CN118150307A - Test verification method for pressure-resistant structure of deep-sea composite material - Google Patents
Test verification method for pressure-resistant structure of deep-sea composite material Download PDFInfo
- Publication number
- CN118150307A CN118150307A CN202410311092.9A CN202410311092A CN118150307A CN 118150307 A CN118150307 A CN 118150307A CN 202410311092 A CN202410311092 A CN 202410311092A CN 118150307 A CN118150307 A CN 118150307A
- Authority
- CN
- China
- Prior art keywords
- composite
- test
- pressure
- resistant structure
- model
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000002131 composite material Substances 0.000 title claims abstract description 185
- 238000012360 testing method Methods 0.000 title claims abstract description 140
- 238000000034 method Methods 0.000 title claims abstract description 38
- 238000012795 verification Methods 0.000 title claims abstract description 29
- 238000013461 design Methods 0.000 claims abstract description 30
- 239000000463 material Substances 0.000 claims abstract description 17
- 230000006835 compression Effects 0.000 claims abstract description 12
- 238000007906 compression Methods 0.000 claims abstract description 12
- 238000001514 detection method Methods 0.000 claims abstract description 4
- 230000003068 static effect Effects 0.000 claims description 16
- 238000004880 explosion Methods 0.000 claims description 11
- 230000006378 damage Effects 0.000 claims description 9
- 238000004519 manufacturing process Methods 0.000 claims description 9
- 238000004458 analytical method Methods 0.000 claims description 7
- 238000005452 bending Methods 0.000 claims description 7
- 238000012999 compression bending Methods 0.000 claims description 6
- 238000012669 compression test Methods 0.000 claims description 6
- 238000009863 impact test Methods 0.000 claims description 6
- 238000007689 inspection Methods 0.000 claims description 6
- 238000007789 sealing Methods 0.000 claims description 6
- 239000002356 single layer Substances 0.000 claims description 6
- 230000002457 bidirectional effect Effects 0.000 claims description 4
- 230000007704 transition Effects 0.000 claims description 4
- 238000004364 calculation method Methods 0.000 claims description 3
- 230000001066 destructive effect Effects 0.000 claims description 3
- 238000011056 performance test Methods 0.000 claims description 3
- 230000007246 mechanism Effects 0.000 abstract description 4
- 230000009189 diving Effects 0.000 abstract description 2
- 238000011156 evaluation Methods 0.000 description 5
- 230000002706 hydrostatic effect Effects 0.000 description 5
- 238000005457 optimization Methods 0.000 description 5
- 230000002787 reinforcement Effects 0.000 description 5
- 229910000831 Steel Inorganic materials 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 239000011159 matrix material Substances 0.000 description 3
- 239000010959 steel Substances 0.000 description 3
- 238000011161 development Methods 0.000 description 2
- 239000000835 fiber Substances 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 101001121408 Homo sapiens L-amino-acid oxidase Proteins 0.000 description 1
- 102100026388 L-amino-acid oxidase Human genes 0.000 description 1
- 239000006004 Quartz sand Substances 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000003601 intercostal effect Effects 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000003014 reinforcing effect Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N3/00—Investigating strength properties of solid materials by application of mechanical stress
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01M—TESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
- G01M3/00—Investigating fluid-tightness of structures
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01M—TESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
- G01M7/00—Vibration-testing of structures; Shock-testing of structures
- G01M7/02—Vibration-testing by means of a shake table
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N19/00—Investigating materials by mechanical methods
- G01N19/04—Measuring adhesive force between materials, e.g. of sealing tape, of coating
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N3/00—Investigating strength properties of solid materials by application of mechanical stress
- G01N3/08—Investigating strength properties of solid materials by application of mechanical stress by applying steady tensile or compressive forces
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N3/00—Investigating strength properties of solid materials by application of mechanical stress
- G01N3/20—Investigating strength properties of solid materials by application of mechanical stress by applying steady bending forces
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N3/00—Investigating strength properties of solid materials by application of mechanical stress
- G01N3/24—Investigating strength properties of solid materials by application of mechanical stress by applying steady shearing forces
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N3/00—Investigating strength properties of solid materials by application of mechanical stress
- G01N3/30—Investigating strength properties of solid materials by application of mechanical stress by applying a single impulsive force, e.g. by falling weight
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N3/00—Investigating strength properties of solid materials by application of mechanical stress
- G01N3/30—Investigating strength properties of solid materials by application of mechanical stress by applying a single impulsive force, e.g. by falling weight
- G01N3/313—Investigating strength properties of solid materials by application of mechanical stress by applying a single impulsive force, e.g. by falling weight generated by explosives
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N3/00—Investigating strength properties of solid materials by application of mechanical stress
- G01N3/32—Investigating strength properties of solid materials by application of mechanical stress by applying repeated or pulsating forces
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T90/00—Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)
Abstract
Description
技术领域Technical Field
本发明涉及一种耐压结构试验验证方法,属于深海潜水器结构设计技术领域。The invention relates to a pressure-resistant structure test verification method, belonging to the technical field of deep-sea submersible structure design.
背景技术Background technique
深海是海洋科学技术发展的制高点,实现下潜深度大幅增加,是深海潜水器发展的重要趋势和目标。复合材料轻质高强、性能可设计,广泛应用于航海器和潜水器中。潜水器在使用环境中承受载荷主要有深海静水压力、波浪载荷、操纵载荷、高低周疲劳载荷、碰撞冲击载荷、爆炸冲击载荷等,其中深海静水压力是复合材料耐压结构的主要受载工况。在深海静水压力下,复合材料耐压结构的主要破坏模式是稳定性破坏,其次是强度破坏。其中,复合材料耐压结构的稳定性破坏模式包括舱段总体稳定性破坏、肋间壳板局部稳定性破坏、一级环肋加强筋侧倾失稳破坏、二级格栅加强筋侧倾失稳破坏等;复合材料耐压结构的强度破坏模式主要包括壳板强度破坏、一级环肋加强筋强度破坏、二级格栅加强筋强度破坏、壳板-加强筋连接界面强度破坏、加强筋间连接界面强度破坏等。不同部位的强度破坏模式可进一步细分为基体拉伸破坏、基体压缩破坏、基体剪切破坏、纤维拉伸破坏、纤维压缩破坏等。深海潜水器复合材料耐压结构的失效模式繁多、失效机理复杂、难于准确预测,对复合材料耐压结构承载性能可靠评估提出了重大挑战,严重制约了复合材料耐压结构轻量化、高承载设计。通过建立一套深海复合材料耐压结构试验验证体系,分别利用复合材料柱壳、复合材料板格、复合材料耐压结构缩比模型等试验,评估复合材料耐压结构不同部位、不同失效模式下的承载性能,指导复合材料耐压结构轻量化、高承载设计与优化。The deep sea is the commanding height of the development of marine science and technology. Achieving a significant increase in diving depth is an important trend and goal in the development of deep-sea submersibles. Composite materials are lightweight, high-strength, and have designable performance. They are widely used in navigational vehicles and submersibles. The loads that submersibles bear in the use environment mainly include deep-sea hydrostatic pressure, wave loads, maneuvering loads, high and low cycle fatigue loads, collision impact loads, and explosion impact loads. Among them, deep-sea hydrostatic pressure is the main load condition for composite pressure structures. Under deep-sea hydrostatic pressure, the main failure mode of composite pressure structures is stability failure, followed by strength failure. Among them, the stability failure mode of composite pressure structures includes overall stability failure of the cabin section, local stability failure of the intercostal shell plate, instability failure of the first-level ring rib reinforcement rib inclination, and instability failure of the second-level grid reinforcement rib inclination; the strength failure mode of composite pressure structures mainly includes shell plate strength failure, first-level ring rib reinforcement rib strength failure, second-level grid reinforcement rib strength failure, shell plate-reinforcement rib connection interface strength failure, and reinforcement rib connection interface strength failure. The strength failure modes of different parts can be further subdivided into matrix tensile failure, matrix compression failure, matrix shear failure, fiber tensile failure, fiber compression failure, etc. The failure modes of composite pressure structures of deep-sea submersibles are numerous, the failure mechanisms are complex, and they are difficult to accurately predict. This poses a major challenge to the reliable evaluation of the bearing performance of composite pressure structures, and seriously restricts the lightweight and high-load-bearing design of composite pressure structures. By establishing a set of deep-sea composite pressure structure test verification system, using composite column shells, composite plate grids, composite pressure structure scaled models and other tests, the bearing performance of different parts and failure modes of composite pressure structures is evaluated, guiding the lightweight, high-load-bearing design and optimization of composite pressure structures.
综上所述,目前有必要提出一种深海复合材料耐压结构试验验证方法。In summary, it is necessary to propose a test verification method for deep-sea composite pressure-resistant structures.
发明内容Summary of the invention
本发明为解决复合材料耐压结构失效模式繁多、失效机理复杂、难于准确预测的问题,进而提出一种深海复合材料耐压结构试验验证方法。The present invention aims to solve the problems that composite pressure-resistant structures have numerous failure modes, complex failure mechanisms, and are difficult to accurately predict, and further proposes a deep-sea composite pressure-resistant structure test verification method.
本发明为解决上述问题采取的技术方案是:本发明的步骤包括:The technical solution adopted by the present invention to solve the above problems is: the steps of the present invention include:
步骤1、制定试验验证初步方案;Step 1: Develop a preliminary test verification plan;
步骤2、材料级试验件及检测试验;Step 2: Material-level test pieces and inspection tests;
步骤3、复合材料柱壳模型及试验;Step 3: Composite material cylindrical shell model and test;
步骤4、复合材料板格模型及试验;Step 4: Composite panel model and test;
步骤5、复合材料耐压结构缩比模型及试验。Step 5: Scaled-down model and test of composite pressure-resistant structure.
进一步的,步骤1中制定试验验证初步方案具体包括:Furthermore, the preliminary test verification plan formulated in step 1 specifically includes:
根据深海潜水器复合材料耐压结构概念方案,通过计算分析初步掌握复合材料耐压结构典型部位的力学特性,提出材料级试验件试验需求、复合材料柱壳模型试验需求、复合材料板格模型试验需求、复合材料耐压结构缩比模型试验需求,支撑验证复合材料耐压结构设计方法和设计方案。According to the conceptual plan of the composite pressure-resistant structure of deep-sea submersible, the mechanical properties of typical parts of the composite pressure-resistant structure are preliminarily mastered through calculation and analysis, and the requirements for material-level test pieces, composite column shell model testing, composite plate grid model testing, and composite pressure-resistant structure scaled model testing are proposed to support and verify the design method and design plan of the composite pressure-resistant structure.
进一步的,步骤2中材料级试验件及检测试验的步骤具体包括:Furthermore, the material-level test pieces and detection test steps in step 2 specifically include:
步骤201、依据材料级试验件试验需求,按照标准和经验,设计试验件并完成检测试验;Step 201, designing the test piece and completing the inspection test according to the material-level test piece test requirements, standards and experience;
步骤202、通过材料级试验件的拉伸、压缩、剪切、弯曲等试验,获得复合材料单层板或层合板的弹性模量;Step 202, obtaining the elastic modulus of the composite material single-layer plate or laminated plate through tensile, compression, shear, bending and other tests on the material-level test piece;
步骤203、通过拉伸、压缩、剪切、弯曲、冲击、断裂韧性等试验,获得复合材料单层板或层合板的强度性能。Step 203: Obtain the strength properties of the composite material single-layer plate or laminated plate through tests such as tension, compression, shear, bending, impact, and fracture toughness.
进一步的,步骤3中复合材料柱壳模型及试验的步骤具体包括:Furthermore, the steps of the composite column shell model and test in step 3 specifically include:
步骤301、依据复合材料柱壳模型试验需求,完成系列尺寸、规格类型的复合材料柱壳设计及制造;Step 301, according to the requirements of the composite column shell model test, complete the design and manufacture of composite column shells of a series of sizes and specifications;
步骤302、通过系列复合材料柱壳振动性能试验,掌握复合材料层合板的宏观刚度性能;Step 302: Master the macroscopic stiffness performance of the composite laminate through a series of composite column shell vibration performance tests;
步骤303、通过系列端部支撑的复合材料柱壳静压破坏试验,掌握不同应力状态下复合材料壳体强度失效规律;Step 303, through a series of end-supported composite column shell static pressure destruction tests, understand the strength failure law of the composite shell under different stress states;
步骤304、通过系列长细比的复合材料柱壳静压破坏试验,掌握双向受压载荷下复合材料壳体强度破坏与稳定性破坏间的转变规律;Step 304, through a series of static pressure failure tests on composite cylindrical shells with different slenderness ratios, the transition law between strength failure and stability failure of composite shells under bidirectional compressive loads is understood;
步骤305、通过不同铺层方案的复合材料柱壳静压破坏试验,掌握不同铺层方案壳体的力学性能及失效模式;Step 305: Conduct static pressure failure tests on composite column shells with different layup schemes to understand the mechanical properties and failure modes of shells with different layup schemes;
步骤306、通过复合材料柱壳、锥壳、球壳间组合模型静压破坏试验,掌握复合材料连接界面的强度及密封性能;Step 306: Conduct a static pressure destructive test on a composite cylindrical shell, conical shell, and spherical shell combination model to determine the strength and sealing performance of the composite material connection interface;
步骤307、通过复合材料柱壳、锥壳、球壳等模型水下爆炸冲击试验,掌握复合材料壳体的抗冲击性能及爆炸毁伤失效模式。Step 307: Understand the impact resistance and explosion damage failure mode of the composite material shell through underwater explosion impact tests on composite material cylindrical shells, conical shells, spherical shells and other models.
进一步的,步骤4中复合材料板格模型及试验的步骤具体包括:Furthermore, the steps of the composite panel model and test in step 4 specifically include:
步骤401、依据复合材料板格模型试验需求,完成系列尺寸规格的复合材料板格模型设计及制造;Step 401, according to the composite panel model test requirements, complete the design and manufacture of composite panel models of a series of size specifications;
步骤402、通过不同尺寸规格的跨中环向板格模型及跨中轴向板格模型单向压缩试验及弯曲试验,掌握复合材料耐压结构壳板的承载能力及失效模式,研究不同设计参数对壳板力学特性的影响规律;Step 402: Through uniaxial compression tests and bending tests on mid-span annular panel models and mid-span axial panel models of different sizes, the bearing capacity and failure mode of the shell plate of the composite material pressure-resistant structure are understood, and the influence of different design parameters on the mechanical properties of the shell plate is studied;
步骤403、通过不同尺寸规格的跨端环向板格模型及跨端轴向板格模型单向压缩试验及弯曲试验,掌握复合材料耐压结构壳板-加强筋组合结构的承载能力及失效模式,研究不同设计参数对壳板-加强筋组合结构力学特性的影响规律。Step 403: Through uniaxial compression tests and bending tests on span-end annular plate grid models and span-end axial plate grid models of different sizes, the bearing capacity and failure mode of the composite pressure-resistant structure shell plate-reinforcement rib combination structure are understood, and the influence of different design parameters on the mechanical properties of the shell plate-reinforcement rib combination structure is studied.
进一步的,步骤5中复合材料耐压结构缩比模型及试验的步骤具体包括:Furthermore, the steps of scaling down the composite material pressure-resistant structure model and testing in step 5 specifically include:
步骤501、依据复合材料耐压结构缩比模型试验需求,完成复合材料耐压结构缩比模型设计及制造;Step 501, according to the composite material pressure-resistant structure scaled model test requirements, complete the design and manufacture of the composite material pressure-resistant structure scaled model;
步骤502、通过复合材料耐压结构缩比模型静压破坏试验,掌握模型的极限承载能力及失效模式;Step 502: Conduct a static pressure destruction test on a scaled-down model of a composite material pressure-resistant structure to understand the ultimate bearing capacity and failure mode of the model;
步骤503、通过复合材料耐压结构缩比模型疲劳、蠕变等试验,掌握模型的疲劳性能、抗蠕变性能、密封连接性能;Step 503: Through fatigue and creep tests on a composite material pressure-resistant structure scaled model, the fatigue performance, creep resistance, and sealing connection performance of the model are mastered;
步骤504、通过复合材料耐压结构缩比模型爆炸冲击试验,掌握模型的抗冲击性能。Step 504: Conduct explosion impact tests on a scaled-down model of a composite material pressure-resistant structure to determine the impact resistance of the model.
复合材料耐压结构缩比模型包括复合材料环肋加筋耐压模型、复合材料多级加筋耐压模型等不同类型。The scaled-down models of composite pressure-resistant structures include different types such as composite ring-rib reinforced pressure-resistant model and composite multi-level reinforced pressure-resistant model.
本发明的有益效果是:本发明区别于传统的金属环肋加筋耐压结构试验验证方法,提出了通过复合材料柱壳、复合材料板格、复合材料耐压结构缩比模型试验进行复合材料耐压结构不同部位、不同失效模式下的承载性能评估的方法,提出了复合材料柱壳模型、复合材料板格模型的结构方案、规格类型、试验类型,利于解决复合材料耐压结构失效模式繁多、失效机理复杂、难于准确预测的难题,指导复合材料耐压结构轻量化、高承载设计与优化。The beneficial effects of the present invention are as follows: the present invention is different from the traditional test verification method for metal ring rib reinforced pressure-resistant structure, and proposes a method for evaluating the bearing performance of different parts and failure modes of composite pressure-resistant structure through composite column shell, composite plate grid and composite pressure-resistant structure scaled model tests, and proposes structural schemes, specification types and test types of composite column shell models and composite plate grid models, which is conducive to solving the difficult problems of composite pressure-resistant structure with numerous failure modes, complex failure mechanisms and difficulty in accurate prediction, and guides the lightweight, high-load-bearing design and optimization of composite pressure-resistant structure.
附图说明BRIEF DESCRIPTION OF THE DRAWINGS
图1是深海复合材料耐压结构试验验证模型关系示意图;FIG1 is a schematic diagram of the relationship between the deep-sea composite material pressure-resistant structure test verification model;
图2是复合材料柱壳模型示意图;Fig. 2 is a schematic diagram of a composite cylindrical shell model;
图3是复合材料板格模型示意图。FIG. 3 is a schematic diagram of a composite panel model.
具体实施方式Detailed ways
具体实施方式一:结合图1至图3说明本实施方式,本实施方式所述一种深海复合材料耐压结构试验验证方法的步骤包括:Specific implementation method 1: This implementation method is described in conjunction with Figures 1 to 3. The steps of a deep-sea composite material pressure-resistant structure test verification method described in this implementation method include:
步骤1、制定试验验证初步方案;Step 1: Develop a preliminary test verification plan;
步骤2、材料级试验件及检测试验;Step 2: Material-level test pieces and inspection tests;
步骤3、复合材料柱壳模型及试验;Step 3: Composite material cylindrical shell model and test;
步骤4、复合材料板格模型及试验;Step 4: Composite panel model and test;
步骤5、复合材料耐压结构缩比模型及试验。Step 5: Scaled-down model and test of composite pressure-resistant structure.
具体实施方式二:结合图1至图3说明本实施方式,本实施方式所述一种深海复合材料耐压结构试验验证方法的步骤1中制定试验验证初步方案具体包括:Specific implementation method 2: This implementation method is described in conjunction with Figures 1 to 3. In the step 1 of the deep-sea composite material pressure-resistant structure test verification method described in this implementation method, a preliminary test verification plan is formulated, which specifically includes:
根据深海潜水器复合材料耐压结构概念方案,通过计算分析初步掌握复合材料耐压结构典型部位的力学特性,提出材料级试验件试验需求、复合材料柱壳模型试验需求、复合材料板格模型试验需求、复合材料耐压结构缩比模型试验需求,支撑验证复合材料耐压结构设计方法和设计方案。According to the conceptual plan of the composite pressure-resistant structure of deep-sea submersible, the mechanical properties of typical parts of the composite pressure-resistant structure are preliminarily mastered through calculation and analysis, and the requirements for material-level test pieces, composite column shell model testing, composite plate grid model testing, and composite pressure-resistant structure scaled model testing are proposed to support and verify the design method and design plan of the composite pressure-resistant structure.
具体实施方式三:结合图1至图3说明本实施方式,本实施方式所述一种深海复合材料耐压结构试验验证方法,其特征在于:步骤2中材料级试验件及检测试验的步骤具体包括:Specific implementation method three: This implementation method is described in conjunction with Figures 1 to 3. The deep-sea composite material pressure-resistant structure test verification method described in this implementation method is characterized in that: the material-level test piece and detection test steps in step 2 specifically include:
步骤201、依据材料级试验件试验需求,按照标准和经验,设计试验件并完成检测试验;Step 201, designing the test piece and completing the inspection test according to the material-level test piece test requirements, standards and experience;
步骤202、通过材料级试验件的拉伸、压缩、剪切、弯曲等试验,获得复合材料单层板或层合板的弹性模量;Step 202, obtaining the elastic modulus of the composite material single-layer plate or laminated plate through tensile, compression, shear, bending and other tests on the material-level test piece;
步骤203、通过拉伸、压缩、剪切、弯曲、冲击、断裂韧性等试验,获得复合材料单层板或层合板的强度性能。Step 203: Obtain the strength properties of the composite material single-layer plate or laminated plate through tests such as tension, compression, shear, bending, impact, and fracture toughness.
检测试验类型包括拉伸、压缩、剪切、弯曲、冲击、断裂韧性检测;材料级试验件检测试验,能够获取单向应力状态下复合材料的弹性模量、强度性能等基础数据,用于支撑复合材料柱壳、典型板格、缩比模型、实尺度结构的力学性能分析评估与优化设计。The test types include tension, compression, shear, bending, impact, and fracture toughness testing. Material-level specimen testing can obtain basic data such as elastic modulus and strength performance of composite materials under uniaxial stress state, which is used to support the mechanical performance analysis, evaluation and optimization design of composite column shells, typical plate grids, scaled models, and real-scale structures.
具体实施方式四:结合图1至图3说明本实施方式,本实施方式所述一种深海复合材料耐压结构试验验证方法的步骤3中复合材料柱壳模型及试验的步骤具体包括:Specific embodiment 4: This embodiment is described in conjunction with Figures 1 to 3. The steps of composite column shell model and test in step 3 of a deep-sea composite pressure-resistant structure test verification method described in this embodiment specifically include:
步骤301、依据复合材料柱壳模型试验需求,完成系列尺寸、规格类型的复合材料柱壳设计及制造;Step 301, according to the requirements of the composite column shell model test, complete the design and manufacture of composite column shells of a series of sizes and specifications;
步骤302、通过系列复合材料柱壳振动性能试验,掌握复合材料层合板的宏观刚度性能;Step 302: Master the macroscopic stiffness performance of the composite laminate through a series of composite column shell vibration performance tests;
步骤303、通过系列端部支撑的复合材料柱壳静压破坏试验,掌握不同应力状态下复合材料壳体强度失效规律;Step 303, through a series of end-supported composite column shell static pressure destruction tests, understand the strength failure law of the composite shell under different stress states;
步骤304、通过系列长细比的复合材料柱壳静压破坏试验,掌握双向受压载荷下复合材料壳体强度破坏与稳定性破坏间的转变规律;Step 304, through a series of static pressure failure tests on composite cylindrical shells with different slenderness ratios, the transition law between strength failure and stability failure of composite shells under bidirectional compressive loads is understood;
步骤305、通过不同铺层方案的复合材料柱壳静压破坏试验,掌握不同铺层方案壳体的力学性能及失效模式;Step 305: Conduct static pressure failure tests on composite column shells with different layup schemes to understand the mechanical properties and failure modes of shells with different layup schemes;
步骤306、通过复合材料柱壳、锥壳、球壳间组合模型静压破坏试验,掌握复合材料连接界面的强度及密封性能;Step 306: Conduct a static pressure destructive test on a composite cylindrical shell, conical shell, and spherical shell combination model to determine the strength and sealing performance of the composite material connection interface;
步骤307、通过复合材料柱壳、锥壳、球壳等模型水下爆炸冲击试验,掌握复合材料壳体的抗冲击性能及爆炸毁伤失效模式。Step 307: Understand the impact resistance and explosion damage failure mode of the composite material shell through underwater explosion impact tests on composite material cylindrical shells, conical shells, spherical shells and other models.
复合材料柱壳模型试验,能够获取双向应力状态下复合材料的强度破坏模式、稳定性破坏模式及强度破坏-稳定性破坏间的转变规律,用于建立复合材料强度准则,支撑复合材料典型板格、缩比模型、实尺度结构的力学性能分析评估与优化设计。Composite cylindrical shell model tests can obtain the strength failure mode, stability failure mode and the transition law between strength failure and stability failure of composite materials under bidirectional stress state, which can be used to establish the strength criterion of composite materials and support the mechanical performance analysis, evaluation and optimization design of typical composite plate grids, scaled models and real-scale structures.
具体实施方式五:结合图1至图3说明本实施方式,本实施方式所述一种深海复合材料耐压结构试验验证方法的步骤4中复合材料板格模型及试验的步骤具体包括:Specific implementation mode 5: This implementation mode is described in conjunction with FIG. 1 to FIG. 3 . The steps of composite material panel model and test in step 4 of a deep-sea composite material pressure-resistant structure test verification method described in this implementation mode specifically include:
步骤401、依据复合材料板格模型试验需求,完成系列尺寸规格的复合材料板格模型设计及制造;Step 401, according to the composite panel model test requirements, complete the design and manufacture of composite panel models of a series of size specifications;
步骤402、通过不同尺寸规格的跨中环向板格模型及跨中轴向板格模型单向压缩试验及弯曲试验,掌握复合材料耐压结构壳板的承载能力及失效模式,研究不同设计参数对壳板力学特性的影响规律;Step 402: Through uniaxial compression tests and bending tests on mid-span annular panel models and mid-span axial panel models of different sizes, the bearing capacity and failure mode of the shell plate of the composite material pressure-resistant structure are understood, and the influence of different design parameters on the mechanical properties of the shell plate is studied;
步骤403、通过不同尺寸规格的跨端环向板格模型及跨端轴向板格模型单向压缩试验及弯曲试验,掌握复合材料耐压结构壳板-加强筋组合结构的承载能力及失效模式,研究不同设计参数对壳板-加强筋组合结构力学特性的影响规律。Step 403: Through uniaxial compression tests and bending tests on span-end annular plate grid models and span-end axial plate grid models of different sizes, the bearing capacity and failure mode of the composite pressure-resistant structure shell plate-reinforcement rib combination structure are understood, and the influence of different design parameters on the mechanical properties of the shell plate-reinforcement rib combination structure is studied.
复合材料板格模型的规格类型主要包括跨中环向板格模型、跨中轴向板格模型、跨端环向板格模型、跨端轴向板格模型等。The specifications of composite panel models mainly include mid-span annular panel model, mid-span axial panel model, span-end annular panel model, span-end axial panel model, etc.
复合材料板格模型试验,能够获得静水压力状态下复合材料耐压结构的破坏模式及力学特性,用于支撑复合材料缩比模型、实尺度结构的力学性能分析评估与优化设计。Composite plate model tests can obtain the failure mode and mechanical properties of composite pressure-resistant structures under hydrostatic pressure, which is used to support the mechanical performance analysis, evaluation and optimization design of composite scale models and full-scale structures.
具体实施方式六:结合图1至图3说明本实施方式,本实施方式所述一种深海复合材料耐压结构试验验证方法的步骤5中复合材料耐压结构缩比模型及试验的步骤具体包括:Specific implementation method 6: This implementation method is described in conjunction with Figures 1 to 3. The steps of the composite material pressure-resistant structure scaled model and the test in step 5 of a deep-sea composite material pressure-resistant structure test verification method described in this implementation method specifically include:
步骤501、依据复合材料耐压结构缩比模型试验需求,完成复合材料耐压结构缩比模型设计及制造;Step 501, according to the composite material pressure-resistant structure scaled model test requirements, complete the design and manufacture of the composite material pressure-resistant structure scaled model;
步骤502、通过复合材料耐压结构缩比模型静压破坏试验,掌握模型的极限承载能力及失效模式;Step 502: Conduct a static pressure destruction test on a scaled-down model of a composite material pressure-resistant structure to understand the ultimate bearing capacity and failure mode of the model;
步骤503、通过复合材料耐压结构缩比模型疲劳、蠕变等试验,掌握模型的疲劳性能、抗蠕变性能、密封连接性能;Step 503: Through fatigue and creep tests on a composite material pressure-resistant structure scaled model, the fatigue performance, creep resistance, and sealing connection performance of the model are mastered;
步骤504、通过复合材料耐压结构缩比模型爆炸冲击试验,掌握模型的抗冲击性能。Step 504: Conduct explosion impact tests on a scaled-down model of a composite material pressure-resistant structure to determine the impact resistance of the model.
复合材料耐压结构缩比模型包括复合材料环肋加筋耐压模型、复合材料多级加筋耐压模型等不同类型。The scaled-down models of composite pressure-resistant structures include different types such as composite ring-rib reinforced pressure-resistant model and composite multi-level reinforced pressure-resistant model.
复合材料耐压结构缩比模型试验,能够获得静水压力下复合材料耐压结构的静力承载特性、疲劳蠕变特性、爆炸冲击特性等,用于支撑复合材料实尺度耐压结构的力学性能分析评估与优化设计。The scaled-down model test of composite pressure-resistant structures can obtain the static bearing characteristics, fatigue creep characteristics, explosion impact characteristics, etc. of composite pressure-resistant structures under hydrostatic pressure, which is used to support the mechanical performance analysis, evaluation and optimal design of full-scale composite pressure-resistant structures.
所述的复合材料柱壳模型包括复合材料柱壳、端盖(金属或复合材料材质)等部分。复合材料柱壳两端分别与端盖密封连接后,形成复合材料柱壳模型。The composite column shell model comprises a composite column shell, an end cover (made of metal or composite material), etc. After both ends of the composite column shell are sealed and connected to the end cover, the composite column shell model is formed.
所述的复合材料板格模型包括复合材料板格、端部钢槽等部分。复合材料板格两端分别与端部钢槽通过树脂、树脂石英砂等进行连接,形成复合材料板格模型。端部钢槽表面为试验加载面或夹持面。The composite plate grid model includes composite plate grid, end steel groove and other parts. The two ends of the composite plate grid are respectively connected to the end steel groove through resin, resin quartz sand and the like to form the composite plate grid model. The surface of the end steel groove is the test loading surface or clamping surface.
所述的复合材料耐压结构壳板、加强筋均为复合材料。The composite material pressure-resistant structural shell plate and reinforcing ribs are all composite materials.
以上所述,仅是本发明的较佳实施例而已,并非对本发明作任何形式上的限制,虽然本发明已以较佳实施例揭露如上,然而并非用以限定本发明,任何熟悉本专业的技术人员,在不脱离本发明技术方案范围内,当可利用上述揭示的技术内容做出些许更动或修饰为等同变化的等效实施例,但凡是未脱离本发明技术方案内容,依据本发明的技术实质,在本发明的精神和原则之内,对以上实施例所作的任何简单的修改、等同替换与改进等,均仍属于本发明技术方案的保护范围之内。The above description is only a preferred embodiment of the present invention and does not constitute any form of limitation to the present invention. Although the present invention has been disclosed as a preferred embodiment as above, it is not intended to limit the present invention. Any technician familiar with the profession can make some changes or modify the technical contents disclosed above into equivalent embodiments without departing from the scope of the technical solution of the present invention. However, any simple modification, equivalent replacement and improvement of the above embodiments made according to the technical essence of the present invention, within the spirit and principles of the present invention, without departing from the content of the technical solution of the present invention, still fall within the protection scope of the technical solution of the present invention.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202410311092.9A CN118150307B (en) | 2024-03-19 | 2024-03-19 | Test verification method for pressure-resistant structure of deep-sea composite material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202410311092.9A CN118150307B (en) | 2024-03-19 | 2024-03-19 | Test verification method for pressure-resistant structure of deep-sea composite material |
Publications (2)
Publication Number | Publication Date |
---|---|
CN118150307A true CN118150307A (en) | 2024-06-07 |
CN118150307B CN118150307B (en) | 2024-11-29 |
Family
ID=91296592
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202410311092.9A Active CN118150307B (en) | 2024-03-19 | 2024-03-19 | Test verification method for pressure-resistant structure of deep-sea composite material |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN118150307B (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN119827312A (en) * | 2025-03-14 | 2025-04-15 | 天津爱思达航天科技股份有限公司 | Method for obtaining composite material deep sea pressure-resistant cabin barrel column section biaxial compression strength prediction curve |
CN120012445A (en) * | 2025-04-17 | 2025-05-16 | 中国科学院力学研究所 | Deep sea pressure-resistant cylindrical shell structure damage scale prediction method |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AU2001262911A1 (en) * | 2000-03-06 | 2001-11-29 | Cidra Corporation | Temperature compensated bragg grating and associated optical devices |
EP1393873A2 (en) * | 2002-08-30 | 2004-03-03 | The Boeing Company | Composite spar drape forming machine and method |
CN106844846A (en) * | 2016-12-15 | 2017-06-13 | 中国运载火箭技术研究院 | High temperature resistant composite structure multi-invalidation mode micromechanism of damage verification method |
CN107271257A (en) * | 2017-05-31 | 2017-10-20 | 昆明理工大学 | A kind of ECC formula design methods based on Micromechanics and fracture mechanics test |
CN108548719A (en) * | 2018-03-07 | 2018-09-18 | 北京航空航天大学 | A kind of composite material interlayer normal strength test method |
CN110274825A (en) * | 2019-07-17 | 2019-09-24 | 北京电子工程总体研究所 | High-modules carbon fibre reinforced resin based composites longitudinal compression performance test methods |
KR20210078754A (en) * | 2019-12-19 | 2021-06-29 | 한국과학기술원 | Segment type ring burst test apparatus for mechanical properties evaluation of composite pressure vessels and its design method |
CN116046539A (en) * | 2023-02-15 | 2023-05-02 | 深海技术科学太湖实验室 | Method for testing radial uniform compression of composite material ring |
CN116432338A (en) * | 2023-03-10 | 2023-07-14 | 江苏科技大学 | Design method and structure for repairing internal damaged cylindrical pressure-resistant shell by adopting composite material |
CN117451296A (en) * | 2023-10-11 | 2024-01-26 | 中国船舶集团有限公司第七一九研究所 | Underwater explosion bubble simulation device with time-delay multiple explosion sources and test method |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6621957B1 (en) * | 2000-03-16 | 2003-09-16 | Cidra Corporation | Temperature compensated optical device |
-
2024
- 2024-03-19 CN CN202410311092.9A patent/CN118150307B/en active Active
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AU2001262911A1 (en) * | 2000-03-06 | 2001-11-29 | Cidra Corporation | Temperature compensated bragg grating and associated optical devices |
EP1393873A2 (en) * | 2002-08-30 | 2004-03-03 | The Boeing Company | Composite spar drape forming machine and method |
CN106844846A (en) * | 2016-12-15 | 2017-06-13 | 中国运载火箭技术研究院 | High temperature resistant composite structure multi-invalidation mode micromechanism of damage verification method |
CN107271257A (en) * | 2017-05-31 | 2017-10-20 | 昆明理工大学 | A kind of ECC formula design methods based on Micromechanics and fracture mechanics test |
CN108548719A (en) * | 2018-03-07 | 2018-09-18 | 北京航空航天大学 | A kind of composite material interlayer normal strength test method |
CN110274825A (en) * | 2019-07-17 | 2019-09-24 | 北京电子工程总体研究所 | High-modules carbon fibre reinforced resin based composites longitudinal compression performance test methods |
KR20210078754A (en) * | 2019-12-19 | 2021-06-29 | 한국과학기술원 | Segment type ring burst test apparatus for mechanical properties evaluation of composite pressure vessels and its design method |
CN116046539A (en) * | 2023-02-15 | 2023-05-02 | 深海技术科学太湖实验室 | Method for testing radial uniform compression of composite material ring |
CN116432338A (en) * | 2023-03-10 | 2023-07-14 | 江苏科技大学 | Design method and structure for repairing internal damaged cylindrical pressure-resistant shell by adopting composite material |
CN117451296A (en) * | 2023-10-11 | 2024-01-26 | 中国船舶集团有限公司第七一九研究所 | Underwater explosion bubble simulation device with time-delay multiple explosion sources and test method |
Non-Patent Citations (5)
Title |
---|
LIU, Y ET AL: "Rhizobium marinum sp nov., a malachite-green-tolerant bacterium isolated from seawater", 《INTERNATIONAL JOURNAL OF SYSTEMATIC AND EVOLUTIONARY MICROBIOLOGY》, vol. 65, 9 March 2016 (2016-03-09), pages 4449 - 4454 * |
刘勇等: "海洋可控源电磁法深海油藏开采监测仿真", 《石油地球物理勘探》, vol. 57, no. 1, 31 December 2022 (2022-12-31), pages 237 - 244 * |
刘涛: "大深度潜水器结构分析与设计研究", 《中国优秀博硕士学位论文全文数据库 (博士) 工程科技Ⅱ辑》, no. 1, 15 June 2002 (2002-06-15), pages 036 - 7 * |
史雪辉;程翔;: "复合材料天线罩水压疲劳寿命分析及验证", 科技创新导报, no. 11, 11 April 2009 (2009-04-11), pages 15 - 16 * |
张颖等: "潜水器耐压壳结构选材应用综述", 《舰船科学技术》, vol. 44, no. 5, 31 December 2022 (2022-12-31), pages 1 - 6 * |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN119827312A (en) * | 2025-03-14 | 2025-04-15 | 天津爱思达航天科技股份有限公司 | Method for obtaining composite material deep sea pressure-resistant cabin barrel column section biaxial compression strength prediction curve |
CN120012445A (en) * | 2025-04-17 | 2025-05-16 | 中国科学院力学研究所 | Deep sea pressure-resistant cylindrical shell structure damage scale prediction method |
CN120012445B (en) * | 2025-04-17 | 2025-06-24 | 中国科学院力学研究所 | Deep sea pressure-resistant cylindrical shell structure damage scale prediction method |
Also Published As
Publication number | Publication date |
---|---|
CN118150307B (en) | 2024-11-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN118150307A (en) | Test verification method for pressure-resistant structure of deep-sea composite material | |
Lin et al. | Progressive damage analysis for multiscale modelling of composite pressure vessels based on Puck failure criterion | |
Rafiee | On the mechanical performance of glass-fibre-reinforced thermosetting-resin pipes: A review | |
González et al. | Effects of ply clustering in laminated composite plates under low-velocity impact loading | |
Onder et al. | Burst failure load of composite pressure vessels | |
Lin et al. | Parametric study on the failure of fiber-reinforced composite laminates under biaxial tensile load | |
Li et al. | Effect of defects in adhesive layer on the interfacial bond behaviors of externally bonded CFRP-to-concrete joints | |
Sharifi et al. | Fracture of laminated woven GFRP composite pressure vessels under combined low-velocity impact and internal pressure | |
Gning et al. | Prediction of damage in composite cylinders after impact | |
Azeem et al. | Influence of winding angles on hoop stress in composite pressure vessels: Finite element analysis | |
Wei et al. | Experimental study on buckling behavior of composite cylindrical shells with and without circular holes under hydrostatic pressure | |
Zhang et al. | Experimental and numerical investigation of large-scale effect on buckling and post-buckling behavior of tubular structures | |
Xu et al. | Stability analysis of acrylic glass pressure cylindrical shell considering creep effect | |
Zhu et al. | Effects of the geometrical shapes on buckling of conical shells under external pressure | |
Wei et al. | Axial compressive strength of preloaded CHS stubs strengthened by CFRP | |
Fu et al. | Ultimate bearing behavior in the post-buckling stage of composite pressure hulls based on new detection methods | |
Tang et al. | Research on compressive behavior of CFRP-confined CFDST stub columns with square stainless steel outer tube | |
Wu et al. | Failure analysis on fully-transparent deep-sea pressure hulls used at 2,500 m depth | |
Davies et al. | Failure of polymer matrix composites in marine and off-shore applications | |
Takayanagi et al. | Stiffness and strength of filament-wound fiber-reinforced composite pipes under internal pressure | |
Liu et al. | Design of end plugs and specimen reinforcement for testing±55 glass/epoxy composite tubes under biaxial compression | |
Zainudin et al. | Study on Durability of Composite Marine Structure using FEA | |
Su et al. | Coupled structure of double-layer conical shells and annular plates: Design, fabrication and compressive property | |
Zhang et al. | Buckling and material failure analyses on composite cylindrical shells subjected to hydrostatic pressure | |
Verstraete et al. | Constraint analysis of curved wide plate specimens |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |