CN118133435A - Complex spacecraft on-orbit anomaly detection method based on SVR and clustering - Google Patents
Complex spacecraft on-orbit anomaly detection method based on SVR and clustering Download PDFInfo
- Publication number
- CN118133435A CN118133435A CN202410558971.1A CN202410558971A CN118133435A CN 118133435 A CN118133435 A CN 118133435A CN 202410558971 A CN202410558971 A CN 202410558971A CN 118133435 A CN118133435 A CN 118133435A
- Authority
- CN
- China
- Prior art keywords
- data
- spacecraft
- svr
- clustering
- telemetry
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000001514 detection method Methods 0.000 title claims abstract description 30
- 238000000034 method Methods 0.000 claims abstract description 43
- 230000001364 causal effect Effects 0.000 claims abstract description 23
- 238000004458 analytical method Methods 0.000 claims description 19
- 238000004422 calculation algorithm Methods 0.000 claims description 14
- 238000012549 training Methods 0.000 claims description 13
- 230000006870 function Effects 0.000 claims description 10
- 238000002790 cross-validation Methods 0.000 claims description 9
- 238000012545 processing Methods 0.000 claims description 7
- 230000002159 abnormal effect Effects 0.000 claims description 6
- 238000012360 testing method Methods 0.000 claims description 6
- 230000009467 reduction Effects 0.000 claims description 5
- 238000007781 pre-processing Methods 0.000 claims description 4
- 238000009499 grossing Methods 0.000 claims 1
- 230000000694 effects Effects 0.000 abstract description 6
- 238000012847 principal component analysis method Methods 0.000 abstract description 2
- 230000008569 process Effects 0.000 description 13
- 239000011159 matrix material Substances 0.000 description 10
- 238000005070 sampling Methods 0.000 description 6
- 230000008859 change Effects 0.000 description 5
- 238000007621 cluster analysis Methods 0.000 description 5
- 238000010586 diagram Methods 0.000 description 5
- 230000001186 cumulative effect Effects 0.000 description 4
- 230000009466 transformation Effects 0.000 description 4
- 238000004364 calculation method Methods 0.000 description 3
- 238000010200 validation analysis Methods 0.000 description 3
- 206010000117 Abnormal behaviour Diseases 0.000 description 2
- 101100233916 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) KAR5 gene Proteins 0.000 description 2
- 230000003044 adaptive effect Effects 0.000 description 2
- 230000035772 mutation Effects 0.000 description 2
- 238000012795 verification Methods 0.000 description 2
- 208000032953 Device battery issue Diseases 0.000 description 1
- 101001121408 Homo sapiens L-amino-acid oxidase Proteins 0.000 description 1
- 101000827703 Homo sapiens Polyphosphoinositide phosphatase Proteins 0.000 description 1
- 102100026388 L-amino-acid oxidase Human genes 0.000 description 1
- 102100023591 Polyphosphoinositide phosphatase Human genes 0.000 description 1
- 101100012902 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) FIG2 gene Proteins 0.000 description 1
- 230000005856 abnormality Effects 0.000 description 1
- 230000006399 behavior Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 230000001131 transforming effect Effects 0.000 description 1
- 238000001744 unit root test Methods 0.000 description 1
- 238000012800 visualization Methods 0.000 description 1
Landscapes
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
Abstract
本发明公开了一种基于SVR与聚类的复杂航天器在轨异常检测方法,包括使用格兰杰因果关系建模探索遥测数据中的因果关系,再根据得到的关系图表使用SVR模型对经过主成分分析法处理过的数据进行训练,得到预测值和原始数据的误差,使用聚类方法对误差聚类,并计算每个聚类的中心点和标准差。基于聚类结果,使用偏度、峰度、分位数等统计量自适应地选择异常值的阈值,进一步优化异常检测的效果。本发明避免了手动设定阈值的主观性和不确定性,在跨领域应用时效果更好,适用于多种数据类型和应用场景。
The present invention discloses a complex spacecraft on-orbit anomaly detection method based on SVR and clustering, including using Granger causality modeling to explore the causal relationship in telemetry data, and then using the SVR model to train the data processed by the principal component analysis method according to the obtained relationship chart to obtain the error between the predicted value and the original data, clustering the errors using a clustering method, and calculating the center point and standard deviation of each cluster. Based on the clustering results, the threshold of the outlier is adaptively selected using statistics such as skewness, kurtosis, and quantiles to further optimize the effect of anomaly detection. The present invention avoids the subjectivity and uncertainty of manually setting the threshold, has better effects when applied across fields, and is suitable for a variety of data types and application scenarios.
Description
技术领域Technical Field
本发明涉及可靠性工程技术领域,特别涉及一种基于SVR与聚类的复杂航天器在轨异常检测方法。The present invention relates to the technical field of reliability engineering, and in particular to an on-orbit anomaly detection method for complex spacecraft based on SVR and clustering.
背景技术Background technique
随着航天器在轨数量的增加和种类的多样化,航天器作为一个复杂的系统工程,集成了众多高性能的软件和硬件产品。由于多种因素的影响,如验证不充分、生产加工工艺不足、损伤累积效应等,航天器在其运行时很可能会遇到各种异常事件,例如传感器故障、电池故障和通信故障等。With the increase in the number of spacecraft in orbit and the diversification of their types, spacecraft, as a complex system engineering, integrates many high-performance software and hardware products. Due to the influence of various factors, such as insufficient verification, insufficient production and processing technology, and cumulative damage effects, spacecraft are likely to encounter various abnormal events during their operation, such as sensor failure, battery failure, and communication failure.
传统的异常检测方法存在一些局限性,如主观性较强、无法适应不同数据分布等问题。因此,有必要研究更高效、准确的数据异常检测方法。这种方法能够处理复杂的异常事件,并克服传统方法的局限性,以提高异常检测的效率和准确性。Traditional anomaly detection methods have some limitations, such as strong subjectivity and inability to adapt to different data distributions. Therefore, it is necessary to study more efficient and accurate data anomaly detection methods. This method can handle complex abnormal events and overcome the limitations of traditional methods to improve the efficiency and accuracy of anomaly detection.
数据驱动的异常检测方法因其具有自适应性、无需先验知识和充分利用数据信息等优势,已经成为研究者们关注的焦点。Data-driven anomaly detection methods have become the focus of researchers because of their advantages such as adaptability, no need for prior knowledge and full utilization of data information.
因此,如何提供一种基于支持向量回归模型的数据驱动的复杂航天器在轨异常检测方法,通过对遥测数据的处理和分析,实现对异常值的自适应检测是本领域技术人员亟待解决的技术问题。Therefore, how to provide a data-driven complex spacecraft on-orbit anomaly detection method based on a support vector regression model to achieve adaptive detection of outliers through processing and analysis of telemetry data is a technical problem that needs to be urgently solved by technical personnel in this field.
发明内容Summary of the invention
本发明针对上述研究现状和存在的问题,提供了一种基于SVR与聚类的复杂航天器在轨异常检测方法,基于格兰杰(Granger)因果关系与支持向量回归(SVR)模型预测遥测数据的一般表现形式,如稳定形式、周期性振荡、正常峰值、阶跃变化、渐变变化等。结合聚类方法实现了对异常值的自适应检测。In view of the above research status and existing problems, the present invention provides a complex spacecraft on-orbit anomaly detection method based on SVR and clustering, and predicts the general manifestation of telemetry data based on Granger causality and support vector regression (SVR) model, such as stable form, periodic oscillation, normal peak, step change, gradual change, etc. In combination with clustering method, adaptive detection of outliers is realized.
本发明提供的一种基于SVR与聚类的复杂航天器在轨异常检测方法包括如下步骤:The present invention provides a complex spacecraft on-orbit anomaly detection method based on SVR and clustering, which comprises the following steps:
S1:使用Granger分析法分析航天器遥测原始数据之间的因果关系,建立航天器遥测原始数据不同维度间关联关系;S1: Use Granger analysis to analyze the causal relationship between the original spacecraft telemetry data and establish the correlation between different dimensions of the original spacecraft telemetry data;
S2:使用PCA方法对具有因果关系的航天器遥测原始数据进行降维处理;S2: Use PCA method to reduce the dimension of the original spacecraft telemetry data with causal relationship;
S3:使用SVR算法建立预测模型,应用降维后的、具有因果关系的航天器遥测原始数据对所述预测模型进行训练,获得预训练的预测模型;S3: using the SVR algorithm to establish a prediction model, and applying the dimension-reduced, causally related original spacecraft telemetry data to train the prediction model to obtain a pre-trained prediction model;
S4:利用预训练的预测模型对实时航天器遥测数据进行预测;S4: Use pre-trained prediction models to make predictions on real-time spacecraft telemetry data;
S5:使用聚类算法将S4中得到的预测数据点划分为不同的簇,根据簇间距离识别异常点。S5: Use a clustering algorithm to divide the predicted data points obtained in S4 into different clusters, and identify outliers based on the distance between clusters.
优选的,所述S1之前还包括:Preferably, before S1, the step further includes:
对数据集进行前置处理,将航天器遥测原始数据转换为适用于Granger因果关系分析的形式,前置处理包括:中心化、单位根检验、平稳化和求解最大迟延。The data set is pre-processed to convert the original spacecraft telemetry data into a form suitable for Granger causality analysis. The pre-processing includes: centering, unit root test, stabilization and solving the maximum delay.
优选的,所述S1包括:Preferably, the S1 comprises:
两个平稳航天器遥测原始时间序列,Granger因果关系检验估计回归:Two stationary spacecraft telemetry raw time series , Granger causality test estimates the regression:
其中,为时间序列长度,/>是当前时间点的变量值,/>是过去时间点的变量值,、/>、/>、/>是回归系数,/>、/>为/>、/>内所含白噪声;in, is the length of the time series, /> is the variable value at the current time point, /> is the value of the variable at a past time point, 、/> 、/> 、/> is the regression coefficient, /> 、/> For/> 、/> White noise contained in it;
如果一个航天器遥测原始时间序列的过去值与当前值具有Granger因果关系,则将所述过去值添加到所述当前值的预测模型中,用于对预测模型的训练。If a past value of a spacecraft telemetry raw time series has a Granger causal relationship with a current value, the past value is added to the prediction model of the current value for training the prediction model.
优选的,所述S3包括:SVR将输入数据映射到高维空间,并在该空间中找到一个超平面来拟合数据,通过学习一个线性或非线性的回归函数来预测输出变量的值。Preferably, S3 includes: SVR maps the input data to a high-dimensional space, finds a hyperplane in the space to fit the data, and predicts the value of the output variable by learning a linear or nonlinear regression function.
优选的,所述S3包括:Preferably, S3 includes:
求解如下最小化问题:Solve the following minimization problem:
其中,为两个平稳航天器遥测原始时间序列数据,为/>维的权重向量,/>为偏置项,/>表示第/>个样本的松弛变量,/>和/>为超参数,/>为核函数。in, are the original time series data of two stationary spacecraft telemetry, For/> dimensional weight vector,/> is the bias term, /> Indicates the first/> The slack variable for samples, /> and/> is a hyperparameter, /> is the kernel function.
优选的,使用交叉验证法选择最优超参数,使用最优超参数重新训练模型。Preferably, a cross-validation method is used to select the optimal hyperparameters, and the model is retrained using the optimal hyperparameters.
相较现有技术具有以下有益效果:Compared with the prior art, it has the following beneficial effects:
本发明研究的核心问题是基于CMG遥测数据的异常检测问题。此类问题具有高维度、未知变量相关性和存在噪声干扰等特征,针对此问题,本发明提出了基于Granger分析、PCA、SVR和聚类方法的完整异常检测流程,为异常检测问题提供了全面的解决方案。The core problem studied in this paper is the anomaly detection problem based on CMG telemetry data. This type of problem has the characteristics of high dimensionality, correlation of unknown variables and noise interference. To solve this problem, this paper proposes a complete anomaly detection process based on Granger analysis, PCA, SVR and clustering methods, providing a comprehensive solution to the anomaly detection problem.
本发明具有自适应性和泛化能力:使用交叉验证方法选择最优超参数,使得异常检测模型具有良好的自适应性和泛化能力。模型能够适应不同数据集和场景,并具备较好的预测能力。The present invention has adaptability and generalization ability: the cross-validation method is used to select the optimal hyperparameters, so that the anomaly detection model has good adaptability and generalization ability. The model can adapt to different data sets and scenarios and has good prediction ability.
本发明避免了手动设定阈值的主观性和不确定性,在跨领域应用时效果更好,适用于多种数据类型和应用场景。The present invention avoids the subjectivity and uncertainty of manually setting thresholds, has better effects when applied across fields, and is applicable to a variety of data types and application scenarios.
附图说明BRIEF DESCRIPTION OF THE DRAWINGS
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍。显而易见地,下面描述中的附图仅仅是本发明的实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据提供的附图获得其他的附图。In order to more clearly illustrate the embodiments of the present invention or the technical solutions in the prior art, the drawings required for use in the embodiments or the prior art descriptions are briefly introduced below. Obviously, the drawings described below are only embodiments of the present invention, and for ordinary technicians in this field, other drawings can be obtained based on the provided drawings without creative work.
图1为本发明实施例提供的基于SVR与聚类的复杂航天器在轨异常检测方法流程图;FIG1 is a flow chart of a complex spacecraft on-orbit anomaly detection method based on SVR and clustering provided by an embodiment of the present invention;
图2为本发明实施例提供的一段遥测数据Granger因果关系分析结果示意图;FIG2 is a schematic diagram of Granger causality analysis results of a segment of telemetry data provided by an embodiment of the present invention;
图3为本发明实施例提供的PCA处理之后主成分结果示意图;FIG3 is a schematic diagram of a principal component result after PCA processing provided by an embodiment of the present invention;
图4为本发明实施例提供的四个维度数据的预测结果示意图;FIG4 is a schematic diagram of prediction results of four-dimensional data provided by an embodiment of the present invention;
图5为本发明实施例提供的遥测数据异常检测结果示意图;FIG5 is a schematic diagram of a result of anomaly detection of telemetry data provided by an embodiment of the present invention;
图6为本发明实施例提供的聚类算法示意图。FIG. 6 is a schematic diagram of a clustering algorithm provided by an embodiment of the present invention.
具体实施方式Detailed ways
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。The following will be combined with the drawings in the embodiments of the present invention to clearly and completely describe the technical solutions in the embodiments of the present invention. Obviously, the described embodiments are only part of the embodiments of the present invention, not all of the embodiments. Based on the embodiments of the present invention, all other embodiments obtained by ordinary technicians in this field without creative work are within the scope of protection of the present invention.
首先对SVR算法的应用局限性进行说明:First, the application limitations of the SVR algorithm are explained:
SVR是一种强大的回归方法,可用于预测异常数据的表现形式。但其性能受到核函数和正则化参数的选择影响,选择合适的参数需要一定的经验和调节;在处理大规模数据集时的计算复杂性较高,对内存和计算资源要求较大,并且SVR对噪声和异常值比较敏感,可能会导致分类边界的偏移和错误分类。SVR is a powerful regression method that can be used to predict the manifestation of abnormal data. However, its performance is affected by the choice of kernel function and regularization parameters. Choosing appropriate parameters requires certain experience and adjustment. The computational complexity is high when processing large-scale data sets, and the memory and computing resources are large. In addition, SVR is sensitive to noise and outliers, which may cause the shift of classification boundaries and misclassification.
为了更好的发挥SVR的优势,扬长避短,需要在训练之前对数据进行前置处理,并在获得训练结果之后使用比阈值法更加精确高效的方法对结果进行分类与异常检测,以形成一套完整的异常检测流程。In order to better play the advantages of SVR and overcome its weaknesses, it is necessary to pre-process the data before training, and after obtaining the training results, use a more accurate and efficient method than the threshold method to classify and detect anomalies of the results, so as to form a complete anomaly detection process.
本发明提供的一种基于SVR与聚类的复杂航天器在轨异常检测方法,如图1所示,本发明结合Granger因果关系分析与PCA对数据集进行前置处理,并在SVR之后使用聚类方法对误差进行聚类以实现异常检测的目标。包括如下步骤:The present invention provides a complex spacecraft on-orbit anomaly detection method based on SVR and clustering, as shown in Figure 1. The present invention combines Granger causality analysis and PCA to pre-process the data set, and uses a clustering method after SVR to cluster the errors to achieve the goal of anomaly detection. It includes the following steps:
S1:使用Granger分析法分析航天器遥测原始数据之间的因果关系,建立航天器遥测原始数据不同维度间关联关系。S1: Use Granger analysis to analyze the causal relationship between the original spacecraft telemetry data and establish the correlation between different dimensions of the original spacecraft telemetry data.
在一个实施例中,执行S1之前还包括:对数据集进行前置处理,包括中心化(Centering)、单位根检验(Unit Root Testing)、平稳化(Stationarization)、求解最大迟延(Determining Maximum Lag)将原始数据转换为适用于Granger因果关系分析的形式,并进行Granger分析,建立遥测数据不同维度间的关系。In one embodiment, before executing S1, the process also includes: performing pre-processing on the data set, including centering, unit root testing, stationarization, determining maximum lag, converting the original data into a form suitable for Granger causality analysis, and performing Granger analysis to establish the relationship between different dimensions of the telemetry data.
在一个实施例中,S1具体执行过程如下:In one embodiment, the specific execution process of S1 is as follows:
设有两个平稳航天器遥测原始时间序列,Granger因果关系检验估计回归:Suppose there are two stationary spacecraft telemetry raw time series , Granger causality test estimates the regression:
其中,为时间序列长度,/>是当前时间点的变量值,/>是过去时间点的变量值,、/>、/>、/>是回归系数,/>、/>为/>、/>内所含白噪声。假设如果一个变量的过去值可以提供对当前值的预测能力,那么可以认为前者对后者具有Granger因果关系。此时将过去值添加到预测模型中可以显著提高预测准确性。in, is the length of the time series, /> is the variable value at the current time point, /> is the value of the variable at a past time point, 、/> 、/> 、/> is the regression coefficient, /> 、/> For/> 、/> If the past value of a variable can provide the ability to predict the current value, then it can be considered that the former has Granger causality to the latter. At this time, adding past values to the prediction model can significantly improve the prediction accuracy.
需要说明的是,S1中,Granger因果关系的零假设指变量的过去值对于预测另一变量的当前值没有提供额外的信息,即该变量的过去值不是另一变量的因果因素。It should be noted that in S1, the null hypothesis of Granger causality means that the past value of a variable does not provide additional information for predicting the current value of another variable, that is, the past value of the variable is not a causal factor of the other variable.
例如需要检验变量对于变量/>的Granger因果关系,零假设是:For example, if you need to test the variable For variables /> Granger causality, the null hypothesis is:
: 变量/>的过去值对于预测变量/>的当前值没有提供额外的信息,如下式所示: : Variables/> Past values of the predictor variables/> The current value of provides no additional information, as shown in the following formula:
: 变量/>的过去值对于预测变量/>的当前值没有提供额外的信息,如下式所示: : Variables/> Past values of the predictor variables/> The current value of provides no additional information, as shown in the following formula:
例如如果拒绝了零假设,意味着变量/>的过去值对于预测变量/>的当前值提供了有意义的额外信息,即存在Granger因果关系。而如果无法拒绝零假设/>,则说明变量的过去值对于预测变量/>的当前值没有提供额外的信息,即不存在Granger因果关系。For example, if we reject the null hypothesis , which means that the variable /> Past values of the predictor variables/> The current value of provides meaningful additional information, namely the existence of Granger causality. If the null hypothesis cannot be rejected/> , then the variable Past values of the predictor variables/> The current value of provides no additional information, i.e., there is no Granger causality.
示例性地,对一段某航天器一套单框架CMG系统2011年10月1日至2015年3月30日期间的数据集进行Granger因果关系分析,数据集包含信息如表1所示,得到结果如图1所示。For example, a Granger causality analysis is performed on a data set of a single-frame CMG system of a spacecraft from October 1, 2011 to March 30, 2015. The data set contains information as shown in Table 1, and the results are shown in Figure 1.
表1 数据集信息表Table 1 Dataset information table
值得注意的是,在得到的因果关系指标表中存在,/>位置的指标/>,与,/>位置的指标/>没有数量上的对应关系的情况。这是因为Granger因果关系是基于时间序列数据进行推断的,它分析的是变量之间的因果关系在时间上的顺序和延迟。因此,因果关系的强弱和方向可能会在不同的位置产生不同的结果。It is worth noting that in the obtained causal relationship indicator table, there are ,/> Position indicator/> ,and ,/> Position indicator/> There is no quantitative correspondence. This is because Granger causality is inferred based on time series data, which analyzes the order and delay of the causal relationship between variables in time. Therefore, the strength and direction of the causal relationship may produce different results in different locations.
这种情况在Granger因果关系分析中是正常的,因为因果关系的存在和强弱可能受到多个因素的影响,包括数据的特性、采样频率、时间延迟等。因此,在因果关系指标表中出现这样的差异是合理的,并且可以提供有关不同变量之间因果关系的更全面的信息。This situation is normal in Granger causality analysis, because the existence and strength of causality may be affected by multiple factors, including the characteristics of the data, sampling frequency, time delay, etc. Therefore, such differences in the causality indicator table are reasonable and can provide more comprehensive information about the causal relationship between different variables.
由图2可得出数据集“2000_CMG_lite.csv”中各维度数据间的因果关系如表2所示。From Figure 2, we can see that the causal relationship between the data in each dimension in the data set “2000_CMG_lite.csv” is shown in Table 2.
表2 各维度数据间的因果关系表Table 2 Causal relationship table between data in each dimension
观察到出现了例如CMGx框架角速度指令是因,数据的采样时间是果的情况。这种情况是由于以下原因造成的:It is observed that, for example, the CMGx frame angular velocity instruction is the cause and the data sampling time is the result. This situation is caused by the following reasons:
(1)数据采样率问题:Granger因果关系分析对数据的采样率要求较高。如果角速度指令的采样率较高,而时间序列的采样率较低,可能导致角速度指令在时间序列上具有较高的解释能力,从而被误认为是因果因素。(1) Data sampling rate problem: Granger causality analysis requires a high data sampling rate. If the sampling rate of the angular velocity command is high, while the sampling rate of the time series is low, the angular velocity command may have a higher explanatory power in the time series, and thus be mistaken for a causal factor.
(2)模型选择问题:Granger因果关系分析是基于自回归模型的方法,它假设时间序列的因果关系可以通过过去的值来预测未来的值。(2) Model selection problem: Granger causality analysis is a method based on autoregressive models, which assumes that the causal relationship of time series can predict future values through past values.
(3)数据特性问题:角速度指令和时间序列具有一定的相关性或共同的趋势,使得在Granger因果关系分析中角速度指令被误认为是因果因素。(3) Data characteristic problem: The angular velocity command and the time series have a certain correlation or common trend, which makes the angular velocity command be mistakenly regarded as a causal factor in the Granger causality analysis.
这些是由于数据本身的特性或领域知识所导致的,并且为追求检测方法的泛化能力,可以认为是正常的情况。These are due to the characteristics of the data itself or domain knowledge, and can be considered normal for the purpose of pursuing the generalization ability of the detection method.
S2:使用PCA方法对具有因果关系的航天器遥测原始数据进行降维处理。S2: Use the PCA method to reduce the dimensionality of the raw spacecraft telemetry data with causal relationships.
在具体执行时,使用主成分分析法将高维数据映射到低维空间,每个新得到的成分都是原始变量的线性组合,彼此相互独立,并保留了原始变量绝大部分信息。其本质是通过原始变量的相关性,寻求相关变量的替代对象,并且保证转化的信息损失最小。In the specific implementation, the principal component analysis method is used to map high-dimensional data to low-dimensional space. Each newly obtained component is a linear combination of the original variables, which are independent of each other and retain most of the information of the original variables. Its essence is to seek alternative objects for related variables through the correlation of the original variables and ensure that the information loss of the transformation is minimal.
在一个实施例中,假设有个样本,每个样本有/>个特征,将这些样本从/>维空间中映射到/>维空间/>,使得映射后的数据尽可能地保留原始数据的信息。即找到一组新的坐标轴,使得数据在这组新坐标轴上的投影方差尽可能大,从而达到保留原始数据信息的目的。In one embodiment, assuming that samples, each with /> features, these samples are dimensional space is mapped to/> Dimensional space/> , so that the mapped data retains the information of the original data as much as possible. That is, find a new set of coordinate axes so that the projection variance of the data on this set of new coordinate axes is as large as possible, so as to achieve the purpose of retaining the original data information.
对每个特征的所有样本数据进行处理,减去该特征的平均值,保证每个特征的平均值为0,得到一个矩阵:Process all sample data of each feature, subtract the mean value of the feature, ensure that the mean value of each feature is 0, and get a matrix :
对矩阵X进行标准化处理,计算每个特征的方差:Normalize the matrix X and calculate the variance of each feature :
使用use
对数据进行标准化处理,得到标准化后的矩阵:Standardize the data to get the standardized matrix :
计算相关系数:Calculate the correlation coefficient :
得到相关系数矩阵:Get the correlation coefficient matrix:
其中为/>矩阵第/>列样本序列与第/>列的样本序列之间的相关关系,取值为,由相关系数的大小可以判断两样本序列之间的相关性:in For/> Matrix No./> The sample sequence of column and the /> The correlation between the sample sequences of the columns is , the correlation between the two sample sequences can be determined by the size of the correlation coefficient:
其中,时均称为正线性相关。in, It is called positive linear correlation.
协方差矩阵是实对称阵,其特征值非负,设其特征值/>,它们对应的正交化的单位特征向量:Covariance matrix is a real symmetric matrix, its eigenvalue is non-negative, let its eigenvalue/> , their corresponding orthogonalized unit eigenvectors are:
原先的各个列代表的指标变量合成向量,记为/>,则有的第/>个主成分为/>。original The index variable composite vector represented by each column of is denoted as/> , then The first/> The principal components are .
第个主成分解释的方差占总方差的比例,即第/>个主成分的贡献率/>、与前/>个主成分解释的方差占总方差的累积比例,即累计贡献率/>由下式得出:No. The proportion of the variance explained by the first principal component to the total variance, that is, the The contribution rate of the principal components , and before/> The cumulative proportion of the variance explained by the principal components to the total variance, that is, the cumulative contribution rate/> It is derived from the following formula:
其中,是第/>个主成分的特征值,/>是总的主成分数。选取前/>个最大的特征值所对应的特征向量,组成一个大小为/>的矩阵/>,称为主成分矩阵。样本数据/>在主成分矩阵上的投影为/>,得到降维后的数据。主成分数量的选取根据累积贡献率确定,一般要求累积贡献率达到85%以上,以保证新变量能包括原始变量的绝大多数信息。in, It is the first/> The eigenvalues of the principal components, is the total number of principal components. Before selection/> The eigenvectors corresponding to the largest eigenvalues form a / > The matrix of , called the principal component matrix. Sample data/> The projection onto the principal component matrix is/> , and get the data after dimensionality reduction. The number of principal components is determined by the cumulative contribution rate, which is generally required to reach more than 85% to ensure that the new variable can include most of the information of the original variable.
示例性地,保留经过上一步分析得到的具有因果关系的成分进行PCA处理,得到主成分如图3所示。Exemplarily, the components with causal relationships obtained through the previous step of analysis are retained for PCA processing, and the principal components obtained are shown in FIG3 .
处理后的数据是通过线性变换将原有数据投影到主成分上得到的。每个主成分代表了原有数据中的一种特征或变化方向。因此,PCA过后的数据可以反映原有数据的一部分信息,但并不能完全还原原有数据。The processed data is obtained by projecting the original data onto the principal components through linear transformation. Each principal component represents a feature or change direction in the original data. Therefore, the data after PCA can reflect part of the information of the original data, but cannot completely restore the original data.
观察到数据特征集中在第一个主成分,这是由于第一个主成分通常能够捕捉到数据中最显著的特征和变化,能够很好地解释原始数据的方差,剩下的主成分对数据的变化贡献较小,因此它们的数值变化范围会相对较小。It is observed that the data features are concentrated in the first principal component. This is because the first principal component can usually capture the most significant features and changes in the data and can well explain the variance of the original data. The remaining principal components contribute less to the changes in the data, so their numerical variation range will be relatively small.
通过对PCA过后的数据进行逆变换,可以近似地还原原有数据。但由于PCA过程中的信息损失和降维操作,逆变换得到的数据只是原有数据的近似值,并不能完全精确还原原有数据。一般情况下无法通过PCA过后的数据完全恢复原有数据。如果需要使用原有数据,可以在进行PCA之前将原有数据备份保存,以便在需要时可以使用原始数据进行分析和处理。By performing an inverse transformation on the data after PCA, the original data can be approximately restored. However, due to the information loss and dimensionality reduction operation in the PCA process, the data obtained by the inverse transformation is only an approximation of the original data and cannot completely and accurately restore the original data. In general, it is impossible to completely restore the original data through the data after PCA. If you need to use the original data, you can back up and save the original data before performing PCA so that you can use the original data for analysis and processing when needed.
S3:使用SVR算法建立预测模型,应用降维后的、具有因果关系的航天器遥测原始数据对所述预测模型进行训练,获得预训练的预测模型。取数据集中一部分数据作为该阶段的训练集,使用SVR拟合数据点之间的复杂非线性关系,并用于异常点的预测和判定。取数据集中前6000组数据作为该阶段的训练集。S3: Use the SVR algorithm to establish a prediction model, and use the spacecraft telemetry raw data with causal relationship after dimension reduction to train the prediction model to obtain a pre-trained prediction model. Take a part of the data set as the training set for this stage, use SVR to fit the complex nonlinear relationship between data points, and use it to predict and determine abnormal points. Take the first 6000 groups of data in the data set as the training set for this stage.
在一个实施例中,模型可以表示为:In one embodiment, the model can be expressed as:
其中,是自变量,/>是核函数,/>是回归系数,/>是偏置项。in, is the independent variable, /> is the kernel function, /> is the regression coefficient, /> is the bias term.
在一个实施例中,求解如下最小化问题:In one embodiment, the following minimization problem is solved:
其中,表示第/>个样本的松弛变量,/>是正则化参数,/>是损失函数的指数。求解最小化问题的公式为:in, Indicates the first/> The slack variable for samples, /> is the regularization parameter, /> is the exponential of the loss function. The formula for solving the minimization problem is:
其中,和/>是拉格朗日乘子,/>和/>分别表示第/>个样本的输入和输出。核函数的选择、正则化参数/>与损失函数的指数/>都需要调整以提高模型的性能。in, and/> is the Lagrange multiplier,/> and/> Respectively represent the The input and output of samples. The choice of kernel function, regularization parameter /> Exponential with loss function/> All need to be tuned to improve the performance of the model.
在一个实施例中,使用交叉验证选择最优超参数,通过将数据集划分为训练集和验证集,交叉验证可以评估模型的泛化能力,并选择最优的超参数配置以达到最佳的异常检测效果,使用最优超参数重新训练模型。In one embodiment, cross-validation is used to select the optimal hyperparameters. By dividing the data set into a training set and a validation set, cross-validation can evaluate the generalization ability of the model and select the optimal hyperparameter configuration to achieve the best anomaly detection effect. The model is retrained using the optimal hyperparameters.
具体执行时,对于每个超参数组合,将训练集分成个子集,每次选取其中的/>个子集作为训练集,剩下的一个子集作为验证集,用于评估该组合的性能。将/>次验证的结果求平均值作为该组合的性能评估指标。这个过程称为/>折交叉验证。During the specific implementation, for each hyperparameter combination, the training set is divided into subsets, each time selecting one of them/> The subset is used as the training set, and the remaining subset is used as the validation set to evaluate the performance of the combination. The average of the results of the verification is used as the performance evaluation indicator of the combination. This process is called /> Fold cross validation.
在每个超参数组合上执行折交叉验证,得到一个性能指标的平均值,选择具有最佳性能指标的超参数组合作为模型的最优超参数组合。这个过程称为网格搜索(GridSearch)。最后使用训练集和最优超参数组合训练模型,使用测试集评估模型的性能。Execute on each hyperparameter combination Fold cross validation is performed to obtain an average value of a performance indicator, and the hyperparameter combination with the best performance indicator is selected as the optimal hyperparameter combination of the model. This process is called grid search. Finally, the model is trained using the training set and the optimal hyperparameter combination, and the performance of the model is evaluated using the test set.
示例性地,使用SVR拟合数据点之间的复杂非线性关系,并用于异常点的预测和判定。SVR可以拟合数据点之间的复杂非线性关系,并基于这些关系进行异常点的预测。通过建立异常点的回归模型,可以对新数据点进行预测。为了获得最佳的SVR模型性能,取前6000组数据进行训练,采用交叉验证方法选择最优的超参数。通过将数据集划分为训练集和验证集,交叉验证可以评估模型的泛化能力,并选择最优的超参数配置以达到最佳的异常检测效果。重新训练SVR模型进行数据集的预测。Exemplarily, SVR is used to fit complex nonlinear relationships between data points and is used to predict and determine outliers. SVR can fit complex nonlinear relationships between data points and predict outliers based on these relationships. By establishing a regression model for outliers, new data points can be predicted. In order to obtain the best SVR model performance, the first 6000 sets of data are taken for training, and the cross-validation method is used to select the optimal hyperparameters. By dividing the data set into a training set and a validation set, cross-validation can evaluate the generalization ability of the model and select the optimal hyperparameter configuration to achieve the best anomaly detection effect. Retrain the SVR model to predict the data set.
使用最优超参数重新训练模型,初步对数据集前300组数据进行预测并计算误差值以初步评估模型性能。其分别为框架角度、转子转速、转子电机电流、框架电机电流数据,如图4所示。The model was retrained using the optimal hyperparameters, and the first 300 sets of data in the data set were initially predicted and the error values were calculated to preliminarily evaluate the model performance. They are frame angle, rotor speed, rotor motor current, and frame motor current data, as shown in Figure 4.
观察到在前300组数据样本中,使用SVR进行预测的结果与真实值差值非常小,最大误差控制在0.1以内。It is observed that in the first 300 data samples, the difference between the prediction results using SVR and the true value is very small, and the maximum error is controlled within 0.1.
S4:利用预训练的预测模型对实时航天器遥测数据进行预测。SVR将输入数据映射到高维空间,并在该空间中找到一个超平面来拟合数据,从而将非线性问题转化为线性问题,通过学习一个线性或非线性的回归函数来预测输出变量的值。SVR使得预测值与真实值之间的误差最小化,以解决连续型变量预测问题。S4: Use pre-trained prediction models to predict real-time spacecraft telemetry data. SVR maps input data to a high-dimensional space and finds a hyperplane in that space to fit the data, thereby transforming a nonlinear problem into a linear problem and predicting the value of the output variable by learning a linear or nonlinear regression function. SVR minimizes the error between the predicted value and the true value to solve the continuous variable prediction problem.
示例性地,以CMG框架电机电流数据为例,继续读取后续数据进行预测,模拟实际情况中持续产生的遥测数据。得到一组持续生成的预测值之后,与真实值进行比较,进行后续步骤。For example, taking the CMG frame motor current data as an example, continue to read subsequent data for prediction, simulating the telemetry data continuously generated in the actual situation. After obtaining a set of continuously generated prediction values, compare them with the actual values and proceed to the subsequent steps.
S5:使用聚类算法将S4中得到的预测数据点划分为不同的簇,根据簇间距离识别异常点。S5: Use a clustering algorithm to divide the predicted data points obtained in S4 into different clusters, and identify outliers based on the distance between clusters.
在一个实施例中,S5中,每隔一定数据量进行一次阈值的判定,以减少计算量提高算法的效率,捕捉到数据中的突变或异常行为,并且能够适应数据的动态性,提高检测的准确性和可靠性,易于可视化和分析,观察到聚类的模式和特征。In one embodiment, in S5, a threshold determination is performed every certain amount of data to reduce the amount of computation and improve the efficiency of the algorithm, capture mutations or abnormal behaviors in the data, and be able to adapt to the dynamics of the data, improve the accuracy and reliability of detection, facilitate visualization and analysis, and observe clustering patterns and characteristics.
将数据点划分为K个簇,其中每个簇的数据点与其他簇的数据点之间的距离最小化,之后将与其他簇的数据点距离最远的点作为异常点,如图6所示。The data points are divided into K clusters, where the distance between the data points of each cluster and the data points of other clusters is minimized, and then the points with the farthest distance from the data points of other clusters are regarded as outliers, as shown in Figure 6.
示例性地,在使用SVR模型对真实值进行预测之后,使用基于聚类的算法进行异常检测。聚类算法将数据点划分为不同的簇,并将与其他簇的数据点相距较远的点识别为异常点。结果如图5所示。For example, after using the SVR model to predict the true value, anomaly detection is performed using a clustering-based algorithm. The clustering algorithm divides the data points into different clusters and identifies the points that are far away from the data points of other clusters as outliers. The result is shown in Figure 5.
图中圈出的点为模型判断为异常的点,此时数据整体基本稳定,经聚类算法归纳出的阈值较小。The circled points in the figure are points judged as abnormal by the model. At this time, the overall data is basically stable, and the threshold value summarized by the clustering algorithm is small.
本发明设计每隔300组数据进行一次阈值的判定,有以下考虑:The present invention is designed to determine the threshold value every 300 sets of data, with the following considerations:
(1)减少计算量:聚类算法通常需要对数据进行迭代计算,并且其计算复杂度较高。将数据分为较小的子集并对每个子集进行聚类分析可以减少整体的计算量,提高算法的效率。(1) Reduce the amount of calculation: Clustering algorithms usually require iterative calculations on data, and their computational complexity is high. Dividing the data into smaller subsets and performing cluster analysis on each subset can reduce the overall amount of calculation and improve the efficiency of the algorithm.
(2)检测变化点:将数据分成较小的子集进行聚类分析可以更容易地检测到数据的变化点。通过每隔一定数量的数据进行聚类分析,可以捕捉到数据中的突变或异常行为。这有助于及时发现可能存在的故障或异常情况。(2) Detecting change points: Dividing data into smaller subsets for cluster analysis can make it easier to detect change points in the data. By performing cluster analysis at a certain interval of a certain number of data points, mutations or abnormal behaviors in the data can be captured. This helps to detect possible faults or abnormalities in a timely manner.
(3)适应数据的动态性:数据在实际应用中通常是动态变化的,可能存在不同的工况或环境条件。定期进行聚类分析可以根据数据的变化情况来更新阈值,使其能够适应数据的动态性,提高检测的准确性和可靠性。(3) Adapting to the dynamic nature of data: Data usually changes dynamically in practical applications and may have different working conditions or environmental conditions. Regular cluster analysis can update the threshold according to the changes in data, so that it can adapt to the dynamic nature of data and improve the accuracy and reliability of detection.
(4)分析聚类结果:将数据分成较小的子集进行聚类分析可以更好地理解聚类结果。较小的数据集更易于可视化和分析,可以更清楚地观察到聚类的模式和特征。这有助于深入理解数据的结构和行为,并从中提取有用的信息。(4) Analyze clustering results: Dividing the data into smaller subsets for cluster analysis can help better understand the clustering results. Smaller data sets are easier to visualize and analyze, and the patterns and characteristics of clusters can be observed more clearly. This helps to deeply understand the structure and behavior of the data and extract useful information from it.
以上对本发明所提供的一种基于SVR与聚类的复杂航天器在轨异常检测方法进行了详细介绍,本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处,综上,本说明书内容不应理解为对本发明的限制。The above is a detailed introduction to the complex spacecraft on-orbit anomaly detection method based on SVR and clustering provided by the present invention. Specific examples are used in this article to illustrate the principles and implementation methods of the present invention. The description of the above embodiments is only used to help understand the method of the present invention and its core idea; at the same time, for general technical personnel in this field, according to the idea of the present invention, there will be changes in the specific implementation method and application scope. In summary, the content of this specification should not be understood as a limitation on the present invention.
在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。In this article, relational terms such as first and second, etc. are used only to distinguish one entity or operation from another entity or operation, and do not necessarily require or imply any such actual relationship or order between these entities or operations. Moreover, the terms "comprise", "include" or any other variants thereof are intended to cover non-exclusive inclusion, so that a process, method, article or device including a series of elements includes not only those elements, but also other elements not explicitly listed, or also includes elements inherent to such process, method, article or device. In the absence of further restrictions, the elements defined by the statement "comprise a ..." do not exclude the presence of other identical elements in the process, method, article or device including the elements.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202410558971.1A CN118133435A (en) | 2024-05-08 | 2024-05-08 | Complex spacecraft on-orbit anomaly detection method based on SVR and clustering |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202410558971.1A CN118133435A (en) | 2024-05-08 | 2024-05-08 | Complex spacecraft on-orbit anomaly detection method based on SVR and clustering |
Publications (1)
Publication Number | Publication Date |
---|---|
CN118133435A true CN118133435A (en) | 2024-06-04 |
Family
ID=91238171
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202410558971.1A Pending CN118133435A (en) | 2024-05-08 | 2024-05-08 | Complex spacecraft on-orbit anomaly detection method based on SVR and clustering |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN118133435A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN118918922A (en) * | 2024-08-13 | 2024-11-08 | 华东师范大学 | Sound anomaly detection method and system based on causal Gaussian process dynamic system |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109934337A (en) * | 2019-03-14 | 2019-06-25 | 哈尔滨工业大学 | An anomaly detection method for spacecraft telemetry data based on integrated LSTM |
WO2020092327A1 (en) * | 2018-11-01 | 2020-05-07 | Nec Laboratories America, Inc. | Root cause analysis for space weather events |
CN111274543A (en) * | 2020-01-17 | 2020-06-12 | 北京空间飞行器总体设计部 | Spacecraft system anomaly detection method based on high-dimensional space mapping |
CN111612048A (en) * | 2020-04-30 | 2020-09-01 | 中国西安卫星测控中心 | Unsupervised clustering anomaly detection method |
US20210348985A1 (en) * | 2018-10-30 | 2021-11-11 | Japan Aerospace Exploration Agency | Abnormality diagnostic device, abnormality diagnostic method, and program |
CN114330103A (en) * | 2021-12-08 | 2022-04-12 | 北京卫星环境工程研究所 | Spacecraft anomaly relevance model training method based on-orbit anomaly information |
CN115496164A (en) * | 2022-10-19 | 2022-12-20 | 中国空间技术研究院 | Clustering-based satellite telemetry data sequence anomaly detection method |
CN116009517A (en) * | 2023-01-18 | 2023-04-25 | 北京控制工程研究所 | Method and device for constructing performance-fault relationship map of spacecraft control system |
CN117520986A (en) * | 2023-11-09 | 2024-02-06 | 国网福建省电力有限公司营销服务中心 | Distributed photovoltaic power generation abnormality monitoring methods, systems, equipment and storage media |
CN117633688A (en) * | 2023-12-01 | 2024-03-01 | 南京邮电大学 | Large-scale power data anomaly detection method based on ridge regression-k-means clustering-LOF-LSTM fusion algorithm |
WO2024077969A1 (en) * | 2022-10-14 | 2024-04-18 | 南京国电南自轨道交通工程有限公司 | Lstm-svr subway station temperature prediction method based on characteristic of multiple periods |
-
2024
- 2024-05-08 CN CN202410558971.1A patent/CN118133435A/en active Pending
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20210348985A1 (en) * | 2018-10-30 | 2021-11-11 | Japan Aerospace Exploration Agency | Abnormality diagnostic device, abnormality diagnostic method, and program |
WO2020092327A1 (en) * | 2018-11-01 | 2020-05-07 | Nec Laboratories America, Inc. | Root cause analysis for space weather events |
CN109934337A (en) * | 2019-03-14 | 2019-06-25 | 哈尔滨工业大学 | An anomaly detection method for spacecraft telemetry data based on integrated LSTM |
CN111274543A (en) * | 2020-01-17 | 2020-06-12 | 北京空间飞行器总体设计部 | Spacecraft system anomaly detection method based on high-dimensional space mapping |
CN111612048A (en) * | 2020-04-30 | 2020-09-01 | 中国西安卫星测控中心 | Unsupervised clustering anomaly detection method |
CN114330103A (en) * | 2021-12-08 | 2022-04-12 | 北京卫星环境工程研究所 | Spacecraft anomaly relevance model training method based on-orbit anomaly information |
WO2024077969A1 (en) * | 2022-10-14 | 2024-04-18 | 南京国电南自轨道交通工程有限公司 | Lstm-svr subway station temperature prediction method based on characteristic of multiple periods |
CN115496164A (en) * | 2022-10-19 | 2022-12-20 | 中国空间技术研究院 | Clustering-based satellite telemetry data sequence anomaly detection method |
CN116009517A (en) * | 2023-01-18 | 2023-04-25 | 北京控制工程研究所 | Method and device for constructing performance-fault relationship map of spacecraft control system |
CN117520986A (en) * | 2023-11-09 | 2024-02-06 | 国网福建省电力有限公司营销服务中心 | Distributed photovoltaic power generation abnormality monitoring methods, systems, equipment and storage media |
CN117633688A (en) * | 2023-12-01 | 2024-03-01 | 南京邮电大学 | Large-scale power data anomaly detection method based on ridge regression-k-means clustering-LOF-LSTM fusion algorithm |
Non-Patent Citations (6)
Title |
---|
HUNDMAN K 等: "Detecting Spacecraft Anomalies Using LSTMs and Nonparametric Dynamic Thresholding", ARXIV, 13 February 2018 (2018-02-13) * |
SIYA CHEN等: "Detection and analysis of real-time anomalies in large-scale complex system", MEASUREMENT, 5 August 2021 (2021-08-05), pages 1 - 6 * |
何慧梅;侯迪波;赵海峰;黄平捷;张光新;: "基于多因子融合的水质异常检测算法", 浙江大学学报(工学版), no. 04, 15 April 2013 (2013-04-15) * |
王伟达 等: "《装甲车辆机电复合传动系统综合控制理论与技术》", 30 April 2021, 北京理工大学出版社, pages: 99 * |
章琳云著: "《中国核心通货膨胀的估算与预测研究》", 31 May 2016, 浙江工商大学出版社, pages: 83 * |
韩锐 等著: "云边协同大数据技术与应用", 28 February 2022, 机械工业出版社, pages: 76 - 77 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN118918922A (en) * | 2024-08-13 | 2024-11-08 | 华东师范大学 | Sound anomaly detection method and system based on causal Gaussian process dynamic system |
CN118918922B (en) * | 2024-08-13 | 2025-01-03 | 华东师范大学 | Sound anomaly detection method and system based on causal Gaussian process dynamic system |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
He et al. | A generic energy prediction model of machine tools using deep learning algorithms | |
Zhao | Perspectives on nonstationary process monitoring in the era of industrial artificial intelligence | |
Wang et al. | Data-driven prognostic method based on self-supervised learning approaches for fault detection | |
Ayodeji et al. | Causal augmented ConvNet: A temporal memory dilated convolution model for long-sequence time series prediction | |
US10996664B2 (en) | Predictive classification of future operations | |
Aremu et al. | Structuring data for intelligent predictive maintenance in asset management | |
Wu et al. | A weighted deep domain adaptation method for industrial fault prognostics according to prior distribution of complex working conditions | |
Chen et al. | A comparative study of deep neural network-aided canonical correlation analysis-based process monitoring and fault detection methods | |
CN111504676A (en) | Equipment fault diagnosis method, device and system based on multi-source monitoring data fusion | |
CN115903741B (en) | A method for detecting data anomalies in industrial control systems | |
CN114528547B (en) | ICPS unsupervised online attack detection method and device based on community feature selection | |
CN111340110A (en) | Fault early warning method based on industrial process running state trend analysis | |
CN110757510A (en) | A method and system for predicting the remaining life of a robot | |
CN117951646A (en) | A data fusion method and system based on edge cloud | |
CN118133435A (en) | Complex spacecraft on-orbit anomaly detection method based on SVR and clustering | |
CN118676452A (en) | Method, device, equipment and storage medium for monitoring energy consumption of battery control chip | |
CN115081673B (en) | Abnormality prediction method and device for oil and gas pipeline, electronic equipment and medium | |
Wu et al. | Custom machine learning architectures: towards realtime anomaly detection for flight testing | |
CN118859037A (en) | A method for power equipment fault analysis based on multi-source data fusion | |
CN118094436A (en) | A method and system for detecting anomalies of fault-sensitive self-supervised equipment | |
CN118194122A (en) | Method and device for monitoring hot continuous rolling multi-sampling-rate process of strip steel | |
CN111721534A (en) | A method and system for online assessment of rolling bearing health status | |
Martins et al. | Prediction maintenance based on vibration analysis and deep learning–A case study of a drying press supported on a hidden Markov model | |
Yu et al. | A hybrid learning-based model for on-line monitoring and diagnosis of out-of-control signals in multivariate manufacturing processes | |
CN114818116B (en) | Aircraft engine failure mode identification and life prediction method based on joint learning |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |