CN118138143A - Photon terahertz communication sensing system and method - Google Patents
Photon terahertz communication sensing system and method Download PDFInfo
- Publication number
- CN118138143A CN118138143A CN202410138312.2A CN202410138312A CN118138143A CN 118138143 A CN118138143 A CN 118138143A CN 202410138312 A CN202410138312 A CN 202410138312A CN 118138143 A CN118138143 A CN 118138143A
- Authority
- CN
- China
- Prior art keywords
- signal
- optical
- terahertz
- local oscillator
- synaesthesia
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000004891 communication Methods 0.000 title claims abstract description 139
- 238000000034 method Methods 0.000 title claims abstract description 40
- 230000003287 optical effect Effects 0.000 claims abstract description 259
- 230000035559 beat frequency Effects 0.000 claims abstract description 30
- 238000001514 detection method Methods 0.000 claims abstract description 28
- 239000000835 fiber Substances 0.000 claims description 91
- 230000008447 perception Effects 0.000 claims description 76
- 230000008878 coupling Effects 0.000 claims description 49
- 238000010168 coupling process Methods 0.000 claims description 49
- 238000005859 coupling reaction Methods 0.000 claims description 49
- 230000010287 polarization Effects 0.000 claims description 20
- 230000008569 process Effects 0.000 claims description 18
- 238000006243 chemical reaction Methods 0.000 claims description 13
- 239000013307 optical fiber Substances 0.000 claims description 10
- 238000010586 diagram Methods 0.000 description 47
- 230000003321 amplification Effects 0.000 description 12
- 238000003199 nucleic acid amplification method Methods 0.000 description 12
- 230000005540 biological transmission Effects 0.000 description 5
- 238000001228 spectrum Methods 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 4
- 238000001914 filtration Methods 0.000 description 4
- 101001121408 Homo sapiens L-amino-acid oxidase Proteins 0.000 description 2
- 101000827703 Homo sapiens Polyphosphoinositide phosphatase Proteins 0.000 description 2
- 102100026388 L-amino-acid oxidase Human genes 0.000 description 2
- 102100023591 Polyphosphoinositide phosphatase Human genes 0.000 description 2
- 101100012902 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) FIG2 gene Proteins 0.000 description 2
- 101100233916 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) KAR5 gene Proteins 0.000 description 2
- 239000000969 carrier Substances 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 238000005457 optimization Methods 0.000 description 2
- 230000035945 sensitivity Effects 0.000 description 2
- 229910052691 Erbium Inorganic materials 0.000 description 1
- 101000636811 Homo sapiens Neudesin Proteins 0.000 description 1
- 102100031903 Neudesin Human genes 0.000 description 1
- 101150041689 SLC25A5 gene Proteins 0.000 description 1
- 101100434411 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) ADH1 gene Proteins 0.000 description 1
- 101150102866 adc1 gene Proteins 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 238000003491 array Methods 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- UYAHIZSMUZPPFV-UHFFFAOYSA-N erbium Chemical compound [Er] UYAHIZSMUZPPFV-UHFFFAOYSA-N 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
- 230000008054 signal transmission Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/70—Photonic quantum communication
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/50—Transmitters
- H04B10/516—Details of coding or modulation
- H04B10/5165—Carrier suppressed; Single sideband; Double sideband or vestigial
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/50—Transmitters
- H04B10/516—Details of coding or modulation
- H04B10/548—Phase or frequency modulation
- H04B10/556—Digital modulation, e.g. differential phase shift keying [DPSK] or frequency shift keying [FSK]
- H04B10/5563—Digital frequency modulation
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/60—Receivers
- H04B10/61—Coherent receivers
- H04B10/616—Details of the electronic signal processing in coherent optical receivers
- H04B10/6162—Compensation of polarization related effects, e.g., PMD, PDL
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/60—Receivers
- H04B10/61—Coherent receivers
- H04B10/64—Heterodyne, i.e. coherent receivers where, after the opto-electronic conversion, an electrical signal at an intermediate frequency [IF] is obtained
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/90—Non-optical transmission systems, e.g. transmission systems employing non-photonic corpuscular radiation
Landscapes
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Optics & Photonics (AREA)
- Optical Communication System (AREA)
Abstract
本发明提供一种光子太赫兹通信感知系统和方法,该光子太赫兹通信感知系统包括:第一高速光电探测器对第一耦合信号进行外差拍频,得到太赫兹通感信号;第二高速光电探测器对第二耦合信号进行外差拍频,得到参考太赫兹本振信号,太赫兹通感信号和参考太赫兹本振信号具有相同的频率偏移,第一耦合信号和第二耦合信号均是基于光载波信号和光本振信号得到的,第一耦合信号和第二耦合信号不同;用户单元根据太赫兹通感信号,确定第一雷达回波信号;太赫兹混频模块根据参考太赫兹本振信号和第一雷达回波信号,确定目标雷达回波信号。该系统能够有效消除由外差拍频引起的频偏和相噪,进而提升雷达探测精度。
The present invention provides a photon terahertz communication sensing system and method, the photon terahertz communication sensing system comprises: a first high-speed photoelectric detector performs heterodyne beat frequency on a first coupled signal to obtain a terahertz synaesthesia signal; a second high-speed photoelectric detector performs heterodyne beat frequency on a second coupled signal to obtain a reference terahertz local oscillator signal, the terahertz synaesthesia signal and the reference terahertz local oscillator signal have the same frequency offset, the first coupled signal and the second coupled signal are both obtained based on an optical carrier signal and an optical local oscillator signal, and the first coupled signal and the second coupled signal are different; a user unit determines a first radar echo signal according to the terahertz synaesthesia signal; a terahertz mixing module determines a target radar echo signal according to the reference terahertz local oscillator signal and the first radar echo signal. The system can effectively eliminate the frequency deviation and phase noise caused by the heterodyne beat frequency, thereby improving the radar detection accuracy.
Description
技术领域Technical Field
本发明涉及信号处理技术领域,尤其涉及一种光子太赫兹通信感知系统和方法。The present invention relates to the field of signal processing technology, and in particular to a photonic terahertz communication sensing system and method.
背景技术Background technique
随着无线通信和雷达技术向更高的频段发展,通信传输和雷达感知的工作频率在太赫兹频段发生重叠。在太赫兹频段,更宽的带宽、更小尺寸的天线阵列使同时实现更大容量通信和更高精度感知成为可能。当前,太赫兹频段丰富的频谱资源尚未被分配,可以在太赫兹频段验证通信感知一体化(Integrated Sensing and Communication,ISAC)功能,使通信与感知功能相辅相成,服务于未来第六代移动通信系统(the 6th Generationwireless systems,6G)太赫兹时代。此外,将通信与雷达集成在同一系统中,具有简化系统结构、降低硬件成本,以及减轻通信与雷达之间的电磁干扰等特点。光子学技术有着工作频率高、瞬时带宽大和抗电磁干扰能力强等特点,光子学技术被广泛应用于无线通信和雷达成像。As wireless communication and radar technologies develop towards higher frequency bands, the operating frequencies of communication transmission and radar perception overlap in the terahertz band. In the terahertz band, wider bandwidth and smaller antenna arrays make it possible to simultaneously achieve larger capacity communications and higher precision perception. At present, the rich spectrum resources in the terahertz band have not yet been allocated. The Integrated Sensing and Communication (ISAC) function can be verified in the terahertz band, so that communication and perception functions complement each other and serve the future terahertz era of the sixth generation wireless systems (6G). In addition, integrating communication and radar in the same system has the characteristics of simplifying the system structure, reducing hardware costs, and reducing electromagnetic interference between communication and radar. Photonics technology has the characteristics of high operating frequency, large instantaneous bandwidth, and strong anti-electromagnetic interference ability. Photonics technology is widely used in wireless communications and radar imaging.
现有的光子太赫兹通信感知方法是利用两个自由激光器,生成太赫兹通信感知信号(简称:太赫兹通感信号),该太赫兹通感信号的频率灵活可调,适用于光载波和光本振分离的拉远系统,但该方法会存在较为严重的频率偏移(简称:频偏)和相位噪声(简称:相噪),进而导致雷达探测精度较低。The existing photonic terahertz communication perception method uses two free lasers to generate terahertz communication perception signals (abbreviated as terahertz synaesthesia signals). The frequency of the terahertz synaesthesia signals is flexibly adjustable and suitable for remote systems with separated optical carriers and optical local oscillators. However, this method will have relatively serious frequency offset (abbreviated as frequency deviation) and phase noise (abbreviated as phase noise), which will lead to low radar detection accuracy.
发明内容Summary of the invention
本发明提供一种光子太赫兹通信感知系统和方法,用以解决现有的光子太赫兹通信感知方法会存在较为严重的频偏和相噪,进而导致雷达探测精度较低的缺陷,该光子太赫兹通信感知系统中产生的太赫兹通感信号和参考太赫兹本振信号具有相同的频偏,在用户单元根据太赫兹通感信号确定第一雷达回波信号之后,太赫兹混频模块将参考太赫兹本振信号和第一雷达回波信号进行混频相关处理,这两种信号存在的频偏会相互抵消,能够有效消除由外差拍频引起的频偏和相噪,进而提升雷达探测精度。The present invention provides a photon terahertz communication sensing system and method, which are used to solve the defect that the existing photon terahertz communication sensing method has relatively serious frequency deviation and phase noise, thereby resulting in low radar detection accuracy. The terahertz synaesthesia signal and the reference terahertz local oscillator signal generated in the photon terahertz communication sensing system have the same frequency deviation. After the user unit determines the first radar echo signal according to the terahertz synaesthesia signal, the terahertz mixing module performs mixing correlation processing on the reference terahertz local oscillator signal and the first radar echo signal. The frequency deviations of the two signals will cancel each other, and the frequency deviation and phase noise caused by the heterodyne beat frequency can be effectively eliminated, thereby improving the radar detection accuracy.
第一方面,本发明提供一种光子太赫兹通信感知系统,包括:远端单元和用户单元,所述远端单元包括:第一高速光电探测器、第二高速光电探测器和太赫兹混频模块,所述系统包括:In a first aspect, the present invention provides a photonic terahertz communication sensing system, comprising: a remote unit and a user unit, wherein the remote unit comprises: a first high-speed photodetector, a second high-speed photodetector and a terahertz mixing module, and the system comprises:
所述第一高速光电探测器,用于对第一耦合信号进行外差拍频,得到太赫兹通感信号;The first high-speed photodetector is used to perform heterodyne beat frequency on the first coupled signal to obtain a terahertz synaesthesia signal;
所述第二高速光电探测器,用于对第二耦合信号进行外差拍频,得到参考太赫兹本振信号,所述太赫兹通感信号和所述参考太赫兹本振信号具有相同的频率偏移,所述第一耦合信号和所述第二耦合信号均是基于光载波信号和光本振信号得到的,所述第一耦合信号和所述第二耦合信号不同;The second high-speed photodetector is used to perform heterodyne beat frequency on the second coupled signal to obtain a reference terahertz local oscillator signal, the terahertz synaesthesia signal and the reference terahertz local oscillator signal have the same frequency offset, the first coupled signal and the second coupled signal are both obtained based on the optical carrier signal and the optical local oscillator signal, and the first coupled signal and the second coupled signal are different;
所述用户单元,用于根据所述太赫兹通感信号,确定第一雷达回波信号;The user unit is used to determine a first radar echo signal according to the terahertz synaesthesia signal;
所述太赫兹混频模块,用于根据所述参考太赫兹本振信号和所述第一雷达回波信号,确定目标雷达回波信号。The terahertz mixing module is used to determine the target radar echo signal according to the reference terahertz local oscillator signal and the first radar echo signal.
根据本发明提供的一种光子太赫兹通信感知系统,还包括中心单元,所述中心单元包括调制光确定模块;所述远端单元还包括:分束模块、第一激光器、第一保偏光纤耦合器和第一耦合模块;所述分束模块,用于根据所述调制光确定模块生成的调制光信号,确定下行光信号,所述调制光信号为含光载波的不对称光单边带信号;所述第一保偏光纤耦合器,用于根据所述第一激光器生成的所述光本振信号,确定第一子光本振信号;所述第一耦合模块,用于根据所述下行光信号和所述第一子光本振信号,确定所述第一耦合信号。A photonic terahertz communication perception system provided by the present invention also includes a central unit, which includes a modulated light determination module; the remote unit also includes: a beam splitting module, a first laser, a first polarization-maintaining fiber coupler and a first coupling module; the beam splitting module is used to determine a downlink optical signal according to the modulated light signal generated by the modulated light determination module, and the modulated light signal is an asymmetric optical single-sideband signal containing an optical carrier; the first polarization-maintaining fiber coupler is used to determine a first sub-optical local oscillator signal according to the optical local oscillator signal generated by the first laser; the first coupling module is used to determine the first coupling signal according to the downlink optical signal and the first sub-optical local oscillator signal.
根据本发明提供的一种光子太赫兹通信感知系统,所述用户单元包括:太赫兹包络检波模块和通信信号处理模块;所述太赫兹包络检波模块,用于根据所述太赫兹通感信号,确定第一中频通感信号;所述通信信号处理模块,用于根据所述第一中频通感信号,确定通信信息。According to a photonic terahertz communication perception system provided by the present invention, the user unit includes: a terahertz envelope detection module and a communication signal processing module; the terahertz envelope detection module is used to determine a first intermediate frequency synaesthesia signal according to the terahertz synaesthesia signal; the communication signal processing module is used to determine communication information according to the first intermediate frequency synaesthesia signal.
根据本发明提供的一种光子太赫兹通信感知系统,所述第一耦合模块包括第二保偏光纤耦合器、第一掺铒光纤放大器和第一可变光衰减器;所述第二保偏光纤耦合器,用于根据所述下行光信号和所述第一子光本振信号,确定第一信号;所述第一掺铒光纤放大器,用于对所述第一信号进行光功率放大,确定第二信号;所述第一可变光衰减器,用于对所述第二信号进行光功率优化,得到所述第一耦合信号。According to a photonic terahertz communication perception system provided by the present invention, the first coupling module includes a second polarization-maintaining fiber coupler, a first erbium-doped fiber amplifier and a first variable optical attenuator; the second polarization-maintaining fiber coupler is used to determine the first signal according to the downlink optical signal and the first sub-optical local oscillator signal; the first erbium-doped fiber amplifier is used to amplify the optical power of the first signal to determine the second signal; the first variable optical attenuator is used to optimize the optical power of the second signal to obtain the first coupled signal.
根据本发明提供的一种光子太赫兹通信感知系统,还包括中心单元,所述中心单元包括调制光确定模块;所述远端单元还包括:分束模块、第一光带通滤波器、第一激光器、第一保偏光纤耦合器和第二耦合模块;所述分束模块,用于根据所述调制光确定模块生成的调制光信号,确定第一参考光信号,所述调制光信号为含光载波的不对称光单边带信号;所述第一光带通滤波器,用于对所述第一参考光信号进行过滤,得到目标光载波信号;所述第一保偏光纤耦合器,用于根据所述第一激光器生成的所述光本振信号,确定第二子光本振信号;所述第二耦合模块,用于根据所述目标光载波信号和所述第二子光本振信号,确定所述第二耦合信号。A photonic terahertz communication perception system provided by the present invention also includes a central unit, which includes a modulated light determination module; the remote unit also includes: a beam splitting module, a first optical bandpass filter, a first laser, a first polarization-maintaining fiber coupler and a second coupling module; the beam splitting module is used to determine a first reference optical signal according to the modulated light signal generated by the modulated light determination module, and the modulated light signal is an asymmetric optical single-sideband signal containing an optical carrier; the first optical bandpass filter is used to filter the first reference optical signal to obtain a target optical carrier signal; the first polarization-maintaining fiber coupler is used to determine a second sub-optical local oscillator signal according to the optical local oscillator signal generated by the first laser; the second coupling module is used to determine the second coupling signal according to the target optical carrier signal and the second sub-optical local oscillator signal.
根据本发明提供的一种光子太赫兹通信感知系统,所述第二耦合模块包括第三保偏光纤耦合器、第二掺铒光纤放大器和第二可变光衰减器;所述第三保偏光纤耦合器,用于根据所述目标光载波信号和所述第二子光本振信号,确定第三信号;所述第二掺铒光纤放大器,用于对所述第三信号进行光功率放大,确定第四信号;所述第二可变光衰减器,用于对所述第四信号进行光功率优化,得到所述第二耦合信号。According to a photonic terahertz communication perception system provided by the present invention, the second coupling module includes a third polarization-maintaining fiber coupler, a second erbium-doped fiber amplifier and a second variable optical attenuator; the third polarization-maintaining fiber coupler is used to determine a third signal according to the target optical carrier signal and the second sub-optical local oscillator signal; the second erbium-doped fiber amplifier is used to amplify the optical power of the third signal to determine a fourth signal; the second variable optical attenuator is used to optimize the optical power of the fourth signal to obtain the second coupled signal.
根据本发明提供的一种光子太赫兹通信感知系统,所述调制光确定模块包括:第二激光器、发射端信号处理单元、数模转换器、第一电光调制器和第一环形器;所述数模转换器,用于根据所述发射端信号处理单元生成的第一通感信号,确定第二通感信号;所述第一电光调制器,用于根据所述第二通感信号和所述第二激光器生成的所述光载波信号,确定所述调制光信号;所述第一环形器,用于将所述调制光信号传输至所述分束模块。According to a photonic terahertz communication perception system provided by the present invention, the modulated light determination module includes: a second laser, a transmitting end signal processing unit, a digital-to-analog converter, a first electro-optical modulator and a first circulator; the digital-to-analog converter is used to determine the second synaesthesia signal according to the first synaesthesia signal generated by the transmitting end signal processing unit; the first electro-optical modulator is used to determine the modulated light signal according to the second synaesthesia signal and the optical carrier signal generated by the second laser; the first circulator is used to transmit the modulated light signal to the beam splitting module.
根据本发明提供的一种光子太赫兹通信感知系统,所述分束模块包括:第二环形器、第三掺铒光纤放大器、偏振控制器和保偏光分束器;所述第二环形器,用于接收所述调制光确定模块传输的所述调制光信号;所述第三掺铒光纤放大器,用于对所述调制光信号进行光功率放大,确定第一调制光信号;所述偏振控制器,用于对所述第一调制光信号进行偏振处理,得到第二调制光信号;所述保偏光分束器,用于对所述第二调制光信号进行分束处理,得到所述下行光信号。According to a photonic terahertz communication perception system provided by the present invention, the beam splitting module includes: a second circulator, a third erbium-doped fiber amplifier, a polarization controller and a polarization-maintaining beam splitter; the second circulator is used to receive the modulated light signal transmitted by the modulated light determination module; the third erbium-doped fiber amplifier is used to amplify the optical power of the modulated light signal to determine the first modulated light signal; the polarization controller is used to perform polarization processing on the first modulated light signal to obtain a second modulated light signal; the polarization-maintaining beam splitter is used to perform beam splitting processing on the second modulated light signal to obtain the downlink light signal.
根据本发明提供的一种光子太赫兹通信感知系统,所述太赫兹混频模块包括:第一太赫兹低噪声功率放大器、第二太赫兹低噪声功率放大器和太赫兹混频器;所述第一太赫兹低噪声功率放大器,用于对所述参考太赫兹本振信号进行功率放大,得到目标参考太赫兹本振信号;所述第二太赫兹低噪声功率放大器,用于对所述第一雷达回波信号进行功率放大,得到第二雷达回波信号;所述太赫兹混频器,用于对所述目标参考太赫兹本振信号和所述第二雷达回波信号进行混频,得到所述目标雷达回波信号。According to a photonic terahertz communication perception system provided by the present invention, the terahertz mixing module includes: a first terahertz low-noise power amplifier, a second terahertz low-noise power amplifier and a terahertz mixer; the first terahertz low-noise power amplifier is used to power amplify the reference terahertz local oscillator signal to obtain a target reference terahertz local oscillator signal; the second terahertz low-noise power amplifier is used to power amplify the first radar echo signal to obtain a second radar echo signal; the terahertz mixer is used to mix the target reference terahertz local oscillator signal and the second radar echo signal to obtain the target radar echo signal.
根据本发明提供的一种光子太赫兹通信感知系统,所述太赫兹包络检波模块包括:第三太赫兹低噪声功率放大器和太赫兹包络检波器;所述通信信号处理模块包括:第一中频低噪声功率放大器、电带通滤波器、第一模数转换器和通信信号处理单元;所述第三太赫兹低噪声功率放大器,用于对所述太赫兹通感信号进行功率放大,得到第五信号;所述太赫兹包络检波器,用于对所述第五信号进行包络检波,得到所述第一中频通感信号;所述第一中频低噪声功率放大器,用于对所述第一中频通感信号进行功率放大,得到第二中频通感信号;所述电带通滤波器,用于对所述第二中频通感信号进行滤波,得到第一通信信号;所述第一模数转换器,用于对所述第一通信信号进行模数转换,得到第二通信信号;所述通信信号处理单元,用于对所述第二通信信号进行处理,得到所述通信信息。According to a photonic terahertz communication perception system provided by the present invention, the terahertz envelope detection module includes: a third terahertz low-noise power amplifier and a terahertz envelope detector; the communication signal processing module includes: a first intermediate frequency low-noise power amplifier, an electrical bandpass filter, a first analog-to-digital converter and a communication signal processing unit; the third terahertz low-noise power amplifier is used to power amplify the terahertz synaesthesia signal to obtain a fifth signal; the terahertz envelope detector is used to perform envelope detection on the fifth signal to obtain the first intermediate frequency synaesthesia signal; the first intermediate frequency low-noise power amplifier is used to power amplify the first intermediate frequency synaesthesia signal to obtain a second intermediate frequency synaesthesia signal; the electrical bandpass filter is used to filter the second intermediate frequency synaesthesia signal to obtain a first communication signal; the first analog-to-digital converter is used to perform analog-to-digital conversion on the first communication signal to obtain a second communication signal; and the communication signal processing unit is used to process the second communication signal to obtain the communication information.
根据本发明提供的一种光子太赫兹通信感知系统,所述远端单元还包括:电光调制模块;所述中心单元还包括:感知信号处理模块;所述电光调制模块,用于根据所述目标雷达回波信号,确定目标回波电光调制信号;所述感知信号处理模块,用于根据所述目标回波电光调制信号,确定所述用户单元的终端相关信息。According to a photonic terahertz communication perception system provided by the present invention, the remote unit also includes: an electro-optical modulation module; the central unit also includes: a perception signal processing module; the electro-optical modulation module is used to determine the target echo electro-optical modulation signal according to the target radar echo signal; the perception signal processing module is used to determine the terminal-related information of the user unit according to the target echo electro-optical modulation signal.
根据本发明提供的一种光子太赫兹通信感知系统,所述电光调制模块包括:第二中频低噪声功率放大器、第二电光调制器、第四掺铒光纤放大器和第二光带通滤波器;所述分束模块,还用于根据所述调制光信号,确定第二参考光信号;所述第二中频低噪声功率放大器,用于对所述目标雷达回波信号进行功率放大,得到第三雷达回波信号;所述第二电光调制器,用于根据所述第三雷达回波信号和所述第二参考光信号,确定第一回波电光调制信号;所述第四掺铒光纤放大器,用于对所述第一回波电光调制信号进行光功率放大,得到第二回波电光调制信号;所述第二光带通滤波器,用于对所述第二回波电光调制信号进行滤波,得到所述目标回波电光调制信号。According to a photonic terahertz communication perception system provided by the present invention, the electro-optical modulation module includes: a second intermediate frequency low noise power amplifier, a second electro-optical modulator, a fourth erbium-doped fiber amplifier and a second optical bandpass filter; the beam splitting module is also used to determine a second reference optical signal according to the modulated optical signal; the second intermediate frequency low noise power amplifier is used to amplify the power of the target radar echo signal to obtain a third radar echo signal; the second electro-optical modulator is used to determine a first echo electro-optical modulation signal according to the third radar echo signal and the second reference optical signal; the fourth erbium-doped fiber amplifier is used to amplify the optical power of the first echo electro-optical modulation signal to obtain a second echo electro-optical modulation signal; the second optical bandpass filter is used to filter the second echo electro-optical modulation signal to obtain the target echo electro-optical modulation signal.
根据本发明提供的一种光子太赫兹通信感知系统,所述感知信号处理模块包括:低速光电探测器、第三中频低噪声功率放大器、第二模数转换器和感知信号处理单元;所述低速光电探测器,用于对所述目标回波电光调制信号进行拍频解啁啾,得到电中频感知信号;所述第三中频低噪声功率放大器,用于对所述电中频感知信号进行功率放大,得到第一电中频感知信号;所述第二模数转换器,用于对所述第一电中频感知信号进行模数转换,得到第二电中频感知信号;所述感知信号处理单元,用于对所述第二电中频感知信号进行处理,得到所述终端相关信息。According to a photonic terahertz communication perception system provided by the present invention, the perception signal processing module includes: a low-speed photodetector, a third intermediate frequency low-noise power amplifier, a second analog-to-digital converter and a perception signal processing unit; the low-speed photodetector is used to perform beat frequency de-chirping on the target echo electro-optical modulation signal to obtain an electrical intermediate frequency perception signal; the third intermediate frequency low-noise power amplifier is used to perform power amplification on the electrical intermediate frequency perception signal to obtain a first electrical intermediate frequency perception signal; the second analog-to-digital converter is used to perform analog-to-digital conversion on the first electrical intermediate frequency perception signal to obtain a second electrical intermediate frequency perception signal; the perception signal processing unit is used to process the second electrical intermediate frequency perception signal to obtain the terminal related information.
第二方面,本发明提供一种光子太赫兹通信感知方法,应用于第一方面任一项所述的光子太赫兹通信感知系统,所述光子太赫兹通信感知系统包括远端单元和用户单元,所述远端单元包括:第一高速光电探测器、第二高速光电探测器和太赫兹混频模块,所述方法包括:In a second aspect, the present invention provides a photon terahertz communication sensing method, which is applied to the photon terahertz communication sensing system according to any one of the first aspects, wherein the photon terahertz communication sensing system comprises a remote unit and a user unit, wherein the remote unit comprises: a first high-speed photodetector, a second high-speed photodetector and a terahertz mixing module, and the method comprises:
利用所述第一高速光电探测器对第一耦合信号进行外差拍频,得到太赫兹通感信号;Using the first high-speed photodetector to perform heterodyne beat frequency on the first coupled signal to obtain a terahertz synaesthesia signal;
利用所述第二高速光电探测器对第二耦合信号进行外差拍频,得到参考太赫兹本振信号,所述太赫兹通感信号和所述参考太赫兹本振信号具有相同的频率偏移,所述第一耦合信号和所述第二耦合信号均是基于光载波信号和光本振信号得到的,所述第一耦合信号和所述第二耦合信号不同;The second high-speed photodetector is used to perform heterodyne beat frequency on the second coupled signal to obtain a reference terahertz local oscillator signal, wherein the terahertz synaesthesia signal and the reference terahertz local oscillator signal have the same frequency offset, the first coupled signal and the second coupled signal are both obtained based on an optical carrier signal and an optical local oscillator signal, and the first coupled signal and the second coupled signal are different;
利用所述用户单元根据所述太赫兹通感信号,确定第一雷达回波信号;Determining a first radar echo signal using the user unit according to the terahertz synaesthesia signal;
利用所述太赫兹混频模块根据所述参考太赫兹本振信号和所述第一雷达回波信号,确定目标雷达回波信号。The terahertz mixing module is used to determine the target radar echo signal according to the reference terahertz local oscillator signal and the first radar echo signal.
本发明提供的光子太赫兹通信感知系统和方法,该光子太赫兹通信感知系统包括远端单元和用户单元,远端单元包括:第一高速光电探测器、第二高速光电探测器和太赫兹混频模块,该系统包括:第一高速光电探测器,用于对第一耦合信号进行外差拍频,得到太赫兹通感信号;第二高速光电探测器,用于对第二耦合信号进行外差拍频,得到参考太赫兹本振信号,太赫兹通感信号和参考太赫兹本振信号具有相同的频率偏移,第一耦合信号和第二耦合信号均是基于光载波信号和光本振信号得到的,第一耦合信号和第二耦合信号不同;用户单元,用于根据太赫兹通感信号,确定第一雷达回波信号;太赫兹混频模块,用于根据参考太赫兹本振信号和第一雷达回波信号,确定目标雷达回波信号。该光子太赫兹通信感知系统中产生的太赫兹通感信号和参考太赫兹本振信号具有相同的频偏,在用户单元根据太赫兹通感信号确定第一雷达回波信号之后,太赫兹混频模块将参考太赫兹本振信号和第一雷达回波信号进行混频相关处理,这两种信号存在的频偏会相互抵消,能够有效消除由外差拍频引起的频偏和相噪,进而提升雷达探测精度。The present invention provides a photon terahertz communication sensing system and method. The photon terahertz communication sensing system comprises a remote unit and a user unit. The remote unit comprises: a first high-speed photodetector, a second high-speed photodetector and a terahertz mixing module. The system comprises: the first high-speed photodetector, which is used to perform heterodyne beat frequency on a first coupled signal to obtain a terahertz synaesthesia signal; the second high-speed photodetector, which is used to perform heterodyne beat frequency on a second coupled signal to obtain a reference terahertz local oscillator signal, the terahertz synaesthesia signal and the reference terahertz local oscillator signal have the same frequency offset, the first coupled signal and the second coupled signal are both obtained based on an optical carrier signal and an optical local oscillator signal, and the first coupled signal and the second coupled signal are different; the user unit, which is used to determine a first radar echo signal according to the terahertz synaesthesia signal; and the terahertz mixing module, which is used to determine a target radar echo signal according to the reference terahertz local oscillator signal and the first radar echo signal. The terahertz synaesthesia signal and the reference terahertz local oscillator signal generated in the photonic terahertz communication sensing system have the same frequency deviation. After the user unit determines the first radar echo signal according to the terahertz synaesthesia signal, the terahertz mixing module will perform mixing correlation processing on the reference terahertz local oscillator signal and the first radar echo signal. The frequency deviations of the two signals will cancel each other out, which can effectively eliminate the frequency deviation and phase noise caused by the heterodyne beat frequency, thereby improving the radar detection accuracy.
附图说明BRIEF DESCRIPTION OF THE DRAWINGS
为了更清楚地说明本发明或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。In order to more clearly illustrate the technical solutions in the present invention or the prior art, the following briefly introduces the drawings required for use in the embodiments or the description of the prior art. Obviously, the drawings described below are some embodiments of the present invention. For ordinary technicians in this field, other drawings can be obtained based on these drawings without paying creative work.
图1是本发明提供的光子太赫兹通信感知系统的结构示意图之一;FIG1 is a schematic diagram of a structure of a photonic terahertz communication sensing system provided by the present invention;
图2是本发明提供的远端单元的结构示意图之一;FIG2 is a schematic diagram of a structure of a remote unit provided by the present invention;
图3是本发明提供的远端单元的结构示意图之二;FIG3 is a second schematic diagram of the structure of the remote unit provided by the present invention;
图4是本发明提供的用户单元的结构示意图之一;FIG4 is a schematic diagram of a structure of a user unit provided by the present invention;
图5是本发明提供的太赫兹混频模块的结构示意图;FIG5 is a schematic diagram of the structure of a terahertz mixing module provided by the present invention;
图6是本发明提供的光子太赫兹通信感知系统的结构示意图之二;FIG6 is a second structural schematic diagram of the photonic terahertz communication sensing system provided by the present invention;
图7是本发明提供的第一耦合模块的结构示意图;FIG7 is a schematic structural diagram of a first coupling module provided by the present invention;
图8是本发明提供的光子太赫兹通信感知系统的结构示意图之三;FIG8 is a third structural schematic diagram of the photonic terahertz communication sensing system provided by the present invention;
图9是本发明提供的第二耦合模块的结构示意图;FIG9 is a schematic structural diagram of a second coupling module provided by the present invention;
图10是本发明提供的调制光确定模块的结构示意图;10 is a schematic diagram of the structure of a modulated light determination module provided by the present invention;
图11是本发明提供的分束模块的结构示意图;FIG11 is a schematic structural diagram of a beam splitting module provided by the present invention;
图12是本发明提供的用户单元的结构示意图之二;12 is a schematic diagram of the structure of the user unit provided by the present invention;
图13是本发明提供的太赫兹包络检波模块的结构示意图;FIG13 is a schematic structural diagram of a terahertz envelope detection module provided by the present invention;
图14是本发明提供的通信信号处理模块的结构示意图;14 is a schematic diagram of the structure of a communication signal processing module provided by the present invention;
图15是本发明提供的远端单元的结构示意图之三;FIG15 is a third schematic diagram of the structure of the remote unit provided by the present invention;
图16是本发明提供的中心单元的结构示意图;FIG16 is a schematic structural diagram of a central unit provided by the present invention;
图17是本发明提供的电光调制模块的结构示意图;FIG17 is a schematic diagram of the structure of an electro-optical modulation module provided by the present invention;
图18是本发明提供的感知信号处理模块的结构示意图;FIG18 is a schematic diagram of the structure of a perception signal processing module provided by the present invention;
图19是本发明提供的光子太赫兹通信感知系统的结构示意图之四;FIG19 is a fourth structural schematic diagram of the photonic terahertz communication sensing system provided by the present invention;
图20是本发明提供的光子太赫兹通信感知系统不同节点光谱和电谱的示意图;FIG20 is a schematic diagram of optical spectra and electrical spectra of different nodes of the photonic terahertz communication sensing system provided by the present invention;
图21是本发明提供的光子太赫兹通信感知方法的流程示意图。FIG21 is a flow chart of the photonic terahertz communication sensing method provided by the present invention.
具体实施方式Detailed ways
为使本发明的目的、技术方案和优点更加清楚,下面将结合本发明中的附图,对本发明中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。In order to make the purpose, technical solution and advantages of the present invention clearer, the technical solution of the present invention will be clearly and completely described below in conjunction with the drawings of the present invention. Obviously, the described embodiments are part of the embodiments of the present invention, not all of the embodiments. Based on the embodiments of the present invention, all other embodiments obtained by ordinary technicians in this field without creative work are within the scope of protection of the present invention.
下面对本发明实施例进行进一步地说明。The embodiments of the present invention are further described below.
如图1所示,是本发明提供的光子太赫兹通信感知系统的结构示意图。光子太赫兹通信感知系统包括:远端单元10和用户单元20,远端单元10包括:第一高速光电探测器101、第二高速光电探测器102和太赫兹混频模块103,该系统包括:As shown in FIG1 , it is a schematic diagram of the structure of the photon terahertz communication sensing system provided by the present invention. The photon terahertz communication sensing system comprises: a remote unit 10 and a user unit 20, the remote unit 10 comprises: a first high-speed photodetector 101, a second high-speed photodetector 102 and a terahertz mixing module 103, and the system comprises:
第一高速光电探测器101,用于对第一耦合信号进行外差拍频,得到太赫兹通感信号;A first high-speed photodetector 101, used for performing heterodyne beat frequency on the first coupled signal to obtain a terahertz synaesthesia signal;
第二高速光电探测器102,用于对第二耦合信号进行外差拍频,得到参考太赫兹本振信号,太赫兹通感信号和参考太赫兹本振信号具有相同的频率偏移,第一耦合信号和第二耦合信号均是基于光载波信号和光本振信号得到的,第一耦合信号和第二耦合信号不同;A second high-speed photodetector 102 is used to perform heterodyne beat frequency on the second coupled signal to obtain a reference terahertz local oscillator signal, the terahertz synaesthesia signal and the reference terahertz local oscillator signal have the same frequency offset, the first coupled signal and the second coupled signal are both obtained based on the optical carrier signal and the optical local oscillator signal, and the first coupled signal and the second coupled signal are different;
用户单元20,用于根据太赫兹通感信号,确定第一雷达回波信号;The user unit 20 is used to determine the first radar echo signal according to the terahertz synaesthesia signal;
太赫兹混频模块103,用于根据参考太赫兹本振信号和第一雷达回波信号,确定目标雷达回波信号。The terahertz mixing module 103 is used to determine the target radar echo signal according to the reference terahertz local oscillator signal and the first radar echo signal.
其中,用户单元20又称为通信接收端(Communication Receiver,Com.Receiver)。The user unit 20 is also called a communication receiver (Communication Receiver, Com. Receiver).
太赫兹通感信号又称为下行太赫兹通感信号。Terahertz synaesthesia signal is also called downlink terahertz synaesthesia signal.
第一雷达回波信号又称为上行太赫兹通感信号。The first radar echo signal is also called the uplink terahertz synaesthesia signal.
光载波信号是以光波作为信息载体进行传输的信号。An optical carrier signal is a signal that uses light waves as information carriers for transmission.
光本振信号是一种用于调制光信号的稳定光源信号。The optical local oscillator signal is a stable light source signal used to modulate the optical signal.
在本发明实施例中,第一高速光电探测器101在接收到第一耦合信号之后,对该第一耦合信号进行外差拍频,产生太赫兹通感信号;第二高速光电探测器102在接收到第二耦合信号之后,对该第二耦合信号进行外差拍频,产生参考太赫兹本振信号,且该参考太赫兹本振信号的频偏与该太赫兹通感信号的频偏相同;用户单元20可根据该太赫兹通感信号,确定第一雷达回波信号;太赫兹混频模块103对该参考太赫兹本振信号和该第一雷达回波信号进行混频相关处理,得到目标雷达回波信号。整个过程中,由于参考太赫兹本振信号的频偏与太赫兹通感信号的频偏相同,并且第一雷达回波信号是基于该太赫兹通感信号得到的,所以在对该参考太赫兹本振信号和该第一雷达回波信号进行混频的过程中,可以将参考太赫兹本振信号和第一雷达回波信号存在的频偏相互抵消,能够有效消除由外差拍频引起的频偏和相噪,进而提升雷达探测精度。In the embodiment of the present invention, after receiving the first coupling signal, the first high-speed photodetector 101 performs heterodyne beat frequency on the first coupling signal to generate a terahertz synaesthesia signal; after receiving the second coupling signal, the second high-speed photodetector 102 performs heterodyne beat frequency on the second coupling signal to generate a reference terahertz local oscillator signal, and the frequency deviation of the reference terahertz local oscillator signal is the same as the frequency deviation of the terahertz synaesthesia signal; the user unit 20 can determine the first radar echo signal according to the terahertz synaesthesia signal; the terahertz mixing module 103 performs mixing correlation processing on the reference terahertz local oscillator signal and the first radar echo signal to obtain a target radar echo signal. During the whole process, since the frequency deviation of the reference terahertz local oscillator signal is the same as the frequency deviation of the terahertz synaesthesia signal, and the first radar echo signal is obtained based on the terahertz synaesthesia signal, in the process of mixing the reference terahertz local oscillator signal and the first radar echo signal, the frequency deviations of the reference terahertz local oscillator signal and the first radar echo signal can be offset each other, which can effectively eliminate the frequency deviation and phase noise caused by the heterodyne beat frequency, thereby improving the radar detection accuracy.
需要说明的是,第一高速光电探测器101确定太赫兹通感信号,与第二高速光电探测器102确定参考太赫兹本振信号的时序不限。It should be noted that the timing of the first high-speed photodetector 101 determining the terahertz synaesthesia signal and the second high-speed photodetector 102 determining the reference terahertz local oscillation signal is not limited.
可选的,如图2所示,是本发明提供的远端单元的结构示意图。远端单元10还可以包括太赫兹功率放大器104和第一天线105。Optionally, as shown in FIG2 , it is a schematic diagram of the structure of the remote unit provided by the present invention. The remote unit 10 may further include a terahertz power amplifier 104 and a first antenna 105 .
在第一高速光电探测器101确定太赫兹通感信号之后,太赫兹功率放大器104将该太赫兹通感信号进行功率放大,有效提升该太赫兹通感信号的信号能量,放大后的太赫兹通感信号适合远距离传输,再由第一天线105将该放大后的太赫兹通感信号辐射到空中,以便用户单元20接收。After the first high-speed photodetector 101 determines the terahertz synaesthesia signal, the terahertz power amplifier 104 amplifies the power of the terahertz synaesthesia signal to effectively increase the signal energy of the terahertz synaesthesia signal. The amplified terahertz synaesthesia signal is suitable for long-distance transmission. The first antenna 105 then radiates the amplified terahertz synaesthesia signal into the air so that the user unit 20 can receive it.
可选的,如图3所示,是本发明提供的远端单元的结构示意图。远端单元10还可以包括第三天线106。Optionally, as shown in FIG3 , it is a schematic diagram of the structure of the remote unit provided by the present invention. The remote unit 10 may further include a third antenna 106 .
可选的,如图4所示,是本发明提供的用户单元的结构示意图。用户单元20可以包括第二天线201。Optionally, as shown in FIG4 , it is a schematic diagram of the structure of a subscriber unit provided by the present invention. The subscriber unit 20 may include a second antenna 201 .
结合图2、图3和图4,第二天线201从空中接收到第一天线105发送的放大后的太赫兹通感信号,并将该放大后的太赫兹通感信号向第三天线106反射,此时,第三天线106接收到的反射信号即为上行太赫兹通感信号,也就是第一雷达回波信号。第一天线105与第二天线201之间、第二天线201与第三天线106之间的信号传输满足了远端单元10和用户单元20之间的无线通信需求。In conjunction with Figures 2, 3 and 4, the second antenna 201 receives the amplified terahertz synaesthesia signal sent by the first antenna 105 from the air, and reflects the amplified terahertz synaesthesia signal to the third antenna 106. At this time, the reflected signal received by the third antenna 106 is the uplink terahertz synaesthesia signal, that is, the first radar echo signal. The signal transmission between the first antenna 105 and the second antenna 201, and between the second antenna 201 and the third antenna 106 meets the wireless communication requirements between the remote unit 10 and the user unit 20.
可选的,在用户单元20向远端单元10反射信号的过程中,可以是用户单元20中的第二天线201将太赫兹通感信号向远端单元10反射,也可以是用户单元20的终端设备机身或其它部分将太赫兹通感信号向远端单元10反射。Optionally, in the process of the user unit 20 reflecting the signal to the remote unit 10, the second antenna 201 in the user unit 20 may reflect the terahertz synaesthesia signal to the remote unit 10, or the terminal device body or other parts of the user unit 20 may reflect the terahertz synaesthesia signal to the remote unit 10.
在一些实施例中,如图5所示,是本发明提供的太赫兹混频模块的结构示意图。太赫兹混频模块103包括:第一太赫兹低噪声功率放大器1031、第二太赫兹低噪声功率放大器1032和太赫兹混频器1033;In some embodiments, as shown in FIG5 , it is a schematic diagram of the structure of the terahertz mixing module provided by the present invention. The terahertz mixing module 103 includes: a first terahertz low noise power amplifier 1031, a second terahertz low noise power amplifier 1032 and a terahertz mixer 1033;
第一太赫兹低噪声功率放大器1031,用于对参考太赫兹本振信号进行功率放大,得到目标参考太赫兹本振信号;A first terahertz low-noise power amplifier 1031 is used to amplify the power of the reference terahertz local oscillator signal to obtain a target reference terahertz local oscillator signal;
第二太赫兹低噪声功率放大器1032,用于对第一雷达回波信号进行功率放大,得到第二雷达回波信号;A second terahertz low-noise power amplifier 1032 is used to amplify the power of the first radar echo signal to obtain a second radar echo signal;
太赫兹混频器1033,用于对目标参考太赫兹本振信号和第二雷达回波信号进行混频,得到目标雷达回波信号。The terahertz mixer 1033 is used to mix the target reference terahertz local oscillator signal and the second radar echo signal to obtain the target radar echo signal.
可选的,上述混频方式可以是下变频。Optionally, the above-mentioned mixing method can be down conversion.
在本发明实施例中,第三天线106在接收到第二天线201反射的第一雷达回波信号之后,将该第一雷达回波信号传输至第二太赫兹低噪声功率放大器1032进行功率放大,得到第二雷达回波信号,该第二雷达回波信号的信号质量较好,保真度较高,第二太赫兹低噪声功率放大器1032将该第二雷达回波信号传输至太赫兹混频器1033;同时,第二高速光电探测器102将产生的参考太赫兹本振信号传输至第一太赫兹低噪声功率放大器1031进行功率放大,得到目标参考太赫兹本振信号,该目标参考太赫兹本振信号的信号质量较好,保真度较高,第一太赫兹低噪声功率放大器1031将该目标参考太赫兹本振信号传输至太赫兹混频器1033。基于此,太赫兹混频器1033对该目标参考太赫兹本振信号和该第二雷达回波信号进行混频,将该第二雷达回波信号下变频至中频频率,得到目标雷达回波信号。整个过程中,由于参考太赫兹本振信号的频偏与太赫兹通感信号的频偏相同,并且目标参考太赫兹本振信号是基于该参考太赫兹本振信号得到的,第二雷达回波信号是基于该太赫兹通感信号得到的,所以在对该目标参考太赫兹本振信号和该第二雷达回波信号进行混频的过程中,该目标参考太赫兹本振信号和该第二雷达回波信号存在的频偏会相互抵消,能够有效消除由外差拍频引起的频偏和相噪,实现多通道雷达回波信号的低频偏、低相噪下变频。In an embodiment of the present invention, after receiving the first radar echo signal reflected by the second antenna 201, the third antenna 106 transmits the first radar echo signal to the second terahertz low-noise power amplifier 1032 for power amplification to obtain a second radar echo signal, the signal quality of the second radar echo signal is good and the fidelity is high, and the second terahertz low-noise power amplifier 1032 transmits the second radar echo signal to the terahertz mixer 1033; at the same time, the second high-speed photodetector 102 transmits the generated reference terahertz local oscillator signal to the first terahertz low-noise power amplifier 1031 for power amplification to obtain a target reference terahertz local oscillator signal, the signal quality of the target reference terahertz local oscillator signal is good and the fidelity is high, and the first terahertz low-noise power amplifier 1031 transmits the target reference terahertz local oscillator signal to the terahertz mixer 1033. Based on this, the terahertz mixer 1033 mixes the target reference terahertz local oscillator signal and the second radar echo signal, down-converts the second radar echo signal to an intermediate frequency, and obtains the target radar echo signal. In the whole process, since the frequency deviation of the reference terahertz local oscillator signal is the same as the frequency deviation of the terahertz synaesthesia signal, and the target reference terahertz local oscillator signal is obtained based on the reference terahertz local oscillator signal, and the second radar echo signal is obtained based on the terahertz synaesthesia signal, in the process of mixing the target reference terahertz local oscillator signal and the second radar echo signal, the frequency deviations of the target reference terahertz local oscillator signal and the second radar echo signal will cancel each other, which can effectively eliminate the frequency deviation and phase noise caused by the heterodyne beat frequency, and realize the low frequency deviation and low phase noise down-conversion of the multi-channel radar echo signal.
在一些实施例中,如图6所示,是本发明提供的光子太赫兹通信感知系统的结构示意图。光子太赫兹通信感知系统还包括中心单元30,中心单元30包括调制光确定模块301;远端单元10还包括:分束模块107、第一激光器108、第一保偏光纤耦合器109和第一耦合模块110;In some embodiments, as shown in FIG6 , it is a schematic diagram of the structure of the photon terahertz communication sensing system provided by the present invention. The photon terahertz communication sensing system further includes a central unit 30, the central unit 30 includes a modulated light determination module 301; the remote unit 10 further includes: a beam splitting module 107, a first laser 108, a first polarization-maintaining fiber coupler 109 and a first coupling module 110;
分束模块107,用于根据调制光确定模块301生成的调制光信号,确定下行光信号,调制光信号为含光载波的不对称光单边带信号;The beam splitting module 107 is used to determine the downlink optical signal according to the modulated optical signal generated by the modulated optical determination module 301, where the modulated optical signal is an asymmetric optical single sideband signal containing an optical carrier;
第一保偏光纤耦合器109,用于根据第一激光器108生成的光本振信号,确定第一子光本振信号;A first polarization-maintaining fiber coupler 109, configured to determine a first sub-optical local oscillator signal according to the optical local oscillator signal generated by the first laser 108;
第一耦合模块110,用于根据下行光信号和第一子光本振信号,确定第一耦合信号。The first coupling module 110 is configured to determine a first coupling signal according to the downlink optical signal and the first sub-optical local oscillator signal.
在本发明实施例中,调制光确定模块301在生成调制光信号之后,将调制光信号通过单模光纤向分束模块107传输,实现调制光信号的拉远,分束模块107在接收到该调制光信号之后,对该调制光信号进行分束相关处理,得到下行光信号,并将该下行光信号传输至第一耦合模块110;同时,第一激光器108生成光本振信号,并将该光本振信号传输至第一保偏光纤耦合器109;该光本振信号经第一保偏光纤耦合器109划分为两路信号,其中一路信号即为第一子光本振信号,并将该第一子光本振信号传输至第一耦合模块110。基于此,第一耦合模块110对该下行光信号和该第一子光本振信号进行耦合相关处理,得到第一耦合信号,该第一耦合信号中携带了处理后的下行光信号和第一子光本振信号,为产生太赫兹通感信号提供有效的数据信息。In the embodiment of the present invention, after generating the modulated optical signal, the modulated optical determination module 301 transmits the modulated optical signal to the beam splitting module 107 through the single-mode optical fiber to achieve the distance of the modulated optical signal. After receiving the modulated optical signal, the beam splitting module 107 performs beam splitting correlation processing on the modulated optical signal to obtain a downlink optical signal, and transmits the downlink optical signal to the first coupling module 110; at the same time, the first laser 108 generates an optical local oscillator signal, and transmits the optical local oscillator signal to the first polarization-maintaining fiber coupler 109; the optical local oscillator signal is divided into two signals by the first polarization-maintaining fiber coupler 109, one of which is the first sub-optical local oscillator signal, and the first sub-optical local oscillator signal is transmitted to the first coupling module 110. Based on this, the first coupling module 110 performs coupling correlation processing on the downlink optical signal and the first sub-optical local oscillator signal to obtain a first coupling signal, which carries the processed downlink optical signal and the first sub-optical local oscillator signal, and provides effective data information for generating a terahertz synaesthesia signal.
需要说明的是,第一激光器108生成的光本振信号的波长可调,第一高速光电探测器101生成的太赫兹通感信号的频率灵活可控。It should be noted that the wavelength of the optical local oscillator signal generated by the first laser 108 is adjustable, and the frequency of the terahertz synaesthesia signal generated by the first high-speed photodetector 101 is flexibly controllable.
在一些实施例中,如图7所示,是本发明提供的第一耦合模块的结构示意图。第一耦合模块110包括第二保偏光纤耦合器1101、第一掺铒光纤放大器1102和第一可变光衰减器1103;In some embodiments, as shown in Fig. 7, it is a schematic diagram of the structure of the first coupling module provided by the present invention. The first coupling module 110 includes a second polarization-maintaining fiber coupler 1101, a first erbium-doped fiber amplifier 1102 and a first variable optical attenuator 1103;
第二保偏光纤耦合器1101,用于根据下行光信号和第一子光本振信号,确定第一信号;The second polarization-maintaining fiber coupler 1101 is used to determine the first signal according to the downlink optical signal and the first sub-optical local oscillator signal;
第一掺铒光纤放大器1102,用于对第一信号进行光功率放大,确定第二信号;A first erbium-doped fiber amplifier 1102, used to amplify the optical power of the first signal to determine the second signal;
第一可变光衰减器1103,用于对第二信号进行光功率优化,得到第一耦合信号。The first variable optical attenuator 1103 is used to optimize the optical power of the second signal to obtain a first coupled signal.
在本发明实施例中,在第二保偏光纤耦合器1101接收到分束模块107传输的下行光信号,并接收到第一保偏光纤耦合器109传输的第一子光本振信号之后,第二保偏光纤耦合器1101对该下行光信号和该第一子光本振信号进行耦合,得到第一信号,并将该第一信号传输至第一掺铒光纤放大器1102进行光功率放大,得到第二信号,该第二信号的信号质量较好,保真度较高;第一掺铒光纤放大器1102将该第二信号传输至第一可变光衰减器1103进行光功率优化,以进一步提高该第二信号的信号质量和保真度,得到第一耦合信号,该第一耦合信号中携带了处理后的下行光信号和第一子光本振信号,为产生太赫兹通感信号提供有效的数据信息。In an embodiment of the present invention, after the second polarization-maintaining fiber coupler 1101 receives the downlink optical signal transmitted by the beam splitting module 107 and receives the first sub-optical local oscillator signal transmitted by the first polarization-maintaining fiber coupler 109, the second polarization-maintaining fiber coupler 1101 couples the downlink optical signal and the first sub-optical local oscillator signal to obtain a first signal, and transmits the first signal to the first erbium-doped fiber amplifier 1102 for optical power amplification to obtain a second signal, the second signal having good signal quality and high fidelity; the first erbium-doped fiber amplifier 1102 transmits the second signal to the first variable optical attenuator 1103 for optical power optimization to further improve the signal quality and fidelity of the second signal to obtain a first coupled signal, the first coupled signal carrying the processed downlink optical signal and the first sub-optical local oscillator signal, and providing effective data information for generating a terahertz synaesthesia signal.
在一些实施例中,如图8所示,是本发明提供的光子太赫兹通信感知系统的结构示意图。光子太赫兹通信感知系统还包括中心单元30,中心单元30包括调制光确定模块301;远端单元10还包括:分束模块107、第一光带通滤波器111、第一激光器108、第一保偏光纤耦合器109和第二耦合模块112;In some embodiments, as shown in FIG8 , it is a schematic diagram of the structure of the photon terahertz communication sensing system provided by the present invention. The photon terahertz communication sensing system further includes a central unit 30, the central unit 30 includes a modulated light determination module 301; the remote unit 10 further includes: a beam splitting module 107, a first optical bandpass filter 111, a first laser 108, a first polarization-maintaining fiber coupler 109 and a second coupling module 112;
分束模块107,用于根据调制光确定模块301生成的调制光信号,确定第一参考光信号,调制光信号为含光载波的不对称光单边带信号;The beam splitting module 107 is used to determine the first reference optical signal according to the modulated optical signal generated by the modulated optical determination module 301, where the modulated optical signal is an asymmetric optical single sideband signal containing an optical carrier;
第一光带通滤波器111,用于对第一参考光信号进行过滤,得到目标光载波信号;A first optical bandpass filter 111, configured to filter the first reference optical signal to obtain a target optical carrier signal;
第一保偏光纤耦合器109,用于根据第一激光器108生成的光本振信号,确定第二子光本振信号;A first polarization-maintaining fiber coupler 109, configured to determine a second sub-optical local oscillator signal according to the optical local oscillator signal generated by the first laser 108;
第二耦合模块112,用于根据目标光载波信号和第二子光本振信号,确定第二耦合信号。The second coupling module 112 is configured to determine a second coupling signal according to the target optical carrier signal and the second sub-optical local oscillator signal.
在本发明实施例中,调制光确定模块301在生成调制光信号之后,将调制光信号通过单模光纤向分束模块107传输,实现调制光信号的拉远,分束模块107在接收到该调制光信号之后,对该调制光信号进行分束相关处理,得到第一参考光信号,并将该第一参考光信号传输至第一光带通滤波器111;第一光带通滤波器111从该第一参考光信号中,有效滤除不需要的频率成分,并过滤出所需的光载波信号,即目标光载波信号,并将该目标光载波信号传输至第二耦合模块112;同时,第一激光器108生成光本振信号,并将该光本振信号传输至第一保偏光纤耦合器109;该光本振信号经第一保偏光纤耦合器109划分为两路信号,其中一路信号即为第二子光本振信号,并将该第二子光本振信号传输至第二耦合模块112。基于此,第二耦合模块112对该第二子光本振信号和该目标光载波信号进行耦合相关处理,得到第二耦合信号,该第二耦合信号中携带了处理后的第二子光本振信号和第一参考光信号,为产生参考太赫兹本振信号提供有效的数据信息。In the embodiment of the present invention, after generating the modulated optical signal, the modulated optical determination module 301 transmits the modulated optical signal to the beam splitting module 107 through the single-mode optical fiber to achieve the distance of the modulated optical signal. After receiving the modulated optical signal, the beam splitting module 107 performs beam splitting correlation processing on the modulated optical signal to obtain a first reference optical signal, and transmits the first reference optical signal to the first optical bandpass filter 111; the first optical bandpass filter 111 effectively filters out unnecessary frequency components from the first reference optical signal, and filters out the required optical carrier signal, that is, the target optical carrier signal, and transmits the target optical carrier signal to the second coupling module 112; at the same time, the first laser 108 generates an optical local oscillator signal, and transmits the optical local oscillator signal to the first polarization-maintaining fiber coupler 109; the optical local oscillator signal is divided into two signals by the first polarization-maintaining fiber coupler 109, one of which is the second sub-optical local oscillator signal, and the second sub-optical local oscillator signal is transmitted to the second coupling module 112. Based on this, the second coupling module 112 performs coupling correlation processing on the second sub-optical local oscillator signal and the target optical carrier signal to obtain a second coupled signal, which carries the processed second sub-optical local oscillator signal and the first reference optical signal, providing effective data information for generating a reference terahertz local oscillator signal.
在一些实施例中,如图9所示,是本发明提供的第二耦合模块的结构示意图。第二耦合模块112包括第三保偏光纤耦合器1121、第二掺铒光纤放大器1122和第二可变光衰减器1123;In some embodiments, as shown in FIG9 , it is a schematic diagram of the structure of the second coupling module provided by the present invention. The second coupling module 112 includes a third polarization-maintaining fiber coupler 1121, a second erbium-doped fiber amplifier 1122, and a second variable optical attenuator 1123;
第三保偏光纤耦合器1121,用于根据目标光载波信号和第二子光本振信号,确定第三信号;The third polarization-maintaining fiber coupler 1121 is used to determine the third signal according to the target optical carrier signal and the second sub-optical local oscillator signal;
第二掺铒光纤放大器1122,用于对第三信号进行光功率放大,确定第四信号;The second erbium-doped fiber amplifier 1122 is used to amplify the optical power of the third signal to determine the fourth signal;
第二可变光衰减器1123,用于对第四信号进行光功率优化,得到第二耦合信号。The second variable optical attenuator 1123 is used to optimize the optical power of the fourth signal to obtain a second coupled signal.
在本发明实施例中,在第三保偏光纤耦合器1121接收到第一保偏光纤耦合器109传输的第二子光本振信号,并接收到第一光带通滤波器111传输的目标光载波信号之后,第三保偏光纤耦合器1121对该第二子光本振信号和该目标光载波信号进行耦合,得到第三信号,并将该第三信号传输至第二掺铒光纤放大器1122进行光功率放大,得到第四信号,该第四信号的信号质量较好,保真度较高;第二掺铒光纤放大器1122将该第四信号传输至第二可变光衰减器1123进行光功率优化,以进一步提高该第四信号的信号质量和保真度,得到第二耦合信号,该第二耦合信号中携带了处理后的第二子光本振信号和第一参考光信号,为产生参考太赫兹本振信号提供有效的数据信息。In the embodiment of the present invention, after the third polarization-maintaining fiber coupler 1121 receives the second sub-optical local oscillator signal transmitted by the first polarization-maintaining fiber coupler 109 and receives the target optical carrier signal transmitted by the first optical bandpass filter 111, the third polarization-maintaining fiber coupler 1121 couples the second sub-optical local oscillator signal and the target optical carrier signal to obtain a third signal, and transmits the third signal to the second erbium-doped fiber amplifier 1122 for optical power amplification to obtain a fourth signal, and the fourth signal has good signal quality and high fidelity; the second erbium-doped fiber amplifier 1122 transmits the fourth signal to the second variable optical attenuator 1123 for optical power optimization to further improve the signal quality and fidelity of the fourth signal, and obtains a second coupled signal, which carries the processed second sub-optical local oscillator signal and the first reference optical signal, and provides effective data information for generating a reference terahertz local oscillator signal.
在一些实施例中,如图10所示,是本发明提供的调制光确定模块的结构示意图。调制光确定模块301包括:第二激光器3011、发射端信号处理单元3012、数模转换器3013、第一电光调制器3014和第一环形器3015;In some embodiments, as shown in FIG10 , it is a schematic diagram of the structure of the modulated light determination module provided by the present invention. The modulated light determination module 301 includes: a second laser 3011, a transmitting end signal processing unit 3012, a digital-to-analog converter 3013, a first electro-optical modulator 3014 and a first circulator 3015;
数模转换器3013,用于根据发射端信号处理单元3012生成的第一通感信号,确定第二通感信号;The digital-to-analog converter 3013 is used to determine the second synaesthesia signal according to the first synaesthesia signal generated by the transmitting end signal processing unit 3012;
第一电光调制器3014,用于根据第二通感信号和第二激光器3011生成的光载波信号,确定调制光信号;A first electro-optic modulator 3014, configured to determine a modulated optical signal according to the second synaesthesia signal and the optical carrier signal generated by the second laser 3011;
第一环形器3015,用于将调制光信号传输至分束模块107。The first circulator 3015 is used to transmit the modulated optical signal to the beam splitting module 107 .
其中,第一通感信号为数字信号,第二通感信号为模拟信号。The first synaesthesia signal is a digital signal, and the second synaesthesia signal is an analog signal.
在本发明实施例中,发射端信号处理单元3012产生包含通信和感知数据的第一通感信号,并将该第一通感信号传输至数模转换器3013进行数模转换,得到第二通感信号;数模转换器3013将该第二通感信号传输至第一电光调制器3014,此时,第一电光调制器3014被该第二通感信号驱动;同时,第二激光器3011产生光载波信号,并将该光载波信号传输至第一电光调制器3014。基于此,第一电光调制器3014基于该第二通感信号对该光载波信号进行电光调制,产生含光载波的不对称光单边带信号,即调制光信号;第一电光调制器3014将该调制光信号传输至第一环形器3015的1号口,第一环形器3015从2号口输出该调制光信号,并通过单模光纤向分束模块107传输,实现调制光信号的拉远。In the embodiment of the present invention, the signal processing unit 3012 at the transmitting end generates a first interaural signal containing communication and perception data, and transmits the first interaural signal to the digital-to-analog converter 3013 for digital-to-analog conversion to obtain a second interaural signal; the digital-to-analog converter 3013 transmits the second interaural signal to the first electro-optical modulator 3014, at which time, the first electro-optical modulator 3014 is driven by the second interaural signal; at the same time, the second laser 3011 generates an optical carrier signal, and transmits the optical carrier signal to the first electro-optical modulator 3014. Based on this, the first electro-optical modulator 3014 performs electro-optical modulation on the optical carrier signal based on the second interaural signal to generate an asymmetric optical single-sideband signal containing an optical carrier, that is, a modulated optical signal; the first electro-optical modulator 3014 transmits the modulated optical signal to port 1 of the first circulator 3015, and the first circulator 3015 outputs the modulated optical signal from port 2, and transmits it to the beam splitter module 107 through a single-mode optical fiber to achieve the distance of the modulated optical signal.
在一些实施例中,如图11所示,是本发明提供的分束模块的结构示意图。分束模块107包括:第二环形器1071、第三掺铒光纤放大器1072、偏振控制器1073和保偏光分束器1074;In some embodiments, as shown in FIG11 , it is a schematic diagram of the structure of a beam splitting module provided by the present invention. The beam splitting module 107 includes: a second circulator 1071, a third erbium-doped fiber amplifier 1072, a polarization controller 1073 and a polarization-maintaining beam splitter 1074;
第二环形器1071,用于接收调制光确定模块301传输的调制光信号;The second circulator 1071 is used to receive the modulated light signal transmitted by the modulated light determination module 301;
第三掺铒光纤放大器1072,用于对调制光信号进行光功率放大,确定第一调制光信号;The third erbium-doped fiber amplifier 1072 is used to amplify the optical power of the modulated optical signal to determine the first modulated optical signal;
偏振控制器1073,用于对第一调制光信号进行偏振处理,得到第二调制光信号;A polarization controller 1073, configured to perform polarization processing on the first modulated optical signal to obtain a second modulated optical signal;
保偏光分束器1074,用于对第二调制光信号进行分束处理,得到下行光信号。The polarization-maintaining beam splitter 1074 is used to perform beam splitting processing on the second modulated optical signal to obtain a downlink optical signal.
需要说明的是,保偏光分束器1074对第二调制光信号进行分束处理,可以得到下行光信号和第一参考光信号。It should be noted that the polarization-maintaining beam splitter 1074 performs beam splitting processing on the second modulated optical signal to obtain a downlink optical signal and a first reference optical signal.
在本发明实施例中,调制光确定模块301中的第一环形器3015从2号口输出调制光信号,并通过单模光纤向分束模块107中的第二环形器1071的1号口进行传输,在第二环形器1071的1号口接收到该调制光信号之后,第二环形器1071从2号口输出该调制光信号,并将该调制光信号传输至第三掺铒光纤放大器1072进行光功率放大,用于补偿电光调制和光纤拉远传输带来的损耗,得到第一调制光信号;第三掺铒光纤放大器1072将该第一调制光信号传输至偏振控制器1073进行偏振处理,实现对该第一调制光信号的偏振态控制,得到第二调制光信号;偏振控制器1073将该第二调制光信号传输至保偏光分束器1074进行分束处理,可以得到下行光信号和第一参考光信号,该下行光信号为产生太赫兹通感信号提供有效的数据信息,该第一参考光信号为产生参考太赫兹本振信号提供有效的数据信息。In the embodiment of the present invention, the first circulator 3015 in the modulated light determination module 301 outputs a modulated light signal from port 2, and transmits it to port 1 of the second circulator 1071 in the beam splitting module 107 through a single-mode optical fiber. After the modulated light signal is received at port 1 of the second circulator 1071, the second circulator 1071 outputs the modulated light signal from port 2, and transmits the modulated light signal to the third erbium-doped fiber amplifier 1072 for optical power amplification to compensate for the loss caused by electro-optical modulation and optical fiber telescopic transmission, thereby obtaining a first modulated light signal; the third erbium-doped fiber amplifier 1072 transmits the first modulated light signal to the polarization controller 1073 for polarization processing, thereby controlling the polarization state of the first modulated light signal, thereby obtaining a second modulated light signal; the polarization controller 1073 transmits the second modulated light signal to the polarization-maintaining beam splitter 1074 for beam splitting processing, thereby obtaining a downlink light signal and a first reference light signal, wherein the downlink light signal provides effective data information for generating a terahertz synaesthesia signal, and the first reference light signal provides effective data information for generating a reference terahertz local oscillator signal.
在一些实施例中,如图12所示,是本发明提供的用户单元的结构示意图。用户单元20包括:太赫兹包络检波模块202和通信信号处理模块203;In some embodiments, as shown in Fig. 12, it is a schematic diagram of the structure of a user unit provided by the present invention. The user unit 20 includes: a terahertz envelope detection module 202 and a communication signal processing module 203;
太赫兹包络检波模块202,用于根据太赫兹通感信号,确定第一中频通感信号;The terahertz envelope detection module 202 is used to determine a first intermediate frequency synaesthesia signal according to the terahertz synaesthesia signal;
通信信号处理模块203,用于根据第一中频通感信号,确定通信信息。The communication signal processing module 203 is used to determine the communication information according to the first intermediate frequency synaesthesia signal.
其中,第一中频通感信号又称为下行第一中频通感信号。The first intermediate frequency synaesthesia signal is also called a downlink first intermediate frequency synaesthesia signal.
通信信息即下行通信信息。The communication information is downlink communication information.
在本发明实施例中,第二天线201在接收到第一天线105发送的太赫兹通感信号之后,将该太赫兹通感信号传输至太赫兹包络检波模块202;太赫兹包络检波模块202对该太赫兹通感信号进行包络检波相关处理,得到第一中频通感信号,并将该第一中频通感信号传输至通信信号处理模块203;通信信号处理模块203对该第一中频通感信号进行信号处理,可有效恢复出下行通信信息。In the embodiment of the present invention, after receiving the terahertz synaesthesia signal sent by the first antenna 105, the second antenna 201 transmits the terahertz synaesthesia signal to the terahertz envelope detection module 202; the terahertz envelope detection module 202 performs envelope detection correlation processing on the terahertz synaesthesia signal to obtain a first intermediate frequency synaesthesia signal, and transmits the first intermediate frequency synaesthesia signal to the communication signal processing module 203; the communication signal processing module 203 performs signal processing on the first intermediate frequency synaesthesia signal to effectively restore downlink communication information.
在一些实施例中,如图13所示,是本发明提供的太赫兹包络检波模块的结构示意图,太赫兹包络检波模块202包括:第三太赫兹低噪声功率放大器2021和太赫兹包络检波器2022;如图14所示,是本发明提供的通信信号处理模块的结构示意图,通信信号处理模块203包括:第一中频低噪声功率放大器2031、电带通滤波器2032、第一模数转换器2033和通信信号处理单元2034;In some embodiments, as shown in FIG13 , which is a schematic diagram of the structure of the terahertz envelope detection module provided by the present invention, the terahertz envelope detection module 202 includes: a third terahertz low-noise power amplifier 2021 and a terahertz envelope detector 2022; as shown in FIG14 , which is a schematic diagram of the structure of the communication signal processing module provided by the present invention, the communication signal processing module 203 includes: a first intermediate frequency low-noise power amplifier 2031, an electrical bandpass filter 2032, a first analog-to-digital converter 2033 and a communication signal processing unit 2034;
第三太赫兹低噪声功率放大器2021,用于对太赫兹通感信号进行功率放大,得到第五信号;A third terahertz low-noise power amplifier 2021 is used to amplify the power of the terahertz synaesthesia signal to obtain a fifth signal;
太赫兹包络检波器2022,用于对第五信号进行包络检波,得到第一中频通感信号;A terahertz envelope detector 2022, configured to perform envelope detection on the fifth signal to obtain a first intermediate frequency synaesthesia signal;
第一中频低噪声功率放大器2031,用于对第一中频通感信号进行功率放大,得到第二中频通感信号;A first intermediate frequency low noise power amplifier 2031 is used to amplify the power of the first intermediate frequency synaesthesia signal to obtain a second intermediate frequency synaesthesia signal;
电带通滤波器2032,用于对第二中频通感信号进行滤波,得到第一通信信号;An electrical bandpass filter 2032, configured to filter the second intermediate frequency communication signal to obtain a first communication signal;
第一模数转换器2033,用于对第一通信信号进行模数转换,得到第二通信信号;A first analog-to-digital converter 2033 is used to perform analog-to-digital conversion on the first communication signal to obtain a second communication signal;
通信信号处理单元2034,用于对第二通信信号进行处理,得到通信信息。The communication signal processing unit 2034 is used to process the second communication signal to obtain communication information.
在本发明实施例中,在用户单元20确定通信信息的过程中,第二天线201在接收到第一天线105发送的太赫兹通感信号之后,将该太赫兹通感信号传输至第三太赫兹低噪声功率放大器2021进行功率放大,得到第五信号;第三太赫兹低噪声功率放大器2021将该第五信号传输至太赫兹包络检波器2022进行包络检波,太赫兹包络检波器2022在包络检波的过程中,可有效消除由外差拍频引起的频偏和相噪,得到第一中频通感信号,太赫兹包络检波器2022将该第一中频通感信号传输至第一中频低噪声功率放大器2031进行功率放大,得到第二中频通感信号;第一中频低噪声功率放大器2031将该第二中频通感信号传输至电带通滤波器2032进行滤波,滤出包含下行通信信息的第一通信信号;电带通滤波器2032将该第一通信信号传输至第一模数转换器2033进行模数转换,得到第二通信信号;第一模数转换器2033将该第二通信信号传输至通信信号处理单元2034进行信号处理,可有效恢复出下行通信信息。整个过程中,实现通信信号的低频偏、低相噪接收,进而降低通信相关算法的复杂性和功耗。In the embodiment of the present invention, during the process of the user unit 20 determining the communication information, after receiving the terahertz synaesthesia signal sent by the first antenna 105, the second antenna 201 transmits the terahertz synaesthesia signal to the third terahertz low-noise power amplifier 2021 for power amplification to obtain a fifth signal; the third terahertz low-noise power amplifier 2021 transmits the fifth signal to the terahertz envelope detector 2022 for envelope detection. During the envelope detection process, the terahertz envelope detector 2022 can effectively eliminate the frequency deviation and phase noise caused by the heterodyne beat frequency to obtain the first intermediate frequency synaesthesia signal. The terahertz envelope detector 2022 The first intermediate frequency synaesthesia signal is transmitted to the first intermediate frequency low noise power amplifier 2031 for power amplification to obtain a second intermediate frequency synaesthesia signal; the first intermediate frequency low noise power amplifier 2031 transmits the second intermediate frequency synaesthesia signal to the electric band pass filter 2032 for filtering, filtering out the first communication signal containing downlink communication information; the electric band pass filter 2032 transmits the first communication signal to the first analog-to-digital converter 2033 for analog-to-digital conversion to obtain the second communication signal; the first analog-to-digital converter 2033 transmits the second communication signal to the communication signal processing unit 2034 for signal processing, which can effectively restore the downlink communication information. In the whole process, low frequency deviation and low phase noise reception of the communication signal are realized, thereby reducing the complexity and power consumption of the communication-related algorithm.
在一些实施例中,如图15所示,是本发明提供的远端单元的结构示意图,远端单元10还包括:电光调制模块113;如图16所示,是本发明提供的中心单元的结构示意图,中心单元30还包括:感知信号处理模块302;In some embodiments, as shown in FIG15 , which is a schematic diagram of the structure of the remote unit provided by the present invention, the remote unit 10 further includes: an electro-optical modulation module 113; as shown in FIG16 , which is a schematic diagram of the structure of the central unit provided by the present invention, the central unit 30 further includes: a sensing signal processing module 302;
电光调制模块113,用于根据目标雷达回波信号,确定目标回波电光调制信号;The electro-optical modulation module 113 is used to determine the target echo electro-optical modulation signal according to the target radar echo signal;
感知信号处理模块302,用于根据目标回波电光调制信号,确定用户单元的终端相关信息。The sensing signal processing module 302 is used to determine the terminal-related information of the user unit according to the target echo electro-optical modulation signal.
可选的,终端相关信息可以包括用户终端的位置和速度等信息。Optionally, the terminal related information may include information such as the location and speed of the user terminal.
在本发明实施例中,在中心单元30确定终端相关信息的过程中,在太赫兹混频器1033将目标雷达回波信号传输至电光调制模块113之后,电光调制模块113对该目标雷达回波信号进行处理,得到目标回波电光调制信号,并将该目标回波电光调制信号依次通过第二环形器1071的3号口、第二环形器1071的1号口、单模光纤、第一环形器3015的2号口和第一环形器3015的3号口,传输至感知信号处理模块302;感知信号处理模块302对该目标回波电光调制信号进行信号处理,可有效获得用户终端的位置和速度等终端相关信息。In an embodiment of the present invention, in the process of the central unit 30 determining terminal-related information, after the terahertz mixer 1033 transmits the target radar echo signal to the electro-optical modulation module 113, the electro-optical modulation module 113 processes the target radar echo signal to obtain a target echo electro-optical modulation signal, and transmits the target echo electro-optical modulation signal to the perception signal processing module 302 in sequence through port 3 of the second circulator 1071, port 1 of the second circulator 1071, the single-mode optical fiber, port 2 of the first circulator 3015, and port 3 of the first circulator 3015; the perception signal processing module 302 performs signal processing on the target echo electro-optical modulation signal, and can effectively obtain terminal-related information such as the position and speed of the user terminal.
在一些实施例中,如图17所示,是本发明提供的电光调制模块的结构示意图。电光调制模块113包括:第二中频低噪声功率放大器1131、第二电光调制器1132、第四掺铒光纤放大器1133和第二光带通滤波器1134;In some embodiments, as shown in FIG17 , it is a schematic diagram of the structure of the electro-optic modulation module provided by the present invention. The electro-optic modulation module 113 includes: a second intermediate frequency low noise power amplifier 1131, a second electro-optic modulator 1132, a fourth erbium-doped fiber amplifier 1133 and a second optical bandpass filter 1134;
分束模块107,还用于根据调制光信号,确定第二参考光信号;The beam splitting module 107 is further used to determine a second reference optical signal according to the modulated optical signal;
第二中频低噪声功率放大器1131,用于对目标雷达回波信号进行功率放大,得到第三雷达回波信号;The second intermediate frequency low noise power amplifier 1131 is used to amplify the power of the target radar echo signal to obtain a third radar echo signal;
第二电光调制器1132,用于根据第三雷达回波信号和第二参考光信号,确定第一回波电光调制信号;The second electro-optical modulator 1132 is used to determine the first echo electro-optical modulation signal according to the third radar echo signal and the second reference optical signal;
第四掺铒光纤放大器1133,用于对第一回波电光调制信号进行光功率放大,得到第二回波电光调制信号;The fourth erbium-doped fiber amplifier 1133 is used to amplify the optical power of the first echo electro-optical modulation signal to obtain a second echo electro-optical modulation signal;
第二光带通滤波器1134,用于对第二回波电光调制信号进行滤波,得到目标回波电光调制信号。The second optical bandpass filter 1134 is used to filter the second echo electro-optical modulation signal to obtain a target echo electro-optical modulation signal.
需要说明的是,分束模块107中的保偏光分束器1074对第二调制光信号进行分束处理,除了可以得到下行光信号和第一参考光信号以外,还可以得到第二参考光信号。It should be noted that the polarization-maintaining beam splitter 1074 in the beam splitting module 107 performs beam splitting processing on the second modulated optical signal, and in addition to obtaining the downlink optical signal and the first reference optical signal, can also obtain the second reference optical signal.
在本发明实施例中,在太赫兹混频器1033将目标雷达回波信号传输至第二中频低噪声功率放大器1131之后,第二中频低噪声功率放大器1131对该目标雷达回波信号进行功率放大,得到第三雷达回波信号,并将该第三雷达回波信号传输至第二电光调制器1132;同时,分束模块107中的保偏光分束器1074将得到的第二参考光信号传输至第二电光调制器1132。基于此,第二电光调制器1132基于该第三雷达回波信号对该第二参考光信号进行电光调制,即,将该第三雷达回波信号调制在该第二参考光信号上,得到第一回波电光调制信号;第二电光调制器1132将该第一回波电光调制信号传输至第四掺铒光纤放大器1133进行光功率放大,用于补偿电光调制带来的损耗,得到第二回波电光调制信号;第四掺铒光纤放大器1133将该第二回波电光调制信号传输至第二光带通滤波器1134进行滤波,有效减少噪声和其它干扰信号的影响,滤出感知边带,即目标回波电光调制信号,该目标回波电光调制信号的信号质量较好,能够保证在光纤拉远传输过程中有效信息不丢失。In an embodiment of the present invention, after the terahertz mixer 1033 transmits the target radar echo signal to the second intermediate frequency low noise power amplifier 1131, the second intermediate frequency low noise power amplifier 1131 performs power amplification on the target radar echo signal to obtain a third radar echo signal, and transmits the third radar echo signal to the second electro-optical modulator 1132; at the same time, the polarization-maintaining beam splitter 1074 in the beam splitting module 107 transmits the obtained second reference light signal to the second electro-optical modulator 1132. Based on this, the second electro-optical modulator 1132 electro-optically modulates the second reference optical signal based on the third radar echo signal, that is, modulates the third radar echo signal on the second reference optical signal to obtain a first echo electro-optical modulated signal; the second electro-optical modulator 1132 transmits the first echo electro-optical modulated signal to the fourth erbium-doped fiber amplifier 1133 for optical power amplification to compensate for the loss caused by the electro-optical modulation to obtain a second echo electro-optical modulated signal; the fourth erbium-doped fiber amplifier 1133 transmits the second echo electro-optical modulated signal to the second optical bandpass filter 1134 for filtering, effectively reducing the influence of noise and other interference signals, filtering out the perception sideband, that is, the target echo electro-optical modulated signal, the signal quality of the target echo electro-optical modulated signal is good, and can ensure that effective information is not lost during the optical fiber telemetry transmission process.
在一些实施例中,如图18所示,是本发明提供的感知信号处理模块的结构示意图。感知信号处理模块302包括:低速光电探测器3021、第三中频低噪声功率放大器3022、第二模数转换器3023和感知信号处理单元3024;In some embodiments, as shown in FIG18 , it is a schematic diagram of the structure of the perception signal processing module provided by the present invention. The perception signal processing module 302 includes: a low-speed photodetector 3021, a third intermediate frequency low-noise power amplifier 3022, a second analog-to-digital converter 3023 and a perception signal processing unit 3024;
低速光电探测器3021,用于对目标回波电光调制信号进行拍频解啁啾,得到电中频感知信号;The low-speed photoelectric detector 3021 is used to perform beat frequency de-chirping on the target echo electro-optical modulation signal to obtain an electrical intermediate frequency sensing signal;
第三中频低噪声功率放大器3022,用于对电中频感知信号进行功率放大,得到第一电中频感知信号;The third intermediate frequency low noise power amplifier 3022 is used to amplify the power of the electrical intermediate frequency perception signal to obtain a first electrical intermediate frequency perception signal;
第二模数转换器3023,用于对第一电中频感知信号进行模数转换,得到第二电中频感知信号;The second analog-to-digital converter 3023 is used to perform analog-to-digital conversion on the first electrical intermediate frequency perception signal to obtain a second electrical intermediate frequency perception signal;
感知信号处理单元3024,用于对第二电中频感知信号进行处理,得到终端相关信息。The perception signal processing unit 3024 is configured to process the second electrical intermediate frequency perception signal to obtain terminal related information.
在本发明实施例中,在目标回波电光调制信号从第一环形器3015的3号口传输至低速光电探测器3021之后,低速光电探测器3021对该目标回波电光调制信号进行拍频解啁啾,产生一个与用户终端的位置和速度等信息相关的电中频感知信号;低速光电探测器3021将该电中频感知信号传输至第三中频低噪声功率放大器3022进行功率放大,得到第一电中频感知信号;第三中频低噪声功率放大器3022将该第一电中频感知信号传输至第二模数转换器3023进行模数转换,得到第二电中频感知信号;第二模数转换器3023将该第二电中频感知信号传输至感知信号处理单元3024进行信号处理,可有效获得用户终端的位置和速度等终端相关信息。In an embodiment of the present invention, after the target echo electro-optical modulation signal is transmitted from port 3 of the first circulator 3015 to the low-speed photodetector 3021, the low-speed photodetector 3021 performs beat frequency demodulation on the target echo electro-optical modulation signal to generate an electrical intermediate frequency perception signal related to information such as the position and speed of the user terminal; the low-speed photodetector 3021 transmits the electrical intermediate frequency perception signal to the third intermediate frequency low noise power amplifier 3022 for power amplification to obtain a first electrical intermediate frequency perception signal; the third intermediate frequency low noise power amplifier 3022 transmits the first electrical intermediate frequency perception signal to the second analog-to-digital converter 3023 for analog-to-digital conversion to obtain a second electrical intermediate frequency perception signal; the second analog-to-digital converter 3023 transmits the second electrical intermediate frequency perception signal to the perception signal processing unit 3024 for signal processing, which can effectively obtain terminal-related information such as the position and speed of the user terminal.
结合以下几个示例对本发明实施例作进一步阐述:The embodiments of the present invention are further described with reference to the following examples:
示例性的,如图19所示,是本发明提供的光子太赫兹通信感知系统的结构示意图。图19中,CU(Center Unit)30表示中心单元30,RU(Remote Unit)10表示远端单元10,UE(User Element)20表示用户单元20,Sen.Receiver(Sensitivity Receiver)表示雷达接收端,Com.Receiver(Communication Receiver)表示通信接收端;For example, as shown in FIG19 , it is a schematic diagram of the structure of the photonic terahertz communication sensing system provided by the present invention. In FIG19 , CU (Center Unit) 30 represents the central unit 30, RU (Remote Unit) 10 represents the remote unit 10, UE (User Element) 20 represents the user element 20, Sen.Receiver (Sensitivity Receiver) represents the radar receiving end, and Com.Receiver (Communication Receiver) represents the communication receiving end;
在CU30中:LD(Laser Diode)2表示第二激光器3011;Tx.DSP(Transmit DigitalSignal Processing)表示发射端信号处理单元3012;DAC(Digital to Analog Convertor)表示数模转换器3013;Mod(Modulator).1表示第一电光调制器3014;CIR(Circulator)1表示第一环形器3015;LS-PD(Low Speed Photodetector)表示低速光电探测器3021;IF-LNA(Intermediate Frequency-Low Noise power Amplifier)3表示第三中频低噪声功率放大器3022;ADC(Analog to Digital Converter)2表示第二模数转换器3023;Sen.DSP(Sensitivity Digital Signal Processing)表示感知信号处理单元3024;In CU30: LD (Laser Diode) 2 represents the second laser 3011; Tx.DSP (Transmit Digital Signal Processing) represents the transmitter signal processing unit 3012; DAC (Digital to Analog Convertor) represents the digital-to-analog converter 3013; Mod (Modulator).1 represents the first electro-optical modulator 3014; CIR (Circulator) 1 represents the first circulator 3015; LS-PD (Low Speed Photodetector) represents the low-speed photodetector 3021; IF-LNA (Intermediate Frequency-Low Noise power Amplifier) 3 represents the third intermediate frequency low-noise power amplifier 3022; ADC (Analog to Digital Converter) 2 represents the second analog-to-digital converter 3023; Sen.DSP (Sensitivity Digital Signal Processing) represents the sensing signal processing unit 3024;
SMF(Single-Mode optical Fiber)表示单模光纤;SMF (Single-Mode optical Fiber) means single-mode optical fiber;
在RU10中:CIR2表示第二环形器1071;EDFA(Erbium Doped Fiber Amplifier)3表示第三掺铒光纤放大器1072;PC(Polarization Controller)表示偏振控制器1073;PM-OS(Polarization Maintaining-fiber Optic Splitting)表示保偏光分束器1074;LD1表示第一激光器108;PM-OC(Polarization Maintaining-fiber Optic Coupler)1表示第一保偏光纤耦合器109;PM-OC2表示第二保偏光纤耦合器1101;EDFA1表示第一掺铒光纤放大器1102;VOA(Variable Optical Attenuator)1表示第一可变光衰减器1103;HS-PD(HighSpeed-Photodetectors)1表示第一高速光电探测器101;PA(Power Amplifier)表示太赫兹功率放大器104;Ant(Antenna)1表示第一天线105;OBPF(Optical Bandpass Filter)1表示第一光带通滤波器111;PM-OC3表示第三保偏光纤耦合器1121;EDFA2表示第二掺铒光纤放大器1122;VOA2表示第二可变光衰减器1123;HS-PD2表示第二高速光电探测器102;LNA(LowNoise power Amplifier)1表示第一太赫兹低噪声功率放大器1031;Mixer表示太赫兹混频器1033;LNA2表示第二太赫兹低噪声功率放大器1032;Ant3表示第三天线106;Mod.2表示第二电光调制器1132;IF-LNA2表示第二中频低噪声功率放大器1131;OBPF2表示第二光带通滤波器1134;EDFA4表示第四掺铒光纤放大器1133;In RU10, CIR2 represents the second circulator 1071; EDFA (Erbium Doped Fiber Amplifier) 3 represents the third erbium-doped fiber amplifier 1072; PC (Polarization Controller) represents the polarization controller 1073; PM-OS (Polarization Maintaining-fiber Optic Splitting) represents the polarization-maintaining optical beam splitter 1074; LD1 represents the first laser 108; PM-OC (Polarization Maintaining-fiber Optic Coupler) 1 represents the first polarization-maintaining fiber coupler 109; PM-OC2 represents the second polarization-maintaining fiber coupler 1101; EDFA1 represents the first erbium-doped fiber amplifier 1102; VOA (Variable Optical Attenuator) 1 represents the first variable optical attenuator 1103; HS-PD (High Speed-Photodetectors) 1 represents the first high-speed photodetector 101; PA (Power Amplifier) represents the terahertz power amplifier 104; Ant (Antenna) 1 represents the first antenna 105; OBPF (Optical Bandpass Filter)1 represents the first optical bandpass filter 111; PM-OC3 represents the third polarization-maintaining fiber coupler 1121; EDFA2 represents the second erbium-doped fiber amplifier 1122; VOA2 represents the second variable optical attenuator 1123; HS-PD2 represents the second high-speed photodetector 102; LNA (LowNoise power Amplifier)1 represents the first terahertz low-noise power amplifier 1031; Mixer represents the terahertz mixer 1033; LNA2 represents the second terahertz low-noise power amplifier 1032; Ant3 represents the third antenna 106; Mod.2 represents the second electro-optical modulator 1132; IF-LNA2 represents the second intermediate frequency low-noise power amplifier 1131; OBPF2 represents the second optical bandpass filter 1134; EDFA4 represents the fourth erbium-doped fiber amplifier 1133;
在UE20中:Ant2表示第二天线201;LNA3表示第三太赫兹低噪声功率放大器2021;ED(Envelope Detector)表示太赫兹包络检波器2022;IF-LNA1表示第一中频低噪声功率放大器2031;EBPF(Electric Bandpass Filter)表示电带通滤波器2032;ADC1表示第一模数转换器2033;Com.DSP(Communication Digital Signal Processing)表示通信信号处理单元2034。In UE20: Ant2 represents the second antenna 201; LNA3 represents the third terahertz low noise power amplifier 2021; ED (Envelope Detector) represents the terahertz envelope detector 2022; IF-LNA1 represents the first intermediate frequency low noise power amplifier 2031; EBPF (Electric Bandpass Filter) represents the electric bandpass filter 2032; ADC1 represents the first analog-to-digital converter 2033; Com.DSP (Communication Digital Signal Processing) represents the communication signal processing unit 2034.
结合图19,如图20所示,是本发明提供的光子太赫兹通信感知系统不同节点光谱和电谱的示意图。需要说明的是,通信信号边带与光载波信号的频率间隔为f1,感知信号边带与光载波信号的频率间隔为f2,光本振信号与光载波信号之间的频率间隔为fTHZ,太赫兹通感信号的中心载波频率为fTHZ。图20(a)为图19中(a)点的调制光信号的示意图。图20(b)为图19中(b)点的第一信号的示意图。图20(c)为图19中(c)点的第三信号的示意图。图20(d)为图19中(d)点的太赫兹通感信号的示意图。图20(e)为图19中(e)点的第一回波电光调制信号的示意图。图20(f)为图19中(f)点的目标回波电光调制信号的示意图。图20(g)为图19中(g)点的第一中频通感信号的示意图。由于在中心单元30采用了不对称单边带调制,通信信号和感知信号互作用所产生的信号-信号拍频干扰(Signal-Signal Beat frequencyInterference,SSBI)的频率,远高于通信信号的频率;仅有通信信号自拍频所产生的SSBI分布于直流(Direct-Current,DC)附近,这可以降低为了消除SSBI所设置的频率保护间隔。为了保证通信信号和感知信号不产生频率重叠,需要满足f1+BWCom/2<f2-BWSen/2,其中,BWCom和BWSen分别表示通信信号带宽和感知信号带宽。In conjunction with FIG19, as shown in FIG20, it is a schematic diagram of the optical spectrum and electric spectrum of different nodes of the photonic terahertz communication perception system provided by the present invention. It should be noted that the frequency interval between the communication signal sideband and the optical carrier signal is f1 , the frequency interval between the perception signal sideband and the optical carrier signal is f2 , the frequency interval between the optical local oscillator signal and the optical carrier signal is fTHZ , and the center carrier frequency of the terahertz synaesthesia signal is fTHZ . FIG20(a) is a schematic diagram of the modulated optical signal at point (a) in FIG19. FIG20(b) is a schematic diagram of the first signal at point (b) in FIG19. FIG20(c) is a schematic diagram of the third signal at point (c) in FIG19. FIG20(d) is a schematic diagram of the terahertz synaesthesia signal at point (d) in FIG19. FIG20(e) is a schematic diagram of the first echo electro-optical modulation signal at point (e) in FIG19. FIG20(f) is a schematic diagram of the target echo electro-optical modulation signal at point (f) in FIG19. FIG20(g) is a schematic diagram of the first intermediate frequency synaesthesia signal at point (g) in FIG19. Since asymmetric single sideband modulation is used in the central unit 30, the frequency of the signal-signal beat frequency interference (SSBI) generated by the interaction between the communication signal and the perception signal is much higher than the frequency of the communication signal; only the SSBI generated by the self-beat frequency of the communication signal is distributed near the direct current (DC), which can reduce the frequency protection interval set to eliminate the SSBI. In order to ensure that the communication signal and the perception signal do not overlap in frequency, it is necessary to satisfy f1 + BWCom /2< f2 - BWSen /2, where BWCom and BWSen represent the communication signal bandwidth and the perception signal bandwidth, respectively.
下面对本申请实施例提供的光子太赫兹通信感知方法进行描述,下文描述的光子太赫兹通信感知方法与上文描述的光子太赫兹通信感知系统可相互对应参照。The photonic terahertz communication sensing method provided in an embodiment of the present application is described below. The photonic terahertz communication sensing method described below and the photonic terahertz communication sensing system described above can refer to each other.
如图21所示,是本发明提供的光子太赫兹通信感知方法的流程示意图,应用于上文描述的光子太赫兹通信感知系统,该光子太赫兹通信感知系统包括远端单元和用户单元,远端单元包括:第一高速光电探测器、第二高速光电探测器和太赫兹混频模块,该方法包括:As shown in FIG. 21 , it is a flow chart of the photon terahertz communication sensing method provided by the present invention, which is applied to the photon terahertz communication sensing system described above. The photon terahertz communication sensing system includes a remote unit and a user unit. The remote unit includes: a first high-speed photodetector, a second high-speed photodetector and a terahertz mixing module. The method includes:
2101、利用第一高速光电探测器对第一耦合信号进行外差拍频,得到太赫兹通感信号;2101. Perform heterodyne beat frequency analysis on the first coupled signal using a first high-speed photodetector to obtain a terahertz synaesthesia signal;
2102、利用第二高速光电探测器对第二耦合信号进行外差拍频,得到参考太赫兹本振信号,太赫兹通感信号和参考太赫兹本振信号具有相同的频率偏移,第一耦合信号和第二耦合信号均是基于光载波信号和光本振信号得到的,第一耦合信号和第二耦合信号不同;2102. Perform heterodyne beat frequency on the second coupled signal using a second high-speed photodetector to obtain a reference terahertz local oscillator signal, wherein the terahertz synaesthesia signal and the reference terahertz local oscillator signal have the same frequency offset, the first coupled signal and the second coupled signal are both obtained based on the optical carrier signal and the optical local oscillator signal, and the first coupled signal and the second coupled signal are different;
2103、利用用户单元根据太赫兹通感信号,确定第一雷达回波信号;2103. Determine a first radar echo signal using a user unit according to the terahertz synaesthesia signal;
2104、利用太赫兹混频模块根据参考太赫兹本振信号和第一雷达回波信号,确定目标雷达回波信号。2104. Determine the target radar echo signal according to the reference terahertz local oscillator signal and the first radar echo signal using a terahertz mixing module.
可选的,该光子太赫兹通信感知系统还包括中心单元,该中心单元包括调制光确定模块;该远端单元还包括:分束模块、第一激光器、第一保偏光纤耦合器和第一耦合模块;包括:利用该分束模块根据该调制光确定模块生成的调制光信号,确定下行光信号,该调制光信号为含光载波的不对称光单边带信号;利用该第一保偏光纤耦合器根据该第一激光器生成的该光本振信号,确定第一子光本振信号;利用该第一耦合模块根据该下行光信号和该第一子光本振信号,确定该第一耦合信号。Optionally, the photonic terahertz communication perception system also includes a central unit, which includes a modulated light determination module; the remote unit also includes: a beam splitting module, a first laser, a first polarization-maintaining fiber coupler and a first coupling module; including: using the beam splitting module to determine a downlink optical signal according to a modulated light signal generated by the modulated light determination module, wherein the modulated light signal is an asymmetric optical single-sideband signal containing an optical carrier; using the first polarization-maintaining fiber coupler to determine a first sub-optical local oscillator signal according to the optical local oscillator signal generated by the first laser; and using the first coupling module to determine the first coupling signal according to the downlink optical signal and the first sub-optical local oscillator signal.
可选的,该用户单元包括:太赫兹包络检波模块和通信信号处理模块;包括:利用该太赫兹包络检波模块根据该太赫兹通感信号,确定第一中频通感信号;利用该通信信号处理模块根据该第一中频通感信号,确定通信信息。Optionally, the user unit includes: a terahertz envelope detection module and a communication signal processing module; including: using the terahertz envelope detection module to determine a first intermediate frequency synaesthesia signal according to the terahertz synaesthesia signal; using the communication signal processing module to determine communication information according to the first intermediate frequency synaesthesia signal.
可选的,该第一耦合模块包括第二保偏光纤耦合器、第一掺铒光纤放大器和第一可变光衰减器;包括:利用该第二保偏光纤耦合器根据该下行光信号和该第一子光本振信号,确定第一信号;利用该第一掺铒光纤放大器对该第一信号进行光功率放大,确定第二信号;利用该第一可变光衰减器对该第二信号进行光功率优化,得到该第一耦合信号。Optionally, the first coupling module includes a second polarization-maintaining fiber coupler, a first erbium-doped fiber amplifier and a first variable optical attenuator; including: using the second polarization-maintaining fiber coupler to determine the first signal according to the downlink optical signal and the first sub-optical local oscillator signal; using the first erbium-doped fiber amplifier to amplify the optical power of the first signal to determine the second signal; using the first variable optical attenuator to optimize the optical power of the second signal to obtain the first coupled signal.
可选的,该光子太赫兹通信感知系统还包括中心单元,该中心单元包括调制光确定模块;该远端单元还包括:分束模块、第一光带通滤波器、第一激光器、第一保偏光纤耦合器和第二耦合模块;包括:利用该分束模块根据该调制光确定模块生成的调制光信号,确定第一参考光信号,该调制光信号为含光载波的不对称光单边带信号;利用该第一光带通滤波器对该第一参考光信号进行过滤,得到目标光载波信号;利用该第一保偏光纤耦合器根据该第一激光器生成的该光本振信号,确定第二子光本振信号;利用该第二耦合模块根据该目标光载波信号和该第二子光本振信号,确定该第二耦合信号。Optionally, the photonic terahertz communication perception system also includes a central unit, which includes a modulated light determination module; the remote unit also includes: a beam splitting module, a first optical bandpass filter, a first laser, a first polarization-maintaining fiber coupler and a second coupling module; including: using the beam splitting module to determine a first reference optical signal according to the modulated light signal generated by the modulated light determination module, wherein the modulated light signal is an asymmetric optical single-sideband signal containing an optical carrier; using the first optical bandpass filter to filter the first reference optical signal to obtain a target optical carrier signal; using the first polarization-maintaining fiber coupler to determine a second sub-optical local oscillator signal according to the optical local oscillator signal generated by the first laser; and using the second coupling module to determine the second coupling signal according to the target optical carrier signal and the second sub-optical local oscillator signal.
可选的,该第二耦合模块包括第三保偏光纤耦合器、第二掺铒光纤放大器和第二可变光衰减器;包括:利用该第三保偏光纤耦合器根据该目标光载波信号和该第二子光本振信号,确定第三信号;利用该第二掺铒光纤放大器对该第三信号进行光功率放大,确定第四信号;利用该第二可变光衰减器对该第四信号进行光功率优化,得到该第二耦合信号。Optionally, the second coupling module includes a third polarization-maintaining fiber coupler, a second erbium-doped fiber amplifier and a second variable optical attenuator; including: using the third polarization-maintaining fiber coupler to determine a third signal according to the target optical carrier signal and the second sub-optical local oscillator signal; using the second erbium-doped fiber amplifier to amplify the optical power of the third signal to determine a fourth signal; and using the second variable optical attenuator to optimize the optical power of the fourth signal to obtain the second coupled signal.
可选的,该调制光确定模块包括:第二激光器、发射端信号处理单元、数模转换器、第一电光调制器和第一环形器;包括:利用该数模转换器根据该发射端信号处理单元生成的第一通感信号,确定第二通感信号;利用该第一电光调制器根据该第二通感信号和该第二激光器生成的该光载波信号,确定该调制光信号;利用该第一环形器将该调制光信号传输至该分束模块。Optionally, the modulated light determination module includes: a second laser, a transmitting end signal processing unit, a digital-to-analog converter, a first electro-optical modulator and a first circulator; including: using the digital-to-analog converter to determine the second synaesthesia signal according to the first synaesthesia signal generated by the transmitting end signal processing unit; using the first electro-optical modulator to determine the modulated light signal according to the second synaesthesia signal and the optical carrier signal generated by the second laser; and using the first circulator to transmit the modulated light signal to the beam splitting module.
可选的,该分束模块包括:第二环形器、第三掺铒光纤放大器、偏振控制器和保偏光分束器;包括:利用该第二环形器接收该调制光确定模块传输的该调制光信号;利用该第三掺铒光纤放大器对该调制光信号进行光功率放大,确定第一调制光信号;利用该偏振控制器对该第一调制光信号进行偏振处理,得到第二调制光信号;利用该保偏光分束器对该第二调制光信号进行分束处理,得到该下行光信号。Optionally, the beam splitting module includes: a second circulator, a third erbium-doped fiber amplifier, a polarization controller and a polarization-maintaining beam splitter; including: using the second circulator to receive the modulated light signal transmitted by the modulated light determination module; using the third erbium-doped fiber amplifier to amplify the optical power of the modulated light signal to determine the first modulated light signal; using the polarization controller to perform polarization processing on the first modulated light signal to obtain a second modulated light signal; using the polarization-maintaining beam splitter to perform beam splitting processing on the second modulated light signal to obtain the downlink light signal.
可选的,该太赫兹混频模块包括:第一太赫兹低噪声功率放大器、第二太赫兹低噪声功率放大器和太赫兹混频器;包括:利用该第一太赫兹低噪声功率放大器对该参考太赫兹本振信号进行功率放大,得到目标参考太赫兹本振信号;利用该第二太赫兹低噪声功率放大器对该第一雷达回波信号进行功率放大,得到第二雷达回波信号;利用该太赫兹混频器对该目标参考太赫兹本振信号和该第二雷达回波信号进行混频,得到该目标雷达回波信号。Optionally, the terahertz mixing module includes: a first terahertz low-noise power amplifier, a second terahertz low-noise power amplifier and a terahertz mixer; including: using the first terahertz low-noise power amplifier to power amplify the reference terahertz local oscillator signal to obtain a target reference terahertz local oscillator signal; using the second terahertz low-noise power amplifier to power amplify the first radar echo signal to obtain a second radar echo signal; using the terahertz mixer to mix the target reference terahertz local oscillator signal and the second radar echo signal to obtain the target radar echo signal.
可选的,该太赫兹包络检波模块包括:第三太赫兹低噪声功率放大器和太赫兹包络检波器;该通信信号处理模块包括:第一中频低噪声功率放大器、电带通滤波器、第一模数转换器和通信信号处理单元;包括:利用该第三太赫兹低噪声功率放大器对该太赫兹通感信号进行功率放大,得到第五信号;利用该太赫兹包络检波器对该第五信号进行包络检波,得到该第一中频通感信号;利用该第一中频低噪声功率放大器对该第一中频通感信号进行功率放大,得到第二中频通感信号;利用该电带通滤波器对该第二中频通感信号进行滤波,得到第一通信信号;利用该第一模数转换器对该第一通信信号进行模数转换,得到第二通信信号;利用该通信信号处理单元对该第二通信信号进行处理,得到该通信信息。Optionally, the terahertz envelope detection module includes: a third terahertz low-noise power amplifier and a terahertz envelope detector; the communication signal processing module includes: a first intermediate frequency low-noise power amplifier, an electrical bandpass filter, a first analog-to-digital converter and a communication signal processing unit; including: using the third terahertz low-noise power amplifier to power amplify the terahertz synaesthesia signal to obtain a fifth signal; using the terahertz envelope detector to envelope detect the fifth signal to obtain the first intermediate frequency synaesthesia signal; using the first intermediate frequency low-noise power amplifier to power amplify the first intermediate frequency synaesthesia signal to obtain a second intermediate frequency synaesthesia signal; using the electrical bandpass filter to filter the second intermediate frequency synaesthesia signal to obtain a first communication signal; using the first analog-to-digital converter to perform analog-to-digital conversion on the first communication signal to obtain a second communication signal; using the communication signal processing unit to process the second communication signal to obtain the communication information.
可选的,该远端单元还包括:电光调制模块;该中心单元还包括:感知信号处理模块;包括:利用该电光调制模块根据该目标雷达回波信号,确定目标回波电光调制信号;利用该感知信号处理模块根据该目标回波电光调制信号,确定该用户单元的终端相关信息。Optionally, the remote unit also includes: an electro-optical modulation module; the central unit also includes: a perception signal processing module; including: using the electro-optical modulation module to determine the target echo electro-optical modulation signal according to the target radar echo signal; using the perception signal processing module to determine the terminal-related information of the user unit according to the target echo electro-optical modulation signal.
可选的,该电光调制模块包括:第二中频低噪声功率放大器、第二电光调制器、第四掺铒光纤放大器和第二光带通滤波器;包括:利用该分束模块根据该调制光信号,确定第二参考光信号;利用该第二中频低噪声功率放大器对该目标雷达回波信号进行功率放大,得到第三雷达回波信号;利用该第二电光调制器根据该第三雷达回波信号和该第二参考光信号,确定第一回波电光调制信号;利用该第四掺铒光纤放大器对该第一回波电光调制信号进行光功率放大,得到第二回波电光调制信号;利用该第二光带通滤波器对该第二回波电光调制信号进行滤波,得到该目标回波电光调制信号。Optionally, the electro-optical modulation module includes: a second intermediate frequency low noise power amplifier, a second electro-optical modulator, a fourth erbium-doped fiber amplifier and a second optical bandpass filter; including: using the beam splitting module to determine a second reference optical signal according to the modulated optical signal; using the second intermediate frequency low noise power amplifier to power amplify the target radar echo signal to obtain a third radar echo signal; using the second electro-optical modulator to determine a first echo electro-optical modulation signal according to the third radar echo signal and the second reference optical signal; using the fourth erbium-doped fiber amplifier to perform optical power amplification on the first echo electro-optical modulation signal to obtain a second echo electro-optical modulation signal; using the second optical bandpass filter to filter the second echo electro-optical modulation signal to obtain the target echo electro-optical modulation signal.
可选的,该感知信号处理模块包括:低速光电探测器、第三中频低噪声功率放大器、第二模数转换器和感知信号处理单元;包括:利用该低速光电探测器对该目标回波电光调制信号进行拍频解啁啾,得到电中频感知信号;利用该第三中频低噪声功率放大器对该电中频感知信号进行功率放大,得到第一电中频感知信号;利用该第二模数转换器对该第一电中频感知信号进行模数转换,得到第二电中频感知信号;利用该感知信号处理单元对该第二电中频感知信号进行处理,得到该终端相关信息。Optionally, the perception signal processing module includes: a low-speed photodetector, a third intermediate frequency low-noise power amplifier, a second analog-to-digital converter and a perception signal processing unit; including: using the low-speed photodetector to perform beat frequency demodulation on the target echo electro-optical modulation signal to obtain an electrical intermediate frequency perception signal; using the third intermediate frequency low-noise power amplifier to power amplify the electrical intermediate frequency perception signal to obtain a first electrical intermediate frequency perception signal; using the second analog-to-digital converter to perform analog-to-digital conversion on the first electrical intermediate frequency perception signal to obtain a second electrical intermediate frequency perception signal; using the perception signal processing unit to process the second electrical intermediate frequency perception signal to obtain terminal related information.
以上所描述的系统实施例仅仅是示意性的,其中所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。本领域普通技术人员在不付出创造性的劳动的情况下,以理解并实施。The system embodiment described above is merely illustrative, wherein the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, and may be located in one place, or may be distributed on multiple network units. Some or all of the modules may be selected according to actual needs to achieve the purpose of the solution of this embodiment. Those of ordinary skill in the art can understand and implement it without creative effort.
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到各实施方式可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件。基于这样的理解,上述技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品可以存储在计算机可读存储介质中,如ROM/RAM、磁碟、光盘等,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行各个实施例或者实施例的某些部分所述的方法。Through the description of the above implementation methods, those skilled in the art can clearly understand that each implementation method can be implemented by means of software plus a necessary general hardware platform, and of course, it can also be implemented by hardware. Based on this understanding, the above technical solution is essentially or the part that contributes to the prior art can be embodied in the form of a software product, and the computer software product can be stored in a computer-readable storage medium, such as ROM/RAM, a disk, an optical disk, etc., including a number of instructions for a computer device (which can be a personal computer, a server, or a network device, etc.) to execute the methods described in each embodiment or some parts of the embodiments.
最后应说明的是:以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。Finally, it should be noted that the above embodiments are only used to illustrate the technical solutions of the present invention, rather than to limit it. Although the present invention has been described in detail with reference to the aforementioned embodiments, those skilled in the art should understand that they can still modify the technical solutions described in the aforementioned embodiments, or make equivalent replacements for some of the technical features therein. However, these modifications or replacements do not deviate the essence of the corresponding technical solutions from the spirit and scope of the technical solutions of the embodiments of the present invention.
Claims (14)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202410138312.2A CN118138143A (en) | 2024-01-31 | 2024-01-31 | Photon terahertz communication sensing system and method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202410138312.2A CN118138143A (en) | 2024-01-31 | 2024-01-31 | Photon terahertz communication sensing system and method |
Publications (1)
Publication Number | Publication Date |
---|---|
CN118138143A true CN118138143A (en) | 2024-06-04 |
Family
ID=91239776
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202410138312.2A Pending CN118138143A (en) | 2024-01-31 | 2024-01-31 | Photon terahertz communication sensing system and method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN118138143A (en) |
-
2024
- 2024-01-31 CN CN202410138312.2A patent/CN118138143A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8923702B2 (en) | Signal receiving method based on microwave photonics technologies | |
CN111538028B (en) | Polarization Multiplexing Microwave Photonic Radar Detection Method and System Based on Photon Sampling | |
US8515285B2 (en) | RF communications device including an optical link and related devices and methods | |
CN112929091B (en) | Multifunctional microwave photonic RF front-end system based on dual polarized light IQ modulator | |
CN110149154B (en) | Few-mode preamplifier coherent receiving system and method for free-space optical signals | |
Dong et al. | Photonic-based W-band integrated sensing and communication system with flexible time-frequency division multiplexed waveforms for fiber-wireless network | |
CN113810111A (en) | Optical image interference, self-interference suppression and optical fiber transmission integrated device and method | |
CN113691314B (en) | Photon linear frequency conversion and optical fiber transmission method for microwave and millimeter wave signals | |
US8730567B2 (en) | Terahertz continuous wave generator | |
KR20160035549A (en) | Communications device with optical injection locking source and related methods | |
CN100568783C (en) | Bidirectional transmission device and signal transmission method of millimeter wave optical fiber transmission system based on insertion pilot method | |
CN114640397B (en) | A method and system for optical millimeter wave sensing fusion communication | |
CN111965915A (en) | Terahertz wave signal generation system and method based on optical frequency comb | |
CN114355382B (en) | Microwave photon MIMO radar receiving and transmitting system | |
CN109525318A (en) | A kind of full duplex light carrier radio communication system | |
CN106506087B (en) | A kind of light-carried wireless broadband system | |
CN118138143A (en) | Photon terahertz communication sensing system and method | |
Zhou et al. | Experimental demonstration of 8-Gbit/s QPSK communications using two multiplexed orbital-angular-momentum beams in the 0.27-0.33 THz range | |
CN114465669B (en) | Intermediate frequency signal and millimeter wave signal mixed transmission system and method | |
CN113608227B (en) | Photon-assisted radar frequency mixing and direct wave self-interference cancellation integrated device and method | |
CN116760478A (en) | High-linearity microwave photon down-conversion receiving system based on photoelectric oscillator | |
Lei et al. | Photonics-assisted joint radar and communication system in W band using electromagnetic polarization multiplexing | |
Mikroulis et al. | Investigation of a robust remote heterodyne envelope detector scheme for cost-efficient E-PON/60 GHz wireless integration | |
CN113630185A (en) | Multi-band broadband radio frequency signal transmission device based on microwave photon link | |
CN119087452B (en) | Communication and perception integrated system capable of realizing two-dimensional positioning |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
CB02 | Change of applicant information | ||
CB02 | Change of applicant information |
Country or region after: China Address after: No. 9 Mozhou East Road, Nanjing City, Jiangsu Province, 211111 Applicant after: Zijinshan Laboratory Address before: No. 9 Mozhou East Road, Jiangning Economic Development Zone, Jiangning District, Nanjing City, Jiangsu Province Applicant before: Purple Mountain Laboratories Country or region before: China |