[go: up one dir, main page]

CN118185277A - Film material, film, lithium ion battery and preparation method of lithium ion battery - Google Patents

Film material, film, lithium ion battery and preparation method of lithium ion battery Download PDF

Info

Publication number
CN118185277A
CN118185277A CN202211604597.1A CN202211604597A CN118185277A CN 118185277 A CN118185277 A CN 118185277A CN 202211604597 A CN202211604597 A CN 202211604597A CN 118185277 A CN118185277 A CN 118185277A
Authority
CN
China
Prior art keywords
lithium
solid electrolyte
ion battery
negative electrode
positive electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202211604597.1A
Other languages
Chinese (zh)
Inventor
玛丽亚·马丁内兹
严润羽
周昱
洪响
莱乐·梅亚韦
尼古拉·博阿雷托
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huawei Technologies Co Ltd
Original Assignee
Huawei Technologies Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huawei Technologies Co Ltd filed Critical Huawei Technologies Co Ltd
Priority to CN202211604597.1A priority Critical patent/CN118185277A/en
Publication of CN118185277A publication Critical patent/CN118185277A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4235Safety or regulating additives or arrangements in electrodes, separators or electrolyte
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2371/00Characterised by the use of polyethers obtained by reactions forming an ether link in the main chain; Derivatives of such polymers
    • C08J2371/02Polyalkylene oxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2471/00Characterised by the use of polyethers obtained by reactions forming an ether link in the main chain; Derivatives of such polymers
    • C08J2471/02Polyalkylene oxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/36Sulfur-, selenium-, or tellurium-containing compounds
    • C08K5/43Compounds containing sulfur bound to nitrogen
    • C08K5/435Sulfonamides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/36Sulfur-, selenium-, or tellurium-containing compounds
    • C08K5/43Compounds containing sulfur bound to nitrogen
    • C08K5/44Sulfenamides
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Secondary Cells (AREA)

Abstract

Film material, film, lithium ion battery and preparation method of lithium ion battery. The film layer material comprises: polyethylene glycol dimethacrylate, sulfonamide compound and lithium salt. The sulfonamide compound can be used as a dispersing agent, so that the sulfonamide compound, polyethylene glycol dimethacrylate and lithium salt can be a uniform system. The sulfonamide compound can also be used as a plasticizer, intermolecular acting force exists between the sulfonamide compound and ether bond in polyethylene glycol dimethacrylate, and the intermolecular acting force can be used for the glass transition temperature of the polyethylene glycol dimethacrylate, so that the chain segment movement of the polyethylene glycol dimethacrylate is effectively promoted, and the film material has better Li+ conductivity. The film material has larger Li+ conductivity, and when the film material is applied to a lithium ion battery, a stable interface can be formed between the film formed by the film material and the anode/cathode, and the interface cannot be degraded along with deposition/stripping of lithium in the battery cycle process.

Description

膜层材料、膜层、锂离子电池及锂离子电池的制备方法Membrane material, membrane, lithium ion battery and method for preparing lithium ion battery

技术领域Technical Field

本申请涉及锂离子电池领域,尤其涉及膜层材料、膜层、锂离子电池及锂离子电池的制备方法。The present application relates to the field of lithium-ion batteries, and in particular to membrane materials, membrane layers, lithium-ion batteries, and methods for preparing lithium-ion batteries.

背景技术Background technique

锂离子电池(lithium ion cells and batteries)包括:正极、负极及电解质。锂离子电池依靠锂离子(Li+)在正极和负极之间往复的剥离或沉积实现电池的充电或放电。Lithium ion cells and batteries include: positive electrode, negative electrode and electrolyte. Lithium ion batteries rely on the reciprocating stripping or deposition of lithium ions (Li+) between the positive electrode and the negative electrode to achieve battery charging or discharging.

通常正极与负极之间通过电解质连接,作为锂离子电池的重要组成部分,电解质起到在正极与负极之间传导Li+及传导电流的作用。Usually, the positive electrode and the negative electrode are connected by an electrolyte. As an important component of lithium-ion batteries, the electrolyte plays the role of conducting Li+ and current between the positive electrode and the negative electrode.

现有的电解质多采用高分子量的聚合物,高分子量的聚合物的分散性能较差,需要加入小分子溶剂使其分散,小分子溶剂的存在会对锂离子电池的循环性能产生不良的影响,高分子量的聚合物的Li+电导率较低。Existing electrolytes mostly use high molecular weight polymers, which have poor dispersion properties and require the addition of small molecule solvents to disperse them. The presence of small molecule solvents will have an adverse effect on the cycle performance of lithium-ion batteries. High molecular weight polymers have low Li+ conductivity.

发明内容Summary of the invention

本申请实施例提供膜层材料、膜层、锂离子电池及锂离子电池的制备方法。膜层材料包括聚乙二醇二甲基丙烯酸酯、磺酰胺类化合物和锂盐使得膜层材料具有较高的Li+电导率。The embodiments of the present application provide a membrane material, a membrane, a lithium ion battery and a method for preparing a lithium ion battery. The membrane material includes polyethylene glycol dimethacrylate, a sulfonamide compound and a lithium salt, so that the membrane material has a high Li+ conductivity.

本申请实施例第一方面提供一种膜层材料,包括:聚乙二醇二甲基丙烯酸酯、磺酰胺类化合物和锂盐。A first aspect of an embodiment of the present application provides a membrane material, including: polyethylene glycol dimethacrylate, a sulfonamide compound and a lithium salt.

本实现方式,磺酰胺类化合物可以作为聚乙二醇二甲基丙烯酸酯分散剂,使得磺酰胺类化合物、聚乙二醇二甲基丙烯酸酯和锂盐可以形成均匀的体系。本实现方式提供的膜层材料无需采用小分子溶剂,因此,不会存在由于小分子溶剂的残留而引发的问题。In this implementation, the sulfonamide compound can be used as a polyethylene glycol dimethacrylate dispersant, so that the sulfonamide compound, polyethylene glycol dimethacrylate and lithium salt can form a uniform system. The membrane material provided by this implementation does not need to use a small molecule solvent, so there will be no problems caused by the residual small molecule solvent.

磺酰胺类化合物还可以作为聚乙二醇二甲基丙烯酸酯的塑化剂,磺酰胺类化合物与聚乙二醇二甲基丙烯酸酯中醚键之间存分子间作用力,这种分子间的作用力可以聚乙二醇二甲基丙烯酸酯的玻璃化转变温度,从而有效促进聚乙二醇二甲基丙烯酸酯的链段运动,使得膜层材料的具有较好的Li+电导率。由于,聚乙二醇二甲基丙烯酸酯的玻璃化转变温度降低,因此,本实现方式提供的膜层材料在室温、低温及高温下均可以体现出较大的Li+电导率。Sulfonamide compounds can also be used as plasticizers for polyethylene glycol dimethacrylate. There is an intermolecular force between the sulfonamide compounds and the ether bonds in polyethylene glycol dimethacrylate. This intermolecular force can increase the glass transition temperature of polyethylene glycol dimethacrylate, thereby effectively promoting the segment movement of polyethylene glycol dimethacrylate, so that the film material has better Li+ conductivity. Since the glass transition temperature of polyethylene glycol dimethacrylate is reduced, the film material provided by the present implementation can show a large Li+ conductivity at room temperature, low temperature and high temperature.

膜层材料具有较大的Li+电导率,将其应用在锂离子电池中,膜层材料形成的膜层与锂离子的正极/负极之间不会形成严重的电荷层。膜层材料形成的膜层可以与正极/负极可以形成稳定的界面,该界面在电池循环过程中不会随着锂的沉积/剥离而变差。本申请实施例提供的薄膜材料具有稳定锂沉积/剥离的作用。The film material has a large Li+ conductivity. When it is applied to a lithium-ion battery, a serious charge layer will not be formed between the film formed by the film material and the positive/negative electrode of lithium ions. The film formed by the film material can form a stable interface with the positive/negative electrode, and the interface will not deteriorate with the deposition/stripping of lithium during the battery cycle. The thin film material provided in the embodiment of the present application has the effect of stabilizing lithium deposition/stripping.

膜层材料中的聚乙二醇二甲基丙烯酸酯可以发生交联反应,使得膜层材料转化为具有一定韧性的膜层/交联体系。膜层/交联体系可以应用到锂离子电池中,起到抑制锂枝晶生长的作用。The polyethylene glycol dimethacrylate in the film material can undergo a cross-linking reaction, so that the film material is converted into a film/cross-linking system with a certain toughness. The film/cross-linking system can be applied to lithium-ion batteries to inhibit the growth of lithium dendrites.

结合第一方面的第一种实现方式,膜层材料还可以包括:乙二醇单甲醚甲基丙烯酸酯。In combination with the first implementation manner of the first aspect, the film layer material may further include: ethylene glycol monomethyl ether methacrylate.

本实现方式,乙二醇单甲醚甲基丙烯酸酯可以作为聚乙二醇二甲基丙烯酸酯可以发生交联反应的端基,起到终止聚乙二醇二甲基丙烯酸酯交联反应的作用,可以通过控制聚乙二醇二甲基丙烯酸酯和聚乙二醇单甲醚甲基丙烯酸酯的含量,来控制膜层材料交联后形成的交联体系的相对分子量。In this implementation, ethylene glycol monomethyl ether methacrylate can serve as an end group for polyethylene glycol dimethacrylate to undergo a cross-linking reaction, thereby terminating the cross-linking reaction of polyethylene glycol dimethacrylate. The relative molecular weight of the cross-linking system formed after the cross-linking of the film material can be controlled by controlling the content of polyethylene glycol dimethacrylate and polyethylene glycol monomethyl ether methacrylate.

结合第一方面的第二种实现方式,聚乙二醇二甲基丙烯酸酯(PEGDMA)与聚乙二醇单甲醚甲基丙烯酸酯(PEGMA)的摩尔比在1:10~10:1。In combination with the second implementation of the first aspect, the molar ratio of polyethylene glycol dimethacrylate (PEGDMA) to polyethylene glycol monomethyl ether methacrylate (PEGMA) is 1:10 to 10:1.

本实现方式,PEGDMA与PEGMA的摩尔比可以大于或等于1:10。与采用PEGDMA与PEGMA的摩尔比小于1:10的实现方式相比较,本实现方式提供的膜层材料中含有较多的PEGDMA,较多的PEGDMA可以交联得到结构较为松散的交联体系。因此,本实现方式提供的膜层材料交联后具有松散的交联体系,该交联后的膜层材料具有较大的Li+电导率。In this implementation, the molar ratio of PEGDMA to PEGMA can be greater than or equal to 1:10. Compared with the implementation in which the molar ratio of PEGDMA to PEGMA is less than 1:10, the membrane material provided by this implementation contains more PEGDMA, and more PEGDMA can be cross-linked to obtain a cross-linked system with a loose structure. Therefore, the membrane material provided by this implementation has a loose cross-linked system after cross-linking, and the cross-linked membrane material has a larger Li + conductivity.

PEGDMA与PEGMA的摩尔比可以小于或等于10:1。与采用PEGDMA与PEGMA的摩尔比大于10:1的实现方式相比较,本实现方式提供的膜层材料中含有较多的PEGMA,PEGMA可以在膜层材料交联反应的过程中可以作为端基,以终止交联反应。本实现方式可以减少在交联的过程形成交联度较大的交联体系而出现局部结晶的问题。The molar ratio of PEGDMA to PEGMA can be less than or equal to 10:1. Compared with the implementation method in which the molar ratio of PEGDMA to PEGMA is greater than 10:1, the membrane material provided by this implementation method contains more PEGMA, and PEGMA can be used as an end group during the cross-linking reaction of the membrane material to terminate the cross-linking reaction. This implementation method can reduce the problem of local crystallization caused by the formation of a cross-linking system with a large degree of cross-linking during the cross-linking process.

PEGDMA与PEGMA的摩尔比在1:10~10:1之间可以,兼顾膜层材料具有较大的Li+电导率和减少交联后的膜层材料的局部结晶问题。The molar ratio of PEGDMA to PEGMA can be between 1:10 and 10:1, taking into account both the larger Li + conductivity of the membrane material and the reduction of the local crystallization problem of the membrane material after cross-linking.

结合第一方面的第三种实现方式,磺酰胺类化合物分子结构为不对称结构。In combination with the third implementation of the first aspect, the molecular structure of the sulfonamide compound is an asymmetric structure.

本实现方式中,磺酰胺类化合物分子结构为不对称结构。具有不对称分子结构的磺酰胺类化合物不易发生分子间的紧密堆叠,磺酰胺类化合物具有较大的塑化性能。In this implementation, the molecular structure of the sulfonamide compound is an asymmetric structure. Sulfonamide compounds with an asymmetric molecular structure are not easy to be closely stacked between molecules, and the sulfonamide compounds have greater plasticizing properties.

结合第一方面的第四种实现方式,磺酰胺类化合物的取代基包括:甲基、乙基或醚类基团中的任意一种。In combination with the fourth implementation of the first aspect, the substituent of the sulfonamide compound includes: any one of a methyl group, an ethyl group or an ether group.

本实现方式,磺酰胺类化合物的取代基包括:甲基、乙基或醚类基团中的任意一种。含有甲基、乙基或醚类基团取代基的磺酰胺类化合物不易结晶,进而保证磺酰胺类化合物具有较大的塑化性能。In this implementation, the substituent of the sulfonamide compound includes any one of methyl, ethyl or ether groups. The sulfonamide compound containing methyl, ethyl or ether group substituents is not easy to crystallize, thereby ensuring that the sulfonamide compound has a greater plasticizing property.

结合第一方面的第五种实现方式,锂盐包括:双氟磺酰亚胺锂和双(三氟甲基)磺酰亚胺锂。In combination with the fifth implementation of the first aspect, the lithium salt includes: lithium bis(fluorosulfonyl)imide and lithium bis(trifluoromethyl)sulfonyl imide.

本实现方式,锂盐包括:双氟磺酰亚胺锂和双(三氟甲基)磺酰亚胺锂。双氟磺酰亚胺锂和双(三氟甲基)磺酰亚胺锂均具有氟离子(F-),F-可以在充放电过程中与负极中的锂金属反应,在负极表面形成含有氟化锂的SEI。含有氟化锂的SEI可使得达到负极的Li+均匀的沉积,或使得负极的中的Li均匀的剥离。In this implementation, the lithium salt includes: lithium bis(fluorosulfonyl)imide and lithium bis(trifluoromethyl)sulfonyl imide. Both lithium bis(fluorosulfonyl)imide and lithium bis(trifluoromethyl)sulfonyl imide have fluoride ions ( F- ) , which can react with lithium metal in the negative electrode during the charge and discharge process to form a SEI containing lithium fluoride on the surface of the negative electrode. The SEI containing lithium fluoride can achieve uniform deposition of Li + in the negative electrode, or uniform stripping of Li in the negative electrode.

双氟磺酰亚胺锂在聚氧化乙烯类聚合物中具有较大的溶解度,进而保证膜层材料中可以较多的锂离子,聚氧化乙烯类聚合物包括:聚乙二醇二甲基丙烯酸酯,或包括聚乙二醇二甲基丙烯酸酯和乙二醇单甲醚甲基丙烯酸酯。Lithium bis(fluorosulfonyl)imide has a large solubility in polyethylene oxide polymers, thereby ensuring that there are more lithium ions in the membrane material. The polyethylene oxide polymers include polyethylene glycol dimethacrylate, or polyethylene glycol dimethacrylate and ethylene glycol monomethyl ether methacrylate.

结合第一方面的第六种实现方式,双氟磺酰亚胺锂的质量(LiFSI)和双(三氟甲基)磺酰亚胺锂(LiTFSI)的质量比在1:2~2:1。In combination with the sixth implementation of the first aspect, the mass ratio of lithium bis(fluorosulfonyl)imide (LiFSI) to lithium bis(trifluoromethyl)sulfonyl imide (LiTFSI) is in the range of 1:2 to 2:1.

本实现方式,LiTFSI与LiFSI的质量比可以小于或等于2:1。与LiTFSI与LiFSI的质量比大于2:1的实现方式相比较,本实现方式提供的膜层材料含有较多的LiFSI,即有较多的Li+溶解在聚氧化乙烯类聚合物中,膜层材料具有较大的Li+电导率。In this implementation, the mass ratio of LiTFSI to LiFSI can be less than or equal to 2: 1. Compared with the implementation in which the mass ratio of LiTFSI to LiFSI is greater than 2: 1, the membrane material provided by this implementation contains more LiFSI, that is, more Li + is dissolved in the polyethylene oxide polymer, and the membrane material has a larger Li + conductivity.

LiTFSI与LiFSI的质量比可以大于或等于1:2。与LiTFSI与LiFSI的质量比小于12的实现方式相比较,本实现方式提供的膜层材料含有较多的LiTFSI。即有较多的F-溶解在聚氧化乙烯类聚合物中,将该膜层材料应用在锂离子电池中,可以形成的较多的含有LiF的SEI。聚氧化乙烯类聚合物包括:聚乙二醇二甲基丙烯酸酯,或包括聚乙二醇二甲基丙烯酸酯和乙二醇单甲醚甲基丙烯酸酯。LiTFSI与LiFSI的质量比可以在1:2~2:1可以膜层材料的Li+电导率及膜层材料中F-的含量。The mass ratio of LiTFSI to LiFSI can be greater than or equal to 1:2. Compared with the implementation method in which the mass ratio of LiTFSI to LiFSI is less than 12, the membrane material provided by this implementation method contains more LiTFSI. That is, more F- is dissolved in the polyethylene oxide polymer. When the membrane material is applied to a lithium-ion battery, more SEI containing LiF can be formed. Polyethylene oxide polymers include: polyethylene glycol dimethacrylate, or polyethylene glycol dimethacrylate and ethylene glycol monomethyl ether methacrylate. The mass ratio of LiTFSI to LiFSI can be 1:2 to 2:1, which can improve the Li + conductivity of the membrane material and the F- content in the membrane material.

结合第一方面的第七种实现方式,磺酰胺类化合物的质量分数在40%~60%。本实现方式,膜层材料中磺酰胺类化合物的质量分数可以大于或等于40%。与磺酰胺类化合物的质量分数小于40%的膜层材料相比较,本实现方式提供的膜层材料中含有较多的磺酰胺类化合物,较多的磺酰胺类化合物对聚氧化乙烯类聚合物产生的塑化性能较为显著,进而使得聚氧化乙烯类聚合物具有较大的链段运动,相应的,膜层材料具有较大的Li+电导率。聚氧化乙烯类聚合物包括:聚乙二醇二甲基丙烯酸酯,或包括聚乙二醇二甲基丙烯酸酯和乙二醇单甲醚甲基丙烯酸酯。In combination with the seventh implementation of the first aspect, the mass fraction of the sulfonamide compound is between 40% and 60%. In this implementation, the mass fraction of the sulfonamide compound in the film material can be greater than or equal to 40%. Compared with the film material with a mass fraction of the sulfonamide compound less than 40%, the film material provided by this implementation contains more sulfonamide compounds, and the plasticizing properties of more sulfonamide compounds on the polyethylene oxide polymer are more significant, thereby making the polyethylene oxide polymer have a larger chain segment movement, and accordingly, the film material has a larger Li+ conductivity. The polyethylene oxide polymer includes: polyethylene glycol dimethacrylate, or includes polyethylene glycol dimethacrylate and ethylene glycol monomethyl ether methacrylate.

膜层材料中磺酰胺类化合物的质量分数可以小于或等于60%。与磺酰胺类化合物的质量分数大于60%的膜层材料相比较,本实现方式提供的膜层材料中含有较少的磺酰胺类化合物。较少的磺酰胺类化合物可以使得膜层材料具有较大的粘性,在锂离子电池的形成过程中,本实现方式提供的膜层材料涂覆在固态电解质表面的难度较小。The mass fraction of the sulfonamide compound in the film material can be less than or equal to 60%. Compared with the film material with a mass fraction of the sulfonamide compound greater than 60%, the film material provided by the present implementation contains less sulfonamide compounds. Fewer sulfonamide compounds can make the film material have greater viscosity, and in the formation process of the lithium-ion battery, the film material provided by the present implementation is less difficult to coat on the surface of the solid electrolyte.

磺酰胺类化合物的质量分数可以在40%~60%,可以兼顾膜层材料的粘度和膜层材料的Li+电导率。The mass fraction of the sulfonamide compound can be 40% to 60%, which can take into account both the viscosity of the membrane material and the Li+ conductivity of the membrane material.

结合第一方面的第八种实现方式,聚乙二醇二甲基丙烯酸酯/乙二醇单甲醚甲基丙烯酸酯的相对分子质量在300~600。In combination with the eighth implementation of the first aspect, the relative molecular mass of polyethylene glycol dimethacrylate/ethylene glycol monomethyl ether methacrylate is between 300 and 600.

本实现方式,聚乙二醇二甲基丙烯酸酯/乙二醇单甲醚甲基丙烯酸酯的相对分子质量可以大于或等于300。与采用相对分子质量小于300的聚乙二醇二甲基丙烯酸酯/乙二醇单甲醚甲基丙烯酸酯的实现方式相比较,本实现方式中膜层材料采用具有较大相对分子质量的聚乙二醇二甲基丙烯酸酯/乙二醇单甲醚甲基丙烯酸酯。本实现方式提供的膜层材料的交联后形成的交联体系具有较大的韧性,将其应用到锂离子电池中,交联体系可以对锂枝晶产生较强的抑制作用。In this implementation, the relative molecular mass of polyethylene glycol dimethacrylate/ethylene glycol monomethyl ether methacrylate can be greater than or equal to 300. Compared with the implementation using polyethylene glycol dimethacrylate/ethylene glycol monomethyl ether methacrylate with a relative molecular mass less than 300, the membrane material in this implementation uses polyethylene glycol dimethacrylate/ethylene glycol monomethyl ether methacrylate with a larger relative molecular mass. The cross-linking system formed after cross-linking of the membrane material provided by this implementation has greater toughness, and when applied to lithium-ion batteries, the cross-linking system can have a strong inhibitory effect on lithium dendrites.

聚乙二醇二甲基丙烯酸酯/乙二醇单甲醚甲基丙烯酸酯的相对分子质量小于或等于600。与采用相对分子质量大于600的聚乙二醇二甲基丙烯酸酯/乙二醇单甲醚甲基丙烯酸酯的实现方式相比较,本实现方式中膜层材料采用具有较小相对分子质量的聚乙二醇二甲基丙烯酸酯/乙二醇单甲醚甲基丙烯酸酯。本实现方式提供的膜层材料具有较大的流动性,膜层材料与锂离子电池注液工艺联用的技术难度较小。The relative molecular mass of polyethylene glycol dimethacrylate/ethylene glycol monomethyl ether methacrylate is less than or equal to 600. Compared with the implementation method using polyethylene glycol dimethacrylate/ethylene glycol monomethyl ether methacrylate with a relative molecular mass greater than 600, the membrane material in this implementation method uses polyethylene glycol dimethacrylate/ethylene glycol monomethyl ether methacrylate with a smaller relative molecular mass. The membrane material provided by this implementation method has greater fluidity, and the technical difficulty of combining the membrane material with the lithium-ion battery injection process is relatively low.

聚乙二醇二甲基丙烯酸酯/乙二醇单甲醚甲基丙烯酸酯的相对分子质量可以在300~600可以兼顾膜层材料的流动性及交联后形成的交联体系的韧性。The relative molecular weight of polyethylene glycol dimethacrylate/ethylene glycol monomethyl ether methacrylate can be 300-600, which can take into account the fluidity of the film material and the toughness of the cross-linked system formed after cross-linking.

结合第一方面的第九种实现方式,聚乙二醇二甲基丙烯酸酯/乙二醇单甲醚甲基丙烯酸酯的聚合度在4~12。In combination with the ninth implementation of the first aspect, the degree of polymerization of polyethylene glycol dimethacrylate/ethylene glycol monomethyl ether methacrylate is 4-12.

本实现方式,聚乙二醇二甲基丙烯酸酯/乙二醇单甲醚甲基丙烯酸酯的聚合度可以大于或等于4。与采用聚合度小于4的聚乙二醇二甲基丙烯酸酯/乙二醇单甲醚甲基丙烯酸酯的实现方式相比较,本实现方式中膜层材料采用聚合度较大的聚乙二醇二甲基丙烯酸酯/乙二醇单甲醚甲基丙烯酸酯,聚合度较大的聚乙二醇二甲基丙烯酸酯/乙二醇单甲醚甲基丙烯酸酯交联后形成的交联体系结构松散,交联体系的链段运动较为显著,交联体系的Li+电导率较大。In this implementation, the degree of polymerization of polyethylene glycol dimethacrylate/ethylene glycol monomethyl ether methacrylate may be greater than or equal to 4. Compared with the implementation using polyethylene glycol dimethacrylate/ethylene glycol monomethyl ether methacrylate having a degree of polymerization less than 4, the membrane material in this implementation uses polyethylene glycol dimethacrylate/ethylene glycol monomethyl ether methacrylate with a larger degree of polymerization, and the cross-linking system structure formed after cross-linking of polyethylene glycol dimethacrylate/ethylene glycol monomethyl ether methacrylate with a larger degree of polymerization is loose, the chain segment movement of the cross-linking system is more significant, and the Li+ conductivity of the cross-linking system is larger.

聚乙二醇二甲基丙烯酸酯/乙二醇单甲醚甲基丙烯酸酯的聚合度可以小于或等于12。与采用聚合度大于12的聚乙二醇二甲基丙烯酸酯/乙二醇单甲醚甲基丙烯酸酯实现方式相比较,本实现方式中膜层材料采用具有较小聚合度的聚乙二醇二甲基丙烯酸酯/乙二醇单甲醚甲基丙烯酸酯,本实现方式提供的膜层材料具有较大的流动性,膜层材料与锂离子电池注液工艺联用的技术难度较小。The degree of polymerization of polyethylene glycol dimethacrylate/ethylene glycol monomethyl ether methacrylate may be less than or equal to 12. Compared with the implementation method using polyethylene glycol dimethacrylate/ethylene glycol monomethyl ether methacrylate having a degree of polymerization greater than 12, the membrane material in this implementation method uses polyethylene glycol dimethacrylate/ethylene glycol monomethyl ether methacrylate having a smaller degree of polymerization, and the membrane material provided by this implementation method has greater fluidity, and the technical difficulty of combining the membrane material with the lithium-ion battery injection process is relatively small.

聚乙二醇二甲基丙烯酸酯/乙二醇单甲醚甲基丙烯酸酯的聚合度可以在4~12可以兼顾膜层材料的流动性及交联后的膜层材料的Li+电导率。The degree of polymerization of polyethylene glycol dimethacrylate/ethylene glycol monomethyl ether methacrylate can be 4 to 12, which can take into account both the fluidity of the membrane material and the Li+ conductivity of the cross-linked membrane material.

结合第一方面的第十种实现方式,聚乙二醇二甲基丙烯酸酯/乙二醇单甲醚甲基丙烯酸酯包含的醚键与锂盐中包含的锂离子的摩尔比在10~30。In combination with the tenth implementation manner of the first aspect, the molar ratio of the ether bonds contained in polyethylene glycol dimethacrylate/ethylene glycol monomethyl ether methacrylate to the lithium ions contained in the lithium salt is 10-30.

本实现方式,膜层材料中的醚键与Li+的摩尔比可以大于或等于10。与膜层材料中的醚键与Li+的摩尔比小于10的实现方式相比较,本实现方式提供的膜层材料中含有较多的醚键,较多的醚键可以使的膜层材料具有较大的Li+电导率。In this implementation, the molar ratio of ether bonds to Li+ in the membrane material can be greater than or equal to 10. Compared with the implementation in which the molar ratio of ether bonds to Li+ in the membrane material is less than 10, the membrane material provided by this implementation contains more ether bonds, and more ether bonds can make the membrane material have a greater Li+ conductivity.

膜层材料中的醚键与Li+的摩尔比可以小于或等于30。与膜层材料中的醚键与Li+的摩尔比大于30的实现方式相比较,本实现方式提供的膜层材料中含有较少的醚键,即膜层材料中聚乙二醇二甲基丙烯酸酯/乙二醇单甲醚甲基丙烯酸酯的相对分子质量较小,或聚乙二醇二甲基丙烯酸酯/乙二醇单甲醚甲基丙烯酸酯的聚合度较小。相应的,本实现方式提供的膜层材料的粘性较低,膜层材料与锂离子电池注液工艺联用的技术难度较小。The molar ratio of ether bonds to Li+ in the membrane material can be less than or equal to 30. Compared with the implementation method in which the molar ratio of ether bonds to Li+ in the membrane material is greater than 30, the membrane material provided by this implementation method contains fewer ether bonds, that is, the relative molecular mass of polyethylene glycol dimethacrylate/ethylene glycol monomethyl ether methacrylate in the membrane material is smaller, or the degree of polymerization of polyethylene glycol dimethacrylate/ethylene glycol monomethyl ether methacrylate is smaller. Accordingly, the viscosity of the membrane material provided by this implementation method is lower, and the technical difficulty of combining the membrane material with the lithium-ion battery injection process is lower.

作为一种可行性实现方式,膜层材料中的醚键与Li+的摩尔比可以在10~30,可以兼顾膜层材料的粘度和膜层材料的Li+电导率。As a feasible implementation method, the molar ratio of ether bonds to Li+ in the membrane material can be 10 to 30, which can take into account both the viscosity of the membrane material and the Li+ conductivity of the membrane material.

结合第一方面的第十一种实现方式,锂盐的浓度小于或等于25%。In combination with the eleventh implementation manner of the first aspect, the concentration of the lithium salt is less than or equal to 25%.

本实现方式,磺酰胺类化合物对聚乙二醇二甲基丙烯酸酯/乙二醇单甲醚甲基丙烯酸酯的塑化作用,从而有效促进聚乙二醇二甲基丙烯酸酯/乙二醇单甲醚甲基丙烯酸酯的链段运动,进而改善Li+在聚乙二醇二甲基丙烯酸酯/乙二醇单甲醚甲基丙烯酸酯中的迁移性能。因此,本申请实施例提供的膜层材料采用的锂盐的质量分数可以小于或等于25%,膜层材料也可以具有较大的Li+电导率。In this implementation, the sulfonamide compound has a plasticizing effect on polyethylene glycol dimethacrylate/ethylene glycol monomethyl ether methacrylate, thereby effectively promoting the segment movement of polyethylene glycol dimethacrylate/ethylene glycol monomethyl ether methacrylate, thereby improving the migration performance of Li+ in polyethylene glycol dimethacrylate/ethylene glycol monomethyl ether methacrylate. Therefore, the mass fraction of lithium salt used in the membrane material provided in the embodiment of the present application can be less than or equal to 25%, and the membrane material can also have a large Li+ conductivity.

结合第一方面的第十二种实现方式,膜层材料具有流动性。In combination with the twelfth implementation manner of the first aspect, the membrane layer material has fluidity.

本实现方式,膜层材料具有流动性,进而使得膜层材料可与锂离子电池注液工艺联用。In this implementation, the membrane material has fluidity, so that the membrane material can be used in conjunction with the lithium-ion battery injection process.

结合第一方面的第十三种实现方式,膜层材料还包括:隔膜材料。In combination with the thirteenth implementation manner of the first aspect, the membrane layer material also includes: a diaphragm material.

本实现方式,膜层材料还包括隔膜材料,隔膜材料具有允许Li+通过,隔绝e-的作用。因此,膜层材料也具有允许Li+通过,隔绝e-的作用。In this implementation, the membrane material also includes a diaphragm material, and the diaphragm material has the function of allowing Li+ to pass through and isolating e-. Therefore, the membrane material also has the function of allowing Li+ to pass through and isolating e-.

本申请实施例第二方面提供一种膜层,膜层采用第一方面提供的膜层材料。A second aspect of an embodiment of the present application provides a film layer, which adopts the film layer material provided by the first aspect.

其中,第二方面任一种实现方式所能带来的效果可参阅上述第一方面任意一种可能的实现方式带来的效果。Among them, the effect that can be brought about by any implementation method of the second aspect can refer to the effect brought about by any possible implementation method of the above-mentioned first aspect.

结合第二方面的第一种实现方式,膜层具有自支撑性能。In combination with the first implementation manner of the second aspect, the membrane layer has self-supporting properties.

本实现方式,膜层具有自支撑性能,将膜层应用到锂离子电池的正极与负极之间,可以较少由于膜层出现褶皱而引起的锂离子电池的正极与负极导通问题。In this implementation, the film layer has self-supporting properties. When the film layer is applied between the positive electrode and the negative electrode of the lithium-ion battery, the conduction problem between the positive electrode and the negative electrode of the lithium-ion battery caused by wrinkles in the film layer can be reduced.

本申请实施例第三方面提供一种锂离子电池,包括:正极、负极、复合固态电解质,复合固态电解质设置在正极与负极之间,复合固态电解质采用第一方面的第十三种实现方式提供的膜层材料。A third aspect of an embodiment of the present application provides a lithium-ion battery, including: a positive electrode, a negative electrode, and a composite solid electrolyte, wherein the composite solid electrolyte is arranged between the positive electrode and the negative electrode, and the composite solid electrolyte adopts the membrane material provided in the thirteenth implementation method of the first aspect.

本实现方中,复合固态电解质采用膜层材料,包括:聚乙二醇二甲基丙烯酸酯、磺酰胺类化合物、锂盐和隔膜材料。In the present implementation, the composite solid electrolyte uses a membrane material including polyethylene glycol dimethacrylate, a sulfonamide compound, a lithium salt and a diaphragm material.

复合固态电解质采用膜层材料,其中膜层材料包括:隔膜材料,隔膜材料具有允许锂离子通过,阻隔电子的作用,因此,复合固态电解质也具有允许锂离子通过,阻隔电子的作用。The composite solid electrolyte uses membrane materials, wherein the membrane materials include: diaphragm materials. The diaphragm materials have the function of allowing lithium ions to pass through and blocking electrons. Therefore, the composite solid electrolyte also has the function of allowing lithium ions to pass through and blocking electrons.

磺酰胺类化合物可以作为聚乙二醇二甲基丙烯酸酯分散剂,使得磺酰胺类化合物、锂盐、膜层材料可以形成均匀的体系。本实现方式提供的膜层材料无需采用小分子溶剂,因此,不会存在由于小分子溶剂的残留而引发的问题。Sulfonamide compounds can be used as polyethylene glycol dimethacrylate dispersants, so that sulfonamide compounds, lithium salts, and membrane materials can form a uniform system. The membrane material provided by this implementation does not need to use small molecule solvents, so there will be no problems caused by residual small molecule solvents.

磺酰胺类化合物还可以作为聚乙二醇二甲基丙烯酸酯的塑化剂,磺酰胺类化合物与聚乙二醇二甲基丙烯酸酯中醚键之间存分子间作用力,这种分子间的作用力可以聚乙二醇二甲基丙烯酸酯的玻璃化转变温度,从而有效促进聚乙二醇二甲基丙烯酸酯的链段运动,使得复合固态电解质的具有较好的Li+电导率。Sulfonamide compounds can also be used as plasticizers for polyethylene glycol dimethacrylate. There is an intermolecular force between the sulfonamide compounds and the ether bonds in polyethylene glycol dimethacrylate. This intermolecular force can increase the glass transition temperature of polyethylene glycol dimethacrylate, thereby effectively promoting the chain segment movement of polyethylene glycol dimethacrylate, so that the composite solid electrolyte has better Li+ conductivity.

复合固态电解质具有较大的Li+电导率,将其应用在锂离子电池中,复合固态电解质与正极/负极之间不会形成严重的电荷层。复合固态电解质与正极/负极可以形成稳定的界面,该界面在电池循环过程中不会随着锂的沉积/剥离而变差,使得锂离子电池具有稳定的循环性能。Composite solid electrolytes have a large Li+ conductivity. When used in lithium-ion batteries, no serious charge layer will be formed between the composite solid electrolyte and the positive/negative electrode. Composite solid electrolytes can form a stable interface with the positive/negative electrode, which will not deteriorate with the deposition/stripping of lithium during the battery cycle, so that lithium-ion batteries have stable cycle performance.

复合固态电解质具有一定的韧性,可以抑制负极表面锂枝晶的生长。因此,本实现方式提供的锂离子电池,可以采用具有较高比容量的锂金属负极,进而保证锂离子电池具有较高的能量密度。The composite solid electrolyte has a certain toughness and can inhibit the growth of lithium dendrites on the negative electrode surface. Therefore, the lithium-ion battery provided by this implementation can use a lithium metal negative electrode with a higher specific capacity, thereby ensuring that the lithium-ion battery has a higher energy density.

负极与复合固态电解质接触。复合固态电解质中不含有镧锆等金属,即使锂离子电池的负极采用锂金属,复合固态电解质与锂金属发生副反应较少。复合固态电解质与锂金属负极经过多次充放电的循环后仍可以具有较稳定的界面,锂离子电池在多次充放电的循环后仍可以具有较小的界面阻抗。The negative electrode is in contact with the composite solid electrolyte. The composite solid electrolyte does not contain metals such as lanthanum and zirconium. Even if the negative electrode of the lithium-ion battery uses lithium metal, the composite solid electrolyte and lithium metal have fewer side reactions. The composite solid electrolyte and the lithium metal negative electrode can still have a relatively stable interface after multiple charge and discharge cycles, and the lithium-ion battery can still have a small interface impedance after multiple charge and discharge cycles.

本申请实施例第四方面提供一种锂离子电池包括:正极、负极、固态电解质和至少一层保护层。固态电解质设置在正极与负极之间;保护层设置在固态电解质与正极之间,和/或,固态电解质与负极之间,保护层采用第一方面提供的膜层材料。The fourth aspect of the embodiment of the present application provides a lithium-ion battery comprising: a positive electrode, a negative electrode, a solid electrolyte and at least one protective layer. The solid electrolyte is arranged between the positive electrode and the negative electrode; the protective layer is arranged between the solid electrolyte and the positive electrode, and/or between the solid electrolyte and the negative electrode, and the protective layer adopts the film material provided in the first aspect.

本实现方中,保护层采用膜层材料,包括:聚乙二醇二甲基丙烯酸酯、磺酰胺类化合物和锂盐。In the present implementation, the protective layer adopts a film material including polyethylene glycol dimethacrylate, a sulfonamide compound and a lithium salt.

磺酰胺类化合物可以作为聚乙二醇二甲基丙烯酸酯分散剂,使得磺酰胺类化合物、锂盐可以形成均匀的体系。本实现方式提供的膜层材料无需采用小分子溶剂,因此,不会存在由于小分子溶剂的残留而引发的问题。Sulfonamide compounds can be used as polyethylene glycol dimethacrylate dispersants, so that sulfonamide compounds and lithium salts can form a uniform system. The membrane material provided by this implementation does not need to use small molecule solvents, so there will be no problems caused by residual small molecule solvents.

磺酰胺类化合物还可以作为聚乙二醇二甲基丙烯酸酯的塑化剂,磺酰胺类化合物与聚乙二醇二甲基丙烯酸酯中醚键之间存分子间作用力,这种分子间的作用力可以聚乙二醇二甲基丙烯酸酯的玻璃化转变温度,从而有效促进聚乙二醇二甲基丙烯酸酯的链段运动,使得保护层的具有较好的Li+电导率。Sulfonamide compounds can also be used as plasticizers for polyethylene glycol dimethacrylate. There is an intermolecular force between the sulfonamide compounds and the ether bonds in polyethylene glycol dimethacrylate. This intermolecular force can increase the glass transition temperature of polyethylene glycol dimethacrylate, thereby effectively promoting the chain segment movement of polyethylene glycol dimethacrylate, so that the protective layer has better Li+ conductivity.

保护层具有较大的Li+电导率,将其应用在锂离子电池中,保护层与正极/负极之间不会形成严重的电荷层。保护层与正极/负极可以形成稳定的界面,该界面在电池循环过程中不会随着锂的沉积/剥离而变差,使得锂离子电池具有稳定的循环性能。The protective layer has a large Li+ conductivity. When it is used in lithium-ion batteries, no serious charge layer will be formed between the protective layer and the positive/negative electrode. The protective layer and the positive/negative electrode can form a stable interface, which will not deteriorate with the deposition/stripping of lithium during the battery cycle, so that the lithium-ion battery has stable cycle performance.

保护层具有一定的韧性起到抑制锂枝晶生长的作用。因此,保护层可以起到保护固态电解质的作用。本实现方式提供的锂离子电池,可以采用具有较高比容量的锂金属负极,进而保证锂离子电池具有较高的能量密度。The protective layer has a certain toughness to inhibit the growth of lithium dendrites. Therefore, the protective layer can protect the solid electrolyte. The lithium-ion battery provided by this implementation can use a lithium metal negative electrode with a higher specific capacity, thereby ensuring that the lithium-ion battery has a higher energy density.

保护层中不含有镧锆等金属,即使锂离子电池的负极采用锂金属,保护层与锂金属发生副反应较少。保护层与锂金属负极经过多次充放电的循环后仍可以具有较稳定的界面,锂离子电池在多次充放电的循环后仍可以具有较小的界面阻抗。The protective layer does not contain metals such as lanthanum and zirconium. Even if the negative electrode of the lithium-ion battery uses lithium metal, the protective layer and the lithium metal have less side reactions. The protective layer and the lithium metal negative electrode can still have a relatively stable interface after multiple charge and discharge cycles, and the lithium-ion battery can still have a small interface impedance after multiple charge and discharge cycles.

本申请实施例第五方面提供一种锂离子电池的制备方法,包括:在第一方面提供的膜层材料中加入引发剂,得到聚合物前驱体;利用正极、负极和聚合物前驱体,形成锂离子电池;锂离子电池包括:正极、负极,和设置在正极与负极之间的复合固态电解质,复合固态电解质由膜层材料形成。A fifth aspect of an embodiment of the present application provides a method for preparing a lithium-ion battery, comprising: adding an initiator to the film material provided in the first aspect to obtain a polymer precursor; using a positive electrode, a negative electrode and a polymer precursor to form a lithium-ion battery; the lithium-ion battery comprises: a positive electrode, a negative electrode, and a composite solid electrolyte arranged between the positive electrode and the negative electrode, and the composite solid electrolyte is formed by the film material.

结合第五方面的第一种实现方式,利用正极、负极和聚合物前驱体,形成锂离子电池的步骤包括:处理聚合物前驱体,以使得聚合物前驱体形成复合固态电解质;组装正极、负极和复合固态电解质得到锂离子电池。In combination with the first implementation method of the fifth aspect, the steps of forming a lithium-ion battery using a positive electrode, a negative electrode and a polymer precursor include: treating the polymer precursor so that the polymer precursor forms a composite solid electrolyte; assembling the positive electrode, the negative electrode and the composite solid electrolyte to obtain a lithium-ion battery.

结合第五方面的第二种实现方式,利用正极、负极和聚合物前驱体,形成锂离子电池的步骤包括:组装正极、负极和聚合物前驱体;处理聚合物前驱体,以使得聚合物前驱体形成复合固态电解质。In combination with the second implementation method of the fifth aspect, the steps of forming a lithium-ion battery using a positive electrode, a negative electrode and a polymer precursor include: assembling the positive electrode, the negative electrode and the polymer precursor; and processing the polymer precursor so that the polymer precursor forms a composite solid electrolyte.

其中,第五方面任一种实现方式所能带来的效果可参阅上述第一方面任意一种可能的实现方式带来的效果。Among them, the effect that can be brought about by any implementation method of the fifth aspect can refer to the effect brought about by any possible implementation method of the first aspect mentioned above.

本申请实施例第六方面提供一种锂离子电池的制备方法,包括:在第一方面的第十三种实现方式提供的膜层材料中加入引发剂,得到聚合物前驱体;利用正极、负极、固态电解质及聚合物前驱体形成锂离子电池,锂离子电池包括:正极、负极、固态电解质和至少一层保护层,固态电解质设置在正极和负极之间,至少一层保护层由膜层材料形成,保护层设置在固态电解质与正极之间,和/或,固态电解质与负极之间。A sixth aspect of an embodiment of the present application provides a method for preparing a lithium-ion battery, comprising: adding an initiator to the film material provided in the thirteenth implementation method of the first aspect to obtain a polymer precursor; using a positive electrode, a negative electrode, a solid electrolyte and a polymer precursor to form a lithium-ion battery, the lithium-ion battery comprising: a positive electrode, a negative electrode, a solid electrolyte and at least one protective layer, the solid electrolyte is arranged between the positive electrode and the negative electrode, at least one protective layer is formed by the film material, and the protective layer is arranged between the solid electrolyte and the positive electrode, and/or, between the solid electrolyte and the negative electrode.

结合第六方面的第一种实现方式,利用正极,负极及表面涂覆有聚合物前驱体的固态电解质形成锂离子电池的步骤包括:在固态电解质表面涂覆聚合物前驱体;处理聚合物前驱体,以使得聚合物前驱体形成保护层;组装正极、负极和表面具有保护层的固态电解质,得到锂离子电池。In combination with the first implementation method of the sixth aspect, the steps of forming a lithium-ion battery using a positive electrode, a negative electrode and a solid electrolyte coated with a polymer precursor on the surface include: coating a polymer precursor on the surface of the solid electrolyte; treating the polymer precursor so that the polymer precursor forms a protective layer; assembling the positive electrode, the negative electrode and the solid electrolyte with a protective layer on the surface to obtain a lithium-ion battery.

结合第六方面的第二种实现方式,利用正极、负极、固态电解质及聚合物前驱体形成锂离子电池的步骤包括:组装正极、负极、固态电解质及聚合物前驱体;处理聚合物前驱体,以使得聚合物前驱体形成保护层。In combination with the second implementation method of the sixth aspect, the steps of forming a lithium-ion battery using a positive electrode, a negative electrode, a solid electrolyte and a polymer precursor include: assembling the positive electrode, the negative electrode, the solid electrolyte and the polymer precursor; processing the polymer precursor so that the polymer precursor forms a protective layer.

其中,第六方面任一种实现方式所能带来的效果可参阅上述第一方面任意一种可能的实现方式带来的效果。Among them, the effect that can be brought about by any implementation method of the sixth aspect can refer to the effect brought about by any possible implementation method of the above-mentioned first aspect.

附图说明BRIEF DESCRIPTION OF THE DRAWINGS

图1为锂离子电池的示意图;FIG1 is a schematic diagram of a lithium-ion battery;

图2为锂离子电池负极材料克容量及能达到的理论体积能量密度的结果图;FIG2 is a graph showing the gram capacity of negative electrode materials for lithium-ion batteries and the theoretical volume energy density that can be achieved;

图3为现有技术一的实验结果图;FIG3 is a diagram showing the experimental results of the prior art 1;

图4为现有技术二的实验结果图;FIG4 is a diagram showing the experimental results of the second prior art;

图5为现有技术三的实验结果图;FIG5 is a diagram showing the experimental results of the prior art three;

图6为现有技术四的实验结果图;FIG6 is a diagram showing the experimental results of the prior art four;

图7为本申请实施例提供的膜层材料的示意图;FIG7 is a schematic diagram of a film material provided in an embodiment of the present application;

图8A为PEGMA的结构式;FIG8A is the structural formula of PEGMA;

图8B为PEGDMA的结构式;FIG8B is the structural formula of PEGDMA;

图9为本申请实施例提供的PEGDMA与PEGMA形成的交联体系;FIG9 is a cross-linking system formed by PEGDMA and PEGMA provided in an embodiment of the present application;

图10为本申请实施例提供的磺酰胺类化合物的结构式;FIG10 is a structural formula of a sulfonamide compound provided in an embodiment of the present application;

图11为锂离子电池的示意图;FIG11 is a schematic diagram of a lithium-ion battery;

图12为第一锂离子电池和第二锂离子循环性能测试结果图;FIG12 is a graph showing the cycling performance test results of the first lithium ion battery and the second lithium ion battery;

图13为第三锂离子电池的循环性能测试结果图;FIG13 is a graph showing the cycle performance test results of a third lithium-ion battery;

图14为第四锂离子电池的离子电导率-温度曲线;FIG14 is an ionic conductivity-temperature curve of a fourth lithium ion battery;

图15为本申请实施例提供的保护层的示意图;FIG15 is a schematic diagram of a protective layer provided in an embodiment of the present application;

图16为本申请实施例提供的保护层/复合固态电解质的示意图;FIG16 is a schematic diagram of a protective layer/composite solid electrolyte provided in an embodiment of the present application;

图17为本申请实施例提供的复合固态电解质的示意图;FIG17 is a schematic diagram of a composite solid electrolyte provided in an embodiment of the present application;

图18为本申请实施例提供的锂离子电池的示意图;FIG18 is a schematic diagram of a lithium-ion battery provided in an embodiment of the present application;

图19为Li|LLZO|Li和Li|PE|LLZO|PE|Li的阻抗测试结果图;FIG19 is a diagram showing the impedance test results of Li|LLZO|Li and Li|PE|LLZO|PE|Li;

图20为Li|LLZO|Li循环性能测试结果图;FIG20 is a graph showing the test results of Li|LLZO|Li cycle performance;

图21为Li|PE|LLZO|PE|Li循环性能测试结果图;FIG21 is a graph showing the test results of Li|PE|LLZO|PE|Li cycle performance;

图22为本申请实施例提供的锂离子电池的示意图;FIG22 is a schematic diagram of a lithium-ion battery provided in an embodiment of the present application;

图23为Li|复合PE|Li循环性能测试结果图;FIG23 is a graph showing the test results of Li|composite PE|Li cycle performance;

图24为Li|复合PE|Li循环性能测试结果图;FIG24 is a graph showing the test results of Li|composite PE|Li cycle performance;

图25为本申请实施例提供的离子电池制备方法的流程图;FIG25 is a flow chart of a method for preparing an ion battery provided in an embodiment of the present application;

图26为图25提供的制备方法的工艺流程图;FIG26 is a process flow chart of the preparation method provided in FIG25 ;

图27为本申请实施例提供的磺酰胺类化合物的制备流程;FIG27 is a preparation process of sulfonamide compounds provided in an embodiment of the present application;

图28为本申请实施例提供的锂离子电池的剖面图;FIG28 is a cross-sectional view of a lithium-ion battery provided in an embodiment of the present application;

图29为本申请实施例提供的电芯的剖面图;FIG29 is a cross-sectional view of a battery cell provided in an embodiment of the present application;

图30为本申请实施例提供的离子电池制备方法的流程图;FIG30 is a flow chart of a method for preparing an ion battery provided in an embodiment of the present application;

图31为图30提供的制备方法的工艺流程图;FIG31 is a process flow chart of the preparation method provided in FIG30 ;

图32为本申请实施例提供的锂离子电池的剖面图;FIG32 is a cross-sectional view of a lithium-ion battery provided in an embodiment of the present application;

图33为本申请实施例提供的电芯的剖面图。FIG33 is a cross-sectional view of a battery cell provided in an embodiment of the present application.

具体实施方式Detailed ways

下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。The technical solutions in the embodiments of the present application will be described below in conjunction with the drawings in the embodiments of the present application. Obviously, the described embodiments are only part of the embodiments of the present application, rather than all of the embodiments.

以下,术语“第一”、“第二”等仅出于描述目的对功能和作用基本相同的相同项或相似项进行区分,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”等的特征可以明示或者隐含地包括一个或者更多个该特征。In the following, the terms "first", "second", etc. are used only for descriptive purposes to distinguish between identical or similar items with substantially identical functions and effects, and are not to be understood as indicating or implying relative importance or implicitly indicating the number of the indicated technical features. Thus, a feature defined as "first", "second", etc. may explicitly or implicitly include one or more of the features.

并且,在本申请的描述中,除非另有说明,“多个”是指两个或多于两个。Also, in the description of the present application, unless otherwise specified, “plurality” means two or more than two.

此外,本申请中,“上”、“下”、“左”、“右”、“水平”以及“竖直”等方位术语是相对于附图中的部件示意置放的方位来定义的,应当理解到,这些方向性术语是相对的概念,它们用于相对于的描述和澄清,其可以根据附图中部件所放置的方位的变化而相应地发生变化。除非另有明确的规定和限定,术语“连接”应做广义理解,例如:“连接”可以是固定连接,也可以是可拆卸连接,或成一体;可以是直接相连,也可以通过中间媒介间接相连。In addition, in this application, directional terms such as "upper", "lower", "left", "right", "horizontal" and "vertical" are defined relative to the positions of the components in the drawings. It should be understood that these directional terms are relative concepts. They are used for relative description and clarification, and they can change accordingly according to the changes in the positions of the components in the drawings. Unless otherwise clearly specified and limited, the term "connection" should be understood in a broad sense, for example: "connection" can be a fixed connection, a detachable connection, or an integral connection; it can be directly connected or indirectly connected through an intermediate medium.

同时,在本申请实施例中,“示例性的”或者“例如”等词用于表示作例子、例证或说明。本申请实施例中被描述为“示例性的”或者“例如”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。确切而言,使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念,便于理解。Meanwhile, in the embodiments of the present application, words such as "exemplary" or "for example" are used to indicate examples, illustrations or descriptions. Any embodiment or design described as "exemplary" or "for example" in the embodiments of the present application should not be interpreted as being more preferred or more advantageous than other embodiments or designs. Specifically, the use of words such as "exemplary" or "for example" is intended to present related concepts in a concrete manner for ease of understanding.

首先对本申请实施例涉及的概念作以说明:First, the concepts involved in the embodiments of the present application are explained:

能量密度(energy density),被定义为单位质量/体积锂离子电池所储存的电能。Energy density is defined as the amount of electrical energy stored per unit mass/volume of a lithium-ion battery.

比容量(specific capacity),单位质量的锂离子电池/正极/负极所能放出的电量。比容量与能量密度正向相关。比容量可以包括面容量和克容量。Specific capacity refers to the amount of electricity that can be discharged by a unit mass of lithium-ion battery/positive electrode/negative electrode. Specific capacity is positively correlated with energy density. Specific capacity can include surface capacity and gram capacity.

链段运动(segmental motion),大分子中链段、支链或侧基等小尺度结构单元,内旋转构象改变和局部分子运动。Segmental motion, small-scale structural units such as segments, branches or side groups in macromolecules, internal rotation conformational changes and local molecular motion.

玻璃化转变温度(glass transition temperature,Tg),是指由玻璃态转变为高弹态所对应的温度。Tg是分子链段能运动的最低温度。随着电化学储能市场以及动力电池市场的不断扩张,未来应用场景如电动汽车(electrical vehicle,EV)以及储能领域对于二次电池((rechargeable battery)性能方面的要求不断升高。Glass transition temperature (Tg) refers to the temperature corresponding to the transition from glass state to highly elastic state. Tg is the lowest temperature at which molecular chain segments can move. With the continuous expansion of the electrochemical energy storage market and the power battery market, future application scenarios such as electric vehicles (EV) and energy storage fields have increasing requirements for the performance of secondary batteries (rechargeable batteries).

锂离子电池(lithium ion cells and batteries)锂离子电池是以含锂的化合物作正极,在充放电过程中,正极电离出的锂离子(Li+)在正极和负极之间的往返剥离和沉积实现充放电的一种二次电池。Lithium ion batteries (lithium ion cells and batteries) are secondary batteries that use lithium-containing compounds as positive electrodes. During the charge and discharge process, the lithium ions (Li+) ionized from the positive electrode are stripped and deposited back and forth between the positive and negative electrodes to achieve charge and discharge.

室温,温度在20℃~30℃。Room temperature, temperature is between 20℃ and 30℃.

低温,温度小于20℃。高温,温度大于30℃。Low temperature means the temperature is less than 20℃. High temperature means the temperature is greater than 30℃.

请参阅图1,锂离子电池(lithium ion cells and batteries)包括:正极11负极12和电解质13。通过,锂离子电池通过Li+在正极11和负极12之间往返剥离和沉积实现充电/放电。Please refer to FIG1 , a lithium ion cell and battery comprises a positive electrode 11, a negative electrode 12 and an electrolyte 13. The lithium ion cell and battery realizes charging/discharging by back and forth stripping and deposition of Li+ between the positive electrode 11 and the negative electrode 12.

电解质13可以包括:固态电解质或液态电解质。有机电极液是一种常用的液态电解质。The electrolyte 13 may include a solid electrolyte or a liquid electrolyte. Organic electrode liquid is a commonly used liquid electrolyte.

有机电极液可以包括:高纯度的有机溶剂、电解质锂盐。其中,电解质锂盐可以是但不六氟磷酸锂(LiPF6)、四氟硼酸锂(LiBF4)等。The organic electrode solution may include: a high-purity organic solvent and an electrolyte lithium salt, wherein the electrolyte lithium salt may be lithium hexafluorophosphate (LiPF 6 ), lithium tetrafluoroborate (LiBF 4 ) or the like.

三元正极材料或磷酸铁锂(LiFePO4)正极|有机电解液|石墨负极是一个较为成熟的锂离子电池。该锂离子电池的能量密度可以达到280Wh/kg~300Wh/kg。其中,三元正极材料可以是但不限于:钴酸锂(LiCoO2)镍钴锰酸锂(LiNixCoyMn1-x-yO2)。The ternary cathode material or lithium iron phosphate (LiFePO 4 ) cathode|organic electrolyte|graphite anode is a relatively mature lithium-ion battery. The energy density of the lithium-ion battery can reach 280Wh/kg to 300Wh/kg. Among them, the ternary cathode material can be but not limited to: lithium cobalt oxide (LiCoO 2 ) lithium nickel cobalt manganese oxide (LiNi x Co y Mn 1-xy O 2 ).

采用有机电极液的锂离子电池可以称之为有机电极液体系锂离子电池。现有的有机电极液体系锂离子电池的能量密度已接近极限,难以突破瓶颈。Lithium-ion batteries using organic electrode liquids can be called organic electrode liquid system lithium-ion batteries. The energy density of existing organic electrode liquid system lithium-ion batteries has reached its limit and it is difficult to break through the bottleneck.

一方面是正极采用的材料和负极采用材料几乎达到了各自理论比容量的极限。另一方面是因为锂离子电池的安全性能随着正极/负极选用高活性、高比容量的材料而下降。On the one hand, the materials used for the positive electrode and the negative electrode have almost reached the limits of their respective theoretical specific capacities. On the other hand, the safety performance of lithium-ion batteries decreases as the positive/negative electrode materials with high activity and high specific capacity are used.

为了适应不同的应用场景,需要进一步提升锂离子电池的能量密度。例如:以电动飞机的应用场景为例,电池的能量密度需要达到400Wh/kg以上。In order to adapt to different application scenarios, the energy density of lithium-ion batteries needs to be further improved. For example, in the application scenario of electric aircraft, the energy density of the battery needs to reach more than 400Wh/kg.

可以对负极采用的材料作进一步的改进,以进一步提升锂离子电池的能量密度。Further improvements can be made to the materials used in the negative electrode to further increase the energy density of lithium-ion batteries.

锂金属由于具有极高的比容量(锂金属的比容量可以达到3860mAh/g)和低氧化还原电位(锂金属的还原电位可以达到-3.04Vvs)。锂离子电池的负极采用锂金属可以大幅度地提升锂离子电池的能量密度。图2为锂离子电池负极材料克容量及能达到的理论体积能量密度。Since lithium metal has extremely high specific capacity (the specific capacity of lithium metal can reach 3860mAh/g) and low redox potential (the reduction potential of lithium metal can reach -3.04Vvs), the use of lithium metal in the negative electrode of lithium-ion batteries can greatly improve the energy density of lithium-ion batteries. Figure 2 shows the gram capacity of lithium-ion battery negative electrode materials and the theoretical volume energy density that can be achieved.

可以看出,采用石墨的负极:克容量可以达到680Wh/L,理论体积能量密度可以达到360mAh/g。采用石墨和15%氧化硅(SiOx)的负极:克容量可以达到800Wh/L,理论体积能量密度可以达到600mAh/g。采用硅的负极:克容量可以达到1005Wh/L,理论体积能量密度可以达到2000mAh/g。采用锂金属的负极:克容量可以达到1000Wh/L,理论体积能量密度可以达到3000mAh/g。It can be seen that the negative electrode using graphite: the gram capacity can reach 680Wh/L, and the theoretical volume energy density can reach 360mAh/g. The negative electrode using graphite and 15% silicon oxide (SiOx): the gram capacity can reach 800Wh/L, and the theoretical volume energy density can reach 600mAh/g. The negative electrode using silicon: the gram capacity can reach 1005Wh/L, and the theoretical volume energy density can reach 2000mAh/g. The negative electrode using lithium metal: the gram capacity can reach 1000Wh/L, and the theoretical volume energy density can reach 3000mAh/g.

由于锂金属具有较高的化学活性,将锂金属作为负极的材料应用到具体锂离子电池的体系中,也需要克服更多的问题。本申请实施例中,采用锂金属的负极可以称之为锂金属负极。Since lithium metal has high chemical activity, applying lithium metal as the negative electrode material to a specific lithium-ion battery system also requires overcoming more problems. In the embodiment of the present application, the negative electrode using lithium metal can be referred to as a lithium metal negative electrode.

例如:由于锂金属化学性质活泼与电解质接触容易发生副反应,致使锂离子电池的库伦效率低。库伦效率,被定义为锂离子电池的放电容量与同循环过程中充电容量之比。For example, due to the active chemical properties of lithium metal, side reactions easily occur when it comes into contact with electrolytes, resulting in low coulombic efficiency of lithium-ion batteries. Coulombic efficiency is defined as the ratio of the discharge capacity of a lithium-ion battery to the charge capacity during the same cycle.

请继续参阅图1,再例如:采用有机电解液作为电解质锂离子电池中,在正极11与负极12之间需要设置隔膜14。其中,隔膜14起到隔绝e-的作用,进而保证正极与负极之间的电性隔离。Please continue to refer to FIG. 1 , for another example: in a lithium-ion battery using an organic electrolyte as an electrolyte, a separator 14 needs to be provided between the positive electrode 11 and the negative electrode 12. The separator 14 serves to isolate the positive electrode from the negative electrode , thereby ensuring electrical isolation between the positive electrode and the negative electrode.

在锂离子电池充放电的过程中,锂金属负极12中的Li+可以与e-结合成为锂原子(Li)。随着Li的数量逐渐增多,锂金属负极12表面会生长出锂枝晶(lithium dendrite)。其中,锂枝晶为树枝状锂金属。锂枝晶生长会穿破隔膜14,使得正极11与锂金属负极12导通,锂离子电池发生短路。因此,锂金属负极/有机电解液体系的锂离子电池存在安全隐患。During the charge and discharge process of the lithium-ion battery, the Li + in the lithium metal negative electrode 12 can combine with e- to form lithium atoms (Li). As the amount of Li gradually increases, lithium dendrites will grow on the surface of the lithium metal negative electrode 12. Among them, the lithium dendrites are branch-like lithium metals. The growth of lithium dendrites will penetrate the diaphragm 14, causing the positive electrode 11 to be conductive with the lithium metal negative electrode 12, and the lithium-ion battery will short-circuit. Therefore, lithium-ion batteries with lithium metal negative electrode/organic electrolyte systems have safety hazards.

一种可行方法将锂金属负极应用到锂离子电池体系中同时一劳永逸地解决电池安全性能地方法是:利用固态电解质(solid electrolyte electrode,SSE)取代有机电解液,形成全固态锂离子电池。One feasible method to apply lithium metal anode to lithium-ion battery system and solve the battery safety performance once and for all is to use solid electrolyte electrode (SSE) instead of organic electrolyte to form an all-solid-state lithium-ion battery.

固态电解质取代有机电解液,虽然可以解决锂离子电池安全性的问题,但同时也引入了固固界面(锂金属负极与固态电解质的界面)接触不良的问题。尤其是在锂离子循环的过程中,随着锂金属负极与固态电解质表面锂剥离、沉积的往复过程,固固界面接触不良的问题会不断加剧。Although solid electrolytes can solve the safety problem of lithium-ion batteries by replacing organic electrolytes, they also introduce the problem of poor contact at the solid-solid interface (the interface between the lithium metal negative electrode and the solid electrolyte). Especially during the lithium ion cycle, as the lithium metal negative electrode and the solid electrolyte surface undergo a reciprocating process of lithium stripping and deposition, the problem of poor contact at the solid-solid interface will continue to intensify.

另外用固态电解质也无法从根本上杜绝锂枝晶的生长,锂枝晶可能穿透固态电解质使得正极11与锂金属负极12导通,锂离子电池发生短路。In addition, the use of solid electrolytes cannot fundamentally prevent the growth of lithium dendrites. Lithium dendrites may penetrate the solid electrolyte to make the positive electrode 11 and the lithium metal negative electrode 12 conductive, causing a short circuit in the lithium-ion battery.

举例说明:石榴石型锂镧锆氧陶瓷氧化物固态电解质材料(Li7La3Zr2O12 garnettype ceramic,LLZO)是一种常用的固态电解质材料。固态电解质采用LLZO时,LLZO的相对密度(relative density)被压实到98%,锂枝晶还是能够穿透固态电解质。For example: Li 7 La 3 Zr 2 O 12 garnet type ceramic (LLZO) is a commonly used solid electrolyte material. When LLZO is used as a solid electrolyte, the relative density of LLZO is compacted to 98%, and lithium dendrites can still penetrate the solid electrolyte.

现有技术公开了一些抑制锂枝晶对锂离子电池的实现方案,下面结合具体的附图对抑制少锂枝晶对锂离子电池影响的方式作以说明:The prior art discloses some implementation schemes for suppressing the effects of lithium dendrites on lithium-ion batteries. The following is an explanation of the method for suppressing the effects of lithium dendrites on lithium-ion batteries in conjunction with specific drawings:

现有技术一:Prior art 1:

现有技术一公开一种膜层材料,膜层材料可以作为保护层的材料,应用到锂离子电池中。其中,保护层与锂金属负极接触,可以抑制锂金属负极表面锂枝晶形成,起到保护固态电解质的作用。Prior art 1 discloses a membrane material, which can be used as a protective layer material in lithium-ion batteries. The protective layer is in contact with the lithium metal negative electrode, which can inhibit the formation of lithium dendrites on the surface of the lithium metal negative electrode and protect the solid electrolyte.

请参阅图3,图3中的(一)为锂离子电池中负极31,保护层32及固态电解质层33部分在3μm标尺下的扫描电镜(scanning electron microscope,SEM)。图3中的(二)为现有技术一公开的锂离子电池中保护层及固态电解质层部分在1μm标尺下的SEM。其中,保护层采用是现有技术一公开的膜层材料。保护层32起到保护固态电解质层33的作用,以降低附近产生的锂枝晶对固态电解质层33的损伤。Please refer to FIG. 3 , in which (a) is a scanning electron microscope (SEM) of the negative electrode 31, the protective layer 32 and the solid electrolyte layer 33 in the lithium-ion battery at a scale of 3 μm. FIG. 3 (b) is a SEM of the protective layer and the solid electrolyte layer in the lithium-ion battery disclosed in the prior art 1 at a scale of 1 μm. Among them, the protective layer adopts the membrane material disclosed in the prior art 1. The protective layer 32 plays a role in protecting the solid electrolyte layer 33 to reduce the damage to the solid electrolyte layer 33 caused by the lithium dendrites generated nearby.

图3中的(一)和图3中的(二)可以看出,保护层32位于负极31和固态电解质层33之间。其中,保护层32采用聚氧化乙烯/聚环氧乙烷/聚乙二醇(polyoxyethylene,PEO)-PAS共聚物。As can be seen from FIG. 3 (a) and FIG. 3 (b), the protective layer 32 is located between the negative electrode 31 and the solid electrolyte layer 33. The protective layer 32 is made of a polyethylene oxide/polyethylene oxide/polyethylene glycol (PEO)-PAS copolymer.

其中,PAS的化学式可以参阅图3中的(三)。从图3中的(三)可以看出PAS本身侧链自带磺酸基团34,磺酸基团34可以与Li+35结合,保护层采用的材料中不添加另外的锂盐、塑化剂。The chemical formula of PAS can be found in (iii) of Figure 3. It can be seen from (iii) of Figure 3 that the side chain of PAS itself has a sulfonic acid group 34, which can be combined with Li + 35, and no additional lithium salt or plasticizer is added to the material used in the protective layer.

请参阅图3中的(四)。图3中的(四)为保护层的离子电导率(conductivity)/锂离子迁移数(transfer number)-温度(temperature)曲线;可以看出保护层在室温下,离子电导率可以达到10-6S/cm。Please refer to (iv) in Figure 3. (iv) in Figure 3 is the ion conductivity (conductivity)/lithium ion transfer number (transfer number)-temperature (temperature) curve of the protective layer; it can be seen that the ion conductivity of the protective layer can reach 10 -6 S/cm at room temperature.

现有技术一公开的膜层材料存在如下的问题:The film material disclosed in the prior art 1 has the following problems:

(1)保护层的形成需要在另外添加图溶剂分散PEO和PAS。形成保护层之后再通过加热处理的方式去除小分子溶剂。上述过程容易有小分子溶剂残留。小分子溶剂的残留会对锂离子循环性能产生影响。(1) The formation of the protective layer requires the addition of a solvent to disperse PEO and PAS. After the protective layer is formed, the small molecule solvent is removed by heating. The above process is prone to small molecule solvent residues. The residue of small molecule solvents will affect the lithium ion cycle performance.

(2)将现有技术一提供的膜层材料形成的保护膜应用到锂离子电池中,锂金属负极31-保护层32-固态电解质层33的界面阻抗较大,可达到600Ω·cm2(2) When the protective film formed by the film material provided by the prior art 1 is applied to a lithium-ion battery, the interface impedance of the lithium metal negative electrode 31 - protective layer 32 - solid electrolyte layer 33 is relatively large, which can reach 600Ω·cm 2 .

(3)PAS单体合成难度大,前驱体成本高。(3) The synthesis of PAS monomer is difficult and the cost of precursor is high.

现有技术二:Prior art 2:

现有技术二公开一种膜层材料,膜层材料可以作为固态电解质界面(solidelectrolyte interface,SEI)的材料,应用到锂离子电池中。其中,SEI与锂金属负极接触,可以抑制锂金属负极表面锂枝晶形成,起到保护隔膜的作用。Prior art 2 discloses a membrane material, which can be used as a solid electrolyte interface (SEI) material in lithium-ion batteries. SEI contacts the lithium metal negative electrode, which can inhibit the formation of lithium dendrites on the surface of the lithium metal negative electrode and play a role in protecting the diaphragm.

请参阅图4中的(一)和图4中的(二),图4中的(一)为锂离子电池中锂金属负极41,SEI42及液态电解质43部分的示意图。Please refer to FIG. 4 (a) and FIG. 4 (b), FIG. 4 (a) is a schematic diagram of a lithium metal negative electrode 41, a SEI 42 and a liquid electrolyte 43 in a lithium-ion battery.

图4中的(二)为图4中的(一)中的SEI42采用的膜层材料的扫描电镜图。其中,(A)膜层材料在100nm标尺下的SEM。(B)膜层材料在50nm标尺下的SEM。(C)膜层材料在2μm标尺下的SEM(俯视)。(D)膜层材料的截面在2μm标尺下的SEM。Figure 4 (ii) is a scanning electron microscope image of the membrane material used for SEI42 in Figure 4 (a). Among them, (A) SEM of the membrane material at a scale of 100nm. (B) SEM of the membrane material at a scale of 50nm. (C) SEM of the membrane material at a scale of 2μm (top view). (D) SEM of the cross section of the membrane material at a scale of 2μm.

可以看出膜层材料包括:聚偏二氟乙烯(PVDF)基体421和介孔硅422。介孔硅422可以提升PVDF基体421的杨氏模量,使得SEI42具有较高的韧性,SEI42可以较好的抑制锂枝晶生长。It can be seen that the membrane material includes: polyvinylidene fluoride (PVDF) matrix 421 and mesoporous silicon 422. Mesoporous silicon 422 can improve the Young's modulus of the PVDF matrix 421, so that SEI42 has higher toughness, and SEI42 can better inhibit the growth of lithium dendrites.

Li+可以穿过介孔硅422的介孔在锂金属负极41处沉积。具体的,可以参阅图4中的(三)和图4中的(四)。图4中的(三)为锂离子电池的示意图,其中,锂离子电池的SEI采用现有技术二公开的膜层材料。Li+可以穿过SEI42在锂金属负极41处沉积。Li + can pass through the mesopores of the mesoporous silicon 422 and be deposited at the lithium metal negative electrode 41. For details, please refer to (iii) and (iv) in FIG. 4. (iii) in FIG. 4 is a schematic diagram of a lithium ion battery, wherein the SEI of the lithium ion battery adopts the membrane material disclosed in the second prior art. Li + can pass through the SEI42 and be deposited at the lithium metal negative electrode 41.

具体的,可以参阅图4中的(四),图4中的(四)为膜层材料的示意图。可以看出,介孔硅422的介孔大于Li+的粒径,Li+可以穿过介孔硅422的介孔沉积到锂金属负极31。For details, please refer to (iv) in FIG4 , which is a schematic diagram of the membrane material. It can be seen that the mesopores of the mesoporous silicon 422 are larger than the particle size of Li + , and Li + can pass through the mesopores of the mesoporous silicon 422 and deposit on the lithium metal negative electrode 31.

现有技术公开的膜层材料存在如下的问题:The film materials disclosed in the prior art have the following problems:

(1)现有技术二公开的膜层材料作为SEI时需要配合高浓度锂盐的液态电解质43。(1) When the membrane material disclosed in the second prior art is used as SEI, it needs to be combined with a liquid electrolyte 43 with a high concentration of lithium salt.

(2)膜层材料需要涂覆在锂金属负极41的表面。上述工艺适合做扣电层面的实验室研究,很难应用到软包电芯中。(2) The film material needs to be coated on the surface of the lithium metal negative electrode 41. The above process is suitable for laboratory research at the buckle level and is difficult to apply to soft-pack batteries.

现有技术三:Existing technology three:

现有技术三公开一种固态电解质。Prior art three discloses a solid electrolyte.

请参阅图5中的(一),图5中的(一)为锂离子电池的示意图。该离子电池采用现有技术三公开的固态电解质。可以看出,锂离子电池包括:正极51,固态电解质52和负极53。Please refer to FIG. 5 (a), which is a schematic diagram of a lithium-ion battery. The lithium-ion battery uses a solid electrolyte disclosed in prior art 3. It can be seen that the lithium-ion battery includes: a positive electrode 51, a solid electrolyte 52 and a negative electrode 53.

请参阅图5中的(二),图5中的(二)为固态电解质的示意图。其中,固态电解质52采用聚乙二醇单甲醚甲基丙烯酸酯(poly(ethylene glycol)methacrylate,PEGMA)521和双(三氟甲基)磺酰亚胺(Lithium bis(trifluoromothanesulfonyl)imide,LiTFSI)522。Please refer to FIG5(2), which is a schematic diagram of a solid electrolyte, wherein the solid electrolyte 52 is made of polyethylene glycol monomethyl ether methacrylate (PEGMA) 521 and bis(trifluoromethyl)sulfonyl imide (LiTFSI) 522.

请参阅图5中的(三),图5中的(三)为图5中的(二)中的固态电解质合成过程的示意图。固态电解质52的形成过程为:将PEGMA521和LiTFSI522分散在二甲亚砜(DMSO)中,以偶氮二异丁腈(Azobisisobutyronitrile,AIBN)为引发剂,原位交联形成固态电解质52。Please refer to (iii) in Figure 5, which is a schematic diagram of the solid electrolyte synthesis process in (ii) in Figure 5. The formation process of the solid electrolyte 52 is: PEGMA521 and LiTFSI522 are dispersed in dimethyl sulfoxide (DMSO), and azobisisobutyronitrile (Azobisisobutyronitrile, AIBN) is used as an initiator to form the solid electrolyte 52 by in-situ cross-linking.

现有技术三提供的聚合物存在如下的问题:The polymer provided by the prior art three has the following problems:

(1)固态电解质52的室温(20℃~30℃)下锂离子电导率为2.7×10-5S/cm。(1) The lithium ion conductivity of the solid electrolyte 52 at room temperature (20°C to 30°C) is 2.7×10 -5 S/cm.

(2)固态电解质52采用高浓度LISTFSI,使得固态电解质52成本上升,并需要额外加入DMSO分散剂才能形成均一溶液,DMSO可能会影响锂离子电池的循环性能。(2) The solid electrolyte 52 uses a high concentration of LISTFSI, which increases the cost of the solid electrolyte 52 and requires the additional addition of DMSO dispersant to form a uniform solution. DMSO may affect the cycle performance of the lithium-ion battery.

现有技术四:Prior art four:

现有技术四公开一种聚合物电解质膜。聚合物电解质膜的形态可以参阅图6中的(一)。可以看出聚合物电解质膜为薄膜状。聚合物电解质膜采用聚乙二醇二丙烯酸酯(PEGDA),LiTFSI或二草酸硼酸锂(LiBOB),丁二腈(SN)体系交联得到。Prior art 4 discloses a polymer electrolyte membrane. The morphology of the polymer electrolyte membrane can be seen in (a) of FIG. 6 . It can be seen that the polymer electrolyte membrane is in the form of a thin film. The polymer electrolyte membrane is obtained by cross-linking polyethylene glycol diacrylate (PEGDA), LiTFSI or lithium borate bis(oxalate) (LiBOB), and succinonitrile (SN) system.

图6中的(二)为聚合物电解质膜的锂离子电导-温度曲线。可以看出,聚合物电解质膜室温下锂离子电导可以达到0.76mS/cm。Figure 6 (ii) is the lithium ion conductivity-temperature curve of the polymer electrolyte membrane. It can be seen that the lithium ion conductivity of the polymer electrolyte membrane can reach 0.76mS/cm at room temperature.

将现有技术四提供的聚合物电解质膜作为固态电解质应用到锂离子电池中(锂离子电池正极采用的材料为镍钴铝氧化物)。对该锂离子电池的循环性能进行测试,得到的实验结果可以参阅图6中的(三),可以看出该锂离子电池具有较佳的循环性能。The polymer electrolyte membrane provided by the prior art 4 is applied as a solid electrolyte to a lithium-ion battery (the material used for the positive electrode of the lithium-ion battery is nickel-cobalt-aluminum oxide). The cycle performance of the lithium-ion battery is tested, and the experimental results obtained can be referred to (iii) in Figure 6, which shows that the lithium-ion battery has a better cycle performance.

现有技术四提供的聚合物电解质膜存在如下的问题:The polymer electrolyte membrane provided by the prior art 4 has the following problems:

(1)聚合物电解质膜选用SN作为塑化剂,该塑化剂在低温或受应力时易形成塑化晶体,改变体系的物理学性质。(1) SN is used as a plasticizer in polymer electrolyte membranes. This plasticizer easily forms plasticized crystals at low temperatures or under stress, changing the physical properties of the system.

(2)聚合物电解质膜质地较软,机械强度较低,很难自支撑。具体的,可以参阅图6中的(一),可以看出聚合物电解质膜质较软,机械强度较低,很难自支撑。(2) The polymer electrolyte membrane is soft, has low mechanical strength, and is difficult to self-support. Specifically, referring to (a) in FIG6 , it can be seen that the polymer electrolyte membrane is soft, has low mechanical strength, and is difficult to self-support.

(3)聚合物电解质膜采用PEGDA,当PEGDA的分子质量过高,或聚合度过大时,交联体系局部结晶会体现出脆性。(3) The polymer electrolyte membrane uses PEGDA. When the molecular weight of PEGDA is too high or the polymerization degree is too large, the local crystallization of the cross-linked system will show brittleness.

现有的电解质多采用高分子量的聚合物,高分子量的聚合物的分散性能较差,需要加入小分子溶剂使其分散,小分子溶剂的存在会对锂离子电池的循环性能产生不良的影响,高分子量的聚合物的Li+电导率较低。Existing electrolytes mostly use high molecular weight polymers, which have poor dispersion properties and require the addition of small molecule solvents to disperse them. The presence of small molecule solvents will have an adverse effect on the cycle performance of lithium-ion batteries. High molecular weight polymers have low Li + conductivity.

为了解决现有技术存在的技术问题,本申请实施例提供一种膜层材料。膜层材料可以作为锂金属与固态电解质间的保护层使用。请参阅图7,膜层材料包括:锂盐71,聚乙二醇二甲基丙烯酸酯72和磺酰胺类化合物73。In order to solve the technical problems existing in the prior art, the present application provides a membrane material. The membrane material can be used as a protective layer between lithium metal and solid electrolyte. Referring to FIG. 7 , the membrane material includes: lithium salt 71, polyethylene glycol dimethacrylate 72 and sulfonamide compound 73.

其中,锂盐用于提供Li+。聚乙二醇二甲基丙烯酸酯72作为膜层材料的基体,聚乙二醇二甲基丙烯酸酯72含有醚键(C-O-C),每个醚键可以称之为一个位点。聚乙二醇二甲基丙烯酸酯72分子存在链段运动,链段运动可以带动Li+在不同位点间的位移,进而实现Li+的迁移。Among them, lithium salt is used to provide Li + . Polyethylene glycol dimethacrylate 72 is used as the matrix of the membrane material. Polyethylene glycol dimethacrylate 72 contains ether bonds (COC), and each ether bond can be called a site. Polyethylene glycol dimethacrylate 72 molecules have segmental motion, which can drive the displacement of Li + between different sites, thereby realizing the migration of Li + .

本实现方式,磺酰胺类化合物73可以作为聚乙二醇二甲基丙烯酸酯72分散剂,使得磺酰胺类化合物73、聚乙二醇二甲基丙烯酸酯72和锂盐71可以形成均匀的体系。本实现方式提供的膜层材料无需采用小分子溶剂,因此,不会存在由于小分子溶剂的残留而引发的问题。In this implementation, the sulfonamide compound 73 can be used as a dispersant for the polyethylene glycol dimethacrylate 72, so that the sulfonamide compound 73, the polyethylene glycol dimethacrylate 72 and the lithium salt 71 can form a uniform system. The membrane material provided by this implementation does not need to use a small molecule solvent, so there will be no problems caused by the residual small molecule solvent.

磺酰胺类化合物73与聚乙二醇二甲基丙烯酸酯72中醚键之间存在分子间作用力,这种分子间的作用力可以降低聚乙二醇二甲基丙烯酸酯72的玻璃化转变温度,从而有效促进聚乙二醇二甲基丙烯酸酯72的链段运动,进而提升膜层材料的Li+电导率。由于,聚乙二醇二甲基丙烯酸酯72的玻璃化转变温度降低,因此,本申请实施例提供的膜层材料在室温、低温及高温下均可以体现出较大的Li+电导率。There is an intermolecular force between the sulfonamide compound 73 and the ether bond in the polyethylene glycol dimethacrylate 72, and this intermolecular force can reduce the glass transition temperature of the polyethylene glycol dimethacrylate 72, thereby effectively promoting the segment movement of the polyethylene glycol dimethacrylate 72, and then improving the Li + conductivity of the film material. Since the glass transition temperature of the polyethylene glycol dimethacrylate 72 is reduced, the film material provided in the embodiment of the present application can show a large Li + conductivity at room temperature, low temperature and high temperature.

膜层材料具有较大的Li+电导率,将其应用在锂离子电池中,膜层材料形成的膜层与锂离子的正极/负极之间不会形成严重的电荷层。膜层材料形成的膜层可以与正极/负极可以形成稳定的界面,该界面在电池循环过程中不会随着锂的沉积/剥离而变差。本申请实施例提供的薄膜材料具有稳定锂沉积/剥离的作用。The film material has a large Li + conductivity. When it is applied to a lithium-ion battery, a serious charge layer will not be formed between the film formed by the film material and the positive/negative electrode of lithium ions. The film formed by the film material can form a stable interface with the positive/negative electrode, and the interface will not deteriorate with the deposition/stripping of lithium during the battery cycle. The thin film material provided in the embodiment of the present application has the effect of stabilizing lithium deposition/stripping.

膜层材料可以发生交联反应,交联后得到的交联体系(膜层)具有一定的韧性,可以抑制锂枝晶的生长。The membrane material can undergo a cross-linking reaction, and the cross-linked system (membrane layer) obtained after cross-linking has a certain toughness and can inhibit the growth of lithium dendrites.

作为一种可行性实现方式,膜层材料具有流动性,进而使得膜层材料可与锂离子电池注液工艺联用。As a feasible implementation method, the membrane material has fluidity, so that the membrane material can be used in conjunction with the lithium-ion battery injection process.

下面对本申请实施例提供的膜层材料的各组分作进一步的说明:The following is a further description of the components of the film material provided in the embodiments of the present application:

膜层材料包括:锂盐71。The membrane layer material includes: lithium salt 71.

本申请实施例中,锂盐71用于提供Li+In the embodiment of the present application, the lithium salt 71 is used to provide Li + .

锂盐71可以包括:二草酸硼酸锂(LiBOB)、高氯酸锂(LiClO4)、六氟磷酸锂(LiPF6)、亚胺锂(LiFNFSI)中的一种或几种混合。The lithium salt 71 may include one of lithium bis(oxalatoborate) (LiBOB), lithium perchlorate (LiClO 4 ), lithium hexafluorophosphate (LiPF 6 ), and lithium imide (LiFNFSI), or a mixture of the two or more thereof.

作为一种可行性实现方式,锂盐71还可以包括:双(三氟甲基)磺酰亚胺锂(Lithiumbis(trifluoromothanesulfonyl)imide,LiTFSI)。LiTFSI含有氟离子(F-)。As a feasible implementation, the lithium salt 71 may also include lithium bis(trifluoromothanesulfonyl)imide (LiTFSI). LiTFSI contains fluoride ions (F - ).

F-可以在充放电过程中与负极中的锂金属(Li)反应,在负极表面形成含有氟化锂的(LiF)的SEI。含有LiF的SEI可使得达到负极的Li+均匀的沉积,或使得负极的中的Li均匀的剥离。 F- can react with lithium metal (Li) in the negative electrode during the charge and discharge process to form a SEI containing lithium fluoride (LiF) on the surface of the negative electrode. The SEI containing LiF can achieve uniform deposition of Li + in the negative electrode or uniform stripping of Li in the negative electrode.

考虑到膜层材料的Li+电导率与膜层材料中Li+的含量正相关。膜层材料中Li+的含量越大,膜层材料的锂离子电导率越大;膜层材料中Li+的含量越小,膜层材料的锂离子电导率越小。Considering that the Li + conductivity of the membrane material is positively correlated with the Li + content in the membrane material, the greater the Li + content in the membrane material, the greater the lithium ion conductivity of the membrane material; the smaller the Li + content in the membrane material, the smaller the lithium ion conductivity of the membrane material.

由于,LiTFSI在聚乙二醇二甲基丙烯酸酯72中的溶解度较小,如果锂盐中仅包含LiTFSI膜层材料中Li+的含量会受到限制。Since the solubility of LiTFSI in polyethylene glycol dimethacrylate 72 is relatively low, the content of Li + in the membrane material will be limited if the lithium salt only contains LiTFSI.

为了保证膜层材料中Li+的含量。作为一种可行性实现方式,锂盐可以包括:LiTFSI和双氟磺酰亚胺锂(Lithium bis(fluorosulfonyl)imide,LiFSI)。其中,LiFSI在聚乙二醇二甲基丙烯酸酯72中的溶解度大于LiTFSI在聚乙二醇二甲基丙烯酸酯72中的溶解度。因此,本实现方式中锂盐71包括:LiTFSI和LiFSI可以保证膜层材料的Li+的含量。In order to ensure the content of Li + in the membrane material. As a feasible implementation method, the lithium salt may include: LiTFSI and lithium bis(fluorosulfonyl)imide (LiFSI). Among them, the solubility of LiFSI in polyethylene glycol dimethacrylate 72 is greater than the solubility of LiTFSI in polyethylene glycol dimethacrylate 72. Therefore, in this implementation method, the lithium salt 71 includes: LiTFSI and LiFSI to ensure the content of Li + in the membrane material.

在锂盐71质量一定的前提下,LiFSI的质量越大,溶解在聚乙二醇二甲基丙烯酸酯72中的Li+越多,最终得到的膜层材料中Li+的含量越多,膜层材料的Li+电导率越大。Under the premise that the mass of lithium salt 71 is constant, the greater the mass of LiFSI, the more Li + is dissolved in polyethylene glycol dimethacrylate 72, the greater the Li + content in the final film material, and the greater the Li + conductivity of the film material.

作为一种可行性实现方式,LiTFSI与LiFSI的质量比可以小于或等于2:1。与LiTFSI与LiFSI的质量比大于2:1的实现方式相比较,本实现方式提供的膜层材料含有较多的LiFSI。即有较多的Li+溶解在聚乙二醇二甲基丙烯酸酯72中,膜层材料具有较大的Li+电导率。As a feasible implementation, the mass ratio of LiTFSI to LiFSI can be less than or equal to 2:1. Compared with the implementation in which the mass ratio of LiTFSI to LiFSI is greater than 2:1, the film material provided by this implementation contains more LiFSI. That is, more Li + is dissolved in polyethylene glycol dimethacrylate 72, and the film material has a larger Li + conductivity.

在锂盐质量一定的前提下,LiTFSI的质量越大,溶解在聚乙二醇二甲基丙烯酸酯72中的F-越多,将该膜层材料应用在锂离子电池中,可以形成的含有LiF的SEI越多。Under the premise of a certain mass of lithium salt, the greater the mass of LiTFSI, the more F- is dissolved in polyethylene glycol dimethacrylate 72, and the more SEI containing LiF can be formed when the membrane material is used in lithium-ion batteries.

作为一种可行性实现方式,LiTFSI与LiFSI的质量比可以大于或等于1:2。与LiTFSI与LiFSI的质量比小于12的实现方式相比较,本实现方式提供的膜层材料含有较多的LiTFSI。即有较多的F-溶解在聚乙二醇二甲基丙烯酸酯72中,将该膜层材料应用在锂离子电池中,可以形成的较多的含有LiF的SEI。As a feasible implementation, the mass ratio of LiTFSI to LiFSI can be greater than or equal to 1:2. Compared with the implementation in which the mass ratio of LiTFSI to LiFSI is less than 12, the film material provided by this implementation contains more LiTFSI. That is, more F- is dissolved in polyethylene glycol dimethacrylate 72. When the film material is used in a lithium-ion battery, more SEI containing LiF can be formed.

为了兼顾膜层材料的Li+电导率及膜层材料中F-的含量,作为一种可行性实现方式,LiTFSI与LiFSI的质量比可以在1:2~2:1。In order to take into account both the Li + conductivity of the membrane material and the F- content in the membrane material, as a feasible implementation method, the mass ratio of LiTFSI to LiFSI can be 1:2 to 2:1.

本申请实施例中,膜层材料还包括:聚乙二醇二甲基丙烯酸酯72(poly-(ethyleneglycol)dimethacrylate,PEGDMA)。In the embodiment of the present application, the film layer material further includes: polyethylene glycol dimethacrylate 72 (poly-(ethylene glycol) dimethacrylate, PEGDMA).

聚乙二醇二甲基丙烯酸酯72含有醚键(C-O-C),每个醚键可以称之为一个位点。聚乙二醇二甲基丙烯酸酯72作为膜层材料的基体。聚乙二醇二甲基丙烯酸酯72分子存在链段运动,链段运动可以带动Li+在不同位点间的位移,进而实现Li+的迁移。Polyethylene glycol dimethacrylate 72 contains ether bonds (COC), and each ether bond can be called a site. Polyethylene glycol dimethacrylate 72 is used as the matrix of the membrane material. The polyethylene glycol dimethacrylate 72 molecule has segmental motion, which can drive the displacement of Li + between different sites, thereby realizing the migration of Li + .

作为一种可行性实现方式,膜层材料可以包括:聚乙二醇单甲醚甲基丙烯酸酯(poly(ethylene glycol)methacrylate,PEGMA)74。As a feasible implementation method, the membrane layer material may include: polyethylene glycol monomethyl ether methacrylate (poly (ethylene glycol) methacrylate, PEGMA) 74.

其中,PEGMA的结构式可以参阅图8A。可以看出,PEGMA具有结合Li+的位点。PEGMA还具有一个碳碳双键(C=C)。PEGMA可以在膜层材料交联反应的过程中可以作为端基,以终止交联反应。The structural formula of PEGMA can be found in Figure 8A. It can be seen that PEGMA has a site for binding Li + . PEGMA also has a carbon-carbon double bond (C=C). PEGMA can be used as an end group during the cross-linking reaction of the membrane material to terminate the cross-linking reaction.

PEGDMA的结构式可以参阅图8B。可以看出,PEGDMA具有结合Li+的位点,PEGDMA还具有两个碳碳双键。PEGDMA可以在膜层材料交联反应的过程中可以作为链节(Chainelement),利用两个碳碳双键形成交联体系。The structural formula of PEGDMA can be found in Figure 8B. It can be seen that PEGDMA has a site for binding Li + , and PEGDMA also has two carbon-carbon double bonds. PEGDMA can be used as a chain element in the cross-linking reaction of the membrane material, using two carbon-carbon double bonds to form a cross-linking system.

PEGDMA与PEGMA形成的交联体系可以参阅图9。可以看出,PEGDMA作为交联体系的链节,PEGMA作为交联体系的端基。The cross-linking system formed by PEGDMA and PEGMA can be seen in Figure 9. It can be seen that PEGDMA serves as the chain link of the cross-linking system, and PEGMA serves as the end group of the cross-linking system.

作为一种可行性实现方式,PEGDMA与PEGMA的摩尔比可以大于或等于1:10。与采用PEGDMA与PEGMA的摩尔比小于1:10的实现方式相比较,本实现方式提供的膜层材料中含有较多的PEGDMA,较多的PEGDMA可以交联得到结构较为松散的交联体系。因此,本实现方式提供的膜层材料交联后具有松散的交联体系,该交联后的膜层材料具有较大的Li+电导率。As a feasible implementation, the molar ratio of PEGDMA to PEGMA can be greater than or equal to 1:10. Compared with the implementation in which the molar ratio of PEGDMA to PEGMA is less than 1:10, the membrane material provided by this implementation contains more PEGDMA, and more PEGDMA can be cross-linked to obtain a cross-linked system with a loose structure. Therefore, the membrane material provided by this implementation has a loose cross-linked system after cross-linking, and the cross-linked membrane material has a larger Li+ conductivity.

作为一种可行性实现方式,PEGDMA与PEGMA的摩尔比可以小于或等于10:1。与采用PEGDMA与PEGMA的摩尔比大于10:1的实现方式相比较,本实现方式提供的膜层材料中含有较多的PEGMA,PEGMA可以在膜层材料交联反应的过程中可以作为端基,以终止交联反应。本实现方式可以减少在交联的过程形成交联度较大的交联体系而出现局部结晶的问题。因此,本实现方式提供的膜层材料可以避免现有技术四中(3)问题的出现。As a feasible implementation method, the molar ratio of PEGDMA to PEGMA can be less than or equal to 10:1. Compared with the implementation method in which the molar ratio of PEGDMA to PEGMA is greater than 10:1, the membrane material provided by this implementation method contains more PEGMA, and PEGMA can be used as an end group during the cross-linking reaction of the membrane material to terminate the cross-linking reaction. This implementation method can reduce the problem of local crystallization caused by the formation of a cross-linking system with a large degree of cross-linking during the cross-linking process. Therefore, the membrane material provided by this implementation method can avoid the occurrence of problem (3) in the fourth prior art.

为了兼顾交联后的膜层材料的Li+电导率和减少交联后的膜层材料出现结晶问题,作为一种可行性实现方式PEGDMA与PEGMA的摩尔比可以在1:10~10:1。In order to take into account both the Li+ conductivity of the cross-linked membrane material and reduce the crystallization problem of the cross-linked membrane material, as a feasible implementation method, the molar ratio of PEGDMA to PEGMA can be 1:10 to 10:1.

继续参阅图8A和图8B,其中,PEGDMA与PEGMA可以称之为聚氧化乙烯类聚合物。本申请实施例除特殊说明外聚氧化乙烯类聚合物包括:聚乙二醇二甲基丙烯酸酯,或包括聚乙二醇二甲基丙烯酸酯和乙二醇单甲醚甲基丙烯酸酯。8A and 8B, PEGDMA and PEGMA can be referred to as polyethylene oxide polymers. Unless otherwise specified, the polyethylene oxide polymers in the embodiments of the present application include polyethylene glycol dimethacrylate, or polyethylene glycol dimethacrylate and ethylene glycol monomethyl ether methacrylate.

考虑到膜层材料中的醚键越多,Li+的传递的位点越多,膜层材料的Li+电导率越好。Considering that the more ether bonds there are in the membrane material, the more sites there are for Li+ transfer, and the better the Li+ conductivity of the membrane material.

在膜层材料的Li+的含量恒定的前提下。作为一种可行性实现方式,膜层材料中的醚键与Li+的摩尔比可以大于或等于10。与膜层材料中的醚键与Li+的摩尔比小于10的实现方式相比较,本实现方式提供的膜层材料中含有较多的醚键,较多的醚键可以使的膜层材料具有较大的Li+电导率。Under the premise that the content of Li+ in the membrane material is constant, as a feasible implementation, the molar ratio of ether bonds to Li+ in the membrane material can be greater than or equal to 10. Compared with the implementation in which the molar ratio of ether bonds to Li+ in the membrane material is less than 10, the membrane material provided by this implementation contains more ether bonds, and more ether bonds can make the membrane material have a greater Li+ conductivity.

考虑到膜层材料中醚键越多,膜层材料中聚氧化乙烯类聚合物(72、74)的相对分子质量越大,或聚氧化乙烯类聚合物(72、74)的聚合度越大,相应的膜层材料的粘度越大。膜层材料与锂离子电池注液工艺联用的技术难度越大。Considering that the more ether bonds there are in the membrane material, the greater the relative molecular mass of the polyethylene oxide polymer (72, 74) in the membrane material, or the greater the degree of polymerization of the polyethylene oxide polymer (72, 74), the greater the viscosity of the corresponding membrane material, the greater the technical difficulty of combining the membrane material with the lithium ion battery injection process.

在膜层材料的Li+的含量恒定的前提下。作为一种可行性实现方式,膜层材料中的醚键与Li+的摩尔比可以小于或等于30。与膜层材料中的醚键与Li+的摩尔比大于30的实现方式相比较。本实现方式提供的膜层材料中含有较少的醚键,即膜层材料中聚氧化乙烯类聚合物(72、74)的相对分子质量较小,或聚氧化乙烯类聚合物(72、74)的聚合度较小。相应的,本实现方式提供的膜层材料的粘性较低,膜层材料与锂离子电池注液工艺联用的技术难度较小。Under the premise that the content of Li+ in the membrane material is constant. As a feasible implementation method, the molar ratio of ether bonds to Li+ in the membrane material can be less than or equal to 30. Compared with the implementation method in which the molar ratio of ether bonds to Li+ in the membrane material is greater than 30. The membrane material provided by this implementation method contains fewer ether bonds, that is, the relative molecular mass of the polyethylene oxide polymer (72, 74) in the membrane material is smaller, or the degree of polymerization of the polyethylene oxide polymer (72, 74) is smaller. Accordingly, the viscosity of the membrane material provided by this implementation method is lower, and the technical difficulty of combining the membrane material with the lithium-ion battery injection process is relatively small.

为了兼顾膜层材料的粘度和膜层材料的Li+电导率,作为一种可行性实现方式,膜层材料中的醚键与Li+的摩尔比可以在10~30。In order to take into account both the viscosity of the membrane material and the Li+ conductivity of the membrane material, as a feasible implementation method, the molar ratio of ether bonds to Li+ in the membrane material can be 10 to 30.

膜层材料应用到锂离子电池中,膜层材料中的聚氧化乙烯类聚合物(72、74)可以发生交联,得到交联体系(膜层)。交联体系具有一定的韧性,可以抑制锂枝晶的生长。交联体系的分子存在链段运动,链段运动可以带动Li+在不同位点间的位移,进而实现Li+的迁移。When the membrane material is applied to lithium-ion batteries, the polyethylene oxide polymers (72, 74) in the membrane material can be cross-linked to obtain a cross-linked system (membrane layer). The cross-linked system has a certain toughness and can inhibit the growth of lithium dendrites. The molecules in the cross-linked system have segmental motion, which can drive the displacement of Li+ between different sites, thereby realizing the migration of Li+.

考虑到聚氧化乙烯类聚合物(72、74)的聚合度越大,聚氧化乙烯类聚合物(72、74)交联后形成的交联体系结构越松散。交联体系链段运动越显著,交联体系的Li+电导率越大。Considering that the greater the degree of polymerization of the polyethylene oxide polymers (72, 74), the looser the cross-linked system structure formed after the polyethylene oxide polymers (72, 74) are cross-linked, the more significant the chain segment movement of the cross-linked system, and the greater the Li+ conductivity of the cross-linked system.

作为一种可行性实现方式,聚氧化乙烯类聚合物(72、74)的聚合度大于或等于4。与采用聚合度小于4的聚氧化乙烯类聚合物(72、74)的实现方式相比较,本实现方式中膜层材料采用聚合度较大的聚氧化乙烯类聚合物(72、74),聚合度较大的聚氧化乙烯类聚合物(72、74)交联后形成的交联体系结构松散,交联体系的链段运动较为显著,交联体系的Li+电导率较大。本申请实施例中,交联体系也可以称之为交联后的膜层材料或膜层。As a feasible implementation, the degree of polymerization of the polyethylene oxide polymer (72, 74) is greater than or equal to 4. Compared with the implementation of the polyethylene oxide polymer (72, 74) with a degree of polymerization less than 4, the membrane material in this implementation adopts a polyethylene oxide polymer (72, 74) with a larger degree of polymerization. The cross-linked system structure formed by the polyethylene oxide polymer (72, 74) with a larger degree of polymerization is loose after cross-linking, the chain segment movement of the cross-linked system is more significant, and the Li+ conductivity of the cross-linked system is larger. In the embodiment of the present application, the cross-linked system can also be referred to as the membrane material or membrane layer after cross-linking.

考虑到聚氧化乙烯类聚合物(72、74)的聚合度越大,聚氧化乙烯类聚合物(72、74)的流动性越小,最终得到的膜层材料的流动性越小,膜层材料与锂离子电池注液工艺联用的技术难度越大。Considering that the greater the degree of polymerization of the polyethylene oxide polymers (72, 74), the lower the fluidity of the polyethylene oxide polymers (72, 74), the lower the fluidity of the final membrane material, and the greater the technical difficulty of combining the membrane material with the lithium-ion battery injection process.

作为一种可行性实现方式,聚氧化乙烯类聚合物(72、74)的聚合度可以小于或等于12。与采用聚合度大于12的聚氧化乙烯类聚合物(72、74)实现方式相比较,本实现方式中膜层材料采用具有较小聚合度的聚氧化乙烯类聚合物(72、74),膜层材料具有较大的流动性,膜层材料与锂离子电池注液工艺联用的技术难度较小。As a feasible implementation, the degree of polymerization of the polyethylene oxide polymer (72, 74) can be less than or equal to 12. Compared with the implementation using polyethylene oxide polymers (72, 74) with a degree of polymerization greater than 12, the membrane material in this implementation uses polyethylene oxide polymers (72, 74) with a smaller degree of polymerization, the membrane material has greater fluidity, and the technical difficulty of combining the membrane material with the lithium ion battery injection process is relatively low.

为了兼顾膜层材料的流动性及交联后的膜层材料的Li+电导率。作为一种可行性实现方式,聚氧化乙烯类聚合物(72、74)的聚合度可以在4~12。In order to take into account both the fluidity of the membrane material and the Li+ conductivity of the cross-linked membrane material, as a feasible implementation method, the degree of polymerization of the polyethylene oxide polymer (72, 74) can be 4-12.

考虑到聚氧化乙烯类聚合物(72、74)的相对分子质量越大,聚氧化乙烯类聚合物(72、74)交联后形成的交联体系韧性越强。交联体系韧性越强,交联体系对锂枝晶的抑制作用越强。Considering that the larger the relative molecular mass of the polyethylene oxide polymers (72, 74), the stronger the toughness of the cross-linked system formed after the polyethylene oxide polymers (72, 74) are cross-linked, the stronger the toughness of the cross-linked system, the stronger the inhibitory effect of the cross-linked system on lithium dendrites.

作为一种可行性实现方式,聚氧化乙烯类聚合物(72、74)的相对分子质量可以大于或等于300。与采用相对分子质量小于300的聚氧化乙烯类聚合物(72、74)的实现方式相比较,本实现方式中膜层材料采用具有较大相对分子质量的聚氧化乙烯类聚合物(72、74)。本实现方式提供的膜层材料的交联后形成的交联体系具有较大的韧性,将其应用到锂离子电池中,交联体系可以对锂枝晶产生较强的抑制作用。As a feasible implementation, the relative molecular weight of the polyethylene oxide polymer (72, 74) can be greater than or equal to 300. Compared with the implementation using polyethylene oxide polymers (72, 74) with a relative molecular weight less than 300, the membrane material in this implementation uses polyethylene oxide polymers (72, 74) with a larger relative molecular weight. The cross-linked system formed after cross-linking of the membrane material provided by this implementation has greater toughness. When applied to lithium-ion batteries, the cross-linked system can have a strong inhibitory effect on lithium dendrites.

考虑到聚氧化乙烯类聚合物(72、74)的相对分子质量越大,聚氧化乙烯类聚合物(72、74)的流动性越小,最终得到的膜层材料的流动性越小。Considering that the larger the relative molecular mass of the polyethylene oxide polymers (72, 74), the smaller the fluidity of the polyethylene oxide polymers (72, 74), the smaller the fluidity of the film material finally obtained.

作为一种可行性实现方式,聚氧化乙烯类聚合物(72、74)的相对分子质量小于或等于600。与采用相对分子质量大于600的聚氧化乙烯类聚合物(72、74)的实现方式相比较,本实现方式中膜层材料采用具有较小相对分子质量的聚氧化乙烯类聚合物(72、74)。本实现方式提供的膜层材料具有较大的流动性,膜层材料与锂离子电池注液工艺联用的技术难度较小。As a feasible implementation, the relative molecular mass of the polyethylene oxide polymer (72, 74) is less than or equal to 600. Compared with the implementation using polyethylene oxide polymers (72, 74) with a relative molecular mass greater than 600, the membrane material in this implementation uses polyethylene oxide polymers (72, 74) with a smaller relative molecular mass. The membrane material provided by this implementation has greater fluidity, and the technical difficulty of combining the membrane material with the lithium ion battery injection process is relatively low.

为了兼顾膜层材料的流动性及交联后形成的交联体系的韧性,作为一种可行性实现方式,聚氧化乙烯类聚合物(72、74)的相对分子质量可以在300~600。In order to take into account both the fluidity of the membrane material and the toughness of the cross-linked system formed after cross-linking, as a feasible implementation method, the relative molecular weight of the polyethylene oxide polymer (72, 74) can be 300-600.

本申请实施例中,膜层材料还包括:磺酰胺类化合物73。In the embodiment of the present application, the membrane layer material further includes: a sulfonamide compound 73.

请参阅图10,图10为一可行性实现方式提供的磺酰胺类化合物的结构式。值得注意的是,图10仅是示例性的介绍一种具有不对称结构的磺酰胺类化合物73的分子结构式,上述分子结构式并不构成限定。Please refer to Figure 10, which is a structural formula of a sulfonamide compound provided in a feasible implementation. It should be noted that Figure 10 is only an exemplary introduction of a molecular structural formula of a sulfonamide compound 73 with an asymmetric structure, and the above molecular structural formula does not constitute a limitation.

图10中,R1、R2、R3、R4为磺酰胺类化合物73的取代基。本申请实施例中,不对磺酰胺类化合物73的取代基的种类作具体的限定。In Fig. 10, R1 , R2 , R3 , and R4 are substituents of the sulfonamide compound 73. In the embodiment of the present application, the types of the substituents of the sulfonamide compound 73 are not specifically limited.

为了防止磺酰胺类化合物73因结晶而使得其塑化性能降低,作为一种可行性实现方式,磺酰胺类化合物73的取代基可以为短链的取代基。其中,短链的取代基可以是但不限于:甲基、乙基或醚类基团中的任意一种。In order to prevent the sulfonamide compound 73 from reducing its plasticizing properties due to crystallization, as a feasible implementation method, the substituent of the sulfonamide compound 73 can be a short-chain substituent. The short-chain substituent can be, but is not limited to, any one of a methyl group, an ethyl group or an ether group.

作为一种可行性实现方式,磺酰胺类化合物73具有不对称的分子结构。As a feasible implementation method, sulfonamide compound 73 has an asymmetric molecular structure.

通常,具有对称分子结构的磺酰胺类化合物容易发生分子间的紧密堆叠形成塑化晶体的局部结构。这种塑化晶体结构通常会在低温或者受到应力的情况下形成。形成塑化晶体会降低磺酰胺类化合物的塑化性能。Generally, sulfonamide compounds with symmetrical molecular structures are prone to close stacking of molecules to form a local structure of plasticized crystals. This plasticized crystal structure is usually formed at low temperatures or under stress. The formation of plasticized crystals will reduce the plasticizing properties of sulfonamide compounds.

磺酰胺类化合物73具有不对称的分子结构,与具有对称分子结构的磺酰胺类化合物相比较。具有不对称分子结构的磺酰胺类化合物73不易发生分子间的紧密堆叠,磺酰胺类化合物73不易形成塑化晶体的局部结构。因此,磺酰胺类化合物73具有较大的塑化性能。Sulfonamide compound 73 has an asymmetric molecular structure. Compared with sulfonamide compounds with symmetric molecular structures, sulfonamide compound 73 with an asymmetric molecular structure is not easy to form close stacking between molecules, and sulfonamide compound 73 is not easy to form a local structure of plasticized crystals. Therefore, sulfonamide compound 73 has greater plasticizing performance.

磺酰胺类化合物73的塑化性能具体体现为:磺酰胺类化合物73与聚氧化乙烯类聚合物(72、74)中醚键之间存在分子间作用力,这种分子间的作用力可以降低聚氧化乙烯类聚合物的玻璃化转变温度,使得聚氧化乙烯类聚合物(72、74)在低温及室温下均具有较大的链段运动,膜层材料在室温及低温下均具有较大的Li+电导率。The plasticizing properties of the sulfonamide compound 73 are specifically manifested as follows: there is an intermolecular force between the sulfonamide compound 73 and the ether bonds in the polyethylene oxide polymers (72, 74), and this intermolecular force can reduce the glass transition temperature of the polyethylene oxide polymers, so that the polyethylene oxide polymers (72, 74) have greater chain segment movement at both low and room temperatures, and the film material has greater Li+ conductivity at both room and low temperatures.

现有技术二提供的方案中问题(1)及现有技术三提供的方案中问题(2)中指出的需要采用高浓度的锂盐。本申请实施例提供的膜层材料中,磺酰胺类化合物73对聚氧化乙烯类聚合物(72、74)的塑化性能,可以提升Li+在聚氧化乙烯类聚合物(72、74)中的迁移性能。因此,本申请实施例提供的膜层材料采用的锂盐的质量分数可以小于或等于25%。Problem (1) in the solution provided by the prior art 2 and problem (2) in the solution provided by the prior art 3 point out the need to use a high concentration of lithium salt. In the membrane material provided by the embodiment of the present application, the plasticizing property of the sulfonamide compound 73 on the polyethylene oxide polymer (72, 74) can improve the migration performance of Li + in the polyethylene oxide polymer (72, 74). Therefore, the mass fraction of the lithium salt used in the membrane material provided by the embodiment of the present application can be less than or equal to 25%.

本申请实施例中,磺酰胺类化合物73还起到分散剂的作用。具体的,磺酰胺类化合物73可以使得聚氧化乙烯类聚合物(72、74)、锂盐71混合形成均匀的溶液。相比于现有技术一提供的方案中的问题(1)及现有技术三提供的方案中的问题(2)。本申请实施例提供的膜层材料无需额外的引入小分子分散剂。将本申请实施例提供的膜层材料应用在锂离子电池中,不会存在残留的小分子溶剂影响锂离子电池的循环性能问题出现。因此,本申请实施例提供的膜层材料应用在锂离子电池中,锂离子电池可以具有较好的循环性能。In the embodiment of the present application, the sulfonamide compound 73 also acts as a dispersant. Specifically, the sulfonamide compound 73 can make the polyethylene oxide polymer (72, 74) and the lithium salt 71 mixed to form a uniform solution. Compared with the problem (1) in the solution provided in the prior art one and the problem (2) in the solution provided in the prior art three. The membrane material provided in the embodiment of the present application does not require the introduction of additional small molecule dispersants. When the membrane material provided in the embodiment of the present application is applied to a lithium ion battery, there will be no problem of residual small molecule solvents affecting the cycle performance of the lithium ion battery. Therefore, the membrane material provided in the embodiment of the present application is applied to a lithium ion battery, and the lithium ion battery can have better cycle performance.

考虑到膜层材料中磺酰胺类化合物73的质量分数越大,磺酰胺类化合物73对聚氧化乙烯类聚合物(72、74)的塑化性能越显著,聚氧化乙烯类聚合物(72、74)的链段运动越显著,膜层材料的Li+电导率越大。Considering that the greater the mass fraction of the sulfonamide compound 73 in the membrane material, the more significant the plasticizing property of the sulfonamide compound 73 on the polyethylene oxide polymer (72, 74), the more significant the segment movement of the polyethylene oxide polymer (72, 74), and the greater the Li + conductivity of the membrane material.

作为一种可行性实现方式,膜层材料中磺酰胺类化合物73的质量分数可以大于或等于40%。与磺酰胺类化合物73的质量分数小于40%的膜层材料相比较,本实现方式提供的膜层材料中含有较多的磺酰胺类化合物73,较多的磺酰胺类化合物73对聚氧化乙烯类聚合物(72、74)产生的塑化性能较为显著,进而使得聚氧化乙烯类聚合物(72、74)具有较好的链段运动,相应的,膜层材料具有较大的Li+电导率。As a feasible implementation, the mass fraction of the sulfonamide compound 73 in the film material can be greater than or equal to 40%. Compared with the film material having a mass fraction of the sulfonamide compound 73 less than 40%, the film material provided by the present implementation contains more sulfonamide compounds 73, and more sulfonamide compounds 73 have more significant plasticizing properties on the polyethylene oxide polymers (72, 74), thereby making the polyethylene oxide polymers (72, 74) have better segment motion, and accordingly, the film material has a greater Li + conductivity.

考虑到膜层材料中磺酰胺类化合物73的质量分数越大,膜层材料的粘度越小,在锂离子电池的形成过程中,膜层材料涂覆在固态电解质表面的难度越大。Considering that the greater the mass fraction of the sulfonamide compound 73 in the membrane material, the smaller the viscosity of the membrane material, the greater the difficulty in coating the membrane material on the surface of the solid electrolyte during the formation of the lithium-ion battery.

作为一种可行性实现方式,膜层材料中磺酰胺类化合物73的质量分数可以小于或等于60%。与磺酰胺类化合物73的质量分数大于60%的膜层材料相比较,本实现方式提供的膜层材料中含有较少的磺酰胺类化合物73。较少的磺酰胺类化合物73可以使得膜层材料具有较大的粘性,在锂离子电池的形成过程中,本实现方式提供的膜层材料涂覆在固态电解质表面的难度较小。As a feasible implementation, the mass fraction of the sulfonamide compound 73 in the membrane material can be less than or equal to 60%. Compared with the membrane material having a mass fraction of the sulfonamide compound 73 greater than 60%, the membrane material provided by this implementation contains less sulfonamide compound 73. Less sulfonamide compound 73 can make the membrane material have greater viscosity, and in the formation process of the lithium-ion battery, the membrane material provided by this implementation is less difficult to coat on the surface of the solid electrolyte.

为了兼顾膜层材料的粘度和膜层材料的Li+电导率,作为一种可行性实现方式磺酰胺类化合物73的质量分数可以在40%~60%。In order to take into account both the viscosity of the membrane material and the Li + conductivity of the membrane material, as a feasible implementation method, the mass fraction of the sulfonamide compound 73 can be 40% to 60%.

作为一种可行性实现方式膜层材料还可以包括:隔膜材料。As a feasible implementation method, the membrane layer material may also include: diaphragm material.

在膜层材料包含隔膜材料的实施例中锂盐、聚氧化乙烯类聚合物(72、74)、磺酰胺类化合物组成的材料可以称之为聚合物材料。In the embodiment where the membrane material includes a diaphragm material, the material composed of lithium salt, polyethylene oxide polymer (72, 74), and sulfonamide compound can be referred to as a polymer material.

隔膜材料具有允许Li+通过,隔绝e-的作用,进而使得包含隔膜材料的膜层才来具有Li+通过,隔绝e-的功能。隔膜材料包括:聚丙烯(polypropylene,PP)、赛璐珞或其他多孔锂离子电池隔膜材料。The diaphragm material has the function of allowing Li + to pass through and isolating e - , so that the membrane layer containing the diaphragm material has the function of allowing Li + to pass through and isolating e - . The diaphragm material includes: polypropylene (PP), celluloid or other porous lithium-ion battery diaphragm materials.

目前公开的用于制备固态电解质的材料中,锂盐的含量在8%~35%之间。其中,锂盐含量较少的材料相应的锂离子电导率较低。本申请实施例提供的膜层材料中磺酰胺类化合物可以作为聚乙二醇二甲基丙烯酸酯的塑化剂,磺酰胺类化合物与聚乙二醇二甲基丙烯酸酯中醚键之间存分子间作用力,这种分子间的作用力可以聚乙二醇二甲基丙烯酸酯的玻璃化转变温度,从而有效促进聚乙二醇二甲基丙烯酸酯的链段运动,使得膜层材料的具有较好的Li+电导率。本申请实施例提供的膜层材料锂盐可以控制小于25%,膜层材料的锂离子电导率在室温下可以达到6.2×10-4S/cm。Among the materials currently disclosed for preparing solid electrolytes, the content of lithium salt is between 8% and 35%. Among them, the corresponding lithium ion conductivity of the material with less lithium salt content is lower. The sulfonamide compound in the film material provided in the embodiment of the present application can be used as a plasticizer for polyethylene glycol dimethacrylate, and there is an intermolecular force between the sulfonamide compound and the ether bond in polyethylene glycol dimethacrylate. This intermolecular force can increase the glass transition temperature of polyethylene glycol dimethacrylate, thereby effectively promoting the segment movement of polyethylene glycol dimethacrylate, so that the film material has better Li + conductivity. The lithium salt of the film material provided in the embodiment of the present application can be controlled to be less than 25%, and the lithium ion conductivity of the film material can reach 6.2× 10-4 S/cm at room temperature.

目前,公开的用于制备固态电解质的材料,应用在锂离子电池中,在对锂离子电池循环性能测试需要在高温下进行,本申请实施例提供的膜层材料应用到锂离子电池中,可以在室温下进行电池性能测试。At present, the disclosed materials for preparing solid electrolytes are used in lithium-ion batteries. The cycle performance test of lithium-ion batteries needs to be carried out at high temperatures. The membrane material provided in the embodiments of the present application is applied to lithium-ion batteries, and the battery performance test can be carried out at room temperature.

膜层材料具有较大的Li+电导率,将其应用在锂离子电池中,膜层材料形成的膜层与锂离子的正极/负极之间不会形成严重的电荷层。膜层与正极/负极可以形成稳定的界面,该界面在电池循环过程中不会随着锂的沉积/剥离而变差。本申请实施例提供的薄膜材料具有稳定锂沉积/剥离的作用,具体作用机理可能是膜层材料交联后形成的三维锂沉积位点,使得锂金属的沉积更加均一;还有一种可能的解释原因是锂盐中的氟元素会在充放电过程中与锂金属反应在锂金属表面形成富含LiF的SEI膜,以此达到锂金属的均匀沉积与剥离。使得该锂离子电池具有稳定的循环性能。例如:0.2mA/cm2的电流密度下可以循环1400小时。The film material has a large Li + conductivity. When it is applied in a lithium-ion battery, no serious charge layer will be formed between the film layer formed by the film material and the positive/negative electrode of the lithium ion. The film layer and the positive/negative electrode can form a stable interface, and the interface will not deteriorate with the deposition/stripping of lithium during the battery cycle. The thin film material provided in the embodiment of the present application has the effect of stabilizing lithium deposition/stripping. The specific mechanism of action may be the three-dimensional lithium deposition sites formed after the cross-linking of the film material, which makes the deposition of lithium metal more uniform; another possible explanation is that the fluorine element in the lithium salt will react with lithium metal during the charge and discharge process to form a LiF-rich SEI film on the surface of lithium metal, thereby achieving uniform deposition and stripping of lithium metal. This makes the lithium-ion battery have stable cycle performance. For example: it can cycle for 1400 hours at a current density of 0.2mA/ cm2 .

本申请实施例提供的膜层材料中磺酰胺类化合物可以作为聚氧化乙烯类聚合物分散剂,使得磺酰胺类化合物、聚氧化乙烯类聚合物、锂盐可以形成均匀的体系。本实现方式提供的膜层材料无需采用小分子溶剂,因此,不会存在由于小分子溶剂的残留而引发的问题。The sulfonamide compound in the membrane material provided in the embodiment of the present application can be used as a polyethylene oxide polymer dispersant, so that the sulfonamide compound, polyethylene oxide polymer, and lithium salt can form a uniform system. The membrane material provided in this implementation does not need to use a small molecule solvent, so there will be no problems caused by the residue of the small molecule solvent.

本申请实施例提供的膜层材料中,聚氧化乙烯类聚合物可以发生交联反应,使得膜层材料转换为固态的膜层。下面结合具体的实例对本申请实施例提供的膜层材料的效果作以说明:In the film material provided in the embodiment of the present application, the polyethylene oxide polymer can undergo a cross-linking reaction, so that the film material is converted into a solid film. The effect of the film material provided in the embodiment of the present application is described below with reference to specific examples:

实施例一,膜层材料各组分的含量可以参阅表1。Example 1: The contents of the components of the film layer material can be found in Table 1.

表1Table 1

组分Components 质量分数(%)Mass fraction (%) PEGMA(Mn=550g/mol)PEGMA (Mn = 550 g/mol) 66 PEGDMA(Mn=500g/mol)PEGDMA (Mn = 500 g/mol) 1717 磺酰胺类化合物(EMSA)Sulfonamide compounds (EMSA) 5252 LiTFSILiTFSI 1515 LiFSILiFSI 1010

对比例为:聚乙二醇二丙烯酸酯(PEGDA)+30%的锂盐。The comparative example is: polyethylene glycol diacrylate (PEGDA) + 30% lithium salt.

分别将本实施例一提供的膜层材料交联聚合后的产物和对比例交联聚合后的产物作为固态电解质应用到图11提供的锂离子电池中。The cross-linked polymerized product of the membrane material provided in Example 1 and the cross-linked polymerized product of the comparative example are respectively applied as solid electrolytes to the lithium-ion battery provided in FIG. 11 .

为了方便区分,将采用本申请实施例提供的膜层材料的锂离子电池称之为第一锂离子电池,将采用对比例的锂离子电池称之为第二锂离子电池。For the sake of distinction, the lithium-ion battery using the membrane material provided in the embodiment of the present application is referred to as a first lithium-ion battery, and the lithium-ion battery using the comparative example is referred to as a second lithium-ion battery.

对第一锂离子电池和第二锂离子电池在70℃,200mAh/cm2电流密度下的循环性能进行测试,测试结果可以参阅图12。The cycle performance of the first lithium ion battery and the second lithium ion battery was tested at 70° C. and a current density of 200 mAh/cm 2. The test results can be seen in FIG12 .

图12中的(一)为第一锂离子电池的电势-循环时间曲线。图12中的(二)为第二锂离子电池的电势-循环时间曲线。可以看出,第一锂离子电池具有较佳的循环性能。第二锂离子循环性能较差。FIG12 (a) is a potential-cycle time curve of the first lithium ion battery. FIG12 (b) is a potential-cycle time curve of the second lithium ion battery. It can be seen that the first lithium ion battery has better cycle performance. The second lithium ion battery has poor cycle performance.

第二锂离子电池中固态电解质的形成需要加入小分子溶剂或分散剂,所以在形成固态电解质后需要去除小分子溶剂或分散剂。残余的小分子溶剂或分散剂,会对锂离子电池的循环性能产生影响。Second, the formation of solid electrolyte in lithium-ion battery requires the addition of small molecule solvent or dispersant, so the small molecule solvent or dispersant needs to be removed after the solid electrolyte is formed. The residual small molecule solvent or dispersant will affect the cycle performance of lithium-ion battery.

本申请实施例提供膜层材料无需加入小分子溶剂或分散剂,所以在膜层材料交联聚合后不需要另外增加溶剂挥发的工序,也不会有小分子溶剂残余。因此,采用本申请实施例提供的膜层材料形成的固态电解质应用到锂离子电池中,锂离子电池可以具有较好循环性能。The membrane material provided in the embodiment of the present application does not require the addition of a small molecule solvent or dispersant, so there is no need to add a solvent volatilization process after the cross-linking polymerization of the membrane material, and there will be no small molecule solvent residue. Therefore, the solid electrolyte formed by the membrane material provided in the embodiment of the present application is applied to a lithium-ion battery, and the lithium-ion battery can have good cycle performance.

将实施例一提供的膜层材料作为液态电解质应用到图11提供的锂离子电池中,得到第三锂离子电池。The membrane material provided in Example 1 is applied as a liquid electrolyte to the lithium ion battery provided in FIG. 11 to obtain a third lithium ion battery.

对第三锂离子电池在0.05mAh/cm2电流密度下和0.2mAh/cm2电流密度下的循环性能进行测试,测试结果可以参阅图13。The cycle performance of the third lithium-ion battery was tested at a current density of 0.05 mAh/cm 2 and a current density of 0.2 mAh/cm 2. The test results can be seen in FIG13 .

图13中的(一)为第三锂离子电池在0.05mAh/cm2电流密度下的电势-循环时间曲线。图13中的(二)为第三锂离子电池在0.2mAh/cm2电流密度下的电势-循环时间曲线。可以看出,本申请实施例提供的膜层材料作为液态电解质应用到锂离子电池中,锂离子电池也可以具有较好循环性能。Figure 13 (a) is a potential-cycle time curve of the third lithium ion battery at a current density of 0.05 mAh/cm 2. Figure 13 (b) is a potential-cycle time curve of the third lithium ion battery at a current density of 0.2 mAh/cm 2. It can be seen that the membrane material provided in the embodiment of the present application is applied as a liquid electrolyte in a lithium ion battery, and the lithium ion battery can also have good cycle performance.

实施例二:Embodiment 2:

将LiFSI与LiTFSI的摩尔比1:1,醚键与锂离子的摩尔=20的膜层材料交联后得到的膜层作为固态电解质应用图11提供的锂离子电池中,得到第四锂离子电池。The membrane layer obtained by cross-linking a membrane material having a molar ratio of LiFSI to LiTFSI of 1:1 and a molar ratio of ether bonds to lithium ions of 20 was used as a solid electrolyte in the lithium ion battery provided in FIG. 11 to obtain a fourth lithium ion battery.

对第四锂离子电池的锂离子迁移数和界面阻抗进行测试。测试结果可以参阅图14。图14中的70%、30%、50%为EMSA与PEGDA组成的体系中,EMSA/PEGDA的质量分数。The lithium ion migration number and interface impedance of the fourth lithium ion battery were tested. The test results can be seen in Figure 14. 70%, 30%, and 50% in Figure 14 are the mass fractions of EMSA/PEGDA in the system composed of EMSA and PEGDA.

图14中的(一)为第四锂离子电池的离子电导率-温度曲线。图14中的(二)为第四锂离子电池的界面阻抗-温度曲线。Figure 14 (a) is an ionic conductivity-temperature curve of the fourth lithium ion battery. Figure 14 (b) is an interface impedance-temperature curve of the fourth lithium ion battery.

加入EMSA后的PEGDA交联后得到的交联体系,其室温锂离子导电性从原来的10-6S/cm~10-5S/cm(不含EMSA)提升到10-4S/cm。The room temperature lithium ion conductivity of the cross-linked system obtained by cross-linking PEGDA with the addition of EMSA is increased from the original 10 -6 S/cm to 10 -5 S/cm (without EMSA) to 10 -4 S/cm.

加入EMSA后,随EMSA含量的升高,固态电解质与锂金属负极之间的界面阻抗也得到了一定的改善。具体的,可以参阅图14中的(二),在20℃~30℃之间,70%EMSA的锂离子电池的界面阻抗小于50%EMSA的锂离子电池的界面阻抗。After adding EMSA, the interface impedance between the solid electrolyte and the lithium metal negative electrode is also improved to a certain extent with the increase of EMSA content. Specifically, it can be seen from (ii) in Figure 14 that the interface impedance of the lithium ion battery with 70% EMSA is less than that of the lithium ion battery with 50% EMSA at 20°C to 30°C.

本申请实施例还提供一种膜层,膜层用于保护固态电解质。请参阅图15,图15为本申请实施例提供的膜层的示意图。膜层采用本申请实施例提供的膜层材料,膜层材料可以包括:锂盐、聚氧化乙烯类聚合物和磺酰胺类化合物。The present application also provides a membrane layer, which is used to protect the solid electrolyte. Please refer to Figure 15, which is a schematic diagram of the membrane layer provided in the present application. The membrane layer uses the membrane layer material provided in the present application, and the membrane layer material may include: lithium salt, polyethylene oxide polymer and sulfonamide compound.

膜层采用本申请实施例提供的膜层材料,因此,膜层具有上述膜层材料具有的效果。The film layer adopts the film layer material provided in the embodiment of the present application, so the film layer has the effects of the above-mentioned film layer material.

本申请实施例提供的膜层可以作为固体电解质的保护层应用在锂离子电池中,保护层可以设置在锂离子电池的正极与固态电解质之间,和/或,负极与固态电解质之间。The membrane layer provided in the embodiment of the present application can be used as a protective layer of a solid electrolyte in a lithium-ion battery. The protective layer can be arranged between the positive electrode and the solid electrolyte, and/or between the negative electrode and the solid electrolyte of the lithium-ion battery.

固态电解质可以是但不限于氧化物陶瓷固态电解质材料、硫化物固态电解质材料等。The solid electrolyte may be, but is not limited to, an oxide ceramic solid electrolyte material, a sulfide solid electrolyte material, or the like.

作为一种可行性实现方式,保护层具有自支撑性能,请参阅图16。图16为一可行性实施例提供的保护层的示意图。可以看出,用夹子161夹取保护层162,保护层162可以独立支撑,即保护层162具有自支撑性能。As a feasible implementation, the protective layer has self-supporting properties, please refer to Figure 16. Figure 16 is a schematic diagram of a protective layer provided by a feasible embodiment. It can be seen that the protective layer 162 is clamped by the clip 161, and the protective layer 162 can be independently supported, that is, the protective layer 162 has self-supporting properties.

本实现方式中,保护层162具有自支撑性能,将保护层162应用到锂离子电池中,保护层162具有自支撑性能,保护层162不易出现褶皱,因此,可以减少由于保护层162褶皱而引起的锂离子电池的正极与负极导通问题。本申请实施例提供的保护层162可以克服现有技术四中的问题(2)。In this implementation, the protective layer 162 has a self-supporting property. When the protective layer 162 is applied to a lithium-ion battery, the protective layer 162 has a self-supporting property and is not prone to wrinkles. Therefore, the problem of conduction between the positive and negative electrodes of the lithium-ion battery caused by wrinkles in the protective layer 162 can be reduced. The protective layer 162 provided in the embodiment of the present application can overcome the problem (2) in the fourth prior art.

保护层162由本申请实施例提供的膜层材料交联后得到具有一定的韧性。因此,保护层162可以抑制锂枝晶的生长,进而可以在一定程度上减少由于锂枝晶穿透固态电解质而造成的正极与负极短路的问题。The protective layer 162 has a certain toughness after being cross-linked with the film material provided in the embodiment of the present application. Therefore, the protective layer 162 can inhibit the growth of lithium dendrites, and further reduce the problem of short circuit between the positive electrode and the negative electrode caused by lithium dendrites penetrating the solid electrolyte to a certain extent.

本申请实施例提供保护层中不含有镧锆等金属,即使应用在采用锂金属负极的锂离子电池中,保护层与锂金属发生副反应较少。保护层具有较大的Li+电导率,保护层与负极之间不会形成严重的电荷层,保护层与负极可以形成稳定的界面,该界面在电池循环过程中不会随着锂的沉积/剥离而变差。在经过多次充放电的循环后本申请实施例提供的保护层与锂金属负极仍可以具有较稳定的界面。采用本申请实施例提供的保护层的锂离子电池在多次充放电的循环后仍可以具有较小的界面阻抗。The protective layer provided in the embodiment of the present application does not contain metals such as lanthanum and zirconium. Even if it is used in a lithium-ion battery using a lithium metal negative electrode, the protective layer and the lithium metal have fewer side reactions. The protective layer has a large Li + conductivity, and no serious charge layer is formed between the protective layer and the negative electrode. The protective layer and the negative electrode can form a stable interface, and the interface will not deteriorate with the deposition/stripping of lithium during the battery cycle. After multiple cycles of charge and discharge, the protective layer provided in the embodiment of the present application can still have a relatively stable interface with the lithium metal negative electrode. The lithium-ion battery using the protective layer provided in the embodiment of the present application can still have a small interface impedance after multiple cycles of charge and discharge.

本申请实施例还提供一种膜层。请参阅图17,图17为本申请实施例提供的膜层的示意图。膜层采用本申请实施例提供的膜层材料。膜层材料包括:隔膜材料、锂盐、聚氧化乙烯类聚合物和磺酰胺类化合物。The present application also provides a membrane layer. Please refer to FIG. 17, which is a schematic diagram of the membrane layer provided in the present application. The membrane layer uses the membrane layer material provided in the present application. The membrane layer material includes: a diaphragm material, a lithium salt, a polyethylene oxide polymer, and a sulfonamide compound.

本申请实施例提供的膜层可以作为复合固态电解质可以应用在锂离子电池中。复合固态电解质可以设置在锂离子电池的正极与负极之间。与LLZO的固态电解质相比较,本申请实施例提供复合固态电解质中不含有镧锆等金属,即使应用在采用锂金属负极的锂离子电池中,复合固态电解质与锂金属发生副反应较少。复合固态电解质具有较大的Li+电导率,复合固态电解质与正极/负极之间不会形成严重的电荷层,复合固态电解质与正极/负极可以形成稳定的界面,该界面在电池循环过程中不会随着锂的沉积/剥离而变差。在经过多次充放电的循环后本申请实施例提供的复合固态电解质与正极/负极仍可以具有较稳定的界面。采用本申请实施例提供的复合固态电解质的锂离子电池在多次充放电的循环后仍可以具有较小的界面阻抗。The film layer provided in the embodiment of the present application can be used as a composite solid electrolyte in a lithium-ion battery. The composite solid electrolyte can be arranged between the positive electrode and the negative electrode of the lithium-ion battery. Compared with the solid electrolyte of LLZO, the composite solid electrolyte provided in the embodiment of the present application does not contain metals such as lanthanum zirconium. Even if it is used in a lithium-ion battery using a lithium metal negative electrode, the composite solid electrolyte has fewer side reactions with lithium metal. The composite solid electrolyte has a large Li+ conductivity, and a serious charge layer will not be formed between the composite solid electrolyte and the positive electrode/negative electrode. The composite solid electrolyte and the positive electrode/negative electrode can form a stable interface, which will not deteriorate with the deposition/stripping of lithium during the battery cycle. After multiple cycles of charge and discharge, the composite solid electrolyte provided in the embodiment of the present application can still have a relatively stable interface with the positive electrode/negative electrode. The lithium-ion battery using the composite solid electrolyte provided in the embodiment of the present application can still have a small interface impedance after multiple cycles of charge and discharge.

作为一种可行性实现方式,复合固态电解质具有自支撑性能,请参阅图16。图16为一可行性实施例提供的复合固态电解质的示意图。可以看出,用夹子161夹取复合固态电解质162,复合固态电解质162可以独立支撑,即复合固态电解质162具有自支撑性能。本实现方式提供的膜层可以克服现有技术四中的问题(2)。As a feasible implementation, the composite solid electrolyte has self-supporting properties, please refer to Figure 16. Figure 16 is a schematic diagram of a composite solid electrolyte provided by a feasible embodiment. It can be seen that the composite solid electrolyte 162 is clamped by the clamp 161, and the composite solid electrolyte 162 can be independently supported, that is, the composite solid electrolyte 162 has self-supporting properties. The membrane layer provided by this implementation can overcome the problem (2) in the fourth prior art.

本实现方式中,复合固态电解质具有自支撑性能,将复合固态电解质应用到锂离子电池中的正极与负极之间。复合固态电解质不易出现褶皱,因此,可以减少由于复合固态电解质出现褶皱而引起的锂离子电池的正极与负极导通问题。In this implementation, the composite solid electrolyte has self-supporting properties, and the composite solid electrolyte is applied between the positive electrode and the negative electrode in the lithium-ion battery. The composite solid electrolyte is not prone to wrinkles, so the conduction problem between the positive electrode and the negative electrode of the lithium-ion battery caused by the wrinkles of the composite solid electrolyte can be reduced.

本申请实施例还提供一种锂离子电池。请参阅图18,包括:正极181、负极182、固态电解质183,至少一层保护层184。固态电解质183设置在正极181与负极182之间。The present application also provides a lithium-ion battery, as shown in FIG18 , which includes a positive electrode 181 , a negative electrode 182 , a solid electrolyte 183 , and at least one protective layer 184 . The solid electrolyte 183 is disposed between the positive electrode 181 and the negative electrode 182 .

值得注意的是,图18中仅是示例性的展示了正极181、负极182、固态电解质183及保护层184之间的堆叠关系。在实际应用的过程中,正极181、负极182、固态电解质183及保护层184按照图18中展示的堆叠关系贴合在一起。It is worth noting that FIG18 only exemplarily shows the stacking relationship between the positive electrode 181, the negative electrode 182, the solid electrolyte 183 and the protective layer 184. In actual application, the positive electrode 181, the negative electrode 182, the solid electrolyte 183 and the protective layer 184 are bonded together according to the stacking relationship shown in FIG18.

请参阅图18中的(一),作为一种可行性实现方式,保护层184设置在固态电解质183与正极181之间。Please refer to (a) in FIG. 18 . As a feasible implementation method, the protective layer 184 is disposed between the solid electrolyte 183 and the positive electrode 181 .

请参阅图18中的(二),作为一种可行性实现方式,保护层184设置在固态电解质183与负极182之间。Please refer to (ii) in FIG. 18 . As a feasible implementation method, the protective layer 184 is disposed between the solid electrolyte 183 and the negative electrode 182 .

请参阅图18中的(三),作为一种可行性实现方式,其中一层保护层184(1)设置在固态电解质183与正极181之间,另一层保护层184(2)设置在固态电解质183与负极182之间。Please refer to (iii) in FIG. 18 , as a feasible implementation method, one protective layer 184 (1) is disposed between the solid electrolyte 183 and the positive electrode 181 , and another protective layer 184 (2) is disposed between the solid electrolyte 183 and the negative electrode 182 .

本申请实施例提供的锂离子电池,正极181与负极182之间设置有固态电解质183,固态电解质183起到允许Li+通过,隔绝e-的作用。进而可以保证正极181与负极182之间的电性隔离。In the lithium-ion battery provided in the embodiment of the present application, a solid electrolyte 183 is disposed between the positive electrode 181 and the negative electrode 182, and the solid electrolyte 183 allows Li+ to pass through and isolates e-, thereby ensuring electrical isolation between the positive electrode 181 and the negative electrode 182.

保护层184采用本申请实施例提供的膜层材料。膜层材料可以包括:锂盐、聚氧化乙烯类聚合物和磺酰胺类化合物。The protective layer 184 is made of the film material provided in the embodiment of the present application, which may include: lithium salt, polyethylene oxide polymer and sulfonamide compound.

聚氧化乙烯类聚合物作为膜层材料的基体含有醚键。醚键作为位点可以与锂盐于提供Li+结合。聚氧化乙烯类聚合物分子存在链段运动,链段运动可以带动Li+在不同位点间的位移,进而实现Li+在正极与负极之间的迁移。Polyethylene oxide polymers as the matrix of the membrane material contain ether bonds. Ether bonds can be used as sites to combine with lithium salts to provide Li+. Polyethylene oxide polymer molecules have segmental motion, which can drive the displacement of Li+ between different sites, thereby realizing the migration of Li+ between the positive and negative electrodes.

磺酰胺类化合物还可以作为聚氧化乙烯类聚合物的塑化剂,磺酰胺类化合物与聚氧化乙烯类聚合物中醚键之间存分子间作用力,这种分子间的作用力可以降低聚氧化乙烯类聚合物、的玻璃化转变温度,从而有效促进聚氧化乙烯类聚合物的链段运动,使得保护层184的具有较好的Li+电导率。Sulfonamide compounds can also be used as plasticizers for polyethylene oxide polymers. There is an intermolecular force between sulfonamide compounds and the ether bonds in polyethylene oxide polymers. This intermolecular force can reduce the glass transition temperature of polyethylene oxide polymers, thereby effectively promoting the chain segment movement of polyethylene oxide polymers, so that the protective layer 184 has better Li + conductivity.

保护层184具有较大的Li+电导率,将其应用在锂离子电池中,保护层184与正极181/负极182之间不会形成严重的电荷层。保护层184与正极181/负极182可以形成稳定的界面,该界面在电池循环过程中不会随着锂的沉积/剥离而变差,使得锂离子电池具有稳定的循环性能。The protective layer 184 has a large Li + conductivity. When it is used in a lithium-ion battery, no serious charge layer is formed between the protective layer 184 and the positive electrode 181/negative electrode 182. The protective layer 184 and the positive electrode 181/negative electrode 182 can form a stable interface, which will not deteriorate with the deposition/stripping of lithium during the battery cycle, so that the lithium-ion battery has stable cycle performance.

保护层184由膜层材料交联后形成,保护层184呈现为固态。与采用液态电解质的锂离子电池相比较,本申请实施例提供的锂离子电池可以避免由于液态电解质漏液而引发的安全问题。The protective layer 184 is formed by cross-linking the film material, and the protective layer 184 is in a solid state. Compared with lithium-ion batteries using liquid electrolytes, the lithium-ion batteries provided in the embodiments of the present application can avoid safety issues caused by leakage of liquid electrolytes.

保护层184具有一定的韧性,可以抑制负极锂枝晶的生长,起到保护固态电解质183的作用,使得锂离子电池的安全性能提升。The protective layer 184 has a certain toughness, which can inhibit the growth of negative electrode lithium dendrites and play a role in protecting the solid electrolyte 183, thereby improving the safety performance of the lithium-ion battery.

交联后的膜层材料形成的保护层184具有一定的韧性,保护层184可以抑制锂枝晶的生长,起到保护固态电解质183的作用。因此,本申请实施例提供的锂离子电池可以采用具有较高比容量的锂金属负极。进而保证本申请实施例提供的锂离子电池具有较高的能量密度。The protective layer 184 formed by the cross-linked film material has a certain toughness, and the protective layer 184 can inhibit the growth of lithium dendrites and protect the solid electrolyte 183. Therefore, the lithium ion battery provided in the embodiment of the present application can use a lithium metal negative electrode with a higher specific capacity. This ensures that the lithium ion battery provided in the embodiment of the present application has a higher energy density.

由于本申请实施例提供的锂离子电池中正极181和/或负极182与保护层184接触。保护层184中不含有镧锆等金属,即使锂离子电池的负极182采用锂金属,保护层184与锂金属发生副反应较少,保护层184具有较大的Li+电导率,保护层184与正极181/负极182之间不会形成严重的电荷层。本申请实施例提供的锂离子电池多次充放电的循环后仍可以具有较稳定的界面。本申请实施例提供的锂离子电池在多次充放电的循环后仍可以具有较小的界面阻抗。Since the positive electrode 181 and/or the negative electrode 182 in the lithium-ion battery provided in the embodiment of the present application are in contact with the protective layer 184. The protective layer 184 does not contain metals such as lanthanum and zirconium. Even if the negative electrode 182 of the lithium-ion battery uses lithium metal, the protective layer 184 has fewer side reactions with the lithium metal, and the protective layer 184 has a larger Li + conductivity. A serious charge layer will not be formed between the protective layer 184 and the positive electrode 181/negative electrode 182. The lithium-ion battery provided in the embodiment of the present application can still have a relatively stable interface after multiple charge and discharge cycles. The lithium-ion battery provided in the embodiment of the present application can still have a small interface impedance after multiple charge and discharge cycles.

下面结合具体的附图对本申请实施例提供的锂离子电池作进一步的说明:The lithium-ion battery provided in the embodiment of the present application is further described below in conjunction with specific drawings:

作为一种实现方式,图18提供的锂离子电池中,正极181采用LiFeO4;负极182采用锂金属;固态电解质183采用LLZO;保护层184采用本申请实施例提供的膜层材料(PE)。本实现方式提供的锂离子电池可以称之为Li|PE|LLZO|PE|Li。As an implementation, in the lithium-ion battery provided in FIG18 , the positive electrode 181 is LiFeO 4 ; the negative electrode 182 is lithium metal; the solid electrolyte 183 is LLZO; and the protective layer 184 is the film material (PE) provided in the embodiment of the present application. The lithium-ion battery provided in this implementation can be referred to as Li|PE|LLZO|PE|Li.

对比例1正极与负极之间设置有LLZO,对比例1提供的锂离子电池可以表示为Li|LLZO|Li。In Comparative Example 1, LLZO is disposed between the positive electrode and the negative electrode. The lithium ion battery provided in Comparative Example 1 can be expressed as Li|LLZO|Li.

对Li|LLZO|Li和Li|PE|LLZO|PE|Li的阻抗进行测试,测试结果可以参阅图19。The impedance of Li|LLZO|Li and Li|PE|LLZO|PE|Li was tested, and the test results can be seen in Figure 19.

图19中(一)为Li|LLZO|Li虚部阻抗-实部阻抗曲线。图19中(二)为Li|PE|LLZO|PE|Li虚部阻抗-实部阻抗曲线。Figure 19 (a) is a Li|LLZO|Li imaginary impedance-real impedance curve. Figure 19 (b) is a Li|PE|LLZO|PE|Li imaginary impedance-real impedance curve.

图19中(一)实部阻抗2000ohm.cm2~5000ohm.cm2范围内Li|LLZO|Li的虚部阻抗为固态电解质与锂金属负极之间的界面阻抗。可以看出,Li|LLZO|Li的界面阻抗在2020Ω.cm2In Figure 19 (a), the imaginary impedance of Li|LLZO|Li in the range of 2000 ohm.cm 2 to 5000 ohm.cm 2 is the interface impedance between the solid electrolyte and the lithium metal negative electrode. It can be seen that the interface impedance of Li|LLZO|Li is 2020 Ω.cm 2 .

图19中(二)中200ohm.cm2~650ohm.cm2围内Li|PE|LLZO|PE|Li的虚部阻抗为保护层与锂金属负极之间的界面阻抗。可以看出,Li|PE|LLZO|PE|Li的界面阻抗在300Ω.cm2。本实现方式提供的锂离子电池具有较小的界面阻抗。The imaginary impedance of Li|PE|LLZO|PE|Li in the range of 200 ohm.cm 2 to 650 ohm.cm 2 in FIG. 19 (B) is the interface impedance between the protective layer and the lithium metal negative electrode. It can be seen that the interface impedance of Li|PE|LLZO|PE|Li is 300 Ω.cm 2. The lithium ion battery provided by this implementation has a small interface impedance.

本实现方式提供的锂离子电池保护层中没有加入多余小分子溶剂或分散剂分子,所以在交联后不需要另外增加溶剂挥发的工序,也不会有小分子溶剂残余。残余的溶剂分子或者小分子的聚合物反应前体在循环过程中可能对电池的性能产生影响。The lithium-ion battery protective layer provided by this implementation does not contain any extra small molecule solvent or dispersant molecules, so there is no need to add an additional solvent volatilization process after cross-linking, and there will be no small molecule solvent residue. The residual solvent molecules or small molecule polymer reaction precursors may affect the performance of the battery during the cycle.

对Li|LLZO|Li和Li|PE|LLZO|PE|Li的循环性能进行测试,测试结果可以参阅图20和图21。The cycle performance of Li|LLZO|Li and Li|PE|LLZO|PE|Li was tested, and the test results can be seen in Figures 20 and 21.

图20中的(一)为Li|LLZO|Li在40℃,面容量0.1mAh/cm2条件下,电势-循环时间关系曲线,图20中的(二)为Li|LLZO|Li循环120h后,LLZO的示意图。Figure 20 (a) is the potential-cycle time relationship curve of Li|LLZO|Li at 40°C and a surface capacity of 0.1 mAh/ cm2 . Figure 20 (b) is a schematic diagram of LLZO after Li|LLZO|Li cycled for 120 hours.

图20中的(一)可以看出,Li|LLZO|Li在大约30h的循环后,Li|LLZO|Li便发生电池短路。图20中的(二),在LLZO表面沉积大量与锂金属的副产物。As can be seen from Figure 20 (a), after about 30 hours of cycling, Li|LLZO|Li experienced a short circuit. In Figure 20 (b), a large amount of byproducts with lithium metal were deposited on the surface of LLZO.

图21中的(一)为Li|PE|LLZO|PE|Li在40℃,面容量0.1mAh/cm2条件下Li|PE|LLZO|PE|Li提供的电势-循环时间的关系曲线。可以看出,在较高的温度(40℃)经过800h的循环后Li|PE|LLZO|PE|Li仍具有较好的循环性能,即多次充放电的循环后保护层与锂金属负极仍可以具有较稳定的界面。Figure 21 (a) is the potential-cycle time relationship curve provided by Li|PE|LLZO|PE|Li at 40°C and surface capacity of 0.1 mAh/ cm2 . It can be seen that after 800 hours of cycling at a higher temperature (40°C), Li|PE|LLZO|PE|Li still has good cycle performance, that is, after multiple charge and discharge cycles, the protective layer and the lithium metal negative electrode can still have a relatively stable interface.

两次实验得到的电势-循环时间的关系曲线几乎一致。可以看出,本申请实施例提供的锂离子电池具有可重复性。The potential-cycle time relationship curves obtained from the two experiments are almost the same. It can be seen that the lithium-ion battery provided in the embodiment of the present application has repeatability.

图21中的(二)为Li|PE|LLZO|PE|Li在25℃,面容量0.1mAh/cm2条件下Li|PE|LLZO|PE|Li提供的电势-循环时间的关系曲线。可以看出,在室温(25℃)经过1000h的循环后Li|PE|LLZO|PE|Li仍具有较好的循环性能,即多次充放电的循环后保护层与锂金属负极仍可以具有较稳定的界面。Figure 21 (ii) is the potential-cycle time relationship curve provided by Li|PE|LLZO|PE|Li at 25°C and a surface capacity of 0.1 mAh/ cm2 . It can be seen that after 1000 hours of cycling at room temperature (25°C), Li|PE|LLZO|PE|Li still has good cycle performance, that is, after multiple charge and discharge cycles, the protective layer and the lithium metal negative electrode can still have a relatively stable interface.

Li|PE|LLZO|PE|Li循环性能测试中展现出较小的电势(0.05V),相较于先前文献中的其他聚合物体系(过电势较大且非常不稳定,随着循环的进行电势也会不断扩大)。Li|PE|LLZO|PE|Li中保护层采用本申请实施例提供的膜层材料,膜层材料具有较大的Li+电导率及锂离子迁移数,在电池循环过程中不会产生严重的电荷层,因此,Li|PE|LLZO|PE|Li测得的过电势较小。保护层可以与锂金属负极可以形成稳定的界面,该界面在电池循环过程中不会随着锂的沉积/剥离而变差。Li|PE|LLZO|PE|Li多次充放电的循环后保护层与锂金属负极仍可以具有较稳定的界面。Li|PE|LLZO|PE|Li showed a smaller potential (0.05V) in the cycle performance test, compared with other polymer systems in previous literature (the overpotential is large and very unstable, and the potential will continue to expand as the cycle progresses). The protective layer in Li|PE|LLZO|PE|Li adopts the film material provided in the embodiment of the present application. The film material has a large Li+ conductivity and lithium ion migration number, and will not produce a serious charge layer during the battery cycle. Therefore, the overpotential measured by Li|PE|LLZO|PE|Li is small. The protective layer can form a stable interface with the lithium metal negative electrode, and the interface will not deteriorate with the deposition/stripping of lithium during the battery cycle. After multiple charge and discharge cycles of Li|PE|LLZO|PE|Li, the protective layer and the lithium metal negative electrode can still have a relatively stable interface.

本申请实施例还提供一种锂离子电池。请参阅图22,锂离子电池包括:正极221、负极222;复合固态电解质223。复合固态电解质223可以设置在正极221与负极222之间,复合固态电解质223采用本申请实施例提供的膜层材料,膜层材料包括:锂盐,聚氧化乙烯类聚合物、隔膜材料和磺酰胺类化合物。The present application also provides a lithium-ion battery. Referring to FIG. 22 , the lithium-ion battery includes: a positive electrode 221, a negative electrode 222; and a composite solid electrolyte 223. The composite solid electrolyte 223 can be disposed between the positive electrode 221 and the negative electrode 222. The composite solid electrolyte 223 uses the membrane material provided in the present application, and the membrane material includes: lithium salt, polyethylene oxide polymer, diaphragm material, and sulfonamide compound.

值得注意的是,图22中仅是示例性的展示了正极221、负极222、复合固态电解质223之间的堆叠关系。在实际应用的过程中正极221、负极222、复合固态电解质223按照图22中展示的堆叠关系贴合在一起。It is worth noting that FIG22 only exemplarily shows the stacking relationship between the positive electrode 221, the negative electrode 222, and the composite solid electrolyte 223. In actual application, the positive electrode 221, the negative electrode 222, and the composite solid electrolyte 223 are bonded together according to the stacking relationship shown in FIG22.

隔膜材料具有允许Li+通过,隔绝e-的功能。因此,复合固态电解质223具有允许Li+通过,隔绝e-的作用,进而可以保证正极221与负极222之间的电性隔离。The diaphragm material has the function of allowing Li + to pass through and isolating e - . Therefore, the composite solid electrolyte 223 has the function of allowing Li + to pass through and isolating e - , thereby ensuring the electrical isolation between the positive electrode 221 and the negative electrode 222.

磺酰胺类化合物可以作为聚乙二醇二甲基丙烯酸酯分散剂,使得磺酰胺类化合物、聚乙二醇二甲基丙烯酸酯和锂盐可以形成均匀的体系。本实现方式提供的膜层材料无需采用小分子溶剂,因此,不会存在由于小分子溶剂的残留而引发的问题。Sulfonamide compounds can be used as polyethylene glycol dimethacrylate dispersants, so that sulfonamide compounds, polyethylene glycol dimethacrylate and lithium salt can form a uniform system. The membrane material provided by this implementation does not need to use small molecule solvents, so there will be no problems caused by residual small molecule solvents.

磺酰胺类化合物还可以作为聚乙二醇二甲基丙烯酸酯的塑化剂,磺酰胺类化合物与聚乙二醇二甲基丙烯酸酯中醚键之间存分子间作用力,这种分子间的作用力可以聚乙二醇二甲基丙烯酸酯的玻璃化转变温度,从而有效促进聚乙二醇二甲基丙烯酸酯的链段运动,使得复合固态电解质的具有较好的Li+电导率。Sulfonamide compounds can also be used as plasticizers for polyethylene glycol dimethacrylate. There is an intermolecular force between sulfonamide compounds and the ether bonds in polyethylene glycol dimethacrylate. This intermolecular force can increase the glass transition temperature of polyethylene glycol dimethacrylate, thereby effectively promoting the chain segment movement of polyethylene glycol dimethacrylate, so that the composite solid electrolyte has better Li + conductivity.

复合固态电解质223具有较大的Li+电导率,将其应用在锂离子电池中,复合固态电解质223与正极/负极之间不会形成严重的电荷层。复合固态电解质223与正极/负极可以形成稳定的界面,该界面在电池循环过程中不会随着锂的沉积/剥离而变差,使得锂离子电池具有稳定的循环性能。The composite solid electrolyte 223 has a large Li + conductivity. When it is used in a lithium-ion battery, no serious charge layer is formed between the composite solid electrolyte 223 and the positive electrode/negative electrode. The composite solid electrolyte 223 and the positive electrode/negative electrode can form a stable interface, which will not deteriorate with the deposition/stripping of lithium during the battery cycle, so that the lithium-ion battery has a stable cycle performance.

复合固态电解质223由膜层材料交联后形成,复合固态电解质223呈现为固态,与采用液态电解质的锂离子电池相比较,本申请实施例提供的锂离子电池可以减少由于液态电解质漏液而引发的安全问题。The composite solid electrolyte 223 is formed by cross-linking the membrane material. The composite solid electrolyte 223 is solid. Compared with the lithium-ion battery using liquid electrolyte, the lithium-ion battery provided in the embodiment of the present application can reduce the safety problems caused by leakage of liquid electrolyte.

复合固态电解质223具有一定的韧性,可以抑制负极锂枝晶的生长。因此,本申请实施例提供的锂离子电池,可以采用具有较高比容量的锂金属负极。进而保证锂离子电池具有较高的能量密度。The composite solid electrolyte 223 has a certain toughness and can inhibit the growth of negative electrode lithium dendrites. Therefore, the lithium-ion battery provided in the embodiment of the present application can use a lithium metal negative electrode with a higher specific capacity, thereby ensuring that the lithium-ion battery has a higher energy density.

本申请实施例提供的锂离子电池的正极221/负极222与复合固态电解质223接触。复合固态电解质223中不含有镧锆等金属,即使锂离子电池的负极222采用锂金属,复合固态电解质223与锂金属发生副反应较少。经过多次充放电的循环后复合固态电解质223与正极221/负极222仍可以具有较稳定的固固界面。采用本申请实施例提供的锂离子电池在多次充放电的循环后仍可以具有较小的界面阻抗。The positive electrode 221/negative electrode 222 of the lithium-ion battery provided in the embodiment of the present application is in contact with the composite solid electrolyte 223. The composite solid electrolyte 223 does not contain metals such as lanthanum and zirconium. Even if the negative electrode 222 of the lithium-ion battery adopts lithium metal, the composite solid electrolyte 223 and the lithium metal have fewer side reactions. After multiple cycles of charge and discharge, the composite solid electrolyte 223 and the positive electrode 221/negative electrode 222 can still have a relatively stable solid-solid interface. The lithium-ion battery provided by the embodiment of the present application can still have a small interface impedance after multiple cycles of charge and discharge.

下面结合具体的附图对本申请实施例提供的锂离子电池作进一步的说明:The lithium-ion battery provided in the embodiment of the present application is further described below in conjunction with specific drawings:

作为一种可行性实现方式,图22提供的锂离子电池中隔膜材料可以为可以简称为复合PE,图22提供的锂离子电池可以称之为Li|复合PE|Li对称电池。对Li|复合PE|Li对称电池的循环性能在25℃及40℃下,循环性能进行测试。测试结果可以参阅图23及图24。As a feasible implementation method, the separator material in the lithium-ion battery provided in FIG22 can be referred to as composite PE, and the lithium-ion battery provided in FIG22 can be referred to as a Li|composite PE|Li symmetric battery. The cycle performance of the Li|composite PE|Li symmetric battery was tested at 25°C and 40°C. The test results can be found in FIG23 and FIG24.

图23中的(一)为Li|复合PE|Li对称电池在40℃,面容量2mAh/cm2条件下,Li|复合PE|Li提供的电势-循环时间曲线。可以看出,在较高的温度(40℃)经过1100次的循环后,Li|复合PE|Li对称电池仍具有较好的循环性能,即多次充放电的循环后复合固态电解质与正极221/负极222仍可以具有较稳定的固固界面。Figure 23 (a) is the potential-cycle time curve provided by the Li|composite PE|Li symmetric battery at 40°C and a surface capacity of 2 mAh/cm 2. It can be seen that after 1100 cycles at a relatively high temperature (40°C), the Li|composite PE|Li symmetric battery still has good cycle performance, that is, after multiple charge and discharge cycles, the composite solid electrolyte and the positive electrode 221/negative electrode 222 can still have a relatively stable solid-solid interface.

图23中的(二)另一个Li|复合PE|Li对称电池在40℃,面容量2mAh/cm2条件下,Li|复合PE|Li提供的电势-循环时间曲线。图23中的(一)提供的关系曲线与图23中的(二)提供的关系曲线几乎一致。可以看出,本申请实施例提供的锂离子电池具有可重复性。FIG23 (ii) shows another Li|composite PE|Li symmetric battery at 40°C and a surface capacity of 2 mAh/ cm2 , and shows a potential-cycle time curve provided by Li|composite PE|Li. The relationship curve provided by FIG23 (i) is almost the same as the relationship curve provided by FIG23 (ii). It can be seen that the lithium-ion battery provided in the embodiment of the present application has repeatability.

图24中的(一)为Li|复合PE|Li对称电池在25℃,面容量2mAh/cm2条件下,Li|复合PE|Li提供的电势-循环时间曲线。可以看出,在25℃下经过1100h的循环后,Li|复合PE|Li对Li|复合PE|Li仍具有较好的循环性能,即多次充放电的循环后复合固态电解质与正极221/负极222仍可以具有较稳定的固固界面。Figure 24 (a) is the potential-cycle time curve provided by Li|composite PE|Li for the Li|composite PE|Li symmetric battery at 25°C and a surface capacity of 2 mAh/ cm2 . It can be seen that after 1100 hours of cycling at 25°C, Li|composite PE|Li still has good cycle performance, that is, after multiple charge and discharge cycles, the composite solid electrolyte and the positive electrode 221/negative electrode 222 can still have a relatively stable solid-solid interface.

图24中的(二)另一个Li|复合PE|Li对称电池在25℃,面容量2mAh/cm2条件下,Li|复合PE|Li提供的电势-循环时间曲线。图24中的(一)提供的关系曲线与图24中的(二)提供的关系曲线几乎一致。可以看出,本申请实施例提供的锂离子电池具有可重复性。FIG24 (ii) shows another Li|composite PE|Li symmetric battery at 25°C and a surface capacity of 2 mAh/ cm2 , and shows a potential-cycle time curve provided by Li|composite PE|Li. The relationship curve provided by FIG24 (i) is almost the same as the relationship curve provided by FIG24 (ii). It can be seen that the lithium-ion battery provided in the embodiment of the present application has repeatability.

本申请实施例还提供一种锂离子电池的制备方法,请参阅图25和图26,图25为锂离子电池的制备方法的流程图,图26为图25提供的制备方法的工艺流程图,制备方法包括:The present application also provides a method for preparing a lithium ion battery. Please refer to FIG. 25 and FIG. 26. FIG. 25 is a flow chart of the method for preparing a lithium ion battery, and FIG. 26 is a process flow chart of the method for preparing a lithium ion battery provided in FIG. 25. The method for preparing a lithium ion battery includes:

S251:在膜层材料中加入引发剂,得到聚合物前驱体。S251: adding an initiator to the film layer material to obtain a polymer precursor.

膜层材料包括:聚氧化乙烯类聚合物、锂盐、磺酰胺类化合物。The membrane layer materials include: polyethylene oxide polymers, lithium salts, and sulfonamide compounds.

作为一种可行性实现方式,磺酰胺类化合物的分子结构为不对称结构。本申请实施例还提供一种分子结构为不对称结构磺酰胺类化合物的制备流程,具体的可以参阅图27。As a feasible implementation method, the molecular structure of the sulfonamide compound is an asymmetric structure. The present application embodiment also provides a preparation process of a sulfonamide compound with an asymmetric molecular structure, and the details can be referred to FIG. 27 .

磺酰胺类化合物的具体合成步骤可以包括:The specific synthesis steps of sulfonamide compounds may include:

(1)将氨磺酰氯缓慢滴加在氨磺酰氯/三乙胺(Et3N)/二氯甲烷(dichloromethane,DCM)的混合溶液中。(1) Slowly add sulfamoyl chloride dropwise into a mixed solution of sulfamoyl chloride/triethylamine (Et 3 N)/dichloromethane (DCM).

(2)室温下搅拌反应小时;(2) Stirring the reaction at room temperature for 1 hour;

(3)依次用盐酸、碳酸氢钠溶液、氯化钠溶液清洗去除未反应的原料及形成的盐类;其中,原料包括未反应的氨磺酰氯、乙甲胺、三乙胺、二氯甲烷等。盐类可以包括:碳酸氢钠、氯化钠等。(3) washing with hydrochloric acid, sodium bicarbonate solution, and sodium chloride solution in sequence to remove unreacted raw materials and formed salts; wherein the raw materials include unreacted sulfamoyl chloride, ethylmethylamine, triethylamine, dichloromethane, etc. The salts may include sodium bicarbonate, sodium chloride, etc.

(3)烘干溶剂得到磺酰胺类化合物。(3) drying the solvent to obtain a sulfonamide compound.

具有不对称的分子结构的磺酰胺类化合物不易发生分子间的紧密堆叠,磺酰胺类化合物不易形成塑化晶体的局部结构。塑化晶体会降低磺酰胺类化合物的塑化性能,因此,磺酰胺类化合物具有较大的塑化性能。Sulfonamide compounds with asymmetric molecular structures are not easy to form close stacking between molecules, and sulfonamide compounds are not easy to form local structures of plasticized crystals. Plasticized crystals will reduce the plasticizing properties of sulfonamide compounds. Therefore, sulfonamide compounds have greater plasticizing properties.

本申请实施例中,引发剂受热分解成自由基的化合物,可用于引发聚氧化乙烯类聚合物发生交联反应,使得聚氧化乙烯类聚合物形成交联体系。引发剂可以是但不限于偶氮二异丁腈(Azobisisobutyronitrile,AIBN)。In the embodiment of the present application, the initiator is a compound that decomposes into free radicals when heated, which can be used to initiate a cross-linking reaction of the polyethylene oxide polymer, so that the polyethylene oxide polymer forms a cross-linking system. The initiator can be, but is not limited to, azobisisobutyronitrile (AIBN).

聚合物前驱体的形态可以请参阅图26中的(一)。其中,聚合物前驱体为液态。The morphology of the polymer precursor can be referred to (I) in FIG26 , wherein the polymer precursor is in liquid state.

S252:利用正极、负极和聚合物前驱体,形成锂离子电池。S252: Forming a lithium-ion battery using a positive electrode, a negative electrode and a polymer precursor.

锂离子电池包括:锂离子电池包括:正极、负极,和设置在正极与负极之间的复合固态电解质,复合固态电解质由膜层材料形成。膜层材料包括:聚氧化乙烯类聚合物、锂盐、隔膜材料和磺酰胺类化合物。The lithium-ion battery comprises: a positive electrode, a negative electrode, and a composite solid electrolyte disposed between the positive electrode and the negative electrode, wherein the composite solid electrolyte is formed by a membrane material. The membrane material comprises: a polyethylene oxide polymer, a lithium salt, a diaphragm material, and a sulfonamide compound.

利用正极、负极和聚合物前驱体,形成锂离子电池的步骤包括:S11~S12。The steps of forming a lithium-ion battery using a positive electrode, a negative electrode and a polymer precursor include: S11 to S12.

S11:处理聚合物前驱体,以使得聚合物前驱体形成复合固态电解质。S11: treating a polymer precursor so that the polymer precursor forms a composite solid electrolyte.

其中,处理聚合物前驱体的实现方式可以但不限于热处理,或光照。The processing of the polymer precursor may be achieved by, but is not limited to, heat treatment or light irradiation.

热处理,或光照的过程中,膜层材料中混入的引发剂会形成自由基,在自由基的作用下,聚合物前驱体中的聚氧化乙烯类聚合物发生交联反应,聚合物前驱体形成复合固态电解质,复合固态电解质的形态可以参阅图26中的(二A)。During the heat treatment or light irradiation process, the initiator mixed in the film material will form free radicals. Under the action of the free radicals, the polyethylene oxide polymer in the polymer precursor undergoes a cross-linking reaction, and the polymer precursor forms a composite solid electrolyte. The morphology of the composite solid electrolyte can be seen in (II A) in Figure 26.

S12:组装正极、负极和复合固态电解质得到锂离子电池。S12: Assemble the positive electrode, the negative electrode and the composite solid electrolyte to obtain a lithium-ion battery.

形成的锂离子电池可以参阅图26中的(三A)。The formed lithium-ion battery can be seen in (3A) of Figure 26.

作为一种可行性实现方式利用正极、负极和聚合物前驱体,形成锂离子电池实现方法可以包括S21~S22。As a feasible implementation method, a positive electrode, a negative electrode and a polymer precursor are used to form a lithium-ion battery, and the implementation method may include S21 to S22.

S21:组装正极、负极和聚合物前驱体。S21: Assemble the positive electrode, negative electrode and polymer precursor.

请参阅图26中的(二B),可以看出正极与负极间隔设置,正极与负极之间注入聚合物前驱体。Please refer to (2B) in FIG. 26 , where it can be seen that the positive electrode and the negative electrode are spaced apart, and a polymer precursor is injected between the positive electrode and the negative electrode.

下面结合具体的实例对正极、负极和聚合物前驱体的组装过程作以说明。请参阅图28为一个锂离子电池的剖面图。可以在锂离子电池的正极与负极之间注入聚合物前驱体。The following is an explanation of the assembly process of the positive electrode, the negative electrode and the polymer precursor in conjunction with a specific example. Please refer to Figure 28 for a cross-sectional view of a lithium-ion battery. The polymer precursor can be injected between the positive electrode and the negative electrode of the lithium-ion battery.

请参阅图29为一个电芯的剖面图,可以电芯的正极与负极之间注入聚合物前驱体。Please refer to FIG. 29 which is a cross-sectional view of a battery cell, in which a polymer precursor may be injected between the positive electrode and the negative electrode of the battery cell.

S22:处理聚合物前驱体,以使得聚合物前驱体形成复合固态电解质。S22: treating the polymer precursor so that the polymer precursor forms a composite solid electrolyte.

热处理或光照的过程中,聚合物前驱体中混入的引发剂会形成自由基。在自由基的作用下,聚合物前驱体中的聚氧化乙烯类聚合物发生交联反应,聚合物前驱体转化为复合固态电解质,形成的锂离子电池可以参阅图26中的(三B)。During the heat treatment or light irradiation, the initiator mixed in the polymer precursor will form free radicals. Under the action of the free radicals, the polyethylene oxide polymer in the polymer precursor undergoes a cross-linking reaction, and the polymer precursor is converted into a composite solid electrolyte. The formed lithium-ion battery can be seen in (3B) in Figure 26.

本申请实施例制备出的锂离子电池包括:正极、负极,和设置在正极与负极之间的复合固态电解质。复合固态电解质由聚合物前驱体形成,聚合物前驱体包括膜层材料和引发剂形成。膜层材料(包含隔膜材料)包括:聚氧化乙烯类聚合物、锂盐、隔膜材料和磺酰胺类化合物。The lithium-ion battery prepared in the embodiment of the present application includes: a positive electrode, a negative electrode, and a composite solid electrolyte disposed between the positive electrode and the negative electrode. The composite solid electrolyte is formed by a polymer precursor, and the polymer precursor includes a film material and an initiator. The film material (including a diaphragm material) includes: a polyethylene oxide polymer, a lithium salt, a diaphragm material, and a sulfonamide compound.

其中,制备方法所能带来的效果可参阅上述膜层材料/膜层/锂离子电池任意一种可能的实现方式带来的效果。The effects that can be brought about by the preparation method can refer to the effects brought about by any possible implementation method of the above-mentioned membrane material/membrane/lithium-ion battery.

本申请实施例还提供一种锂离子电池的制备方法,请参阅图30和图31。图30为锂离子电池的制备方法的流程图,图31为图30提供的制备方法的工艺流程图,制备方法包括:The present application also provides a method for preparing a lithium-ion battery, please refer to Figures 30 and 31. Figure 30 is a flow chart of the method for preparing a lithium-ion battery, and Figure 31 is a process flow chart of the method provided in Figure 30. The method comprises:

S301:在膜层材料中加入引发剂,得到聚合物前驱体。S301: adding an initiator to the film layer material to obtain a polymer precursor.

具体的实现过程可以参阅上述实施例,此处不再赘述。The specific implementation process can be found in the above embodiments, which will not be described in detail here.

S302:利用正极、负极、固态电解质及聚合物前驱体形成锂离子电池。S302: Forming a lithium-ion battery using a positive electrode, a negative electrode, a solid electrolyte and a polymer precursor.

利用正极、负极、固态电解质及聚合物前驱体形成锂离子电池的实现过程可以包括S31~S33:The process of forming a lithium-ion battery using a positive electrode, a negative electrode, a solid electrolyte and a polymer precursor may include S31 to S33:

S31:在固态电解质的至少一个表面涂覆聚合物前驱体。S31: coating a polymer precursor on at least one surface of the solid electrolyte.

表面涂覆有聚合物前驱体的固态电解质的形态可以参阅图31中的(一)。The morphology of the solid electrolyte coated with a polymer precursor can be seen in (a) of Figure 31.

S32:处理聚合物前驱体,以使得聚合物前驱体形成保护层。S32: treating the polymer precursor so that the polymer precursor forms a protective layer.

其中,处理聚合物前驱体的实现方式可以但不限于热处理,或光照。The processing of the polymer precursor may be achieved by, but is not limited to, heat treatment or light irradiation.

热处理或光照的过程中,引发剂会产生自由基。在自由基的作用下,聚氧化乙烯类聚合物发生交联反应,使得聚氧化乙烯类聚合物形成交联体系(固态),膜层材料形成保护层。During the heat treatment or light irradiation, the initiator generates free radicals. Under the action of the free radicals, the polyethylene oxide polymer undergoes a cross-linking reaction, so that the polyethylene oxide polymer forms a cross-linking system (solid state), and the film material forms a protective layer.

保护层与固态电解质的形态可以参阅图31中的(二A)。图31中的(二A)仅是实例性的示出一种在固态电解质临近正极的表面和临近负极的表面形成保护层的示例。在实际应用的过程中,可以仅在固态电解质临近正极的表面形成保护层,或仅在固态电解质临近负极的表面形成保护层。The morphology of the protective layer and the solid electrolyte can be referred to in (2A) of FIG31. (2A) of FIG31 is only an example of forming a protective layer on the surface of the solid electrolyte adjacent to the positive electrode and the surface adjacent to the negative electrode. In the process of actual application, the protective layer can be formed only on the surface of the solid electrolyte adjacent to the positive electrode, or only on the surface of the solid electrolyte adjacent to the negative electrode.

S33:组装正极、负极和表面具有保护层的固态电解质,得到锂离子电池。S33: Assemble a positive electrode, a negative electrode and a solid electrolyte having a protective layer on the surface to obtain a lithium-ion battery.

形成的锂离子电池可以参阅图31中的(三A)。The formed lithium-ion battery can be seen in (3A) of Figure 31.

利用正极,负极和表面涂覆有聚合物前驱体的固态电解质形成锂离子电池的实现过程可以包括S41~S42:The process of forming a lithium-ion battery using a positive electrode, a negative electrode and a solid electrolyte coated with a polymer precursor may include S41 to S42:

S41:组装正极、负极、聚合物前驱体和固态电解质。S41: Assemble the positive electrode, negative electrode, polymer precursor and solid electrolyte.

请参阅图31中的(二B),可以看出正极与负极间隔设置,正极与负极之间设置有固态电解质。固态电解质可以使得正极与负极之间电性隔离。在正极与固态电解质之间,及负极与固态电解质之间添加聚合物前驱体。Please refer to (2B) in FIG. 31 , where it can be seen that the positive electrode and the negative electrode are spaced apart, and a solid electrolyte is disposed between the positive electrode and the negative electrode. The solid electrolyte can electrically isolate the positive electrode from the negative electrode. A polymer precursor is added between the positive electrode and the solid electrolyte, and between the negative electrode and the solid electrolyte.

下面结合具体的实例对正极、负极和复合物前驱体的组装过程作以说明。请参阅图32为一个锂离子电池的剖面图。可以在锂离子电池的正极与负极之间设置有固态电解质,正极与固态电解质之间,及负极与固态电解质之间注入聚合物前驱体。The following is an explanation of the assembly process of the positive electrode, the negative electrode and the composite precursor in conjunction with a specific example. Please refer to FIG32 for a cross-sectional view of a lithium-ion battery. A solid electrolyte may be provided between the positive electrode and the negative electrode of the lithium-ion battery, and a polymer precursor may be injected between the positive electrode and the solid electrolyte, and between the negative electrode and the solid electrolyte.

请参阅图33,图33为一个电芯的剖面图,可以在正极与负极之间设置有固态电解质,正极与固态电解质之间,及负极与固态电解质之间注入聚合物前驱体。Please refer to Figure 33, which is a cross-sectional view of a battery cell. A solid electrolyte may be provided between the positive electrode and the negative electrode, and a polymer precursor may be injected between the positive electrode and the solid electrolyte, and between the negative electrode and the solid electrolyte.

S42:处理聚合物前驱体,以使得聚合物前驱体形成保护层。S42: treating the polymer precursor so that the polymer precursor forms a protective layer.

热处理,或光照的过程中,引发剂会产生自由基。在自由基的作用下,聚氧化乙烯类聚合物发生交联反应,使得聚氧化乙烯类聚合物形成交联体系(固态),膜层材料形成保护层。形成的锂离子电池可以参阅图31中的(三B)。During the heat treatment or light irradiation, the initiator generates free radicals. Under the action of the free radicals, the polyethylene oxide polymer undergoes a cross-linking reaction, so that the polyethylene oxide polymer forms a cross-linking system (solid state), and the film material forms a protective layer. The formed lithium-ion battery can be referred to (three B) in Figure 31.

本申请实施例制备出的锂离子电池包括:正极、负极,固态电解质和至少一层保护层。固态电解质,设置在正极和负极之间,至少一层保护层,由聚合物前驱体形成。保护层设置在固态电解质与正极之间,和/或,固态电解质与负极之间。保护层由聚合物前驱体,聚合物前驱体包括膜层材料和引发剂形成。膜层材料包括:聚氧化乙烯类聚合物、锂盐和磺酰胺类化合物。The lithium-ion battery prepared in the embodiment of the present application includes: a positive electrode, a negative electrode, a solid electrolyte and at least one protective layer. The solid electrolyte is arranged between the positive electrode and the negative electrode, and the at least one protective layer is formed by a polymer precursor. The protective layer is arranged between the solid electrolyte and the positive electrode, and/or between the solid electrolyte and the negative electrode. The protective layer is formed by a polymer precursor, and the polymer precursor includes a film material and an initiator. The film material includes: polyethylene oxide polymers, lithium salts and sulfonamide compounds.

其中,制备方法所能带来的效果可参阅上述膜层材料/膜层/锂离子电池任意一种可能的实现方式带来的效果。The effects that can be brought about by the preparation method can refer to the effects brought about by any possible implementation method of the above-mentioned membrane material/membrane/lithium-ion battery.

在本说明书的描述中,具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。In the description of this specification, specific features, structures, materials or characteristics may be combined in an appropriate manner in any one or more embodiments or examples.

以上,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以权利要求的保护范围为准。The above are only specific implementations of the present application, but the protection scope of the present application is not limited thereto. Any technician familiar with the technical field can easily think of changes or substitutions within the technical scope disclosed in the present application, which should be included in the protection scope of the present application. Therefore, the protection scope of the present application should be based on the protection scope of the claims.

Claims (24)

1.一种膜层材料,所述膜层材料用于形成膜层,其特征在于,所述膜层材料包括:1. A film material, which is used to form a film, characterized in that the film material comprises: 聚乙二醇二甲基丙烯酸酯;Polyethylene glycol dimethacrylate; 磺酰胺类化合物;Sulfonamide compounds; 锂盐。Lithium salts. 2.根据权利要求1所述的膜层材料,其特征在于,还包括:聚乙二醇单甲醚甲基丙烯酸酯。2. The film material according to claim 1 is characterized in that it also includes: polyethylene glycol monomethyl ether methacrylate. 3.根据权利要求2所述的膜层材料,其特征在于,所述聚乙二醇二甲基丙烯酸酯与所述聚乙二醇单甲醚甲基丙烯酸酯的摩尔比在1:10~10:1。3 . The film material according to claim 2 , characterized in that the molar ratio of the polyethylene glycol dimethacrylate to the polyethylene glycol monomethyl ether methacrylate is 1:10 to 10:1. 4.根据权利要求1~3任一项所述的膜层材料,其特征在于,所述磺酰胺类化合物的分子结构为不对称结构。4 . The membrane material according to claim 1 , wherein the molecular structure of the sulfonamide compound is an asymmetric structure. 5.根据权利要求1~4任一项所述的膜层材料,其特征在于,所述磺酰胺类化合物的取代基包括:甲基、乙基或醚类基团中的任意一种。5 . The membrane material according to claim 1 , wherein the substituent of the sulfonamide compound comprises any one of a methyl group, an ethyl group or an ether group. 6.根据权利要求1~5任一项所述的膜层材料,其特征在于,所述锂盐包括:双氟磺酰亚胺锂和双(三氟甲基)磺酰亚胺锂。6 . The membrane material according to claim 1 , wherein the lithium salt comprises lithium bis(trifluoromethyl)sulfonyl imide and lithium bis(trifluoromethyl)sulfonyl imide. 7.根据权利要求6所述的膜层材料,其特征在于,所述双氟磺酰亚胺锂的质量和所述双(三氟甲基)磺酰亚胺锂的质量比在1:2~2:1。7 . The membrane material according to claim 6 , wherein the mass ratio of the lithium bis(fluorosulfonyl)imide to the lithium bis(trifluoromethyl)sulfonylimide is in the range of 1:2 to 2:1. 8.根据权利要求1~7任一项所述的膜层材料,其特征在于,所述磺酰胺类化合物的质量分数在40%~60%。8. The film material according to any one of claims 1 to 7, characterized in that the mass fraction of the sulfonamide compound is 40% to 60%. 9.根据权利要求2~8任一项所述的膜层材料,其特征在于,所述聚乙二醇二甲基丙烯酸酯/所述聚乙二醇单甲醚甲基丙烯酸酯的相对分子质量在300~600。9 . The film material according to claim 2 , wherein the relative molecular mass of the polyethylene glycol dimethacrylate/the polyethylene glycol monomethyl ether methacrylate is between 300 and 600. 10.根据权利要求2~9任一项所述的膜层材料,其特征在于,所述聚乙二醇二甲基丙烯酸酯/所述聚乙二醇单甲醚甲基丙烯酸酯的聚合度在4~12。10 . The film material according to claim 2 , wherein the degree of polymerization of the polyethylene glycol dimethacrylate/polyethylene glycol monomethyl ether methacrylate is 4 to 12. 11.根据权利要求2~10任一项所述的膜层材料,其特征在于,在所述膜层材料中,醚键与锂离子的摩尔比在10~30,所述醚键由所述聚乙二醇二甲基丙烯酸酯和所述聚乙二醇单甲醚甲基丙烯酸酯提供,所述锂离子由所述锂盐提供。11. The membrane material according to any one of claims 2 to 10, characterized in that, in the membrane material, the molar ratio of ether bonds to lithium ions is 10 to 30, the ether bonds are provided by the polyethylene glycol dimethacrylate and the polyethylene glycol monomethyl ether methacrylate, and the lithium ions are provided by the lithium salt. 12.根据权利要求1~11任一项所述的膜层材料,其特征在于,所锂盐的浓度小于或等于25%。12 . The film material according to claim 1 , wherein the concentration of the lithium salt is less than or equal to 25%. 13.根据权利要求1~12任一项所述的膜层材料,其特征在于,所述膜层材料具有流动性。13 . The film material according to claim 1 , wherein the film material has fluidity. 14.根据权利要求1~13任一项所述的膜层材料,其特征在于,还包括:隔膜材料。14. The membrane material according to any one of claims 1 to 13, further comprising: a diaphragm material. 15.一种膜层,其特征在于,所述膜层采用包括权利要求1~14任一项所述的膜层材料和引发剂,所述用于固化所述膜层材料。15. A film layer, characterized in that the film layer comprises the film layer material according to any one of claims 1 to 14 and an initiator, and the initiator is used to solidify the film layer material. 16.根据权利要求15所述的膜层,其特征在于,所述膜层具有自支撑性能。The membrane layer according to claim 15 , characterized in that the membrane layer has self-supporting properties. 17.一种锂离子电池,其特征在于,包括:正极、负极;17. A lithium ion battery, characterized by comprising: a positive electrode and a negative electrode; 复合固态电解质,所述复合固态电解质设置在所述正极与所述负极之间,所述复合固态电解质采用的材料包括:权利要求14所述的膜层材料和引发剂。A composite solid electrolyte, wherein the composite solid electrolyte is arranged between the positive electrode and the negative electrode, and the materials used in the composite solid electrolyte include: the film material and the initiator according to claim 14. 18.一种锂离子电池,其特征在于,包括:正极、负极;18. A lithium ion battery, characterized by comprising: a positive electrode and a negative electrode; 固态电解质,所述固态电解质设置在所述正极与所述负极之间;A solid electrolyte, wherein the solid electrolyte is disposed between the positive electrode and the negative electrode; 至少一层保护层,所述保护层设置在所述固态电解质与所述正极之间,和/或,所述固态电解质与所述负极之间,所述保护层采用的材料包括:权利要求1~12任一项所述的膜层材料和引发剂。At least one protective layer, the protective layer is arranged between the solid electrolyte and the positive electrode, and/or between the solid electrolyte and the negative electrode, and the material used for the protective layer includes: the membrane material and initiator according to any one of claims 1 to 12. 19.一种锂离子电池的制备方法,其特征在于,包括:19. A method for preparing a lithium ion battery, comprising: 在权利要求14所述的膜层材料中加入引发剂,得到聚合物前驱体,利用正极、负极和所述聚合物前驱体,形成锂离子电池;所述锂离子电池包括:正极、负极,和设置在所述正极与所述负极之间的复合固态电解质,所述复合固态电解质由所述膜层材料形成。An initiator is added to the film layer material described in claim 14 to obtain a polymer precursor, and a positive electrode, a negative electrode and the polymer precursor are used to form a lithium ion battery; the lithium ion battery comprises: a positive electrode, a negative electrode, and a composite solid electrolyte arranged between the positive electrode and the negative electrode, and the composite solid electrolyte is formed by the film layer material. 20.根据权利要求19所述的制备方法,其特征在于,所述利用正极、负极和所述聚合物前驱体,形成锂离子电池的步骤包括:20. The preparation method according to claim 19, characterized in that the step of using the positive electrode, the negative electrode and the polymer precursor to form a lithium ion battery comprises: 处理所述聚合物前驱体,以使得所述聚合物前驱体形成所述复合固态电解质;Treating the polymer precursor so that the polymer precursor forms the composite solid electrolyte; 组装所述正极、所述负极和所述复合固态电解质得到所述锂离子电池。The positive electrode, the negative electrode and the composite solid electrolyte are assembled to obtain the lithium-ion battery. 21.根据权利要求19所述的制备方法,其特征在于,所述利用正极、负极和所述聚合物前驱体,形成锂离子电池的步骤包括:21. The preparation method according to claim 19, characterized in that the step of using the positive electrode, the negative electrode and the polymer precursor to form a lithium ion battery comprises: 组装所述正极、所述负极和所述聚合物前驱体;Assembling the positive electrode, the negative electrode and the polymer precursor; 处理所述聚合物前驱体,以使得所述聚合物前驱体形成所述复合固态电解质。The polymer precursor is processed so that the polymer precursor forms the composite solid electrolyte. 22.一种锂离子电池的制备方法,其特征在于,包括:22. A method for preparing a lithium ion battery, comprising: 在权利要求1~13任一项所述的膜层材料中加入引发剂,得到聚合物前驱体;Adding an initiator to the film material according to any one of claims 1 to 13 to obtain a polymer precursor; 利用正极、负极、固态电解质及所述聚合物前驱体形成锂离子电池,所述锂离子电池包括:所述正极、所述负极,所述固态电解质和至少一层保护层,所述固态电解质设置在所述正极和所述负极之间,所述至少一层保护层由所述膜层材料形成,所述保护层设置在所述固态电解质与所述正极之间,和/或,所述固态电解质与所述负极之间。A lithium-ion battery is formed by using a positive electrode, a negative electrode, a solid electrolyte and the polymer precursor. The lithium-ion battery includes: the positive electrode, the negative electrode, the solid electrolyte and at least one protective layer. The solid electrolyte is arranged between the positive electrode and the negative electrode. The at least one protective layer is formed by the film material. The protective layer is arranged between the solid electrolyte and the positive electrode, and/or between the solid electrolyte and the negative electrode. 23.根据权利要求22所述的制备方法,其特征在于,所述利用正极,负极及表面涂覆有所述聚合物前驱体的固态电解质形成锂离子电池的步骤包括:23. The preparation method according to claim 22, characterized in that the step of forming a lithium-ion battery using a positive electrode, a negative electrode and a solid electrolyte coated with the polymer precursor comprises: 在所述固态电解质表面涂覆聚合物前驱体;coating a polymer precursor on the surface of the solid electrolyte; 处理所述聚合物前驱体,以使得所述聚合物前驱体形成所述保护层;treating the polymer precursor so that the polymer precursor forms the protective layer; 组装所述正极、所述负极和表面具有所述保护层的固态电解质,得到所述锂离子电池。The positive electrode, the negative electrode and the solid electrolyte having the protective layer on the surface are assembled to obtain the lithium ion battery. 24.根据权利要求22所述的制备方法,其特征在于,所述利用正极、负极、固态电解质及所述聚合物前驱体形成锂离子电池的步骤包括:24. The preparation method according to claim 22, characterized in that the step of forming a lithium ion battery using a positive electrode, a negative electrode, a solid electrolyte and the polymer precursor comprises: 组装正极、负极、固态电解质及所述聚合物前驱体;Assembling a positive electrode, a negative electrode, a solid electrolyte and the polymer precursor; 处理所述聚合物前驱体,以使得所述聚合物前驱体形成所述保护层。The polymer precursor is treated so that the polymer precursor forms the protective layer.
CN202211604597.1A 2022-12-13 2022-12-13 Film material, film, lithium ion battery and preparation method of lithium ion battery Pending CN118185277A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211604597.1A CN118185277A (en) 2022-12-13 2022-12-13 Film material, film, lithium ion battery and preparation method of lithium ion battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211604597.1A CN118185277A (en) 2022-12-13 2022-12-13 Film material, film, lithium ion battery and preparation method of lithium ion battery

Publications (1)

Publication Number Publication Date
CN118185277A true CN118185277A (en) 2024-06-14

Family

ID=91405727

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211604597.1A Pending CN118185277A (en) 2022-12-13 2022-12-13 Film material, film, lithium ion battery and preparation method of lithium ion battery

Country Status (1)

Country Link
CN (1) CN118185277A (en)

Similar Documents

Publication Publication Date Title
US20230216087A1 (en) In-situ polymerized solid-state battery with multilayer electrolyte and preparation method thereof
US10910670B2 (en) Negative electrolyte for lithium metal battery, lithium metal battery including the same, and method of manufacturing lithium metal battery
CN108807851B (en) Negative electrode for lithium metal battery, method of preparing the same, lithium metal battery including the same, and composite electrolyte
CN106159313B (en) Lithium metal battery
CN114530589B (en) Lithium metal negative electrode, preparation method thereof, and related lithium metal battery and device
CN105449273B (en) Electrolyte, method of preparing the same, and lithium secondary battery comprising the same
CN105428708B (en) Gel polymer electrolyte composition, gel polymer electrolyte, and electrochemical device comprising same
CN108352569A (en) Gel polymer electrolyte and lithium secondary battery including the gel polymer electrolyte
US11646442B2 (en) Electrolyte for lithium secondary battery and lithium secondary battery including same
CN110574209B (en) Polymer electrolyte for secondary battery and lithium secondary battery including the same
CN107078342A (en) Gel polymer electrolyte and lithium secondary battery including the gel polymer electrolyte
CN111533851A (en) Preparation method of polymer electrolyte and application of polymer electrolyte in all-solid-state battery
CN105390743A (en) composite electrolyte amd a lithum battery including the same
Yu et al. Lithium salt-induced in situ living radical polymerizations enable polymer electrolytes for lithium-ion batteries
KR102828355B1 (en) Copolymer for polymer electrolyte, gel polymer electrolyte comprising the same and lithium secondary battery
CN110945703B (en) Polymer electrolyte for secondary battery and lithium secondary battery including the same
Zhou et al. Fabrication of borate-based porous polymer electrolytes containing cyclic carbonate for high-performance lithium metal batteries
CN113013481B (en) All-solid-state battery and its preparation method
KR102489655B1 (en) Solid polymer electrolyte precursor composition, solid polymer electrolyte and all solid state battery comprising the electrolyte
CN111868970B (en) Negative electrode for lithium secondary battery, method for producing same, and lithium secondary battery including said negative electrode
Cheng et al. Multifunctional Additive Enables a “5H” PEO Solid Electrolyte for High-Performance Lithium Metal Batteries
CN116162200B (en) Polymer electrolyte with stable lithium ion deposition function and preparation method and application thereof
CN111033861B (en) Composition for gel polymer electrolyte, gel polymer electrolyte prepared from the composition, and lithium secondary battery comprising the gel polymer electrolyte
CN118054063A (en) Electrolyte prepolymerization solution, preparation method thereof, solid electrolyte and application
CN118185277A (en) Film material, film, lithium ion battery and preparation method of lithium ion battery

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication