CN118139489A - Perovskite heterojunction solar cell and preparation method thereof - Google Patents
Perovskite heterojunction solar cell and preparation method thereof Download PDFInfo
- Publication number
- CN118139489A CN118139489A CN202410573830.7A CN202410573830A CN118139489A CN 118139489 A CN118139489 A CN 118139489A CN 202410573830 A CN202410573830 A CN 202410573830A CN 118139489 A CN118139489 A CN 118139489A
- Authority
- CN
- China
- Prior art keywords
- perovskite
- substrate
- layer
- conductive layer
- forming
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000002360 preparation method Methods 0.000 title abstract description 10
- 239000000758 substrate Substances 0.000 claims abstract description 68
- 238000002161 passivation Methods 0.000 claims description 42
- 238000000034 method Methods 0.000 claims description 18
- 238000010521 absorption reaction Methods 0.000 claims description 16
- 238000004519 manufacturing process Methods 0.000 claims description 6
- 239000002184 metal Substances 0.000 abstract description 3
- 239000000463 material Substances 0.000 description 6
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 4
- 229910052710 silicon Inorganic materials 0.000 description 4
- 239000010703 silicon Substances 0.000 description 4
- 229910021417 amorphous silicon Inorganic materials 0.000 description 3
- 101001121408 Homo sapiens L-amino-acid oxidase Proteins 0.000 description 2
- 102100026388 L-amino-acid oxidase Human genes 0.000 description 2
- 238000004140 cleaning Methods 0.000 description 2
- 229910021419 crystalline silicon Inorganic materials 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000005012 migration Effects 0.000 description 2
- 238000013508 migration Methods 0.000 description 2
- 230000006798 recombination Effects 0.000 description 2
- 238000005215 recombination Methods 0.000 description 2
- 101001073212 Arabidopsis thaliana Peroxidase 33 Proteins 0.000 description 1
- 101001123325 Homo sapiens Peroxisome proliferator-activated receptor gamma coactivator 1-beta Proteins 0.000 description 1
- 102100028961 Peroxisome proliferator-activated receptor gamma coactivator 1-beta Human genes 0.000 description 1
- 101100012902 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) FIG2 gene Proteins 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 230000003749 cleanliness Effects 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- 238000000059 patterning Methods 0.000 description 1
- 238000000623 plasma-assisted chemical vapour deposition Methods 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K71/00—Manufacture or treatment specially adapted for the organic devices covered by this subclass
- H10K71/621—Providing a shape to conductive layers, e.g. patterning or selective deposition
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K30/00—Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
- H10K30/40—Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising a p-i-n structure, e.g. having a perovskite absorber between p-type and n-type charge transport layers
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K30/00—Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
- H10K30/50—Photovoltaic [PV] devices
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/549—Organic PV cells
Landscapes
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Photovoltaic Devices (AREA)
Abstract
本公开实施例中提供了一种钙钛矿异质结太阳能电池及其制备方法,制备方法包括提供基底;于所述基底的背面分别形成电子收集区和空穴收集区;于所述电子收集区的背面及所述空穴收集区的背面形成背面导电层;于所述背面导电层的背面形成电极层;于所述基底的上表面形成钙钛矿半电池结构。通过本公开的方案,背接触异质结半电池和钙钛矿半电池相结合的方式,构成新型的太阳能电池结构,由于其正面没有金属电极和PN结区,有效降低遮光损失,充分利用太阳光,既具有钙钛矿电池结构性能优势,也具有背接触异质结电池性能优势。
In the embodiment of the present disclosure, a perovskite heterojunction solar cell and a preparation method thereof are provided, the preparation method comprising providing a substrate; forming an electron collection region and a hole collection region on the back of the substrate respectively; forming a back conductive layer on the back of the electron collection region and the back of the hole collection region; forming an electrode layer on the back of the back conductive layer; and forming a perovskite half-cell structure on the upper surface of the substrate. Through the scheme of the present disclosure, a new type of solar cell structure is formed by combining a back contact heterojunction half-cell and a perovskite half-cell. Since there is no metal electrode and PN junction region on the front side, the shading loss is effectively reduced, and the sunlight is fully utilized. It has both the performance advantages of the perovskite cell structure and the performance advantages of the back contact heterojunction cell.
Description
技术领域Technical Field
本发明涉及太阳能光伏行业电池制作技术领域,具体涉及钙钛矿异质结太阳能电池及其制备方法。The present invention relates to the technical field of solar photovoltaic industry battery manufacturing, and in particular to a perovskite heterojunction solar cell and a preparation method thereof.
背景技术Background technique
钙钛矿电池是利用钙钛矿型材料作为吸光层的新型化合物薄膜太阳能电池,属于第三代太阳电池。钙钛矿太阳电池可以与晶硅太阳电池进行叠层,理论上最大的叠层数量是4层。钙钛矿叠层电池的主要优势在于对太阳光谱图的充分利用,然而传统叠层电池正面有栅线遮挡,遮光损失导致电池效率有所降低。栅线宽度的优化一直是提升太阳电池光利用率和电池整体效率的重要方向,通过背接触技术可以完全避免栅线遮挡带来的电池效率损失。Perovskite cells are new compound thin-film solar cells that use perovskite materials as light-absorbing layers and belong to the third generation of solar cells. Perovskite solar cells can be stacked with crystalline silicon solar cells, and the theoretical maximum number of stacking layers is 4. The main advantage of perovskite stacked cells is the full utilization of the solar spectrum. However, the front of traditional stacked cells is blocked by grid lines, and the shading loss causes the cell efficiency to be reduced. The optimization of grid line width has always been an important direction to improve the light utilization rate of solar cells and the overall efficiency of the cells. The back contact technology can completely avoid the cell efficiency loss caused by grid line blocking.
异质结太阳电池具有工艺简单、理论效率高的特点。与现有的PERC、TOPcon等电池结构相比的明显特征是异质结电池结构具备本征非晶硅钝化层,另外异质结太阳电池的工艺路线相对简单,且与背接触电池技术路线有很好的兼容性。但背接触硅基电池技术路线并不涉及异质结太阳电池技术。Heterojunction solar cells have the characteristics of simple process and high theoretical efficiency. Compared with existing PERC, TOPcon and other cell structures, the obvious feature of heterojunction cell structure is that it has an intrinsic amorphous silicon passivation layer. In addition, the process route of heterojunction solar cells is relatively simple and has good compatibility with the back contact cell technology route. However, the back contact silicon-based cell technology route does not involve heterojunction solar cell technology.
发明内容Summary of the invention
有鉴于此,本公开实施例提供一种钙钛矿异质结太阳能电池及其制备方法,至少部分解决现有技术中存在的问题,将钙钛矿电池、背接触异质结电池相结合,形成新型的太阳能电池结构,在有效获取太阳能的同时,得到最优化的电池性能。In view of this, the embodiments of the present disclosure provide a perovskite heterojunction solar cell and a method for preparing the same, which at least partially solve the problems existing in the prior art, combine the perovskite cell and the back-contact heterojunction cell to form a new solar cell structure, and obtain optimized cell performance while effectively obtaining solar energy.
第一方面,本公开实施例提供了一种钙钛矿异质结太阳能电池制备方法,包括:In a first aspect, an embodiment of the present disclosure provides a method for preparing a perovskite heterojunction solar cell, comprising:
提供基底;providing a substrate;
于所述基底的背面分别形成电子收集区和空穴收集区;forming an electron collection region and a hole collection region on the back side of the substrate;
于所述电子收集区的背面及所述空穴收集区的背面形成背面导电层;forming a back conductive layer on the back of the electron collection region and the back of the hole collection region;
于所述背面导电层的背面形成电极层;forming an electrode layer on the back side of the back conductive layer;
于所述基底的上表面形成钙钛矿半电池结构。A perovskite half-cell structure is formed on the upper surface of the substrate.
根据本公开实施例的一种具体实现方式,所述提供基底,包括:According to a specific implementation of the embodiment of the present disclosure, providing a substrate includes:
提供衬底;providing a substrate;
于所述衬底的正面及所述衬底的背面分别形成正面钝化层和背面钝化层。A front passivation layer and a back passivation layer are formed on the front side of the substrate and the back side of the substrate respectively.
根据本公开实施例的一种具体实现方式,所述于所述基底的上表面形成钙钛矿半电池结构,包括:According to a specific implementation of the embodiment of the present disclosure, the forming of a perovskite half-cell structure on the upper surface of the substrate includes:
于所述正面钝化层的上表面形成正面导电层;forming a front conductive layer on the upper surface of the front passivation layer;
于所述正面导电层的上表面形成钙钛矿吸收层。A perovskite absorption layer is formed on the upper surface of the front conductive layer.
根据本公开实施例的一种具体实现方式,所述于所述基底的上表面形成钙钛矿半电池结构,还包括:According to a specific implementation of the embodiment of the present disclosure, the forming of a perovskite half-cell structure on the upper surface of the substrate further includes:
于所述钙钛矿吸收层的上表面形成减反射层;forming an anti-reflection layer on the upper surface of the perovskite absorption layer;
其中,所述正面导电层、所述钙钛矿吸收层及所述减反射层共同组成所述钙钛矿半电池结构。The front conductive layer, the perovskite absorption layer and the anti-reflection layer together constitute the perovskite half-cell structure.
根据本公开实施例的一种具体实现方式,所述电子收集区及所述空穴收集区交替间隔排布,所述电极层的宽度小于所述背面导电层的宽度。According to a specific implementation of the embodiment of the present disclosure, the electron collection regions and the hole collection regions are arranged alternately and spaced apart, and the width of the electrode layer is smaller than the width of the back conductive layer.
根据本公开实施例的一种具体实现方式,所述正面钝化层、所述衬底、所述背面钝化层、所述电子收集区、所述空穴收集区、所述背面导电层及所述电极层共同构成背接触异质结半电池结构。According to a specific implementation of the embodiment of the present disclosure, the front passivation layer, the substrate, the back passivation layer, the electron collection region, the hole collection region, the back conductive layer and the electrode layer together constitute a back contact heterojunction half-cell structure.
第二方面,本公开实施例提供了一种钙钛矿异质结太阳能电池,包括:In a second aspect, the embodiments of the present disclosure provide a perovskite heterojunction solar cell, comprising:
基底;substrate;
钙钛矿半电池结构,覆盖所述基底的上表面;a perovskite half-cell structure covering the upper surface of the substrate;
电子收集区和空穴收集区,均位于所述基底的背面;The electron collection region and the hole collection region are both located on the back side of the substrate;
背面导电层,位于所述电子收集区的背面及所述空穴收集区的背面;A back conductive layer, located on the back of the electron collection area and the back of the hole collection area;
电极层,位于所述背面导电层的背面。The electrode layer is located on the back side of the back conductive layer.
根据本公开实施例的一种具体实现方式,所述基底包括:According to a specific implementation of the embodiment of the present disclosure, the substrate includes:
衬底;substrate;
正面钝化层,覆盖所述衬底的正面;A front passivation layer covering the front side of the substrate;
背面钝化层,覆盖所述衬底的背面。A back passivation layer covers the back side of the substrate.
根据本公开实施例的一种具体实现方式,所述钙钛矿半电池结构包括由下至上依次叠层的正面导电层、钙钛矿吸收层、减反射层;According to a specific implementation of the embodiment of the present disclosure, the perovskite half-cell structure includes a front conductive layer, a perovskite absorption layer, and an anti-reflection layer stacked in sequence from bottom to top;
所述正面钝化层、所述衬底、所述背面钝化层、所述电子收集区、所述空穴收集区、所述背面导电层及所述电极层共同构成背接触异质结半电池结构。The front passivation layer, the substrate, the back passivation layer, the electron collection region, the hole collection region, the back conductive layer and the electrode layer together constitute a back contact heterojunction half-cell structure.
根据本公开实施例的一种具体实现方式,所述电子收集区及所述空穴收集区交替间隔排布,所述电极层的宽度小于所述背面导电层的宽度。According to a specific implementation of the embodiment of the present disclosure, the electron collection regions and the hole collection regions are arranged alternately and spaced apart, and the width of the electrode layer is smaller than the width of the back conductive layer.
本公开实施例中的钙钛矿异质结太阳能电池及其制备方法,制备方法包括提供基底;于所述基底的背面分别形成电子收集区和空穴收集区;于所述电子收集区的背面及所述空穴收集区的背面形成背面导电层;于所述背面导电层的背面形成电极层;于所述基底的上表面形成钙钛矿半电池结构。通过本公开的方案,背接触异质结半电池和钙钛矿半电池相结合的方式,构成新型的太阳能电池结构,由于其正面没有金属电极和PN结区,有效降低遮光损失,充分利用太阳光,极大提高电池的性能,既具有钙钛矿电池结构性能优势,也具有背接触异质结电池性能优势。The perovskite heterojunction solar cell and its preparation method in the embodiment of the present disclosure, the preparation method comprises providing a substrate; forming an electron collection area and a hole collection area on the back of the substrate respectively; forming a back conductive layer on the back of the electron collection area and the back of the hole collection area; forming an electrode layer on the back of the back conductive layer; forming a perovskite half-cell structure on the upper surface of the substrate. Through the scheme of the present disclosure, a new type of solar cell structure is formed by combining a back contact heterojunction half-cell and a perovskite half-cell. Since there is no metal electrode and PN junction area on the front side, the shading loss is effectively reduced, the sunlight is fully utilized, and the performance of the battery is greatly improved. It has both the performance advantages of the perovskite battery structure and the performance advantages of the back contact heterojunction battery.
附图说明BRIEF DESCRIPTION OF THE DRAWINGS
为了更清楚地说明本公开实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图。In order to more clearly illustrate the technical solutions of the embodiments of the present disclosure, the drawings required for use in the embodiments will be briefly introduced below. Obviously, the drawings described below are only some embodiments of the present disclosure. For ordinary technicians in this field, other drawings can be obtained based on these drawings without creative work.
图1为本公开实施例提供的一种钙钛矿异质结太阳能电池的制备方法流程图;FIG1 is a flow chart of a method for preparing a perovskite heterojunction solar cell provided in an embodiment of the present disclosure;
图2为本公开实施例提供的一种钙钛矿异质结太阳能电池的结构示意图。FIG2 is a schematic diagram of the structure of a perovskite heterojunction solar cell provided in an embodiment of the present disclosure.
附图标记说明:10、钙钛矿半电池结构;11、正面导电层;12、钙钛矿吸收层;13、减反射层;Description of reference numerals: 10, perovskite half-cell structure; 11, front conductive layer; 12, perovskite absorption layer; 13, anti-reflection layer;
20、背接触异质结半电池结构;21、基底;211、衬底;212、正面钝化层;213、背面钝化层;22、电子收集区;23、空穴收集区;24、背面导电层;25、电极层。20. Back contact heterojunction half-cell structure; 21. Base; 211. Substrate; 212. Front passivation layer; 213. Back passivation layer; 22. Electron collection region; 23. Hole collection region; 24. Back conductive layer; 25. Electrode layer.
具体实施方式Detailed ways
为了便于理解本申请,下面将参照相关附图对本申请进行更全面的描述。附图中给出了本申请的首选实施例。但是,本申请可以以许多不同的形式来实现,并不限于本文所描述的实施例。相反地,提供这些实施例的目的是使对本申请的公开内容更加透彻全面。In order to facilitate understanding of the present application, the present application will be described more fully below with reference to the relevant drawings. The preferred embodiments of the present application are given in the drawings. However, the present application can be implemented in many different forms and is not limited to the embodiments described herein. On the contrary, the purpose of providing these embodiments is to make the disclosure of the present application more thorough and comprehensive.
除非另有定义,本文所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同。本文中在本申请的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请。本文所使用的术语“及/或”包括一个或多个相关的所列项目的任意的和所有的组合。Unless otherwise defined, all technical and scientific terms used herein have the same meaning as those commonly understood by those skilled in the art to which this application belongs. The terms used herein in the specification of this application are only for the purpose of describing specific embodiments and are not intended to limit this application. The term "and/or" used herein includes any and all combinations of one or more of the related listed items.
应当明白,当元件或层被称为“在...上”、“与...相邻”、“连接到”或“耦合到”其它元件或层时,其可以直接地在其它元件或层上、与之相邻、连接或耦合到其它元件或层,或者可以存在居间的元件或层。相反,当元件被称为“直接在...上”、“与...直接相邻”、“直接连接到”或“直接耦合到”其它元件或层时,则不存在居间的元件或层。应当明白,尽管可使用术语第一、 第二、第三等描述各种元件、部件、区、层和/或部分,这些元件、部件、区、层和/或部分不应当被这些术语限制。这些术语仅仅用来区分一个元件、部件、区、层或部分与另一个元件、部件、区、层或部分。因此,在不脱离本申请教导之下,下面讨论的第一元件、部件、区、层或部分可表示为第二元件、部件、区、层或部分。It should be understood that when an element or layer is referred to as "on ...", "adjacent to ...", "connected to" or "coupled to" other elements or layers, it can be directly on, adjacent to, connected to or coupled to other elements or layers, or there can be intervening elements or layers. On the contrary, when an element is referred to as "directly on ...", "directly adjacent to ...", "directly connected to" or "directly coupled to" other elements or layers, there are no intervening elements or layers. It should be understood that although the terms first, second, third, etc. can be used to describe various elements, components, regions, layers and/or parts, these elements, components, regions, layers and/or parts should not be limited by these terms. These terms are only used to distinguish one element, component, region, layer or part from another element, component, region, layer or part. Therefore, without departing from the teachings of the present application, the first element, component, region, layer or part discussed below can be represented as the second element, component, region, layer or part.
空间关系术语例如“在...下”、“在...下面”、“下面的”、“在...之下”、“在...之上”、“上面的”等,在这里可为了方便描述而被使用从而描述图中所示的一个元件或特征与其它元件或特征的关系。应当明白,除了图中所示的取向以外,空间关系术语意图还包括使用和操作中的器件的不同取向。例如,如果附图中的器件翻转,然后,描述为“在其它元件下面”或“在其之下”或“在其下”元件或特征将取向为在其它元件或特征“上”。因此,示例性术语“在...下面”和“在...下”可包括上和下两个取向。器件可以另外地取向(旋转90度或其它取向)并且在此使用的空间描述语相应地被解释。Spatially relative terms such as "under," "beneath," "below," "under," "above," "above," and the like may be used herein for ease of description to describe the relationship of an element or feature shown in the figures to other elements or features. It should be understood that the spatially relative terms are intended to include different orientations of the device in use and operation in addition to the orientations shown in the figures. For example, if the device in the accompanying drawings is flipped, then the elements or features described as "under other elements" or "under" or "under" will be oriented as "on" the other elements or features. Thus, the exemplary terms "under" and "under" may include both upper and lower orientations. The device may be otherwise oriented (rotated 90 degrees or other orientations) and the spatial descriptors used herein are interpreted accordingly.
在此使用的术语的目的仅在于描述具体实施例并且不作为本申请的限制。在此使用时,单数形式的“一”、“一个”和“所述/该”也意图包括复数形式,除非上下文清楚指出另外的方式。还应明白术语“组成”和/或“包括”,当在该说明书中使用时,确定所述特征、整数、步骤、操作、元件和/或部件的存在,但不排除一个或更多其它的特征、整数、步骤、操作、元件、部件和/或组的存在或添加。在此使用时,术语“和/或”包括相关所列项目的任何及所有组合。The purpose of the terms used herein is only to describe specific embodiments and is not intended to be limiting of the present application. When used herein, the singular forms "one", "an" and "said/the" are also intended to include plural forms, unless the context clearly indicates another way. It should also be understood that the terms "consisting of" and/or "comprising", when used in this specification, determine the presence of the features, integers, steps, operations, elements and/or parts, but do not exclude the presence or addition of one or more other features, integers, steps, operations, elements, parts and/or groups. When used herein, the term "and/or" includes any and all combinations of the relevant listed items.
这里参考作为本申请的理想实施例(和中间结构)的示意图的横截面图来描述申请的实施例。这样,可以预期由于例如制造技术和/或容差导致的从所示形状的变化。因此,本申请的实施例不应当局限于在此所示的区的特定形状,而是包括由于例如制造导致的形状偏差,图中显示的区实质上是示意性的,它们的形状并不意图显示器件的区的实际形状且并不意图限定本申请的范围。Embodiments of the application are described herein with reference to cross-sectional views that are schematic diagrams of ideal embodiments (and intermediate structures) of the application. Thus, variations from the shapes shown due to, for example, manufacturing techniques and/or tolerances can be expected. Therefore, embodiments of the application should not be limited to the specific shapes of the zones shown herein, but include shape deviations due to, for example, manufacturing, and the zones shown in the figures are schematic in nature, and their shapes are not intended to display the actual shapes of the zones of the device and are not intended to limit the scope of the application.
在本申请的一个实施例中,如图1所示,提供了一种新型异质结电池制备方法,包括如下步骤;In one embodiment of the present application, as shown in FIG1 , a novel heterojunction battery preparation method is provided, comprising the following steps:
步骤S10:提供基底21;Step S10: providing a substrate 21;
步骤S20:于所述基底21的背面分别形成电子收集区22和空穴收集区23;Step S20: forming an electron collection region 22 and a hole collection region 23 on the back side of the substrate 21;
步骤S30:于所述电子收集区22的背面及所述空穴收集区23的背面形成背面导电层24;Step S30: forming a back conductive layer 24 on the back side of the electron collection region 22 and the back side of the hole collection region 23;
步骤S40:于所述背面导电层24的背面形成电极层25;Step S40: forming an electrode layer 25 on the back side of the back conductive layer 24;
步骤S50:于所述基底21的上表面形成钙钛矿半电池结构10。Step S50 : forming a perovskite half-cell structure 10 on the upper surface of the substrate 21 .
背接触异质结太阳电池结构是在异质结太阳能电池的基础上发展而来的新型电池结构。背接触异质结太阳电池结构的主要特征在于其正面没有栅线和pn结区,从而降低遮光损失,充分利用太阳光能。The back-contact heterojunction solar cell structure is a new type of cell structure developed on the basis of heterojunction solar cells. The main feature of the back-contact heterojunction solar cell structure is that there is no grid line and pn junction area on the front side, thereby reducing shading loss and making full use of solar energy.
本公开实施例中的钙钛矿异质结太阳能电池及其制备方法,制备方法包括提供基底;于所述基底的背面分别形成电子收集区和空穴收集区;于所述电子收集区的背面及所述空穴收集区的背面形成背面导电层;于所述背面导电层的背面形成电极层;于所述基底的上表面形成钙钛矿半电池结构。通过本公开的方案,背接触异质结半电池和钙钛矿半电池相结合的方式,构成新型的太阳能电池结构,钙钛矿半电池将吸收的太阳光光电转化成电子和空穴,由下层基底将电子和空穴分别输送至电子收集区和空穴收集区,最终由背面导电层将电子和空穴传递至电极层。由于其正面没有金属电极和PN结区,有效降低遮光损失,充分利用太阳光,极大提高电池的性能,既具有钙钛矿电池结构性能优势,也具有背接触异质结电池性能优势。The perovskite heterojunction solar cell and its preparation method in the embodiment of the present disclosure, the preparation method includes providing a substrate; forming an electron collection area and a hole collection area on the back of the substrate respectively; forming a back conductive layer on the back of the electron collection area and the back of the hole collection area; forming an electrode layer on the back of the back conductive layer; forming a perovskite half-cell structure on the upper surface of the substrate. Through the scheme of the present disclosure, the back contact heterojunction half-cell and the perovskite half-cell are combined to form a new solar cell structure. The perovskite half-cell converts the absorbed sunlight into electrons and holes, and the electrons and holes are transported to the electron collection area and the hole collection area respectively by the lower substrate, and finally the electrons and holes are transferred to the electrode layer by the back conductive layer. Since there is no metal electrode and PN junction area on the front side, the shading loss is effectively reduced, the sunlight is fully utilized, and the performance of the battery is greatly improved. It has both the performance advantages of the perovskite battery structure and the performance advantages of the back contact heterojunction battery.
在一个实施例中,如图2所示,步骤S10中提供的基底21,包括如下步骤:In one embodiment, as shown in FIG. 2 , the substrate 21 provided in step S10 includes the following steps:
步骤S11:提供衬底211;Step S11: providing a substrate 211;
步骤S12:于所述衬底211的正面及所述衬底211的背面分别形成正面钝化层212和背面钝化层213。Step S12: forming a front passivation layer 212 and a back passivation layer 213 on the front surface of the substrate 211 and the back surface of the substrate 211 respectively.
具体地,衬底211包括但不限于N型硅片n-c-Si等,若采用N型硅片作为衬底211,需进行制绒清洗处理,以提高硅片表面的清洁度,减少杂质出现。此处,制绒清洗全过程,属于本领域技术人员公知,此处不再赘述。Specifically, the substrate 211 includes but is not limited to N-type silicon wafer n-c-Si, etc. If an N-type silicon wafer is used as the substrate 211, a texturing and cleaning process is required to improve the cleanliness of the silicon wafer surface and reduce the appearance of impurities. Here, the entire texturing and cleaning process is well known to those skilled in the art and will not be described in detail here.
具体地,正面钝化层212和背面钝化层213均可采用PECVD制备,正面钝化层212的厚度和背面钝化层213的厚度均为5nm-10nm,譬如,正面钝化层212的厚度为5nm、6nm、7nm、8nm、9nm或10nm;背面钝化层213的厚度为5nm、6nm、7nm、8nm、9nm或10nm;正面钝化层212和背面钝化层213包括但不限于i-Si:H层;正面钝化层212和背面钝化层213用于降低载流子界面复合概率,即降低电子和空穴复合概率。Specifically, both the front passivation layer 212 and the back passivation layer 213 can be prepared by PECVD, and the thickness of the front passivation layer 212 and the back passivation layer 213 are both 5nm-10nm. For example, the thickness of the front passivation layer 212 is 5nm, 6nm, 7nm, 8nm, 9nm or 10nm; the thickness of the back passivation layer 213 is 5nm, 6nm, 7nm, 8nm, 9nm or 10nm; the front passivation layer 212 and the back passivation layer 213 include but are not limited to i-Si:H layer; the front passivation layer 212 and the back passivation layer 213 are used to reduce the probability of carrier interface recombination, that is, to reduce the probability of electron and hole recombination.
作为示例,正面钝化层212和背面钝化层213的材料可以相同,也可以不同,为节省制备流程,可同时制备得到。As an example, the materials of the front passivation layer 212 and the back passivation layer 213 may be the same or different, and may be prepared at the same time to save preparation process.
在一个实施例中,请继续参考图2,步骤S20中形成电子收集区22和空穴收集区23,可使用图形化技术并结合PEVCD的方式制备得到。电子收集区22及所述空穴收集区23交替间隔排布,二者之间具有间隙。电子相对空穴,有着更好的迁移能力,电子收集区22的宽度大于空穴收集区23的宽度,电子收集区22的区域大于空穴收集区23的区域,也即电子收集区22于基底21上的正投影的区域大于空穴收集区23于基底上的正投影的区域,以弥补空穴迁移能力低导致性能下降的缺陷。In one embodiment, please continue to refer to FIG. 2. The electron collection region 22 and the hole collection region 23 are formed in step S20, which can be prepared by using a graphical technology combined with a PEVCD method. The electron collection region 22 and the hole collection region 23 are arranged alternately and spaced apart, with a gap between them. Electrons have better migration ability than holes, and the width of the electron collection region 22 is greater than the width of the hole collection region 23. The area of the electron collection region 22 is greater than the area of the hole collection region 23, that is, the area of the positive projection of the electron collection region 22 on the substrate 21 is greater than the area of the positive projection of the hole collection region 23 on the substrate, so as to make up for the defect of performance degradation caused by low hole migration ability.
具体地,电子收集区22包括但不限于N型氢化非晶硅层(n-Si:H)等,空穴收集区23包括但不限于P型氢化非晶硅层(p-Si:H)等。Specifically, the electron collection region 22 includes but is not limited to an N-type hydrogenated amorphous silicon layer (n-Si:H) and the like, and the hole collection region 23 includes but is not limited to a P-type hydrogenated amorphous silicon layer (p-Si:H) and the like.
所述电极层25的宽度小于所述背面导电层24的宽度,背面导电层24完全覆盖电子收集区22的背面和空穴收集区23的背面,以将产生的全部电子和空穴传导入电极层25中,减少电子和空穴的传递损失。The width of the electrode layer 25 is smaller than the width of the back conductive layer 24. The back conductive layer 24 completely covers the back side of the electron collection area 22 and the back side of the hole collection area 23 to transfer all generated electrons and holes into the electrode layer 25, thereby reducing the transmission loss of electrons and holes.
在一个实施例中,步骤S30中制备的背面导电层包括但不限于TCO层,可采用图形化技术对准,并利用PVD技术蒸镀制备得到。In one embodiment, the back conductive layer prepared in step S30 includes but is not limited to a TCO layer, which can be aligned using a patterning technique and prepared by evaporation using a PVD technique.
在一个实施例中,请继续参考图2,正面钝化层212、所述衬底211、所述背面钝化层213、所述电子收集区22、所述空穴收集区23、所述背面导电层24及所述电极层25共同构成背接触异质结半电池结构20。In one embodiment, please continue to refer to Figure 2, the front passivation layer 212, the substrate 211, the back passivation layer 213, the electron collection region 22, the hole collection region 23, the back conductive layer 24 and the electrode layer 25 together constitute a back contact heterojunction half-cell structure 20.
在一个实施例中,请继续参考图2,在步骤S50中:于所述基底21的上表面形成钙钛矿半电池结构10,具体包括如下步骤:In one embodiment, please continue to refer to FIG. 2 , in step S50: forming a perovskite half-cell structure 10 on the upper surface of the substrate 21 specifically includes the following steps:
步骤S51:于所述正面钝化层212的上表面形成正面导电层11;Step S51: forming a front conductive layer 11 on the upper surface of the front passivation layer 212;
步骤S52:于所述正面导电层11的上表面形成钙钛矿吸收层12。Step S52 : forming a perovskite absorption layer 12 on the upper surface of the front conductive layer 11 .
具体地,正面导电层11包括但不限于TCO透明导电层;可采用PVD技术蒸镀透明导电层TCO。Specifically, the front conductive layer 11 includes but is not limited to a TCO transparent conductive layer; the transparent conductive layer TCO may be evaporated using PVD technology.
正面导电层11和背面导电层24可同时制备,在必要时,可分开制备。The front conductive layer 11 and the back conductive layer 24 may be prepared simultaneously, or, if necessary, may be prepared separately.
在一个实施例中,钙钛矿吸收层12可采用溶液法、涂布法、PVD等技术制备得到;钙钛矿吸收层12的材料包括但不限于有机材料、无机材料或有机无机混合材料等等。In one embodiment, the perovskite absorption layer 12 can be prepared by using a solution method, a coating method, a PVD method, or the like; the material of the perovskite absorption layer 12 includes but is not limited to an organic material, an inorganic material, or an organic-inorganic hybrid material, and the like.
在一个实施例中,请继续参考图2,在步骤S20中:于所述基底21的上表面形成钙钛矿半电池结构10,具体包括如下步骤:In one embodiment, please continue to refer to FIG. 2 , in step S20: forming a perovskite half-cell structure 10 on the upper surface of the substrate 21 specifically includes the following steps:
步骤S53:于所述钙钛矿吸收层12的上表面形成减反射层13;Step S53: forming an anti-reflection layer 13 on the upper surface of the perovskite absorption layer 12;
具体地,减反射层13用于降低太阳光的反射,使得钙钛矿吸收层12尽可能吸收更多的太阳光,降低太阳光的损耗。减反射层13的材料不作限制,若符合上述功能,均可作为本申请的减反射层13。Specifically, the anti-reflection layer 13 is used to reduce the reflection of sunlight, so that the perovskite absorption layer 12 absorbs as much sunlight as possible and reduces the loss of sunlight. The material of the anti-reflection layer 13 is not limited, and any material that meets the above functions can be used as the anti-reflection layer 13 of the present application.
其中,所述正面导电层11、所述钙钛矿吸收层12及所述减反射层13共同组成所述钙钛矿半电池结构10。The front conductive layer 11 , the perovskite absorption layer 12 and the anti-reflection layer 13 together constitute the perovskite half-cell structure 10 .
需要说明的是,若使用的钙钛矿半电池结构10和背接触异质结半电池结构20结合的架构和本申请相同,亦或是本申请架构延伸的结构,均可属于本申请的保护范围之内。It should be noted that if the architecture of the perovskite half-cell structure 10 and the back contact heterojunction half-cell structure 20 used is the same as that of the present application, or is an extension of the architecture of the present application, it can fall within the scope of protection of the present application.
在本申请另一实施例中,还提供一种钙钛矿异质结太阳能电池,其特征在于,包括:基底21;钙钛矿半电池结构10,覆盖所述基底21的上表面;电子收集区22和空穴收集区23,均位于所述基底21的背面;背面导电层24,位于所述电子收集区22的背面及所述空穴收集区23的背面;电极层25,位于所述背面导电层24的背面。In another embodiment of the present application, a perovskite heterojunction solar cell is provided, characterized in that it includes: a substrate 21; a perovskite half-cell structure 10, covering the upper surface of the substrate 21; an electron collection region 22 and a hole collection region 23, both located on the back side of the substrate 21; a back conductive layer 24, located on the back side of the electron collection region 22 and the back side of the hole collection region 23; and an electrode layer 25, located on the back side of the back conductive layer 24.
在一个实施例中,基底21包括:衬底211;正面钝化层212,覆盖所述衬底211的正面;背面钝化层213,覆盖所述衬底211的背面。In one embodiment, the base 21 includes: a substrate 211 ; a front passivation layer 212 covering the front side of the substrate 211 ; and a back passivation layer 213 covering the back side of the substrate 211 .
在一个实施例中,所述电子收集区22及所述空穴收集区23交替间隔排布,所述电极层25的宽度小于所述背面导电层24的宽度。In one embodiment, the electron collecting regions 22 and the hole collecting regions 23 are arranged alternately and spaced apart, and the width of the electrode layer 25 is smaller than the width of the back conductive layer 24 .
在一个实施例中,所述钙钛矿半电池结构10包括由下至上依次叠层的正面导电层11、钙钛矿吸收层12、减反射层13;正面钝化层212、所述衬底211、所述背面钝化层213、所述电子收集区22、所述空穴收集区23、所述背面导电层24及所述电极层25共同构成背接触异质结半电池结构20。In one embodiment, the perovskite half-cell structure 10 includes a front conductive layer 11, a perovskite absorption layer 12, and an anti-reflection layer 13 stacked in sequence from bottom to top; the front passivation layer 212, the substrate 211, the back passivation layer 213, the electron collection region 22, the hole collection region 23, the back conductive layer 24 and the electrode layer 25 together constitute a back contact heterojunction half-cell structure 20.
以上所述,仅为本公开的具体实施方式,但本公开的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本公开的保护范围之内。因此,本公开的保护范围应以权利要求的保护范围为准。The above is only a specific implementation of the present disclosure, but the protection scope of the present disclosure is not limited thereto. Any changes or substitutions that can be easily thought of by a person skilled in the art within the technical scope disclosed in the present disclosure should be included in the protection scope of the present disclosure. Therefore, the protection scope of the present disclosure should be based on the protection scope of the claims.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202410573830.7A CN118139489A (en) | 2024-05-10 | 2024-05-10 | Perovskite heterojunction solar cell and preparation method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202410573830.7A CN118139489A (en) | 2024-05-10 | 2024-05-10 | Perovskite heterojunction solar cell and preparation method thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
CN118139489A true CN118139489A (en) | 2024-06-04 |
Family
ID=91242255
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202410573830.7A Pending CN118139489A (en) | 2024-05-10 | 2024-05-10 | Perovskite heterojunction solar cell and preparation method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN118139489A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN118742055A (en) * | 2024-09-02 | 2024-10-01 | 浙江制能科技有限公司 | A perovskite photovoltaic module |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106410039A (en) * | 2016-11-07 | 2017-02-15 | 大连理工大学 | Perovskite laminated solar cell and preparation method thereof |
CN109888034A (en) * | 2019-04-04 | 2019-06-14 | 国家电投集团西安太阳能电力有限公司 | Perovskite/back contact crystal silicon tandem solar cell |
CN110492002A (en) * | 2019-08-30 | 2019-11-22 | 通威太阳能(眉山)有限公司 | A kind of back contacts non-impurity-doped hetero-junctions-perovskite stacked solar cell, cascade solar cell |
CN114203843A (en) * | 2020-08-27 | 2022-03-18 | 嘉兴阿特斯技术研究院有限公司 | A back-contact perovskite/silicon heterojunction tandem cell module and its preparation method and solar cell |
-
2024
- 2024-05-10 CN CN202410573830.7A patent/CN118139489A/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106410039A (en) * | 2016-11-07 | 2017-02-15 | 大连理工大学 | Perovskite laminated solar cell and preparation method thereof |
CN109888034A (en) * | 2019-04-04 | 2019-06-14 | 国家电投集团西安太阳能电力有限公司 | Perovskite/back contact crystal silicon tandem solar cell |
CN110492002A (en) * | 2019-08-30 | 2019-11-22 | 通威太阳能(眉山)有限公司 | A kind of back contacts non-impurity-doped hetero-junctions-perovskite stacked solar cell, cascade solar cell |
CN114203843A (en) * | 2020-08-27 | 2022-03-18 | 嘉兴阿特斯技术研究院有限公司 | A back-contact perovskite/silicon heterojunction tandem cell module and its preparation method and solar cell |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN118742055A (en) * | 2024-09-02 | 2024-10-01 | 浙江制能科技有限公司 | A perovskite photovoltaic module |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10084107B2 (en) | Transparent conducting oxide for photovoltaic devices | |
US12191411B2 (en) | Semiconductor substrate, solar cell, and photovoltaic module | |
CN116364794A (en) | Solar cell, photovoltaic module and method for preparing solar cell | |
WO2022062381A1 (en) | Stacked cell structure and manufacturing method therefor | |
CN111430384A (en) | A solar cell module, a tandem solar cell and a manufacturing method thereof | |
JP7639208B1 (en) | Solar cell and its manufacturing method, stacked cell, and photovoltaic module | |
CN111799348A (en) | Heterojunction back-contact solar cell and method for forming the same | |
CN117059691A (en) | Heterojunction solar cells | |
CN115172602A (en) | Doped metal oxide composite layer structure | |
CN114582983A (en) | Heterojunction solar cell and preparation method thereof | |
CN208608214U (en) | A kind of heterojunction solar battery | |
CN118139489A (en) | Perovskite heterojunction solar cell and preparation method thereof | |
CN115000198B (en) | Solar cell and photovoltaic module | |
KR20180018895A (en) | Bifacial silicon solar cell | |
CN220934090U (en) | Solar cells and photovoltaic modules | |
CN209981254U (en) | A crystalline silicon double-sided solar cell structure | |
CN118053922A (en) | Solar cell, preparation method thereof and photovoltaic module | |
CN115985992A (en) | N-type monocrystalline silicon HBC solar cell structure and preparation method thereof | |
CN111403538A (en) | Solar cell and preparation method thereof | |
CN108461570A (en) | A kind of crystal silicon double-side solar cell structure | |
CN202049959U (en) | Right side gate electrode of solar cell | |
CN117410361B (en) | Solar cell module and TOPCON structure cell with double-sided texturing | |
CN218849510U (en) | N-type monocrystalline silicon HBC solar cell structure | |
CN114005886B (en) | Silicon heterojunction solar cell structure suitable for indoor power generation and preparation method thereof | |
CN111403495A (en) | Solar cell and preparation method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20240604 |