[go: up one dir, main page]

CN118196700A - Method and device for identifying evacuated people under indoor smoke shielding - Google Patents

Method and device for identifying evacuated people under indoor smoke shielding Download PDF

Info

Publication number
CN118196700A
CN118196700A CN202410229855.5A CN202410229855A CN118196700A CN 118196700 A CN118196700 A CN 118196700A CN 202410229855 A CN202410229855 A CN 202410229855A CN 118196700 A CN118196700 A CN 118196700A
Authority
CN
China
Prior art keywords
local
feature
global
feature map
module
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202410229855.5A
Other languages
Chinese (zh)
Other versions
CN118196700B (en
Inventor
许镇
庄宇姗
李雯汀
岳清瑞
田源
顾栋炼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Science and Technology Beijing USTB
Original Assignee
University of Science and Technology Beijing USTB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Science and Technology Beijing USTB filed Critical University of Science and Technology Beijing USTB
Priority to CN202410229855.5A priority Critical patent/CN118196700B/en
Publication of CN118196700A publication Critical patent/CN118196700A/en
Application granted granted Critical
Publication of CN118196700B publication Critical patent/CN118196700B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • G06V20/50Context or environment of the image
    • G06V20/52Surveillance or monitoring of activities, e.g. for recognising suspicious objects
    • G06V20/53Recognition of crowd images, e.g. recognition of crowd congestion
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • G06N3/0464Convolutional networks [CNN, ConvNet]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/40Extraction of image or video features
    • G06V10/44Local feature extraction by analysis of parts of the pattern, e.g. by detecting edges, contours, loops, corners, strokes or intersections; Connectivity analysis, e.g. of connected components
    • G06V10/443Local feature extraction by analysis of parts of the pattern, e.g. by detecting edges, contours, loops, corners, strokes or intersections; Connectivity analysis, e.g. of connected components by matching or filtering
    • G06V10/449Biologically inspired filters, e.g. difference of Gaussians [DoG] or Gabor filters
    • G06V10/451Biologically inspired filters, e.g. difference of Gaussians [DoG] or Gabor filters with interaction between the filter responses, e.g. cortical complex cells
    • G06V10/454Integrating the filters into a hierarchical structure, e.g. convolutional neural networks [CNN]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/40Extraction of image or video features
    • G06V10/52Scale-space analysis, e.g. wavelet analysis
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/70Arrangements for image or video recognition or understanding using pattern recognition or machine learning
    • G06V10/82Arrangements for image or video recognition or understanding using pattern recognition or machine learning using neural networks

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Evolutionary Computation (AREA)
  • Multimedia (AREA)
  • Health & Medical Sciences (AREA)
  • Artificial Intelligence (AREA)
  • General Health & Medical Sciences (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Software Systems (AREA)
  • Molecular Biology (AREA)
  • Computing Systems (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biomedical Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Biophysics (AREA)
  • Computational Linguistics (AREA)
  • Databases & Information Systems (AREA)
  • Medical Informatics (AREA)
  • Data Mining & Analysis (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Alarm Systems (AREA)

Abstract

本发明涉及视频图像处理和模式识别技术领域,特别是指一种室内烟雾遮挡下的疏散人员识别方法及装置,方法包括:获取室内烟雾遮挡下疏散人员的样本集;构建疏散人员特征提取网络模型,包括:局部到全局的过渡并行模块、局部与全局增强交互模块以及多尺度特征平行提取模块;将样本集输入局部到全局的过渡并行模块、局部与全局增强交互模块以及多尺度特征平行提取模块,获得疏散人员特征图;根据疏散人员特征图,对疏散人员特征提取网络模型进行训练,获得训练好的疏散人员特征提取网络模型;获取待识别疏散人员的图像数据并输入训练好的疏散人员特征提取网络模型中,获得疏散人员的识别结果。采用本发明可提高识别室内烟雾场景下疏散人员准确性。

The present invention relates to the technical field of video image processing and pattern recognition, and in particular to a method and device for identifying evacuees under indoor smoke cover, the method comprising: obtaining a sample set of evacuees under indoor smoke cover; constructing an evacuee feature extraction network model, comprising: a local to global transition parallel module, a local and global enhancement interaction module, and a multi-scale feature parallel extraction module; inputting the sample set into the local to global transition parallel module, the local and global enhancement interaction module, and the multi-scale feature parallel extraction module to obtain an evacuee feature map; training the evacuee feature extraction network model according to the evacuee feature map to obtain a trained evacuee feature extraction network model; obtaining image data of the evacuees to be identified and inputting it into the trained evacuee feature extraction network model to obtain an evacuee identification result. The present invention can improve the accuracy of identifying evacuees under indoor smoke scenes.

Description

一种室内烟雾遮挡下的疏散人员识别方法及装置A method and device for identifying evacuated personnel under indoor smoke cover

技术领域Technical Field

本发明涉及视频图像处理和模式识别技术领域,特别是指一种室内烟雾遮挡下的疏散人员识别方法及装置。The invention relates to the technical field of video image processing and pattern recognition, and in particular to a method and a device for identifying evacuated personnel under the cover of indoor smoke.

背景技术Background technique

准确的人员检测在应急救援中十分重要。目前在灾害环境中常用的人类检测仪器包括红外探测、音频探测和雷达探测等,但是由于这些方法的探测距离短,且容易受到温度干扰,所以这些设备很难在室内火灾产生烟雾的情况下进行有效的人员探测。因此利用监控视频传输的火灾现场的事实信息,从而使用视频/图像处理技术来进行室内烟雾场景下的疏散人员检测从而来帮助应急救援是至关重要的。Accurate personnel detection is very important in emergency rescue. Currently, the commonly used human detection instruments in disaster environments include infrared detection, audio detection and radar detection, but because these methods have a short detection distance and are easily affected by temperature, it is difficult for these devices to effectively detect personnel in the case of indoor fires and smoke. Therefore, it is crucial to use the factual information of the fire scene transmitted by the surveillance video to use video/image processing technology to detect evacuated personnel in indoor smoke scenes to help emergency rescue.

人员识别检测是计算机视觉中的重要研究课题,可以应用到机器人、智能汽车以及视频监控领域。目前大多数的研究都倾向于研究一般场景,对于烟雾和遮挡情况下的特殊场景的人员检测研究较少。对于烟雾遮挡场景下的人员检测方法大多数是先除雾再检测,烟雾作为非刚性气体且具有动态变化不均匀的现象,利用除雾方法处理烟雾处理时,由于处理后的图像清晰度不高,导致识别结果的准确率低,识别过程耗时较长,不适用于紧急的消防救援场景中。Personnel detection is an important research topic in computer vision and can be applied to the fields of robots, smart cars, and video surveillance. Currently, most studies tend to study general scenarios, and there are few studies on personnel detection in special scenarios under smoke and occlusion. Most of the personnel detection methods in smoke occlusion scenarios are to defog first and then detect. Smoke is a non-rigid gas with dynamic and uneven changes. When using the defog method to process smoke, the clarity of the processed image is not high, resulting in low accuracy of the recognition result and a long recognition process, which is not suitable for emergency fire rescue scenarios.

发明内容Summary of the invention

为了解决现有技术存在的识别结果的准确率低,识别过程耗时较长的技术问题,本发明实施例提供了一种室内烟雾遮挡下的疏散人员识别方法及装置。所述技术方案如下:In order to solve the technical problems of low accuracy of recognition results and long recognition process in the prior art, the embodiment of the present invention provides a method and device for identifying evacuees under indoor smoke cover. The technical solution is as follows:

一方面,提供了一种室内烟雾遮挡下的疏散人员识别方法,该方法由室内烟雾遮挡下的疏散人员识别设备实现,该方法包括:On the one hand, a method for identifying evacuees under indoor smoke cover is provided, the method is implemented by an evacuee identification device under indoor smoke cover, and the method comprises:

S1、获取室内烟雾遮挡下疏散人员的样本数据;S1. Obtain sample data of people evacuated under indoor smoke cover;

S2、构建疏散人员的特征提取网络模型;所述疏散人员特征提取网络模型包括:局部到全局的过渡并行模块、局部与全局增强交互模块以及多尺度特征平行提取模块;S2, constructing a feature extraction network model for evacuees; the feature extraction network model for evacuees includes: a local to global transition parallel module, a local and global enhanced interaction module, and a multi-scale feature parallel extraction module;

S3、将所述样本数据输入所述局部到全局的过渡并行模块中,并行生成全局特征图与局部特征图;将所述全局特征图与局部特征图输入局部与全局增强交互模块中,获得局部与全局信息交互后的特征图;将所述局部与全局特征信息交互后的特征图输入多尺度特征平行提取模块中,获得疏散人员特征图;S3, inputting the sample data into the local to global transition parallel module, generating a global feature map and a local feature map in parallel; inputting the global feature map and the local feature map into the local and global enhancement interaction module, obtaining a feature map after the interaction of local and global information; inputting the feature map after the interaction of local and global feature information into the multi-scale feature parallel extraction module, obtaining a feature map of evacuated personnel;

S4、根据所述疏散人员特征图,对所述疏散人员特征提取网络模型进行训练,获得训练好的疏散人员特征提取网络模型;S4, training the evacuee feature extraction network model according to the evacuee feature graph to obtain a trained evacuee feature extraction network model;

S5、获取待识别疏散人员的图像数据;S5, obtaining image data of the person to be evacuated;

S6、将待识别疏散人员的图像数据输入所述训练好的疏散人员特征提取网络模型中,获得疏散人员的识别结果。S6. Inputting the image data of the evacuees to be identified into the trained evacuees feature extraction network model to obtain the identification results of the evacuees.

可选地,所述S1的室内烟雾遮挡下疏散人员的样本数据,包括:不同场景类型、不同人体姿态以及不同烟雾类型的图像数据集。Optionally, the sample data of people evacuating under indoor smoke cover in S1 includes: image data sets of different scene types, different human postures and different smoke types.

可选地,所述局部到全局的过渡并行模块包括:局部注意力模块以及全局注意力模块。Optionally, the local-to-global transition parallel module includes: a local attention module and a global attention module.

可选地,所述S3的将所述样本数据输入所述局部到全局的过渡并行模块中,并行生成全局特征图与局部特征图,包括:Optionally, the step S3 of inputting the sample data into the local-to-global transition parallel module to generate a global feature map and a local feature map in parallel includes:

S31、将输入的样本数据划分成第一子特征图与第二子特征图;S31, dividing the input sample data into a first sub-feature graph and a second sub-feature graph;

S32、采用双路径并行方法将第一子特征图输入局部注意力模块,生成局部特征图;将第二子特征图输入全局注意力模块,生成全局特征图。S32. Use a dual-path parallel method to input the first sub-feature map into a local attention module to generate a local feature map; input the second sub-feature map into a global attention module to generate a global feature map.

可选地,所述S3的将所述全局特征图与局部特征图输入局部与全局增强交互模块,获得局部与全局特征信息交互后的特征图,包括:Optionally, the step of inputting the global feature map and the local feature map into a local and global enhancement interaction module to obtain a feature map after the interaction of local and global feature information includes:

S33、将局部特征图映射成若干个局部特征图像块,将若干个局部特征图像块输入到全局注意力模块中,使局部特征图像块之间进行信息交换,获得具有全局特征信息的局部特征图像块;S33, mapping the local feature map into a plurality of local feature image blocks, inputting the plurality of local feature image blocks into a global attention module, exchanging information between the local feature image blocks, and obtaining local feature image blocks having global feature information;

S34、将具有全局特征信息的局部特征图像块映射到局部特征图,获得局部与全局特征信息交互后的特征图。S34, mapping the local feature image block with global feature information to the local feature map, and obtaining a feature map after the local and global feature information interact.

可选地,所述S3的将所述局部与全局特征信息交互后的特征图输入多尺度特征平行提取模块,获得疏散人员特征图,包括:Optionally, the step of inputting the feature map after the interaction of the local and global feature information into a multi-scale feature parallel extraction module to obtain a feature map of evacuated personnel includes:

S35、利用三个不同尺度的平行深度卷积并行的对局部与全局特征信息交互后的特征图进行卷积操作,获得疏散人员特征图。S35. Use three parallel depth convolutions of different scales to perform convolution operations on the feature map after the interaction of local and global feature information in parallel to obtain the feature map of evacuated personnel.

另一方面,提供了一种室内烟雾遮挡下的疏散人员识别装置,该装置应用于室内烟雾遮挡下的疏散人员识别方法,该装置包括:On the other hand, a device for identifying evacuees under indoor smoke cover is provided, and the device is applied to a method for identifying evacuees under indoor smoke cover, and the device comprises:

第一获取单元,用于获取室内烟雾遮挡下疏散人员的样本数据;A first acquisition unit is used to acquire sample data of people evacuated under the cover of indoor smoke;

构建单元,用于构建疏散人员特征提取网络模型;所述疏散人员特征提取网络模型包括:局部到全局的过渡并行模块、局部与全局增强交互模块以及多尺度特征平行提取模块;A construction unit is used to construct a network model for extracting features of evacuated personnel; the network model for extracting features of evacuated personnel includes: a local to global transition parallel module, a local and global enhanced interaction module, and a multi-scale feature parallel extraction module;

特征提取单元,用于将所述样本数据输入所述局部到全局的过渡并行模块,并行生成全局特征图与局部特征图;将所述全局特征图与局部特征图输入局部与全局增强交互模块,获得局部与全局特征信息交互后的特征图;将所述局部与全局特征信息交互后的特征图输入多尺度特征平行提取模块,获得疏散人员特征图;A feature extraction unit is used to input the sample data into the local-to-global transition parallel module to generate a global feature map and a local feature map in parallel; input the global feature map and the local feature map into the local and global enhancement interaction module to obtain a feature map after the local and global feature information interacts; input the feature map after the local and global feature information interacts into the multi-scale feature parallel extraction module to obtain an evacuated personnel feature map;

训练单元,用于根据所述疏散人员特征图,对所述疏散人员特征提取网络模型进行训练,获得训练好的疏散人员特征提取网络模型;A training unit, used for training the evacuee feature extraction network model according to the evacuee feature graph to obtain a trained evacuee feature extraction network model;

第二获取单元,用于获取待识别疏散人员的图像数据;A second acquisition unit is used to acquire image data of the evacuee to be identified;

识别单元,用于将待识别疏散人员的图像数据输入所述训练好的疏散人员特征提取网络模型中,获得疏散人员的识别结果。The recognition unit is used to input the image data of the evacuees to be identified into the trained evacuees feature extraction network model to obtain the recognition results of the evacuees.

可选地,所述室内烟雾遮挡下疏散人员的图像数据集,包括:不同场景类型、不同人体姿态以及不同烟雾类型的图像数据集。Optionally, the image dataset of people evacuated under indoor smoke cover includes: image datasets of different scene types, different human postures and different smoke types.

可选地,所述局部到全局的过渡并行模块包括:局部注意力模块以及全局注意力模块。Optionally, the local-to-global transition parallel module includes: a local attention module and a global attention module.

可选地,将所述样本数据输入所述局部到全局的过渡并行模块中,并行生成全局特征图与局部特征图,包括:Optionally, the sample data is input into the local-to-global transition parallel module to generate a global feature map and a local feature map in parallel, including:

将输入的样本数据划分成第一子特征图与第二子特征图;Dividing the input sample data into a first sub-feature graph and a second sub-feature graph;

采用双路径并行方法将第一子特征图输入局部注意力模块,生成局部特征图;将第二子特征图输入全局注意力模块,生成全局特征图。A dual-path parallel method is used to input the first sub-feature map into the local attention module to generate a local feature map; and the second sub-feature map is input into the global attention module to generate a global feature map.

可选地,将所述全局特征图与局部特征图输入局部与全局增强交互模块,获得局部与全局特征信息交互后的特征图,包括:Optionally, inputting the global feature map and the local feature map into a local and global enhancement interaction module to obtain a feature map after the local and global feature information are interacted, including:

将局部特征图映射成若干个局部特征图像块,将若干个局部特征图像块输入到全局注意力模块中,使局部特征图像块之间进行信息交换,获得具有全局特征信息的局部特征图像块;Mapping the local feature map into several local feature image blocks, inputting the several local feature image blocks into the global attention module, enabling information exchange between the local feature image blocks, and obtaining local feature image blocks with global feature information;

将具有全局特征信息的局部特征图像块映射到局部特征图,获得局部与全局特征信息交互后的特征图。The local feature image block with global feature information is mapped to the local feature map to obtain the feature map after the interaction of local and global feature information.

可选地,将所述局部与全局特征信息交互后的特征图输入多尺度特征平行提取模块,获得疏散人员特征图,包括:Optionally, the feature map after the interaction of the local and global feature information is input into a multi-scale feature parallel extraction module to obtain a feature map of evacuated personnel, including:

利用三个不同尺度的平行深度卷积并行的对局部与全局特征信息交互后的特征图进行卷积操作,获得疏散人员特征图。Three parallel depth convolutions of different scales are used to perform convolution operations on the feature map after the interaction of local and global feature information in parallel to obtain the feature map of evacuated personnel.

另一方面,提供一种室内烟雾遮挡下的疏散人员识别设备,所述室内烟雾遮挡下的疏散人员识别设备包括:处理器;存储器,所述存储器上存储有计算机可读指令,所述计算机可读指令被所述处理器执行时,实现如上述室内烟雾遮挡下的疏散人员识别方法中的任一项方法。On the other hand, a device for identifying evacuees under indoor smoke cover is provided, and the device for identifying evacuees under indoor smoke cover comprises: a processor; a memory, wherein the memory stores computer-readable instructions, and when the computer-readable instructions are executed by the processor, any one of the above-mentioned methods for identifying evacuees under indoor smoke cover is implemented.

另一方面,提供了一种计算机可读存储介质,所述存储介质中存储有至少一条指令,所述至少一条指令由处理器加载并执行以实现上述室内烟雾遮挡下的疏散人员识别方法中的任一项方法。On the other hand, a computer-readable storage medium is provided, wherein at least one instruction is stored in the storage medium, and the at least one instruction is loaded and executed by a processor to implement any one of the above-mentioned methods for identifying evacuees under indoor smoke cover.

本发明实施例提供的技术方案带来的有益效果至少包括:The beneficial effects brought about by the technical solution provided by the embodiment of the present invention include at least:

本发明实施例,首先获取室内烟雾遮挡下疏散人员的样本数据;其次,构建疏散人员特征提取网络模型;疏散人员特征提取网络模型包括:局部到全局的过渡并行模块、局部与全局增强交互模块以及多尺度特征平行提取模块;将样本数据输入局部到全局的过渡并行模块,并行生成全局特征图与局部特征图;全局特征图与局部特征图输入局部与全局增强交互模块,获得局部与全局特征信息交互后的特征图;将局部与全局特征信息交互后的特征图输入多尺度特征平行提取模块,获得疏散人员特征图;根据疏散人员特征图,对疏散人员特征提取网络模型进行训练,获得训练好的疏散人员特征提取网络模型;最后,获取待识别疏散人员的图像数据;将待识别疏散人员的图像数据输入训练好的疏散人员特征提取网络模型中,获得疏散人员的识别结果。本发明实施例与现有技术相比,有效的提高了特征识别网络模型在室内火灾产生烟雾中提取疏散人员特征的能力,避免了过多的局部特征的限制以及过多的非局部特征导致的全局性能下降,并且通过多尺度前馈模块来提取多尺度人员特征信息,从而来减少烟雾对人体预测结构的干扰;采用本发明实施例可避免场景中温度的干扰,可在室内火灾烟雾的情况下进行有效的人员探测,可为消防人员救援疏散人员提供指导性的建议。According to an embodiment of the present invention, sample data of evacuees under indoor smoke cover is first obtained; secondly, a network model for extracting features of evacuees is constructed; the network model for extracting features of evacuees includes: a local-to-global transition parallel module, a local-to-global enhancement interaction module, and a multi-scale feature parallel extraction module; the sample data is input into the local-to-global transition parallel module to generate a global feature map and a local feature map in parallel; the global feature map and the local feature map are input into the local-to-global enhancement interaction module to obtain a feature map after the interaction of local and global feature information; the feature map after the interaction of local and global feature information is input into the multi-scale feature parallel extraction module to obtain a feature map of evacuees; according to the feature map of evacuees, the network model for extracting features of evacuees is trained to obtain a trained network model for extracting features of evacuees; finally, image data of evacuees to be identified are obtained; the image data of evacuees to be identified are input into the trained network model for extracting features of evacuees to obtain an identification result of evacuees. Compared with the prior art, the embodiments of the present invention effectively improve the ability of the feature recognition network model to extract features of evacuated personnel in the smoke generated by indoor fires, avoid the limitation of too many local features and the degradation of global performance caused by too many non-local features, and extract multi-scale personnel feature information through a multi-scale feedforward module, thereby reducing the interference of smoke on the predicted structure of the human body; the embodiment of the present invention can avoid the interference of temperature in the scene, can perform effective personnel detection in the case of indoor fire smoke, and can provide guiding suggestions for firefighters to rescue and evacuate personnel.

附图说明BRIEF DESCRIPTION OF THE DRAWINGS

为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。In order to more clearly illustrate the technical solutions in the embodiments of the present invention, the drawings required for use in the description of the embodiments will be briefly introduced below. Obviously, the drawings described below are only some embodiments of the present invention. For ordinary technicians in this field, other drawings can be obtained based on these drawings without creative work.

图1是本发明实施例提供的一种室内烟雾遮挡下的疏散人员识别方法流程图;FIG1 is a flow chart of a method for identifying personnel to be evacuated under indoor smoke cover provided by an embodiment of the present invention;

图2是本发明实施例提供的全局注意力模块提取全局特征的流程图;FIG2 is a flow chart of extracting global features by a global attention module provided by an embodiment of the present invention;

图3是本发明实施例提供的局部到全局的过渡平行模块的流程图;3 is a flow chart of a local to global transition parallel module provided by an embodiment of the present invention;

图4是本发明实施例提供的局部与全局增强交互模块流程图;FIG4 is a flow chart of a local and global enhanced interaction module provided by an embodiment of the present invention;

图5是本发明实施例提供的多尺度特征平行提取模块的结构图;FIG5 is a structural diagram of a multi-scale feature parallel extraction module provided in an embodiment of the present invention;

图6是本发明实施例提供的全局与局部增强交互块的结构图;FIG6 is a structural diagram of a global and local enhancement interaction block provided in an embodiment of the present invention;

图7是本发明实施例提供的基于全局与局部增强交互的特征提取网络模型的整体结构示意图;7 is a schematic diagram of the overall structure of a feature extraction network model based on global and local enhanced interaction provided by an embodiment of the present invention;

图8是本发明实施例提供的一种室内烟雾遮挡下的疏散人员识别装置框图;FIG8 is a block diagram of a device for identifying evacuees under indoor smoke cover provided by an embodiment of the present invention;

图9是本发明实施例提供的一种室内烟雾遮挡下的疏散人员识别设备的结构示意图。FIG. 9 is a schematic diagram of the structure of a device for identifying personnel to be evacuated under indoor smoke cover provided by an embodiment of the present invention.

具体实施方式Detailed ways

下面结合附图,对本发明中的技术方案进行描述。The technical solution of the present invention is described below in conjunction with the accompanying drawings.

在本发明实施例中,“示例地”、“例如”等词用于表示作例子、例证或说明。本发明中被描述为“示例”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。确切而言,使用示例的一词旨在以具体方式呈现概念。此外,在本发明实施例中,“和/或”所表达的含义可以是两者都有,或者可以是两者任选其一。In the embodiments of the present invention, words such as "exemplarily" and "for example" are used to indicate examples, illustrations or explanations. Any embodiment or design described as "example" in the present invention should not be interpreted as being more preferred or more advantageous than other embodiments or designs. Specifically, the use of the word "example" is intended to present the concept in a specific way. In addition, in the embodiments of the present invention, the meaning expressed by "and/or" can be both, or it can be either of the two.

本发明实施例中,“图像”,“图片”有时可以混用,应当指出的是,在不强调其区别时,其所要表达的含义是一致的。“的(of)”,“相应的(corresponding,relevant)”和“对应的(corresponding)”有时可以混用,应当指出的是,在不强调其区别时,其所要表达的含义是一致的。In the embodiments of the present invention, "image" and "picture" can sometimes be used interchangeably. It should be noted that when the difference between them is not emphasized, the meanings they intend to express are the same. "of", "corresponding, relevant" and "corresponding" can sometimes be used interchangeably. It should be noted that when the difference between them is not emphasized, the meanings they intend to express are the same.

本发明实施例中,有时候下标如W1可能会笔误为非下标的形式如W1,在不强调其区别时,其所要表达的含义是一致的。In the embodiments of the present invention, sometimes a subscript such as W1 may be mistakenly written as a non-subscript such as W1. When the difference is not emphasized, the meanings to be expressed are consistent.

为使本发明要解决的技术问题、技术方案和优点更加清楚,下面将结合附图及具体实施例进行详细描述。In order to make the technical problems, technical solutions and advantages to be solved by the present invention more clear, a detailed description will be given below with reference to the accompanying drawings and specific embodiments.

本发明实施例提供了一种室内烟雾遮挡下的疏散人员识别方法,该方法可以由室内烟雾遮挡下的疏散人员识别设备实现,该室内烟雾遮挡下的疏散人员识别设备可以是终端或服务器。如图1所示的室内烟雾遮挡下的疏散人员识别方法流程图,该方法的处理流程可以包括如下的步骤:The embodiment of the present invention provides a method for identifying evacuees under indoor smoke cover, which can be implemented by an indoor smoke cover evacuee identification device, which can be a terminal or a server. As shown in the flowchart of the method for identifying evacuees under indoor smoke cover in FIG1 , the processing flow of the method can include the following steps:

S1、获取室内烟雾遮挡下疏散人员的样本数据。S1. Obtain sample data of people evacuated under indoor smoke cover.

可选地,S1的室内烟雾遮挡下疏散人员的样本数据,包括:不同场景类型、不同人体姿态以及不同烟雾类型的图像数据集。Optionally, the sample data of people evacuated under indoor smoke cover in S1 includes: image datasets of different scene types, different human postures and different smoke types.

其中,场景类型可选取人数众多且建筑占比较大的学校、商场以及办公楼等一些密集人员场所为火灾发生的场景。Among them, the scene types can be selected from some densely populated places such as schools, shopping malls, and office buildings with a large number of people and a relatively large proportion of buildings as fire scenes.

其中,人员在火灾疏散的过程中会采取不同的姿势和速度来逃离火灾现场,人体的姿势可选取人员常用的弯腰和捂嘴元素。Among them, people will adopt different postures and speeds to escape from the fire scene during the fire evacuation process, and the human body posture can select the commonly used elements of bending over and covering the mouth.

其中,烟雾类型根据火灾的发展过程,可选取轻薄的白烟以及厚重的黑色浓烟。Among them, the type of smoke can be selected from light white smoke to thick black smoke according to the development process of the fire.

一种可行的实施方式中,使用网络上搜集到的真实室内烟雾场景下疏散人员图像作为训练样本数据,使用真实场景下的室内烟雾场景下疏散人员图像作为测试数据。In a feasible implementation, images of people evacuating in real indoor smoke scenes collected on the Internet are used as training sample data, and images of people evacuating in real indoor smoke scenes are used as test data.

S2、构建疏散人员的特征提取网络模型;疏散人员特征提取网络模型包括:局部到全局的过渡并行模块、局部与全局增强交互模块以及多尺度特征平行提取模块。S2. Construct a feature extraction network model for evacuees; the feature extraction network model for evacuees includes: a local to global transition parallel module, a local and global enhanced interaction module, and a multi-scale feature parallel extraction module.

可选地,局部到全局的过渡并行模块包括:局部注意力模块以及全局注意力模块。Optionally, the local-to-global transition parallel module includes: a local attention module and a global attention module.

一种可行的实施方式中,局部注意力模块采用基于动态深度卷积方法将特征图的局部特征聚合,获得局部特征图,具体的实施步骤可包括:In a feasible implementation, the local attention module aggregates local features of the feature map using a dynamic deep convolution method to obtain a local feature map. The specific implementation steps may include:

(1)将室内烟雾遮挡下疏散人员的特征图输入局部注意力模块中,利用自适应平均池化操作聚合特征图的空间上下文,将特征图的空间维度压缩,获得压缩空间维度后的特征图;将压缩空间维度后的特征图输入到1×1的卷积函数中,获得注意力特征图,获得注意力特征图的具体过程可通过下述公式(1)表示:(1) The feature map of evacuated personnel under indoor smoke cover is input into the local attention module, and the spatial context of the feature map is aggregated by adaptive average pooling operation, and the spatial dimension of the feature map is compressed to obtain the feature map after the compressed spatial dimension; the feature map after the compressed spatial dimension is input into the 1×1 convolution function to obtain the attention feature map. The specific process of obtaining the attention feature map can be expressed by the following formula (1):

其中,A'表示注意力特征图,G表示注意力组的数量,X表示输入特征图X∈RH×W×C,R表示矩阵图像,表示由3个H×W大小的矩阵构成;C表示图像通道数目,H表示输入特征图的高度,W表示输入特征图的宽度,r表示等分数,Conv函数表示卷积函数,AdaptivePool表示自适应平均池操作。Among them, A' represents the attention feature map, G represents the number of attention groups, X represents the input feature map X∈R H×W×C , R represents the matrix image, which means it is composed of 3 H×W matrices; C represents the number of image channels, H represents the height of the input feature map, W represents the width of the input feature map, r represents the equal fraction, Conv function represents the convolution function, and AdaptivePool represents the adaptive average pooling operation.

(2)通过softmax函数生成注意力特征图的注意力权重,将注意力权重与预设的一组可学习的参数中的每个元素相乘,获得多个乘积结果;将所有乘积结果求和,获得深度卷积核,注意力权重与深度卷积核可通过下述公式(2)与公式(3)表示:(2) Generate the attention weight of the attention feature map through the softmax function, multiply the attention weight with each element in a preset set of learnable parameters to obtain multiple product results; sum all the product results to obtain the deep convolution kernel. The attention weight and the deep convolution kernel can be expressed by the following formula (2) and formula (3):

A=Softmax(Reshape(A')) (2)A=Softmax(Reshape(A')) (2)

其中,A表示注意力权重,A'表示注意力特征图,Reshape函数用于在不更改数据的情况下为数组赋予新形状。Among them, A represents the attention weight, A' represents the attention feature map, and the Reshape function is used to give a new shape to the array without changing the data.

其中,A表示注意力权重,A'表示注意力特征图,P表示预设的一组可学习的参数R表示矩阵图像,表示由3个H×W大小的矩阵构成;G表示注意力组的数量,C表示图像通道数目,K2表示压缩后的空间维度,W表示卷积核的大小,i的取值范围为0,...,G。Among them, A represents the attention weight, A' represents the attention feature map, and P represents a set of preset learnable parameters R represents the matrix image, which is composed of 3 H×W matrices; G represents the number of attention groups, C represents the number of image channels, K 2 represents the compressed spatial dimension, W represents the size of the convolution kernel, and the value range of i is 0,...,G.

其中,由于输入不同的特征图会产生不同的注意力权重,因此卷积核的大小也会随着输入特征图的变化而变化;其中,采用动态深度卷积与自适应池化操作对室内烟雾遮挡下疏散人员的特征图进行特征提取,通过计算注意力权重获得局部特征图,局部注意力模块的计算可保留特征的分布信息,可提高疏散人员特征识别网络模型的表达能力以及特征的判别能力。Among them, since different input feature maps will produce different attention weights, the size of the convolution kernel will also change with the change of the input feature map; among them, dynamic deep convolution and adaptive pooling operations are used to extract the feature map of evacuated personnel under indoor smoke cover, and the local feature map is obtained by calculating the attention weight. The calculation of the local attention module can retain the distribution information of the features, which can improve the expression ability of the evacuated personnel feature recognition network model and the feature discrimination ability.

图2表示全局注意力模块提取全局特征的流程图,一种可行的实施方式中,通过采取补丁采样操作,利用Patch-sampling对输入的室内烟雾遮挡下疏散人员特征图进行自适应最大池化操作和平均池化操作,使特征图的空间分辨率降低,获得全局特征图其中,Hgw,Wgw表示全局窗口的大小;R表示矩阵图像,表示由3个H×W大小的矩阵构成;其中,采用平均池化操作和最大池化操作相结合的方法,可提取室内烟雾遮挡下疏散人员特征图中疏散人员的特征描述。FIG2 shows a flowchart of extracting global features by the global attention module. In a feasible implementation, a patch sampling operation is adopted to perform adaptive maximum pooling and average pooling operations on the input indoor smoke-occluded evacuation personnel feature map, so that the spatial resolution of the feature map is reduced to obtain a global feature map. Among them, H gw , W gw represent the size of the global window; R represents the matrix image, which is composed of 3 H×W matrices; Among them, the method of combining average pooling operation and maximum pooling operation can be used to extract the feature description of the evacuated personnel in the feature map of evacuated personnel under indoor smoke occlusion.

一种可行的实施方式中,全局注意力模块利用卷积运算对室内烟雾遮挡下疏散人员特征图的特征层进行聚合,得到融合特征图,根据获得的融合特征图对全局特征进行聚焦,输出每个通道中单点特征和全局特征之间相关性强的特征图。In a feasible implementation, the global attention module uses convolution operations to aggregate the feature layers of the feature map of evacuated personnel under indoor smoke cover to obtain a fused feature map, focuses on the global features based on the obtained fused feature map, and outputs a feature map with strong correlation between single-point features and global features in each channel.

S3、将样本数据输入局部到全局的过渡并行模块中,并行生成全局特征图与局部特征图;将全局特征图与局部特征图输入局部与全局增强交互模块中,获得局部与全局特征信息交互后的特征图;将局部与全局特征信息交互后的特征图输入多尺度特征平行提取模块中,获得疏散人员特征图。S3. Input the sample data into the local to global transition parallel module to generate the global feature map and the local feature map in parallel; input the global feature map and the local feature map into the local and global enhancement interaction module to obtain the feature map after the interaction of local and global feature information; input the feature map after the interaction of local and global feature information into the multi-scale feature parallel extraction module to obtain the evacuated personnel feature map.

可选地,S3的将样本数据输入局部到全局的过渡并行模块中,并行生成全局特征图与局部特征图,包括:Optionally, S3 inputs the sample data into a local-to-global transition parallel module to generate a global feature map and a local feature map in parallel, including:

S31、将输入的样本数据划分成第一子特征图与第二子特征图;S31, dividing the input sample data into a first sub-feature graph and a second sub-feature graph;

S32、采用双路径并行方法将第一子特征图输入局部注意力模块,生成局部特征图;将第二子特征图输入全局注意力模块,生成全局特征图。S32. Use a dual-path parallel method to input the first sub-feature map into a local attention module to generate a local feature map; input the second sub-feature map into a global attention module to generate a global feature map.

图3表示局部到全局的过渡平行模块的流程图。一种可行的实施方式中,将输入的室内烟雾场景下疏散人员的特征图沿着通道维度均匀的划分为第一子特征图与第二子特征图,将第一子特征图与第二子特征图分别输入全局注意力模块和局部注意力模块中,获得全局特征图X'2与局部特征X'1,可通过下述公式(4)与公式(5)表示:FIG3 shows a flow chart of the local-to-global transition parallel module. In a feasible implementation, the input feature map of evacuated personnel in an indoor smoke scene is evenly divided into a first sub-feature map and a second sub-feature map along the channel dimension, and the first sub-feature map and the second sub-feature map are respectively input into the global attention module and the local attention module to obtain the global feature map X'2 and the local feature X'1 , which can be expressed by the following formulas (4) and (5):

X1,X2=Split(X) (4)X 1 ,X 2 =Split(X) (4)

X'=Concat(X1,X2) (5)X'=Concat(X 1 ,X 2 ) (5)

其中,X∈RH×W×C表示输入的特征图,R表示矩阵图像,表示由3个H×W大小的矩阵构成;H表示特征图的高度,W是特征图的宽度,C表示特征图的通道数目,X1表示第一子特征图,X2表示第二子特征图,X'表示局部到全局的过渡平行模块输出的结果,包括X'1与X'2,其中,X'1表示局部特征图,X'2表示全局特征图;其中,Concat函数表示将不同的特征图连接,Split函数表示沿着通道维度对输入的图像进行划分。Among them, X∈R H×W×C represents the input feature map, R represents the matrix image, which is composed of 3 H×W matrices; H represents the height of the feature map, W is the width of the feature map, C represents the number of channels of the feature map, X1 represents the first sub-feature map, X2 represents the second sub-feature map, and X' represents the result of the local to global transition parallel module output, including X'1 and X'2 , where X'1 represents the local feature map and X'2 represents the global feature map; Among them, the Concat function represents connecting different feature maps, and the Split function represents dividing the input image along the channel dimension.

一种可行的实施方式中,局部到全局的过渡平行模块,采用移位自注意力机制可以将不同特征信息交换,使局部特征和全局特征能够并行生成;局部到全局的过渡平行模块,可避免不同区域的信息无法互相交换以及避免各图像块限制于一个固定的交互区域,可使室内烟雾场景下疏散人员特征图中的全局信息和局部信息进行融合,可平衡局部和全局信息之间的权重,使疏散人员特征识别网络模型建立起信息的短距离到长距离的依赖关系。In a feasible implementation, the local-to-global transition parallel module uses a shifted self-attention mechanism to exchange different feature information, so that local features and global features can be generated in parallel; the local-to-global transition parallel module can avoid the inability of information from different regions to be exchanged with each other and avoid each image block being restricted to a fixed interaction area, and can fuse the global information and local information in the feature map of evacuated personnel in indoor smoke scenes, balance the weights between local and global information, and enable the evacuated personnel feature recognition network model to establish a short-distance to long-distance dependency relationship of information.

可选地,S3的将全局特征图与局部特征图输入局部与全局增强交互模块,获得局部与全局特征信息交互后的特征图,包括:Optionally, S3 inputs the global feature map and the local feature map into a local and global enhancement interaction module to obtain a feature map after the local and global feature information are interacted, including:

S33、将局部特征图映射成若干个局部特征图像块,将若干个局部特征图像块输入到全局注意力模块中,使局部特征图像块之间进行信息交换,获得具有全局特征信息的局部特征图像块;S33, mapping the local feature map into a plurality of local feature image blocks, inputting the plurality of local feature image blocks into a global attention module, exchanging information between the local feature image blocks, and obtaining local feature image blocks having global feature information;

其中,局部特征图像块的个数由输入局部特征的尺寸来决定;Among them, the number of local feature image blocks is determined by the size of the input local features;

S34、将具有全局特征信息的局部特征图像块映射到局部特征图,获得局部与全局特征信息交互后的特征图。S34, mapping the local feature image block with global feature information to the local feature map, and obtaining a feature map after the local and global feature information interact.

图4表示局部与全局增强交互模块流程图。其中,局部与全局增强交互模块由两个传递过程构成,包括:局部特征信息到全局特征信息的反馈过程以及全局特征信息到局部特征信息的反馈过程。Fig. 4 shows a flow chart of the local and global enhancement interaction module. The local and global enhancement interaction module consists of two transmission processes, including: a feedback process from local feature information to global feature information and a feedback process from global feature information to local feature information.

其中,局部与全局增强交互模块利用具有代表性和传递性的图像块进行局部信息和全局信息之间的通信。Among them, the local and global enhancement interaction module uses representative and transitive image patches to communicate between local and global information.

其中,局部与全局增强模块可将烟雾遮挡下疏散人员特征图中的全局粗粒度信息和局部细粒度信息的交互聚合,可提高疏散人员特征识别网络模型对疏散人员识别的准确性。Among them, the local and global enhancement module can interactively aggregate the global coarse-grained information and local fine-grained information in the evacuee feature map under smoke occlusion, which can improve the accuracy of evacuee feature recognition network model in identifying evacuees.

可选地,S3的将局部与全局特征信息交互后的特征图输入多尺度特征平行提取模块,获得疏散人员特征图,包括:Optionally, S3 inputs the feature map after the interaction of local and global feature information into a multi-scale feature parallel extraction module to obtain a feature map of evacuated personnel, including:

S35、利用三个不同尺度的平行深度卷积并行的对局部与全局特征信息交互后的特征图进行卷积操作,获得疏散人员特征图。S35. Use three parallel depth convolutions of different scales to perform convolution operations on the feature map after the interaction of local and global feature information in parallel to obtain the feature map of evacuated personnel.

图5表示多尺度特征平行提取模块的结构图。一种可行的实施方式中,采用三个不同尺度的平行深度卷积并行的对局部与全局特征信息交互后的特征图进行卷积操作,每个卷积处理三分之一的通道,深度卷积核的大小分别为{1,3,5}。Figure 5 shows the structure of the multi-scale feature parallel extraction module. In a feasible implementation, three parallel depth convolutions of different scales are used to perform convolution operations on the feature map after the interaction of local and global feature information in parallel, each convolution processes one-third of the channels, and the sizes of the depth convolution kernels are {1, 3, 5} respectively.

其中,由于监控视频拍摄角度引起的视角效应问题,通过采用不同尺度的平行深度卷积并行的对局部与全局特征信息交互后的特征图,进行多尺度特征提取,可提高在烟雾遮挡下对疏散人员特征的提取能力。Among them, due to the perspective effect problem caused by the shooting angle of the surveillance video, multi-scale feature extraction is performed on the feature map after the interaction of local and global feature information by using parallel deep convolutions of different scales, which can improve the ability to extract the features of evacuated personnel under smoke cover.

其中,烟雾场景和普通场景有所不同,行人特殊的逃跑姿势以及距离镜头的远近不同,都会造成视频或图像出现明显的尺度问题,采用多尺度前馈模块对特征图进行处理可减少图像尺度差异,同时采用多尺度前馈模块对多尺度人员特征的提取,可减少烟雾对人体预测结构的干扰。Among them, smoke scenes are different from ordinary scenes. The special escape posture of pedestrians and the different distances from the camera will cause obvious scale problems in the video or image. Using a multi-scale feedforward module to process the feature map can reduce the image scale difference. At the same time, using a multi-scale feedforward module to extract multi-scale personnel features can reduce the interference of smoke on the predicted structure of the human body.

一种可行的实施方式中,根据上述局部注意力模块、全局注意力模块、局部到全局的过渡平行模块、局部与全局增强交互模块以及多尺度前馈模块,构建全局与局部增强交互块。In a feasible implementation, a global and local enhancement interaction block is constructed based on the above-mentioned local attention module, global attention module, local to global transition parallel module, local and global enhancement interaction module and multi-scale feedforward module.

图6表示全局与局部增强交互块的结构示意图,其中,每个全局与局部增强交互块由两个连续的块组成,前一个块由局部注意力模块、全局注意力模块以及局部到全局的过渡平行模块组成,后一个块由局部与全局增强交互模块和多尺度前馈模块组成。根据全局与局部增强交互块构建疏散人员特征提取网络模型;Figure 6 shows a schematic diagram of the structure of the global and local enhancement interaction block, where each global and local enhancement interaction block consists of two consecutive blocks, the first block consists of a local attention module, a global attention module, and a local-to-global transition parallel module, and the second block consists of a local and global enhancement interaction module and a multi-scale feedforward module. The evacuation personnel feature extraction network model is constructed based on the global and local enhancement interaction block;

图7表示基于全局与局部增强交互的疏散人员特征提取网络模型的整体结构示意图,一种可行的实施方式中,具体的特征提取过程可包括:FIG7 is a schematic diagram showing the overall structure of a network model for extracting features of evacuated personnel based on global and local enhanced interaction. In a feasible implementation, the specific feature extraction process may include:

(1)利用卷积和线性映射层对输入图像进行预处理,其中,R表示矩阵图像,表示由3个H×W大小的矩阵构成;H表示图像的高度,W表示图像的宽度,3为通道数目,对图像进行卷积操作,将图像分割为不重叠的4×4图像块,将通道的数目通过线性映射层转化为特征图的通道数目;(1) Use convolution and linear mapping layers to transform the input image Preprocessing is performed, where R represents the matrix image, which is composed of 3 H×W matrices; H represents the height of the image, W represents the width of the image, and 3 is the number of channels. The image is convolved to divide the image into non-overlapping 4×4 image blocks, and the number of channels is converted into the number of channels of the feature map through a linear mapping layer;

(2)将疏散人员特征提取网络模型分为四个阶段,每个阶段由若干个迭代的全局与局部增强交互块构成;通过图像块合并来连接前后两个连续的阶段,进入到下一个阶段之前,通过线性映射将特征图的通道数调整为原来的二倍;每个阶段的特征图都可以表示为其中,i表示阶段数,H是图像的高度,W是图像的宽度,C表示通道数目,R表示矩阵图像;(2) The evacuation personnel feature extraction network model is divided into four stages, each of which consists of several iterative global and local enhancement interaction blocks. The two consecutive stages are connected by image block merging. Before entering the next stage, the number of channels of the feature map is adjusted to twice the original number through linear mapping. The feature map of each stage can be expressed as Among them, i represents the number of stages, H is the height of the image, W is the width of the image, C represents the number of channels, and R represents the matrix image;

(3)将输入特征图其中,R表示矩阵图像,经过第一阶段处理后,获得第一阶段的特征图/>将第一阶段获得的疏散人员特征图/>作为输入进行第二阶段,获得第二阶段的疏散人员特征图/> 将第二阶段的疏散人员特征图/>作为输入,获得第三阶段的疏散人员特征图/>直到完成第四阶段获得第四阶段的疏散人员特征图/>完成特征提取。(3) Input feature map Among them, R represents the matrix image. After the first stage of processing, the first stage feature map is obtained./> The evacuee characteristic map obtained in the first stage/> As input, the second stage is carried out to obtain the characteristic map of evacuees in the second stage/> The second stage evacuation personnel characteristic map/> As input, obtain the third stage evacuation personnel feature map/> Until the fourth stage is completed, the characteristic map of evacuees in the fourth stage is obtained/> Complete feature extraction.

其中,疏散人员特征提取网络模型可充分结合输入图像的全局信息和局部信息;疏散人员特征提取网络首先提取在烟雾遮挡下疏散人员图像的局部特征信息和全局信息,其次,将局部特征信息和全局特征信息相结合,最后通过提取多尺度的特征信息,使局部和全局之间的多尺度信息交互。Among them, the evacuee feature extraction network model can fully combine the global information and local information of the input image; the evacuee feature extraction network first extracts the local feature information and global information of the evacuee image under smoke cover, and secondly, combines the local feature information with the global feature information, and finally extracts multi-scale feature information to enable multi-scale information interaction between the local and the global.

S4、根据疏散人员特征图,对疏散人员特征提取网络模型进行训练,获得训练好的疏散人员特征提取网络模型。S4. According to the evacuee feature graph, the evacuee feature extraction network model is trained to obtain a trained evacuee feature extraction network model.

一种可行的实施方式中,具体的训练过程可包括:In a feasible implementation manner, the specific training process may include:

(1)采用图片标注工具labelImg作为训练集样本标注工具对样本数据进行标注,采用深度学习图像标注软件labelme,完成室内烟雾场景下疏散人员自建数据集的标注,将标注的图像保存为.json格式文件并转换为目标检测模型能够识别的.txt的格式;(1) Use the image annotation tool labelImg as the training set sample annotation tool to annotate the sample data, and use the deep learning image annotation software labelme to complete the annotation of the self-built data set of evacuated personnel in the indoor smoke scene. Save the annotated image as a .json format file and convert it into a .txt format that can be recognized by the target detection model;

(2)对疏散人员特征提取网络进行参数的设置,包括:学习率以及训练轮数;(2) Setting parameters of the evacuee feature extraction network, including learning rate and number of training rounds;

(3)根据获取的疏散人员特征图以及设定的训练参数对疏散人员特征提取网络模型进行训练,获得训练好的疏散人员特征提取网络模型。(3) The evacuee feature extraction network model is trained according to the obtained evacuee feature map and the set training parameters to obtain a trained evacuee feature extraction network model.

S5、获取待识别疏散人员的图像数据。S5. Obtain image data of the persons to be identified and evacuated.

S6、将待识别疏散人员的图像数据输入训练好的疏散人员特征提取网络模型中,获得疏散人员的识别结果。S6. Input the image data of the evacuees to be identified into the trained evacuees feature extraction network model to obtain the identification results of the evacuees.

一种可行的实施方式中,训练好的疏散人员特征提取网络模型通过分析室内烟雾场景下的疏散人员图像中的人员特征,在判断待识别疏散人员的图像数据中是否存在疏散人员的同时对疏散人员进行标记,输出疏散人员的具体位置信息;通过输出疏散人员的具体位置信息,可准确快速向消防救援提供被困人员的信息。In a feasible implementation, the trained evacuee feature extraction network model analyzes the personnel features in the evacuee images in indoor smoke scenes, marks the evacuees while judging whether there are evacuees in the image data of the evacuees to be identified, and outputs the specific location information of the evacuees; by outputting the specific location information of the evacuees, the information of the trapped persons can be accurately and quickly provided to the fire rescue.

本发明实施例,首先获取室内烟雾遮挡下疏散人员的样本数据;其次,构建疏散人员特征提取网络模型;疏散人员特征提取网络模型包括:局部到全局的过渡并行模块、局部与全局增强交互模块以及多尺度特征平行提取模块;将样本数据输入局部到全局的过渡并行模块,并行生成全局特征图与局部特征图;全局特征图与局部特征图输入局部与全局增强交互模块,获得局部与全局特征信息交互后的特征图;将局部与全局特征信息交互后的特征图输入多尺度特征平行提取模块,获得疏散人员特征图;根据疏散人员特征图,对疏散人员特征提取网络模型进行训练,获得训练好的疏散人员特征提取网络模型;最后,获取待识别疏散人员的图像数据;将待识别疏散人员的图像数据输入训练好的疏散人员特征提取网络模型中,获得疏散人员的识别结果。本发明实施例与现有技术相比,有效的提高了特征识别网络模型在室内火灾产生烟雾中提取疏散人员特征的能力,避免了过多的局部特征的限制以及过多的非局部特征导致的全局性能下降,并且通过多尺度前馈模块来提取多尺度人员特征信息,从而来减少烟雾对人体预测结构的干扰;采用本发明实施例可避免场景中温度的干扰,可在室内火灾烟雾的情况下进行有效的人员探测,可为消防人员救援疏散人员提供指导性的建议。According to an embodiment of the present invention, sample data of evacuees under indoor smoke cover is first obtained; secondly, a network model for extracting features of evacuees is constructed; the network model for extracting features of evacuees includes: a local-to-global transition parallel module, a local-to-global enhancement interaction module, and a multi-scale feature parallel extraction module; the sample data is input into the local-to-global transition parallel module to generate a global feature map and a local feature map in parallel; the global feature map and the local feature map are input into the local-to-global enhancement interaction module to obtain a feature map after the interaction of local and global feature information; the feature map after the interaction of local and global feature information is input into the multi-scale feature parallel extraction module to obtain a feature map of evacuees; according to the feature map of evacuees, the network model for extracting features of evacuees is trained to obtain a trained network model for extracting features of evacuees; finally, image data of evacuees to be identified are obtained; the image data of evacuees to be identified are input into the trained network model for extracting features of evacuees to obtain an identification result of evacuees. Compared with the prior art, the embodiments of the present invention effectively improve the ability of the feature recognition network model to extract features of evacuated personnel in the smoke generated by indoor fires, avoid the limitation of too many local features and the degradation of global performance caused by too many non-local features, and extract multi-scale personnel feature information through a multi-scale feedforward module, thereby reducing the interference of smoke on the predicted structure of the human body; the embodiment of the present invention can avoid the interference of temperature in the scene, can perform effective personnel detection in the case of indoor fire smoke, and can provide guiding suggestions for firefighters to rescue and evacuate personnel.

图8是根据一示例性实施例示出的一种室内烟雾遮挡下的疏散人员识别装置框图,该装置用于室内烟雾遮挡下的疏散人员识别方法。参照图8,该装置包括第一获取单元310、构建单元320、特征提取单元330、训练单元340、第二获取单元350以及识别单元360。为了便于说明,图8仅示出了该全流程可视化装置600的主要部件:FIG8 is a block diagram of a device for identifying evacuees under indoor smoke cover according to an exemplary embodiment, and the device is used in a method for identifying evacuees under indoor smoke cover. Referring to FIG8 , the device includes a first acquisition unit 310, a construction unit 320, a feature extraction unit 330, a training unit 340, a second acquisition unit 350, and an identification unit 360. For ease of explanation, FIG8 only shows the main components of the full-process visualization device 600:

第一获取单元310,用于获取室内烟雾遮挡下疏散人员的样本数据;The first acquisition unit 310 is used to acquire sample data of people evacuated under the cover of indoor smoke;

构建单元320,用于构建疏散人员特征提取网络模型;疏散人员特征提取网络模型包括:局部到全局的过渡并行模块、局部与全局增强交互模块以及多尺度特征平行提取模块;A construction unit 320 is used to construct a network model for extracting features of evacuees; the network model for extracting features of evacuees includes: a local to global transition parallel module, a local and global enhancement interaction module, and a multi-scale feature parallel extraction module;

特征提取单元330,用于将样本数据输入局部到全局的过渡并行模块,并行生成全局特征图与局部特征图;将全局特征图与局部特征图输入局部与全局增强交互模块,获得局部与全局特征信息交互后的特征图;将局部与全局特征信息交互后的特征图输入多尺度特征平行提取模块,获得疏散人员特征图;The feature extraction unit 330 is used to input the sample data into the local to global transition parallel module to generate a global feature map and a local feature map in parallel; input the global feature map and the local feature map into the local and global enhancement interaction module to obtain a feature map after the local and global feature information interacts; input the feature map after the local and global feature information interacts into the multi-scale feature parallel extraction module to obtain an evacuated personnel feature map;

训练单元340,用于根据疏散人员特征图,对疏散人员特征提取网络模型进行训练,获得训练好的疏散人员特征提取网络模型;The training unit 340 is used to train the evacuee feature extraction network model according to the evacuee feature graph to obtain a trained evacuee feature extraction network model;

第二获取单元350,用于获取待识别疏散人员的图像数据;A second acquisition unit 350 is used to acquire image data of the evacuee to be identified;

识别单元360,用于将待识别疏散人员的图像数据输入训练好的疏散人员特征提取网络模型中,获得疏散人员的识别结果。The identification unit 360 is used to input the image data of the evacuees to be identified into the trained evacuee feature extraction network model to obtain the identification results of the evacuees.

可选地,室内烟雾遮挡下疏散人员的图像数据集,包括:不同场景类型、不同人体姿态以及不同烟雾类型的图像数据集。Optionally, the image dataset of people evacuating under indoor smoke cover includes: image datasets of different scene types, different human postures and different smoke types.

可选地,局部到全局的过渡并行模块包括:局部注意力模块以及全局注意力模块。Optionally, the local-to-global transition parallel module includes: a local attention module and a global attention module.

可选地,将样本数据输入局部到全局的过渡并行模块中,并行生成全局特征图与局部特征图,包括:Optionally, the sample data is input into a local-to-global transition parallel module to generate a global feature map and a local feature map in parallel, including:

将输入的样本数据划分成第一子特征图与第二子特征图;Dividing the input sample data into a first sub-feature graph and a second sub-feature graph;

采用双路径并行方法将第一子特征图输入局部注意力模块,生成局部特征图;将第二子特征图输入全局注意力模块,生成全局特征图。A dual-path parallel method is used to input the first sub-feature map into the local attention module to generate a local feature map; and the second sub-feature map is input into the global attention module to generate a global feature map.

可选地,将全局特征图与局部特征图输入局部与全局增强交互模块,获得局部与全局特征信息交互后的特征图,包括:Optionally, the global feature map and the local feature map are input into a local and global enhancement interaction module to obtain a feature map after the local and global feature information are interacted, including:

将局部特征图映射成若干个局部特征图像块,将若干个局部特征图像块输入到全局注意力模块中,使局部特征图像块之间进行信息交换,获得具有全局特征信息的局部特征图像块;Mapping the local feature map into several local feature image blocks, inputting the several local feature image blocks into the global attention module, enabling information exchange between the local feature image blocks, and obtaining local feature image blocks with global feature information;

将具有全局特征信息的局部特征图像块映射到局部特征图,获得局部与全局特征信息交互后的特征图。The local feature image block with global feature information is mapped to the local feature map to obtain the feature map after the interaction of local and global feature information.

可选地,将局部与全局特征信息交互后的特征图输入多尺度特征平行提取模块,获得疏散人员特征图,包括:Optionally, the feature map after the interaction of local and global feature information is input into a multi-scale feature parallel extraction module to obtain a feature map of evacuated personnel, including:

利用三个不同尺度的平行深度卷积并行对局部与全局特征信息交互后的特征图进行卷积操作,获得疏散人员特征图。Three parallel depth convolutions of different scales are used to perform convolution operations on the feature map after the interaction of local and global feature information in parallel to obtain the feature map of evacuated personnel.

本发明实施例,首先获取室内烟雾遮挡下疏散人员的样本数据;其次,构建疏散人员特征提取网络模型;疏散人员特征提取网络模型包括:局部到全局的过渡并行模块、局部与全局增强交互模块以及多尺度特征平行提取模块;将样本数据输入局部到全局的过渡并行模块,并行生成全局特征图与局部特征图;全局特征图与局部特征图输入局部与全局增强交互模块,获得局部与全局特征信息交互后的特征图;将局部与全局特征信息交互后的特征图输入多尺度特征平行提取模块,获得疏散人员特征图;根据疏散人员特征图,对疏散人员特征提取网络模型进行训练,获得训练好的疏散人员特征提取网络模型;最后,获取待识别疏散人员的图像数据;将待识别疏散人员的图像数据输入训练好的疏散人员特征提取网络模型中,获得疏散人员的识别结果。本发明实施例与现有技术相比,有效的提高了特征识别网络模型在室内火灾产生烟雾中提取疏散人员特征的能力,避免了过多的局部特征的限制以及过多的非局部特征导致的全局性能下降,并且通过多尺度前馈模块来提取多尺度人员特征信息,从而来减少烟雾对人体预测结构的干扰;采用本发明实施例可避免场景中温度的干扰,可在室内火灾烟雾的情况下进行有效的人员探测,可为消防人员救援疏散人员提供指导性的建议。According to an embodiment of the present invention, sample data of evacuees under indoor smoke cover is first obtained; secondly, a network model for extracting features of evacuees is constructed; the network model for extracting features of evacuees includes: a local-to-global transition parallel module, a local-to-global enhancement interaction module, and a multi-scale feature parallel extraction module; the sample data is input into the local-to-global transition parallel module to generate a global feature map and a local feature map in parallel; the global feature map and the local feature map are input into the local-to-global enhancement interaction module to obtain a feature map after the interaction of local and global feature information; the feature map after the interaction of local and global feature information is input into the multi-scale feature parallel extraction module to obtain a feature map of evacuees; according to the feature map of evacuees, the network model for extracting features of evacuees is trained to obtain a trained network model for extracting features of evacuees; finally, image data of evacuees to be identified are obtained; the image data of evacuees to be identified are input into the trained network model for extracting features of evacuees to obtain an identification result of evacuees. Compared with the prior art, the embodiments of the present invention effectively improve the ability of the feature recognition network model to extract features of evacuated personnel in smoke generated by indoor fires, avoid the limitation of too many local features and the degradation of global performance caused by too many non-local features, and extract multi-scale personnel feature information through a multi-scale feedforward module, thereby reducing the interference of smoke on the predicted structure of the human body; the embodiment of the present invention can avoid the interference of temperature in the scene, can effectively detect personnel in the case of indoor fire smoke, and can provide guiding suggestions for firefighters to rescue and evacuate personnel.

图9是本发明实施例提供的一种室内烟雾遮挡下的疏散人员识别设备的结构示意图,如图9所示,室内烟雾遮挡下的疏散人员识别设备可以包括上述图8所示的室内烟雾遮挡下的疏散人员识别装置。可选地,室内烟雾遮挡下的疏散人员识别设备410可以包括第一处理器2001。FIG9 is a schematic diagram of the structure of a device for identifying evacuees under indoor smoke cover provided by an embodiment of the present invention. As shown in FIG9 , the device for identifying evacuees under indoor smoke cover may include the device for identifying evacuees under indoor smoke cover shown in FIG8 . Optionally, the device for identifying evacuees under indoor smoke cover 410 may include a first processor 2001.

可选地,室内烟雾遮挡下的疏散人员识别设备410还可以包括存储器2002和收发器2003。Optionally, the device for identifying people to be evacuated under indoor smoke cover 410 may further include a memory 2002 and a transceiver 2003 .

其中,第一处理器2001与存储器2002以及收发器2003,如可以通过通信总线连接。The first processor 2001, the memory 2002 and the transceiver 2003 may be connected via a communication bus.

下面结合图9对室内烟雾遮挡下的疏散人员识别设备410的各个构成部件进行具体的介绍:The following is a detailed introduction to the various components of the indoor smoke-shielded evacuation personnel identification device 410 in conjunction with FIG. 9 :

其中,第一处理器2001是室内烟雾遮挡下的疏散人员识别设备410的控制中心,可以是一个处理器,也可以是多个处理元件的统称。例如,第一处理器2001是一个或多个中央处理器(central processing unit,CPU),也可以是特定集成电路(application specificintegrated circuit,ASIC),或者是被配置成实施本发明实施例的一个或多个集成电路,例如:一个或多个微处理器(digital signal processor,DSP),或,一个或者多个现场可编程门阵列(field programmable gate array,FPGA)。The first processor 2001 is the control center of the indoor smoke-shielded evacuation personnel identification device 410, which can be a processor or a general term for multiple processing elements. For example, the first processor 2001 is one or more central processing units (CPUs), or an application specific integrated circuit (ASIC), or one or more integrated circuits configured to implement the embodiments of the present invention, such as one or more microprocessors (digital signal processors, DSPs), or one or more field programmable gate arrays (field programmable gate arrays, FPGAs).

可选地,第一处理器2001可以通过运行或执行存储在存储器2002内的软件程序,以及调用存储在存储器2002内的数据,执行室内烟雾遮挡下的疏散人员识别设备410的各种功能。Optionally, the first processor 2001 can perform various functions of the indoor smoke-covered personnel evacuation identification device 410 by running or executing a software program stored in the memory 2002 and calling data stored in the memory 2002 .

在具体的实现中,作为一种实施例,第一处理器2001可以包括一个或多个CPU,例如图9中所示出的CPU0和CPU1。In a specific implementation, as an embodiment, the first processor 2001 may include one or more CPUs, such as CPU0 and CPU1 shown in FIG. 9 .

在具体实现中,作为一种实施例,室内烟雾遮挡下的疏散人员识别设备410也可以包括多个处理器,例如图9中所示的第一处理器2001和第二处理器2004。这些处理器中的每一个可以是一个单核处理器(single-CPU),也可以是一个多核处理器(multi-CPU)。这里的处理器可以指一个或多个设备、电路、和/或用于处理数据(例如计算机程序指令)的处理核。In a specific implementation, as an embodiment, the indoor smoke-shielded evacuee identification device 410 may also include multiple processors, such as the first processor 2001 and the second processor 2004 shown in FIG9 . Each of these processors may be a single-core processor (single-CPU) or a multi-core processor (multi-CPU). The processor here may refer to one or more devices, circuits, and/or processing cores for processing data (such as computer program instructions).

其中,所述存储器2002用于存储执行本发明方案的软件程序,并由第一处理器2001来控制执行,具体实现方式可以参考上述方法实施例,此处不再赘述。The memory 2002 is used to store the software program for executing the solution of the present invention, and is controlled to be executed by the first processor 2001. The specific implementation method can refer to the above method embodiment, which will not be repeated here.

可选地,存储器2002可以是只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器(random access memory,RAM)或者可存储信息和指令的其他类型的动态存储设备,也可以是电可擦可编程只读存储器(electricall y erasable programmable read-only memory,EEPROM)、只读光盘(compact disc read-only memory,CD-ROM)或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。存储器2002可以和第一处理器2001集成在一起,也可以独立存在,并通过室内烟雾遮挡下的疏散人员识别设备410的接口电路(图9中未示出)与第一处理器2001耦合,本发明实施例对此不作具体限定。Optionally, the memory 2002 may be a read-only memory (ROM) or other types of static storage devices that can store static information and instructions, a random access memory (RAM) or other types of dynamic storage devices that can store information and instructions, or an electrically erasable programmable read-only memory (EEPROM), a compact disc read-only memory (CD-ROM) or other optical disc storage, optical disc storage (including compressed optical disc, laser disc, optical disc, digital versatile disc, Blu-ray disc, etc.), a magnetic disk storage medium or other magnetic storage device, or any other medium that can be used to carry or store the desired program code in the form of instructions or data structures and can be accessed by a computer, but is not limited thereto. The memory 2002 may be integrated with the first processor 2001, or may exist independently, and be coupled to the first processor 2001 through the interface circuit (not shown in FIG. 9 ) of the indoor smoke-shielded evacuation personnel identification device 410, which is not specifically limited in the embodiment of the present invention.

收发器2003,用于与网络设备通信,或者与终端设备通信。The transceiver 2003 is used to communicate with a network device or a terminal device.

可选地,收发器2003可以包括接收器和发送器(图9中未单独示出)。其中,接收器用于实现接收功能,发送器用于实现发送功能。Optionally, the transceiver 2003 may include a receiver and a transmitter (not shown separately in FIG. 9 ), wherein the receiver is used to implement a receiving function, and the transmitter is used to implement a sending function.

可选地,收发器2003可以和第一处理器2001集成在一起,也可以独立存在,并通过室内烟雾遮挡下的疏散人员识别设备410的接口电路(图9中未示出)与第一处理器2001耦合,本发明实施例对此不作具体限定。Optionally, the transceiver 2003 can be integrated with the first processor 2001, or can exist independently and be coupled to the first processor 2001 through the interface circuit of the evacuation personnel identification device 410 under indoor smoke cover (not shown in Figure 9), which is not specifically limited in this embodiment of the present invention.

需要说明的是,图9中示出的室内烟雾遮挡下的疏散人员识别设备410的结构并不构成对该路由器的限定,实际的知识结构识别设备可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。It should be noted that the structure of the indoor smoke-covered evacuee identification device 410 shown in FIG9 does not constitute a limitation on the router, and the actual knowledge structure identification device may include more or fewer components than shown in the figure, or a combination of certain components, or a different arrangement of components.

此外,室内烟雾遮挡下的疏散人员识别设备410的技术效果可以参考上述方法实施例所述的室内烟雾遮挡下的疏散人员识别方法的技术效果,此处不再赘述。In addition, the technical effects of the device 410 for identifying evacuees under indoor smoke cover can refer to the technical effects of the method for identifying evacuees under indoor smoke cover described in the above method embodiment, which will not be repeated here.

应理解,在本发明实施例中的第一处理器2001可以是中央处理单元(centralprocessing unit,CPU),该处理器还可以是其他通用处理器、数字信号处理器(digitalsignal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现成可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。It should be understood that the first processor 2001 in the embodiment of the present invention may be a central processing unit (CPU), and the processor may also be other general-purpose processors, digital signal processors (DSP), application specific integrated circuits (ASIC), field programmable gate arrays (FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, etc. The general-purpose processor may be a microprocessor or the processor may also be any conventional processor, etc.

还应理解,本发明实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的随机存取存储器(random accessmemory,RAM)可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(doubledata rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。It should also be understood that the memory in the embodiments of the present invention may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memories. Among them, the non-volatile memory may be a read-only memory (ROM), a programmable read-only memory (PROM), an erasable programmable read-only memory (EPROM), an electrically erasable programmable read-only memory (EEPROM), or a flash memory. The volatile memory may be a random access memory (RAM), which is used as an external cache. By way of example and not limitation, many forms of random access memory (RAM) are available, such as static RAM (SRAM), dynamic random access memory (DRAM), synchronous DRAM (SDRAM), double data rate synchronous dynamic random access memory (DDR SDRAM), enhanced synchronous dynamic random access memory (ESDRAM), synchronous link DRAM (SLDRAM), and direct rambus RAM (DR RAM).

上述实施例,可以全部或部分地通过软件、硬件(如电路)、固件或其他任意组合来实现。当使用软件实现时,上述实施例可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令或计算机程序。在计算机上加载或执行所述计算机指令或计算机程序时,全部或部分地产生按照本发明实施例所述的流程或功能。所述计算机可以为通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集合的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质。半导体介质可以是固态硬盘。The above embodiments can be implemented in whole or in part by software, hardware (such as circuits), firmware or any other combination. When implemented by software, the above embodiments can be implemented in whole or in part in the form of a computer program product. The computer program product includes one or more computer instructions or computer programs. When the computer instructions or computer programs are loaded or executed on a computer, the process or function described in the embodiment of the present invention is generated in whole or in part. The computer can be a general-purpose computer, a special-purpose computer, a computer network, or other programmable device. The computer instructions can be stored in a computer-readable storage medium, or transmitted from one computer-readable storage medium to another computer-readable storage medium. For example, the computer instructions can be transmitted from one website, computer, server or data center to another website, computer, server or data center by wired (such as infrared, wireless, microwave, etc.). The computer-readable storage medium can be any available medium that can be accessed by a computer or a data storage device such as a server or data center that contains one or more available media sets. The available medium can be a magnetic medium (for example, a floppy disk, a hard disk, a tape), an optical medium (for example, a DVD), or a semiconductor medium. The semiconductor medium can be a solid-state hard disk.

应理解,本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况,其中A,B可以是单数或者复数。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系,但也可能表示的是一种“和/或”的关系,具体可参考前后文进行理解。It should be understood that the term "and/or" in this article is only a description of the association relationship of associated objects, indicating that there can be three relationships. For example, A and/or B can represent: A exists alone, A and B exist at the same time, and B exists alone. A and B can be singular or plural. In addition, the character "/" in this article generally indicates that the associated objects before and after are in an "or" relationship, but it may also indicate an "and/or" relationship. Please refer to the context for specific understanding.

本发明中,“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b,或c中的至少一项(个),可以表示:a,b,c,a-b,a-c,b-c,或a-b-c,其中a,b,c可以是单个,也可以是多个。In the present invention, "at least one" means one or more, and "more than one" means two or more. "At least one of the following" or similar expressions refers to any combination of these items, including any combination of single or plural items. For example, at least one of a, b, or c can be represented by: a, b, c, a-b, a-c, b-c, or a-b-c, where a, b, and c can be single or multiple.

应理解,在本发明的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本发明实施例的实施过程构成任何限定。It should be understood that in various embodiments of the present invention, the size of the serial numbers of the above-mentioned processes does not mean the order of execution. The execution order of each process should be determined by its function and internal logic, and should not constitute any limitation on the implementation process of the embodiments of the present invention.

本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。Those of ordinary skill in the art will appreciate that the units and algorithm steps of each example described in conjunction with the embodiments disclosed herein can be implemented in electronic hardware, or a combination of computer software and electronic hardware. Whether these functions are performed in hardware or software depends on the specific application and design constraints of the technical solution. Professional and technical personnel can use different methods to implement the described functions for each specific application, but such implementation should not be considered to be beyond the scope of the present invention.

所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的设备、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。Those skilled in the art can clearly understand that, for the convenience and brevity of description, the specific working processes of the above-described equipment, devices and units can refer to the corresponding processes in the aforementioned method embodiments and will not be repeated here.

在本发明所提供的几个实施例中,应该理解到,所揭露的设备、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个设备,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。In the several embodiments provided by the present invention, it should be understood that the disclosed devices, apparatuses and methods can be implemented in other ways. For example, the device embodiments described above are only schematic. For example, the division of the units is only a logical function division. There may be other division methods in actual implementation, such as multiple units or components can be combined or integrated into another device, or some features can be ignored or not executed. Another point is that the mutual coupling or direct coupling or communication connection shown or discussed can be through some interfaces, indirect coupling or communication connection of devices or units, which can be electrical, mechanical or other forms.

所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。The units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place or distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of this embodiment.

另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。In addition, each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.

所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。If the functions are implemented in the form of software functional units and sold or used as independent products, they can be stored in a computer-readable storage medium. Based on this understanding, the technical solution of the present invention, or the part that contributes to the prior art or the part of the technical solution, can be embodied in the form of a software product. The computer software product is stored in a storage medium, including several instructions for enabling a computer device (which can be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present invention. The aforementioned storage medium includes: various media that can store program codes, such as USB flash drives, mobile hard disks, read-only memories (ROM), random access memories (RAM), magnetic disks or optical disks.

以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以所述权利要求的保护范围为准。The above is only a specific embodiment of the present invention, but the protection scope of the present invention is not limited thereto. Any person skilled in the art who is familiar with the technical field can easily think of changes or substitutions within the technical scope disclosed by the present invention, which should be included in the protection scope of the present invention. Therefore, the protection scope of the present invention should be based on the protection scope of the claims.

Claims (10)

1. A method for identifying evacuees under indoor smoke shielding, the method comprising:
s1, acquiring sample data of evacuated people under the shielding of indoor smoke;
S2, constructing an evacuated personnel feature extraction network model; the evacuation personnel feature extraction network model comprises: the system comprises a local-global transition parallel module, a local-global enhancement interaction module and a multi-scale feature parallel extraction module;
S3, inputting the sample data into the local-to-global transition parallel module, and generating a global feature map and a local feature map in parallel; inputting the global feature map and the local feature map into a local and global enhancement interaction module to obtain a feature map after local and global feature information interaction; inputting the feature map after the interaction of the local and global feature information into a multi-scale feature parallel extraction module to obtain an evacuated personnel feature map;
S4, training the evacuator feature extraction network model according to the evacuator feature map to obtain a trained evacuator feature extraction network model;
s5, acquiring image data of evacuees to be identified;
S6, inputting the image data of the evacuees to be identified into the trained evacuee feature extraction network model, and obtaining the identification result of the evacuees.
2. The method of claim 1, wherein the sample data of evacuees under the indoor smoke occlusion of S1 comprises: image datasets of different scene types, different human poses and different smoke types.
3. The method of claim 1, wherein the local-to-global transitional parallelism module comprises: a local attention module and a global attention module.
4. The method according to claim 3, wherein the inputting the sample data into the local-to-global transitional parallel module in S3 generates a global feature map and a local feature map in parallel, and includes:
s31, dividing input sample data into a first sub-feature map and a second sub-feature map;
S32, inputting the first sub-feature map into a local attention module by adopting a dual-path parallel method to generate a local feature map; and inputting the second sub-feature map into a global attention module to generate a global feature map.
5. The method according to claim 4, wherein the inputting the global feature map and the local feature map into the local and global enhancement interaction module in S3 obtains a feature map after the local and global feature information interaction, includes:
S33, mapping the local feature map into a plurality of local feature image blocks, inputting the plurality of local feature image blocks into a global attention module, and enabling information exchange between the local feature image blocks to obtain the local feature image blocks with global feature information;
and S34, mapping the local feature image block with the global feature information to the local feature map to obtain a feature map after local and global feature information interaction.
6. The method of claim 5, wherein the step S3 of inputting the feature map after the interaction of the local and global feature information into a multi-scale feature parallel extraction module to obtain an evacuated person feature map includes:
And S35, carrying out convolution operation on the feature map after the interaction of the local and global feature information by utilizing three parallel depth convolutions with different scales, and obtaining the sparse personnel feature map.
7. An indoor smoke-shielded evacuee recognition apparatus for implementing the indoor smoke-shielded evacuee recognition method according to any one of claims 1 to 6, characterized in that the apparatus comprises:
the first acquisition unit is used for acquiring sample data of evacuated people under the shielding of indoor smoke;
The construction unit is used for constructing an evacuated personnel feature extraction network model; the evacuation personnel feature extraction network model comprises: the system comprises a local-global transition parallel module, a local-global enhancement interaction module and a multi-scale feature parallel extraction module;
the feature extraction unit is used for inputting the sample data into the local-to-global transition parallel module and generating a global feature map and a local feature map in parallel; inputting the global feature map and the local feature map into a local and global enhancement interaction module to obtain a feature map after local and global feature information interaction; inputting the feature map after the interaction of the local and global feature information into a multi-scale feature parallel extraction module to obtain an evacuated personnel feature map;
The training unit is used for training the evacuator feature extraction network model according to the evacuator feature map to obtain a trained evacuator feature extraction network model;
The second acquisition unit is used for acquiring image data of evacuation personnel to be identified;
The recognition unit is used for inputting the image data of the evacuees to be recognized into the trained evacuee characteristic extraction network model to obtain the recognition result of the evacuees.
8. The apparatus of claim 7, wherein the indoor smoke masks sample data of lower evacuees, comprising:
image datasets of different scene types, different human poses and different smoke types.
9. An evacuated person identification device under an indoor smoke shield, the evacuated person identification device under an indoor smoke shield comprising:
A processor;
A memory having stored thereon computer readable instructions which, when executed by the processor, implement the method of any of claims 1 to 6.
10. A computer readable storage medium having stored therein program code which is callable by a processor to perform the method of any one of claims 1 to 6.
CN202410229855.5A 2024-02-29 2024-02-29 Method and device for identifying evacuated people under indoor smoke shielding Active CN118196700B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202410229855.5A CN118196700B (en) 2024-02-29 2024-02-29 Method and device for identifying evacuated people under indoor smoke shielding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202410229855.5A CN118196700B (en) 2024-02-29 2024-02-29 Method and device for identifying evacuated people under indoor smoke shielding

Publications (2)

Publication Number Publication Date
CN118196700A true CN118196700A (en) 2024-06-14
CN118196700B CN118196700B (en) 2024-09-17

Family

ID=91412877

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202410229855.5A Active CN118196700B (en) 2024-02-29 2024-02-29 Method and device for identifying evacuated people under indoor smoke shielding

Country Status (1)

Country Link
CN (1) CN118196700B (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019079369A (en) * 2017-10-26 2019-05-23 ホーチキ株式会社 Evacuation guide system
KR20200113913A (en) * 2019-03-27 2020-10-07 주식회사라엘시스템즈 System and method for personnel identification for evacuation training
CN114973317A (en) * 2022-05-13 2022-08-30 杭州像素元科技有限公司 Pedestrian re-identification method based on multi-scale adjacent interaction features
CN115578233A (en) * 2022-11-18 2023-01-06 深圳市城市交通规划设计研究中心股份有限公司 Traffic emergency evacuation method, system and computer equipment
CN116503895A (en) * 2023-02-08 2023-07-28 电子科技大学 A multi-fine-grained occluded pedestrian re-identification method based on visual Transformer
CN117197658A (en) * 2023-08-08 2023-12-08 北京科技大学 Building fire multi-target detection method and system based on multi-situation generated image

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019079369A (en) * 2017-10-26 2019-05-23 ホーチキ株式会社 Evacuation guide system
KR20200113913A (en) * 2019-03-27 2020-10-07 주식회사라엘시스템즈 System and method for personnel identification for evacuation training
CN114973317A (en) * 2022-05-13 2022-08-30 杭州像素元科技有限公司 Pedestrian re-identification method based on multi-scale adjacent interaction features
CN115578233A (en) * 2022-11-18 2023-01-06 深圳市城市交通规划设计研究中心股份有限公司 Traffic emergency evacuation method, system and computer equipment
CN116503895A (en) * 2023-02-08 2023-07-28 电子科技大学 A multi-fine-grained occluded pedestrian re-identification method based on visual Transformer
CN117197658A (en) * 2023-08-08 2023-12-08 北京科技大学 Building fire multi-target detection method and system based on multi-situation generated image

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
陈彦伟;程旭东;杨华;李森;王学贵;张和平;: "基于视频图像的交通枢纽综合体人体检测", 火灾科学, no. 02, 15 April 2013 (2013-04-15) *

Also Published As

Publication number Publication date
CN118196700B (en) 2024-09-17

Similar Documents

Publication Publication Date Title
CN113902926B (en) A general image target detection method and device based on self-attention mechanism
CN112001914B (en) Depth image complement method and device
WO2021218899A1 (en) Method for training facial recognition model, and method and apparatus for facial recognition
US20230153615A1 (en) Neural network distillation method and apparatus
CN110246181B (en) Anchor point-based attitude estimation model training method, attitude estimation method and system
CN110533024B (en) Double-quadratic pooling fine-grained image classification method based on multi-scale ROI (region of interest) features
CN114663502A (en) Object pose estimation, image processing method and related equipment
CN114049332A (en) Abnormality detection method and apparatus, electronic device, and storage medium
CN110838108A (en) Medical image-based prediction model construction method, prediction method and device
CN115359360B (en) Power field operation scene detection method, system, equipment and storage medium
CN115631396A (en) A YOLOv5 target detection method based on knowledge distillation
CN115830596A (en) Semantic Segmentation Method of Remote Sensing Image Based on Fusion Pyramid Attention
CN113095129A (en) Attitude estimation model training method, attitude estimation device and electronic equipment
CN115527159B (en) Counting system and method based on inter-modal scale attention aggregation features
US20240028808A1 (en) Method and device for chip layout, computer equipment and medium
CN114120454A (en) Training method and device of living body detection model, electronic equipment and storage medium
EP4475013A1 (en) Data processing method and related device
CN116894802B (en) Image enhancement method, device, computer equipment and storage medium
CN110163095B (en) Loop detection method, loop detection device and terminal equipment
WO2024244760A1 (en) Mathematical formula recognition method and apparatus, electronic device, and readable storage medium
CN118155029A (en) Infrared and visible light image fusion and target detection method based on deep learning
CN118247844A (en) Animal posture estimation method, system and device based on diffusion model and attention mechanism
CN115049717B (en) A depth estimation method and device
CN117238025A (en) A human skeleton behavior recognition method based on self-attention graph convolution
CN111598093A (en) Method, device, device and medium for generating structured information of text in pictures

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant