CN118290590B - A bispecific antibody, encoding gene and use thereof in preparing drugs for treating tumors - Google Patents
A bispecific antibody, encoding gene and use thereof in preparing drugs for treating tumors Download PDFInfo
- Publication number
- CN118290590B CN118290590B CN202410725147.0A CN202410725147A CN118290590B CN 118290590 B CN118290590 B CN 118290590B CN 202410725147 A CN202410725147 A CN 202410725147A CN 118290590 B CN118290590 B CN 118290590B
- Authority
- CN
- China
- Prior art keywords
- bispecific antibody
- gene
- gpc3
- encoding gene
- scfv
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K16/00—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
- C07K16/18—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
- C07K16/28—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
- C07K16/30—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants from tumour cells
- C07K16/303—Liver or Pancreas
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P1/00—Drugs for disorders of the alimentary tract or the digestive system
- A61P1/16—Drugs for disorders of the alimentary tract or the digestive system for liver or gallbladder disorders, e.g. hepatoprotective agents, cholagogues, litholytics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K16/00—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
- C07K16/18—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
- C07K16/28—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
- C07K16/2803—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily
- C07K16/2827—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily against B7 molecules, e.g. CD80, CD86
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K2039/505—Medicinal preparations containing antigens or antibodies comprising antibodies
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/30—Immunoglobulins specific features characterized by aspects of specificity or valency
- C07K2317/31—Immunoglobulins specific features characterized by aspects of specificity or valency multispecific
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Immunology (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Medicinal Chemistry (AREA)
- General Health & Medical Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Molecular Biology (AREA)
- General Chemical & Material Sciences (AREA)
- Pharmacology & Pharmacy (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Gastroenterology & Hepatology (AREA)
- Biochemistry (AREA)
- Biophysics (AREA)
- Genetics & Genomics (AREA)
- Engineering & Computer Science (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Cell Biology (AREA)
- Peptides Or Proteins (AREA)
- Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
Abstract
Description
技术领域Technical Field
本发明涉及生物医药技术领域,特别是涉及一种双特异性抗体、编码基因及其在制备治疗肿瘤的药物中的应用。The present invention relates to the field of biomedicine technology, and in particular to a bispecific antibody, an encoding gene and application thereof in preparing a drug for treating tumors.
背景技术Background Art
癌症是导致死亡的主要原因,全球每年有近 1000 万人死于癌症。其中,肝细胞癌(HCC)是消化系统最常见的恶性肿瘤之一,也是全球癌症死亡的第三大原因,发病率呈逐年上升趋势。由于肝细胞癌起病隐匿,难以早期诊断,大多数患者在确诊时已处于晚期或转移期(如肝外扩散或大血管侵袭),其预后通常较差,生存期短,死亡率高。对于晚期肝细胞癌患者以及经过局部治疗后复发的中期HCC患者,全身治疗是改善生存期的首选治疗方案。Cancer is the leading cause of death, with nearly 10 million people dying from cancer each year worldwide. Among them, hepatocellular carcinoma (HCC) is one of the most common malignant tumors of the digestive system and the third leading cause of cancer death worldwide, with an increasing incidence rate year by year. Due to the insidious onset of hepatocellular carcinoma and the difficulty in early diagnosis, most patients are already in the advanced or metastatic stage (such as extrahepatic spread or large blood vessel invasion) when diagnosed, and their prognosis is usually poor, with a short survival period and a high mortality rate. For patients with advanced hepatocellular carcinoma and patients with intermediate-stage HCC who have relapsed after local treatment, systemic therapy is the preferred treatment option to improve survival.
自2007年SHARP试验首次展示了索拉非尼在不可切除HCC中改善总生存期的效果以来,它成为了FDA批准的首个用于晚期肝癌患者的一线治疗选择。随着IMbrave150试验结果的公布,以酪氨酸激酶抑制剂(TKIs)为主的靶向治疗已经成为晚期肝癌的一线标准护理。尽管在此期间涌现了多种靶向药物,FDA已加速或完全批准了多种晚期HCC的一线或二线治疗方案,但患者的总生存期仍然有待提高,迫切需要探索新的有效治疗方式。2017年至今,多个针对晚期HCC一线或二线全身治疗的III期临床试验呈现了积极的结果。基于Checkmate-040和KEYNOTE-224研究结果,FDA有条件的批准了PD-1单抗Nivolumab和Pembrolizumab作为肝癌的二线治疗。在长达十多年以酪氨酸激酶抑制剂主导的晚期肝癌治疗后,基于免疫检查点抑制剂(ICI)的治疗方案已成为晚期肝癌全身治疗的主要组成部分,扩大了晚期HCC患者的治疗选择,并改善了患者预后,从而开启了肝癌免疫治疗的新时代。Since the SHARP trial in 2007 first demonstrated the effect of sorafenib in improving overall survival in unresectable HCC, it has become the first FDA-approved first-line treatment option for patients with advanced liver cancer. With the publication of the results of the IMbrave150 trial, targeted therapy based on tyrosine kinase inhibitors (TKIs) has become the first-line standard of care for advanced liver cancer. Although a variety of targeted drugs have emerged during this period, and the FDA has accelerated or fully approved a variety of first-line or second-line treatment options for advanced HCC, the overall survival of patients still needs to be improved, and there is an urgent need to explore new effective treatment methods. Since 2017, several Phase III clinical trials for first-line or second-line systemic treatment of advanced HCC have shown positive results. Based on the results of the Checkmate-040 and KEYNOTE-224 studies, the FDA conditionally approved PD-1 monoclonal antibodies Nivolumab and Pembrolizumab as second-line treatments for liver cancer. After more than a decade of tyrosine kinase inhibitor-dominated treatment of advanced liver cancer, immune checkpoint inhibitor (ICI)-based treatment regimens have become the main component of systemic treatment of advanced liver cancer, expanding the treatment options for advanced HCC patients and improving patient prognosis, thus ushering in a new era of liver cancer immunotherapy.
IMbrave150研究展示了Atezolizumab联合Bevacizumab在晚期HCC患者中的显著生存获益,使其于2020年获得了FDA批准作为不可切除HCC的一线全身治疗。在最新的生存分析中,Atezolizumab联合Bevacizumab的中位总生存期相比于索拉非尼为19.2个月对比13.4个月(P < 0.001),患者获得了显著的生存优势。此外,基于ICI的晚期HCC一线全身治疗联合方案还包括Durvalumab + Tremelimumab双免疫检查点治疗。在HIMALAYA III期临床试验中,未接受全身治疗的晚期HCC患者接受Durvalumab加Tremelimumab的中位总生存期为16.4个月,而接受索拉非尼治疗的为13.8个月,表明该方案优于索拉非尼。目前,正在积极进行基于ICI的全身治疗方案的多个III期临床试验,如ORIENT-32、LEAP-002和SHR-1210-III-310等,然而目前的联合治疗策略仍然存在局限性,免疫检查点抑制剂(ICIs)联合TKI/贝伐珠单抗等的不同治疗策略下,客观有效率(ORR)不到50%,中位生存时间(mOS)不到2年,且3-4级以上不良反应发生率高达30-90%,迫切需要新的治疗策略去增加免疫治疗的疗效,同时降低不良反应发生率。The IMbrave150 study demonstrated a significant survival benefit of atezolizumab combined with bevacizumab in patients with advanced HCC, leading to its FDA approval in 2020 as a first-line systemic treatment for unresectable HCC. In the latest survival analysis, the median overall survival of atezolizumab combined with bevacizumab was 19.2 months versus 13.4 months with sorafenib (P < 0.001), and patients achieved a significant survival advantage. In addition, ICI-based first-line systemic treatment combinations for advanced HCC also include dual immune checkpoint therapy with durvalumab + tremelimumab. In the HIMALAYA Phase III clinical trial, patients with advanced HCC who had not received systemic treatment had a median overall survival of 16.4 months with durvalumab plus tremelimumab, compared with 13.8 months with sorafenib, indicating that this regimen is superior to sorafenib. Currently, multiple phase III clinical trials of ICI-based systemic treatment regimens are being actively conducted, such as ORIENT-32, LEAP-002 and SHR-1210-III-310. However, the current combination therapy strategies still have limitations. Under different treatment strategies such as immune checkpoint inhibitors (ICIs) combined with TKI/bevacizumab, the objective response rate (ORR) is less than 50%, the median survival time (mOS) is less than 2 years, and the incidence of adverse reactions above grade 3-4 is as high as 30-90%. New treatment strategies are urgently needed to increase the efficacy of immunotherapy while reducing the incidence of adverse reactions.
肿瘤靶点的选择是决定双特异性抗体治疗疗效的关键因素,所选择的肿瘤特异性抗原需在肿瘤组织高表达而在重要组织不表达或表达水平极低。The selection of tumor targets is a key factor in determining the therapeutic efficacy of bispecific antibodies. The selected tumor-specific antigens must be highly expressed in tumor tissues and not expressed or expressed at extremely low levels in important tissues.
双特异性抗体(BsAbs)是一类能够同时识别两种不同抗原或表位的蛋白质家族。随着药物研发和技术平台的不断进步,近年来BsAbs作为抗肿瘤免疫治疗的新策略受到了广泛关注。随着先进技术的发展,目前已经提出了多种BsAb构建形式。根据Fc结构域的不同,BsAb大致可分为两种类型:IgG格式和非IgG格式。不含Fc的BsAbs包括TandAb、TandscFv、DART、Diabody、F(ab')2和ImmTAC等。而含有Fc结构域的IgG样抗体分子则保留了Fc介导的效应功能,如抗体依赖性细胞介导的细胞毒性作用(ADCC)、补体依赖性细胞毒性作用(CDC)和抗体依赖性细胞吞噬作用(ADCP)。尽管目前双特异性抗体的结构形式层出不穷,但BiTE和Triomabs是目前各种BsAb分子中研发较为成熟的形式之一。BiTE是由通过短肽接头连接的单链可变片段(scFv)组成的融合蛋白,可以同时靶向两个不同的靶点,通常通过募集T细胞介导对肿瘤细胞的杀伤。2014年,Blinatumomab成为首个获得FDA批准用于治疗复发/难治性B前体急性淋巴细胞白血病(ALL)的抗CD19/CD3的BiTE分子,并在不同类型的血液肿瘤中相继获批。Blinatumomab双特异性抗体的成功推动了双特异性抗体免疫疗法在实体肿瘤中的发展。Triomabs是另一种抗体构建形式,作为一种IgG样分子,相较于BiTE分子具有较长的血清清除半衰期。它可以通过Fc段结构域与先天免疫细胞的FcR相互作用,从而介导对免疫细胞的募集和对T细胞的活化增殖,通过联合先天免疫反应和适应性免疫反应的杀伤机制产生有效的抗肿瘤效应。目前尚未有关于通过靶向GPC3/PD-L1双特异性抗体进行肝癌免疫治疗的相关报道。Bispecific antibodies (BsAbs) are a family of proteins that can simultaneously recognize two different antigens or epitopes. With the continuous advancement of drug development and technology platforms, BsAbs have received widespread attention as a new strategy for anti-tumor immunotherapy in recent years. With the development of advanced technologies, a variety of BsAb construction forms have been proposed. According to the different Fc domains, BsAbs can be roughly divided into two types: IgG format and non-IgG format. Fc-free BsAbs include TandAb, TandscFv, DART, Diabody, F(ab')2 and ImmTAC. IgG-like antibody molecules containing Fc domains retain Fc-mediated effector functions, such as antibody-dependent cell-mediated cytotoxicity (ADCC), complement-dependent cytotoxicity (CDC) and antibody-dependent cellular phagocytosis (ADCP). Although there are many structural forms of bispecific antibodies, BiTE and Triomabs are one of the more mature forms of BsAb molecules. BiTE is a fusion protein composed of a single-chain variable fragment (scFv) connected by a short peptide linker. It can target two different targets at the same time, usually by recruiting T cells to mediate the killing of tumor cells. In 2014, Blinatumomab became the first anti-CD19/CD3 BiTE molecule approved by the FDA for the treatment of relapsed/refractory B-precursor acute lymphoblastic leukemia (ALL), and was approved in different types of hematological tumors. The success of the Blinatumomab bispecific antibody has promoted the development of bispecific antibody immunotherapy in solid tumors. Triomabs is another form of antibody construction. As an IgG-like molecule, it has a longer serum clearance half-life compared to BiTE molecules. It can interact with the FcR of innate immune cells through the Fc segment domain, thereby mediating the recruitment of immune cells and the activation and proliferation of T cells, and producing an effective anti-tumor effect by combining the killing mechanism of innate immune response and adaptive immune response. There are currently no reports on liver cancer immunotherapy through bispecific antibodies targeting GPC3/PD-L1.
发明内容Summary of the invention
本发明的目的是提供一种双特异性抗体、编码基因及其在制备治疗肿瘤的药物中的应用,以解决上述现有技术存在的问题。The purpose of the present invention is to provide a bispecific antibody, an encoding gene and use thereof in the preparation of a drug for treating tumors, so as to solve the problems existing in the above-mentioned prior art.
为实现上述目的,本发明提供了如下方案:To achieve the above object, the present invention provides the following solutions:
本发明提供一种双特异性抗体,所述双特异性抗体为靶向GPC3/PD-L1的双特异性抗体。The present invention provides a bispecific antibody, which is a bispecific antibody targeting GPC3/PD-L1.
优选的是,其氨基酸序列如SEQ ID NO.1所示。Preferably, its amino acid sequence is as shown in SEQ ID NO.1.
本发明还提供编码所述双特异性抗体的DNA分子,其核苷酸序列如SEQ ID NO.2所示。The present invention also provides a DNA molecule encoding the bispecific antibody, and its nucleotide sequence is shown in SEQ ID NO.2.
本发明还提供所述双特异性抗体的表达载体,所述表达载体以CMV作为启动子,在该CMV启动子的下游依次连接Igκ分泌肽编码基因、GPC3单链可变区片段GPC3-scFv、Hinge、Fc、P2A、Igκ分泌肽编码基因、PD-L1单链可变区片段PD-L1-scFv、Hinge和Fc。The present invention also provides an expression vector of the bispecific antibody, wherein the expression vector uses CMV as a promoter, and the Igκ secretory peptide encoding gene, the GPC3 single-chain variable region fragment GPC3-scFv, Hinge, Fc, P2A, the Igκ secretory peptide encoding gene, the PD-L1 single-chain variable region fragment PD-L1-scFv, Hinge and Fc are sequentially connected downstream of the CMV promoter.
本发明还提供所述表达载体的构建方法,包括以下步骤:The present invention also provides a method for constructing the expression vector, comprising the following steps:
(1)根据GPC3的轻重链序列、PD-L1的轻重链序列及Fc片段,通过重叠PCR分别扩增出GPC3-scFv-Fc片段和PD-L1-scFv-Fc片段,克隆位点分别为Hind III/EcoR I、EcoR I/Xho I;(1) Based on the light and heavy chain sequences of GPC3, the light and heavy chain sequences of PD-L1 and the Fc fragment, the GPC3-scFv-Fc fragment and the PD-L1-scFv-Fc fragment were amplified by overlapping PCR, with the cloning sites being Hind III/ Eco R I and Eco R I/ Xho I, respectively;
(2)GPC3轻重链序列和PD-L1轻重链序列之间通过(G4S)3进行连接,扩增出的GPC3-scFv和PD-L1-scFv通过Hinge与Fc段进行连接;(2) The GPC3 light and heavy chain sequences and the PD-L1 light and heavy chain sequences were connected by (G 4 S) 3 , and the amplified GPC3-scFv and PD-L1-scFv were connected to the Fc segment by Hinge;
(3)在引物设计过程中引入P2A剪切肽,并采用双酶切法将目的序列片段和载体双酶切出粘性末端后进行双特异性抗体质粒的构建,启动子为CMV。(3) During the primer design process, the P2A cleavage peptide was introduced, and the target sequence fragment and the vector were double-enzyme-cut to remove the sticky ends, and then the bispecific antibody plasmid was constructed. The promoter was CMV.
本发明还提供所述双特异性抗体、所述DNA分子或所述表达载体在制备治疗肝癌的药物中的应用。The present invention also provides use of the bispecific antibody, the DNA molecule or the expression vector in preparing a drug for treating liver cancer.
本发明还提供一种用于治疗肝癌的基因药物,包括所述双特异性抗体、所述DNA分子或所述表达载体。The present invention also provides a gene medicine for treating liver cancer, comprising the bispecific antibody, the DNA molecule or the expression vector.
本发明还提供一种用于治疗肝癌的药物制剂,包括所述双特异性抗体、所述DNA分子、所述表达载体或所述基因药物和可药用载体。The present invention also provides a pharmaceutical preparation for treating liver cancer, comprising the bispecific antibody, the DNA molecule, the expression vector or the gene drug and a pharmaceutically acceptable carrier.
优选的是,可药用载体适用于液体剂型、固体剂型或膏体剂型。Preferably, the pharmaceutically acceptable carrier is suitable for liquid dosage form, solid dosage form or paste dosage form.
基于上述技术方案,本发明具有以下技术效果:Based on the above technical solution, the present invention has the following technical effects:
本发明公开了靶向GPC3/PD-L1的双特异性抗体基因药物在制备治疗肿瘤的药物中的应用,以及公开了靶向GPC3/PD-L1的双特异性抗体蛋白基因序列在制备治疗肿瘤的药物中的应用,并证实了靶向GPC3/PD-L1的双特异性抗体基因药物所表达的靶向GPC3/PD-L1的双特异性抗体蛋白能够明显抑制肿瘤的增长,延长荷瘤小鼠的生存期限,提高血清IFN-γ释放水平。表明本发明提供的靶向GPC3/PD-L1双特异性抗体基因药物能够用于抗肿瘤治疗。The present invention discloses the use of a bispecific antibody gene drug targeting GPC3/PD-L1 in the preparation of a drug for treating tumors, and discloses the use of a bispecific antibody protein gene sequence targeting GPC3/PD-L1 in the preparation of a drug for treating tumors, and confirms that the bispecific antibody protein targeting GPC3/PD-L1 expressed by the bispecific antibody gene drug targeting GPC3/PD-L1 can significantly inhibit tumor growth, prolong the survival period of tumor-bearing mice, and increase the release level of serum IFN-γ. It shows that the bispecific antibody gene drug targeting GPC3/PD-L1 provided by the present invention can be used for anti-tumor treatment.
附图说明BRIEF DESCRIPTION OF THE DRAWINGS
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。In order to more clearly illustrate the embodiments of the present invention or the technical solutions in the prior art, the drawings required for use in the embodiments will be briefly introduced below. Obviously, the drawings described below are only some embodiments of the present invention. For ordinary technicians in this field, other drawings can be obtained based on these drawings without paying creative work.
图1为编码双特异性抗体基因药物的DNA构造示意图,其中,A.双特异性抗体基因药物构建的连接示意图;B.双特异性抗体单边结构示意图;C.双特异性抗体的结构示意图;Figure 1 is a schematic diagram of the DNA structure encoding a bispecific antibody gene drug, wherein A. is a connection diagram of the construction of a bispecific antibody gene drug; B. is a schematic diagram of the unilateral structure of a bispecific antibody; C. is a schematic diagram of the structure of a bispecific antibody;
图2为编码BsAb双特异性抗体的基因药物序列(A)及示意图(B);C.DNA凝胶电泳图(Marker:5 kb DNA Ladder);D.基因药物测序结果;Figure 2 shows the gene drug sequence (A) and schematic diagram (B) encoding the BsAb bispecific antibody; C. DNA gel electrophoresis (Marker: 5 kb DNA Ladder); D. Gene drug sequencing results;
图3为蛋白免疫印迹结果图:hGPC3/PD-L1 BsAb(A)和mGPC3/PD-L1 BsAb(B)基因药物的体外表达验证;Figure 3 is a Western blotting result diagram: in vitro expression verification of hGPC3/PD-L1 BsAb (A) and mGPC3/PD-L1 BsAb (B) gene drugs;
图4为基因药物(表达质粒)转染后细胞上清中表达抗体与GPC3和PD-L1靶点蛋白的ELISA结合能力检测;A:phBsAb上清结合人GPC3蛋白,B:phBsAb上清结合人PD-L1蛋白,C:mhBsAb上清结合鼠PD-L1蛋白,D:稀释梯度下phBsAb上清结合人GPC3蛋白;E:稀释梯度下phBsAb上清结合人PD-L1蛋白,F:稀释梯度下pmBsAb上清结合鼠PD-L1蛋白;Figure 4 is an ELISA binding ability test of the antibodies expressed in the cell supernatant after gene drug (expression plasmid) transfection with GPC3 and PD-L1 target proteins; A: phBsAb supernatant binds to human GPC3 protein, B: phBsAb supernatant binds to human PD-L1 protein, C: mhBsAb supernatant binds to mouse PD-L1 protein, D: phBsAb supernatant binds to human GPC3 protein under dilution gradient; E: phBsAb supernatant binds to human PD-L1 protein under dilution gradient, F: pmBsAb supernatant binds to mouse PD-L1 protein under dilution gradient;
图5为基因药物(表达质粒)转染后细胞上清中表达抗体与人源肝癌细胞系表面GPC3靶点蛋白的结合检测;其中,A:pmBsAb与HepG2细胞结合能力检测,B:pmBsAb与Huh7细胞结合能力检测,C:pmBsAb与Hep3B细胞结合能力检测,D为pmBsAb与HepG2细胞结合百分比;E:pmBsAb与Huh7细胞结合百分比,F:pmBsAb与Hep3B细胞结合百分比;Figure 5 is a binding test of the antibody expressed in the cell supernatant after transfection of the gene drug (expression plasmid) with the GPC3 target protein on the surface of the human liver cancer cell line; wherein, A: pmBsAb and HepG2 cell binding ability test, B: pmBsAb and Huh7 cell binding ability test, C: pmBsAb and Hep3B cell binding ability test, D is the binding percentage of pmBsAb and HepG2 cells; E: pmBsAb and Huh7 cell binding percentage, F: pmBsAb and Hep3B cell binding percentage;
图6为基因药物在免疫系统人源化NSG小鼠的皮下Huh 7肝癌细胞异种移植模型中的抑瘤效果,其中,A.免疫系统人源化NSG小鼠的Huh 7皮下肝癌荷瘤模型构建及治疗方案示意图;B.免疫系统人源化NSG小鼠的Huh 7皮下肝癌模型经基因药物治疗后平均肿瘤体积增长曲线;C.各治疗分组荷瘤小鼠肿瘤体积增长曲线;ns,无统计学差异;*p<0.05;**p<0.01;***p<0.001;Figure 6 shows the tumor-suppressing effect of gene drugs in the subcutaneous Huh 7 liver cancer cell xenograft model of humanized immune system NSG mice, including: A. Schematic diagram of the construction of Huh 7 subcutaneous liver cancer model and treatment plan of humanized immune system NSG mice; B. Average tumor volume growth curve of Huh 7 subcutaneous liver cancer model of humanized immune system NSG mice after gene drug treatment; C. Tumor volume growth curve of tumor-bearing mice in each treatment group; ns, no statistical difference; *p<0.05; **p<0.01; ***p<0.001;
图7为免疫系统人源化NSG小鼠的Huh 7荷瘤模型中不同治疗分组小鼠的生存曲线;ns,无统计学差异;*p<0.05;**p<0.01;***p<0.001;Figure 7 shows the survival curves of mice in different treatment groups in the Huh 7 tumor-bearing model of NSG mice with humanized immune system; ns, no statistical difference; *p<0.05; **p<0.01; ***p<0.001;
图8为双特异性抗体基因药物(表达质粒)递送治疗后第30天各治疗组血清中的IFN-γ指标ELISA定量分析结果。Figure 8 shows the results of ELISA quantitative analysis of IFN-γ in the serum of each treatment group on the 30th day after bispecific antibody gene drug (expression plasmid) delivery treatment.
具体实施方式DETAILED DESCRIPTION
现详细说明本发明的多种示例性实施方式,该详细说明不应认为是对本发明的限制,而应理解为是对本发明的某些方面、特性和实施方案的更详细的描述。Various exemplary embodiments of the present invention will now be described in detail. This detailed description should not be considered as limiting the present invention, but should be understood as a more detailed description of certain aspects, features, and embodiments of the present invention.
应理解本发明中所述的术语仅仅是为描述特别的实施方式,并非用于限制本发明。另外,对于本发明中的数值范围,应理解为还具体公开了该范围的上限和下限之间的每个中间值。在任何陈述值或陈述范围内的中间值以及任何其他陈述值或在所述范围内的中间值之间的每个较小的范围也包括在本发明内。这些较小范围的上限和下限可独立地包括或排除在范围内。It should be understood that the terms described in the present invention are only for describing a particular embodiment and are not intended to limit the present invention. In addition, for the numerical range in the present invention, it should be understood that each intermediate value between the upper and lower limits of the scope is also specifically disclosed. Each smaller range between the intermediate value in any stated value or stated range and any other stated value or intermediate value in the described range is also included in the present invention. The upper and lower limits of these smaller ranges can be independently included or excluded in the scope.
除非另有说明,否则本文使用的所有技术和科学术语具有本发明所述领域的常规技术人员通常理解的相同含义。虽然本发明仅描述了优选的方法和材料,但是在本发明的实施或测试中也可以使用与本文所述相似或等同的任何方法和材料。本说明书中提到的所有文献通过引用并入,用以公开和描述与所述文献相关的方法和/或材料。在与任何并入的文献冲突时,以本说明书的内容为准。Unless otherwise indicated, all technical and scientific terms used herein have the same meanings as those generally understood by those skilled in the art. Although the present invention describes only preferred methods and materials, any methods and materials similar or equivalent to those described herein may also be used in the implementation or testing of the present invention. All documents mentioned in this specification are incorporated by reference to disclose and describe the methods and/or materials associated with the documents. In the event of a conflict with any incorporated document, the content of this specification shall prevail.
在不背离本发明的范围或精神的情况下,可对本发明说明书的具体实施方式做多种改进和变化,这对本领域技术人员而言是显而易见的。由本发明的说明书得到的其他实施方式对技术人员而言是显而易见的。本申请说明书和实施例仅是示例性的。It will be apparent to those skilled in the art that various modifications and variations may be made to the specific embodiments of the present invention description without departing from the scope or spirit of the present invention. Other embodiments derived from the present invention description will be apparent to those skilled in the art. The present application description and examples are exemplary only.
关于本文中所使用的“包含”、“包括”、“具有”、“含有”等等,均为开放性的用语,即意指包含但不限于。The words “include,” “including,” “have,” “contain,” etc. used in this document are open-ended terms, meaning including but not limited to.
本发明所述技术方案,如未特别说明,均为本领域的常规方案,所用试剂或原料,如未特别说明,均购自商业渠道或是已公开。The technical solutions described in the present invention, unless otherwise specified, are all conventional solutions in the art, and the reagents or raw materials used, unless otherwise specified, are purchased from commercial channels or are publicly available.
实施例1Example 1
靶向GPC3双特异性抗体基因药物(表达质粒)的构建Construction of bispecific antibody gene drug (expression plasmid) targeting GPC3
靶向GPC3双特异性抗体基因药物氨基酸序列如SEQ ID NO.1所示,编码基因如SEQID NO.2所示:The amino acid sequence of the bispecific antibody gene drug targeting GPC3 is shown in SEQ ID NO.1, and the encoding gene is shown in SEQ ID NO.2:
SEQ ID NO.1:METDTLLLWVLLLWVPGSTGDDVVMTQTPLSLPVSLGDQASISCRSSQSLVHSNGNTYLHWYLQKPGQSPKLLIYKVSNRFSGVPDRFSGSGSGTDFTLKISRVEAEDLGVYFCSQNTHVPPTFGSGTKLEIKGGGGSGGGGSGGGGSQVQLQQSGAELVRPGASVKLSCKASGYTFTDYEMHWVKQTPVHGLKWIGALDPKTGDTAYSQKFKGKATLTADKSSSTAYMELRSLTSEDSAVYYCTRFYSYTYWGQGTLVTVSAEPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRDELTKNQVSLWCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGKEFGSGATNFSLLKQAGDVEENPGPMELPVRLLVLMFWIPASLSQSALTQPASVSGSPGQSITISCTGTSSDVGGYNYVSWYQQHPGKAPKLMIYDVSNRPSGVSNRFSGSKSGNTASLTISGLQAEDEADYYCSSYTSSSTRVFGTGTKVTVLGGGGSGGGGSGGGGSEVQLLESGGGLVQPGGSLRLSCAASGFTFSSYIMMWVRQAPGKGLEWVSSIYPSGGITFYADTVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARIKLGTVTTVDYWGQGTLVTVSSEPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRDELTKNQVSLSCAVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLVSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK*;SEQ ID NO.1: METDTLLLWVLLLWVPGSTGDDVVMTQTPLSLPVSLGDQASISCRSSQSLVHSNGNTYLHWYLQKPGQSPKLLIYKVSNRFSGVPDRFSGSGSGTDFTLKISRVEAEDLGVYFCSQNTHVPPTFGSGTKLEIKGGGGSGGGGSGGGGSQVQLQQSGAELVRPGASVKLSCKASGYTFTDYEMH WVKQTPVHGLKWIGALDPKTGDTAYSQKFKGKATLTADKSSSTAYMELRSLTSEDSAVYYCTRFYSY type SDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGKEFGSGATNFSL LKQAGDVEENPGPMELPVRLFWIPASLSQSALTQPASVSGSPGQSITISCTGTSSDVGGYNYVSWYQQHPGKAPKLMIYDVSNRPSGVSNRFSGSKSGNTASLTISGLQAEDEADYYCSSYTSSSTRVFGTGTKVTVLGGGGSGGGGSGGGGSEVQLLESGGGLVQPGGSLRLSCAASGFTFSSYIMMWVRQAPGKGLEWVSSIYPSGGITFY ADTVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAR IKLGTVTTVDYWGQGTLVTVSSEPKSCDKTHTCPPCPAPELLGGPSSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRDELTKNQVSLSCAVKGFYPSDIAVEWESNGQPEN NYKTTPPVLDSDGSFFLVSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK*;
SEQ ID NO.2:ATGGAGACAGACACACTCCTGCTATGGGTACTGCTGCTCTGGGTTCCAGGTTCCACTGGTGACGACGTGGTGATGACCCAGACCCCCCTGAGCCTGCCCGTGAGCCTGGGCGACCAGGCCAGCATCAGCTGCAGGAGCAGCCAGAGCCTGGTGCACAGCAACGGCAACACCTACCTGCACTGGTACCTGCAGAAGCCCGGCCAGAGCCCCAAGCTGCTGATCTACAAGGTGAGCAACAGGTTCAGCGGCGTGCCCGACAGGTTCAGCGGCAGCGGCAGCGGCACCGACTTCACCCTGAAGATCAGCAGGGTGGAGGCCGAGGACCTGGGCGTGTACTTCTGCAGCCAGAACACCCACGTGCCCCCCACCTTCGGCAGCGGCACCAAGCTGGAGATCAAGGGCGGCGGAGGTAGCGGAGGTGGTGGCAGTGGTGGAGGAGGCTCACAGGTGCAGCTGCAGCAGAGCGGCGCCGAGCTGGTGAGGCCCGGCGCCAGCGTGAAGCTGAGCTGCAAGGCCAGCGGCTACACCTTCACCGACTACGAGATGCACTGGGTGAAGCAGACCCCCGTGCACGGCCTGAAGTGGATCGGCGCCCTGGACCCCAAGACCGGCGACACCGCCTACAGCCAGAAGTTCAAGGGCAAGGCCACCCTGACCGCCGACAAGAGCAGCAGCACCGCCTACATGGAGCTGAGGAGCCTGACCAGCGAGGACAGCGCCGTGTACTACTGCACCAGGTTCTACAGCTACACCTACTGGGGCCAGGGCACCCTGGTGACCGTGAGCGCCGAGCCCAAATCTTGTGACAAAACTCACACATGCCCACCGTGCCCAGCACCTGAACTCCTGGGGGGACCGTCAGTCTTCCTCTTCCCCCCAAAACCCAAGGACACCCTCATGATCTCCCGGACCCCTGAGGTCACATGCGTGGTGGTGGACGTGAGCCACGAAGACCCTGAGGTCAAGTTCAACTGGTACGTGGACGGCGTGGAGGTGCATAATGCCAAGACAAAGCCGCGGGAGGAGCAGTACAACAGCACGTACCGTGTGGTCAGCGTCCTCACCGTCCTGCACCAGGACTGGCTGAATGGCAAGGAGTACAAGTGCAAGGTCTCCAACAAAGCCCTCCCAGCCCCCATCGAGAAAACCATCTCCAAAGCCAAAGGGCAGCCCCGAGAACCACAGGTGTACACCCTGCCCCCATCCCGGGATGAGCTGACCAAGAACCAGGTCAGCCTGTGGTGCCTGGTCAAAGGCTTCTATCCCAGCGACATCGCCGTGGAGTGGGAGAGCAATGGGCAGCCGGAGAACAACTACAAGACCACGCCTCCCGTGCTGGACTCCGACGGCTCCTTCTTCCTCTACAGCAAGCTCACCGTGGACAAGAGCAGGTGGCAGCAGGGGAACGTCTTCTCATGCTCCGTGATGCATGAGGCTCTGCACAACCACTACACGCAGAAGAGCCTCTCCCTGTCTCCGGGTAAAGAATTCGGAAGCGGAGCTACTAACTTCAGCCTGCTGAAGCAGGCTGGAGACGTGGAGGAGAACCCTGGACCTATGGAGTTGCCTGTTAGGCTGTTGGTGCTGATGTTCTGGATTCCTGCTTCCTTAAGCCAGTCCGCCCTGACCCAGCCTGCCTCCGTGTCTGGCTCCCCTGGCCAGTCCATCACCATCAGCTGCACCGGCACCTCCAGCGACGTGGGCGGCTACAACTACGTGTCCTGGTATCAGCAGCACCCCGGCAAGGCCCCCAAGCTGATGATCTACGACGTGTCCAACCGGCCCTCCGGCGTGTCCAACAGATTCTCCGGCTCCAAGTCCGGCAACACCGCCTCCCTGACCATCAGCGGACTGCAGGCAGAGGACGAGGCCGACTACTACTGCTCCTCCTACACCTCCTCCAGCACCAGAGTGTTCGGCACCGGCACAAAAGTGACCGTGCTGGGCGGAGGCGGAAGCGGAGGCGGAGGAAGCGGCGGTGGCGGCAGCGAGGTGCAGCTGCTGGAATCCGGCGGAGGACTGGTGCAGCCTGGCGGCTCCCTGAGACTGTCTTGCGCCGCCTCCGGCTTCACCTTCTCCAGCTACATCATGATGTGGGTGCGACAGGCCCCTGGCAAGGGCCTGGAATGGGTGTCCTCCATCTACCCCTCCGGCGGCATCACCTTCTACGCCGACACCGTGAAGGGCCGGTTCACCATCTCCCGGGACAACTCCAAGAACACCCTGTACCTGCAGATGAACTCCCTGCGGGCCGAGGACACCGCCGTGTACTACTGCGCCCGGATCAAGCTGGGCACCGTGACCACCGTGGACTACTGGGGCCAGGGCACCCTGGTGACAGTGTCCTCCGAGCCCAAATCTTGTGACAAAACTCACACATGCCCACCGTGCCCAGCACCTGAACTCCTGGGGGGACCGTCAGTCTTCCTCTTCCCCCCAAAACCCAAGGACACCCTCATGATCTCCCGGACCCCTGAGGTCACATGCGTGGTGGTGGACGTGAGCCACGAAGACCCTGAGGTCAAGTTCAACTGGTACGTGGACGGCGTGGAGGTGCATAATGCCAAGACAAAGCCGCGGGAGGAGCAGTACAACAGCACGTACCGTGTGGTCAGCGTCCTCACCGTCCTGCACCAGGACTGGCTGAATGGCAAGGAGTACAAGTGCAAGGTCTCCAACAAAGCCCTCCCAGCCCCCATCGAGAAAACCATCTCCAAAGCCAAAGGGCAGCCCCGAGAACCACAGGTGTACACCCTGCCCCCATCCCGGGATGAGCTGACCAAGAACCAGGTCAGCCTGTCCTGCGCAGTCAAAGGCTTCTATCCCAGCGACATCGCCGTGGAGTGGGAGAGCAATGGGCAGCCGGAGAACAACTACAAGACCACGCCTCCCGTGCTGGACTCCGACGGCTCCTTCTTCCTCGTAAGCAAGCTCACCGTGGACAAGAGCAGGTGGCAGCAGGGGAACGTCTTCTCATGCTCCGTGATGCATGAGGCTCTGCACAACCACTACACGCAGAAGAGCCTCTCCCTGTCTCCGGGTAAATGA。SEQ ID NO.2: ATGGAGACAGACACACTCCTGCTATGGGTACTGCTGCTCTGGGTTCCAGGTTCCACTGGTGACGACGTGGTGATGACCCAGACCCCCCTGAGCCTGCCCGTGAGCCTGGGCGACCAGGCCAGCATCAGCTGCAGGAGCAGCCAGCCTGGTGCACAGCAACGGCAACACCTACCTGCACTGGTACCTGCAGAAGCCCGGCCAGAGCCCCAAGCTGCTGATCTACAAGGTGAGCAACAGGTT CAGCGGCGTGCCCGACAGGTTCAGCGGCAGCGGCAGCGGCACCGACTTCACCCTGAAGATCAGCAGGGTGGAGGCCGAGGACCTGGGCGTGTACTTCTGCAGCCAGAACACCCACGTGCCCCCCACCTTCGGCA GCGGCACCAAGCTGGAGATCAAGGGCGGCGGAGGTAGCGGAGGTGGTGGCAGTGGTGGAGGAGGCTCACAGGTGCAGCTGCAGCAGAGCGGCGCCGAGCTGGTGAGGCCCGGCGCCAGCGTGAAGCTGAGCTGCAAGGCCAGCGGCTACACCTTCACCGACTACGAGATGCACTGGGTGAAGCAGACCCCCGTGCACGGGCCTGAAGTGGATCGGCGCCCTGGACCCCAAGACCGGCGACACCGCCTACAGC CAGAAGTTCAAGGGCAAGGCCACCCTGACCGCCGACAAGAGCAGCAGCACCGCCTACATGGAGCTGAGGAGCCTGACCAGCGAGGACAGCGCCGTGTACTACTGCACCAGGTTCTACAGCTACACCTACTG GGGCCAGGGCACCCTGGTGACCGTGAGCGCCGAGCCCAAATCTTGTGACAAAACTCACACATGCCCACCGTGCCCAGCACCTGAACTCCTGGGGGGACCGTCAGTCTTCCTCTTCCCCCCAAAACCCAAGGACACCCTCATGATCTCCCGGACCCTGAGGTCACATGCGTGGTGGTGGACGTGAGCCACGAAGACCCTGAGGTCAAGTTCAACTGGTACGTGGACGGCGTGGAGGTGCATAATGCCAAGACAAAGCCGCGGGA GGAGCAGTACAACAGCACGTACCGTGTGGTCAGCGTCCTCACCGTCCTGCACCAGGACTGGCTGAATGGCAAGGAGTACAAGTGCAAGGTCTCCAACAAAGCCCTCCCAGCCCCCATC GAGAAAACCATCTCCAAAGCCAAAGGGCAGCCCCGAGAACCACAGGTGTACACCCTGCCCCCATCCCGGGATGAGCTGACCAAGAACCAGGTCAGCCTGTGGTGCCTGGTCAAAGGCTTCTATCCCAGCGACATCGCCGTGGAGTGGGAGAGCAATGGGCAGCCGGAGAACAACTACAAGACCACGCCTCCCGTGCTGGACTCCGACGGCTCCTTCTTCCTCTACAGCAAGCTCACCGTGGACAAGAGCAGGTGGCAGCAGGGG AACGTCTTCTCATGCTCCGTGATGCATGAGGCTCTGCACAACCACTACACGCAGAAGAGCCTCTCCCTGTCTCCGGGTAAAGAATTCGGAAGCGGAGCTACTAACTTCAGCCTGCTGA AGCAGGCTGGAGACGTGGAGGAGAACCCTGGACCTATGGAGTTGCCTGTTAGGCTGTTGGTGCTGATGTTCTGGATTCCTGCTTCCTTAAGCCAGTCCGCCCTGACCCAGCCTGCCTCCGTGTCTGGCTCCCCTGGCCAGTCCATCACCATCAGCTGCACCGGCACCTCCAGCGACGTGGGCGGCTACAACTACGTGTCCTGGTATCAGCAGCACCCCGGCAAGGCCCCAAGCTGATGATCTACGACGTGTCCA ACCGGCCCTCCGGCGTGTCCAACAGATTCTCCGGCTCCAAGTCCGGCAACACCGCCTCCCTGACCATCAGCGGACTGCAGGCAGAGGACGAGGCCGACTACTGCTCCCCTACACCTCCTCCA GCACCAGAGTGTTCGGCACCGGCACAAAAGTGACCGTGCTGGGCGGAGGCGGAAGCGGAGGCGGAGGAAGCGGCGCGGCAGCGAGGTGCAGCTGCTGGAATCCGGCGGAGGACTGGTGCAGCCTGGCGGCTCCCTGAGACTGTCTTGCGCCGCCTCCGGCTTCACCTTCTCCAGCTACATCATGATGTGGGTGCGACAGGCCCTGGCAAGGGCCTGGAATGGGTGTCCTCCATCTACCCCTCCGGCGG CATCACCTTCTACGCCGACACCGTGAAGGGCCGGTTCACCATCTCCCGGGACAACTCCAAGAACACCCTGTACCTGCAGATGAACTCCCTGCGGGCCGAGGACACCGCCGTGTACTACTGCGCCCGGAT CAAGCTGGGCACCGTGACCACCGTGGACTACTGGGGCCAGGGCACCCTGGTGACAGTGTCCTCCGAGCCCAAATCTTGTGACAAAACTCACACATGCCCACCGTGCCCAGCACCTGAACTCCTGGGGGGACCGTCAGTCTTCCTCTTCCCCCCAAAACCCAAGGACACCCTCATGATCTCCCGGACCCCTGAGGTCACATGCGTGGTGGTGGACGTGAGCCACGAAGACCCTGAGGTCAAGTTCAACTGGTACGTGGACGGCGTGG AGGTGCATAATGCCAAGACAAAGCCGCGGGAGGAGCAGTACAACAGCACGTACCGTGTGGTCAGCGTCCTCACCGTCCTGCACCAGGACTGGCTGAATGGCAAGGAGTACAAGTGC AAGGTCTCCAACAAAGCCCTCCCAGCCCCCATCGAGAAAACCATCTCCAAAGCCAAAGGGCAGCCCCGAGAACCACAGGTGTACACCCTGCCCCCATCCCGGGATGAGCTGACCAAGAACCAGGTCAGCCTGTCCTGCGCAGTCAAAGGCTTCTATCCCAGCGACATCGCCGTGGAGTGGGAGAGCAATGGGCAGCCGGAGAACAACTACAAGACCACGCCTCCCGTGCTGGACTCCGACGGCTCCTTCTCCTCGTAAGCAAGCTC ACCGTGGACAAGAGCAGGTGGCAGCAGGGGAACGTCTTCTCATGCTCCGTGATGCATGAGGCTCTGCACAACCACTACACGCAGAAGAGCCTCTCCCTGTCTCCGGGTAAATGA.
本实施例构建了靶向GPC3/PD-L1的双特异性抗体基因药物,以下简称为pBsAb。本实施例所使用的GPC3重链及轻链可变区编码序列如下:In this example, a bispecific antibody gene drug targeting GPC3/PD-L1 was constructed, hereinafter referred to as pBsAb. The GPC3 heavy chain and light chain variable region coding sequences used in this example are as follows:
Igκ分泌肽编码基因序列:Igκ secretory peptide encoding gene sequence:
SEQ ID NO.3:ATGGAGACAGACACACTCCTGCTATGGGTACTGCTGCTCTGGGTTCCAGGTTCCACTGGTGAC;SEQ ID NO.3: ATGGAGACAGACACACTCCTGCTATGGGTACTGCTGCTCTGGGTTCCAGGTTCCACTGGTGAC;
VL of α-hGPC3(专利号:US20140044714A1):VL of α-hGPC3 (Patent No.: US20140044714A1):
SEQ ID NO.4:GACGTGGTGATGACCCAGACCCCCCTGAGCCTGCCCGTGAGCCTGGGCGACCAGGCCAGCATCAGCTGCAGGAGCAGCCAGAGCCTGGTGCACAGCAACGGCAACACCTACCTGCACTGGTACCTGCAGAAGCCCGGCCAGAGCCCCAAGCTGCTGATCTACAAGGTGAGCAACAGGTTCAGCGGCGTGCCCGACAGGTTCAGCGGCAGCGGCAGCGGCACCGACTTCACCCTGAAGATCAGCAGGGTGGAGGCCGAGGACCTGGGCGTGTACTTCTGCAGCCAGAACACCCACGTGCCCCCCACCTTCGGCAGCGGCACCAAGCTGGAGATCAAG;SEQ ID NO.4: GACGTGGTGATGACCCAGACCCCCCTGAGCCTGCCCGTGAGCCTGGGCCGACCAGGCCAGCATCAGCTGCAGGAGCAGCCAGAGCCTGGTGCACAGCAACGGCAACACCTACCTGCACTGGTACCTGCAGAAGCCCGGCCAGAGCCCCAAGCTGCTGATCTACAAGGTGAGCAACAGGTTCAGCGGCGTGCCCGACAGGTTCAGCGGCAGCGGCAGCGGCACCGACTTCACCCTGAAGAT CAGCAGGGTGGAGGCCGAGGACCTGGGCGTGTACTTCTGCAGCCAGAACACCCACGTGCCCCCCACCTTCGGCAGCGGCACCAAGCTGGAGATCAAG;
VH of α-hGPC3(专利号:US20140044714A1):VH of α-hGPC3 (Patent No.: US20140044714A1):
SEQ ID NO.5:CAGGTGCAGCTGCAGCAGAGCGGCGCCGAGCTGGTGAGGCCCGGCGCCAGCGTGAAGCTGAGCTGCAAGGCCAGCGGCTACACCTTCACCGACTACGAGATGCACTGGGTGAAGCAGACCCCCGTGCACGGCCTGAAGTGGATCGGCGCCCTGGACCCCAAGACCGGCGACACCGCCTACAGCCAGAAGTTCAAGGGCAAGGCCACCCTGACCGCCGACAAGAGCAGCAGCACCGCCTACATGGAGCTGAGGAGCCTGACCAGCGAGGACAGCGCCGTGTACTACTGCACCAGGTTCTACAGCTACACCTACTGGGGCCAGGGCACCCTGGTGACCGTGAGCGCC;SEQ ID NO.5: CAGGTGCAGCTGCAGCAGAGCGGCGCCGAGCTGGTGAGGCCCGGCGCCAGCGTGAAGCTGAGCTGCAAGGCCAGCGGCTACACCTTCACCGACTACGAGATGCACTGGGTGAAGCAGACCCCCGTGCACGGCCTGAAGTGGATCGGCGCCCTGGACCCCAAGACCGGCGACACCGCCTACAGCCAGAAGTTCAAGGGCAAGGCCACCCTGACCGCCGACAAGAGCAGCAGCACCG CCTACATGGAGCTGAGGAGCCTGACCAGCGAGGACAGCGCCGTGTACTACTGCACCAGGTTCTACAGCTACACCTACTGGGGCCAGGGCACCCTGGTGACCGTGAGCGCC;
VL of α-hPD-L1:VL of α-hPD-L1:
SEQ ID NO.6:GAGTTGCCTGTTAGGCTGTTGGTGCTGATGTTCTGGATTCCTGCTTCCTTAAGCCAGTCCGCCCTGACCCAGCCTGCCTCCGTGTCTGGCTCCCCTGGCCAGTCCATCACCATCAGCTGCACCGGCACCTCCAGCGACGTGGGCGGCTACAACTACGTGTCCTGGTATCAGCAGCACCCCGGCAAGGCCCCCAAGCTGATGATCTACGACGTGTCCAACCGGCCCTCCGGCGTGTCCAACAGATTCTCCGGCTCCAAGTCCGGCAACACCGCCTCCCTGACCATCAGCGGACTGCAGGCAGAGGACGAGGCCGACTACTACTGCTCCTCCTACACCTCCTCCAGCACCAGAGTGTTCGGCACCGGCACAAAAGTGACCGTGCTG;SEQ ID NO.6: GAGTTGCCTGTTAGCTGTTGGTGCTGATGTTCTGGATTCCTGCTTCCTTAAGCCAGTCCGCCCTGACCCAGCCTGCCTCCGTGTCTGGCTCCCCTGGCCAGTCCATCACCATCAGCTGCACCGGCACCTCCAGCGACGTGGGCGGCTACAACTACGTGTCCTGGTATCAGCAGCACCCCGGCAAGGCCCCCAAGCTGATGATCTACGACGTGTCCAACCGGCCCTCCGGCGTGTCCAA CAGATTCTCCGGCTCCAAGTCCGGCAACACCGCCTCCCTGACCATCAGCGGACTGCAGGCAGAGGACGAGGCGACTACTACTGCTCCCCTACACCTCCTCCAGCACCAGAGTGTTCGGCACCGGCACAAAAGTGACCGTGCTG;
VH of α-hPD-L1:VH of α-hPD-L1:
SEQ ID NO.7:GAGGTGCAGCTGCTGGAATCCGGCGGAGGACTGGTGCAGCCTGGCGGCTCCCTGAGACTGTCTTGCGCCGCCTCCGGCTTCACCTTCTCCAGCTACATCATGATGTGGGTGCGACAGGCCCCTGGCAAGGGCCTGGAATGGGTGTCCTCCATCTACCCCTCCGGCGGCATCACCTTCTACGCCGACACCGTGAAGGGCCGGTTCACCATCTCCCGGGACAACTCCAAGAACACCCTGTACCTGCAGATGAACTCCCTGCGGGCCGAGGACACCGCCGTGTACTACTGCGCCCGGATCAAGCTGGGCACCGTGACCACCGTGGACTACTGGGGCCAGGGCACCCTGGTGACAGTGTCCTCC;SEQ ID NO.7: GAGGTGCAGCTGCTGGAATCCGGCGGAGGACTGGTGCAGCCTGGCGGCTCCCTGAGACTGTCTTGCGCCGCCTCCGGCTTCACCTTTCCAGCTACATCATGATGTGGGTGCGACAGGCCCCTGGCAAGGGCCTGGAATGGGTGTCCTCCATCTACCCCTCCGGCGGCATCACCTTCTACGCCGACACCGTGAAGGGCCGGTTCACCATCTCCCGGGACAACTCCAAGAACACCCTGTACCTG CAGATGAACTCCCTGCGGGCCGAGGACACCGCCGTGTACTACTGCGCCCGGATCAAGCTGGGCACCGTGACCACCGTGGACTACTGGGGCCAGGGCACCCTGGTGACAGTGTCCTCC;
VL of α-mPD-L1:VL of α-mPD-L1:
SEQ ID NO.8:GACATTGTGATGACCCAGTCTCACAAATTCATGTCCACATCAGTAGGAGACAGGGTCAGCATCACCTGCAAGGCCAGTCAGGATGTGGGTACTGCTGTAGCCTGGTATCAACAGAAACCAGGGCAATCTCCTAAACTACTGATTTACTGGGCATCCACCCGGCACACTGGAGTCCCTGATCGCTTCACAGGCAGTGGATCTGGGACAGATTTCACTCTCACCATTAGCAATGTGCAGTCTGAAGACTTGGCAGATTATTTCTGTCAGCAGTATAACAGCTATCCTCTCACGTTCGGTGCTGGGTCCAAGCTGGAGCTGAAA;SEQ ID NO.8: GACATTGTGATGACCCAGTCTCACAAATTCATGTCCACATCAGTAGGAGACAGGGTCAGCATCACCTGCAAGGCCAGTCAGGATGTGGGTACTGCTGTAGCCTGGTATCAACAGAAACCAGGGCAATCTCCTAAACTACTGATTTACTGGGCATCCACCCGGCACACTGGAGTCCCTGATCGCTTCACAGCAGTGGATCTGGGACAGATTTCACTCTCACCATTAGCAATGTGCAGTCTGAAG ACTTGGCAGATTATTTCTGTCAGCAGTATAACAGCTATCCTCTCACGTTCGGTGCTGGGTCCAAGCTGGAGCTGAAA;
VH of α-mPD-L1:VH of α-mPD-L1:
SEQ ID NO.9:CAGGTCCACCTGCAGCAGCCTGGGGCTGAGCTTGTGAAGCCTGGGGCTTCAGTGAAGCTGTCCTGCAAGGCTTCTGGCTACACCTTCACCAGTTACTGGATGTACTGGGTGAAACAGGGGCCTGGACGAGGCCTTGAGTGGATTGGAAGGATTGATCCTAATAGTGGGAGTACTAAGTACAATGAGAAGTTCAAGAACAAGGCCACACTGACTGTAGACAAATCCTCCAGCACAGCCTACATGCAGCTCAGCAGCCTGACATCTGAGGACTCTGCGGTCTATTATTGTGCAAGGGACTATAGAAAGGGGCTCTATGCTATGGACTACTGGGGTCAAGGAACCTCAGTCACCGTCTCCTCA;SEQ ID NO.9: CAGGTCCACCTGCAGCAGCCTGGGGCTGAGCTTGTGAAGCCTGGGGCTTCAGTGAAGCTGTCCTGCAAGGCTTCTGGCTACACCTTCACCAGTTACTGGATGTACTGGGTGAAACAGGGGCCTGGACGAGGCCTTGAGTGGATTGGAAGGATTGATCCTAATAGTGGGAGTACTAAGTACAATGAGAAGTTCAAGAACAAGGCCACACTGACTGTAGACAAATCCTCCAGCACAGC CTACATGCAGCTCAGCAGCCTGACATCTGAGGACTCTGCGGTCTATTATTGTGCAAGGGACTATAGAAAGGGGCTTCTATGCTATGGACTACTGGGGTCAAGGAACCTCAGTCACCGTCTCCTCA;
Fc(hIgG1):Fc (hIgG1):
SEQ ID NO.10:TCAGTCTTCCTCTTCCCCCCAAAACCCAAGGACACCCTCATGATCTCCCGGACCCCTGAGGTCACATGCGTGGTGGTGGACGTGAGCCACGAAGACCCTGAGGTCAAGTTCAACTGGTACGTGGACGGCGTGGAGGTGCATAATGCCAAGACAAAGCCGCGGGAGGAGCAGTACAACAGCACGTACCGTGTGGTCAGCGTCCTCACCGTCCTGCACCAGGACTGGCTGAATGGCAAGGAGTACAAGTGCAAGGTCTCCAACAAAGCCCTCCCAGCCCCCATCGAGAAAACCATCTCCAAAGCCAAAGGGCAGCCCCGAGAACCACAGGTGTACACCCTGCCCCCATCCCGGGATGAGCTGACCAAGAACCAGGTCAGCCTGACCTGCCTGGTCAAAGGCTTCTATCCCAGCGACATCGCCGTGGAGTGGGAGAGCAATGGGCAGCCGGAGAACAACTACAAGACCACGCCTCCCGTGCTGGACTCCGACGGCTCCTTCTTCCTCTACAGCAAGCTCACCGTGGACAAGAGCAGGTGGCAGCAGGGGAACGTCTTCTCATGCTCCGTGATGCATGAGGCTCTGCACAACCACTACACGCAGAAGAGCCTCTCCCTGTCTCCGGGTAAATGA;SEQ ID NO.10: TCAGTCTTCCTCTTCCCCCCAAAACCCAAGGACACCCTCATGATCTCCCGGACCCCTGAGGTCACATGCGTGGTGGTGGACGTGAGCCACGAAGACCCTGAGGTCAAGTTCAACTGGTACGTGGACGGCGTGGAGGTGCATAATGCCAAGACAAAGCCGCGGGAGGAGCAGTACAACAGCACGTACCGTGTGGTCAGCGTCCTCACCGTCCTGCACCAGGACTGGCTGAATGGCAAGGAGTACAACAA GTGCAAGGTCTCCAACAAAGCCCTCCCAGCCCCCATCGAGAAAACCATCTCCAAAGCCAAAGGGCAG CCCCGAGAACCACAGGTGTACACCCTGCCCCCATCCCGGGATGAGCTGACCAAGAACCAGGTCAGCCTGACCTGCCTGGTCAAAGGCTTCTATCCCAGCGACATCGCCGTGGAGTGGGAGCAATGGGCAGCCGGAGAACAACTACAAGACCACGCCTCCCGTGCTGGACTCCGACGGCTCCTTCTTCCTCTACAGCAAGCTCACCGTGGACAAGAGCAGGTGGCAGCAGGGGAACGTCTTCTCATGCTCCGGTGATGCATGA GGCTCTGCACAACCACTACACGCAGAAGAGCCTCTCCCTGTCTCCGGGTAAATGA;
Fc(mIgG 2a):Fc (mIgG 2a):
SEQ ID NO.11:GCACCTAACCTCTTGGGTGGACCATCCGTCTTCATCTTCCCTCCAAAGATCAAGGATGTACTCATGATCTCCCTGAGCCCCATAGTCACATGTGTGGTGGTGGATGTGAGCGAGGATGACCCAGATGTCCAGATCAGCTGGTTTGTGAACAACGTGGAAGTACACACAGCTCAGACACAAACCCATAGAGAGGATTACAACAGTACTCTCCGGGTGGTCAGTGCCCTCCCCATCCAGCACCAGGACTGGATGAGTGGCAAGGAGTTCAAATGCAAGGTCAACAACAAAGACCTCCCAGCGCCCATCGAGAGAACCATCTCAAAACCCAAAGGGTCAGTAAGAGCTCCACAGGTATATGTCTTGCCTCCACCAGAAGAAGAGATGACTAAGAAACAGGTCACTCTGACCTGCATGGTCACAGACTTCATGCCTGAAGACATTTACGTGGAGTGGACCAACAACGGGAAAACAGAGCTAAACTACAAGAACACTGAACCAGTCCTGGACTCTGATGGTTCTTACTTCATGTACAGCAAGCTGAGAGTGGAAAAGAAGAACTGGGTGGAAAGAAATAGCTACTCCTGTTCAGTGGTCCACGAGGGTCTGCACAATCACCACACGACTAAGAGCTTCTCCCGGACTCCGGGTAAATGA;SEQ ID NO.11: GCACCTAACCTCTTGGGTGGACCATCCGTCTTCATCTTCCCTCCAAAGATCAAGGATGTACTCATGATCTCCCTGAGCCCCATAGTCACATGTGTGGTGGTGGATGTGAGCGAGGATGACCCAGATGTCCAGATCAGCTGGTTTGTGAACAACGTGGAAGTACACACAGCTCAGACACAAACCCATAGAGAGGATTACAACAGTACTCTCCGGGTGGTCAGTGCCCTCCCCCATCCAGCACCAGGACTGG ATGAGTGGCAAGGAGTTCAAATGCAAGGTCAACAACAAAGACCTCCCAGCGCCATCGAGAGAACCATCTCAAAA CCCAAAGGGTCAGTAAGAGCTCCACAGGTATATGTCTTGCCTCCACCAGAAGAAGAGATGACTAAGAAACAGGTCACTCTGACCTGCATGGTCACAGACTTCATGCCTGAAGACATTTACGTGGAGTGGACCAACAACGGGAAAACAGAGCTAAACTACAAGAACACTGAACCAGTCCTGGACTCTGATGGTTCTTACTTCATGTACAGCAAGCTGAGAGTGGAAAAGAAGAACTGGGTGGAAAGAAATAGCTACTCCTGTT CAGTGGTCCACGAGGGTCTGCACAATCACCACACGACTAAGAGCTTCTCCCGGACTCCGGGTAAATGA;
(G4S)3柔性连接子编码基因序列:(G 4 S) 3 flexible linker encoding gene sequence:
SEQ ID NO.12:GGCGGCGGCGGCAGCGGCGGCGGCGGCAGCGGCGGCGGCGGCAGC;SEQ ID NO.12: GGCGGCGGCGGCAGCGGCGGCGGCGGCAGCGGCGGCGGCGGCAGC;
Hinge(SEQ ID NO.13):GAGCCCAAATCTTGTGACAAAACTCACACATGCCCACCGTGCCCAGCACCTGAACTCCTGGGGGGACCG;Hinge (SEQ ID NO. 13): GAGCCCAAATCTTGTGACAAAACTCACACATGCCCACCGTGCCCAGCACCTGAACTCCTGGGGGGACCG;
剪切肽P2A编码基因序列:Cleavage peptide P2A encoding gene sequence:
SEQ ID NO.14:GGAAGCGGAGCTACTAACTTCAGCCTGCTGAAGCAGGCTGGAGACGTGGAGGAGAACCCTGGACCT。SEQ ID NO. 14: GGAACGGAGCTACTAACTTCAGCCTGCTGAAGCAGGCTGGAGACGTGGAGGAGAACCCTGGACCT.
由本实验室前期将上述序列交付上海生工进行合成。本实施例通过使用PCR方法从本实验室前期构建质粒pcDNA3.1-GPC3 × CD3基础上扩增出GPC3的轻重链序列以进行靶向GPC3/PD-L1双特异性抗体基因药物(表达质粒)的构建,其余所需PD-L1片段及Fc片段均从本实验室前期构建质粒pcDNA3.1-PD-L1上进行PCR扩增获得,之后通过重叠PCR分别扩增出GPC3scFv-Fc片段和PD-L1scFv-Fc片段,克隆位点分别为Hind III/EcoR I;EcoR I/Xho I。GPC3和PD-L1轻重链之间通过(G4S)3进行连接,扩增出的GPC3 scFv,PD-L1 scFv通过Hinge与Fc段进行连接,其中Fc段未进行碱基突变以保留Fc段的ADCC等效应,其次在引物设计过程中引入P2A剪切肽,以利于目标质粒成功表达后通过有效剪切以顺利组合成双特异性抗体结构形式。本实施例采用双酶切法将目的序列片段和载体双酶切出粘性末端后进行双特异性抗体质粒的构建,启动子为CMV。靶向GPC3/PD-L1双特异性抗体基因药物(表达质粒)构建的具体信息及示意图(p: plasmid; α: anti-; h: human; m: mouse)如表1所示。The above sequence was delivered to Shanghai Bioengineering for synthesis by our laboratory in the early stage. In this example, the light and heavy chain sequences of GPC3 were amplified from the plasmid pcDNA3.1-GPC3 × CD3 constructed in the early stage of our laboratory by using the PCR method to construct a bispecific antibody gene drug (expression plasmid) targeting GPC3/PD-L1. The remaining required PD-L1 fragments and Fc fragments were obtained by PCR amplification from the plasmid pcDNA3.1-PD-L1 constructed in the early stage of our laboratory. Then, the GPC3scFv-Fc fragment and the PD-L1scFv-Fc fragment were amplified by overlapping PCR, and the cloning sites were Hind III/ Eco RI; Eco RI/ Xho I, respectively. The light and heavy chains of GPC3 and PD-L1 are connected by (G 4 S) 3 , and the amplified GPC3 scFv and PD-L1 scFv are connected to the Fc segment by Hinge, wherein the Fc segment is not subjected to base mutation to retain the ADCC and other effects of the Fc segment. Secondly, the P2A shearing peptide is introduced in the primer design process to facilitate the successful expression of the target plasmid and to effectively shear and smoothly combine into a bispecific antibody structure. In this embodiment, the double enzyme digestion method is used to double enzyme digest the target sequence fragment and the vector to remove the sticky ends and then construct the bispecific antibody plasmid, and the promoter is CMV. The specific information and schematic diagram of the construction of the GPC3/PD-L1 bispecific antibody gene drug (expression plasmid) are shown in Table 1.
表1 质粒构建信息Table 1 Plasmid construction information
, ,
同时本实施例使用蛋白结构预测网站Alphafold2对设计的基因药物所表达的双特异性抗体结构进行预测及解析,其结构如图1中B所示。At the same time, this example uses the protein structure prediction website Alphafold2 to predict and analyze the structure of the bispecific antibody expressed by the designed gene drug, and its structure is shown in B in Figure 1.
在双特异性抗体基因药物构建后,通过质粒双酶切鉴定以及测序验证目标质粒的正确构建(图2)。通过Hind III/EcoR I酶切出目标抗体基因序列片段后进行DNA凝胶电泳鉴定分析,如图2中C所示,编码hBsAb、mBsAb的目标条带大小约为1500 bp,αhPD-L1+基因序列载体、αmPD-L1+基因序列载体的目标条带大小约为4500 bp,与预期相符。此外,质粒测序结果(图2中D)鉴定对比无误。After the bispecific antibody gene drug was constructed, the correct construction of the target plasmid was verified by plasmid double enzyme digestion and sequencing (Figure 2). The target antibody gene sequence fragment was cut out by Hind III/ Eco R I and then analyzed by DNA gel electrophoresis. As shown in Figure 2, C, the target band size encoding hBsAb and mBsAb was about 1500 bp, and the target band size of αhPD-L1+ gene sequence vector and αmPD-L1+ gene sequence vector was about 4500 bp, which was consistent with expectations. In addition, the plasmid sequencing results (Figure 2, D) were correctly identified and compared.
实施例2Example 2
1. 靶向GPC3/PD-L1双特异性抗体基因药物的体外表达1. In vitro expression of bispecific antibody gene therapy targeting GPC3/PD-L1
HEK293T细胞瞬时转染目的基因药物(表达质粒)pαhGPC3/PD-L1(人源)和pαmGPC3/PD-L1(鼠源),以进行目标基因药物表达检测。HEK293T cells were transiently transfected with target gene drugs (expression plasmids) pαhGPC3/PD-L1 (human) and pαmGPC3/PD-L1 (mouse) to detect the expression of target gene drugs.
A.HEK293T细胞复苏传代。A. HEK293T cell recovery and passaging.
B.转染前24 h,将生长状态良好并于贴壁后布满培养皿总面积达80%以上的HEK293T细胞进行消化传代,移取适量消化好的细胞进行6孔板铺板,使之在转染前细胞生长汇合密度达70-80%,将细胞置于含细胞培养箱中培养,准备转染。B. 24 h before transfection, HEK293T cells that are in good growth condition and cover more than 80% of the total area of the culture dish after attachment are digested and passaged. An appropriate amount of digested cells are transferred to a 6-well plate so that the cell growth confluence density reaches 70-80% before transfection. The cells are cultured in a cell culture incubator in preparation for transfection.
C.转染前1 h更换完全培养基。C. Replace complete culture medium 1 h before transfection.
D.目的基因药物(表达质粒)转染混合液制备:向无菌1.5 mL EP管中加入125 mL无血清Opti-DMEM,加入2.5 mg目的质粒(phBsAb,pmBsAb),4 mL Lipo8000,充分混匀后室温静置10 min,待DNA和转染试剂结合以形成稳定的转染复合物。D. Preparation of target gene drug (expression plasmid) transfection mixture: Add 125 mL serum-free Opti-DMEM, 2.5 mg target plasmid (phBsAb, pmBsAb), and 4 mL Lipo8000 to a sterile 1.5 mL EP tube. Mix thoroughly and let stand at room temperature for 10 min to allow DNA and transfection reagent to combine to form a stable transfection complex.
E.取出培养皿,将配置好的DNA-转染试剂混合物小心滴加入到含180 mL培养基的培养皿中,轻轻混匀,并于做好标记后放回培养箱中继续培养。E. Take out the culture dish and carefully add the prepared DNA-transfection reagent mixture dropwise into the culture dish containing 180 mL of culture medium. Mix gently and place back into the incubator to continue culturing after marking.
F.6-8 h后观察转染后293T细胞生长状态,移除培养基,用3 mL PBS清洗一次,加入2 mL新鲜完全培养基继续培养。F. After 6-8 h, observe the growth status of the transfected 293T cells, remove the culture medium, wash once with 3 mL PBS, and add 2 mL of fresh complete culture medium to continue culturing.
G.将转染后48 h的培养基上清收集至2 mL离心管中,做好标记置于冰上以备用。G. Collect the culture supernatant 48 h after transfection into a 2 mL centrifuge tube, mark it and place it on ice for later use.
2.目标抗体蛋白免疫印迹(WB)检测抗体体外表达2. Western blot (WB) of target antibody to detect antibody expression in vitro
将上述收集好的表达hBsAb、mBsAb 293T细胞的上清经短时低速离心吸取30 mL上清各2管,分别加入4 × LoadingBuffer 10 mL,其中一管98℃金属浴10 min进行抗体还原状态检测,另一管混匀后置于冰上等待上样,进行蛋白免疫印迹检测。The supernatant of the hBsAb and mBsAb-expressing 293T cells collected above was centrifuged at low speed for a short time, and 30 mL of the supernatant was taken out of each of 2 tubes. 10 mL of 4 × Loading Buffer was added to each tube. One tube was placed in a 98°C metal bath for 10 min to detect the antibody reduction state, and the other tube was mixed and placed on ice to wait for sample loading for protein immunoblotting detection.
将成功构建后鉴定正确的pαhGPC3/PD-L1 BsAb、pαmGPC3/PD-L1 BsAb基因药物(表达质粒)通过脂质体瞬时转染技术利用293T细胞进行瞬时表达。在进行瞬时转染48小时后收获上清,利用蛋白免疫印迹检测双特异性抗体基因药物(表达质粒)的体外表达。Western Blot结果显示(如图3所示),表达后的双特异性基因药物(人源和鼠源)所表达的双特异性抗体蛋白均在还原以及非还原状态下被检测到,在非还原状态下双特异抗体可在140-150 kDa之间出现特异性条带。The pαhGPC3/PD-L1 BsAb and pαmGPC3/PD-L1 BsAb gene drugs (expression plasmids) that were successfully constructed and correctly identified were transiently expressed in 293T cells by liposome transient transfection technology. The supernatant was harvested 48 hours after transient transfection, and the in vitro expression of the bispecific antibody gene drug (expression plasmid) was detected by protein immunoblotting. The Western Blot results showed (as shown in Figure 3) that the bispecific antibody proteins expressed by the expressed bispecific gene drugs (human and mouse) were detected in both reduced and non-reduced states, and in the non-reduced state, the bispecific antibody could show specific bands between 140-150 kDa.
3. 靶向GPC3/PD-L1双特异性抗体基因药物表达后的双特异性抗体的体外结合生物学活性分析3. In vitro binding biological activity analysis of bispecific antibodies after expression of GPC3/PD-L1-targeted bispecific antibody gene drugs
3.1 上清中靶向GPC3/PD-L1的双特异性抗体与GPC3蛋白和PD-L1蛋白的结合能力检测3.1 Detection of the binding ability of the bispecific antibody targeting GPC3/PD-L1 with GPC3 protein and PD-L1 protein in the supernatant
靶向GPC3的双特异性抗体体外生物学功能分析:In vitro biological function analysis of bispecific antibodies targeting GPC3:
基因药物(表达质粒)(Vector,pαGPC3,pαPD-L1 (human; mouse),phBsAb,pmBsAb)质粒瞬时转染后收集表达了目标抗体的细胞上清,置于冰上备用进行抗体结合活性检测。采用ELISA检测双特异性抗体与靶点蛋白的结合活性,步骤如下:After transient transfection of gene drug (expression plasmid) (Vector, pαGPC3, pαPD-L1 (human; mouse), phBsAb, pmBsAb) plasmid, collect the cell supernatant expressing the target antibody and place it on ice for antibody binding activity detection. ELISA is used to detect the binding activity of bispecific antibodies to target proteins. The steps are as follows:
A.包被:使用1 × ELISA包被液稀释目标靶蛋白(鼠GPC3蛋白,人GPC3蛋白,人PD-L1蛋白,鼠PD-L1蛋白),10 ng/孔,并以每孔100 mL体积加入到96孔板中,采用封口膜进行封闭后,置于4℃孵育过夜。A. Coating: Use 1 × ELISA coating solution to dilute the target protein (mouse GPC3 protein, human GPC3 protein, human PD-L1 protein, mouse PD-L1 protein) to 10 ng/well, and add 100 mL per well to a 96-well plate. After sealing with sealing film, incubate at 4°C overnight.
B.洗板:次日在完成孵育后,将孔内液体弃去,采用300 mL洗涤缓冲液PBST对96孔板每孔进行洗板,1 min,共计5次,并于每次弃去孔内液体后将板置于吸水纸上反复叩打几次以彻底除去孔内剩余液体。B. Washing: After the incubation is completed the next day, discard the liquid in the wells and wash each well of the 96-well plate with 300 mL of washing buffer PBST for 1 min, a total of 5 times. After discarding the liquid in the well each time, place the plate on absorbent paper and tap it repeatedly several times to completely remove the remaining liquid in the well.
C.封闭:每孔中加入浓度为1%的BSA(PBS T配制)各100 mL,于37℃恒温箱放置2小时进行封闭。C. Blocking: Add 100 mL of 1% BSA (prepared in PBS T) to each well and place in a 37°C incubator for 2 hours for blocking.
D.弃去封闭液,PBST洗板5次,每次30 s。D. Discard the blocking solution and wash the plate 5 times with PBST, 30 s each time.
E.加样:加入上述待测上清以及PBS倍比稀释后的上清各100 mL/孔,于37℃恒温箱,孵育1 h。E. Sample addition: Add 100 mL/well of the supernatant to be tested and the supernatant diluted in PBS, and incubate in a 37°C incubator for 1 h.
F.洗板:完成孵育后,将孔内液体弃去,用300 mL洗涤缓冲液PBS T对96孔板每孔进行洗板操作,共计5次,每次1 min。F. Washing: After incubation, discard the liquid in the wells and wash each well of the 96-well plate with 300 mL of washing buffer PBS T for a total of 5 times, each time for 1 min.
G.加入HRP酶标抗体:于上述各反应孔中,加入1% BSA稀释的酶标抗体(羊抗人IgGFc(HRP),羊抗鼠IgG Fc(HRP))各100 mL/孔,于37℃孵育1小时。G. Add HRP enzyme-labeled antibody: Add 100 mL/well of enzyme-labeled antibody (goat anti-human IgG Fc (HRP), goat anti-mouse IgG Fc (HRP)) diluted with 1% BSA to each of the above reaction wells and incubate at 37°C for 1 hour.
H.洗板:PBS T洗板7-8次,每次1 min,并于吸水滤纸上轻叩以去除孔内液体。H. Washing: Wash the plate 7-8 times with PBS T, 1 min each time, and tap it on absorbent filter paper to remove the liquid in the wells.
I.于避光条件下,每孔各加入100 mL配制混匀的TMB显色液,于37℃恒温箱中孵育15 min。I. Add 100 mL of the prepared TMB colorimetric solution to each well and incubate in a 37°C incubator for 15 min in the dark.
J.终止:加入1M硫酸100 mL /孔以中止显色,使用酶标仪对96孔板进行吸光值读取,读取波长为450 nm。J. Stop: Add 100 mL/well of 1M sulfuric acid to stop color development and read the absorbance of the 96-well plate using an ELISA reader at a wavelength of 450 nm.
基因药物(表达质粒)(Vector,pαGPC3,pαPD-L1 (human; mouse),phBsAb,pmBsAb)经HEK293T细胞瞬转后收集上清,利用直接ELISA对细胞上清中表达后的抗体与目标靶点蛋白的结合能力进行检测分析。如图4所示,相较于αGPC3单抗和αPD-L1单抗,所表达的hBsAb、mBsAb能有效结合人GPC3蛋白、人PD-L1蛋白,以及鼠PD-L1蛋白。并且结合能力随着稀释比例的增加,出现OD值的梯度变化,但BsAb仍保持有效的结合活性。结果表明,本发明构建的双特异性抗体基因药物表达后的双特异性抗体与相对应的抗原有良好的结合生物活性。同时,相较于αGPC3单抗和αPD-L1单抗,双特异性抗体稀释30倍后仍具有较强的与相对应的抗原的结合能力。After transient transfection of HEK293T cells, the supernatant was collected after the gene drug (expression plasmid) (Vector, pαGPC3, pαPD-L1 (human; mouse), phBsAb, pmBsAb), and the binding ability of the expressed antibody in the cell supernatant to the target protein was detected and analyzed by direct ELISA. As shown in Figure 4, compared with αGPC3 monoclonal antibody and αPD-L1 monoclonal antibody, the expressed hBsAb and mBsAb can effectively bind to human GPC3 protein, human PD-L1 protein, and mouse PD-L1 protein. And the binding ability shows a gradient change of OD value with the increase of dilution ratio, but BsAb still maintains effective binding activity. The results show that the bispecific antibody expressed by the bispecific antibody gene drug constructed by the present invention has good binding biological activity with the corresponding antigen. At the same time, compared with αGPC3 monoclonal antibody and αPD-L1 monoclonal antibody, the bispecific antibody still has a strong binding ability with the corresponding antigen after dilution 30 times.
3.2 HEK293T细胞进行基因药物(表达质粒)转染后上清中表达的靶向GPC3双特异性抗体与肝癌细胞表面GPC3蛋白的结合能力检测3.2 Detection of the binding ability of the GPC3-targeting bispecific antibody expressed in the supernatant after HEK293T cells were transfected with gene drugs (expression plasmid) to the GPC3 protein on the surface of liver cancer cells
采用流式细胞术检测双特异性抗体与细胞表面靶点蛋白的结合活性,步骤如下:Flow cytometry was used to detect the binding activity of the bispecific antibody to the target protein on the cell surface. The steps are as follows:
A.将生长状态良好且汇合度达80%以上的HepG2、Hepa3b、Huh7进行消化,将全血细胞悬液进行离心,1200 rpm,5 min。A. Digest HepG2, Hepa3b, and Huh7 cells that are growing well and have a confluence of more than 80%, and centrifuge the whole blood cell suspension at 1200 rpm for 5 min.
B.移除上清,用预冷PBS重悬、洗涤并离心细胞两次,1200 rpm,5 min,以去除任何血清;并于该操作过程中将每种细胞分别均分到5个干净1.5 mL离心管中备用,具体分组为:空白管、Vector管,商用阳性对照抗体管(抗人GPC3抗体)、荧光二抗阴性对照管(α-mouse PE)以及mBsAb实验管。B. Remove the supernatant, resuspend with pre-cooled PBS, wash and centrifuge the cells twice at 1200 rpm for 5 min to remove any serum; during this operation, divide each cell type into 5 clean 1.5 mL centrifuge tubes for later use, specifically grouped as follows: blank tube, vector tube, commercial positive control antibody tube (anti-human GPC3 antibody), fluorescent secondary antibody negative control tube (α-mouse PE) and mBsAb experimental tube.
C.配制0.5% BSA:100 mL PBS中加入称取的0.5 g BSA,混匀溶解后置于冰上备用。C. Prepare 0.5% BSA: Add 0.5 g BSA to 100 mL PBS, mix well and place on ice until dissolved.
D.将上述收集的细胞上清各取500 mL,分别加入到上述3种细胞的对应管中;其余3管:空白管、阳性商用抗体管、荧光二抗管,分别加入100 μL 0.5% BSA重悬细胞,分别按照抗体说明书稀释比例加入适量抗体;并置于冰上或避光孵育1 h。D. Take 500 mL of the above collected cell supernatant and add them to the corresponding tubes of the above three types of cells respectively; add 100 μL of 0.5% BSA to the remaining three tubes: blank tube, positive commercial antibody tube, and fluorescent secondary antibody tube, resuspend the cells, and add appropriate amount of antibody according to the dilution ratio in the antibody manual; and incubate on ice or away from light for 1 h.
E.加入200 mL预冷PBS洗涤细胞,1400 rpm,5 min,离心去除上清,重复以上步骤洗涤2次。E. Add 200 mL of pre-cooled PBS to wash the cells, centrifuge at 1400 rpm for 5 min, remove the supernatant, and repeat the above steps for 2 more times.
F.预冷0.5% BSA加入到上述离心去除PBS的细胞中并轻柔吹打重悬,于阳性商用抗体管和mBsAb中继续加入荧光二抗,置于冰上避光孵育1 h,进行后续染色操作;其余管置于冰上避光等待流式上机。F. Add pre-cooled 0.5% BSA to the cells after centrifugation to remove PBS and gently pipette to resuspend. Add fluorescent secondary antibody to the positive commercial antibody tube and mBsAb, incubate on ice and away from light for 1 h, and proceed with subsequent staining operations; keep the remaining tubes on ice and away from light waiting for flow cytometry.
G.加入200 mL预冷PBS洗涤上述细胞,1400 rpm,5 min,离心去除上清,重复以上步骤洗涤2次。G. Add 200 mL of pre-cooled PBS to wash the cells. Centrifuge at 1400 rpm for 5 min, remove the supernatant, and repeat the above steps for 2 more times.
H.最终将所有细胞用200 mL预冷PBS重悬,进行上机操作。H. Finally, resuspend all cells in 200 mL pre-cooled PBS and proceed to the machine.
本实施例通过质粒转染技术生产双特异性抗体(BsAb),针对HEK293T细胞上清中分泌的双特异性抗体蛋白进行了抗体与细胞表面GPC3蛋白结合活性的测定。如图5展示的结果,与空载质粒阴性对照组和靶向GPC3的阳性对照组相比较,BsAb组出现了显著的阳性峰值偏移,说明本发明设计的靶向GPC3的双特异性抗体基因药物表达后的双特异性抗体蛋白能够特异性地结合至肝癌细胞表面的目标蛋白。In this example, bispecific antibodies (BsAb) were produced by plasmid transfection technology, and the binding activity of the bispecific antibody protein secreted in the supernatant of HEK293T cells to the cell surface GPC3 protein was determined. As shown in Figure 5, compared with the negative control group of the empty plasmid and the positive control group targeting GPC3, the BsAb group showed a significant positive peak shift, indicating that the bispecific antibody protein expressed by the bispecific antibody gene drug targeting GPC3 designed by the present invention can specifically bind to the target protein on the surface of liver cancer cells.
实施例3Example 3
治疗效果检测:Treatment effect detection:
1. phBsAb抑制人源化免疫系统NSG Huh 7肝癌荷瘤小鼠肿瘤生长1. phBsAb inhibits tumor growth in humanized immune system NSG Huh 7 liver cancer-bearing mice
1.1 hPBMC-NSG小鼠模型构建1.1 Construction of hPBMC-NSG mouse model
A.于华阜康生物公司购买5-6周、雌性NSG小鼠,适应性饲养一周;A. Purchase 5-6 week old female NSG mice from Huafukang Biological Company and feed them adaptively for one week;
B.采集健康志愿者新鲜血液样本,分离人外周血单个核细胞(Peripheral bloodmononuclear cell, PBMC),计数;B. Collect fresh blood samples from healthy volunteers, separate human peripheral blood mononuclear cells (PBMCs), and count them;
C.在适应性喂养一周后,每只小鼠通过尾静脉注射5×106个细胞/100 mL人PBMC细胞,完成免疫系统人源化小鼠模型构建;C. After one week of adaptive feeding, each mouse was injected with 5×10 6 cells/100 mL human PBMC cells through the tail vein to complete the construction of the humanized immune system mouse model;
D.在注射PBMC后30天后获取NSG小鼠脾脏进行流式细胞术分析免疫细胞组成;D. Spleens of NSG mice were obtained 30 days after PBMC injection for flow cytometry analysis of immune cell composition;
1.2 人源化免疫系统NSG小鼠Huh 7肝癌模型构建1.2 Construction of Huh 7 liver cancer model in NSG mice with humanized immune system
A.于华阜康生物公司购买5-6周、雌性NSG小鼠,适应性饲养一周;A. Purchase 5-6 week old female NSG mice from Huafukang Biological Company and feed them for one week;
B.采集健康志愿者新鲜血液样本,分离人PBMC,完成免疫系统人源化小鼠模型构建;B. Collect fresh blood samples from healthy volunteers, isolate human PBMCs, and complete the construction of a humanized immune system mouse model;
C.注射PBMC后一周于每只小鼠右肋靠背部皮下注射2.5×106个Huh 7细胞,并将接种日设为Day 0;C. One week after PBMC injection, 2.5×10 6 Huh 7 cells were subcutaneously injected into the right rib cage of each mouse, and the inoculation day was set as Day 0;
D.在接种肿瘤后的第2天,利用本实验室前期建立的LPL高效骨骼肌原位基因表达递送体系,分别按照不同治疗分组(Vector, pαhGPC3, pαhPD-L1, pαhGPC3 + pαhPD-L1,phBsAb),于小鼠右侧后腿内侧胫骨前肌注射100 μg治疗性质粒;D. On the second day after tumor inoculation, the LPL efficient skeletal muscle in situ gene expression delivery system established in our laboratory was used to inject 100 μg of therapeutic plasmid into the anterior tibialis muscle of the right hind leg of mice according to different treatment groups (Vector, pαhGPC3, pαhPD-L1, pαhGPC3 + pαhPD-L1, phBsAb);
E.在接种Huh 7细胞后,隔天观察一次小鼠肿瘤长势,用游标卡尺测量荷瘤小鼠肿瘤短径(width)和长径(length),并使用电子天平称量记录小鼠体重,肿瘤体积计算用如下公式表示:V=(length × width2)/2。通过统计软件GraphPadprism9.5.0进行数据统计分析。E. After Huh 7 cells were inoculated, the growth of mouse tumors was observed every other day. The short diameter (width) and long diameter (length) of tumors of tumor-bearing mice were measured with a vernier caliper, and the weight of mice was recorded using an electronic balance. The tumor volume was calculated using the following formula: V = (length × width 2 ) / 2. Data statistical analysis was performed using the statistical software GraphPadprism 9.5.0.
在双特异性抗体体内抑瘤实验模型中本发明选取Huh7细胞株(2.5 × 106)进行CDX模型构建以评估双特异性抗体的抑瘤效果。在重度免疫缺陷小鼠注射PBMC 1周后,将小鼠随机分到5个组,在小鼠右腋靠背部皮肤侧构建Huh7皮下荷瘤模型,记为D0。在建模后第二天,于小鼠右侧后退胫骨前肌进行治疗性质粒100 μg肌注,同时辅以LPL及EGCG材料进行质粒递送。定期观察肿瘤长势,同时监测治疗期间小鼠体重变化情况。结果如图6所示,经质粒100 μg递送治疗后第25天,phBsAb组与Control组开始出现明显的统计学差异(P)。经持续监测发现,phBsAb组肿瘤持续维持于较为缓慢增长水平,相较于pαhGPC3组和pαhPD-L1组呈现出明显的抑瘤趋势,phBsAb组和pαhGPC3联合pαhPD-L1组小鼠出现明显生存延长,较Control组、pαhGPC3组和pαhPD-L1组出现统计学差异(P)(图7)。In the in vivo tumor inhibition experimental model of bispecific antibodies, the present invention selected Huh7 cell line (2.5 × 10 6 ) for CDX model construction to evaluate the tumor inhibition effect of bispecific antibodies. One week after the injection of PBMC in severely immunodeficient mice, the mice were randomly divided into 5 groups, and a Huh7 subcutaneous tumor model was constructed on the right axillary skin side of the mice, recorded as D0. On the second day after modeling, 100 μg of therapeutic plasmid was injected intramuscularly into the right posterior tibialis anterior muscle of the mice, and LPL and EGCG materials were used for plasmid delivery. Tumor growth was observed regularly, and the weight changes of mice during treatment were monitored. As shown in Figure 6, on the 25th day after the treatment of 100 μg plasmid delivery, the phBsAb group and the Control group began to show significant statistical differences (P). Continuous monitoring revealed that the tumor in the phBsAb group continued to maintain a relatively slow growth level, showing a significant tumor inhibition trend compared with the pαhGPC3 group and the pαhPD-L1 group. The mice in the phBsAb group and the pαhGPC3 combined with pαhPD-L1 group showed significantly prolonged survival, which was statistically different from the Control group, the pαhGPC3 group, and the pαhPD-L1 group (P) (Figure 7).
2. 酶联免疫吸附检测人源化免疫缺陷NSG小鼠Huh 7肝癌模型血清中IFN-γ的释放水平:2. ELISA was used to detect the release level of IFN-γ in the serum of humanized immunodeficient NSG mouse Huh 7 liver cancer model:
按照ELISA试剂盒生产厂商(达优:货号:1110002)的说明书将收集的小鼠血清保存于-80℃冰箱,按照如下步骤进行检测操作:According to the instructions of the ELISA kit manufacturer (Dayou: Cat. No.: 1110002), the collected mouse serum was stored in a -80°C refrigerator and the detection operation was performed according to the following steps:
A.按照试剂盒说明书,使用前将试剂盒于室温平衡20-30分钟;之后将所有试剂充分混匀,避免产生泡沫;A. According to the kit instructions, equilibrate the kit at room temperature for 20-30 minutes before use; then mix all reagents thoroughly to avoid foaming;
B.标准品配制:按照说明书溶解冻干标准品,并依次配制成400 pg/mL、200 pg/mL、100 pg/mL、50 pg/mL、25 pg/mL、12.5 pg/mL、6.25 pg/mL等不同浓度;B. Preparation of standard products: Dissolve the lyophilized standard products according to the instructions and prepare them into different concentrations such as 400 pg/mL, 200 pg/mL, 100 pg/mL, 50 pg/mL, 25 pg/mL, 12.5 pg/mL, and 6.25 pg/mL in sequence;
C.加样:将稀释后的Cytokine Standard 100 mL/well加入至标准品孔,100 mL/well加入血清样本至样本孔,100 mL/well加入稀释液至空白对照孔;C. Sample addition: Add 100 mL/well of diluted Cytokine Standard to the standard well, 100 mL/well of serum sample to the sample well, and 100 mL/well of diluent to the blank control well;
D.加入检测抗体:50 mL/well加入Biotinylated Antibody工作液。混匀后盖上封板膜,37℃孵育2小时;D. Add detection antibody: Add 50 mL/well of Biotinylated Antibody working solution. Mix well, cover with sealing film, and incubate at 37℃ for 2 hours;
E.洗板:扣去孔内液体,300 mL/well加入1 × Washing Buffer工作液;停留1分钟后弃去孔内液体。重复3次,每一次在滤纸上扣干;E. Washing: Remove the liquid in the wells and add 1 × Washing Buffer working solution at 300 mL/well; leave for 1 minute and discard the liquid in the wells. Repeat 3 times, and dry on filter paper each time;
F.加酶:100 mL/well加入Streptavidin-HRP工作液。盖上封板膜,37℃孵育20分钟;F. Add enzyme: Add 100 mL/well of Streptavidin-HRP working solution. Cover with sealing film and incubate at 37°C for 20 minutes;
G.洗板:重复步骤E;G. Wash the plate: Repeat step E;
H.显色:100 mL/well加入TMB,37℃避光孵育10-20分钟,根据孔内颜色的深浅(深蓝色)来判定终止反应;H. Color development: Add TMB to 100 mL/well and incubate at 37°C in the dark for 10-20 minutes. The reaction is terminated based on the color depth (dark blue) in the well.
I.终止反应:100 mL/well迅速加入Stop Solution终止反应;I. Stop the reaction: quickly add 100 mL/well of Stop Solution to stop the reaction;
J.读板:终止后10分钟内,将板用酶标仪上进行吸光值的读取,检测波长为450nm。根据读取的标准品吸光度值进行标准曲线绘制,并通过曲线计算出血清样品中IFN-γ的浓度。J. Plate reading: Within 10 minutes after termination, read the absorbance of the plate on a microplate reader at a detection wavelength of 450 nm. Draw a standard curve based on the absorbance of the standard sample, and calculate the concentration of IFN-γ in the serum sample through the curve.
IFN-γ亦称Ⅱ型干扰素,主要由T淋巴细胞和NK细胞分泌,有抗病毒和抗肿瘤作用,对细胞增殖和凋亡具有调节作用,其次在肿瘤免疫监视中也具有重要作用。但研究显示,在原发性肝癌肿瘤微环境中T淋巴细胞浸润受阻且功能受抑,导致在抗肿瘤过程中释放IFN-γ降低,抑制抗肿瘤疗效。因此,本实施例进一步评估血清中IFN-γ含量,以评估细胞毒性T淋巴细胞(cytotoxicity T lymphocytes,CTLs)杀伤肿瘤细胞能力。结果如图8所示,在phBsAb治疗组中血清IFN-γ释放显著增加,相较于空载组、pαhGPC3组、pαhPD-L1组和pαhGPC3 + pαhPD-L1组具有统计学差异。提示phBsAb治疗组抑瘤效果更强。IFN-γ, also known as type II interferon, is mainly secreted by T lymphocytes and NK cells. It has antiviral and anti-tumor effects, regulates cell proliferation and apoptosis, and secondly plays an important role in tumor immune surveillance. However, studies have shown that in the tumor microenvironment of primary liver cancer, T lymphocyte infiltration is blocked and function is suppressed, resulting in reduced IFN-γ release during the anti-tumor process, inhibiting the anti-tumor efficacy. Therefore, this example further evaluates the IFN-γ content in serum to evaluate the ability of cytotoxic T lymphocytes (CTLs) to kill tumor cells. As shown in Figure 8, the release of serum IFN-γ in the phBsAb treatment group increased significantly, which was statistically different from the empty group, pαhGPC3 group, pαhPD-L1 group and pαhGPC3 + pαhPD-L1 group. It suggests that the phBsAb treatment group has a stronger tumor inhibition effect.
显然,本发明的上述实施例仅仅是为了清楚说明本发明所作的举例,而并非是对本发明的实施方式的限定。对于所属领域的普通技术用户来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明权利要求的保护范围之内。Obviously, the above embodiments of the present invention are merely examples for clearly explaining the present invention, and are not intended to limit the implementation methods of the present invention. For ordinary technical users in the relevant field, other different forms of changes or modifications can be made on the basis of the above description. It is not necessary and impossible to list all the implementation methods here. Any modifications, equivalent substitutions and improvements made within the spirit and principles of the present invention should be included in the protection scope of the claims of the present invention.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202410725147.0A CN118290590B (en) | 2024-06-06 | 2024-06-06 | A bispecific antibody, encoding gene and use thereof in preparing drugs for treating tumors |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202410725147.0A CN118290590B (en) | 2024-06-06 | 2024-06-06 | A bispecific antibody, encoding gene and use thereof in preparing drugs for treating tumors |
Publications (2)
Publication Number | Publication Date |
---|---|
CN118290590A CN118290590A (en) | 2024-07-05 |
CN118290590B true CN118290590B (en) | 2024-08-16 |
Family
ID=91678042
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202410725147.0A Active CN118290590B (en) | 2024-06-06 | 2024-06-06 | A bispecific antibody, encoding gene and use thereof in preparing drugs for treating tumors |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN118290590B (en) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113286634A (en) * | 2018-05-23 | 2021-08-20 | 辉瑞公司 | Antibodies specific for GUCY2C and uses thereof |
CN116966281A (en) * | 2023-07-13 | 2023-10-31 | 四川大学 | Methods and uses of engineering T cells to load oncolytic viruses |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2998320B1 (en) * | 2011-04-19 | 2018-07-18 | The United States of America, as represented by the Secretary, Department of Health and Human Services | Human monoclonal antibodies specific for glypican-3 and use thereof |
EP3684413A1 (en) * | 2017-09-20 | 2020-07-29 | Chugai Seiyaku Kabushiki Kaisha | Dosage regimen for combination therapy using pd-1 axis binding antagonists and gpc3 targeting agent |
US20230365703A1 (en) * | 2020-09-17 | 2023-11-16 | Shanghai Lyn-Crest Enterprise Management Co., Ltd. | Bispecific recombinant protein and use thereof |
CN116024177A (en) * | 2022-08-17 | 2023-04-28 | 中山大学附属第五医院 | A biomimetic nanovesicle expressing SLAMF7-GPC3 bispecific antibody and its preparation method and application |
-
2024
- 2024-06-06 CN CN202410725147.0A patent/CN118290590B/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113286634A (en) * | 2018-05-23 | 2021-08-20 | 辉瑞公司 | Antibodies specific for GUCY2C and uses thereof |
CN116966281A (en) * | 2023-07-13 | 2023-10-31 | 四川大学 | Methods and uses of engineering T cells to load oncolytic viruses |
Also Published As
Publication number | Publication date |
---|---|
CN118290590A (en) | 2024-07-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103562403B (en) | One antibody for identifying tumour initiator cell and antigen and its application | |
JP2021524240A (en) | Composition of bispecific antibody and its usage | |
WO2018036472A1 (en) | Anti-pd1 monoclonal antibody, pharmaceutical composition thereof and use thereof | |
CN118987201A (en) | Anti-PD-1 antibodies and bispecific anti-CD 20/anti-CD 3 antibody combinations for the treatment of cancer | |
WO2017112762A1 (en) | Bispecific anti-cd20/anti-cd3 antibodies to treat acute lymphoblastic leukemia | |
JP6879924B2 (en) | A combination of taskinimod or a pharmaceutically acceptable salt thereof for use as a pharmaceutical and a PD-1 and / or PD-L1 inhibitor. | |
JP2014508117A (en) | Anti-CCL25 and anti-CCR9 antibodies for prevention and treatment of cancer and cancer cell migration | |
TW201620547A (en) | Combination therapy for PD-L1 negative tumors | |
CN112292151B (en) | Application of anti-PD-1 antibody in preparation of medicine for treating solid tumor | |
AU2016243043A1 (en) | TNFRSF14/ HVEM proteins and methods of use thereof | |
JP2022515188A (en) | Compositions and Methods for Cancer Treatment | |
JP5220315B2 (en) | Anti-EpCAM immunoglobulin | |
Yuan et al. | Development of bispecific anti-c-Met/PD-1 diabodies for the treatment of solid tumors and the effect of c-Met binding affinity on efficacy | |
AU2021400975A1 (en) | Cea6 binding molecules and uses thereof | |
CN111315397A (en) | Method for treating tumors | |
US20240190950A1 (en) | Method of treating diseases using gremlin1 antagonists | |
CA3099974A1 (en) | Binding proteins and chimeric antigen receptor t cells targeting gasp-1 granules and uses thereof | |
US20210196744A1 (en) | Compositions for cancer therapy and methods | |
CN118290590B (en) | A bispecific antibody, encoding gene and use thereof in preparing drugs for treating tumors | |
CN111670199B (en) | Monoclonal antibody NEO-201 for the treatment of human cancer | |
CN112996504A (en) | Methods of treating cancer by inhibiting ubiquitin conjugating enzyme E2K (UBE2K) | |
EP4460520A1 (en) | Methods of treating recurrent ovarian cancer with bispecific anti-muc16 x anti-cd3 antibodies alone or in combination with anti-pd-1 antibodies | |
CN114616245B (en) | anti-CD 38 antibody and application thereof | |
CN118055949A (en) | Treatment of cancers with high EGFR expression treated with antibodies that bind at least EGFR | |
WO2023165618A1 (en) | Methods for treating cancer |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |