CN118168534A - Method, device, computer equipment and medium for determining airborne vertical navigation deviation - Google Patents
Method, device, computer equipment and medium for determining airborne vertical navigation deviation Download PDFInfo
- Publication number
- CN118168534A CN118168534A CN202410123388.8A CN202410123388A CN118168534A CN 118168534 A CN118168534 A CN 118168534A CN 202410123388 A CN202410123388 A CN 202410123388A CN 118168534 A CN118168534 A CN 118168534A
- Authority
- CN
- China
- Prior art keywords
- navigation
- deviation
- determining
- horizontal distance
- point
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 90
- 238000013459 approach Methods 0.000 claims abstract description 62
- 230000010354 integration Effects 0.000 claims abstract description 10
- 230000015654 memory Effects 0.000 claims description 29
- 101100434411 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) ADH1 gene Proteins 0.000 claims description 4
- 101150102866 adc1 gene Proteins 0.000 claims description 4
- 238000005516 engineering process Methods 0.000 abstract description 3
- 238000012545 processing Methods 0.000 abstract description 3
- 230000008569 process Effects 0.000 description 8
- 238000007726 management method Methods 0.000 description 5
- 238000012544 monitoring process Methods 0.000 description 5
- 230000000007 visual effect Effects 0.000 description 5
- 238000004458 analytical method Methods 0.000 description 4
- 238000001514 detection method Methods 0.000 description 4
- 230000006870 function Effects 0.000 description 4
- RZVHIXYEVGDQDX-UHFFFAOYSA-N 9,10-anthraquinone Chemical compound C1=CC=C2C(=O)C3=CC=CC=C3C(=O)C2=C1 RZVHIXYEVGDQDX-UHFFFAOYSA-N 0.000 description 3
- 102100036475 Alanine aminotransferase 1 Human genes 0.000 description 3
- 101710096214 Alanine aminotransferase 1 Proteins 0.000 description 3
- 102100033814 Alanine aminotransferase 2 Human genes 0.000 description 3
- 101710096000 Alanine aminotransferase 2 Proteins 0.000 description 3
- 238000004891 communication Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 238000011835 investigation Methods 0.000 description 3
- 230000002159 abnormal effect Effects 0.000 description 2
- 238000013500 data storage Methods 0.000 description 2
- 238000012423 maintenance Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000011002 quantification Methods 0.000 description 2
- 230000008439 repair process Effects 0.000 description 2
- 238000013349 risk mitigation Methods 0.000 description 2
- 230000001052 transient effect Effects 0.000 description 2
- 101001121408 Homo sapiens L-amino-acid oxidase Proteins 0.000 description 1
- 101000827703 Homo sapiens Polyphosphoinositide phosphatase Proteins 0.000 description 1
- 102100026388 L-amino-acid oxidase Human genes 0.000 description 1
- 102100023591 Polyphosphoinositide phosphatase Human genes 0.000 description 1
- 101100012902 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) FIG2 gene Proteins 0.000 description 1
- 101100233916 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) KAR5 gene Proteins 0.000 description 1
- 238000013475 authorization Methods 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000010295 mobile communication Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01C—MEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
- G01C21/00—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01C—MEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
- G01C21/00—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
- G01C21/20—Instruments for performing navigational calculations
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01C—MEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
- G01C21/00—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
- G01C21/26—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
- G01C21/28—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network with correlation of data from several navigational instruments
- G01C21/30—Map- or contour-matching
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01C—MEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
- G01C21/00—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
- G01C21/26—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
- G01C21/34—Route searching; Route guidance
- G01C21/36—Input/output arrangements for on-board computers
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01C—MEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
- G01C25/00—Manufacturing, calibrating, cleaning, or repairing instruments or devices referred to in the other groups of this subclass
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S19/00—Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
- G01S19/01—Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
- G01S19/13—Receivers
- G01S19/35—Constructional details or hardware or software details of the signal processing chain
- G01S19/37—Hardware or software details of the signal processing chain
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S19/00—Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
- G01S19/38—Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
- G01S19/39—Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
- G01S19/42—Determining position
- G01S19/45—Determining position by combining measurements of signals from the satellite radio beacon positioning system with a supplementary measurement
Landscapes
- Engineering & Computer Science (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Automation & Control Theory (AREA)
- Signal Processing (AREA)
- Computer Networks & Wireless Communication (AREA)
- Manufacturing & Machinery (AREA)
- Traffic Control Systems (AREA)
Abstract
本发明涉及数据处理技术领域,本发明公开了一种机载垂直导航偏差的确定方法、装置、计算机设备及介质,该方法包括:获取目标物的当前高度、目标物的当前位置以及最终进近定位点;基于最终进近定位点、航图以及预设数据库,确定第一关键导航点对应的第一水平距离以及第二关键导航点对应的第二水平距离;基于航图,确定第一水平距离对应的第一期望高度以及第二水平距离对应的第二期望高度;基于当前位置、当前高度、第一关键导航点的位置、第二关键导航点的位置、第一期望高度以及第二期望高度,利用积分法确定垂直导航偏差。本发明利用高度积分方法,能够高精度地监控飞机在最后进近阶段的垂直偏差,确保飞行安全。
The present invention relates to the field of data processing technology. The present invention discloses a method, device, computer equipment and medium for determining an airborne vertical navigation deviation. The method comprises: obtaining the current height of a target object, the current position of the target object and the final approach positioning point; determining the first horizontal distance corresponding to a first key navigation point and the second horizontal distance corresponding to a second key navigation point based on the final approach positioning point, an aeronautical chart and a preset database; determining the first expected height corresponding to the first horizontal distance and the second expected height corresponding to the second horizontal distance based on the aeronautical chart; determining the vertical navigation deviation using an integral method based on the current position, the current height, the position of the first key navigation point, the position of the second key navigation point, the first expected height and the second expected height. The present invention uses the height integration method to monitor the vertical deviation of an aircraft in the final approach phase with high precision to ensure flight safety.
Description
技术领域Technical Field
本发明涉及数据处理技术领域,具体涉及一种机载垂直导航偏差的确定方法方法、装置、计算机设备及介质。The present invention relates to the technical field of data processing, and in particular to a method, device, computer equipment and medium for determining an airborne vertical navigation deviation.
背景技术Background technique
高高原机场为机场海拔高度超过2438米的机场,受地形环境影响这些区域的航线最低安全高度超过7000米。高高原运行时面临着地形障碍物复杂、气象条件多变的恶劣条件。高高原RNP AR程序运行中对最后进近阶段的垂直偏差有极为严苛的要求,由于高高原地区往往地形非常复杂,过大的垂直偏差会增加飞机可控撞地的风险,所以一旦超过该偏差限制则要求立即复飞,威胁运行安全。High plateau airports are airports with an altitude of more than 2,438 meters. Due to the terrain environment, the minimum safe altitude of the routes in these areas exceeds 7,000 meters. When operating in high plateaus, we face the harsh conditions of complex terrain obstacles and changeable weather conditions. The high plateau RNP AR procedure operation has extremely strict requirements on the vertical deviation in the final approach phase. Since the terrain in high plateau areas is often very complex, excessive vertical deviation will increase the risk of controlled collision of the aircraft. Therefore, once the deviation limit is exceeded, an immediate go-around is required, threatening operational safety.
目前,通过FOQA数据按照数据记录规范每秒记录飞机的关键参数并在航后传输至地面译码服务器,根据拟定的风险判定规则将航段中异常飞行状态以风险种类和触发时刻进行标签。FOQA数据是有效的民航运行风险量化来源,可以对运行风险进行有效评估和制定相应的运行风险缓解计划和措施,在提高飞行机组的操纵品质、不安全事件调查、优化空域利用、降低航空器维修和维护成本等方面起到了关键性的作用。At present, FOQA data is used to record the key parameters of the aircraft every second according to the data recording specifications and transmitted to the ground decoding server after the flight. According to the proposed risk determination rules, the abnormal flight status in the flight segment is labeled with the risk type and trigger time. FOQA data is an effective source of quantification of civil aviation operation risks. It can effectively evaluate the operation risks and formulate corresponding operation risk mitigation plans and measures. It plays a key role in improving the control quality of flight crews, investigating unsafe incidents, optimizing airspace utilization, and reducing aircraft repair and maintenance costs.
然而,目前FOQA事件库中缺乏对高高原RNP AR程序的监控项,导致不能从数据中探测到飞机在RNP AR程序中运行时遭遇到的运行风险,特别是在飞机即将落地前的最后进近阶段垂直偏差的运行风险。However, the current FOQA event database lacks monitoring items for high-altitude RNP AR procedures, resulting in the inability to detect from the data the operational risks encountered by aircraft when operating in RNP AR procedures, especially the operational risks of vertical deviation in the final approach phase before the aircraft is about to land.
发明内容Summary of the invention
有鉴于此,本发明提供了一种机载垂直导航偏差的确定方法、装置、计算机设备及介质,以解决目前FOQA事件库中缺乏对高高原RNP AR程序的监控项,导致不能从数据中探测到飞机在RNP AR程序中运行时遭遇到的运行风险,特别是在飞机即将落地前的最后进近阶段垂直偏差的运行风险的问题。In view of this, the present invention provides a method, device, computer equipment and medium for determining airborne vertical navigation deviation, so as to solve the problem that the current FOQA event library lacks monitoring items for high-altitude RNP AR procedures, resulting in the inability to detect from the data the operational risks encountered by the aircraft when operating in the RNP AR procedure, especially the operational risks of vertical deviation in the final approach phase before the aircraft is about to land.
第一方面,本发明提供了一种机载垂直导航偏差的确定方法,该方法包括:获取目标物的当前高度、目标物的当前位置以及最终进近定位点;基于最终进近定位点、航图以及预设数据库,确定第一关键导航点对应的第一水平距离以及第二关键导航点对应的第二水平距离;其中,第一水平距离为第一关键导航点距离最终进近定位点的水平距离,第二水平距离为第二关键导航点距离最终进近定位点的水平距离;基于航图,确定第一水平距离对应的第一期望高度以及第二水平距离对应的第二期望高度;其中,第一期望高度大于第二期望高度;基于当前位置、当前高度、第一关键导航点的位置、第二关键导航点的位置、第一期望高度以及第二期望高度,利用积分法确定垂直导航偏差。In a first aspect, the present invention provides a method for determining an airborne vertical navigation deviation, the method comprising: obtaining a current height of a target object, a current position of the target object, and a final approach positioning point; determining a first horizontal distance corresponding to a first key navigation point and a second horizontal distance corresponding to a second key navigation point based on the final approach positioning point, an aeronautical chart, and a preset database; wherein the first horizontal distance is the horizontal distance from the first key navigation point to the final approach positioning point, and the second horizontal distance is the horizontal distance from the second key navigation point to the final approach positioning point; based on the aeronautical chart, determining a first expected height corresponding to the first horizontal distance and a second expected height corresponding to the second horizontal distance; wherein the first expected height is greater than the second expected height; and determining the vertical navigation deviation using an integral method based on the current position, the current height, the position of the first key navigation point, the position of the second key navigation point, the first expected height, and the second expected height.
本实施例提供的机载垂直导航偏差的确定方法,通过最终进近定位点、航图以及预设数据库,确定第一关键导航点对应的第一水平距离以及第二关键导航点对应的第二水平距离,通过航图,确定第一水平距离对应的第一期望高度以及第二水平距离对应的第二期望高度,并利用高度积分方法,能够高精度地监控飞机在最后进近阶段的垂直偏差,确保飞行安全。The method for determining the airborne vertical navigation deviation provided in this embodiment determines a first horizontal distance corresponding to a first key navigation point and a second horizontal distance corresponding to a second key navigation point through a final approach positioning point, an aeronautical chart, and a preset database, determines a first expected height corresponding to the first horizontal distance and a second expected height corresponding to the second horizontal distance through the aeronautical chart, and utilizes an altitude integration method to monitor the vertical deviation of the aircraft in the final approach phase with high precision to ensure flight safety.
在一个可选的实施方式中,上述方法还包括:检测垂直导航偏差是否大于预设安全偏差值;若垂直导航偏差大于预设安全偏差值,控制目标物复飞。In an optional embodiment, the above method further includes: detecting whether the vertical navigation deviation is greater than a preset safety deviation value; if the vertical navigation deviation is greater than the preset safety deviation value, controlling the target object to make a go-around.
本实施例提供的机载垂直导航偏差的确定方法,通过检测垂直导航偏差是否大于预设安全偏差值,若垂直导航偏差大于预设安全偏差值,控制目标物复飞,从而确保目标物的飞行安全。The method for determining the airborne vertical navigation deviation provided in this embodiment detects whether the vertical navigation deviation is greater than a preset safety deviation value. If the vertical navigation deviation is greater than the preset safety deviation value, the target object is controlled to make a go-around, thereby ensuring the flight safety of the target object.
在一个可选的实施方式中,基于航图,确定第一水平距离对应的第一期望高度以及第二水平距离对应的第二期望高度,包括:基于航图,确定第一关键导航点以及第二关键导航点对应的高度限制;基于高度限制,确定第一期望高度以及第二期望高度。In an optional embodiment, based on the navigation chart, determining a first expected height corresponding to the first horizontal distance and a second expected height corresponding to the second horizontal distance includes: based on the navigation chart, determining the height limits corresponding to the first key navigation point and the second key navigation point; based on the height limit, determining the first expected height and the second expected height.
本实施例提供的机载垂直导航偏差的确定方法,通过航图,确定第一关键导航点以及第二关键导航点对应的高度限制,然后通过高度限制确定第一期望高度以及第二期望高度,能够有助于提高飞行的安全性、效率和标准化水平。The method for determining the airborne vertical navigation deviation provided in this embodiment determines the altitude limits corresponding to the first key navigation point and the second key navigation point through the flight chart, and then determines the first expected altitude and the second expected altitude through the altitude limits, which can help improve the safety, efficiency and standardization level of flight.
在一个可选的实施方式中,基于当前位置、当前高度、第一关键导航点的位置、第二关键导航点的位置、第一期望高度以及第二期望高度,确定垂直导航偏差,包括:In an optional embodiment, determining the vertical navigation deviation based on the current position, the current altitude, the position of the first key navigation point, the position of the second key navigation point, the first expected altitude, and the second expected altitude includes:
其中,VD为垂直偏差、ALT BARO ADC1(0)为当前高度、ALT1为第一期望高度、ALT2为第二期望高度、d1为第一关键导航点的位置、d2为第二关键导航点的位置以及x为当前位置。 Among them, VD is the vertical deviation, ALT BARO ADC1(0) is the current altitude, ALT1 is the first desired altitude, ALT2 is the second desired altitude, d1 is the position of the first key navigation point, d2 is the position of the second key navigation point and x is the current position.
在一个可选的实施方式中,上述方法还包括:对目标物的高度数据以及目标物的当前位置进行实时更新;基于更新后的目标物的高度数据以及目标物的当前位置,重复执行基于最终进近定位点、航图以及预设数据库,确定第一关键导航点对应的第一水平距离以及第二关键导航点对应的第二水平距离至基于当前位置、当前高度、第一关键导航点的位置、第二关键导航点的位置、第一期望高度以及第二期望高度,确定垂直导航偏差的步骤。In an optional embodiment, the above method also includes: updating the height data of the target object and the current position of the target object in real time; based on the updated height data of the target object and the current position of the target object, repeating the step of determining the first horizontal distance corresponding to the first key navigation point and the second horizontal distance corresponding to the second key navigation point based on the final approach positioning point, the flight chart and the preset database, and determining the vertical navigation deviation based on the current position, the current height, the position of the first key navigation point, the position of the second key navigation point, the first expected height and the second expected height.
本实施例提供的机载垂直导航偏差的确定方法,通过实时更新目标物的高度数据以及目标物的当前位置,然后通过更新后的目标物的高度数据以及目标物的当前位置,重新确定垂直导航偏差的方式,能够确保飞机全过程的飞行安全。The method for determining the airborne vertical navigation deviation provided in this embodiment can ensure the flight safety of the aircraft throughout the entire process by updating the altitude data of the target object and the current position of the target object in real time, and then re-determining the vertical navigation deviation based on the updated altitude data of the target object and the current position of the target object.
在一个可选的实施方式中,上述方法还包括:将目标物的高度数据、目标物的当前位置以及垂直导航偏差进行记录。In an optional embodiment, the method further includes: recording the height data of the target object, the current position of the target object, and the vertical navigation deviation.
本实施例提供的机载垂直导航偏差的确定方法,通过记录目标物的高度数据、目标物的当前位置以及垂直导航偏差的方式,能够为后续的安全调查和分析提供了有力的支持。The method for determining the airborne vertical navigation deviation provided in this embodiment can provide strong support for subsequent safety investigation and analysis by recording the height data of the target object, the current position of the target object and the vertical navigation deviation.
在一个可选的实施方式中,上述方法还包括:若垂直导航偏差不大于预设安全偏差值,控制目标物继续降落。In an optional embodiment, the above method further includes: if the vertical navigation deviation is not greater than a preset safety deviation value, controlling the target object to continue landing.
本实施例提供的机载垂直导航偏差的确定方法,若垂直导航偏差不大于预设安全偏差值,也表征目标物进行安全飞行,从而控制目标物继续降落。The method for determining the airborne vertical navigation deviation provided in this embodiment also indicates that the target object is flying safely if the vertical navigation deviation is not greater than the preset safety deviation value, thereby controlling the target object to continue landing.
第二方面,本发明提供了一种机载垂直导航偏差的确定装置,装置包括:获取模块,用于获取目标物的当前高度、目标物的当前位置以及最终进近定位点;第一确定模块,用于基于最终进近定位点、航图以及预设数据库,确定第一关键导航点对应的第一水平距离以及第二关键导航点对应的第二水平距离;其中,第一水平距离为第一关键导航点距离最终进近定位点的水平距离,第二水平距离为第二关键导航点距离最终进近定位点的水平距离;第二确定模块,用于基于航图,确定第一水平距离对应的第一期望高度以及第二水平距离对应的第二期望高度;其中,第一期望高度大于第二期望高度;第三确定模块,用于基于当前位置、当前高度、第一关键导航点的位置、第二关键导航点的位置、第一期望高度以及第二期望高度,利用积分法确定垂直导航偏差。In a second aspect, the present invention provides an airborne vertical navigation deviation determination device, the device comprising: an acquisition module, used to acquire the current height of the target object, the current position of the target object and the final approach positioning point; a first determination module, used to determine a first horizontal distance corresponding to a first key navigation point and a second horizontal distance corresponding to a second key navigation point based on the final approach positioning point, an aeronautical chart and a preset database; wherein the first horizontal distance is the horizontal distance from the first key navigation point to the final approach positioning point, and the second horizontal distance is the horizontal distance from the second key navigation point to the final approach positioning point; a second determination module, used to determine a first expected height corresponding to the first horizontal distance and a second expected height corresponding to the second horizontal distance based on the aeronautical chart; wherein the first expected height is greater than the second expected height; a third determination module, used to determine the vertical navigation deviation using an integral method based on the current position, the current height, the position of the first key navigation point, the position of the second key navigation point, the first expected height and the second expected height.
第三方面,本发明提供了一种计算机设备,包括:存储器和处理器,存储器和处理器之间互相通信连接,存储器中存储有计算机指令,处理器通过执行计算机指令,从而执行上述第一方面或其对应的任一实施方式的机载垂直导航偏差的确定方法。In a third aspect, the present invention provides a computer device, comprising: a memory and a processor, the memory and the processor being communicatively connected to each other, the memory storing computer instructions, and the processor executing the method for determining the airborne vertical navigation deviation of the above-mentioned first aspect or any corresponding embodiment thereof by executing the computer instructions.
第四方面,本发明提供了一种计算机可读存储介质,该计算机可读存储介质上存储有计算机指令,计算机指令用于使计算机执行上述第一方面或其对应的任一实施方式的机载垂直导航偏差的确定方法。In a fourth aspect, the present invention provides a computer-readable storage medium having computer instructions stored thereon, the computer instructions being used to enable a computer to execute the method for determining the airborne vertical navigation deviation of the above-mentioned first aspect or any corresponding embodiment thereof.
附图说明BRIEF DESCRIPTION OF THE DRAWINGS
为了更清楚地说明本发明具体实施方式或现有技术中的技术方案,下面将对具体实施方式或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。In order to more clearly illustrate the specific implementation methods of the present invention or the technical solutions in the prior art, the drawings required for use in the specific implementation methods or the description of the prior art will be briefly introduced below. Obviously, the drawings described below are some implementation methods of the present invention. For ordinary technicians in this field, other drawings can be obtained based on these drawings without paying creative work.
图1是根据本发明实施例的机载垂直导航偏差的确定方法的流程示意图;FIG1 is a schematic flow chart of a method for determining an airborne vertical navigation deviation according to an embodiment of the present invention;
图2是根据本发明实施例的另一机载垂直导航偏差的确定方法的流程示意图;FIG2 is a schematic flow chart of another method for determining an airborne vertical navigation deviation according to an embodiment of the present invention;
图3是根据本发明实施例的机载垂直导航偏差的确定装置的结构框图;3 is a structural block diagram of an apparatus for determining an airborne vertical navigation deviation according to an embodiment of the present invention;
图4是本发明实施例的计算机设备的硬件结构示意图。FIG. 4 is a schematic diagram of the hardware structure of a computer device according to an embodiment of the present invention.
具体实施方式Detailed ways
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。In order to make the purpose, technical solution and advantages of the embodiments of the present invention clearer, the technical solution in the embodiments of the present invention will be clearly and completely described below in conjunction with the drawings in the embodiments of the present invention. Obviously, the described embodiments are part of the embodiments of the present invention, not all of the embodiments. Based on the embodiments of the present invention, all other embodiments obtained by those skilled in the art without creative work are within the scope of protection of the present invention.
基于相关技术可知,高高原机场为机场海拔高度超过2438米的机场,受地形环境影响这些区域的航线最低安全高度超过7000米。高高原运行时面临着地形障碍物复杂、气象条件多变的恶劣条件。高高原RNP AR程序运行中对最后进近阶段的垂直偏差有极为严苛的要求,由于高高原地区往往地形非常复杂,过大的垂直偏差会增加飞机可控撞地的风险,所以一旦超过该偏差限制则要求立即复飞,威胁运行安全。为了进一步扩大高高原航线的运行效率以及运行安全。目前多数设施设备良好的高高原机场都采用(RequiredNavigation Performance Authorization Required,RNP AR)运行程序,该程序在提供良好的飞跃障碍物性能的同时还可以仅依靠GPS系统进行水平方向的导航。Based on relevant technologies, high-plateau airports are airports with an altitude of more than 2,438 meters. Due to the terrain environment, the minimum safe altitude of the routes in these areas exceeds 7,000 meters. When operating in high-plateau areas, we face harsh conditions with complex terrain obstacles and changeable weather conditions. The high-plateau RNP AR procedure has extremely strict requirements on the vertical deviation in the final approach phase. Since the terrain in high-plateau areas is often very complex, excessive vertical deviation will increase the risk of controlled aircraft collision. Therefore, once the deviation limit is exceeded, an immediate go-around is required, threatening operational safety. In order to further expand the operational efficiency and safety of high-plateau routes. At present, most high-plateau airports with good facilities and equipment adopt the Required Navigation Performance Authorization Required (RNP AR) operation procedure, which can provide good obstacle-jumping performance while also relying solely on the GPS system for horizontal navigation.
目前,通过FOQA数据按照数据记录规范每秒记录飞机的关键参数并在航后传输至地面译码服务器,根据拟定的风险判定规则将航段中异常飞行状态以风险种类和触发时刻进行标签。FOQA数据是有效的民航运行风险量化来源,可以对运行风险进行有效评估和制定相应的运行风险缓解计划和措施,在提高飞行机组的操纵品质、不安全事件调查、优化空域利用、降低航空器维修和维护成本等方面起到了关键性的作用。At present, FOQA data is used to record the key parameters of the aircraft every second according to the data recording specifications and transmit them to the ground decoding server after the flight. According to the proposed risk determination rules, the abnormal flight status in the flight segment is labeled with the risk type and trigger time. FOQA data is an effective source of quantification of civil aviation operation risks. It can effectively evaluate the operation risks and formulate corresponding operation risk mitigation plans and measures. It plays a key role in improving the control quality of flight crews, investigating unsafe incidents, optimizing airspace utilization, and reducing aircraft repair and maintenance costs.
然而,目前FOQA事件库中缺乏对高高原RNP AR程序的监控项,导致不能从数据中探测到飞机在RNP AR程序中运行时遭遇到的运行风险,特别是在飞机即将落地前的最后进近阶段垂直偏差的运行风险。However, the current FOQA event database lacks monitoring items for high-altitude RNP AR procedures, resulting in the inability to detect from the data the operational risks encountered by aircraft when operating in RNP AR procedures, especially the operational risks of vertical deviation in the final approach phase before the aircraft is about to land.
根据本发明实施例,提供了一种机载垂直导航偏差的确定方法实施例,需要说明的是,在附图的流程图示出的步骤可以在诸如一组计算机可执行指令的计算机系统中执行,并且,虽然在流程图中示出了逻辑顺序,但是在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤。According to an embodiment of the present invention, an embodiment of a method for determining an airborne vertical navigation deviation is provided. It should be noted that the steps shown in the flowchart of the accompanying drawings can be executed in a computer system such as a set of computer executable instructions, and although a logical order is shown in the flowchart, in some cases, the steps shown or described can be executed in an order different from that shown here.
在本实施例中提供了一种机载垂直导航偏差的确定方法,可用于上述的计算机设备,如电脑、服务器等,图1是根据本发明实施例的机载垂直导航偏差的确定方法的流程示意图,如图1所示,该流程包括如下步骤:In this embodiment, a method for determining an airborne vertical navigation deviation is provided, which can be used for the above-mentioned computer device, such as a computer, a server, etc. FIG. 1 is a flow chart of a method for determining an airborne vertical navigation deviation according to an embodiment of the present invention. As shown in FIG. 1 , the flow chart includes the following steps:
步骤S101,获取目标物的当前高度、目标物的当前位置以及最终进近定位点。Step S101, obtaining the current height of the target object, the current position of the target object and the final approach positioning point.
目标物可以用于表征正在飞行的物体;其中,目标物可以为飞机等,在此不做具体限定。当前位置可以用于表征目标物的当前飞行位置。其中,当前位置可以为A,也可以为B,在此不做具体限定。具体地,目标物的当前高度可以通过检测设备进行检测得到,其中,检测设备仪表设备、导航系统、自动驾驶仪、无线电高度表、天线罗盘、惯性导航系统以及飞行数据记录器等,在此不做具体限定。The target object can be used to characterize an object in flight; wherein the target object can be an aircraft, etc., which is not specifically limited here. The current position can be used to characterize the current flight position of the target object. wherein the current position can be A or B, which is not specifically limited here. Specifically, the current height of the target object can be obtained by detection by detection equipment, wherein the detection equipment instrument equipment, navigation system, autopilot, radio altimeter, antenna compass, inertial navigation system and flight data recorder, etc., are not specifically limited here.
需要说明的是,仪表设备用于监测和显示航空器的各种运行状态,包括高度、速度、姿态、方位等。常见的仪表设备包括高度表、空速表、方向表、人工地平仪等。导航系统:用于确定飞机位置和航向的设备,包括全球定位系统(GPS)、惯性导航系统(INS)、全向信标(VOR)、测距仪(DME)和仪表着陆系统(ILS)等。自动驾驶仪用于协助飞行员控制飞机。无线电高度表用于测量飞机距离地面高度的仪器。天线罗盘用于测量飞机航向的基本仪器。惯性导航系统:一种自主导航系统,使用陀螺仪和加速度计来确定飞机的位置、速度和姿态。飞行数据记录器:用于记录飞机在飞行过程中的各种参数,如速度、高度、航向等。It should be noted that instrument equipment is used to monitor and display various operating conditions of the aircraft, including altitude, speed, attitude, direction, etc. Common instrument equipment includes altimeter, airspeed indicator, direction indicator, artificial horizon, etc. Navigation system: equipment used to determine the position and heading of the aircraft, including global positioning system (GPS), inertial navigation system (INS), omnidirectional beacon (VOR), distance measurement equipment (DME) and instrument landing system (ILS). Autopilot is used to assist the pilot in controlling the aircraft. Radio altimeter is an instrument used to measure the height of the aircraft from the ground. Antenna compass is a basic instrument used to measure the heading of the aircraft. Inertial navigation system: an autonomous navigation system that uses gyroscopes and accelerometers to determine the position, speed and attitude of the aircraft. Flight data recorder: used to record various parameters of the aircraft during flight, such as speed, altitude, heading, etc.
目标物的当前高度可以用于表征目标物距离地面的高度。其中,当前高度可以为C,也可以为D,在此不做具体限定。具体地,可以通过气压式高度表、无线电高度表、雷达高度表、(Global Positioning System,GPS)定位系统以及地形数据库和高度地图等确定目标物的当前高度,在此不做具体限定,可以由本领域技术人员实现为准。The current height of the target object can be used to characterize the height of the target object from the ground. The current height can be C or D, which is not specifically limited here. Specifically, the current height of the target object can be determined by a barometric altimeter, a radio altimeter, a radar altimeter, a (Global Positioning System, GPS) positioning system, a terrain database, and a height map, etc., which is not specifically limited here and can be implemented by those skilled in the art.
需要说明的是,气压式高度表为一种利用气压与高度的关系来测量高度的仪表。通过比较飞机周围的气压值来计算飞机的高度。无线电高度表为利用无线电波的反射来测量飞机距离地面的实际高度。它通常用于着陆和低空飞行,因为低空时无线电波的传播受地面障碍物影响较小。雷达高度表为通过向地面发射无线电波并测量反射回来的时间来计算高度。GPS定位系统可以提供飞机的高度信息,但需要注意的是,GPS提供的高度是相对于平均海平面的高度,而不是相对于地面的高度。地形数据库和高度地图用于提供飞机相对于地形的位置信息,从而通过比较飞机周围的地形特征和地图数据来计算飞机的高度。It should be noted that the barometric altimeter is an instrument that uses the relationship between air pressure and altitude to measure altitude. The altitude of the aircraft is calculated by comparing the air pressure values around the aircraft. The radio altimeter uses the reflection of radio waves to measure the actual altitude of the aircraft from the ground. It is usually used for landing and low-altitude flight because the propagation of radio waves at low altitudes is less affected by ground obstacles. The radar altimeter calculates the altitude by transmitting radio waves to the ground and measuring the time it takes to reflect back. The GPS positioning system can provide aircraft altitude information, but it should be noted that the altitude provided by GPS is relative to the mean sea level, not relative to the ground. The terrain database and altitude map are used to provide the position information of the aircraft relative to the terrain, so that the altitude of the aircraft can be calculated by comparing the terrain features around the aircraft with the map data.
最终进近定位点,也即(Final Missed Point,FAP)航路点是飞机进近着陆过程中的一个关键导航点。它对应于飞机开始最后进近阶段的起始点,在这个点之后,飞机将进行最后的下降和着陆准备。其中,最终进近定位点由导航设备确定的固定点,可能是地面的一个电台、导航台或特定的地理位置。其中,最后进近阶段为最后下降点至决断高的阶段。The final approach fix point, also known as the Final Missed Point (FAP), is a key navigation point in the aircraft's approach and landing process. It corresponds to the starting point of the aircraft's final approach phase, after which the aircraft will make final descent and landing preparations. The final approach fix point is a fixed point determined by the navigation equipment, which may be a ground radio station, navigation station or a specific geographical location. The final approach phase is the phase from the final descent point to the decision height.
需要说明的是,监控RNP AR运行过程中产生的最后进近阶段(飞机处于此高或高度能够清晰辨认出跑道目视参考条件才可继续在跑道上着陆否则必须复飞的高度)的阶段。最后下降点为航图中的最终进近定位点(FAP)航路点。)垂直偏差过大事件。其中,决断高可以用于表征飞机处于此高或高度能够清晰辨认出跑道目视参考条件才可继续在跑道上着陆否则必须复飞的高度。It should be noted that the monitoring of the final approach phase (the height at which the aircraft can clearly identify the visual reference conditions of the runway before continuing to land on the runway, otherwise a go-around is required) generated during the RNP AR operation. The final descent point is the final approach fix point (FAP) waypoint in the aeronautical chart.) Vertical deviation excessive events. Among them, the decision height can be used to characterize the height at which the aircraft can clearly identify the visual reference conditions of the runway before continuing to land on the runway, otherwise a go-around is required.
目视参考条件可以用于表征飞机安全落地的必要条件,飞行员应至少能清楚的看到和辨认计划着陆跑道的下列目视参考之一:进近灯光系统,跑道入口,跑道入口标志,跑道入口灯,跑道端识别灯,目视进近下滑指示灯,接地区或者接地区标志,接地区灯,跑道或跑道标志,跑道灯。Visual reference conditions can be used to characterize the necessary conditions for a safe landing of an aircraft. The pilot should be able to clearly see and identify at least one of the following visual references for the planned landing runway: approach lighting system, runway threshold, runway threshold marking, runway threshold lights, runway end identification lights, visual approach glide path indicator lights, touchdown area or touchdown area markings, touchdown area lights, runway or runway markings, and runway lights.
步骤S102,基于最终进近定位点、航图以及预设数据库,确定第一关键导航点对应的第一水平距离以及第二关键导航点对应的第二水平距离;其中,第一水平距离为第一关键导航点距离最终进近定位点的水平距离,第二水平距离为第二关键导航点距离最终进近定位点的水平距离。Step S102, based on the final approach fix point, the flight chart and the preset database, determine the first horizontal distance corresponding to the first key navigation point and the second horizontal distance corresponding to the second key navigation point; wherein the first horizontal distance is the horizontal distance from the first key navigation point to the final approach fix point, and the second horizontal distance is the horizontal distance from the second key navigation point to the final approach fix point.
航图可以用于辅助目标物导航的地图。其中,航图是根据飞行规则、飞机性能、空域情况等内容统一绘制并发布的,具有时效性和针对性。通过使用这些航图,能够判断驾驶的飞机所在方位、安全飞行高度、飞行最佳路径、沿途导航设备,以及飞机失事时最佳迫降机场/场地等信息。Aeronautical charts can be used to assist in the navigation of target objects. Aeronautical charts are uniformly drawn and published based on flight rules, aircraft performance, airspace conditions, etc., and are timely and targeted. By using these aeronautical charts, it is possible to determine the location of the aircraft being driven, safe flight altitude, best flight path, navigation equipment along the way, and the best airport/site for emergency landing in the event of a plane crash.
预设数据库可以为导航数据库。其中,导航数据库(Navigation Database)是指以电子形式存储在飞行管理计算机中的导航数据集合、打包及格式化文件的总称。它用于支持导航应用,包括但不限于航路、导航台、位置点、机场和跑道位置信息、终端区程序等数据类型。The preset database may be a navigation database. The navigation database refers to a collection of navigation data, packaged and formatted files stored in electronic form in a flight management computer. It is used to support navigation applications, including but not limited to data types such as routes, navigation stations, location points, airport and runway location information, and terminal area procedures.
关键导航点(Key Navigational Point,简称KNP)是指在飞机导航中具有重要意义的地点。这些地点通常是航路上的关键点,如航路交叉点、转弯点、起始和终止点等。关键导航点用于确定飞机在航路上的位置和航向,以及飞行计划中的关键点。在飞行过程中,使用这些关键导航点来确定飞机所在位置、航向和预计到达时间,以便及时调整飞行计划。在本实施例中,第一关键导航点以及第二关键导航点可以为最后进近阶段的导航点。其中,最后进近阶段是飞机进近着陆的最后阶段,通常是指飞机从巡航终点高度开始下降,直到完成着陆为止的飞行过程。Key Navigational Point (KNP) refers to a place that is of great significance in aircraft navigation. These places are usually key points on the route, such as route intersections, turning points, starting and ending points, etc. Key navigation points are used to determine the position and heading of the aircraft on the route, as well as key points in the flight plan. During the flight, these key navigation points are used to determine the aircraft's position, heading and estimated arrival time, so as to adjust the flight plan in time. In the present embodiment, the first key navigation point and the second key navigation point can be navigation points in the final approach phase. Among them, the final approach phase is the final stage of the aircraft's approach and landing, which generally refers to the flight process from the aircraft's descent from the cruising terminal altitude until the landing is completed.
第一水平距离可以用于表征第一关键导航点距离最终进近定位点的水平距离。其中,第一水平距离可以为M1,也可以为M2等,在此不做具体限定。第二水平距离可以用于表征第二关键导航点距离最终进近定位点的水平距离。其中,第二水平距离可以为N1,也可以为N2等,在此不做具体限定。The first horizontal distance can be used to characterize the horizontal distance between the first key navigation point and the final approach positioning point. The first horizontal distance can be M1, M2, etc., which is not specifically limited here. The second horizontal distance can be used to characterize the horizontal distance between the second key navigation point and the final approach positioning point. The second horizontal distance can be N1, N2, etc., which is not specifically limited here.
具体地,首先,通过查询预设数据库,可以获取关键导航点(如第一关键导航点和第二关键导航点)的详细信息,包括它们在航图上的位置和地理坐标。Specifically, firstly, by querying a preset database, detailed information of key navigation points (such as the first key navigation point and the second key navigation point) can be obtained, including their positions and geographic coordinates on the chart.
接着,利用这些坐标信息,结合飞机当前的飞行位置和航向,可以使用导航算法或飞行管理计算机(Flight Management Computer System,FMC)来计算飞机与每个关键导航点(也即第一关键导航点以及第二关键导航点)之间的水平距离。这些水平距离通常表示飞机在水平面上的距离,可以帮助飞行员了解飞机相对于关键导航点的位置。通过上述方式可以确定第一关键导航点对应的第一水平距离以及第二关键导航点对应的第二水平距离。驾驶员需要根据这些信息来调整飞行速度和航向,以确保安全、准确地完成进近和着陆。Then, using this coordinate information, combined with the current flight position and heading of the aircraft, a navigation algorithm or a flight management computer (FMC) can be used to calculate the horizontal distance between the aircraft and each key navigation point (that is, the first key navigation point and the second key navigation point). These horizontal distances usually represent the distance of the aircraft on the horizontal plane, which can help the pilot understand the position of the aircraft relative to the key navigation points. The first horizontal distance corresponding to the first key navigation point and the second horizontal distance corresponding to the second key navigation point can be determined in the above manner. The pilot needs to adjust the flight speed and heading based on this information to ensure that the approach and landing are completed safely and accurately.
步骤S103,基于航图,确定第一水平距离对应的第一期望高度以及第二水平距离对应的第二期望高度。Step S103: determining a first desired height corresponding to the first horizontal distance and a second desired height corresponding to the second horizontal distance based on the flight chart.
期望高度可以用于表征是指飞机在飞行过程中期望达到的海拔高度。这一高度是根据飞行计划、气象条件、飞行任务要求等因素确定的。其中,第一期望高度可以为目标物在第一关键导航点的期望高度,第二期望高度可以为目标物在第二关键导航点的期望高度。具体方式可以为:首先,从航图中识别出关键导航点(也即上述第一关键导航点以及第二关键导航点),根据航图上的标记和信息,分析飞行条件,如飞机性能、气象条件(如风向、风速)、飞行高度限制等。根据飞行条件和水平距离,使用导航算法或飞行管理计算机(FMC)来计算飞机期望达到的高度。这个高度应该是在确保安全和满足飞行要求的前提下,使飞机能够以最佳方式完成飞行任务。The expected altitude can be used to characterize the altitude that the aircraft expects to reach during the flight. This altitude is determined based on factors such as the flight plan, meteorological conditions, and flight mission requirements. Among them, the first expected altitude can be the expected altitude of the target at the first key navigation point, and the second expected altitude can be the expected altitude of the target at the second key navigation point. The specific method can be: first, identify the key navigation points (that is, the first key navigation point and the second key navigation point mentioned above) from the aeronautical chart, and analyze the flight conditions such as aircraft performance, meteorological conditions (such as wind direction, wind speed), flight altitude restrictions, etc. according to the marks and information on the aeronautical chart. Based on the flight conditions and horizontal distance, use the navigation algorithm or flight management computer (FMC) to calculate the altitude that the aircraft expects to reach. This altitude should enable the aircraft to complete the flight mission in the best way while ensuring safety and meeting flight requirements.
步骤S104,基于当前位置、当前高度、第一关键导航点的位置、第二关键导航点的位置、第一期望高度以及第二期望高度,利用积分法确定垂直导航偏差。Step S104, based on the current position, the current altitude, the position of the first key navigation point, the position of the second key navigation point, the first expected altitude and the second expected altitude, determine the vertical navigation deviation by using an integral method.
垂直导航偏差是指在垂直方向上导航设备显示的位置与飞机实际位置之间的差异。关键导航点的位置可以用于表征关键导航点的坐标。其中,第一关键导航点的位置可以为X1,也可以为X2等,在此不做具体限定。第二关键导航点的位置可以为Y1,也可以为Y2等,在此不做具体限定。具体地,通过确定上述当前位置、当前高度、第一关键导航点的位置、第二关键导航点的位置、第一期望高度以及第二期望高度,可以利用积分法确定垂直导航偏差。具体的确定方式在下文进行详细描述。Vertical navigation deviation refers to the difference between the position displayed by the navigation device and the actual position of the aircraft in the vertical direction. The position of the key navigation point can be used to characterize the coordinates of the key navigation point. Among them, the position of the first key navigation point can be X1, or X2, etc., which is not specifically limited here. The position of the second key navigation point can be Y1, or Y2, etc., which is not specifically limited here. Specifically, by determining the above-mentioned current position, current altitude, the position of the first key navigation point, the position of the second key navigation point, the first expected altitude and the second expected altitude, the vertical navigation deviation can be determined by the integral method. The specific determination method is described in detail below.
本实施例提供的机载垂直导航偏差的确定方法,通过最终进近定位点、航图以及预设数据库,确定第一关键导航点对应的第一水平距离以及第二关键导航点对应的第二水平距离,通过航图确定第一水平距离对应的第一期望高度以及第二水平距离对应的第二期望高度,并利用高度积分方法,能够高精度地监控飞机在最后进近阶段的垂直偏差,确保飞行安全。The method for determining the airborne vertical navigation deviation provided in this embodiment determines a first horizontal distance corresponding to a first key navigation point and a second horizontal distance corresponding to a second key navigation point through a final approach positioning point, an aeronautical chart, and a preset database, determines a first expected height corresponding to the first horizontal distance and a second expected height corresponding to the second horizontal distance through the aeronautical chart, and utilizes an altitude integration method to monitor the vertical deviation of the aircraft in the final approach phase with high precision to ensure flight safety.
如图2所示,在一些可选的实施方式中,在上述步骤S104之后,上述方法还包括:As shown in FIG. 2 , in some optional implementations, after the above step S104, the above method further includes:
步骤S105,检测垂直导航偏差是否大于预设安全偏差值。Step S105, detecting whether the vertical navigation deviation is greater than a preset safety deviation value.
预设安全偏差值可以用于表征垂直方向上导航设备显示的位置与飞机实际位置之间的安全降落偏差值。其中,预设安全偏差值可以为L1,也可以为L2等,在此不做具体限定。具体地,在获取到目标物的垂直导航偏差之后,可以检测垂直导航偏差是否大于预设安全偏差值。其中,包括两种情况:情况一:垂直导航偏差大于预设安全偏差值;情况二:垂直导航偏差不大于预设安全偏差值。The preset safety deviation value can be used to characterize the safe landing deviation value between the position displayed by the navigation device and the actual position of the aircraft in the vertical direction. Among them, the preset safety deviation value can be L1, or it can be L2, etc., which is not specifically limited here. Specifically, after obtaining the vertical navigation deviation of the target object, it can be detected whether the vertical navigation deviation is greater than the preset safety deviation value. Among them, there are two situations: Situation 1: The vertical navigation deviation is greater than the preset safety deviation value; Situation 2: The vertical navigation deviation is not greater than the preset safety deviation value.
若垂直导航偏差大于预设安全偏差值,则执行步骤S106;若垂直导航偏差不大于预设安全偏差值,则执行步骤S107。If the vertical navigation deviation is greater than the preset safety deviation value, step S106 is executed; if the vertical navigation deviation is not greater than the preset safety deviation value, step S107 is executed.
步骤S106,若垂直导航偏差大于预设安全偏差值,控制目标物复飞。Step S106: If the vertical navigation deviation is greater than the preset safety deviation value, the target object is controlled to make a go-around.
若垂直导航偏差大于预设安全偏差值,则表征目标物在降落过程中,可能发生危险,需要控制目标物进行复飞,从而避免危险的发生。其中,复飞是指在飞机着陆前,由于某种原因导致飞机不能安全着陆时,重新起飞的操作。具体地,当垂直导航偏差大于预设安全偏差值时,为了确保安全,飞行员可以控制目标物进行复飞。在复飞过程中,需要重新评估飞行条件和导航设备的状态,采取适当的操作来确保飞机的安全。这可能包括调整飞行高度、航向、速度等参数,以确保飞机在安全的情况下重新进行着陆尝试。If the vertical navigation deviation is greater than the preset safety deviation value, it indicates that the target object may be in danger during the landing process, and it is necessary to control the target object to make a go-around to avoid the danger. Among them, a go-around refers to the operation of taking off again when the aircraft cannot land safely due to some reason before the aircraft lands. Specifically, when the vertical navigation deviation is greater than the preset safety deviation value, in order to ensure safety, the pilot can control the target object to make a go-around. During the go-around process, it is necessary to re-evaluate the flight conditions and the status of the navigation equipment, and take appropriate operations to ensure the safety of the aircraft. This may include adjusting parameters such as flight altitude, heading, speed, etc. to ensure that the aircraft attempts to land again in a safe manner.
需要注意的是,控制目标物复飞是一种保守的安全措施,它可能会涉及到重新规划飞行路线、延误着陆时间等问题。因此,需要权衡利弊,根据实际情况做出决策,确保飞机的安全和顺利飞行。It should be noted that controlling the target to go around is a conservative safety measure, which may involve re-planning the flight route, delaying the landing time, etc. Therefore, it is necessary to weigh the pros and cons and make decisions based on the actual situation to ensure the safety and smooth flight of the aircraft.
步骤S107,若垂直导航偏差不大于预设安全偏差值,控制目标物继续降落。Step S107: If the vertical navigation deviation is not greater than the preset safety deviation value, the target object is controlled to continue landing.
若垂直导航偏差不大于预设安全偏差值,则表征不存在危险,则继续控制目标物继续降落。If the vertical navigation deviation is not greater than the preset safety deviation value, it indicates that there is no danger, and the target object will continue to be controlled to land.
本实施例提供的机载垂直导航偏差的确定方法,通过检测垂直导航偏差是否大于预设安全偏差值,若垂直导航偏差大于预设安全偏差值,控制目标物复飞,从而确保目标物的飞行安全。The method for determining the airborne vertical navigation deviation provided in this embodiment detects whether the vertical navigation deviation is greater than a preset safety deviation value. If the vertical navigation deviation is greater than the preset safety deviation value, the target object is controlled to make a go-around, thereby ensuring the flight safety of the target object.
此外,若垂直导航偏差不大于预设安全偏差值,也表征目标物进行安全飞行,从而控制目标物继续降落。In addition, if the vertical navigation deviation is not greater than the preset safety deviation value, it also indicates that the target object is flying safely, thereby controlling the target object to continue landing.
在一个可选的实施方式中,上述步骤S103包括:In an optional implementation, the above step S103 includes:
步骤a1,基于航图,确定第一关键导航点以及第二关键导航点对应的高度限制。Step a1: determine the altitude limits corresponding to the first key navigation point and the second key navigation point based on the flight chart.
计算机设备可以从航图中识别出关键导航点,如第一关键导航点和第二关键导航点。这些关键导航点通常在航图上有明确的标记和信息。分析飞行条件:研究飞行条件,包括飞机性能、气象条件(如风向、风速、大气密度)、飞行高度限制等。这些因素将影响飞机在关键导航点的安全和高效飞行。了解适用的飞行规则,以确保飞行遵守相关法规和标准。这些规则可能会规定飞机在关键导航点所允许的最大和最小高度。通过查询导航数据库或飞行管理计算机中的数据,可以获取关于关键导航点的高度限制信息。这些限制通常与机场、障碍物和空中交通控制的要求有关。综合分析并确定第一关键导航点和第二关键导航点对应的高度限制。这些限制可能以海拔高度、相对高度或特定高度层等形式表示。Computer equipment can identify key navigation points from the aeronautical chart, such as the first key navigation point and the second key navigation point. These key navigation points usually have clear markings and information on the aeronautical chart. Analyze flight conditions: Study flight conditions, including aircraft performance, meteorological conditions (such as wind direction, wind speed, atmospheric density), flight altitude restrictions, etc. These factors will affect the safe and efficient flight of the aircraft at key navigation points. Understand the applicable flight rules to ensure that the flight complies with relevant regulations and standards. These rules may specify the maximum and minimum altitudes allowed for aircraft at key navigation points. By querying the data in the navigation database or flight management computer, information on altitude restrictions for key navigation points can be obtained. These restrictions are usually related to airports, obstacles, and air traffic control requirements. Comprehensively analyze and determine the altitude restrictions corresponding to the first and second key navigation points. These restrictions may be expressed in the form of altitude, relative altitude, or specific altitude layers.
步骤a2,基于高度限制,确定第一期望高度以及第二期望高度。Step a2: determining a first desired altitude and a second desired altitude based on the altitude restriction.
根据飞机性能、飞行任务要求和飞行条件,使用导航算法或飞行管理计算机(FMC)来计算第一期望高度和第二期望高度。期望高度的计算应确保飞机在关键导航点遵守相应的高度限制,同时考虑到安全、经济和效率的要求。Based on the aircraft performance, mission requirements and flight conditions, a navigation algorithm or a flight management computer (FMC) is used to calculate the first desired altitude and the second desired altitude. The calculation of the desired altitude should ensure that the aircraft complies with the corresponding altitude restrictions at key navigation points, while taking into account the requirements of safety, economy and efficiency.
本实施例提供的机载垂直导航偏差的确定方法,通过航图,确定第一关键导航点以及第二关键导航点对应的高度限制,然后通过高度限制确定第一期望高度以及第二期望高度,能够有助于提高飞行的安全性、效率和标准化水平。The method for determining the airborne vertical navigation deviation provided in this embodiment determines the altitude limits corresponding to the first key navigation point and the second key navigation point through the flight chart, and then determines the first expected altitude and the second expected altitude through the altitude limits, which can help improve the safety, efficiency and standardization level of flight.
在一个可选的实施方式中,上述步骤S104包括:In an optional implementation, the above step S104 includes:
其中,VD为垂直偏差、ALT BARO ADC1(0)为当前高度、ALT1为第一期望高度、ALT2为第二期望高度、d1为第一关键导航点的位置、d2为第二关键导航点的位置以及x为当前位置。 Among them, VD is the vertical deviation, ALT BARO ADC1(0) is the current altitude, ALT1 is the first desired altitude, ALT2 is the second desired altitude, d1 is the position of the first key navigation point, d2 is the position of the second key navigation point and x is the current position.
以下举例说明本方法的应用场景:The following example illustrates the application scenario of this method:
假设一架飞机正在执行高高原地区的RNP AR程序,进入最后进近阶段。系统首先初始化设置,包括预设的垂直偏差阈值为75英尺,监控参数配置为每秒更新一次。Assume that an aircraft is executing an RNP AR procedure in a high plateau area and entering the final approach phase. The system is first initialized, including the preset vertical deviation threshold of 75 feet and the monitoring parameters are configured to update once per second.
随着飞机接近最终进近定位点(FAP),系统开始采集飞机的高度数据和距离数据,并使用高度积分公式计算垂直偏差。假设当前飞机高度为10,000英尺,前一导航点(第一关键导航点)高度为9,800英尺,后一导航点(第二关键导航点)高度为10,200英尺,前一导航点距离最终进近定位点的水平距离(第一水平距离)为5海里,后一导航点距离最终进近定位点的水平距离(第二水平距离)为4海里。根据积分公式,我们可以计算出垂直偏差为60英尺。As the aircraft approaches the final approach fix point (FAP), the system begins to collect the aircraft's altitude data and distance data, and uses the altitude integration formula to calculate the vertical deviation. Assume that the current aircraft altitude is 10,000 feet, the previous navigation point (first key navigation point) is 9,800 feet, the next navigation point (second key navigation point) is 10,200 feet, the horizontal distance from the previous navigation point to the final approach fix point (first horizontal distance) is 5 nautical miles, and the horizontal distance from the next navigation point to the final approach fix point (second horizontal distance) is 4 nautical miles. According to the integration formula, we can calculate that the vertical deviation is 60 feet.
计算机设备实时监控这个偏差值,与预设的阈值进行比较。如果垂直偏差超过了75英尺的阈值,系统会立即触发事件。The computer equipment monitors this deviation value in real time and compares it with the preset threshold. If the vertical deviation exceeds the threshold of 75 feet, the system will immediately trigger an event.
在一些可选的实施方式中,上述方法还包括:In some optional implementations, the above method further includes:
步骤b1,对目标物的高度数据以及目标物的当前位置进行实时更新。Step b1, updating the height data of the target object and the current position of the target object in real time.
步骤b2,基于更新后的目标物的高度数据以及目标物的当前位置,重复执行基于最终进近定位点、航图以及预设数据库,确定第一关键导航点对应的第一水平距离以及第二关键导航点对应的第二水平距离至基于当前位置、当前高度、第一关键导航点的位置、第二关键导航点的位置、第一期望高度以及第二期望高度,利用积分法确定垂直导航偏差的步骤。Step b2, based on the updated height data of the target object and the current position of the target object, repeatedly execute the step of determining the first horizontal distance corresponding to the first key navigation point and the second horizontal distance corresponding to the second key navigation point based on the final approach positioning point, the flight chart and the preset database, and determining the vertical navigation deviation by using the integral method based on the current position, the current height, the position of the first key navigation point, the position of the second key navigation point, the first expected height and the second expected height.
具体地,目标物的高度数据以及目标物的当前位置是实时变化的,可以实时更新目标物的高度数据以及目标物的当前位置,然后通过更新后的目标物的高度数据以及目标物的当前位置,重复执行上述步骤S102~步骤S104,确定各个位置对应的垂直导航偏差。Specifically, the height data of the target object and the current position of the target object change in real time, and the height data of the target object and the current position of the target object can be updated in real time. Then, the above steps S102 to S104 are repeatedly executed using the updated height data of the target object and the current position of the target object to determine the vertical navigation deviation corresponding to each position.
本实施例提供的机载垂直导航偏差的确定方法,通过实时更新目标物的高度数据以及目标物的当前位置,然后通过更新后的目标物的高度数据以及目标物的当前位置,重新确定垂直导航偏差的方式,能够确保飞机全过程的飞行安全。The method for determining the airborne vertical navigation deviation provided in this embodiment can ensure the flight safety of the aircraft throughout the entire process by updating the altitude data of the target object and the current position of the target object in real time, and then re-determining the vertical navigation deviation based on the updated altitude data of the target object and the current position of the target object.
在一个可选的实施方式中,上述方法还包括:将目标物的高度数据、目标物的当前位置以及垂直导航偏差进行记录。In an optional embodiment, the method further includes: recording the height data of the target object, the current position of the target object, and the vertical navigation deviation.
具体地,计算机设备在获取到目标物的高度数据、目标物的当前位置以及垂直导航偏差,可以将目标物的高度数据、目标物的当前位置以及垂直导航偏差进行记录。其中,可以将目标物的高度数据、目标物的当前位置以及垂直导航偏差记录到对应的数据库中,也可以记录到表格中,以便后续的分析和审查。Specifically, after obtaining the height data of the target object, the current position of the target object, and the vertical navigation deviation, the computer device can record the height data of the target object, the current position of the target object, and the vertical navigation deviation. The height data of the target object, the current position of the target object, and the vertical navigation deviation can be recorded in a corresponding database or in a table for subsequent analysis and review.
本实施例提供的机载垂直导航偏差的确定方法,通过记录目标物的高度数据、目标物的当前位置以及垂直导航偏差的方式,能够为后续的安全调查和分析提供了有力的支持。The method for determining the airborne vertical navigation deviation provided in this embodiment can provide strong support for subsequent safety investigation and analysis by recording the height data of the target object, the current position of the target object and the vertical navigation deviation.
在一个可选的实施方式中,本实施例依靠飞机飞管计算机数据库的字符和相对方位进行识别,由于飞机飞管计算机综合多部GPS信号,机载惯导等算法,得到的位置相对准确。通过飞管计算机中上一航路点和下一航路点名称字符的跳变即可判断飞机飞跃某一航路点。即In an optional implementation, this embodiment relies on the characters and relative position in the aircraft flight control computer database for identification. Since the aircraft flight control computer integrates multiple GPS signals, airborne inertial navigation and other algorithms, the position obtained is relatively accurate. The jump of the characters of the previous waypoint and the next waypoint name in the flight control computer can be used to determine whether the aircraft has passed a certain waypoint.
其中, in,
为飞越航路点、/>为当前时间段的航路点、/>下一时间段的航路点。 To fly over waypoints, is the waypoint for the current time period, /> Waypoint for the next time period.
然而在FOQA数据中航路点字符的记录是基于超级时间帧,即数秒或数十秒才记录一次下一航路点的字符。因此上述实际得到的是一个时间段I,该时间段的长短取决于采集该字符超级帧的长短。在该时间区间/>中,使用每秒采集一次的距下一航路点的方位角Bear即可判断过航路点的准切识别,即However, in FOQA data, the recording of waypoint characters is based on a super time frame, that is, the character of the next waypoint is recorded every few seconds or tens of seconds. What is actually obtained is a time period I, the length of which depends on the length of the super frame of the character being collected. In the example, the azimuth angle Bear collected once per second from the next waypoint can be used to determine the accurate identification of the waypoints.
其中, in,
为飞越航路点、/>为航路点的方位角、/>为下一航路点的方位角。 To fly over waypoints, is the azimuth of the waypoint, /> is the azimuth of the next waypoint.
因此,确定了飞跃各航路点的时机即可寻址到各时刻距下一航路点的距离,进而计算RNP AR程序最后进近航段垂直偏差。Therefore, by determining the timing of flying over each waypoint, the distance to the next waypoint at each time can be located, and then the vertical deviation of the final approach segment of the RNP AR procedure can be calculated.
本发明提供的机载垂直导航偏差的确定方法,通过高度积分技术,可以实时、高精度地监控飞机在最后进近阶段的垂直偏差,确保飞行安全。The method for determining the airborne vertical navigation deviation provided by the present invention can monitor the vertical deviation of the aircraft in the final approach phase in real time and with high precision through the altitude integration technology, thereby ensuring flight safety.
此外,本发明全过程监控,系统能够立即触发事件,方便后续事件的讲评和教学。In addition, the present invention monitors the entire process, and the system can immediately trigger events, which is convenient for reviewing and teaching subsequent events.
另外,系统记录飞行数据,为后续的安全调查和分析提供了有力的支持。In addition, the system records flight data, providing strong support for subsequent safety investigations and analyses.
再次,本方法适用于高高原地区等复杂地形条件下的RNP AR程序,本次完成了拉萨、林芝、日喀则、阿里、邦达、九寨等机场的编写,提高了适用性和安全性。Thirdly, this method is applicable to RNP AR procedures in complex terrain conditions such as high plateau areas. This time, the compilation of airports such as Lhasa, Nyingchi, Shigatse, Ali, Bangda, and Jiuzhaigou was completed, which improved the applicability and safety.
在本实施例中还提供了一种机载垂直导航偏差的确定装置,该装置用于实现上述实施例及优选实施方式,已经进行过说明的不再赘述。如以下所使用的,术语“模块”可以实现预定功能的软件和/或硬件的组合。尽管以下实施例所描述的装置较佳地以软件来实现,但是硬件,或者软件和硬件的组合的实现也是可能并被构想的。In this embodiment, a device for determining an airborne vertical navigation deviation is also provided, and the device is used to implement the above-mentioned embodiments and preferred implementation modes, and the descriptions that have been made will not be repeated. As used below, the term "module" can implement a combination of software and/or hardware for a predetermined function. Although the device described in the following embodiments is preferably implemented in software, the implementation of hardware, or a combination of software and hardware, is also possible and conceivable.
本实施例提供一种机载垂直导航偏差的确定装置,如图3所示,包括:This embodiment provides an airborne vertical navigation deviation determination device, as shown in FIG3 , including:
获取模块301,用于获取目标物的当前高度、目标物的当前位置以及最终进近定位点;第一确定模块302,用于基于最终进近定位点、航图以及预设数据库,确定第一关键导航点对应的第一水平距离以及第二关键导航点对应的第二水平距离;其中,第一水平距离为第一关键导航点距离最终进近定位点的水平距离,第二水平距离为第二关键导航点距离最终进近定位点的水平距离;第二确定模块303,用于基于航图,确定第一水平距离对应的第一期望高度以及第二水平距离对应的第二期望高度;其中,第一期望高度大于第二期望高度;第三确定模块304,用于基于当前位置、当前高度、第一关键导航点的位置、第二关键导航点的位置、第一期望高度以及第二期望高度,利用积分法确定垂直导航偏差。The acquisition module 301 is used to acquire the current height of the target object, the current position of the target object and the final approach positioning point; the first determination module 302 is used to determine the first horizontal distance corresponding to the first key navigation point and the second horizontal distance corresponding to the second key navigation point based on the final approach positioning point, the navigation chart and the preset database; wherein the first horizontal distance is the horizontal distance from the first key navigation point to the final approach positioning point, and the second horizontal distance is the horizontal distance from the second key navigation point to the final approach positioning point; the second determination module 303 is used to determine the first expected height corresponding to the first horizontal distance and the second expected height corresponding to the second horizontal distance based on the navigation chart; wherein the first expected height is greater than the second expected height; the third determination module 304 is used to determine the vertical navigation deviation by using the integral method based on the current position, the current height, the position of the first key navigation point, the position of the second key navigation point, the first expected height and the second expected height.
在一些可选的实施方式中,上述装置还包括:检测模块,用于检测垂直导航偏差是否大于预设安全偏差值;控制模块,用于若垂直导航偏差大于预设安全偏差值,控制目标物复飞。In some optional embodiments, the above-mentioned device also includes: a detection module, used to detect whether the vertical navigation deviation is greater than a preset safety deviation value; and a control module, used to control the target object to go around if the vertical navigation deviation is greater than the preset safety deviation value.
在一些可选的实施方式中,第二确定模块303包括:第一确定单元,用于基于航图,确定第一关键导航点以及第二关键导航点对应的高度限制;第二确定单元,用于基于高度限制,确定第一期望高度以及第二期望高度。In some optional embodiments, the second determination module 303 includes: a first determination unit, used to determine the height limits corresponding to the first key navigation point and the second key navigation point based on the flight chart; and a second determination unit, used to determine the first expected height and the second expected height based on the height limits.
在一些可选的实施方式中,第三确定模块304包括:In some optional implementations, the third determining module 304 includes:
其中,VD为垂直偏差、ALT BARO ADC1(0)为当前高度、ALT1为第一期望高度、ALT2为第二期望高度、d1为第一关键导航点的位置、d2为第二关键导航点的位置以及x为当前位置。 Among them, VD is the vertical deviation, ALT BARO ADC1(0) is the current altitude, ALT1 is the first desired altitude, ALT2 is the second desired altitude, d1 is the position of the first key navigation point, d2 is the position of the second key navigation point and x is the current position.
在一些可选的实施方式中,上述装置还包括:实时更新模块,用于对目标物的高度数据以及目标物的当前位置进行实时更新;重复执行模块,用于基于更新后的目标物的高度数据以及目标物的当前位置,重复执行基于最终进近定位点、航图以及预设数据库,确定第一关键导航点对应的第一水平距离以及第二关键导航点对应的第二水平距离至基于当前位置、当前高度、第一关键导航点的位置、第二关键导航点的位置、第一期望高度以及第二期望高度,利用积分法确定垂直导航偏差的步骤。In some optional embodiments, the above-mentioned device also includes: a real-time update module, which is used to update the height data of the target object and the current position of the target object in real time; a repeated execution module, which is used to repeatedly execute the step of determining the first horizontal distance corresponding to the first key navigation point and the second horizontal distance corresponding to the second key navigation point based on the final approach positioning point, the flight chart and the preset database, and determining the vertical navigation deviation based on the current position, the current height, the position of the first key navigation point, the position of the second key navigation point, the first expected height and the second expected height by using the integral method.
在一些可选的实施方式中,上述装置还包括:记录模块,用于将目标物的高度数据、目标物的当前位置以及垂直导航偏差进行记录。In some optional embodiments, the above-mentioned device further includes: a recording module, which is used to record the height data of the target object, the current position of the target object, and the vertical navigation deviation.
在一些可选的实施方式中,上述装置还包括:降落控制模块,用于若垂直导航偏差不大于预设安全偏差值,控制目标物继续降落。In some optional embodiments, the above-mentioned device also includes: a landing control module, which is used to control the target object to continue landing if the vertical navigation deviation is not greater than a preset safety deviation value.
上述各个模块和单元的更进一步的功能描述与上述对应实施例相同,在此不再赘述。The further functional description of each of the above modules and units is the same as that of the above corresponding embodiments and will not be repeated here.
本实施例中的机载垂直导航偏差的确定装置是以功能单元的形式来呈现,这里的功能单元是指ASIC(Application Specific Integrated Circuit,专用集成电路)电路,执行一个或多个软件或固定程序的处理器和存储器,和/或其他可以提供上述功能的器件。The airborne vertical navigation deviation determination device in this embodiment is presented in the form of a functional unit, where the functional unit refers to an ASIC (Application Specific Integrated Circuit) circuit, a processor and memory that executes one or more software or fixed programs, and/or other devices that can provide the above functions.
本发明实施例还提供一种计算机设备,具有上述图3所示的机载垂直导航偏差的确定装置。An embodiment of the present invention further provides a computer device having the device for determining the airborne vertical navigation deviation shown in FIG. 3 above.
请参阅图4,图4是本发明可选实施例提供的一种计算机设备的结构示意图,如图4所示,该计算机设备包括:一个或多个处理器10、存储器20,以及用于连接各部件的接口,包括高速接口和低速接口。各个部件利用不同的总线互相通信连接,并且可以被安装在公共主板上或者根据需要以其它方式安装。处理器可以对在计算机设备内执行的指令进行处理,包括存储在存储器中或者存储器上以在外部输入/输出装置(诸如,耦合至接口的显示设备)上显示GUI的图形信息的指令。在一些可选的实施方式中,若需要,可以将多个处理器和/或多条总线与多个存储器和多个存储器一起使用。同样,可以连接多个计算机设备,各个设备提供部分必要的操作(例如,作为服务器阵列、一组刀片式服务器、或者多处理器系统)。图4中以一个处理器10为例。Please refer to Figure 4, which is a schematic diagram of the structure of a computer device provided by an optional embodiment of the present invention. As shown in Figure 4, the computer device includes: one or more processors 10, a memory 20, and interfaces for connecting various components, including high-speed interfaces and low-speed interfaces. The various components are connected to each other using different buses for communication, and can be installed on a common motherboard or installed in other ways as needed. The processor can process instructions executed in the computer device, including instructions stored in or on the memory to display graphical information of the GUI on an external input/output device (such as a display device coupled to the interface). In some optional embodiments, if necessary, multiple processors and/or multiple buses can be used together with multiple memories and multiple memories. Similarly, multiple computer devices can be connected, and each device provides some necessary operations (for example, as a server array, a group of blade servers, or a multi-processor system). In Figure 4, a processor 10 is taken as an example.
处理器10可以是中央处理器,网络处理器或其组合。其中,处理器10还可以进一步包括硬件芯片。上述硬件芯片可以是专用集成电路,可编程逻辑器件或其组合。上述可编程逻辑器件可以是复杂可编程逻辑器件,现场可编程逻辑门阵列,通用阵列逻辑或其任意组合。The processor 10 may be a central processing unit, a network processor or a combination thereof. The processor 10 may further include a hardware chip. The hardware chip may be a dedicated integrated circuit, a programmable logic device or a combination thereof. The programmable logic device may be a complex programmable logic device, a field programmable gate array, a general purpose array logic or any combination thereof.
其中,存储器20存储有可由至少一个处理器10执行的指令,以使至少一个处理器10执行实现上述实施例示出的方法。The memory 20 stores instructions executable by at least one processor 10, so that at least one processor 10 executes the method shown in the above embodiment.
存储器20可以包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需要的应用程序;存储数据区可存储根据计算机设备的使用所创建的数据等。此外,存储器20可以包括高速随机存取存储器,还可以包括非瞬时存储器,例如至少一个磁盘存储器件、闪存器件、或其他非瞬时固态存储器件。在一些可选的实施方式中,存储器20可选包括相对于处理器10远程设置的存储器,这些远程存储器可以通过网络连接至该计算机设备。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。The memory 20 may include a program storage area and a data storage area, wherein the program storage area may store an operating system, an application required by at least one function; the data storage area may store data created according to the use of the computer device, etc. In addition, the memory 20 may include a high-speed random access memory, and may also include a non-transient memory, such as at least one disk storage device, a flash memory device, or other non-transient solid-state storage device. In some optional embodiments, the memory 20 may optionally include a memory remotely arranged relative to the processor 10, and these remote memories may be connected to the computer device via a network. Examples of the above-mentioned network include, but are not limited to, the Internet, an intranet, a local area network, a mobile communication network, and combinations thereof.
存储器20可以包括易失性存储器,例如,随机存取存储器;存储器也可以包括非易失性存储器,例如,快闪存储器,硬盘或固态硬盘;存储器20还可以包括上述种类的存储器的组合。The memory 20 may include a volatile memory, such as a random access memory; the memory may also include a non-volatile memory, such as a flash memory, a hard disk or a solid state drive; the memory 20 may also include a combination of the above types of memory.
该计算机设备还包括输入装置30和输出装置40。处理器10、存储器20、输入装置30和输出装置40可以通过总线或者其他方式连接,图4中以通过总线连接为例。The computer device further includes an input device 30 and an output device 40. The processor 10, the memory 20, the input device 30 and the output device 40 may be connected via a bus or other means, and FIG4 takes the bus connection as an example.
输入装置30可接收输入的数字或字符信息,以及产生与该计算机设备的用户设置以及功能控制有关的键信号输入,例如触摸屏、小键盘、鼠标、轨迹板、触摸板、指示杆、一个或者多个鼠标按钮、轨迹球、操纵杆等。输出装置40可以包括显示设备、辅助照明装置(例如,LED)和触觉反馈装置(例如,振动电机)等。上述显示设备包括但不限于液晶显示器,发光二极管,显示器和等离子体显示器。在一些可选的实施方式中,显示设备可以是触摸屏。The input device 30 can receive input digital or character information, and generate key signal input related to the user settings and function control of the computer device, such as a touch screen, a keypad, a mouse, a track pad, a touch pad, an indicator bar, one or more mouse buttons, a trackball, a joystick, etc. The output device 40 may include a display device, an auxiliary lighting device (e.g., an LED) and a tactile feedback device (e.g., a vibration motor), etc. The above-mentioned display device includes but is not limited to a liquid crystal display, a light emitting diode, a display and a plasma display. In some optional embodiments, the display device can be a touch screen.
该计算机设备还包括通信接口,用于该计算机设备与其他设备或通信网络通信。The computer device also includes a communication interface for the computer device to communicate with other devices or a communication network.
本发明实施例还提供了一种计算机可读存储介质,上述根据本发明实施例的方法可在硬件、固件中实现,或者被实现为可记录在存储介质,或者被实现通过网络下载的原始存储在远程存储介质或非暂时机器可读存储介质中并将被存储在本地存储介质中的计算机代码,从而在此描述的方法可被存储在使用通用计算机、专用处理器或者可编程或专用硬件的存储介质上的这样的软件处理。其中,存储介质可为磁碟、光盘、只读存储记忆体、随机存储记忆体、快闪存储器、硬盘或固态硬盘等;进一步地,存储介质还可以包括上述种类的存储器的组合。可以理解,计算机、处理器、微处理器控制器或可编程硬件包括可存储或接收软件或计算机代码的存储组件,当软件或计算机代码被计算机、处理器或硬件访问且执行时,实现上述实施例示出的方法。The embodiment of the present invention also provides a computer-readable storage medium. The method according to the embodiment of the present invention can be implemented in hardware, firmware, or can be implemented as a computer code that can be recorded in a storage medium, or can be implemented as a computer code that is originally stored in a remote storage medium or a non-temporary machine-readable storage medium and will be stored in a local storage medium through a network download, so that the method described herein can be stored in such software processing on a storage medium using a general-purpose computer, a dedicated processor, or programmable or dedicated hardware. Among them, the storage medium can be a magnetic disk, an optical disk, a read-only storage memory, a random access memory, a flash memory, a hard disk or a solid-state hard disk, etc.; further, the storage medium can also include a combination of the above types of memories. It can be understood that a computer, a processor, a microprocessor controller, or programmable hardware includes a storage component that can store or receive software or computer code. When the software or computer code is accessed and executed by a computer, a processor, or hardware, the method shown in the above embodiment is implemented.
虽然结合附图描述了本发明的实施例,但是本领域技术人员可以在不脱离本发明的精神和范围的情况下做出各种修改和变型,这样的修改和变型均落入由所附权利要求所限定的范围之内。Although the embodiments of the present invention have been described in conjunction with the accompanying drawings, those skilled in the art may make various modifications and variations without departing from the spirit and scope of the present invention, and such modifications and variations are all within the scope defined by the appended claims.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202410123388.8A CN118168534A (en) | 2024-01-29 | 2024-01-29 | Method, device, computer equipment and medium for determining airborne vertical navigation deviation |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202410123388.8A CN118168534A (en) | 2024-01-29 | 2024-01-29 | Method, device, computer equipment and medium for determining airborne vertical navigation deviation |
Publications (1)
Publication Number | Publication Date |
---|---|
CN118168534A true CN118168534A (en) | 2024-06-11 |
Family
ID=91353434
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202410123388.8A Pending CN118168534A (en) | 2024-01-29 | 2024-01-29 | Method, device, computer equipment and medium for determining airborne vertical navigation deviation |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN118168534A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN118411859A (en) * | 2024-07-03 | 2024-07-30 | 中国民航科学技术研究院 | Flyover waypoint determination method and flight procedure determination method based on flight data |
-
2024
- 2024-01-29 CN CN202410123388.8A patent/CN118168534A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN118411859A (en) * | 2024-07-03 | 2024-07-30 | 中国民航科学技术研究院 | Flyover waypoint determination method and flight procedure determination method based on flight data |
CN118411859B (en) * | 2024-07-03 | 2024-09-03 | 中国民航科学技术研究院 | Flyover waypoint determination method and flight procedure determination method based on flight data |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11935420B1 (en) | Flight assistant | |
US11551560B2 (en) | Enhanced flight navigation determination | |
US10304344B2 (en) | Methods and systems for safe landing at a diversion airport | |
EP3048424B1 (en) | Methods and systems for route-based display of meteorological forecast information | |
US8615337B1 (en) | System supporting flight operations under instrument meteorological conditions using precision course guidance | |
US9097529B2 (en) | Aircraft system and method for improving navigation performance | |
US7546183B1 (en) | In-flight verification of instrument landing system signals | |
US9983009B2 (en) | Device and method for calculating estimated navigation performance prediction | |
US8332083B1 (en) | System and method for generating a missed approach path | |
US8027783B2 (en) | Device for guiding an aircraft along a flight trajectory | |
US20080035784A1 (en) | Aircraft wake vortex predictor and visualizer | |
US20140039732A1 (en) | Wind Calculation System Using a Constant Bank Angle Turn | |
CN105807087B (en) | It is determined as optimizing the method and apparatus of wind speed that the take-off weight of aircraft need to consider | |
US8498758B1 (en) | ILS-based altitude data generation system, device, and method | |
US10866592B2 (en) | Device and method for calculating required navigation performance prediction | |
US20190027048A1 (en) | Landing system for an aerial vehicle | |
US10026327B2 (en) | Managing the trajectory of an aircraft in case of engine outage | |
CN108917786B (en) | Display system and method for indicating time-based requirements | |
EP3910613B1 (en) | Efficient flight planning for regions with high elevation terrain | |
CN118168534A (en) | Method, device, computer equipment and medium for determining airborne vertical navigation deviation | |
CN113109849B (en) | An auxiliary flight navigation method and system based on Beidou/GPS dual-channel differential prediction | |
CN113063443B (en) | Real-time evaluation method of flight error based on actual navigation performance | |
CN107544536B (en) | Method and system for performance-based reach and ordering and spacing | |
US9863899B2 (en) | System and method for measure operation benefits of flight deck avionics | |
CN115052812A (en) | Aircraft landing guiding auxiliary system and aircraft landing comprehensive auxiliary system comprising same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |