CN118129907B - Medium-long wave infrared spectrum modulation snapshot imaging spectrometer and spectrum reconstruction method - Google Patents
Medium-long wave infrared spectrum modulation snapshot imaging spectrometer and spectrum reconstruction method Download PDFInfo
- Publication number
- CN118129907B CN118129907B CN202410561614.0A CN202410561614A CN118129907B CN 118129907 B CN118129907 B CN 118129907B CN 202410561614 A CN202410561614 A CN 202410561614A CN 118129907 B CN118129907 B CN 118129907B
- Authority
- CN
- China
- Prior art keywords
- wave infrared
- medium
- long
- spectral
- spectrum
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000003384 imaging method Methods 0.000 title claims abstract description 100
- 238000001228 spectrum Methods 0.000 title claims abstract description 69
- 238000000034 method Methods 0.000 title claims abstract description 26
- 238000002329 infrared spectrum Methods 0.000 title claims abstract description 19
- 238000013528 artificial neural network Methods 0.000 claims abstract description 19
- 230000003595 spectral effect Effects 0.000 claims description 153
- 239000013598 vector Substances 0.000 claims description 48
- 238000005259 measurement Methods 0.000 claims description 43
- 238000003331 infrared imaging Methods 0.000 claims description 20
- 239000002086 nanomaterial Substances 0.000 claims description 17
- 230000003287 optical effect Effects 0.000 claims description 17
- 238000002834 transmittance Methods 0.000 claims description 15
- 238000003491 array Methods 0.000 claims description 10
- 230000006870 function Effects 0.000 claims description 9
- 239000011159 matrix material Substances 0.000 claims description 8
- 210000001747 pupil Anatomy 0.000 claims description 6
- 230000001629 suppression Effects 0.000 claims description 3
- 238000001514 detection method Methods 0.000 abstract description 16
- 238000000701 chemical imaging Methods 0.000 abstract description 7
- 230000008569 process Effects 0.000 description 9
- 238000010586 diagram Methods 0.000 description 8
- 238000005070 sampling Methods 0.000 description 7
- 230000010354 integration Effects 0.000 description 6
- 230000001965 increasing effect Effects 0.000 description 5
- 238000013461 design Methods 0.000 description 4
- 238000005457 optimization Methods 0.000 description 4
- 101001121408 Homo sapiens L-amino-acid oxidase Proteins 0.000 description 3
- 102100026388 L-amino-acid oxidase Human genes 0.000 description 3
- 238000004364 calculation method Methods 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 230000010287 polarization Effects 0.000 description 3
- 230000003068 static effect Effects 0.000 description 3
- 229910000661 Mercury cadmium telluride Inorganic materials 0.000 description 2
- 101100012902 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) FIG2 gene Proteins 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 230000004927 fusion Effects 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 238000006467 substitution reaction Methods 0.000 description 2
- 235000015842 Hesperis Nutrition 0.000 description 1
- 101000827703 Homo sapiens Polyphosphoinositide phosphatase Proteins 0.000 description 1
- 235000012633 Iberis amara Nutrition 0.000 description 1
- 102100023591 Polyphosphoinositide phosphatase Human genes 0.000 description 1
- 101100233916 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) KAR5 gene Proteins 0.000 description 1
- 230000006399 behavior Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000013135 deep learning Methods 0.000 description 1
- 229910003460 diamond Inorganic materials 0.000 description 1
- 239000010432 diamond Substances 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- WPYVAWXEWQSOGY-UHFFFAOYSA-N indium antimonide Chemical compound [Sb]#[In] WPYVAWXEWQSOGY-UHFFFAOYSA-N 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 238000011897 real-time detection Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J3/00—Spectrometry; Spectrophotometry; Monochromators; Measuring colours
- G01J3/28—Investigating the spectrum
- G01J3/2823—Imaging spectrometer
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J3/00—Spectrometry; Spectrophotometry; Monochromators; Measuring colours
- G01J3/02—Details
- G01J3/0205—Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/01—Arrangements or apparatus for facilitating the optical investigation
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/25—Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
Landscapes
- Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- General Physics & Mathematics (AREA)
- Biochemistry (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Health & Medical Sciences (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Photometry And Measurement Of Optical Pulse Characteristics (AREA)
- Spectrometry And Color Measurement (AREA)
Abstract
Description
技术领域Technical Field
本发明涉及光谱成像技术领域,尤其涉及一种中长波红外光谱调制快照成像光谱仪及图谱重建方法。The present invention relates to the technical field of spectral imaging, and in particular to a medium- and long-wave infrared spectral modulation snapshot imaging spectrometer and a spectrum reconstruction method.
背景技术Background Art
在对目标的探测和识别过程中,光谱成像探测技术可以探测精细谱段上的目标图像和光谱信息,从而实现对目标更加全面、准确、科学的认知。利用目标表面辐射信息的光谱成像数据,综合获得目标的图像和光谱特征信息,有效提高目标与背景的对比度,突出目标的细节特征,增强目标识别的效果,更全面、深入的了解目标的属性和行为,实现复杂条件下的目标探测与识别。In the process of detecting and identifying targets, spectral imaging detection technology can detect target images and spectral information on fine spectrum bands, thereby achieving a more comprehensive, accurate and scientific understanding of the target. By using the spectral imaging data of the target surface radiation information, the target image and spectral feature information are comprehensively obtained, effectively improving the contrast between the target and the background, highlighting the detailed features of the target, enhancing the effect of target identification, and more comprehensively and deeply understanding the properties and behaviors of the target, and realizing target detection and identification under complex conditions.
成像光谱仪可以获取目标场景图谱合一的三维数据立方体,目前多采用时间扫描的方式来获取第三维的空间或光谱信息。但是当目标呈现出快速的空间运动或迅速的光谱变化时(如火箭、导弹、飞机等),其时间扫描过程将极大地限制了图谱探测的有效性。快照式成像光谱仪采用静态结构可以在探测器的单个积分时间内获取目标的整个三维图像光谱数据立方体,极大地提高了对于动态场景或迅变目标的图谱测量能力。由于图谱立方体为三维数据,而面阵探测器仅为二维器件,因此快照成像光谱仪必须在二维面阵探测器上同时测量数据立方体的所有元素,这就需要采用特殊阵列器件结构的光学设计以提供三维数据的同时获取能力。Imaging spectrometers can obtain a three-dimensional data cube that integrates the target scene and the spectrum. Currently, time scanning is mostly used to obtain the third-dimensional spatial or spectral information. However, when the target exhibits rapid spatial motion or rapid spectral changes (such as rockets, missiles, aircraft, etc.), its time scanning process will greatly limit the effectiveness of spectrum detection. The snapshot imaging spectrometer uses a static structure to obtain the entire three-dimensional image spectrum data cube of the target within a single integration time of the detector, greatly improving the spectrum measurement capability for dynamic scenes or rapidly changing targets. Since the spectrum cube is three-dimensional data, and the array detector is only a two-dimensional device, the snapshot imaging spectrometer must simultaneously measure all elements of the data cube on the two-dimensional array detector, which requires the use of a special array device structure optical design to provide the ability to simultaneously obtain three-dimensional data.
传统的光谱成像探测系统采用二维面阵探测器仅能获取二维空间上的光强分布,第三维度的信息获取需通过多个分立的光学和机械装置实现,存在系统复杂、体积大、集成难度大等问题。同时,大部分快照式成像光谱调制的探测波段大多位于可见光波段,红外波段研究较少。在中长波红外波段,面阵探测器采用制冷型的特殊结构,其将焦平面阵列和冷屏光阑通过红外窗片共同封装在杜瓦瓶内,红外窗片和冷屏光阑限制了滤光片阵列与焦平面的集成。The traditional spectral imaging detection system uses a two-dimensional array detector to obtain the light intensity distribution in two-dimensional space. The acquisition of information in the third dimension needs to be achieved through multiple discrete optical and mechanical devices, which has problems such as complex system, large volume, and difficulty in integration. At the same time, most of the detection bands of snapshot imaging spectral modulation are mostly in the visible light band, and there are few studies on the infrared band. In the mid- and long-wave infrared bands, the array detector uses a special cooling structure, which encapsulates the focal plane array and the cold screen aperture together in the Dewar flask through the infrared window. The infrared window and the cold screen aperture limit the integration of the filter array and the focal plane.
发明内容Summary of the invention
本发明为解决上述问题,提供一种中长波红外光谱调制快照成像光谱仪及图谱重建方法,采用基于超表面的宽带红外光谱调制器件,通过亚波长结构的法诺共振实现多模态光谱调制,并通过超表面材料、结构及尺寸参数与重构算法联合优化构建阵列化“空间-光谱”调制策略,采用基于相关度准则的“空间-光谱”编码调制的评价标准提高光谱重构精度。In order to solve the above problems, the present invention provides a medium- and long-wave infrared spectral modulation snapshot imaging spectrometer and a spectrum reconstruction method, adopts a broadband infrared spectral modulation device based on a metasurface, realizes multimodal spectral modulation through the Fano resonance of a subwavelength structure, and constructs an arrayed "space-spectrum" modulation strategy by jointly optimizing the metasurface material, structure and size parameters with a reconstruction algorithm, and adopts an evaluation standard of "space-spectrum" coded modulation based on a correlation criterion to improve the spectral reconstruction accuracy.
本发明提供的中长波红外光谱调制快照成像光谱仪包括望远系统、孔径光阑、成像物镜、红外光谱调制器件、分色镜、中波红外成像光谱通道和长波红外成像光谱通道;其中,目标光场经望远系统进行收束,再依次经过孔径光阑和成像物镜成像到红外光谱调制器件上得到光谱调制成像光场;光谱调制成像光场入射到分色镜上,分色镜将光谱调制成像光场分为长波红外光和中波红外光,中波红外光进入中波红外成像光谱通道中,长波红外光进入长波红外成像光谱通道中;The medium- and long-wave infrared spectral modulation snapshot imaging spectrometer provided by the present invention comprises a telescope system, an aperture diaphragm, an imaging objective lens, an infrared spectral modulation device, a dichroic mirror, a medium-wave infrared imaging spectral channel and a long-wave infrared imaging spectral channel; wherein the target light field is converged by the telescope system, and then sequentially imaged through the aperture diaphragm and the imaging objective lens onto the infrared spectral modulation device to obtain a spectral modulation imaging light field; the spectral modulation imaging light field is incident on the dichroic mirror, and the dichroic mirror divides the spectral modulation imaging light field into long-wave infrared light and medium-wave infrared light, the medium-wave infrared light enters the medium-wave infrared imaging spectral channel, and the long-wave infrared light enters the long-wave infrared imaging spectral channel;
中波红外成像光谱通道包括中波红外中继成像镜和中波红外面阵探测器,中波红外光经中波红外中继成像镜成像到中波红外面阵探测器上,中波红外面阵探测器中波红外冷屏光阑和中波红外焦平面阵列;其中,中波红外冷屏光阑位于中波红外中继成像镜的像方焦面处并与中波红外中继成像镜的出射光瞳重合;中波红外焦平面阵列位于中波红外中继成像镜的像面处,且中波红外焦平面阵列的每一个像元对应红外光谱调制器件上的一个超表面单元经中波红外中继成像镜后的像;中波红外光射入中波红外冷屏光阑中进行杂散光抑制后,在中波红外焦平面阵列进行成像;The medium-wave infrared imaging spectrum channel includes a medium-wave infrared relay imaging mirror and a medium-wave infrared array detector. The medium-wave infrared light is imaged onto the medium-wave infrared array detector through the medium-wave infrared relay imaging mirror. The medium-wave infrared array detector includes a medium-wave infrared cold screen diaphragm and a medium-wave infrared focal plane array. The medium-wave infrared cold screen diaphragm is located at the image focal plane of the medium-wave infrared relay imaging mirror and coincides with the exit pupil of the medium-wave infrared relay imaging mirror. The medium-wave infrared focal plane array is located at the image plane of the medium-wave infrared relay imaging mirror, and each pixel of the medium-wave infrared focal plane array corresponds to an image of a metasurface unit on the infrared spectrum modulation device after passing through the medium-wave infrared relay imaging mirror. After the medium-wave infrared light is incident on the medium-wave infrared cold screen diaphragm to suppress stray light, it is imaged in the medium-wave infrared focal plane array.
长波红外成像光谱通道包括长波红外中继成像镜和长波红外面阵探测器,长波红外光经长波红外中继成像镜成像到长波红外面阵探测器上;长波红外面阵探测器包括长波红外冷屏光阑和长波红外焦平面阵列;其中,长波红外冷屏光阑位于长波红外中继成像镜的像方焦面处并与长波红外中继成像镜的出射光瞳重合;长波红外焦平面阵列位于长波红外中继成像镜的像面处,且长波红外焦平面阵列的每一个像元对应一个超表面单元经长波红外中继成像镜后的像;长波红外光射入长波红外冷屏光阑中进行杂散光抑制后,在长波红外焦平面阵列进行成像。The long-wave infrared imaging spectrum channel includes a long-wave infrared relay imaging mirror and a long-wave infrared array detector. The long-wave infrared light is imaged onto the long-wave infrared array detector through the long-wave infrared relay imaging mirror; the long-wave infrared array detector includes a long-wave infrared cold screen diaphragm and a long-wave infrared focal plane array; wherein, the long-wave infrared cold screen diaphragm is located at the image focal plane of the long-wave infrared relay imaging mirror and coincides with the exit pupil of the long-wave infrared relay imaging mirror; the long-wave infrared focal plane array is located at the image plane of the long-wave infrared relay imaging mirror, and each pixel of the long-wave infrared focal plane array corresponds to the image of a metasurface unit after passing through the long-wave infrared relay imaging mirror; after the long-wave infrared light is incident on the long-wave infrared cold screen diaphragm for stray light suppression, it is imaged in the long-wave infrared focal plane array.
进一步的,红外光谱调制器件包括阵列化排布的超表面单元,每个超表面单元经中波红外中继成像镜或长波红外中继成像镜分别对应中波红外面阵探测器或长波红外面阵探测器的一个像元,且每两个相邻的超表面单元的光谱透过率函数之间的相关系数的绝对值小于0.1;不少于两个的相邻超表面单元组成一个光谱调制单元,光谱调制单元阵列化重复得到红外光谱调制器件,且相邻的光谱调制单元之间随机共用相同的超表面单元。Furthermore, the infrared spectrum modulation device includes arrayed metasurface units, each metasurface unit corresponds to a pixel of a medium-wave infrared array detector or a long-wave infrared array detector through a medium-wave infrared relay imaging mirror or a long-wave infrared relay imaging mirror, and the absolute value of the correlation coefficient between the spectral transmittance functions of every two adjacent metasurface units is less than 0.1; no less than two adjacent metasurface units constitute a spectrum modulation unit, the spectrum modulation units are arrayed and repeated to obtain an infrared spectrum modulation device, and adjacent spectrum modulation units randomly share the same metasurface unit.
进一步的,超表面单元包括不少于两个的亚波长周期的微纳结构阵列;每个微纳结构阵列为具有四重旋转对称性的结构,不同的微纳结构阵列具有不同的光谱调制特性;每两个相邻的超表面单元的微纳结构阵列均不同。Furthermore, the metasurface unit includes no less than two micro-nanostructure arrays with sub-wavelength periods; each micro-nanostructure array is a structure with four-fold rotational symmetry, and different micro-nanostructure arrays have different spectral modulation characteristics; the micro-nanostructure arrays of every two adjacent metasurface units are different.
进一步的,中波红外面阵探测器还包括开设有窗片的杜瓦瓶,中波红外冷屏光阑和中波红外焦平面阵列封装在杜瓦瓶。Furthermore, the medium-wave infrared array detector also includes a dewar flask with a window, and the medium-wave infrared cold screen aperture and the medium-wave infrared focal plane array are packaged in the dewar flask.
进一步的,长波红外面阵探测器包括开设有窗片的杜瓦瓶,长波红外冷屏光阑和长波红外焦平面阵列封装在杜瓦瓶中。Furthermore, the long-wave infrared array detector comprises a dewar flask with a window, and the long-wave infrared cold screen aperture and the long-wave infrared focal plane array are packaged in the dewar flask.
进一步的,成像物镜采用像方远心光路结构,中波红外中继成像镜和长波红外中继成像镜均采用物方远心光路结构。Furthermore, the imaging objective lens adopts an image-side telecentric optical path structure, and the medium-wave infrared relay imaging lens and the long-wave infrared relay imaging lens both adopt an object-side telecentric optical path structure.
进一步的,望远系统包括望远物镜、视场光阑和准直镜;其中,目标光场经过望远物镜成像在视场光阑上,视场光阑对目标光场进行限制后经准直镜变为平行光,入射到孔径光阑中。Furthermore, the telescope system includes a telescope objective, a field diaphragm and a collimator; wherein the target light field is imaged on the field diaphragm through the telescope objective, the field diaphragm limits the target light field and then becomes parallel light through the collimator and is incident on the aperture diaphragm.
本发明基于提供的中长波红外光谱调制快照成像光谱仪,还提出了一种中波红外的光谱编码孔径图谱重建方法,具体包括以下内容:Based on the provided medium- and long-wave infrared spectral modulation snapshot imaging spectrometer, the present invention also proposes a medium-wave infrared spectral encoding aperture spectrum reconstruction method, which specifically includes the following contents:
获取中波红外焦平面阵列得到的所有的二维测量值;Get all 2D measurements from the MWIR focal plane array;
在每个波长下,将光谱调制单元中的每个超表面单元视为一个中波红外孔径编码板单元,此时光谱调制单元视为一个中波红外空间孔径编码板,将中波红外空间孔径编码板对应中波红外焦平面阵列获取的二维测量值逐列顺序拼接成一维向量,得到中波红外测量矢量;At each wavelength, each metasurface unit in the spectral modulation unit is regarded as a medium-wave infrared aperture coding plate unit. At this time, the spectral modulation unit is regarded as a medium-wave infrared spatial aperture coding plate. The two-dimensional measurement values obtained by the medium-wave infrared spatial aperture coding plate corresponding to the medium-wave infrared focal plane array are spliced column by column into a one-dimensional vector to obtain the medium-wave infrared measurement vector ;
将中波红外测量矢量输入已经训练好的自编码器神经网络中得到中波红外三维图谱矢量;The MWIR measurement vector Input the trained autoencoder neural network to obtain the medium-wave infrared three-dimensional atlas vector ;
将中波红外三维图谱矢量根据波长顺序矩阵化恢复成中波红外三维图谱立方体。The mid-wave infrared three-dimensional atlas vector The matrix is restored into a medium-wave infrared three-dimensional spectrum cube according to the wavelength order.
进一步的,每一个波长下的中波红外空间孔径编码板具有各自的空间调制特性。Furthermore, each MWIR spatial aperture coding plate at each wavelength has its own spatial modulation characteristics.
本发明基于提供的中长波红外光谱调制快照成像光谱仪,还提出了一种长波红外的光谱编码孔径图谱重建方法,具体包括以下内容:Based on the provided mid- and long-wave infrared spectral modulation snapshot imaging spectrometer, the present invention also proposes a long-wave infrared spectral encoding aperture spectrum reconstruction method, which specifically includes the following contents:
获取长波红外焦平面阵列得到的所有的二维测量值;Get all 2D measurements from the LWIR focal plane array;
在每个波长下,将光谱调制单元中的每个超表面单元视为一个长波红外孔径编码板单元,此时光谱调制单元视为一个长波红外空间孔径编码板,将长波红外空间孔径编码板对应长波红外焦平面阵列获取的二维测量值逐列顺序拼接成一维向量,得到长波红外测量矢量;At each wavelength, each metasurface unit in the spectral modulation unit is regarded as a long-wave infrared aperture coding plate unit. At this time, the spectral modulation unit is regarded as a long-wave infrared spatial aperture coding plate. The two-dimensional measurement values obtained by the long-wave infrared spatial aperture coding plate corresponding to the long-wave infrared focal plane array are spliced into a one-dimensional vector column by column to obtain the long-wave infrared measurement vector ;
将长波红外测量矢量输入已经训练好的自编码器神经网络中得到长波红外三维图谱矢量;The long-wave infrared measurement vector Input the trained autoencoder neural network to obtain the long-wave infrared three-dimensional atlas vector ;
将长波红外三维图谱矢量根据波长顺序矩阵化恢复成长波红外三维图谱立方体。The long-wave infrared three-dimensional atlas vector The long-wave infrared three-dimensional atlas cube is restored by matrixing the wavelength sequence.
进一步的,每一个波长下的长波红外空间孔径编码板都具有各自的空间调制特性。Furthermore, each long-wave infrared spatial aperture coding plate at each wavelength has its own spatial modulation characteristics.
与现有技术相比,本发明能够取得如下有益效果:Compared with the prior art, the present invention can achieve the following beneficial effects:
1)本发明通过超表面红外光谱调制器件的光谱调制,在实现仪器的轻小型化的同时实现图像光谱的快速测量,轻小型静态化测量可以在恶劣的环境下提高信息探测的稳定性和可靠性,同时提高信息探测的实时性,从而获得更高的光学性能、更小的光学系统体积和更强的环境适应性,解决传统光电探测设备功能相对单一、系统复杂、体积大、集成难度大、信息融合困难以及协同性差等问题;1) The present invention realizes the rapid measurement of image spectrum while realizing the lightweight and miniaturization of the instrument through spectral modulation of the metasurface infrared spectrum modulation device. The lightweight and miniaturized static measurement can improve the stability and reliability of information detection in harsh environments, while improving the real-time performance of information detection, thereby obtaining higher optical performance, smaller optical system volume and stronger environmental adaptability, solving the problems of relatively single function, complex system, large volume, difficult integration, difficult information fusion and poor coordination of traditional photoelectric detection equipment;
2)在使用包含多个超表面单元的红外光谱调制器件时利用多模式空分复用调整超表面单元的配置模式,使得光谱采样点数增多,实现光谱分辨率的提升;2) When using an infrared spectrum modulation device containing multiple metasurface units, multi-mode space division multiplexing is used to adjust the configuration mode of the metasurface units, so that the number of spectral sampling points is increased and the spectral resolution is improved;
3)利用光谱编码孔径技术进行编码,配合神经网络进行解码,实现空间分辨率的提升。同时采用远心中继成像技术,实现光谱信息、图像信息的快照式集成探测,在提高光谱信息探测实时性的同时提高了系统的稳定性。3) Spectral coded aperture technology is used for encoding and neural network is used for decoding to improve spatial resolution. At the same time, remote relay imaging technology is used to achieve snapshot integrated detection of spectral information and image information, which improves the real-time detection of spectral information and the stability of the system.
附图说明BRIEF DESCRIPTION OF THE DRAWINGS
图1是根据本发明实施例提供的中长波红外光谱调制快照成像光谱仪的整体结构图;FIG1 is an overall structural diagram of a mid- and long-wave infrared spectral modulation snapshot imaging spectrometer provided according to an embodiment of the present invention;
图2是根据本发明实施例提供的红外光谱调制器件的结构示意图;FIG2 is a schematic diagram of the structure of an infrared spectrum modulation device provided according to an embodiment of the present invention;
图3是根据本发明实施例提供的光谱调制单元的超表面组合方式的示意图;FIG3 is a schematic diagram of a metasurface combination method of a spectrum modulation unit provided according to an embodiment of the present invention;
图4是根据本发明实施例提供的超表面单元的配置模式示意图;FIG4 is a schematic diagram of a configuration mode of a metasurface unit provided according to an embodiment of the present invention;
图5是本发明实施例提供的三维图谱数据立方体矢量化的示意图;FIG5 is a schematic diagram of vectorization of a three-dimensional atlas data cube provided by an embodiment of the present invention;
图6是本发明实施例提供的光谱编码孔径立方体矢量对角化的示意图;FIG6 is a schematic diagram of diagonalization of a spectrally coded aperture cube vector provided by an embodiment of the present invention;
图7是本发明实施例提供的图谱重构自编码器神经网络的网络结构图。FIG7 is a network structure diagram of a graph reconstruction autoencoder neural network provided in an embodiment of the present invention.
附图标记:望远物镜101、视场光阑102、准直镜103、孔径光阑104、成像物镜105、红外光谱调制器件106、超表面单元1061、微纳结构阵列1062、分色镜107、中波红外中继成像镜108、中波红外冷屏光阑109、中波红外焦平面阵列110、长波红外中继成像镜111、长波红外冷屏光阑112、长波红外焦平面阵列113、杜瓦瓶114、窗片115。Figure numerals: telescope objective 101, field diaphragm 102, collimator 103, aperture diaphragm 104, imaging objective 105, infrared spectrum modulation device 106, metasurface unit 1061, micro-nano structure array 1062, dichroic mirror 107, medium-wave infrared relay imaging mirror 108, medium-wave infrared cold shield diaphragm 109, medium-wave infrared focal plane array 110, long-wave infrared relay imaging mirror 111, long-wave infrared cold shield diaphragm 112, long-wave infrared focal plane array 113, Dewar flask 114, window 115.
具体实施方式DETAILED DESCRIPTION
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及具体实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,而不构成对本发明的限制。In order to make the purpose, technical solution and advantages of the present invention more clearly understood, the present invention is further described in detail below in conjunction with the accompanying drawings and specific embodiments. It should be understood that the specific embodiments described herein are only used to explain the present invention and do not constitute a limitation of the present invention.
本发明提供的中长波红外光谱调制快照成像光谱仪及图谱重建方法,采用基于超表面的红外光谱调制技术配合带有冷屏光阑的面阵探测器,解决了传统成像光谱仪器存在的系统复杂、体积大、集成难度大的问题,其中基于超表面的红外光谱调制器利用多模式空分复用技术,使得光谱采样点数增多,实现光谱分辨率的提升,并配合光谱编码孔径技术结合神经网络算法,实现空间分辨率的提升。The medium- and long-wave infrared spectral modulation snapshot imaging spectrometer and spectrum reconstruction method provided by the present invention adopt infrared spectral modulation technology based on metasurface in combination with a planar array detector with a cold screen aperture, thereby solving the problems of complex system, large volume and difficult integration existing in traditional imaging spectral instruments. The infrared spectral modulator based on metasurface utilizes multi-mode space division multiplexing technology to increase the number of spectral sampling points and improve the spectral resolution, and cooperates with spectral coded aperture technology in combination with a neural network algorithm to improve the spatial resolution.
图1示出了根据本发明实施例提供的中长波红外光谱调制快照成像光谱仪的整体结构。FIG1 shows the overall structure of a mid- and long-wave infrared spectral modulation snapshot imaging spectrometer provided according to an embodiment of the present invention.
如图1所示,本发明实施例提供的中长波红外光谱调制快照成像光谱仪包括望远系统、孔径光阑104、成像物镜105、红外光谱调制器件106、分色镜107、中波红外成像光谱通道和长波红外成像光谱通道。As shown in FIG1 , the mid- and long-wave infrared spectral modulation snapshot imaging spectrometer provided in an embodiment of the present invention includes a telescope system, an aperture stop 104 , an imaging objective lens 105 , an infrared spectral modulation device 106 , a dichroic mirror 107 , a mid-wave infrared imaging spectral channel, and a long-wave infrared imaging spectral channel.
其中,望远系统包括望远物镜101、视场光阑102和准直镜103。目标光场经过望远物镜101成像在视场光阑102上,视场光阑102对目标光场进行限制后经准直镜103变为平行光。目标光场经过望远系统后光束口径被缩小后,入射到孔径光阑104中。孔径光阑104位于成像物镜105的前焦面上,成像物镜105采用像方远心光路结构,使经过成像物镜105产生的光束的主光线平行于光轴。红外光谱调制器件106位于成像物镜105的后焦面上,垂直于光轴,接收来自成像物镜105的光束并生成光谱调制的成像光场。光谱调制成像光场入射到分色镜107上,分色镜107将光谱调制成像光场分为长波红外光和中波红外光,中波红外光进入中波红外成像光谱通道中进行中波红外成像,长波红外光进入长波红外成像光谱通道中进行长波红外成像。The telescope system includes a telescope objective lens 101, a field stop 102 and a collimator lens 103. The target light field is imaged on the field stop 102 through the telescope objective lens 101, and the field stop 102 limits the target light field and then becomes parallel light through the collimator lens 103. After the target light field passes through the telescope system, the beam diameter is reduced and then incident on the aperture stop 104. The aperture stop 104 is located on the front focal plane of the imaging objective lens 105. The imaging objective lens 105 adopts an image-side telecentric optical path structure so that the main light of the light beam generated by the imaging objective lens 105 is parallel to the optical axis. The infrared spectrum modulation device 106 is located on the back focal plane of the imaging objective lens 105, perpendicular to the optical axis, receives the light beam from the imaging objective lens 105 and generates a spectrally modulated imaging light field. The spectrally modulated imaging light field is incident on the dichroic mirror 107, which divides the spectrally modulated imaging light field into long-wave infrared light and medium-wave infrared light. The medium-wave infrared light enters the medium-wave infrared imaging spectral channel for medium-wave infrared imaging, and the long-wave infrared light enters the long-wave infrared imaging spectral channel for long-wave infrared imaging.
中波红外成像光谱通道包括中波红外中继成像镜108和中波红外面阵探测器。中波红外中继成像镜108采用物方远心光路结构,使中波红外光经过中波红外中继成像镜108后中波红外光的主光线平行于光轴。中波红外光经中波红外中继成像镜108成像到中波红外面阵探测器上。长波红外成像光谱通道包括长波红外中继成像镜111和长波红外面阵探测器,长波红外中继成像镜111也采用物方远心光路结构,使长波红外光经过长波红外中继成像镜111后中波红外光的主光线平行于光轴。长波红外光经长波红外中继成像镜111成像到长波红外面阵探测器上。The medium-wave infrared imaging spectrum channel includes a medium-wave infrared relay imaging mirror 108 and a medium-wave infrared array detector. The medium-wave infrared relay imaging mirror 108 adopts an object-side telecentric optical path structure, so that the main ray of the medium-wave infrared light is parallel to the optical axis after the medium-wave infrared light passes through the medium-wave infrared relay imaging mirror 108. The medium-wave infrared light is imaged onto the medium-wave infrared array detector through the medium-wave infrared relay imaging mirror 108. The long-wave infrared imaging spectrum channel includes a long-wave infrared relay imaging mirror 111 and a long-wave infrared array detector. The long-wave infrared relay imaging mirror 111 also adopts an object-side telecentric optical path structure, so that the main ray of the medium-wave infrared light is parallel to the optical axis after the long-wave infrared light passes through the long-wave infrared relay imaging mirror 111. The long-wave infrared light is imaged onto the long-wave infrared array detector through the long-wave infrared relay imaging mirror 111.
中波红外面阵探测器和长波红外面阵探测器的外部均为配备窗片115的杜瓦瓶114,在中波红外面阵探测器的内部包括中波红外冷屏光阑109和中波红外焦平面阵列110。中波红外冷屏光阑109位于中波红外中继成像镜108的像方焦面处并与中波红外中继成像镜108的出射光瞳重合。中波红外焦平面阵列110位于中波红外中继成像镜108的像面处。中波红外光由窗片115射入中波红外冷屏光阑109中进行杂散光抑制后,在中波红外焦平面阵列110进行成像。在长波红外面阵探测器的内部包括长波红外冷屏光阑112和长波红外焦平面阵列113。其中,长波红外冷屏光阑112位于长波红外中继成像镜111的像方焦面处并与长波红外中继成像镜111的出射光瞳重合,长波红外焦平面阵列113位于长波红外中继成像镜111的像面处。长波红外光由窗片115射入长波红外冷屏光阑112中进行杂散光抑制后,在长波红外焦平面阵列113进行成像。在本发明实施例中,中波红外面阵探测器焦平面阵列的材料包括但不限于HgCdTe、InSb,长波红外面阵探测器焦平面阵列的材料包括但不限于HgCdTe、二类超晶格。The outside of the medium-wave infrared array detector and the long-wave infrared array detector are both equipped with a Dewar flask 114 with a window 115, and the inside of the medium-wave infrared array detector includes a medium-wave infrared cold screen diaphragm 109 and a medium-wave infrared focal plane array 110. The medium-wave infrared cold screen diaphragm 109 is located at the image focal plane of the medium-wave infrared relay imaging mirror 108 and coincides with the exit pupil of the medium-wave infrared relay imaging mirror 108. The medium-wave infrared focal plane array 110 is located at the image plane of the medium-wave infrared relay imaging mirror 108. After the medium-wave infrared light is injected into the medium-wave infrared cold screen diaphragm 109 by the window 115 to suppress stray light, it is imaged in the medium-wave infrared focal plane array 110. The inside of the long-wave infrared array detector includes a long-wave infrared cold screen diaphragm 112 and a long-wave infrared focal plane array 113. The long-wave infrared cold screen aperture 112 is located at the image focal plane of the long-wave infrared relay imaging mirror 111 and coincides with the exit pupil of the long-wave infrared relay imaging mirror 111, and the long-wave infrared focal plane array 113 is located at the image plane of the long-wave infrared relay imaging mirror 111. After the long-wave infrared light is injected into the long-wave infrared cold screen aperture 112 by the window 115 to suppress stray light, it is imaged in the long-wave infrared focal plane array 113. In the embodiment of the present invention, the material of the focal plane array of the medium-wave infrared array detector includes but is not limited to HgCdTe and InSb, and the material of the focal plane array of the long-wave infrared array detector includes but is not limited to HgCdTe and type II superlattice.
图2示出了根据本发明实施例提供的红外光谱调制器件的结构。FIG. 2 shows the structure of an infrared spectrum modulation device provided according to an embodiment of the present invention.
如图2所示,本发明实施例提供的红外光谱调制器件106包括阵列化排布的超表面单元1061,每个超表面单元1061经中波红外中继成像镜108或长波红外中继成像镜111后分别对应中波红外焦平面阵列110或长波红外焦平面阵列113的一个像元。一个超表面单元1061由具有亚波长周期的微纳结构阵列1062构成,不同的超表面单元1061具有不同的结构参数,从而实现不同的光谱透过率调制。为了提高光谱重建的精度,需要各个超表面单元1061的光谱透过率函数之间具有低相关系数,相关系数指两个光谱透过率函数之间的协方差分别除以各自的标准差,优选使各个超表面单元1061的光谱透过率函数之间的相关系数的绝对值小于0.1。As shown in FIG2 , the infrared spectrum modulation device 106 provided in an embodiment of the present invention includes arrayed metasurface units 1061, each of which corresponds to a pixel of a medium-wave infrared focal plane array 110 or a long-wave infrared focal plane array 113 after being passed through a medium-wave infrared relay imaging mirror 108 or a long-wave infrared relay imaging mirror 111. A metasurface unit 1061 is composed of a micro-nanostructure array 1062 with a sub-wavelength period, and different metasurface units 1061 have different structural parameters, thereby achieving different spectral transmittance modulations. In order to improve the accuracy of spectral reconstruction, it is necessary to have a low correlation coefficient between the spectral transmittance functions of each metasurface unit 1061. The correlation coefficient refers to the covariance between two spectral transmittance functions divided by their respective standard deviations. It is preferred that the absolute value of the correlation coefficient between the spectral transmittance functions of each metasurface unit 1061 is less than 0.1.
其中,单个超表面单元1061上的微纳结构阵列1062中各微纳结构单元的设计原则是需要满足四重旋转对称性,以保证光谱调制特性与偏振无关,即对各偏振态具有相同的光谱调制特性,从而保证偏振探测的有效性。因此对微纳结构阵列1062的设计包括但不限于为圆形孔阵列、方形孔阵列、直角菱形孔阵列、十字形孔阵列、X形孔阵列、圆环孔阵列等具有四重旋转对称性的结构。通过调节微纳结构阵列1062的阵列周期及各微纳结构单元的直径、边长、厚度等结构参数,实现波段中不同的光谱透过率调制。为使各个超表面单元1061的光谱透过率函数之间具有低相关系数,在本发明实施例中,优选使每两个相邻的超表面单元1061的微纳结构阵列1062均不同。Among them, the design principle of each micro-nano structure unit in the micro-nano structure array 1062 on a single super surface unit 1061 is to meet the four-fold rotational symmetry to ensure that the spectral modulation characteristics are independent of polarization, that is, the spectral modulation characteristics are the same for each polarization state, thereby ensuring the effectiveness of polarization detection. Therefore, the design of the micro-nano structure array 1062 includes but is not limited to structures with four-fold rotational symmetry such as a circular hole array, a square hole array, a right-angled diamond hole array, a cross hole array, an X-shaped hole array, and a ring hole array. By adjusting the array period of the micro-nano structure array 1062 and the structural parameters such as the diameter, side length, and thickness of each micro-nano structure unit, different spectral transmittance modulations in the band are achieved. In order to make the spectral transmittance functions of each super surface unit 1061 have a low correlation coefficient, in an embodiment of the present invention, it is preferred that the micro-nano structure arrays 1062 of every two adjacent super surface units 1061 are different.
不少于两个的相邻超表面单元1061组成一个光谱调制单元,再将光谱调制单元阵列化重复得到红外光谱调制器件106。在一具体实施方式中,设中波红外焦平面阵列110或长波红外焦平面阵列113的阵列数目为M×N,则超表面单元1061的数目也为M×N。将不同且相邻的m×n个超表面单元1061构成一个光谱调制单元,此时整个红外光谱调制器件106包含(M/m)×(N/n)个光谱调制单元,每个光谱调制单元对应空间的一个目标物点。通过在一个红外光谱调制器件106上集成了(M/m)×(N/n)个光谱调制单元,从而实现快照式光谱成像,同时还具有微型化、轻量化的优势。No less than two adjacent metasurface units 1061 constitute a spectral modulation unit, and then the spectral modulation units are arrayed and repeated to obtain an infrared spectral modulation device 106. In a specific embodiment, assuming that the number of arrays of the medium-wave infrared focal plane array 110 or the long-wave infrared focal plane array 113 is M×N, the number of metasurface units 1061 is also M×N. Different and adjacent m×n metasurface units 1061 constitute a spectral modulation unit. At this time, the entire infrared spectral modulation device 106 includes (M/m)×(N/n) spectral modulation units, and each spectral modulation unit corresponds to a target object point in space. By integrating (M/m)×(N/n) spectral modulation units on an infrared spectral modulation device 106, snapshot spectral imaging is achieved, and it also has the advantages of miniaturization and lightweight.
图3示出了根据本发明实施例提供的光谱调制单元的超表面组合方式。FIG. 3 shows a metasurface assembly method of a spectral modulation unit provided according to an embodiment of the present invention.
在单一光谱调制单元中使用多种类型的超表面单元1061构成一个光谱调制单元。典型的,包括4种、8种、9种、16种类型的超表面单元1061构成一个光谱调制单元时,其排列方式可以是如图3所示。In a single spectrum modulation unit, multiple types of metasurface units 1061 are used to form a spectrum modulation unit. Typically, when 4, 8, 9, or 16 types of metasurface units 1061 form a spectrum modulation unit, their arrangement may be as shown in FIG. 3 .
其中,4通道光谱调制单元的光谱分辨率最低,8通道光谱调制单元的光谱分辨率将提高2倍,9通道光谱调制单元的光谱分辨率将提高9/4倍,16通道光谱调制单元的光谱分辨率将提高4倍。然而,16通道光谱调制单元的空间分辨率是最低的,9通道光谱调制单元的空间分辨率是其16/9倍,8通道光谱调制单元的空间分辨率是其2倍,4通道光谱调制单元的空间分辨率是其4倍。Among them, the spectral resolution of the 4-channel spectral modulation unit is the lowest, the spectral resolution of the 8-channel spectral modulation unit will be increased by 2 times, the spectral resolution of the 9-channel spectral modulation unit will be increased by 9/4 times, and the spectral resolution of the 16-channel spectral modulation unit will be increased by 4 times. However, the spatial resolution of the 16-channel spectral modulation unit is the lowest, the spatial resolution of the 9-channel spectral modulation unit is 16/9 times, the spatial resolution of the 8-channel spectral modulation unit is 2 times, and the spatial resolution of the 4-channel spectral modulation unit is 4 times.
设一个光谱调制单元中包含的超表面单元1061的个数m×n=L,则对于每一个光谱调制单元来说,其测量矩阵T为:Assuming that the number of metasurface units 1061 contained in a spectral modulation unit is m×n=L, then for each spectral modulation unit, its measurement matrix T is:
; ;
光谱调制单元测量矩阵共有L行,表示其共包含L个超表面单元1061,其每一行代表一个超表面单元1061的光谱透过率,K代表波长的采样点数,表示第L个超表面单元在第K个波长采样点处的透过率。The spectral modulation unit measurement matrix has a total of L rows, indicating that it contains a total of L metasurface units 1061, each row of which represents the spectral transmittance of a metasurface unit 1061, K represents the number of sampling points of the wavelength, It represents the transmittance of the Lth metasurface unit at the Kth wavelength sampling point.
对于光谱重建,一个光谱调制单元的测量方程可以表示为:For spectral reconstruction, the measurement equation of a spectral modulation unit can be expressed as:
; ;
表示第L个超表面单元的测量光强,表示第K个波长采样点处的光谱强度。由于每一个光谱调制单元中超表面单元1061的个数远小于波长采样点数(L<<K),因此测量方程是一个欠定线性方程组,需结合待测光谱的先验信息进行最优化求解,才能实现片上高分辨率的光谱重建。为了提高光谱重建的精度,各个超表面单元1061的光谱透过率函数之间的相关系数的绝对值小于0.1,也就是测量矩阵Τ的每个行向量与其他各行向量的相关性尽量小,从而保证高的光谱分辨率。 represents the measured light intensity of the Lth metasurface unit, Represents the spectral intensity at the Kth wavelength sampling point. Since the number of metasurface units 1061 in each spectral modulation unit is much smaller than the number of wavelength sampling points (L<<K), the measurement equation is an underdetermined linear equation system, which needs to be optimized and solved in combination with the prior information of the spectrum to be measured in order to achieve high-resolution spectral reconstruction on the chip. In order to improve the accuracy of spectral reconstruction, the absolute value of the correlation coefficient between the spectral transmittance functions of each metasurface unit 1061 is less than 0.1, that is, the correlation between each row vector of the measurement matrix T and other row vectors is as small as possible, thereby ensuring high spectral resolution.
对于一个光谱调制单元中的任一超表面单元1061而言,在超表面单元1061附近选取任意不少于两个的具有不同光谱透过率的超表面单元1061构成一个光谱调制单元,即通过相邻超表面单元1061的动态组合构建一个任意形状的光谱调制单元进行光谱测量,且相邻的光谱调制单元之间随机共用相同的超表面单元1061,即相邻的光谱调制单元之间根据实际需要,可以共用相同的超表面单元1061,也可以不共用相同的超表面单元1061。通过合理选择超表面单元1061的个数以及光谱调制单元的形状的配置模式、根据实际情况合理选择相邻的光谱调制单元之间是否需要共用相同的超表面单元1061,实现对超表面单元1061的多模式空分复用,进而在保证重建光谱分辨率的同时降低光谱透过率的多重共线性。For any metasurface unit 1061 in a spectrum modulation unit, any two or more metasurface units 1061 with different spectral transmittances are selected near the metasurface unit 1061 to form a spectrum modulation unit, that is, a spectrum modulation unit of any shape is constructed by dynamically combining adjacent metasurface units 1061 to perform spectrum measurement, and adjacent spectrum modulation units randomly share the same metasurface unit 1061, that is, adjacent spectrum modulation units may share the same metasurface unit 1061 or may not share the same metasurface unit 1061 according to actual needs. By reasonably selecting the number of metasurface units 1061 and the configuration mode of the shape of the spectrum modulation unit, and reasonably selecting whether adjacent spectrum modulation units need to share the same metasurface unit 1061 according to actual conditions, multi-mode space division multiplexing of the metasurface unit 1061 is realized, thereby reducing the multicollinearity of the spectrum transmittance while ensuring the resolution of the reconstructed spectrum.
图4是根据本发明实施例提供的超表面单元1061的配置模式。FIG. 4 is a configuration diagram of the metasurface unit 1061 according to an embodiment of the present invention.
如图4所示,以一个m×n=4×4阵列的超表面单元1061构成的一个光谱调制区域为例,一个光谱调制区域共有16个具有不同光谱透过率的超表面单元1061,此时可以以4×4、3×3、2×4、4×2、2×2等多种超表面单元1061排列方式构成一个光谱调制单元。As shown in Figure 4, taking a spectral modulation area composed of an m×n=4×4 array of metasurface units 1061 as an example, a spectral modulation area has a total of 16 metasurface units 1061 with different spectral transmittances. At this time, a spectral modulation unit can be formed by arranging multiple metasurface units 1061 such as 4×4, 3×3, 2×4, 4×2, 2×2, etc.
当使用4×4个超表面单元1061构成一个光谱调制单元时,仅有1种配置模式;When 4×4 metasurface units 1061 are used to form a spectral modulation unit, there is only one configuration mode;
当使用3×3个超表面单元1061构成一个光谱调制单元时,共有16种配置模式;When 3×3 metasurface units 1061 are used to form a spectral modulation unit, there are 16 configuration modes;
当使用2×4个超表面单元1061构成一个光谱调制单元时,共有2种配置模式;When 2×4 metasurface units 1061 are used to form a spectral modulation unit, there are two configuration modes;
当使用4×2个超表面单元1061构成一个光谱调制单元时,共有2种配置模式;When 4×2 metasurface units 1061 are used to form a spectral modulation unit, there are two configuration modes;
当使用2×2个超表面单元1061构成一个光谱调制单元时,共有4种配置模式。When 2×2 metasurface units 1061 are used to form a spectral modulation unit, there are a total of 4 configuration modes.
当应用需求要求系统具有较高的光谱分辨率时,可以采用4×4阵列配置模式;当应用需求要求系统具有较高的空间分辨率时,可以采用2×2阵列配置模式;对于应用的目标场景在一个图像维度上为高频的目标信息而在另一个图像维度上为低频的背景信息时,可以采用2×4阵列或4×2阵列的配置模式。When the application requires the system to have a higher spectral resolution, a 4×4 array configuration mode can be used; when the application requires the system to have a higher spatial resolution, a 2×2 array configuration mode can be used; for the application target scene, when it is high-frequency target information in one image dimension and low-frequency background information in another image dimension, a 2×4 array or 4×2 array configuration mode can be used.
由于不同的超表面单元1061具有不同的光谱调制特性,因此整个红外光谱调制器件106在不同波长下具有不同的空间调制特性。为了提高空间图像重建的精度,各波长处超表面阵列透过率的空间分布之间的相关性尽量小,也需要测量矩阵Τ的每个列向量与其他各列向量的相关性尽量小,从而保证高的图像分辨率,即在本发明实施例中,同样使每两个相邻的超表面单元1061的微纳结构阵列1062均不同。Since different metasurface units 1061 have different spectral modulation characteristics, the entire infrared spectrum modulation device 106 has different spatial modulation characteristics at different wavelengths. In order to improve the accuracy of spatial image reconstruction, the correlation between the spatial distribution of metasurface array transmittance at each wavelength is as small as possible, and it is also necessary to measure that the correlation between each column vector of the matrix T and other column vectors is as small as possible, so as to ensure high image resolution, that is, in the embodiment of the present invention, the micro-nano structure arrays 1062 of every two adjacent metasurface units 1061 are also different.
图5和图6分别示出了本发明实施例提供的三维图谱数据立方体矢量化和光谱编码孔径立方体矢量对角化的过程。FIG. 5 and FIG. 6 respectively illustrate the process of vectorization of the three-dimensional atlas data cube and the process of vector diagonalization of the spectrally coded aperture cube provided in the embodiments of the present invention.
对于空间图像重建,在光谱编码孔径算法的过程中,首先将待复原的三维图谱数据立方体矢量化,即将每个单波长下的二维图像阵列逐列顺序拼接成一个向量,各个单波长的向量之间再串联拼接成一个更长的向量,记为向量X(M,N,K),过程如图5所示,图中的、、和表示不同的波长。其中,M和N表示单一二维图像的尺寸,K表示二维图像的光谱波长个数,表示第K个波长对应的二维图像。For spatial image reconstruction, in the process of spectrally coded aperture algorithm, the 3D atlas data cube to be restored is first vectorized, that is, the 2D image array under each single wavelength is sequentially spliced into a vector column by column, and the vectors of each single wavelength are then serially spliced into a longer vector, denoted as vector X(M, N, K). The process is shown in Figure 5. , , and Indicates different wavelengths. Among them, M and N represent the size of a single two-dimensional image, K represents the number of spectral wavelengths of the two-dimensional image, Represents the two-dimensional image corresponding to the Kth wavelength.
测量矩阵H是由光谱编码孔径立方体分解为各单波长下的编码孔径图案,并将各单波长下的编码孔径图案对角化,然后在水平方向上按波长顺序排列组成,过程如图6所示。每个对角线图案的对角线元素由其所对应的单波长下的编码孔径图案矢量化元素生成。The measurement matrix H is decomposed from the spectrally coded aperture cube into coded aperture patterns at each single wavelength, and the coded aperture patterns at each single wavelength are The diagonal pattern is then arranged in order of wavelengths in the horizontal direction, as shown in Figure 6. The diagonal elements of each diagonal pattern are generated by the vectorized elements of the coded aperture pattern corresponding to the single wavelength.
测量矢量数据Y是由探测器得到的二维测量值逐列顺序拼接矢量化得到。The measurement vector data Y is the two-dimensional measurement value obtained by the detector. The vectorization is obtained by sequentially concatenating columns.
因此,整个超表面光谱成像芯片的测量方程Y=HX可以表示为:Therefore, the measurement equation Y=HX of the entire metasurface spectral imaging chip can be expressed as:
; ;
由于中波红外焦平面阵列110或长波红外焦平面阵列113的阵列数目远小于三维图谱数据立方体的采样点数(M×N<<M×N×K),因此测量方程是一个欠定线性方程组,需要使用大量的先验知识进行最优化求解。Since the number of arrays of the medium-wave infrared focal plane array 110 or the long-wave infrared focal plane array 113 is much smaller than the number of sampling points of the three-dimensional atlas data cube (M×N<<M×N×K), the measurement equation is an underdetermined linear equation system, which requires a large amount of prior knowledge for optimization solution.
为避免使用大量的先验知识,提升空间图像重建的效果,本发明实施例基于本发明实施例提供中长波红外光谱调制快照成像光谱仪,还提出两种光谱编码孔径图谱重建方法,可以在不损失光谱分辨率的前提下提高图像重建的空间分辨率。In order to avoid using a large amount of prior knowledge and improve the effect of spatial image reconstruction, the embodiment of the present invention provides a medium- and long-wave infrared spectral modulation snapshot imaging spectrometer based on the embodiment of the present invention, and also proposes two spectrally coded aperture map reconstruction methods, which can improve the spatial resolution of image reconstruction without losing spectral resolution.
具体实施例1:Specific embodiment 1:
本发明实施例提供的中波红外的光谱编码孔径图谱重建方法具体包括以下内容:The method for reconstructing a spectrally coded aperture spectrum of a medium-wave infrared provided by an embodiment of the present invention specifically includes the following contents:
获取中波红外焦平面阵列110得到的所有的二维测量值。All two-dimensional measurements obtained by the MWIR focal plane array 110 are acquired.
在每个波长下,将光谱调制单元中的每个超表面单元1061视为一个中波红外孔径编码板单元,此时光谱调制单元阵列视为一个中波红外空间孔径编码板,此时每一个波长下的中波红外空间孔径编码板都具有各自的空间调制特性,因此对于整个光谱波段来说,整个光谱探测单元阵列为一个光谱调制的中波红外空间孔径编码板。At each wavelength, each metasurface unit 1061 in the spectral modulation unit is regarded as a medium-wave infrared aperture coding plate unit, and the spectral modulation unit array is regarded as a medium-wave infrared spatial aperture coding plate. At this time, the medium-wave infrared spatial aperture coding plate at each wavelength has its own spatial modulation characteristics. Therefore, for the entire spectral band, the entire spectral detection unit array is a spectrally modulated medium-wave infrared spatial aperture coding plate.
将中波红外空间孔径编码板对应中波红外焦平面阵列110获取的二维测量值逐列顺序分别拼接成一维向量,得到中波红外测量矢量。The two-dimensional measurement values obtained by the medium-wave infrared spatial aperture code plate corresponding to the medium-wave infrared focal plane array 110 are spliced into one-dimensional vectors in order, and the medium-wave infrared measurement vector is obtained. .
将中波红外测量矢量输入已经训练好的自编码器神经网络中对应得到中波红外三维图谱矢量。The MWIR measurement vector Input the trained autoencoder neural network to obtain the corresponding medium-wave infrared three-dimensional atlas vector .
在本发明实施例中,为避免引入过多的先验知识增加计算量,通过深度学习神经网络进行最优化求解。通过将光谱孔径编码分别得到中波红外测量矢量,再通过神经网络解码进行三维图谱重构。优选采用已训练好的图谱重构自编码器神经网络分别对中波红外测量矢量进行运算预测,得到相应的中波红外三维图谱矢量。In the embodiment of the present invention, in order to avoid introducing too much prior knowledge and increasing the amount of calculation, a deep learning neural network is used to perform an optimization solution. The spectral aperture coding is used to obtain the medium-wave infrared measurement vector , and then reconstruct the three-dimensional map through neural network decoding. It is preferred to use the trained map reconstruction autoencoder neural network to respectively decode the medium-wave infrared measurement vector Perform calculation prediction to obtain the corresponding medium-wave infrared three-dimensional spectrum vector .
图7示出了本发明实施例提供的图谱重构自编码器神经网络的网络结构。FIG. 7 shows the network structure of the graph reconstruction autoencoder neural network provided by an embodiment of the present invention.
其中,低维离散化的中波红外测量矢量输入如图7所示的图谱重构自编码器神经网络中得到高维的中波红外三维图谱矢量,通过优化调整重构网络的参数使得重构图谱不断逼近原始图谱。图谱重构网络是一个一维输入、一维输出的多层感知机,由多层隐藏层(即图7中的H)全连接而成。对于图谱重构网络而言,输入数据的长度较短,输出数据由于需要较高的光谱分辨率其长度较长。实际优化过程中,首先是正向传播得到重构图谱的预测值,然后计算损失值及其对神经网络参数的梯度,根据该梯度由反向传播算法更新网络参数。重复这个过程使得损失值下降接近零,从而实现网络的最优化。Among them, the low-dimensional discretized medium-wave infrared measurement vector Input the spectrum reconstruction autoencoder neural network shown in Figure 7 to obtain a high-dimensional medium-wave infrared three-dimensional spectrum vector , by optimizing and adjusting the parameters of the reconstruction network, the reconstructed spectrum is constantly approaching the original spectrum. The spectrum reconstruction network is a multi-layer perceptron with one-dimensional input and one-dimensional output, which is fully connected by multiple hidden layers (i.e., H in Figure 7). For the spectrum reconstruction network, the length of the input data is short, and the length of the output data is long due to the need for higher spectral resolution. In the actual optimization process, the predicted value of the reconstructed spectrum is first obtained by forward propagation, and then the loss value and its gradient to the neural network parameters are calculated. According to the gradient, the network parameters are updated by the back propagation algorithm. Repeating this process makes the loss value drop close to zero, thereby achieving the optimization of the network.
将中波红外三维图谱矢量根据波长顺序矩阵化恢复成中波红外三维图谱立方体。The mid-wave infrared three-dimensional atlas vector The matrix is restored into a medium-wave infrared three-dimensional spectrum cube according to the wavelength order.
具体实施例2:Specific embodiment 2:
本发明实施例提供的长波红外的光谱编码孔径图谱重建方法具体包括以下内容:The method for reconstructing a long-wave infrared spectral coded aperture spectrum provided by an embodiment of the present invention specifically includes the following contents:
获取长波红外焦平面阵列113得到的所有的二维测量值;Obtain all two-dimensional measurements obtained by the long-wave infrared focal plane array 113;
在每个波长下,将光谱调制单元中的每个超表面单元1061视为一个长波红外孔径编码板单元,此时光谱调制单元视为一个长波红外空间孔径编码板,此时每一个波长下的长波红外空间孔径编码板都具有各自的空间调制特性,因此对于整个光谱波段来说,整个长波红外光谱探测单元阵列为一个光谱调制的长波红外空间孔径编码板。At each wavelength, each metasurface unit 1061 in the spectral modulation unit is regarded as a long-wave infrared aperture coding plate unit, and the spectral modulation unit is regarded as a long-wave infrared spatial aperture coding plate. At this time, the long-wave infrared spatial aperture coding plate at each wavelength has its own spatial modulation characteristics. Therefore, for the entire spectral band, the entire long-wave infrared spectral detection unit array is a spectrally modulated long-wave infrared spatial aperture coding plate.
将长波红外空间孔径编码板对应长波红外焦平面阵列113获取的二维测量值逐列顺序分别拼接成一维向量,得到长波红外测量矢量。The two-dimensional measurement values obtained by the long-wave infrared spatial aperture code plate corresponding to the long-wave infrared focal plane array 113 are spliced into a one-dimensional vector in sequence column by column to obtain a long-wave infrared measurement vector .
将长波红外测量矢量输入已经训练好的自编码器神经网络中对应得到长波红外三维图谱矢量。The long-wave infrared measurement vector Input the trained autoencoder neural network to obtain the corresponding long-wave infrared three-dimensional atlas vector .
在本具体实施例中的自编码器神经网络采用具体实施例1中的图谱重构自编码器神经网络对长波红外测量矢量进行运算预测,得到长波红外三维图谱矢量,此处不再赘述。The autoencoder neural network in this specific embodiment uses the spectrum reconstruction autoencoder neural network in specific embodiment 1 to measure the long-wave infrared vector Perform calculation prediction to obtain the long-wave infrared three-dimensional map vector , I will not go into details here.
将长波红外三维图谱矢量根据波长顺序矩阵化恢复成长波红外三维图谱立方体。The long-wave infrared three-dimensional atlas vector The long-wave infrared three-dimensional atlas cube is restored by matrixing the wavelength sequence.
中长波红外光谱调制快照成像光谱仪通过基于超表面的红外光谱调制技术和带有冷屏光阑的面阵探测器的有机结合,在实现仪器的轻小型化的同时实现信息维度的提升。轻小型静态化测量可以在恶劣的环境下提高信息探测的稳定性、可靠性和实时性,带有冷屏光阑的面阵探测器可以进一步抑制背景噪声、提高探测距离并且获取细节特征,软硬协同最终获得更高的光学性能、更小的光学系统体积和更强的环境适应性,从而解决传统光电探测设备功能相对单一、系统复杂、体积大、集成难度大、信息融合困难以及协同性差等问题。在基于超表面的红外光谱调制中采用基于多模式空分复用提升光谱分辨率,基于光谱编码孔径和神经网络提升空间分辨率,突破探测器有限空间带宽积下空间信息与光谱信息的分辨率的制约,实现图谱信息的最大化提取。The medium- and long-wave infrared spectral modulation snapshot imaging spectrometer achieves the improvement of information dimension while realizing the lightness and miniaturization of the instrument through the organic combination of infrared spectral modulation technology based on metasurface and array detector with cold screen aperture. Lightweight and small static measurement can improve the stability, reliability and real-time performance of information detection in harsh environments. The array detector with cold screen aperture can further suppress background noise, increase detection distance and obtain detailed features. The synergy of software and hardware ultimately achieves higher optical performance, smaller optical system volume and stronger environmental adaptability, thus solving the problems of relatively single function, complex system, large volume, difficult integration, difficult information fusion and poor synergy of traditional photoelectric detection equipment. In the infrared spectral modulation based on metasurface, the spectral resolution is improved based on multi-mode space division multiplexing, and the spatial resolution is improved based on spectral coding aperture and neural network, breaking through the resolution constraints of spatial information and spectral information under the limited spatial bandwidth product of the detector, and realizing the maximum extraction of spectral information.
应该理解,可以使用上面所示的各种形式的流程,重新排序、增加或删除步骤。例如,本发明公开中记载的各步骤可以并行地执行也可以顺序地执行也可以不同的次序执行,只要能够实现本发明公开的技术方案所期望的结果,本文在此不进行限制。It should be understood that the various forms of processes shown above can be used to reorder, add or delete steps. For example, the steps described in the disclosure of the present invention can be performed in parallel, sequentially or in different orders, as long as the desired results of the technical solution disclosed in the present invention can be achieved, and this document does not limit this.
上述具体实施方式,并不构成对本发明保护范围的限制。本领域技术人员应该明白的是,根据设计要求和其他因素,可以进行各种修改、组合、子组合和替代。任何在本发明的精神和原则之内所作的修改、等同替换和改进等,均应包含在本发明保护范围之内。The above specific implementations do not constitute a limitation on the protection scope of the present invention. It should be understood by those skilled in the art that various modifications, combinations, sub-combinations and substitutions can be made according to design requirements and other factors. Any modification, equivalent substitution and improvement made within the spirit and principle of the present invention should be included in the protection scope of the present invention.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202410561614.0A CN118129907B (en) | 2024-05-08 | 2024-05-08 | Medium-long wave infrared spectrum modulation snapshot imaging spectrometer and spectrum reconstruction method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202410561614.0A CN118129907B (en) | 2024-05-08 | 2024-05-08 | Medium-long wave infrared spectrum modulation snapshot imaging spectrometer and spectrum reconstruction method |
Publications (2)
Publication Number | Publication Date |
---|---|
CN118129907A CN118129907A (en) | 2024-06-04 |
CN118129907B true CN118129907B (en) | 2024-09-20 |
Family
ID=91240794
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202410561614.0A Active CN118129907B (en) | 2024-05-08 | 2024-05-08 | Medium-long wave infrared spectrum modulation snapshot imaging spectrometer and spectrum reconstruction method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN118129907B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN119374723B (en) * | 2024-12-27 | 2025-06-03 | 国科大杭州高等研究院 | Focus plane polarization detector based on the collaborative design of metasurface and pixel table |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117490843A (en) * | 2023-11-10 | 2024-02-02 | 哈尔滨工业大学 | A computational visible-near infrared spectrum imaging chip based on metasurfaces |
Family Cites Families (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AUPQ684400A0 (en) * | 2000-04-11 | 2000-05-11 | Telstra R & D Management Pty Ltd | A gradient based training method for a support vector machine |
DE102010014775A1 (en) * | 2010-04-13 | 2011-10-13 | Vivantum Gmbh | Apparatus and method for determining a biological, chemical and / or physical parameter in living biological tissue |
US20120327410A1 (en) * | 2011-06-23 | 2012-12-27 | Cvg Management Corporation | Non-contact media detection system using reflection/absoption spectroscopy |
CN102564589B (en) * | 2011-12-20 | 2013-07-24 | 华中科技大学 | Spectral characteristic detection identification method for multi-wave-band moving objects and device thereof |
CN103048045A (en) * | 2012-12-12 | 2013-04-17 | 中国科学院长春光学精密机械与物理研究所 | Long-wave infrared plane grating imaging spectrum system with function of eliminating spectral line bending |
CN103207452B (en) * | 2013-03-22 | 2015-09-30 | 中国科学院长春光学精密机械与物理研究所 | Two waveband is the confocal surface imaging system of light path altogether |
CA3204935A1 (en) * | 2014-05-01 | 2015-11-01 | Rebellion Photonics, Inc. | Dual-band divided-aperture infra-red spectral imaging system |
CN107026392B (en) * | 2017-05-15 | 2022-12-09 | 奥比中光科技集团股份有限公司 | VCSEL array light source |
CN107356336B (en) * | 2017-06-29 | 2019-03-19 | 华中光电技术研究所(中国船舶重工集团公司第七一七研究所) | A kind of small-sized LONG WAVE INFRARED imaging spectrometer and its imaging method |
CN114518168A (en) * | 2020-11-18 | 2022-05-20 | 北京与光科技有限公司 | Spectral imaging chip and its preparation method and information processing method |
CN112881308B (en) * | 2021-01-22 | 2022-04-08 | 浙江大学 | A Spectral Camera Based on Broad Spectral Coding and Deep Learning |
JP7704157B2 (en) * | 2021-01-27 | 2025-07-08 | 日本電信電話株式会社 | Imaging device and optical element |
CN113218506B (en) * | 2021-05-31 | 2022-04-22 | 中国科学院长春光学精密机械与物理研究所 | Infrared double-spectrum Fourier transform imaging spectrometer |
CN116337778A (en) * | 2021-12-23 | 2023-06-27 | 北京与光科技有限公司 | Spectroscopic device and terminal equipment with spectroscopic device and working method |
CN114353668A (en) * | 2021-12-30 | 2022-04-15 | 烟台睿创微纳技术股份有限公司 | Spectrum confocal displacement sensing probe and sensor |
CN116380241A (en) * | 2021-12-31 | 2023-07-04 | 北京与光科技有限公司 | Spectrometer |
CN116309139A (en) * | 2023-03-03 | 2023-06-23 | 西北工业大学 | Demosaicing method suitable for one-to-many infrared multispectral image |
-
2024
- 2024-05-08 CN CN202410561614.0A patent/CN118129907B/en active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117490843A (en) * | 2023-11-10 | 2024-02-02 | 哈尔滨工业大学 | A computational visible-near infrared spectrum imaging chip based on metasurfaces |
Non-Patent Citations (1)
Title |
---|
红外双谱段傅里叶变换成像光谱仪光学系统理论及关键技术研究;任俊;中国博士学位论文全文数据库 (工程科技Ⅱ辑);20220315;第3、5章 * |
Also Published As
Publication number | Publication date |
---|---|
CN118129907A (en) | 2024-06-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Brady et al. | Compressive imaging spectrometers using coded apertures | |
CN103471718B (en) | Hyperspectral imaging system and method based on sparse aperture compressing calculation correlation | |
JP2013535931A (en) | Reduced image acquisition time for compression imaging devices | |
CN103091258B (en) | A kind of multi-spectral imager based on liquid zoom technology | |
He et al. | Meta‐attention network based spectral reconstruction with snapshot near‐infrared metasurface | |
CN118129907B (en) | Medium-long wave infrared spectrum modulation snapshot imaging spectrometer and spectrum reconstruction method | |
CN204788661U (en) | Calculate many spectral imaging system based on compressed sensing | |
CN103913229B (en) | Coding template multi-target active imaging spectrum system and method | |
CN110108358A (en) | A kind of high spectrum imaging method and device | |
CN118129906B (en) | Snapshot polarization imaging spectrometer based on metasurface and polarization spectrum reconstruction method | |
CN106872035A (en) | Quantum dot light spectrum imaging system | |
CN109781260B (en) | Ultra-compact snapshot type polarization spectrum imaging detection device and detection method | |
CN115307733A (en) | A space-dimensional encoding spectral polarization integrated imaging system and its design method | |
CN103916600B (en) | Coding template multi-target super-resolution imaging system and method | |
CN108169807B (en) | A kind of integrated form short-wave infrared optical imaging system | |
CN107014491B (en) | Spectral measurement system and method based on scattering principle | |
CN114659634A (en) | Micro-snapshot compressed spectral imaging detection device and detection method | |
CN105547477A (en) | A polarization interference imaging spectroscopy system and imaging method thereof | |
CN107436194A (en) | A kind of high light flux real time spectrum imaging device | |
CN106908147A (en) | A DOE-based optical path of CTIS system | |
US10446600B2 (en) | Imaging system and imaging device having a random optical filter array | |
CN110632000B (en) | Dynamic double-arm multi-channel staring spectrum imaging system based on compressed sensing | |
CN110736539B (en) | A gaze-based spectral imaging system based on compressed sensing | |
CN118129908B (en) | Polarization imaging spectrometer based on polarization grating spectral and polarization spectrum reconstruction method | |
Li et al. | Snapshot miniature optically replicating and remapping imaging spectropolarimeter (MINI-ORRISp): design, calibration and performance |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |