[go: up one dir, main page]

CN118231540A - Light-emitting diode epitaxial wafer, preparation method thereof and light-emitting diode - Google Patents

Light-emitting diode epitaxial wafer, preparation method thereof and light-emitting diode Download PDF

Info

Publication number
CN118231540A
CN118231540A CN202410333776.9A CN202410333776A CN118231540A CN 118231540 A CN118231540 A CN 118231540A CN 202410333776 A CN202410333776 A CN 202410333776A CN 118231540 A CN118231540 A CN 118231540A
Authority
CN
China
Prior art keywords
layer
quantum barrier
barrier layer
quantum
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202410333776.9A
Other languages
Chinese (zh)
Inventor
舒俊
程龙
高虹
郑文杰
印从飞
张彩霞
刘春杨
胡加辉
金从龙
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangxi Zhao Chi Semiconductor Co Ltd
Original Assignee
Jiangxi Zhao Chi Semiconductor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangxi Zhao Chi Semiconductor Co Ltd filed Critical Jiangxi Zhao Chi Semiconductor Co Ltd
Priority to CN202410333776.9A priority Critical patent/CN118231540A/en
Publication of CN118231540A publication Critical patent/CN118231540A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10HINORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
    • H10H20/00Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
    • H10H20/80Constructional details
    • H10H20/81Bodies
    • H10H20/811Bodies having quantum effect structures or superlattices, e.g. tunnel junctions
    • H10H20/812Bodies having quantum effect structures or superlattices, e.g. tunnel junctions within the light-emitting regions, e.g. having quantum confinement structures
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10HINORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
    • H10H20/00Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
    • H10H20/01Manufacture or treatment
    • H10H20/011Manufacture or treatment of bodies, e.g. forming semiconductor layers
    • H10H20/013Manufacture or treatment of bodies, e.g. forming semiconductor layers having light-emitting regions comprising only Group III-V materials
    • H10H20/0137Manufacture or treatment of bodies, e.g. forming semiconductor layers having light-emitting regions comprising only Group III-V materials the light-emitting regions comprising nitride materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10HINORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
    • H10H20/00Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
    • H10H20/80Constructional details
    • H10H20/81Bodies
    • H10H20/815Bodies having stress relaxation structures, e.g. buffer layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10HINORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
    • H10H20/00Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
    • H10H20/80Constructional details
    • H10H20/81Bodies
    • H10H20/816Bodies having carrier transport control structures, e.g. highly-doped semiconductor layers or current-blocking structures
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10HINORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
    • H10H20/00Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
    • H10H20/80Constructional details
    • H10H20/81Bodies
    • H10H20/822Materials of the light-emitting regions
    • H10H20/824Materials of the light-emitting regions comprising only Group III-V materials, e.g. GaP
    • H10H20/825Materials of the light-emitting regions comprising only Group III-V materials, e.g. GaP containing nitrogen, e.g. GaN
    • H10H20/8252Materials of the light-emitting regions comprising only Group III-V materials, e.g. GaP containing nitrogen, e.g. GaN characterised by the dopants

Landscapes

  • Led Devices (AREA)

Abstract

The invention discloses a light-emitting diode epitaxial wafer, a preparation method thereof and a light-emitting diode, and relates to the technical field of semiconductors. The light-emitting diode epitaxial wafer comprises a substrate, and a buffer layer, an N-type semiconductor layer, a stress release layer, a multiple quantum well light-emitting layer, an electron blocking layer and a P-type semiconductor layer which are sequentially laminated on the substrate; the multi-quantum well light-emitting layer comprises a quantum well layer and a composite quantum barrier layer which are periodically and alternately laminated; the composite quantum barrier layer comprises a first quantum barrier layer, a second quantum barrier layer and a third quantum barrier layer which are sequentially stacked; the first quantum barrier layer is a first AlInGaN layer, the second quantum barrier layer is a Si doped GaN layer, and the third quantum barrier layer is a second AlInGaN layer; the forbidden bandwidths of the first quantum barrier layer and the third quantum barrier layer are larger than those of the second quantum barrier layer. By implementing the invention, the luminous efficiency of the light emitting diode can be improved.

Description

发光二极管外延片及其制备方法、发光二极管Light-emitting diode epitaxial wafer and preparation method thereof, and light-emitting diode

技术领域Technical Field

本发明涉及半导体技术领域,尤其涉及一种发光二极管外延片及其制备方法、发光二极管。The present invention relates to the field of semiconductor technology, and in particular to a light emitting diode epitaxial wafer and a preparation method thereof, and a light emitting diode.

背景技术Background technique

GaN基LED器件一般采用InGaN/GaN多量子阱作为发光有源区,但InGaN阱层材料与GaN垒层材料之间存在较大的晶格失配,InGaN阱层会受到来自GaN垒层的压应力,压应力导致的极化效应会在InGaN量子阱内部引起严重的能带弯曲变形,使电子和空穴的波函数在空间上分离,从而导致发光有源区内的复合辐射效率低下,限制了GaN基LED器件的发光效率。GaN-based LED devices generally use InGaN/GaN multiple quantum wells as the light-emitting active area, but there is a large lattice mismatch between the InGaN well layer material and the GaN barrier layer material. The InGaN well layer will be subjected to compressive stress from the GaN barrier layer. The polarization effect caused by the compressive stress will cause serious band bending deformation inside the InGaN quantum well, causing the wave functions of electrons and holes to separate in space, resulting in low recombination radiation efficiency in the light-emitting active area, limiting the luminous efficiency of GaN-based LED devices.

发明内容Summary of the invention

本发明所要解决的技术问题在于,提供一种发光二极管外延片,降低量子阱层受到的应力,同时提升载流子的限制作用,使多量子阱发光层中的辐射复合效率提升,从而提高发光二极管的发光效率。The technical problem to be solved by the present invention is to provide a light-emitting diode epitaxial wafer, reduce the stress on the quantum well layer, and at the same time enhance the carrier confinement effect, so as to enhance the radiation recombination efficiency in the multi-quantum well light-emitting layer, thereby improving the light-emitting efficiency of the light-emitting diode.

本发明所要解决的技术问题还在于,提供一种发光二极管外延片的制备方法,制得的发光二极管外延片的发光效率高。The technical problem to be solved by the present invention is also to provide a method for preparing a light emitting diode epitaxial wafer, and the prepared light emitting diode epitaxial wafer has high luminous efficiency.

为达到上述技术效果,本发明提供了一种发光二极管外延片,包括衬底,及依次层叠在所述衬底上的缓冲层、N型半导体层、应力释放层、多量子阱发光层、电子阻挡层和P型半导体层;In order to achieve the above technical effect, the present invention provides a light-emitting diode epitaxial wafer, comprising a substrate, and a buffer layer, an N-type semiconductor layer, a stress release layer, a multi-quantum well light-emitting layer, an electron blocking layer and a P-type semiconductor layer sequentially stacked on the substrate;

所述多量子阱发光层包括周期性交替层叠的量子阱层和复合量子垒层;所述复合量子垒层包括依次层叠的第一量子垒层、第二量子垒层和第三量子垒层;所述第一量子垒层为第一AlInGaN层,所述第二量子垒层为Si掺杂GaN层,所述第三量子垒层为第二AlInGaN层;The multi-quantum well light-emitting layer comprises quantum well layers and composite quantum barrier layers that are periodically and alternately stacked; the composite quantum barrier layer comprises a first quantum barrier layer, a second quantum barrier layer and a third quantum barrier layer that are stacked in sequence; the first quantum barrier layer is a first AlInGaN layer, the second quantum barrier layer is a Si-doped GaN layer, and the third quantum barrier layer is a second AlInGaN layer;

所述第一量子垒层、第三量子垒层的禁带宽度均大于第二量子垒层的禁带宽度。The bandgap widths of the first quantum barrier layer and the third quantum barrier layer are both greater than the bandgap width of the second quantum barrier layer.

作为上述技术方案的改进,所述第一AlInGaN层为Si掺杂AlInGaN层,Al组分占比为0.01~0.66,In组分占比为0.01~0.5,厚度为0.5nm~3.6nm,Si掺杂浓度为3.18×1016cm-3~5.26×1017cm-3As an improvement of the above technical solution, the first AlInGaN layer is a Si-doped AlInGaN layer, with an Al component ratio of 0.01-0.66, an In component ratio of 0.01-0.5, a thickness of 0.5nm-3.6nm, and a Si doping concentration of 3.18×10 16 cm -3 -5.26×10 17 cm -3 .

作为上述技术方案的改进,所述第二量子垒层的厚度为5nm~15nm,Si掺杂浓度为1.05×1017cm-3~2.36×1018cm-3As an improvement of the above technical solution, the thickness of the second quantum barrier layer is 5 nm to 15 nm, and the Si doping concentration is 1.05×10 17 cm -3 to 2.36×10 18 cm -3 .

作为上述技术方案的改进,所述第二AlInGaN层为Si掺杂AlInGaN层,Al组分占比为0.01~0.66,In组分占比为0.01~0.5,厚度为0.5nm~3.6nm,Si掺杂浓度为3.18×1016cm-3~5.26×1017cm-3As an improvement of the above technical solution, the second AlInGaN layer is a Si-doped AlInGaN layer, with an Al component ratio of 0.01-0.66, an In component ratio of 0.01-0.5, a thickness of 0.5nm-3.6nm, and a Si doping concentration of 3.18×10 16 cm -3 -5.26×10 17 cm -3 .

作为上述技术方案的改进,所述量子阱层为非故意掺杂InGaN层,In组分占比为0.01~0.42,厚度为2.2nm~4.8nm。As an improvement of the above technical solution, the quantum well layer is an unintentionally doped InGaN layer, the In component ratio is 0.01 to 0.42, and the thickness is 2.2 nm to 4.8 nm.

作为上述技术方案的改进,所述第一量子垒层、第三量子垒层水平方向的晶格常数均大于等于所述量子阱层水平方向的晶格常数。As an improvement of the above technical solution, the lattice constants of the first quantum barrier layer and the third quantum barrier layer in the horizontal direction are both greater than or equal to the lattice constant of the quantum well layer in the horizontal direction.

作为上述技术方案的改进,所述多量子阱发光层的周期数为3~15。As an improvement of the above technical solution, the number of periods of the multi-quantum well light-emitting layer is 3-15.

相应的,本发明还公开了一种发光二极管外延片的制备方法,用于制备上述的发光二极管外延片,包括以下步骤:Correspondingly, the present invention also discloses a method for preparing a light-emitting diode epitaxial wafer, which is used to prepare the light-emitting diode epitaxial wafer, and comprises the following steps:

提供一衬底,在所述衬底上依次生长缓冲层、N型半导体层、应力释放层、多量子阱发光层、电子阻挡层和P型半导体层;Providing a substrate, and sequentially growing a buffer layer, an N-type semiconductor layer, a stress release layer, a multi-quantum well light-emitting layer, an electron blocking layer, and a P-type semiconductor layer on the substrate;

所述多量子阱发光层包括周期性交替层叠的量子阱层和复合量子垒层;所述复合量子垒层包括依次层叠的第一量子垒层、第二量子垒层和第三量子垒层;所述第一量子垒层为第一AlInGaN层,所述第二量子垒层为Si掺杂GaN层,所述第三量子垒层为第二AlInGaN层;The multi-quantum well light-emitting layer comprises quantum well layers and composite quantum barrier layers that are periodically and alternately stacked; the composite quantum barrier layer comprises a first quantum barrier layer, a second quantum barrier layer and a third quantum barrier layer that are stacked in sequence; the first quantum barrier layer is a first AlInGaN layer, the second quantum barrier layer is a Si-doped GaN layer, and the third quantum barrier layer is a second AlInGaN layer;

所述第一量子垒层、第三量子垒层的禁带宽度均大于第二量子垒层的禁带宽度。The bandgap widths of the first quantum barrier layer and the third quantum barrier layer are both greater than the bandgap width of the second quantum barrier layer.

作为上述技术方案的改进,所述复合量子垒层中,第一量子垒层的生长温度为800℃~920℃,生长压力为90Torr~360Torr;第二量子垒层的生长温度为820℃~930℃,生长压力为90Torr~360Torr;第三量子垒层的生长温度为800℃~920℃,生长压力为90Torr~360Torr;As an improvement of the above technical solution, in the composite quantum barrier layer, the growth temperature of the first quantum barrier layer is 800°C to 920°C, and the growth pressure is 90Torr to 360Torr; the growth temperature of the second quantum barrier layer is 820°C to 930°C, and the growth pressure is 90Torr to 360Torr; the growth temperature of the third quantum barrier layer is 800°C to 920°C, and the growth pressure is 90Torr to 360Torr;

所述量子阱层的生长温度为620℃~880℃,生长压力为90Torr~360Torr。The growth temperature of the quantum well layer is 620° C. to 880° C., and the growth pressure is 90 Torr to 360 Torr.

相应的,本发明还公开了一种发光二极管,包括上述的发光二极管外延片。Correspondingly, the present invention also discloses a light emitting diode, comprising the light emitting diode epitaxial wafer mentioned above.

实施本发明实施例,具有如下有益效果:The implementation of the embodiments of the present invention has the following beneficial effects:

1、本发明的多量子阱发光层包括周期性交替层叠的量子阱层和复合量子垒层,复合量子垒层包括依次层叠的第一量子垒层、第二量子垒层和第三量子垒层,第一量子垒层和第三量子垒层均为AlInGaN层,第二量子垒层为Si掺杂GaN层,且第一量子垒层、第三量子垒层的禁带宽度均大于量子阱层的禁带宽度。通过控制第一量子垒层、第三量子垒层及量子阱层的禁带宽度,可以将载流子限制在量子阱层中参与发光,从而提升多量子阱发光层中的辐射复合效率。1. The multi-quantum well light-emitting layer of the present invention comprises quantum well layers and composite quantum barrier layers that are periodically and alternately stacked, and the composite quantum barrier layer comprises a first quantum barrier layer, a second quantum barrier layer, and a third quantum barrier layer that are stacked in sequence, the first quantum barrier layer and the third quantum barrier layer are both AlInGaN layers, the second quantum barrier layer is a Si-doped GaN layer, and the bandgap widths of the first quantum barrier layer and the third quantum barrier layer are both greater than the bandgap width of the quantum well layer. By controlling the bandgap widths of the first quantum barrier layer, the third quantum barrier layer, and the quantum well layer, carriers can be confined in the quantum well layer to participate in light emission, thereby improving the radiation recombination efficiency in the multi-quantum well light-emitting layer.

2、通过控制AlInGaN四元材料的组分配比,实现第一量子垒层、第三量子垒层与量子阱层晶格常数匹配,大幅减少量子阱层因晶格失配产生的位错,同时显著降低因量子阱层受到的应力而导致的多量子阱发光层区域的能带弯曲现象。2. By controlling the composition ratio of the AlInGaN quaternary material, the lattice constants of the first quantum barrier layer, the third quantum barrier layer and the quantum well layer are matched, which greatly reduces the dislocations caused by lattice mismatch in the quantum well layer, and significantly reduces the band bending phenomenon in the multi-quantum well light-emitting layer region caused by the stress on the quantum well layer.

附图说明BRIEF DESCRIPTION OF THE DRAWINGS

图1是本发明实施例中的发光二极管外延片的结构示意图;FIG1 is a schematic structural diagram of a light emitting diode epitaxial wafer in an embodiment of the present invention;

图2是本发明实施例中的发光二极管外延片的多量子阱发光层的结构示意图;FIG2 is a schematic diagram of the structure of a multi-quantum well light-emitting layer of a light-emitting diode epitaxial wafer in an embodiment of the present invention;

图3是本发明实施例中的发光二极管外延片的制备方法流程图。FIG. 3 is a flow chart of a method for preparing a light emitting diode epitaxial wafer in an embodiment of the present invention.

具体实施方式Detailed ways

为使本发明的目的、技术方案和优点更加清楚,下面将结合具体实施例对本发明作进一步地详细描述。In order to make the purpose, technical solutions and advantages of the present invention more clear, the present invention will be further described in detail below in conjunction with specific embodiments.

如图1和图2所示,本发明实施例提供了一种发光二极管外延片,包括衬底100,及依次层叠在所述衬底100上的缓冲层200、N型半导体层300、应力释放层400、多量子阱发光层500、电子阻挡层600和P型半导体层700。As shown in Figures 1 and 2, an embodiment of the present invention provides a light-emitting diode epitaxial wafer, including a substrate 100, and a buffer layer 200, an N-type semiconductor layer 300, a stress release layer 400, a multi-quantum well light-emitting layer 500, an electron blocking layer 600 and a P-type semiconductor layer 700 stacked in sequence on the substrate 100.

所述多量子阱发光层500包括周期性交替层叠的量子阱层510和复合量子垒层520。具体的,所述复合量子垒层520包括依次层叠的第一量子垒层521、第二量子垒层522和第三量子垒层523;所述第一量子垒层521为第一AlInGaN层,所述第二量子垒层522为Si掺杂GaN层,所述第三量子垒层523为第二AlInGaN层。所述第一量子垒层521、第三量子垒层523的禁带宽度均大于第二量子垒层522的禁带宽度,第二量子垒层522的InGaN为多量子阱发光层发光的主体材料,通过控制第一量子垒层521、第三量子垒层523的禁带宽度均大于量子垒层520的禁带宽度,能够提升载流子的限制作用,将载流子限制在量子阱层510参与发光,使多量子阱发光层500中的辐射复合效率提升,从而提高发光二极管的发光效率。The multi-quantum well light-emitting layer 500 includes periodically alternately stacked quantum well layers 510 and composite quantum barrier layers 520. Specifically, the composite quantum barrier layer 520 includes a first quantum barrier layer 521, a second quantum barrier layer 522, and a third quantum barrier layer 523 stacked in sequence; the first quantum barrier layer 521 is a first AlInGaN layer, the second quantum barrier layer 522 is a Si-doped GaN layer, and the third quantum barrier layer 523 is a second AlInGaN layer. The bandgap widths of the first quantum barrier layer 521 and the third quantum barrier layer 523 are both greater than the bandgap width of the second quantum barrier layer 522. The InGaN of the second quantum barrier layer 522 is the main material for luminescence in the multi-quantum well light-emitting layer. By controlling the bandgap widths of the first quantum barrier layer 521 and the third quantum barrier layer 523 to be greater than the bandgap width of the quantum barrier layer 520, the confinement effect of carriers can be enhanced, and the carriers can be confined to the quantum well layer 510 to participate in luminescence, thereby improving the radiation recombination efficiency in the multi-quantum well light-emitting layer 500, thereby improving the luminescence efficiency of the light-emitting diode.

在一种实施方式中,所述第一AlInGaN层为Si掺杂AlInGaN层,Al组分占比为0.01~0.66,示例性的为0.01、0.08、0.2、0.3、0.4或0.66,但不限于此。所述第一AlInGaN层的In组分占比为0.01~0.5,示例性的为0.01、0.05、0.1、0.2、0.3或0.5,但不限于此。Al组分占比和In组分占比过高都会导致晶体质量降低。所述第一AlInGaN层的厚度为0.5nm~3.6nm,示例性的为0.5nm、0.8nm、1nm、2nm、3nm或3.6nm,但不限于此。所述第一AlInGaN层的Si掺杂浓度为3.18×1016cm-3~5.26×1017cm-3,示例性的为3.18×1016cm-3、5×1016cm-3、8×1016cm-3、1×1016cm-3、2.5×1017cm-3或5.26×1017cm-3,但不限于此。In one embodiment, the first AlInGaN layer is a Si-doped AlInGaN layer, and the Al component ratio is 0.01 to 0.66, and is exemplarily 0.01, 0.08, 0.2, 0.3, 0.4 or 0.66, but not limited thereto. The In component ratio of the first AlInGaN layer is 0.01 to 0.5, and is exemplarily 0.01, 0.05, 0.1, 0.2, 0.3 or 0.5, but not limited thereto. Too high Al component ratio and In component ratio will lead to reduced crystal quality. The thickness of the first AlInGaN layer is 0.5nm to 3.6nm, and is exemplarily 0.5nm, 0.8nm, 1nm, 2nm, 3nm or 3.6nm, but not limited thereto. The Si doping concentration of the first AlInGaN layer is 3.18×10 16 cm -3 to 5.26×10 17 cm -3 , exemplarily 3.18×10 16 cm -3 , 5×10 16 cm -3 , 8×10 16 cm -3 , 1×10 16 cm -3 , 2.5×10 17 cm -3 or 5.26×10 17 cm -3 , but not limited thereto.

在一种实施方式中,所述第二量子垒层为Si掺杂GaN层,掺杂Si元素可以提高导通性,有利于降低多量子阱有源区的电阻,进一步降低LED的工作电压。所述第二量子垒层的厚度为5nm~15nm,示例性的为5nm、8nm、10nm、12nm、14nm或15nm,但不限于此。所述第二量子垒层的Si掺杂浓度为1.05×1017cm-3~2.36×1018cm-3,示例性的为1.05×1017cm-3、2.5×1017cm-3、5×1017cm-3、8×1017cm-3、1×1018cm-3或2.36×1018cm-3,但不限于此,第二量子垒层的Si掺杂浓度大于第一量子垒层和第三量子垒层的Si掺杂浓度,第一量子垒层和第三量子垒层与量子阱层接触,设置较低的Si掺杂浓度有利于提高复合辐射效率。In one embodiment, the second quantum barrier layer is a Si-doped GaN layer, and doping with Si elements can improve conductivity, which is beneficial to reducing the resistance of the multi-quantum well active region and further reducing the operating voltage of the LED. The thickness of the second quantum barrier layer is 5nm to 15nm, and is exemplarily 5nm, 8nm, 10nm, 12nm, 14nm or 15nm, but is not limited thereto. The Si doping concentration of the second quantum barrier layer is 1.05×10 17 cm -3 to 2.36×10 18 cm -3 , exemplarily 1.05×10 17 cm -3 , 2.5×10 17 cm -3 , 5×10 17 cm -3 , 8×10 17 cm -3 , 1×10 18 cm -3 or 2.36×10 18 cm -3 , but not limited thereto. The Si doping concentration of the second quantum barrier layer is greater than the Si doping concentrations of the first quantum barrier layer and the third quantum barrier layer. The first quantum barrier layer and the third quantum barrier layer are in contact with the quantum well layer. Setting a lower Si doping concentration is beneficial to improving the recombination radiation efficiency.

在一种实施方式中,所述第二AlInGaN层为Si掺杂AlInGaN层,Al组分占比为0.01~0.66,示例性的为0.01、0.08、0.2、0.3、0.4或0.66,但不限于此。所述第一AlInGaN层的In组分占比为0.01~0.5,示例性的为0.01、0.05、0.1、0.2、0.3或0.5,但不限于此。Al组分占比和In组分占比过高都会导致晶体质量降低。所述第一AlInGaN层的厚度为0.5nm~3.6nm,示例性的为0.5nm、0.8nm、1nm、2nm、3nm或3.6nm,但不限于此。所述第一AlInGaN层的Si掺杂浓度为3.18×1016cm-3~5.26×1017cm-3,示例性的为3.18×1016cm-3、5×1016cm-3、8×1016cm-3、1×1016cm-3、2.5×1017cm-3或5.26×1017cm-3,但不限于此。In one embodiment, the second AlInGaN layer is a Si-doped AlInGaN layer, and the Al component ratio is 0.01 to 0.66, and 0.01, 0.08, 0.2, 0.3, 0.4 or 0.66 are exemplary, but not limited to this. The In component ratio of the first AlInGaN layer is 0.01 to 0.5, and 0.01, 0.05, 0.1, 0.2, 0.3 or 0.5 are exemplary, but not limited to this. Too high Al component ratio and In component ratio will lead to reduced crystal quality. The thickness of the first AlInGaN layer is 0.5nm to 3.6nm, and 0.5nm, 0.8nm, 1nm, 2nm, 3nm or 3.6nm are exemplary, but not limited to this. The Si doping concentration of the first AlInGaN layer is 3.18×10 16 cm -3 to 5.26×10 17 cm -3 , exemplarily 3.18×10 16 cm -3 , 5×10 16 cm -3 , 8×10 16 cm -3 , 1×10 16 cm -3 , 2.5×10 17 cm -3 or 5.26×10 17 cm -3 , but not limited thereto.

在一种实施方式中,所述第一量子垒层、第三量子垒层水平方向的晶格常数均大于等于所述量子阱层水平方向的晶格常数,通过控制AlInGaN四元材料的组分配比,实现第一量子垒层、第三量子垒层与量子阱层晶格常数匹配。更优的,所述第一量子垒层、第三量子垒层水平方向的晶格常数均等于所述量子阱层水平方向的晶格常数,能够大幅降低量子阱层受到的应力,显著减小多量子阱发光层区域的能带弯曲现象,同时大幅减少量子阱层因晶格失配产生位错,从而提升多量子阱发光层的质量。In one embodiment, the lattice constants of the first quantum barrier layer and the third quantum barrier layer in the horizontal direction are both greater than or equal to the lattice constant of the quantum well layer in the horizontal direction, and the lattice constants of the first quantum barrier layer, the third quantum barrier layer and the quantum well layer are matched by controlling the composition ratio of the AlInGaN quaternary material. More preferably, the lattice constants of the first quantum barrier layer and the third quantum barrier layer in the horizontal direction are both equal to the lattice constant of the quantum well layer in the horizontal direction, which can greatly reduce the stress on the quantum well layer, significantly reduce the band bending phenomenon in the multi-quantum well light-emitting layer region, and at the same time greatly reduce the dislocation of the quantum well layer due to lattice mismatch, thereby improving the quality of the multi-quantum well light-emitting layer.

在一种实施方式中,所述多量子阱发光层的周期数为3~15,示例性的为3、5、8、10、12或15,但不限于此。所述量子阱层为非故意掺杂InGaN层,In组分占比为0.01~0.42,示例性的为0.01、0.05、0.08、0.1、0.2或0.42,但不限于此。所述量子阱层的厚度为2.2nm~4.8nm,示例性的为2.2nm、2.5nm、3nm、3.5nm、4nm或4.8nm,但不限于此。In one embodiment, the number of periods of the multi-quantum well light-emitting layer is 3 to 15, exemplarily 3, 5, 8, 10, 12 or 15, but not limited thereto. The quantum well layer is an unintentionally doped InGaN layer, and the In component ratio is 0.01 to 0.42, exemplarily 0.01, 0.05, 0.08, 0.1, 0.2 or 0.42, but not limited thereto. The thickness of the quantum well layer is 2.2 nm to 4.8 nm, exemplarily 2.2 nm, 2.5 nm, 3 nm, 3.5 nm, 4 nm or 4.8 nm, but not limited thereto.

除了上述多量子阱发光层外,本发明的其它层状结构的特点如下:In addition to the above-mentioned multi-quantum well light-emitting layer, the other layered structures of the present invention are characterized as follows:

所述衬底100可选用蓝宝石衬底、AlN衬底、Si衬底、SiC衬底中的一种。在一种实施方式中,衬底100选用蓝宝石衬底,蓝宝石是目前最常用的衬底材料,蓝宝石衬底具有制备工艺成熟、价格较低、易于清洗和处理、高温下良好的稳定性等优点。The substrate 100 may be selected from sapphire substrate, AlN substrate, Si substrate, and SiC substrate. In one embodiment, the substrate 100 is a sapphire substrate, which is the most commonly used substrate material at present. The sapphire substrate has the advantages of mature preparation technology, low price, easy cleaning and processing, and good stability at high temperature.

所述缓冲层200为AlN缓冲层或AlGaN缓冲层,所述缓冲层200的厚度为10nm~100nm。在一种实施方式中,所述缓冲层200为AlN缓冲层,采用AlN缓冲层提供了与衬底取向相同的成核中心,释放了GaN和衬底之间的晶格失配产生的应力以及热膨胀系数失配所产生的热应力,为进一步的生长提供了平整的成核表面,减少其成核生长的接触角,使岛状生长的GaN晶粒在较小的厚度内能连成面,转变为二维外延生长。The buffer layer 200 is an AlN buffer layer or an AlGaN buffer layer, and the thickness of the buffer layer 200 is 10nm to 100nm. In one embodiment, the buffer layer 200 is an AlN buffer layer, and the use of the AlN buffer layer provides a nucleation center with the same orientation as the substrate, releases the stress generated by the lattice mismatch between GaN and the substrate and the thermal stress generated by the mismatch of thermal expansion coefficients, provides a flat nucleation surface for further growth, reduces the contact angle of its nucleation growth, and enables the island-like growth of GaN grains to be connected to a surface within a smaller thickness, and transforms into two-dimensional epitaxial growth.

所述N型半导体层300包括依次层叠的非掺杂GaN层和N型GaN层,非掺杂GaN层的厚度为1μm~3μm,N型GaN层的厚度为1μm~3μm,掺杂浓度为5×1017cm-3~1×1019cm-3The N-type semiconductor layer 300 includes an undoped GaN layer and an N-type GaN layer stacked in sequence, the undoped GaN layer has a thickness of 1 μm to 3 μm, the N-type GaN layer has a thickness of 1 μm to 3 μm, and the doping concentration is 5×10 17 cm -3 to 1×10 19 cm -3 .

所述应力释放层400为AlGaN应力释放层,厚度为50nm~100nm。The stress release layer 400 is an AlGaN stress release layer with a thickness of 50 nm to 100 nm.

所述电子阻挡层600为AlInGaN层,厚度为10nm~100nm。The electron blocking layer 600 is an AlInGaN layer with a thickness of 10 nm to 100 nm.

所述P型半导体层700为P型GaN层,厚度为20nm~200nm,掺杂浓度为1×1019cm-3~5×1020cm-3。掺杂浓度过高会破坏晶体质量,掺杂浓度过低则会影响空穴浓度。The P-type semiconductor layer 700 is a P-type GaN layer with a thickness of 20 nm to 200 nm and a doping concentration of 1×10 19 cm -3 to 5×10 20 cm -3 . Too high a doping concentration will damage the crystal quality, while too low a doping concentration will affect the hole concentration.

如图3所示,本发明还公开了一种发光二极管外延片的制备方法,包括以下步骤:As shown in FIG3 , the present invention further discloses a method for preparing a light emitting diode epitaxial wafer, comprising the following steps:

S1提供一衬底。S1 provides a substrate.

S2在所述衬底上依次生长缓冲层、N型半导体层、应力释放层、多量子阱发光层、电子阻挡层和P型半导体层。外延结构可以通过MOCVD、MBE、PLD或VPE生长,但不限于此。具体的,S2包括以下步骤:S2 sequentially grows a buffer layer, an N-type semiconductor layer, a stress release layer, a multi-quantum well light-emitting layer, an electron blocking layer, and a P-type semiconductor layer on the substrate. The epitaxial structure can be grown by MOCVD, MBE, PLD, or VPE, but is not limited thereto. Specifically, S2 includes the following steps:

S21、生长缓冲层;S21, growth buffer layer;

采用PVD生长AlN缓冲层,生长温度为500℃~600℃,功率为3000W~5000W,以Ar为溅射气体,以N2为前驱体,以Al为溅射靶材。将已镀完AlN缓冲层的衬底转入MOCVD中,在H2气氛下进行预处理,预处理时间为1min~10min,预处理温度为1000℃~1200℃。The AlN buffer layer is grown by PVD at a growth temperature of 500°C to 600°C, a power of 3000W to 5000W, Ar as the sputtering gas, N2 as the precursor, and Al as the sputtering target. The substrate coated with the AlN buffer layer is transferred to MOCVD and pretreated in a H2 atmosphere for 1min to 10min at a pretreatment temperature of 1000°C to 1200°C.

S22、生长N型半导体层;S22, growing an N-type semiconductor layer;

采用MOCVD生长,温度为1100℃~1150℃,压力为100Torr~500Torr,以NH3为N源,以TMGa为Ga源,生长非掺杂GaN层;采用MOCVD生长,温度为1000℃~1300℃,压力为100Torr~500Torr,以NH3为N源,以TMGa为Ga源,以SiH4为N型掺杂源,生长N型GaN层。The undoped GaN layer is grown by MOCVD at a temperature of 1100°C to 1150°C and a pressure of 100Torr to 500Torr, with NH3 as the N source and TMGa as the Ga source. The N-type GaN layer is grown by MOCVD at a temperature of 1000°C to 1300°C and a pressure of 100Torr to 500Torr, with NH3 as the N source, TMGa as the Ga source and SiH4 as the N-type doping source.

S23、生长应力释放层;S23, growing a stress release layer;

采用MOCVD生长,温度为800℃~950℃,压力为100Torr~500Torr,以NH3为N源,以TMGa为Ga源,以TMAl为Al源,生长AlGaN应力释放层。The AlGaN stress release layer is grown by MOCVD at a temperature of 800°C to 950°C and a pressure of 100Torr to 500Torr, with NH3 as the N source, TMGa as the Ga source and TMAl as the Al source.

S24、生长多量子阱发光层;S24, growing a multi-quantum well light-emitting layer;

采用MOCVD生长,温度为620℃~880℃,压力为90Torr~360Torr,以NH3为N源,以TEGa为Ga源,以TMIn为In源,生长量子阱层。采用MOCVD生长,温度为800℃~930℃,压力为90Torr~360Torr,生长复合量子垒层。重复层叠周期性生长量子阱层和复合量子垒层。具体的,复合量子垒层的制备包括以下步骤:The quantum well layer is grown by MOCVD at a temperature of 620°C to 880°C and a pressure of 90 Torr to 360 Torr, with NH 3 as the N source, TEGa as the Ga source, and TMIn as the In source. The composite quantum barrier layer is grown by MOCVD at a temperature of 800°C to 930°C and a pressure of 90 Torr to 360 Torr. The quantum well layer and the composite quantum barrier layer are repeatedly stacked to grow periodically. Specifically, the preparation of the composite quantum barrier layer includes the following steps:

S241、生长第一量子垒层;S241, growing a first quantum barrier layer;

采用MOCVD生长,温度为800℃~920℃,压力为90Torr~360Torr,以NH3为N源,以TMGa为Ga源,以TMAl为Al源,以TMIn为In源,以SiH4为N型掺杂源。MOCVD growth is adopted, the temperature is 800℃~920℃, the pressure is 90Torr~360Torr, NH3 is used as N source, TMGa is used as Ga source, TMAl is used as Al source, TMIn is used as In source, and SiH4 is used as N-type doping source.

S242、生长第二量子垒层;S242, growing a second quantum barrier layer;

采用MOCVD生长,温度为820℃~930℃,压力为90Torr~360Torr,以NH3为N源,以TMGa为Ga源,以SiH4为N型掺杂源。MOCVD growth is adopted, the temperature is 820℃~930℃, the pressure is 90Torr~360Torr, NH3 is used as N source, TMGa is used as Ga source, and SiH4 is used as N-type doping source.

S243、生长第三量子垒层;S243, growing a third quantum barrier layer;

采用MOCVD生长,温度为800℃~920℃,压力为90Torr~360Torr,以NH3为N源,以TMGa为Ga源,以TMAl为Al源,以TMIn为In源,以SiH4为N型掺杂源。MOCVD growth is adopted, the temperature is 800℃~920℃, the pressure is 90Torr~360Torr, NH3 is used as N source, TMGa is used as Ga source, TMAl is used as Al source, TMIn is used as In source, and SiH4 is used as N-type doping source.

S25、生长电子阻挡层;S25, growing an electron blocking layer;

采用MOCVD生长,温度为1000℃~1100℃,压力为100Torr~300Torr,以NH3为N源,以TMAl为Al源,以TMGa为Ga源,以TMIn为In源,生长AlInGaN电子阻挡层。The AlInGaN electron blocking layer is grown by MOCVD at a temperature of 1000°C to 1100°C and a pressure of 100Torr to 300Torr, with NH3 as the N source, TMAl as the Al source, TMGa as the Ga source and TMIn as the In source.

S26、生长P型半导体层;S26, growing a P-type semiconductor layer;

采用MOCVD生长,温度为1000℃~1100℃,压力为100Torr~600Torr,以NH3为N源,以TMGa为Ga源,以CP2Mg为P型掺杂源,生长P型GaN层。The P-type GaN layer is grown by MOCVD at a temperature of 1000°C to 1100°C and a pressure of 100Torr to 600Torr, with NH 3 as the N source, TMGa as the Ga source, and CP 2 Mg as the P-type doping source.

下面以具体实施例进一步阐述本发明。The present invention is further described below with reference to specific embodiments.

实施例1Example 1

本实施例提供一种发光二极管外延片,衬底及依次层叠在衬底上的缓冲层、N型半导体层、应力释放层、多量子阱发光层、电子阻挡层和P型半导体层。This embodiment provides a light-emitting diode epitaxial wafer, a substrate, and a buffer layer, an N-type semiconductor layer, a stress release layer, a multi-quantum well light-emitting layer, an electron blocking layer, and a P-type semiconductor layer stacked in sequence on the substrate.

衬底为蓝宝石衬底。The substrate is a sapphire substrate.

缓冲层为AlN缓冲层,厚度为50nm。The buffer layer is an AlN buffer layer with a thickness of 50 nm.

N型半导体层包括依次层叠的非掺杂GaN层和N型GaN层,非掺杂GaN层的厚度为2μm;N型GaN层的厚度为2μm,Si的掺杂浓度为2.5×1019cm-3The N-type semiconductor layer includes a non-doped GaN layer and an N-type GaN layer stacked in sequence, the non-doped GaN layer has a thickness of 2 μm; the N-type GaN layer has a thickness of 2 μm, and the doping concentration of Si is 2.5×10 19 cm -3 .

应力释放层为AlGaN应力释放层,厚度为60nm。The stress release layer is an AlGaN stress release layer with a thickness of 60 nm.

多量子阱发光层包括周期性交替层叠的量子阱层和复合量子垒层,周期数为3。复合量子垒层包括依次层叠的第一量子垒层、第二量子垒层和第三量子垒层。其中,第一量子垒层为第一AlInGaN层,Al组分占比为0.3,In组分占比为0.4,厚度为1nm,Si掺杂浓度为2×1016cm-3;第二量子垒层为Si掺杂GaN层,厚度为3nm,Si掺杂浓度为1×1017cm-3;第三量子垒层为第二AlInGaN层,Al组分占比为0.3,In组分占比为0.4,厚度为1nm,Si掺杂浓度为2×1016cm-3。量子阱层为非故意掺杂InGaN层,In组分占比为0.2,厚度为3.8nm。The multi-quantum well light-emitting layer includes quantum well layers and composite quantum barrier layers that are periodically and alternately stacked, with a period number of 3. The composite quantum barrier layer includes a first quantum barrier layer, a second quantum barrier layer, and a third quantum barrier layer that are stacked in sequence. Among them, the first quantum barrier layer is the first AlInGaN layer, the Al component accounts for 0.3, the In component accounts for 0.4, the thickness is 1nm, and the Si doping concentration is 2×10 16 cm -3 ; the second quantum barrier layer is a Si-doped GaN layer, the thickness is 3nm, and the Si doping concentration is 1×10 17 cm -3 ; the third quantum barrier layer is the second AlInGaN layer, the Al component accounts for 0.3, the In component accounts for 0.4, the thickness is 1nm, and the Si doping concentration is 2×10 16 cm -3 . The quantum well layer is an unintentionally doped InGaN layer, the In component accounts for 0.2, and the thickness is 3.8nm.

电子阻挡层为AlInGaN电子阻挡层,厚度为30nm。The electron blocking layer is an AlInGaN electron blocking layer with a thickness of 30 nm.

P型半导体层为P型GaN层,厚度为100nm,Mg的掺杂浓度为5×1019cm-3The P-type semiconductor layer is a P-type GaN layer with a thickness of 100 nm and a Mg doping concentration of 5×10 19 cm -3 .

上述发光二极管外延片的制备方法,包括以下步骤:The method for preparing the light emitting diode epitaxial wafer comprises the following steps:

S1提供一衬底。S1 provides a substrate.

S2在衬底上依次生长缓冲层、N型半导体层、应力释放层、多量子阱发光层、电子阻挡层和P型半导体层。具体的,S2包括以下步骤:S2 sequentially grows a buffer layer, an N-type semiconductor layer, a stress release layer, a multi-quantum well light-emitting layer, an electron blocking layer and a P-type semiconductor layer on the substrate. Specifically, S2 includes the following steps:

S21、生长缓冲层;S21, growth buffer layer;

采用PVD生长AlN缓冲层,生长温度为500℃,功率为4000W,以Ar为溅射气体,以N2为前驱体,以Al为溅射靶材。将已镀完AlN缓冲层的衬底转入MOCVD中,在H2气氛下进行预处理,预处理时间为6min,预处理温度为1100℃。The AlN buffer layer was grown by PVD at a growth temperature of 500°C, a power of 4000W, Ar as the sputtering gas, N2 as the precursor, and Al as the sputtering target. The substrate with the AlN buffer layer was transferred to MOCVD and pretreated in a H2 atmosphere for 6 minutes at a pretreatment temperature of 1100°C.

S22、生长N型半导体层;S22, growing an N-type semiconductor layer;

采用MOCVD生长,温度为1120℃,压力为200Torr,以NH3为N源,以TMGa为Ga源,生长非掺杂GaN层;采用MOCVD生长,温度为1200℃,压力为200Torr,以NH3为N源,以TMGa为Ga源,以SiH4为N型掺杂源,生长N型GaN层。The undoped GaN layer was grown by MOCVD at a temperature of 1120°C and a pressure of 200Torr, with NH3 as the N source and TMGa as the Ga source. The N-type GaN layer was grown by MOCVD at a temperature of 1200°C and a pressure of 200Torr, with NH3 as the N source, TMGa as the Ga source and SiH4 as the N-type doping source.

S23、生长应力释放层;S23, growing a stress release layer;

采用MOCVD生长,温度为900℃,压力为150Torr,以NH3为N源,以TMGa为Ga源,以TMAl为Al源,生长AlGaN应力释放层。The AlGaN stress release layer is grown by MOCVD at a temperature of 900°C and a pressure of 150 Torr, with NH3 as the N source, TMGa as the Ga source, and TMAl as the Al source.

S24、生长多量子阱发光层;S24, growing a multi-quantum well light-emitting layer;

采用MOCVD生长,温度为780℃,压力为200Torr,以NH3为N源,以TEGa为Ga源,以TMIn为In源,生长量子阱层。采用MOCVD生长,生长复合量子垒层。重复层叠周期性生长量子阱层和复合量子垒层。具体的,复合量子垒层的制备包括以下步骤:The quantum well layer is grown by MOCVD at a temperature of 780°C and a pressure of 200 Torr, with NH 3 as the N source, TEGa as the Ga source, and TMIn as the In source. The composite quantum barrier layer is grown by MOCVD. The quantum well layer and the composite quantum barrier layer are repeatedly stacked and periodically grown. Specifically, the preparation of the composite quantum barrier layer includes the following steps:

S241、生长第一量子垒层;S241, growing a first quantum barrier layer;

采用MOCVD生长,温度为880℃,压力为150Torr,以NH3为N源,以TMGa为Ga源,以TMAl为Al源,以TMIn为In源。MOCVD was used for growth at a temperature of 880°C and a pressure of 150 Torr, with NH 3 as the N source, TMGa as the Ga source, TMAl as the Al source, and TMIn as the In source.

S242、生长第二量子垒层;S242, growing a second quantum barrier layer;

采用MOCVD生长,温度为900℃,压力为150Torr,以NH3为N源,以TMGa为Ga源,以TMIn为In源。The MOCVD growth was carried out at a temperature of 900°C and a pressure of 150 Torr, with NH 3 as the N source, TMGa as the Ga source, and TMIn as the In source.

S243、生长第三量子垒层;S243, growing a third quantum barrier layer;

采用MOCVD生长,温度为880℃,压力为150Torr,以NH3为N源,以TMGa为Ga源,以TMAl为Al源,以TMIn为In源。The MOCVD growth was carried out at a temperature of 880°C and a pressure of 150 Torr, with NH 3 as the N source, TMGa as the Ga source, TMAl as the Al source, and TMIn as the In source.

S25、生长电子阻挡层;S25, growing an electron blocking layer;

采用MOCVD生长,温度为1000℃,压力为200Torr,以NH3为N源,以TMAl为Al源,以TMGa为Ga源,以TMIn为In源,生长AlInGaN电子阻挡层。The AlInGaN electron blocking layer is grown by MOCVD at a temperature of 1000°C and a pressure of 200 Torr, with NH3 as the N source, TMAl as the Al source, TMGa as the Ga source, and TMIn as the In source.

S26、生长P型半导体层;S26, growing a P-type semiconductor layer;

采用MOCVD生长,温度为1050℃,压力为200Torr,以NH3为N源,以TMGa为Ga源,以CP2Mg为P型掺杂源,生长P型GaN层。The P-type GaN layer is grown by MOCVD at a temperature of 1050°C and a pressure of 200 Torr, with NH 3 as the N source, TMGa as the Ga source, and CP 2 Mg as the P-type doping source.

实施例2Example 2

本实施例提供一种发光二极管外延片,多量子阱发光层包括周期性交替层叠的量子阱层和复合量子垒层,周期数为10。复合量子垒层包括依次层叠的第一量子垒层、第二量子垒层和第三量子垒层。其中,第一量子垒层为第一AlInGaN层,Al组分占比为0.14,In组分占比为0.23,厚度为0.8nm,Si掺杂浓度为5×1016cm-3;第二量子垒层为Si掺杂GaN层,厚度为5nm,Si掺杂浓度为5×1017cm-3;第三量子垒层为第二AlInGaN层,Al组分占比为0.14,In组分占比为0.23,厚度为0.8nm,Si掺杂浓度为5×1016cm-3。量子阱层为非故意掺杂InGaN层,In组分占比为0.2,厚度为3.8nm。This embodiment provides a light-emitting diode epitaxial wafer, and the multi-quantum well light-emitting layer includes quantum well layers and composite quantum barrier layers that are periodically and alternately stacked, and the number of periods is 10. The composite quantum barrier layer includes a first quantum barrier layer, a second quantum barrier layer, and a third quantum barrier layer that are stacked in sequence. Among them, the first quantum barrier layer is a first AlInGaN layer, the Al component accounts for 0.14, the In component accounts for 0.23, the thickness is 0.8nm, and the Si doping concentration is 5×10 16 cm -3 ; the second quantum barrier layer is a Si-doped GaN layer, the thickness is 5nm, and the Si doping concentration is 5×10 17 cm -3 ; the third quantum barrier layer is a second AlInGaN layer, the Al component accounts for 0.14, the In component accounts for 0.23, the thickness is 0.8nm, and the Si doping concentration is 5×10 16 cm -3 . The quantum well layer is an unintentionally doped InGaN layer, the In component accounts for 0.2, and the thickness is 3.8nm.

实施例3Example 3

本实施例提供一种发光二极管外延片,多量子阱发光层包括周期性交替层叠的复合量子阱层和量子垒层,周期数为10。复合量子阱层包括依次层叠的第一量子垒层、第二量子垒层和第三量子垒层。其中,第一量子垒层为第一AlInGaN层,Al组分占比为0.05,In组分占比为0.23,厚度为0.8nm,Si掺杂浓度为5×1016cm-3;第二量子垒层为Si掺杂GaN层,厚度为10nm,Si掺杂浓度为5×1017cm-3;第三量子垒层为第二AlInGaN层,Al组分占比为0.14,In组分占比为0.23,厚度为0.8nm,Si掺杂浓度为5×1016cm-3。量子阱层为非故意掺杂InGaN层,In组分占比为0.2,厚度为3.8nm。This embodiment provides a light-emitting diode epitaxial wafer, and the multi-quantum well light-emitting layer includes a periodically alternately stacked composite quantum well layer and a quantum barrier layer, and the number of periods is 10. The composite quantum well layer includes a first quantum barrier layer, a second quantum barrier layer and a third quantum barrier layer stacked in sequence. Among them, the first quantum barrier layer is a first AlInGaN layer, the Al component accounts for 0.05, the In component accounts for 0.23, the thickness is 0.8nm, and the Si doping concentration is 5×10 16 cm -3 ; the second quantum barrier layer is a Si-doped GaN layer, the thickness is 10nm, and the Si doping concentration is 5×10 17 cm -3 ; the third quantum barrier layer is a second AlInGaN layer, the Al component accounts for 0.14, the In component accounts for 0.23, the thickness is 0.8nm, and the Si doping concentration is 5×10 16 cm -3 . The quantum well layer is an unintentionally doped InGaN layer, the In component accounts for 0.2, and the thickness is 3.8nm.

实施例4Example 4

本实施例提供一种发光二极管外延片,多量子阱发光层包括周期性交替层叠的复合量子阱层和量子垒层,周期数为10。复合量子阱层包括依次层叠的第一量子垒层、第二量子垒层和第三量子垒层。其中,第一量子垒层为第一AlInGaN层,Al组分占比为0.14,In组分占比为0.23,厚度为0.8nm,Si掺杂浓度为5×1016cm-3;第二量子垒层为Si掺杂GaN层,厚度为10nm,Si掺杂浓度为5×1017cm-3;第三量子垒层为第二AlInGaN层,Al组分占比为0.05,In组分占比为0.23,厚度为0.8nm,Si掺杂浓度为5×1016cm-3。量子阱层为非故意掺杂InGaN层,In组分占比为0.2,厚度为3.8nm。This embodiment provides a light-emitting diode epitaxial wafer, and the multi-quantum well light-emitting layer includes a periodically alternately stacked composite quantum well layer and a quantum barrier layer, and the number of periods is 10. The composite quantum well layer includes a first quantum barrier layer, a second quantum barrier layer and a third quantum barrier layer stacked in sequence. Among them, the first quantum barrier layer is a first AlInGaN layer, the Al component accounts for 0.14, the In component accounts for 0.23, the thickness is 0.8nm, and the Si doping concentration is 5×10 16 cm -3 ; the second quantum barrier layer is a Si-doped GaN layer, the thickness is 10nm, and the Si doping concentration is 5×10 17 cm -3 ; the third quantum barrier layer is a second AlInGaN layer, the Al component accounts for 0.05, the In component accounts for 0.23, the thickness is 0.8nm, and the Si doping concentration is 5×10 16 cm -3 . The quantum well layer is an unintentionally doped InGaN layer, the In component accounts for 0.2, and the thickness is 3.8nm.

实施例5Example 5

本实施例提供一种发光二极管外延片,多量子阱发光层包括周期性交替层叠的量子阱层和复合量子垒层,周期数为10。复合量子垒层包括依次层叠的第一量子垒层、第二量子垒层和第三量子垒层。其中,第一量子垒层为第一AlInGaN层,Al组分占比为0.05,In组分占比为0.23,厚度为0.8nm,Si掺杂浓度为5×1016cm-3;第二量子垒层为Si掺杂GaN层,厚度为10nm,Si掺杂浓度为5×1017cm-3;第三量子垒层为第二AlInGaN层,Al组分占比为0.05,In组分占比为0.23,厚度为0.8nm,Si掺杂浓度为5×1016cm-3。量子阱层为非故意掺杂InGaN层,In组分占比为0.2,厚度为3.8nm。This embodiment provides a light-emitting diode epitaxial wafer, and the multi-quantum well light-emitting layer includes quantum well layers and composite quantum barrier layers that are periodically and alternately stacked, and the number of periods is 10. The composite quantum barrier layer includes a first quantum barrier layer, a second quantum barrier layer, and a third quantum barrier layer that are stacked in sequence. Among them, the first quantum barrier layer is a first AlInGaN layer, the Al component accounts for 0.05, the In component accounts for 0.23, the thickness is 0.8nm, and the Si doping concentration is 5×10 16 cm -3 ; the second quantum barrier layer is a Si-doped GaN layer, the thickness is 10nm, and the Si doping concentration is 5×10 17 cm -3 ; the third quantum barrier layer is a second AlInGaN layer, the Al component accounts for 0.05, the In component accounts for 0.23, the thickness is 0.8nm, and the Si doping concentration is 5×10 16 cm -3 . The quantum well layer is an unintentionally doped InGaN layer, the In component accounts for 0.2, and the thickness is 3.8nm.

对比例1Comparative Example 1

本对比例提供一种发光二极管外延片,其与实施例1的区别在于,多量子阱发光层包括周期性交替层叠的InGaN量子阱层和GaN量子垒层。相应的,制备方法中,不包括第一量子垒层和第二量子垒层的制备。其余均与实施例1相同。This comparative example provides a light-emitting diode epitaxial wafer, which is different from Example 1 in that the multi-quantum well light-emitting layer includes periodically alternately stacked InGaN quantum well layers and GaN quantum barrier layers. Accordingly, the preparation method does not include the preparation of the first quantum barrier layer and the second quantum barrier layer. The rest is the same as Example 1.

对比例2Comparative Example 2

本对比例提供一种发光二极管外延片,其与实施例1的区别在于,复合量子垒层包括依次层叠的第一量子垒层和第二量子垒层。相应的,制备方法中,不包括第三量子垒层的制备。其余均与实施例1相同。This comparative example provides a light-emitting diode epitaxial wafer, which is different from Example 1 in that the composite quantum barrier layer includes a first quantum barrier layer and a second quantum barrier layer stacked in sequence. Accordingly, the preparation method does not include the preparation of the third quantum barrier layer. The rest is the same as Example 1.

对比例3Comparative Example 3

本对比例提供一种发光二极管外延片,其与实施例1的区别在于,复合量子垒层包括依次层叠的第二量子垒层和第三量子垒层。相应的,制备方法中,不包括第一量子垒层的制备。其余均与实施例1相同。This comparative example provides a light-emitting diode epitaxial wafer, which is different from Example 1 in that the composite quantum barrier layer includes a second quantum barrier layer and a third quantum barrier layer stacked in sequence. Accordingly, the preparation method does not include the preparation of the first quantum barrier layer. The rest is the same as Example 1.

性能测试:Performance Testing:

将实施例1~实施例5、对比例1~对比例3制得的发光二极管外延片制成3mil×5mil的LED芯片,并在同一台LED点测机上,在2mA电流下测试,计算实施例1~实施例5、对比例2和对比例3相较于对比例1的光效提升。The light-emitting diode epitaxial wafers prepared in Examples 1 to 5 and Comparative Examples 1 to 3 were made into 3mil×5mil LED chips, and tested on the same LED spot tester at a current of 2mA, and the improvement in luminous efficacy of Examples 1 to 5, Comparative Example 2 and Comparative Example 3 compared to Comparative Example 1 was calculated.

检测结果如表1所示。The test results are shown in Table 1.

表1发光二极管的光电性能测试结果Table 1 Photoelectric performance test results of light-emitting diodes

由表1结果可知,本发明的多量子阱发光层结构能够显著提高发光二极管的发光效率。It can be seen from the results in Table 1 that the multi-quantum well light-emitting layer structure of the present invention can significantly improve the light-emitting efficiency of the light-emitting diode.

以上所述是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也视为本发明的保护范围。The above is a preferred embodiment of the present invention. It should be pointed out that a person skilled in the art can make several improvements and modifications without departing from the principle of the present invention. These improvements and modifications are also considered to be within the scope of protection of the present invention.

Claims (10)

1.一种发光二极管外延片,其特征在于,包括衬底,及依次层叠在所述衬底上的缓冲层、N型半导体层、应力释放层、多量子阱发光层、电子阻挡层和P型半导体层;1. A light-emitting diode epitaxial wafer, characterized in that it comprises a substrate, and a buffer layer, an N-type semiconductor layer, a stress release layer, a multi-quantum well light-emitting layer, an electron blocking layer and a P-type semiconductor layer sequentially stacked on the substrate; 所述多量子阱发光层包括周期性交替层叠的量子阱层和复合量子垒层;所述复合量子垒层包括依次层叠的第一量子垒层、第二量子垒层和第三量子垒层;所述第一量子垒层为第一AlInGaN层,所述第二量子垒层为Si掺杂GaN层,所述第三量子垒层为第二AlInGaN层;The multi-quantum well light-emitting layer comprises quantum well layers and composite quantum barrier layers that are periodically and alternately stacked; the composite quantum barrier layer comprises a first quantum barrier layer, a second quantum barrier layer and a third quantum barrier layer that are stacked in sequence; the first quantum barrier layer is a first AlInGaN layer, the second quantum barrier layer is a Si-doped GaN layer, and the third quantum barrier layer is a second AlInGaN layer; 所述第一量子垒层、第三量子垒层的禁带宽度均大于第二量子垒层的禁带宽度。The bandgap widths of the first quantum barrier layer and the third quantum barrier layer are both greater than the bandgap width of the second quantum barrier layer. 2.如权利要求1所述的发光二极管外延片,其特征在于,所述第一AlInGaN层为Si掺杂AlInGaN层,Al组分占比为0.01~0.66,In组分占比为0.01~0.5,厚度为0.5nm~3.6nm,Si掺杂浓度为3.18×1016cm-3~5.26×1017cm-32. The light-emitting diode epitaxial wafer according to claim 1, characterized in that the first AlInGaN layer is a Si-doped AlInGaN layer, the Al component ratio is 0.01-0.66, the In component ratio is 0.01-0.5, the thickness is 0.5nm-3.6nm, and the Si doping concentration is 3.18×10 16 cm -3 -5.26×10 17 cm -3 . 3.如权利要求1所述的发光二极管外延片,其特征在于,所述第二量子垒层的厚度为5nm~15nm,Si掺杂浓度为1.05×1017cm-3~2.36×1018cm-33 . The light emitting diode epitaxial wafer according to claim 1 , wherein the thickness of the second quantum barrier layer is 5 nm to 15 nm, and the Si doping concentration is 1.05×10 17 cm −3 to 2.36×10 18 cm −3 . 4.如权利要求1所述的发光二极管外延片,其特征在于,所述第二AlInGaN层为Si掺杂AlInGaN层,Al组分占比为0.01~0.66,In组分占比为0.01~0.5,厚度为0.5nm~3.6nm,Si掺杂浓度为3.18×1016cm-3~5.26×1017cm-34. The light-emitting diode epitaxial wafer according to claim 1, characterized in that the second AlInGaN layer is a Si-doped AlInGaN layer, with an Al component ratio of 0.01-0.66, an In component ratio of 0.01-0.5, a thickness of 0.5nm-3.6nm, and a Si doping concentration of 3.18× 1016cm - 3-5.26× 1017cm -3 . 5.如权利要求1所述的发光二极管外延片,其特征在于,所述量子阱层为非故意掺杂InGaN层,In组分占比为0.01~0.42,厚度为2.2nm~4.8nm。5. The light-emitting diode epitaxial wafer according to claim 1, wherein the quantum well layer is an unintentionally doped InGaN layer, the In component ratio is 0.01 to 0.42, and the thickness is 2.2 nm to 4.8 nm. 6.如权利要求1所述的发光二极管外延片,其特征在于,所述第一量子垒层、第三量子垒层水平方向的晶格常数均大于等于所述量子阱层水平方向的晶格常数。6 . The light emitting diode epitaxial wafer according to claim 1 , wherein the lattice constants of the first quantum barrier layer and the third quantum barrier layer in the horizontal direction are both greater than or equal to the lattice constant of the quantum well layer in the horizontal direction. 7.如权利要求1所述的发光二极管外延片,其特征在于,所述多量子阱发光层的周期数为3~15。7 . The light emitting diode epitaxial wafer according to claim 1 , wherein the number of periods of the multi-quantum well light emitting layer is 3 to 15. 8.一种发光二极管外延片的制备方法,用于制备如权利要求1~7任一项所述的发光二极管外延片,其特征在于,包括以下步骤:8. A method for preparing a light emitting diode epitaxial wafer, for preparing the light emitting diode epitaxial wafer according to any one of claims 1 to 7, characterized in that it comprises the following steps: 提供一衬底,在所述衬底上依次生长缓冲层、N型半导体层、应力释放层、多量子阱发光层、电子阻挡层和P型半导体层;Providing a substrate, and sequentially growing a buffer layer, an N-type semiconductor layer, a stress release layer, a multi-quantum well light-emitting layer, an electron blocking layer, and a P-type semiconductor layer on the substrate; 所述多量子阱发光层包括周期性交替层叠的量子阱层和复合量子垒层;所述复合量子垒层包括依次层叠的第一量子垒层、第二量子垒层和第三量子垒层;所述第一量子垒层为第一AlInGaN层,所述第二量子垒层为Si掺杂GaN层,所述第三量子垒层为第二AlInGaN层;The multi-quantum well light-emitting layer comprises quantum well layers and composite quantum barrier layers that are periodically and alternately stacked; the composite quantum barrier layer comprises a first quantum barrier layer, a second quantum barrier layer and a third quantum barrier layer that are stacked in sequence; the first quantum barrier layer is a first AlInGaN layer, the second quantum barrier layer is a Si-doped GaN layer, and the third quantum barrier layer is a second AlInGaN layer; 所述第一量子垒层、第三量子垒层的禁带宽度均大于第二量子垒层的禁带宽度。The bandgap widths of the first quantum barrier layer and the third quantum barrier layer are both greater than the bandgap width of the second quantum barrier layer. 9.如权利要求8所述的发光二极管外延片的制备方法,其特征在于,所述复合量子垒层中,第一量子垒层的生长温度为800℃~920℃,生长压力为90Torr~360Torr;第二量子垒层的生长温度为820℃~930℃,生长压力为90Torr~360Torr;第三量子垒层的生长温度为800℃~920℃,生长压力为90Torr~360Torr;9. The method for preparing a light-emitting diode epitaxial wafer according to claim 8, characterized in that, in the composite quantum barrier layer, the growth temperature of the first quantum barrier layer is 800° C. to 920° C., and the growth pressure is 90 Torr to 360 Torr; the growth temperature of the second quantum barrier layer is 820° C. to 930° C., and the growth pressure is 90 Torr to 360 Torr; the growth temperature of the third quantum barrier layer is 800° C. to 920° C., and the growth pressure is 90 Torr to 360 Torr; 所述量子阱层的生长温度为620℃~880℃,生长压力为90Torr~360Torr。The growth temperature of the quantum well layer is 620° C. to 880° C., and the growth pressure is 90 Torr to 360 Torr. 10.一种发光二极管,其特征在于,所述发光二极管包括如权利要求1~7中任一项所述的发光二极管外延片。10. A light emitting diode, characterized in that the light emitting diode comprises the light emitting diode epitaxial wafer according to any one of claims 1 to 7.
CN202410333776.9A 2024-03-22 2024-03-22 Light-emitting diode epitaxial wafer, preparation method thereof and light-emitting diode Pending CN118231540A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202410333776.9A CN118231540A (en) 2024-03-22 2024-03-22 Light-emitting diode epitaxial wafer, preparation method thereof and light-emitting diode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202410333776.9A CN118231540A (en) 2024-03-22 2024-03-22 Light-emitting diode epitaxial wafer, preparation method thereof and light-emitting diode

Publications (1)

Publication Number Publication Date
CN118231540A true CN118231540A (en) 2024-06-21

Family

ID=91507328

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202410333776.9A Pending CN118231540A (en) 2024-03-22 2024-03-22 Light-emitting diode epitaxial wafer, preparation method thereof and light-emitting diode

Country Status (1)

Country Link
CN (1) CN118231540A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118825157A (en) * 2024-09-18 2024-10-22 江西兆驰半导体有限公司 A blue light Micro-LED epitaxial structure and preparation method thereof
CN118825158A (en) * 2024-09-19 2024-10-22 江西兆驰半导体有限公司 A blue light Micro-LED epitaxial wafer and preparation method thereof
CN119230678A (en) * 2024-12-03 2024-12-31 江西兆驰半导体有限公司 Micro-LED epitaxial wafer and preparation method thereof, Micro-LED
CN119545991A (en) * 2025-01-20 2025-02-28 江西兆驰半导体有限公司 Light-emitting diode epitaxial wafer, preparation method thereof and light-emitting diode

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118825157A (en) * 2024-09-18 2024-10-22 江西兆驰半导体有限公司 A blue light Micro-LED epitaxial structure and preparation method thereof
CN118825157B (en) * 2024-09-18 2024-12-10 江西兆驰半导体有限公司 Epitaxial structure of blue light Micro-LED and preparation method thereof
CN118825158A (en) * 2024-09-19 2024-10-22 江西兆驰半导体有限公司 A blue light Micro-LED epitaxial wafer and preparation method thereof
CN118825158B (en) * 2024-09-19 2024-12-10 江西兆驰半导体有限公司 Epitaxial wafer of blue light Micro-LED and preparation method thereof
CN119230678A (en) * 2024-12-03 2024-12-31 江西兆驰半导体有限公司 Micro-LED epitaxial wafer and preparation method thereof, Micro-LED
CN119545991A (en) * 2025-01-20 2025-02-28 江西兆驰半导体有限公司 Light-emitting diode epitaxial wafer, preparation method thereof and light-emitting diode

Similar Documents

Publication Publication Date Title
CN118231540A (en) Light-emitting diode epitaxial wafer, preparation method thereof and light-emitting diode
CN118099307A (en) High-light-efficiency LED epitaxial wafer, preparation method thereof and high-light-efficiency LED
CN116825918B (en) Light-emitting diode epitaxial wafer and preparation method thereof
CN116581219B (en) Light-emitting diode epitaxial wafer, preparation method thereof and light-emitting diode
CN116581210B (en) Light-emitting diode epitaxial wafer and preparation method thereof, light-emitting diode
CN114649454B (en) Epitaxial wafer structure of a light-emitting diode and preparation method thereof
CN117810324B (en) Light-emitting diode epitaxial wafer and preparation method thereof, and light-emitting diode
CN117613167B (en) Light-emitting diode epitaxial wafer and preparation method thereof, and light-emitting diode
CN116914046B (en) Light-emitting diode epitaxial wafer and preparation method thereof
CN116504895B (en) LED epitaxial wafer, preparation method thereof and LED
CN117954539A (en) Light-emitting diode epitaxial wafer, preparation method thereof and light-emitting diode
CN115954422A (en) Light emitting diode epitaxial wafer, preparation method thereof and light emitting diode
CN118676277B (en) Light-emitting diode epitaxial wafer, preparation method thereof and light-emitting diode
CN118231539A (en) Light-emitting diode epitaxial wafer, preparation method thereof and light-emitting diode
CN117894898B (en) Deep ultraviolet LED epitaxial wafer and preparation method thereof, deep ultraviolet LED
CN118782699A (en) Epitaxial wafer of light emitting diode and preparation method thereof
CN116364819A (en) Light-emitting diode epitaxial wafer and preparation method thereof, LED
CN118231541B (en) LED epitaxial wafer, preparation method thereof and LED
CN113161457B (en) Ultraviolet light emitting diode epitaxial wafer and method of making the same
CN118969922B (en) Epitaxial wafer of light emitting diode and preparation method thereof
CN117832348B (en) Light-emitting diode epitaxial wafer and preparation method thereof, and light-emitting diode
CN118782704B (en) Light-emitting diode epitaxial wafer, preparation method thereof and light-emitting diode
CN118969931B (en) Epitaxial wafer of light emitting diode and preparation method thereof
CN117936670A (en) Light-emitting diode epitaxial wafer and preparation method thereof, and light-emitting diode
CN117976792A (en) Light-emitting diode epitaxial wafer, preparation method thereof and light-emitting diode

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination