CN118193858B - 一种基于图卷积网络的协同过滤推荐方法及装置 - Google Patents
一种基于图卷积网络的协同过滤推荐方法及装置 Download PDFInfo
- Publication number
- CN118193858B CN118193858B CN202410613315.7A CN202410613315A CN118193858B CN 118193858 B CN118193858 B CN 118193858B CN 202410613315 A CN202410613315 A CN 202410613315A CN 118193858 B CN118193858 B CN 118193858B
- Authority
- CN
- China
- Prior art keywords
- matrix
- user
- item
- embedding
- encoding
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims abstract description 57
- 238000001914 filtration Methods 0.000 title claims abstract description 26
- 239000011159 matrix material Substances 0.000 claims abstract description 256
- 239000013598 vector Substances 0.000 claims description 26
- 230000004913 activation Effects 0.000 claims description 11
- 230000002452 interceptive effect Effects 0.000 claims description 9
- 238000004364 calculation method Methods 0.000 claims description 8
- 238000012545 processing Methods 0.000 claims description 6
- 230000005540 biological transmission Effects 0.000 abstract description 3
- 230000006870 function Effects 0.000 description 17
- 238000012549 training Methods 0.000 description 8
- 230000008569 process Effects 0.000 description 7
- 238000010586 diagram Methods 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 3
- 238000009825 accumulation Methods 0.000 description 2
- 230000004931 aggregating effect Effects 0.000 description 2
- 230000006399 behavior Effects 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 230000000717 retained effect Effects 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 230000009466 transformation Effects 0.000 description 2
- ORILYTVJVMAKLC-UHFFFAOYSA-N Adamantane Natural products C1C(C2)CC3CC1CC2C3 ORILYTVJVMAKLC-UHFFFAOYSA-N 0.000 description 1
- 101100481876 Danio rerio pbk gene Proteins 0.000 description 1
- 101001121408 Homo sapiens L-amino-acid oxidase Proteins 0.000 description 1
- 101000827703 Homo sapiens Polyphosphoinositide phosphatase Proteins 0.000 description 1
- 102100026388 L-amino-acid oxidase Human genes 0.000 description 1
- 101100481878 Mus musculus Pbk gene Proteins 0.000 description 1
- 208000025174 PANDAS Diseases 0.000 description 1
- 208000021155 Paediatric autoimmune neuropsychiatric disorders associated with streptococcal infection Diseases 0.000 description 1
- 240000000220 Panda oleosa Species 0.000 description 1
- 235000016496 Panda oleosa Nutrition 0.000 description 1
- 102100023591 Polyphosphoinositide phosphatase Human genes 0.000 description 1
- 101100012902 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) FIG2 gene Proteins 0.000 description 1
- 101100233916 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) KAR5 gene Proteins 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000001186 cumulative effect Effects 0.000 description 1
- 238000013500 data storage Methods 0.000 description 1
- 238000013136 deep learning model Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 238000010801 machine learning Methods 0.000 description 1
- 238000013507 mapping Methods 0.000 description 1
- 238000010606 normalization Methods 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 230000000644 propagated effect Effects 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F16/00—Information retrieval; Database structures therefor; File system structures therefor
- G06F16/90—Details of database functions independent of the retrieved data types
- G06F16/95—Retrieval from the web
- G06F16/953—Querying, e.g. by the use of web search engines
- G06F16/9536—Search customisation based on social or collaborative filtering
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/042—Knowledge-based neural networks; Logical representations of neural networks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/0464—Convolutional networks [CNN, ConvNet]
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
- G06N3/084—Backpropagation, e.g. using gradient descent
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- Data Mining & Analysis (AREA)
- General Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Artificial Intelligence (AREA)
- Biophysics (AREA)
- Evolutionary Computation (AREA)
- Biomedical Technology (AREA)
- Molecular Biology (AREA)
- Computing Systems (AREA)
- Computational Linguistics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Mathematical Physics (AREA)
- Software Systems (AREA)
- Health & Medical Sciences (AREA)
- Databases & Information Systems (AREA)
- Information Retrieval, Db Structures And Fs Structures Therefor (AREA)
Abstract
Description
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202410613315.7A CN118193858B (zh) | 2024-05-17 | 2024-05-17 | 一种基于图卷积网络的协同过滤推荐方法及装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202410613315.7A CN118193858B (zh) | 2024-05-17 | 2024-05-17 | 一种基于图卷积网络的协同过滤推荐方法及装置 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN118193858A CN118193858A (zh) | 2024-06-14 |
CN118193858B true CN118193858B (zh) | 2024-08-13 |
Family
ID=91402089
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202410613315.7A Active CN118193858B (zh) | 2024-05-17 | 2024-05-17 | 一种基于图卷积网络的协同过滤推荐方法及装置 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN118193858B (zh) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112905894A (zh) * | 2021-03-24 | 2021-06-04 | 合肥工业大学 | 一种基于增强图学习的协同过滤推荐方法 |
CN112905900A (zh) * | 2021-04-02 | 2021-06-04 | 辽宁工程技术大学 | 基于图卷积注意力机制的协同过滤推荐算法 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113672811B (zh) * | 2021-08-24 | 2023-04-18 | 广东工业大学 | 一种基于拓扑信息嵌入的超图卷积协同过滤推荐方法、系统及计算机可读存储介质 |
CN114461922B (zh) * | 2021-12-22 | 2025-03-28 | 南京大学 | 一种基于图的混合消息传递机制的协同过滤信息推荐系统 |
CN115408605B (zh) * | 2022-08-08 | 2025-07-15 | 中国人民解放军网络空间部队信息工程大学 | 基于边信息和注意力机制的神经网络推荐方法及系统 |
CN116450954A (zh) * | 2023-04-23 | 2023-07-18 | 重庆邮电大学 | 一种基于图卷积网络的协同过滤推荐方法 |
CN117112921A (zh) * | 2023-07-10 | 2023-11-24 | 南京邮电大学 | 图协同过滤推荐模型的预测方法 |
-
2024
- 2024-05-17 CN CN202410613315.7A patent/CN118193858B/zh active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112905894A (zh) * | 2021-03-24 | 2021-06-04 | 合肥工业大学 | 一种基于增强图学习的协同过滤推荐方法 |
CN112905900A (zh) * | 2021-04-02 | 2021-06-04 | 辽宁工程技术大学 | 基于图卷积注意力机制的协同过滤推荐算法 |
Also Published As
Publication number | Publication date |
---|---|
CN118193858A (zh) | 2024-06-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN113256367B (zh) | 用户行为历史数据的商品推荐方法、系统、设备及介质 | |
CN107767262B (zh) | 信息处理方法、装置和计算机可读存储介质 | |
CN114491150B (zh) | 一种视频推荐方法、系统、设备及计算机可读存储介质 | |
CN116049459B (zh) | 跨模态互检索的方法、装置、服务器及存储介质 | |
CN105069172A (zh) | 兴趣标签生成方法 | |
US20180300336A1 (en) | Knowledge point structure-based search apparatus | |
CN111931054B (zh) | 一种基于改进残差结构的序列推荐方法和系统 | |
CN112734519B (zh) | 一种基于卷积自编码器网络的商品推荐方法 | |
CN114386513A (zh) | 一种集成评论与评分的交互式评分预测方法及系统 | |
CN117251622A (zh) | 对象推荐的方法、装置、计算机设备和存储介质 | |
CN117408736A (zh) | 基于改进的Stacking融合算法的企业资金需求挖掘方法和介质 | |
CN118279017A (zh) | 商品推荐方法、模型训练方法、装置以及设备 | |
CN116308551A (zh) | 基于数字金融ai平台的内容推荐方法及系统 | |
CN115760271A (zh) | 基于图神经网络的机电商品个性化推荐方法和系统 | |
CN118193858B (zh) | 一种基于图卷积网络的协同过滤推荐方法及装置 | |
CN118133220B (zh) | 基于事件知识图谱的舆情事件融合方法、装置及设备 | |
CN111310453B (zh) | 一种基于深度学习的用户主题向量化表示方法和系统 | |
CN113284027A (zh) | 团伙识别模型的训练方法、异常团伙识别方法及装置 | |
CN106294456B (zh) | 机器学习的方法和设备 | |
CN118779313A (zh) | 数据表信息的选择方法、数据查询方法及其设备 | |
CN118537034A (zh) | 一种潜客挖掘方法、装置及计算设备 | |
CN115098684A (zh) | 5g用户识别的网络模型建立方法、设备及存储介质 | |
CN118378661A (zh) | 时序图表示学习方法、装置、电子设备及可读存储介质 | |
CN114647794B (zh) | 协同过滤推荐方法、服务器及存储介质 | |
CN113626720B (zh) | 基于动作剪枝的推荐方法、装置、电子设备与存储介质 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CB03 | Change of inventor or designer information | ||
CB03 | Change of inventor or designer information |
Inventor after: Yang Xin Inventor after: Liu Hui Inventor after: Liu Ye Inventor after: Shen Die Inventor after: Su Bingbing Inventor after: Du Chenhao Inventor after: Ren Huiling Inventor before: Yang Xin Inventor before: Liu Hui Inventor before: Tian Yuanrong Inventor before: Liu Ye Inventor before: Shen Die Inventor before: Su Bingbing Inventor before: Du Chenhao Inventor before: Ren Huiling |