致的定位不准确及定位效率低的问题,增加了微震传感器定位效率,进而有效提高了岩爆预警的准确性和可靠性。In the present invention, by acquiring the source coordinates and source waveform, and constructing the target function through the source coordinates, source waveform and geological information of the monitoring area, the low-precision initial coordinates of the sensor can be quickly obtained, and then the double-difference algorithm is used to further correct the initial coordinates to obtain more accurate target coordinates, thereby realizing the intelligent positioning of the microseismic sensor, effectively avoiding the problems of inaccurate positioning and low positioning efficiency caused by manual measurement errors and non-standard sensors, increasing the positioning efficiency of the microseismic sensor, and thus effectively improving the accuracy and reliability of rock burst warning.
本发明还提供了一种微震传感器定位装置,包括:The present invention also provides a microseismic sensor positioning device, comprising:
获取模块,用于获取预设震源的震源坐标和震源波形;An acquisition module, used for acquiring the source coordinates and source waveform of a preset source;
第一处理模块,用于根据所述震源坐标、所述震源波形和监测区地质信息构建目标函数,求解所述目标函数得到所述传感器的初始坐标;A first processing module is used to construct an objective function according to the earthquake source coordinates, the earthquake source waveform and the geological information of the monitoring area, and solve the objective function to obtain the initial coordinates of the sensor;
第二处理模块,用于根据所述震源坐标和所述初始坐标,利用双差算法得到所述传感器的目标坐标。The second processing module is used to obtain the target coordinates of the sensor by using a double difference algorithm according to the source coordinates and the initial coordinates.
本发明提供的传感器定位装置与微震传感器定位方法能够产生的技术效果基本相同,在此不再赘述The sensor positioning device provided by the present invention and the microseismic sensor positioning method can produce substantially the same technical effects, which will not be described in detail herein.
本发明还提供了一种系统,包括存储有计算机程序的计算机可读存储介质和处理器,当所述计算机程序被所述处理器读取并运行时,实现如上述所述的微震传感器定位方法。The present invention also provides a system, including a computer-readable storage medium storing a computer program and a processor. When the computer program is read and executed by the processor, the microseismic sensor positioning method as described above is implemented.
本发明提供的电子设备与微震传感器定位方法能够产生的技术效果基本相同,在此不再赘述The electronic device provided by the present invention and the microseismic sensor positioning method can produce substantially the same technical effects, which will not be described in detail here.
本发明又提供了一种计算机可读存储介质,所述存储介质上存储有计算机程序,当所述计算机程序被处理器执行时,实现如上述所述的微震传感器定位方法。The present invention further provides a computer-readable storage medium, on which a computer program is stored. When the computer program is executed by a processor, the microseismic sensor positioning method as described above is implemented.
本发明提供的计算机可读存储介质与微震传感器定位方法能够产生的技术效果基本相同,在此不再赘述。The computer-readable storage medium provided by the present invention and the microseismic sensor positioning method can produce substantially the same technical effects, which will not be described in detail herein.
附图说明BRIEF DESCRIPTION OF THE DRAWINGS
图1为本发明实施例的微震传感器定位方法的流程示意图;FIG1 is a schematic flow chart of a microseismic sensor positioning method according to an embodiment of the present invention;
图2为本发明实施例的微震传感器定位装置的结构示意图。FIG. 2 is a schematic structural diagram of a microseismic sensor positioning device according to an embodiment of the present invention.
具体实施方式Detailed ways
为使本发明的上述目的、特征和优点能够更为明显易懂,下面结合附图对本发明的具体实施例做详细的说明。虽然附图中显示了本发明的某些实施例,然而应当理解的是,本发明可以通过各种形式来实现,而且不应该被解释为限于这里阐述的实施例,相反提供这些实施例是为了更加透彻和完整地理解本发明。应当理解的是,本发明的附图及实施例仅用于示例性作用,并非用于限制本发明的保护范围。In order to make the above-mentioned objects, features and advantages of the present invention more obvious and easy to understand, the specific embodiments of the present invention are described in detail below in conjunction with the accompanying drawings. Although certain embodiments of the present invention are shown in the accompanying drawings, it should be understood that the present invention can be implemented in various forms and should not be interpreted as being limited to the embodiments described herein. On the contrary, these embodiments are provided to provide a more thorough and complete understanding of the present invention. It should be understood that the drawings and embodiments of the present invention are only for exemplary purposes and are not intended to limit the scope of protection of the present invention.
应当理解,本发明的方法实施方式中记载的各个步骤可以按照不同的顺序执行,和/或并行执行。此外,方法实施方式可以包括附加的步骤和/或省略执行示出的步骤。本发明的范围在此方面不受限制。It should be understood that the various steps described in the method embodiments of the present invention may be performed in different orders and/or in parallel. In addition, the method embodiments may include additional steps and/or omit the steps shown. The scope of the present invention is not limited in this respect.
本文使用的术语“包括”及其变形是开放性包括,即“包括但不限于”。术语“基于”是“至少部分地基于”。术语“一个实施例”表示“至少一个实施例”;术语“另一实施例”表示“至少一个另外的实施例”;术语“一些实施例”表示“至少一些实施例”;术语“可选地”表示“可选的实施例”。其他术语的相关定义将在下文描述中给出。需要注意,本发明中提及的“第一”、“第二”等概念仅用于对不同的装置、模块或单元进行区分,并非用于限定这些装置、模块或单元所执行的功能的顺序或者相互依存关系。The term "including" and its variations used in this document are open inclusions, that is, "including but not limited to". The term "based on" means "based at least in part on". The term "one embodiment" means "at least one embodiment"; the term "another embodiment" means "at least one other embodiment"; the term "some embodiments" means "at least some embodiments"; the term "optionally" means "optional embodiments". Relevant definitions of other terms will be given in the following description. It should be noted that the concepts of "first", "second", etc. mentioned in the present invention are only used to distinguish different devices, modules or units, and are not used to limit the order or interdependence of the functions performed by these devices, modules or units.
需要注意,本发明中提及的“一个”、“多个”的修饰是示意性而非限制性的,本领域技术人员应当理解,除非在上下文另有明确指出,否则应该理解为“一个或多个”。It should be noted that the modifications of "one" and "plurality" mentioned in the present invention are illustrative rather than restrictive, and those skilled in the art should understand that, unless otherwise clearly indicated in the context, it should be understood as "one or more".
可以理解的是,本申请中涉及到的任何关于数据获取或采集的部分,均已获得授权。It is understood that any part of this application related to data acquisition or collection has been authorized.
如图1所示,本发明提供一种微震传感器定位方法,包括:As shown in FIG1 , the present invention provides a microseismic sensor positioning method, comprising:
步骤S1、获取预设震源的震源坐标和震源波形。Step S1, obtaining the source coordinates and source waveform of a preset source.
具体地,在获取预设震源之前,首先在监测区内构建监测装置及监测网络,例如,监测装置包括多个微震传感器、数据采集装置、数据处理装置和预警装置,其中,微震传感器可以放置在岩体内或岩体表面,用于监测岩体中的微震信号;数据采集装置用于收集微震传感器产生的信号,并将其传输到数据处理装置;数据处理装置用于对微震信号进行处理和分析,以确定微震传感器在空间中的坐标;预警装置用于根据微震信号的特征,发出岩爆预警信号;在完成监测装置及网络布置后,需运行采集软件,设定适合的筛选与滤波参数,以保证监测网络可以获取并保存有效震动信号。在本实施例中,布置8通道以上的微震传感器,每个通道采用单轴加速度型微震传感器或速度型微震传感器,微震传感器将采集到的震动信号传输到数据采集装置和数据处理装置,数据采集装置和数据处理装置对震动信号进行采集、处理与滤波,获取有效震动信号,通过有线或无线的方式,将初步处理的震动信号传输到远程分析系统,进行信号的类型识别、到时拾取与分析。Specifically, before obtaining the preset earthquake source, a monitoring device and a monitoring network are first constructed in the monitoring area. For example, the monitoring device includes multiple microseismic sensors, a data acquisition device, a data processing device and an early warning device, wherein the microseismic sensor can be placed in the rock mass or on the surface of the rock mass to monitor the microseismic signal in the rock mass; the data acquisition device is used to collect the signal generated by the microseismic sensor and transmit it to the data processing device; the data processing device is used to process and analyze the microseismic signal to determine the coordinates of the microseismic sensor in space; the early warning device is used to issue a rock burst early warning signal based on the characteristics of the microseismic signal; after completing the layout of the monitoring device and the network, it is necessary to run the acquisition software and set appropriate screening and filtering parameters to ensure that the monitoring network can obtain and save effective vibration signals. In this embodiment, more than 8 channels of microseismic sensors are arranged, and each channel adopts a uniaxial acceleration type microseismic sensor or a velocity type microseismic sensor. The microseismic sensor transmits the collected vibration signal to the data acquisition device and the data processing device. The data acquisition device and the data processing device collect, process and filter the vibration signal to obtain an effective vibration signal, and transmit the preliminarily processed vibration signal to the remote analysis system by wired or wireless means to identify the type of signal, pick up and analyze it in time.
预设震源可为历史监测中已知位置的震源,即历史震源,或者构建一个确定位置的新震源,即标定该震源的位置,得到标定震源(例如标定炮)和其坐标。当预设震源为历史震源时,则直接调取已存储的历史震源的监测信息,例如,根据历史震源发生的时间,查找历史震源的震源坐标和震源波形。当预设震源为标定震源时,标定震源的坐标为预先设定好的,控制标定炮开启,或敲击标定震源坐标位置,布置好的微震传感器接收震动信号以生成标定震源的震源波形。The preset source can be a source with a known position in historical monitoring, that is, a historical source, or a new source with a determined position can be constructed, that is, the position of the source is calibrated to obtain a calibration source (such as a calibration gun) and its coordinates. When the preset source is a historical source, the monitoring information of the stored historical source is directly retrieved. For example, according to the time when the historical source occurred, the source coordinates and source waveform of the historical source are found. When the preset source is a calibration source, the coordinates of the calibration source are pre-set, the calibration gun is controlled to start, or the calibration source coordinate position is struck, and the arranged microseismic sensors receive vibration signals to generate the source waveform of the calibration source.
步骤S2、根据所述震源坐标、所述震源波形和监测区地质信息构建目标函数,求解所述目标函数得到所述传感器的初始坐标。Step S2: constructing an objective function according to the earthquake source coordinates, the earthquake source waveform and the geological information of the monitoring area, and solving the objective function to obtain the initial coordinates of the sensor.
具体地,初始坐标为根据震源坐标、震源波形和监测区地质信息确定的低精度坐标,即对传感器进行初步定位。需要说明的是,每个微震监测环境例如地质环境均不同,则在利用震源波形和震源坐标构建目标函数时,应考虑不同地质环境对震动信号的传递,所以,根据已知的震源坐标、震源波形和监测区地质信息,构建目标函数,以求解精度较低的传感器的初始坐标,为后续目标坐标的确定提供基础。Specifically, the initial coordinates are low-precision coordinates determined based on the earthquake source coordinates, earthquake source waveforms, and geological information of the monitoring area, that is, the initial positioning of the sensor. It should be noted that each microseismic monitoring environment, such as the geological environment, is different. When constructing the objective function using the earthquake source waveform and earthquake source coordinates, the transmission of vibration signals in different geological environments should be considered. Therefore, based on the known earthquake source coordinates, earthquake source waveforms, and geological information of the monitoring area, the objective function is constructed to solve the initial coordinates of the sensor with lower precision, providing a basis for the subsequent determination of the target coordinates.
步骤S3、根据所述震源坐标和所述初始坐标,利用双差算法得到所述传感器的目标坐标。Step S3: Obtain the target coordinates of the sensor using a double difference algorithm according to the source coordinates and the initial coordinates.
本实施例中,通过获取震源坐标和震源波形,并通过震源坐标、震源波形和监测区的地质信息构建目标函数,可以快速得到传感器低精度的初始坐标,而后利用双差算法,对初始坐标进行进一步的修正,得到更精确的目标坐标,实现了微震传感器定位智能化,有效避免人工测量误差和传感器防止不规范导致的定位不准确及定位效率低的问题,增加了微震传感器定位效率,进而有效提高了岩爆预警的准确性和可靠性。In this embodiment, by acquiring the source coordinates and source waveform, and constructing the target function through the source coordinates, source waveform and geological information of the monitoring area, the low-precision initial coordinates of the sensor can be quickly obtained, and then the double-difference algorithm is used to further correct the initial coordinates to obtain more accurate target coordinates, thereby realizing the intelligent positioning of the microseismic sensor, effectively avoiding the problems of inaccurate positioning and low positioning efficiency caused by manual measurement errors and non-standard sensors, increasing the positioning efficiency of the microseismic sensor, and effectively improving the accuracy and reliability of rock burst warning.
可选地,所述根据所述震源坐标、所述震源波形和监测区地质信息构建目标函数,包括:Optionally, constructing an objective function according to the earthquake source coordinates, the earthquake source waveform and geological information of the monitoring area includes:
根据预设地质标准和所述监测区地质信息得到所述震源波形的波速和衰减系数,根据所述震源波形得到所述震源波形的频率。The wave velocity and attenuation coefficient of the seismic source waveform are obtained according to the preset geological standard and the geological information of the monitoring area, and the frequency of the seismic source waveform is obtained according to the seismic source waveform.
具体地,预设地质标准可包括地质勘察资料,根据地质勘察资料确定该监测区的地质信息,而后确定对应的波速和微震波的衰减系数,并根据获取的震源波形得到波形频率。Specifically, the preset geological standard may include geological survey data, and the geological information of the monitoring area is determined based on the geological survey data, and then the corresponding wave velocity and attenuation coefficient of the microseismic wave are determined, and the waveform frequency is obtained based on the acquired source waveform.
基于所述波速、所述衰减系数、所述频率和所述震源坐标得到所述预设震源到任意两个所述传感器的距离差,包括:Obtaining the distance difference between the preset seismic source and any two of the sensors based on the wave velocity, the attenuation coefficient, the frequency and the seismic source coordinates includes:
根据所述所述波速、所述衰减系数和所述频率得到所述传感器的信号衰减程度,利用公式表示为:The signal attenuation degree of the sensor is obtained according to the wave speed, the attenuation coefficient and the frequency, and is expressed by the formula:
其中,R表示传感器与预设震源的距离,A(R)表示距离为R时的信号衰减程度,exp表示自然指数函数,c表示波速,Q表示衰减系数,f表示频率。Where R represents the distance between the sensor and the preset source, A(R) represents the signal attenuation when the distance is R, exp represents the natural exponential function, c represents the wave velocity, Q represents the attenuation coefficient, and f represents the frequency.
所述震源坐标分别与任意两个所述传感器(例如传感器i和传感器j)的坐标作差,得到第一距离Ri和第二距离Rj。The coordinates of the earthquake source are respectively subtracted from the coordinates of any two sensors (eg, sensor i and sensor j) to obtain a first distance R i and a second distance R j .
基于所述信号衰减程度,将所述第一距离Ri和所述第二距离Rj作差,得到所述距离差。Based on the signal attenuation degree, the first distance Ri is subtracted from the second distance Rj to obtain the distance difference.
将第一距离Ri和第二距离Rj作差带入上述信号衰减程度表示公式,可得:Substituting the difference between the first distance Ri and the second distance Rj into the above signal attenuation degree expression formula, we can get:
其中,i和j分别为传感器的编号,Ri表示传感器i与预设震源的第一距离,Rj表示传感器j与预设震源的第二距离,Ai和Aj分别表示传感器i和传感器j的震源波形的最大振幅。Wherein, i and j are the numbers of sensors respectively, Ri represents the first distance between sensor i and the preset seismic source, Rj represents the second distance between sensor j and the preset seismic source, Ai and Aj represent the maximum amplitudes of the seismic source waveforms of sensor i and sensor j respectively.
根据所述距离差和波的传播公式构建所述目标函数。The objective function is constructed according to the distance difference and the wave propagation formula.
具体地,波的传播公式为则根据第一距离Ri和第二距离Rj和波的传播公式构建目标函数,利用第一公式构建所述目标函数,所述第一公式包括:Specifically, the wave propagation formula is Then, the objective function is constructed according to the first distance Ri , the second distance Rj and the wave propagation formula, and the objective function is constructed using the first formula, wherein the first formula includes:
其中,Θ表示所述目标函数,n表示预设震源的数量,Ri表示传感器i与预设震源的距离,Rj表示传感器j与预设震源的距离,x0、y0、z0表示所述震源坐标,xi、yi、zi表示传感器i的初始坐标,xj、yj、zj表示传感器j的初始坐标。Among them, Θ represents the objective function, n represents the number of preset seismic sources, R i represents the distance between sensor i and the preset seismic source, R j represents the distance between sensor j and the preset seismic source, x 0 , y 0 , z 0 represent the seismic source coordinates, x i , y i , z i represent the initial coordinates of sensor i, and x j , y j , z j represent the initial coordinates of sensor j.
采用例如Nelder-Mead单纯形定位法或粒子群法等优化算法,优化目标函数,使Θ最小的传感器i初始坐标xi、yi、zi,和传感器j初始坐标xj、yj、zj。以此类推,直至求解所有传感器的初始坐标。An optimization algorithm such as the Nelder-Mead simplex localization method or the particle swarm method is used to optimize the objective function, so as to minimize the initial coordinates of sensor i, x i , y i , z i , and the initial coordinates of sensor j, x j , y j , z j . This process is repeated until the initial coordinates of all sensors are solved.
可选地,所述根据所述震源坐标和所述初始坐标,利用双差算法得到所述传感器的目标坐标,包括:Optionally, obtaining the target coordinates of the sensor by using a double difference algorithm according to the source coordinates and the initial coordinates includes:
获取任意两个所述传感器的残差,将两个所述传感器的残差作差得到双差。Obtain the residuals of any two of the sensors, and subtract the residuals of the two sensors to obtain a double difference.
具体地,对于微震事件k,弹性波到达传感器i的理论走时与实际走时质检必然存在残差即其中,tobs表示理论走时,tcal表示实际走时。而弹性波到达传感器i、传感器j两个距离相近的传感器,必然存在残差和二者相减可得到一组双残差,即双差具体表示为:Specifically, for microseismic event k, there must be a residual error between the theoretical travel time of the elastic wave reaching sensor i and the actual travel time. Right now Among them, t obs represents the theoretical travel time, and t cal represents the actual travel time. When the elastic wave reaches two sensors i and j at close distances, there must be a residual error. and Subtracting the two can get a set of double residuals, that is, double difference Specifically expressed as:
其中,表示弹性波从预设震源到传感器i的走时,表示弹性波从预设震源到传感器j的走时。in, represents the travel time of the elastic wave from the preset source to sensor i, represents the travel time of the elastic wave from the preset source to sensor j.
对所述双差进行泰勒展开,得到 Taylor expansion of the double difference yields
其中,Δξi=(Δxi,Δyi,Δzi,Δti)表示传感器i的初始坐标的定位修正值,Δxi、Δyi、Δzi为传感器i的坐标矢量修正量,Δti为传感器i估计的发震时刻的修正值,Δξj=(Δxj,Δyj,Δzj,Δtj)表示传感器j的初始坐标的定位修正值,Δxj、Δyj、Δzj为传感器j的坐标矢量修正量,Δtj为传感器j估计的发震时刻的修正值,ξ表示……,δ表示……。Among them, Δξ i = ( Δxi , Δyi , Δzi , Δt i ) represents the positioning correction value of the initial coordinates of sensor i, Δxi , Δyi , Δzi are the coordinate vector corrections of sensor i, Δt i is the correction value of the estimated earthquake occurrence time of sensor i, Δξ j = ( Δxj , Δyj , Δzj , Δt j ) represents the positioning correction value of the initial coordinates of sensor j, Δxj , Δyj , Δzj are the coordinate vector corrections of sensor j, Δt j is the correction value of the estimated earthquake occurrence time of sensor j, ξ represents..., δ represents...
展开得到: Expand to get:
其中,vP表示P波波速,Rik、Rjk分别表示预设震源k分别到传感器i和传感器k的距离,xk、yk和zk表示预设震源k的坐标。Wherein, v P represents the velocity of P wave, Rik and Rjk represent the distances from the preset source k to the sensor i and the sensor k respectively, and xk , yk and zk represent the coordinates of the preset source k.
基于泰勒展开后的双差构建定位矩阵Gm=d:The positioning matrix Gm=d is constructed based on the double difference after Taylor expansion:
求解所述定位矩阵得到所述传感器的目标坐标,包括:Solving the positioning matrix to obtain the target coordinates of the sensor includes:
利用例如奇异值分解法(Singular Value Decomposition,SVD)或最小平方QR分解法(Least Square QR-factorization,LSQR)求解所述定位矩阵Gm=d,得到所述传感器的定位修正值Δξi=[Δxi,Δyi,Δzi,Δti]T和Δξj=[Δxj,Δyj,Δzj,Δtj]T;Solving the positioning matrix Gm=d by, for example, a singular value decomposition (SVD) method or a least square QR-factorization (LSQR) method to obtain positioning correction values Δξi=[ Δxi , Δyi , Δzi , Δti ] T and Δξj=[ Δxj , Δyj , Δzj , Δtj ] T of the sensor;
将所述初始坐标与所述定位修正值做和得到所述传感器的目标坐标。The target coordinates of the sensor are obtained by summing the initial coordinates with the positioning correction value.
具体地,将传感器i的初始坐标与传感器i的定位修正值做和,即θi=θi+Δξi=(x+Δxi,y+Δyi,z+Δzi,t+Δti);将传感器j的初始坐标与传感器j的定位修正值做和,即θj=θj+Δξj=(x+Δxj,y+Δyj,z+Δzj,t+Δtj),重复基于泰勒展开后的双差构建定位矩阵的步骤,当修正量Δξi和Δξj足够小时,结束迭代。最终得到传感器i和传感器j的目标坐标。Specifically, the initial coordinates of sensor i are summed with the positioning correction value of sensor i, that is, θ i =θ i +Δξ i =(x+ Δxi , y+ Δy , z+ Δz , t+ Δtj ); the initial coordinates of sensor j are summed with the positioning correction value of sensor j, that is, θ j =θ j +Δξ j =(x+ Δxj , y+ Δyj , z+ Δzj , t+ Δtj ), and the steps of constructing the positioning matrix based on the double difference after Taylor expansion are repeated. When the corrections Δξ i and Δξ j are small enough, the iteration is terminated. Finally, the target coordinates of sensor i and sensor j are obtained.
将其他传感器的出初始坐标以上述方法进行修正,得到所有传感器的目标坐标。The initial coordinates of other sensors are corrected using the above method to obtain the target coordinates of all sensors.
本实施例还提供了一种微震传感器定位装置,包括:This embodiment also provides a microseismic sensor positioning device, including:
获取模块,用于获取预设震源的震源坐标和震源波形;An acquisition module, used for acquiring the source coordinates and source waveform of a preset source;
第一处理模块,用于根据所述震源坐标、所述震源波形和监测区地质信息构建目标函数,求解所述目标函数得到所述传感器的初始坐标;A first processing module is used to construct an objective function according to the earthquake source coordinates, the earthquake source waveform and the geological information of the monitoring area, and solve the objective function to obtain the initial coordinates of the sensor;
第二处理模块,用于根据所述震源坐标和所述初始坐标,利用双差算法得到所述传感器的目标坐标。The second processing module is used to obtain the target coordinates of the sensor by using a double difference algorithm according to the source coordinates and the initial coordinates.
第一处理模块还用于根据预设地质标准和所述监测区地质信息得到监测区的波速和衰减系数,根据所述震源波形得到频率;基于所述波速、所述衰减系数、所述频率和所述震源坐标得到所述预设震源到任意两个所述传感器的距离差;根据所述距离差和波的传播公式构建所述目标函数。The first processing module is also used to obtain the wave velocity and attenuation coefficient of the monitoring area according to the preset geological standards and the geological information of the monitoring area, and obtain the frequency according to the source waveform; obtain the distance difference from the preset source to any two of the sensors based on the wave velocity, the attenuation coefficient, the frequency and the source coordinates; and construct the objective function according to the distance difference and the wave propagation formula.
第一处理模块还用于根据所述所述波速、所述衰减系数和所述频率得到所述传感器的信号衰减程度;所述震源坐标分别与任意两个所述传感器坐标作差,得到第一距离和第二距离;基于所述信号衰减程度,将所述第一距离和所述第二距离作差,得到所述距离差。The first processing module is also used to obtain the signal attenuation degree of the sensor according to the wave velocity, the attenuation coefficient and the frequency; the source coordinates are respectively subtracted from any two of the sensor coordinates to obtain a first distance and a second distance; based on the signal attenuation degree, the first distance and the second distance are subtracted to obtain the distance difference.
第一处理模块还用于利用第一公式构建所述目标函数,所述第一公式包括:The first processing module is further used to construct the objective function using a first formula, wherein the first formula includes:
其中,Θ表示所述目标函数,k表示…,n表示预设震源的数量,Ri表示传感器i与预设震源的距离,Rj表示传感器j与预设震源的距离,x0、y0、z0表示所述震源坐标,xi、yi、zi表示传感器i的初始坐标,xj、yj、zj表示传感器j的初始坐标。Among them, Θ represents the objective function, k represents..., n represents the number of preset seismic sources, R i represents the distance between sensor i and the preset seismic source, R j represents the distance between sensor j and the preset seismic source, x 0 , y 0 , z 0 represent the seismic source coordinates, x i , y i , z i represent the initial coordinates of sensor i, and x j , y j , z j represent the initial coordinates of sensor j.
第二处理模块还用于获取任意两个所述传感器的残差,将两个所述传感器的残差作差得到双差;对所述双差进行泰勒展开,并基于泰勒展开后的双差构建定位矩阵;求解所述定位矩阵得到所述传感器的目标坐标。The second processing module is also used to obtain the residuals of any two of the sensors, subtract the residuals of the two sensors to obtain a double difference; perform Taylor expansion on the double difference, and construct a positioning matrix based on the double difference after Taylor expansion; solve the positioning matrix to obtain the target coordinates of the sensor.
第二处理模块还用于利用奇异值分解法求解所述定位矩阵,得到所述传感器的定位修正值;将所述初始坐标与所述定位修正值做和得到所述传感器的目标坐标。The second processing module is also used to solve the positioning matrix using a singular value decomposition method to obtain a positioning correction value of the sensor; and to obtain the target coordinates of the sensor by summing the initial coordinates with the positioning correction value.
获取模块还用于获取所述历史震源的震源坐标,根据所述历史震源的发生时间,查找监测数据,得到所述历史震源的震源波形;或设定所述标定震源,获取所述标定震源的震源坐标,并在所述标定震源的震源坐标处发出震动信号,所述传感器在采集到所述震动信号后生成所述标定震源的震源波形。The acquisition module is also used to obtain the source coordinates of the historical earthquake source, search the monitoring data according to the occurrence time of the historical earthquake source, and obtain the source waveform of the historical earthquake source; or set the calibration earthquake source, obtain the source coordinates of the calibration earthquake source, and send a vibration signal at the source coordinates of the calibration earthquake source. After collecting the vibration signal, the sensor generates the source waveform of the calibration earthquake source.
本实施例提供的微震传感器定位装置与微震传感器定位方法能够产生的技术效果基本相同,在此不再赘述The microseismic sensor positioning device and the microseismic sensor positioning method provided in this embodiment can produce substantially the same technical effects, and will not be described in detail herein.
本实施例还提供了一种系统,包括存储有计算机程序的计算机可读存储介质和处理器,当所述计算机程序被所述处理器读取并运行时,实现如上述所述的微震传感器定位方法。This embodiment further provides a system, including a computer-readable storage medium storing a computer program and a processor. When the computer program is read and executed by the processor, the microseismic sensor positioning method as described above is implemented.
本实施例提供的系统与微震传感器定位方法能够产生的技术效果基本相同,在此不再赘述The system provided in this embodiment and the microseismic sensor positioning method can produce substantially the same technical effects, which will not be described in detail here.
本实施例又提供了一种计算机可读存储介质,其特征在于,所述存储介质上存储有计算机程序,当所述计算机程序被处理器执行时,实现如上述所述的微震传感器定位方法。This embodiment further provides a computer-readable storage medium, characterized in that a computer program is stored on the storage medium, and when the computer program is executed by a processor, the microseismic sensor positioning method as described above is implemented.
本实施例提供的计算机可读存储介质与微震传感器定位方法能够产生的技术效果基本相同,在此不再赘述。The computer-readable storage medium provided in this embodiment and the microseismic sensor positioning method can produce substantially the same technical effects, which will not be described in detail herein.
现将描述可以作为本发明的服务器或客户端的电子设备,其是可以应用于本发明的各方面的硬件设备的示例。电子设备旨在表示各种形式的数字电子的计算机设备,诸如,膝上型计算机、台式计算机、工作台、个人数字助理、服务器、刀片式服务器、大型计算机、和其它适合的计算机。电子设备还可以表示各种形式的移动装置,诸如,个人数字处理、蜂窝电话、智能电话、可穿戴设备和其它类似的计算装置。本文所示的部件、它们的连接和关系、以及它们的功能仅仅作为示例,并且不意在限制本文中描述的和/或者要求的本发明的实现。An electronic device that can be used as a server or client of the present invention will now be described, which is an example of a hardware device that can be applied to various aspects of the present invention. Electronic devices are intended to represent various forms of digital electronic computer devices, such as laptop computers, desktop computers, workbenches, personal digital assistants, servers, blade servers, mainframe computers, and other suitable computers. Electronic devices can also represent various forms of mobile devices, such as personal digital processing, cellular phones, smart phones, wearable devices, and other similar computing devices. The components shown herein, their connections and relationships, and their functions are merely examples, and are not intended to limit the implementation of the present invention described and/or required herein.
电子设备包括计算单元,其可以根据存储在只读存储器(ROM)中的计算机程序或者从存储单元加载到随机访问存储器(RAM)中的计算机程序,来执行各种适当的动作和处理。在RAM中,还可存储设备操作所需的各种程序和数据。计算单元、ROM以及RAM通过总线彼此相连。输入/输出(I/O)接口也连接至总线。The electronic device includes a computing unit, which can perform various appropriate actions and processes according to a computer program stored in a read-only memory (ROM) or a computer program loaded from a storage unit into a random access memory (RAM). In the RAM, various programs and data required for the operation of the device can also be stored. The computing unit, ROM, and RAM are connected to each other via a bus. An input/output (I/O) interface is also connected to the bus.
计算机系统可以包括客户端和服务器。客户端和服务器一般远离彼此并且通常通过通信网络进行交互。通过在相应的计算机上运行并且彼此具有客户端-服务器关系的计算机程序来产生客户端和服务器的关系。A computer system may include clients and servers. Clients and servers are generally remote from each other and usually interact through a communication network. The relationship of client and server is generated by computer programs running on respective computers and having a client-server relationship to each other.
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,是可以通过计算机程序来指令相关的硬件来完成,所述的程序可存储于一计算机可读取存储介质中,该程序在执行时,可包括如上述各方法的实施例的流程。其中,所述的存储介质可为磁碟、光盘、只读存储记忆体(Read-Only Memory,ROM)或随机存储记忆体(Random AccessMemory,RAM)等。在本申请中,所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本发明实施例方案的目的。另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以是两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。A person of ordinary skill in the art can understand that all or part of the processes in the above-mentioned embodiment method can be implemented by instructing the relevant hardware through a computer program, and the program can be stored in a computer-readable storage medium. When the program is executed, it can include the processes of the embodiments of the above-mentioned methods. Among them, the storage medium can be a disk, an optical disk, a read-only memory (ROM) or a random access memory (RAM), etc. In the present application, the unit described as a separate component may or may not be physically separated, and the component displayed as a unit may or may not be a physical unit, that is, it may be located in one place, or it may be distributed on multiple network units. Some or all of the units can be selected according to actual needs to achieve the purpose of the embodiment of the present invention. In addition, each functional unit in each embodiment of the present invention can be integrated in a processing unit, or each unit can exist physically separately, or two or more units can be integrated in one unit. The above-mentioned integrated unit can be implemented in the form of hardware or in the form of a software functional unit.
虽然本发明披露如上,但本发明的保护范围并非仅限于此。本领域技术人员在不脱离本发明的精神和范围的前提下,可进行各种变更与修改,这些变更与修改均将落入本发明的保护范围。Although the present invention is disclosed as above, the protection scope of the present invention is not limited thereto. Those skilled in the art may make various changes and modifications without departing from the spirit and scope of the present invention, and these changes and modifications will fall within the protection scope of the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202410225168.6A CN118311650A (en) | 2024-02-29 | 2024-02-29 | Microseismic sensor positioning method, device, system and storage medium |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202410225168.6A CN118311650A (en) | 2024-02-29 | 2024-02-29 | Microseismic sensor positioning method, device, system and storage medium |
Publications (1)
Publication Number | Publication Date |
---|---|
CN118311650A true CN118311650A (en) | 2024-07-09 |
Family
ID=91725433
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202410225168.6A Pending CN118311650A (en) | 2024-02-29 | 2024-02-29 | Microseismic sensor positioning method, device, system and storage medium |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN118311650A (en) |
Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5511008A (en) * | 1992-12-14 | 1996-04-23 | Commissariat A L'energie Atomique | Process and apparatus for extracting a useful signal having a finite spatial extension at all times and which is variable with time |
US20150160358A1 (en) * | 2013-12-11 | 2015-06-11 | Raytheon Bbn Technologies Corp. | Systems and methods for combining triaxial geophone data for localizing nearby transient seismic sources |
CN107884822A (en) * | 2017-11-13 | 2018-04-06 | 北京矿冶研究总院 | Method for improving positioning precision of mining micro-seismic source |
CN109782356A (en) * | 2019-02-25 | 2019-05-21 | 西南大学 | Optimal layout method of downhole microseismic monitoring sensors based on energy grid search |
CN110780350A (en) * | 2019-10-25 | 2020-02-11 | 中国海洋大学 | A kind of dynamic positioning method, system and geophone of submarine geophone |
CN111855797A (en) * | 2020-06-29 | 2020-10-30 | 广州市高速公路有限公司 | A method and system for rapid detection of grouting quality in a tunnel |
US20210389490A1 (en) * | 2011-08-29 | 2021-12-16 | Seismic Innovations | Method and system for microseismic event location error analysis and display |
CN113984003A (en) * | 2021-09-10 | 2022-01-28 | 国网浙江省电力有限公司台州供电公司 | Pole tower settlement monitoring method based on Beidou positioning |
CN114814940A (en) * | 2022-06-28 | 2022-07-29 | 矿冶科技集团有限公司 | Microseismic monitoring station network evaluation method, microseismic monitoring station network evaluation device, electronic equipment and medium |
CN114910564A (en) * | 2022-05-30 | 2022-08-16 | 东北大学 | Acoustic emission/microseismic sensor calibration coefficient quantification method |
CN115175309A (en) * | 2022-07-19 | 2022-10-11 | 中国工商银行股份有限公司 | Wireless sensor positioning method, apparatus, device, medium, and program product |
CN118133501A (en) * | 2024-01-23 | 2024-06-04 | 煤炭科学技术研究院有限公司 | Method for selecting microseismic positioning sensor under condition of mutual interference of adjacent working surfaces of coal mine |
CN118938291A (en) * | 2024-07-29 | 2024-11-12 | 中铁四局集团有限公司 | A long-distance advance prediction method using tunnel seismic waves |
-
2024
- 2024-02-29 CN CN202410225168.6A patent/CN118311650A/en active Pending
Patent Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5511008A (en) * | 1992-12-14 | 1996-04-23 | Commissariat A L'energie Atomique | Process and apparatus for extracting a useful signal having a finite spatial extension at all times and which is variable with time |
US20210389490A1 (en) * | 2011-08-29 | 2021-12-16 | Seismic Innovations | Method and system for microseismic event location error analysis and display |
US20150160358A1 (en) * | 2013-12-11 | 2015-06-11 | Raytheon Bbn Technologies Corp. | Systems and methods for combining triaxial geophone data for localizing nearby transient seismic sources |
CN107884822A (en) * | 2017-11-13 | 2018-04-06 | 北京矿冶研究总院 | Method for improving positioning precision of mining micro-seismic source |
CN109782356A (en) * | 2019-02-25 | 2019-05-21 | 西南大学 | Optimal layout method of downhole microseismic monitoring sensors based on energy grid search |
CN110780350A (en) * | 2019-10-25 | 2020-02-11 | 中国海洋大学 | A kind of dynamic positioning method, system and geophone of submarine geophone |
CN111855797A (en) * | 2020-06-29 | 2020-10-30 | 广州市高速公路有限公司 | A method and system for rapid detection of grouting quality in a tunnel |
CN113984003A (en) * | 2021-09-10 | 2022-01-28 | 国网浙江省电力有限公司台州供电公司 | Pole tower settlement monitoring method based on Beidou positioning |
CN114910564A (en) * | 2022-05-30 | 2022-08-16 | 东北大学 | Acoustic emission/microseismic sensor calibration coefficient quantification method |
CN114814940A (en) * | 2022-06-28 | 2022-07-29 | 矿冶科技集团有限公司 | Microseismic monitoring station network evaluation method, microseismic monitoring station network evaluation device, electronic equipment and medium |
CN115175309A (en) * | 2022-07-19 | 2022-10-11 | 中国工商银行股份有限公司 | Wireless sensor positioning method, apparatus, device, medium, and program product |
CN118133501A (en) * | 2024-01-23 | 2024-06-04 | 煤炭科学技术研究院有限公司 | Method for selecting microseismic positioning sensor under condition of mutual interference of adjacent working surfaces of coal mine |
CN118938291A (en) * | 2024-07-29 | 2024-11-12 | 中铁四局集团有限公司 | A long-distance advance prediction method using tunnel seismic waves |
Non-Patent Citations (10)
Title |
---|
YANG YUYONG ET AL: "A Novel Method for Determining Geophone Orientations From Zero-Offset VSP Data Constrained by Scalar Field", FRONTIERS IN EARTH SCIENCE, vol. 10, 16 February 2022 (2022-02-16) * |
吴学兵;: "电火花震源在浅海检波器定位中的应用研究", 物探装备, no. 01, 25 February 2016 (2016-02-25) * |
姚家榴 等: "地震波分析与应用", vol. 1, 31 March 1998, 地震出版社, pages: 177 - 182 * |
李凌飞: "基于微震监测的某矿地压活动规律与岩爆预警模式研究", 中国优秀硕士学位论文全文数据库, no. 2018, 15 February 2018 (2018-02-15), pages 021 - 107 * |
李育宗 等: "含结构面岩体岩爆特征真三轴试验研究", 岩石力学与工程学报, vol. 43, no. 1, 23 October 2023 (2023-10-23), pages 120 - 132 * |
毛闵军;金辉;卜弘毅;舒嵘;: "电容位置传感器在激光扫描雷达的应用研究", 传感器与微系统, no. 11, 20 November 2010 (2010-11-20) * |
王建群;朱权洁;张尔辉;: "矿山微震震源能量表达方法与应用研究", 煤炭工程, no. 10, 20 October 2020 (2020-10-20) * |
王进强;姜福兴;吕文生;王存文;: "地震波传播速度原位试验及计算", 煤炭学报, no. 12, 15 December 2010 (2010-12-15) * |
芮艺超: "传感器网络布局优化与消减波速和异常到时误差影响的微震源定位方法的研究", 中国博士学位论文全文数据库, no. 2023, 15 December 2023 (2023-12-15), pages 011 - 105 * |
陈栋: "煤矿微震震源参数反演及震源破裂机理研究", 中国博士学位论文全文数据库, no. 2019, 15 September 2019 (2019-09-15), pages 021 - 9 * |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10345463B2 (en) | Methods and systems for using known source events in seismic data processing | |
SA519410094B1 (en) | Systems and methods to use triangulation through one sensor beamforming in downhole leak detection | |
CN108169714B (en) | Positioning method and device based on vibration waves | |
Kurz et al. | Source localization | |
CN107478725A (en) | Rock partition wall method for estimating stability is pressed from both sides in a kind of vcehicular tunnel | |
CN104834004B (en) | Mine microquake based on pre-and post-peaking waveform slope and blast signal recognition methodss | |
CN113189644B (en) | Microseismic source positioning method and system | |
WO2017107862A1 (en) | Method and device for determining overall measurement of seismic observation system repeatability | |
Yan et al. | A Bayesian Approach for Localization of Acoustic Emission Source in Plate‐Like Structures | |
CN118625390A (en) | Microseismic monitoring inversion and intelligent anomaly recognition method for dynamic and static stress fields of coal and rock strata | |
CN109991658B (en) | A method for locating microseismic events based on the "source-station" velocity model | |
CN109061723B (en) | A high-precision positioning method and system for microseismic source in the process of tunnel rockburst inoculation | |
CN117031538A (en) | Microseismic event positioning method combining spectrum analysis and convolutional neural network | |
CN103364823A (en) | Vibration source real-time positioning and analyzing system | |
CN115356767A (en) | Method and device for improving microseismic positioning and wave velocity inversion accuracy based on region segmentation | |
CN113608262B (en) | Seismic data processing method and device for calculating rotation component by using translation component | |
CN118311650A (en) | Microseismic sensor positioning method, device, system and storage medium | |
CN110398540A (en) | Method and system for linear positioning of acoustic emission source in unknown wave velocity system | |
Huang et al. | Relocation method of microseismic source in deep mines | |
Patonin et al. | A modular system for continuous recording of acoustic emission for laboratory studies of rock destruction processes | |
CN110764136B (en) | Combined positioning method for time-lapse linear combination and nonlinear combination of anisotropic longitudinal and transverse waves | |
RU2463631C1 (en) | Method to detect earthquake sources by network of seismic stations | |
CN116184500B (en) | Real-time inversion method and device for ground stress of tunnel based on microseismic information | |
RU2509890C1 (en) | Control and determination method of coordinates of dangerous state of mine rock massif at underground mining operations | |
Liu et al. | Research and application of microseismic nonlinear optimal positioning methods |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |