CN118108790B - Preparation and application of whey protein-derived hypoglycemic peptide with GLP-1 receptor agonist activity - Google Patents
Preparation and application of whey protein-derived hypoglycemic peptide with GLP-1 receptor agonist activity Download PDFInfo
- Publication number
- CN118108790B CN118108790B CN202410341330.0A CN202410341330A CN118108790B CN 118108790 B CN118108790 B CN 118108790B CN 202410341330 A CN202410341330 A CN 202410341330A CN 118108790 B CN118108790 B CN 118108790B
- Authority
- CN
- China
- Prior art keywords
- glp
- peptide
- mice
- seq
- insulin
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 108090000765 processed proteins & peptides Proteins 0.000 title claims abstract description 122
- 230000000694 effects Effects 0.000 title abstract description 72
- 102000007544 Whey Proteins Human genes 0.000 title abstract description 23
- 108010046377 Whey Proteins Proteins 0.000 title abstract description 23
- 235000021119 whey protein Nutrition 0.000 title abstract description 23
- 230000002218 hypoglycaemic effect Effects 0.000 title abstract description 20
- 229940089838 Glucagon-like peptide 1 receptor agonist Drugs 0.000 title description 15
- 239000003877 glucagon like peptide 1 receptor agonist Substances 0.000 title description 10
- 238000002360 preparation method Methods 0.000 title description 5
- 239000003814 drug Substances 0.000 claims abstract description 8
- 229940079593 drug Drugs 0.000 claims abstract description 5
- 206010012601 diabetes mellitus Diseases 0.000 claims description 9
- 208000008589 Obesity Diseases 0.000 claims description 8
- 235000020824 obesity Nutrition 0.000 claims description 8
- 208000031226 Hyperlipidaemia Diseases 0.000 claims description 5
- NOESYZHRGYRDHS-UHFFFAOYSA-N insulin Chemical compound N1C(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(NC(=O)CN)C(C)CC)CSSCC(C(NC(CO)C(=O)NC(CC(C)C)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CCC(N)=O)C(=O)NC(CC(C)C)C(=O)NC(CCC(O)=O)C(=O)NC(CC(N)=O)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CSSCC(NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2C=CC(O)=CC=2)NC(=O)C(CC(C)C)NC(=O)C(C)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2NC=NC=2)NC(=O)C(CO)NC(=O)CNC2=O)C(=O)NCC(=O)NC(CCC(O)=O)C(=O)NC(CCCNC(N)=N)C(=O)NCC(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC(O)=CC=3)C(=O)NC(C(C)O)C(=O)N3C(CCC3)C(=O)NC(CCCCN)C(=O)NC(C)C(O)=O)C(=O)NC(CC(N)=O)C(O)=O)=O)NC(=O)C(C(C)CC)NC(=O)C(CO)NC(=O)C(C(C)O)NC(=O)C1CSSCC2NC(=O)C(CC(C)C)NC(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CC(N)=O)NC(=O)C(NC(=O)C(N)CC=1C=CC=CC=1)C(C)C)CC1=CN=CN1 NOESYZHRGYRDHS-UHFFFAOYSA-N 0.000 abstract description 64
- DTHNMHAUYICORS-KTKZVXAJSA-N Glucagon-like peptide 1 Chemical compound C([C@@H](C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](C)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CCCCN)C(=O)NCC(=O)N[C@@H](CCCNC(N)=N)C(N)=O)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](CCCCN)NC(=O)[C@H](C)NC(=O)[C@H](C)NC(=O)[C@H](CCC(N)=O)NC(=O)CNC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)[C@H](CO)NC(=O)[C@H](CO)NC(=O)[C@@H](NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CO)NC(=O)[C@@H](NC(=O)[C@H](CC=1C=CC=CC=1)NC(=O)[C@@H](NC(=O)CNC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](C)NC(=O)[C@@H](N)CC=1N=CNC=1)[C@@H](C)O)[C@@H](C)O)C(C)C)C1=CC=CC=C1 DTHNMHAUYICORS-KTKZVXAJSA-N 0.000 abstract description 50
- 235000009200 high fat diet Nutrition 0.000 abstract description 44
- 210000004369 blood Anatomy 0.000 abstract description 40
- 239000008280 blood Substances 0.000 abstract description 40
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 abstract description 39
- 210000004027 cell Anatomy 0.000 abstract description 39
- 239000008103 glucose Substances 0.000 abstract description 39
- 208000001072 type 2 diabetes mellitus Diseases 0.000 abstract description 35
- 102000004877 Insulin Human genes 0.000 abstract description 32
- 108090001061 Insulin Proteins 0.000 abstract description 32
- 229940125396 insulin Drugs 0.000 abstract description 32
- 206010022489 Insulin Resistance Diseases 0.000 abstract description 29
- 108010086246 Glucagon-Like Peptide-1 Receptor Proteins 0.000 abstract description 24
- 230000028327 secretion Effects 0.000 abstract description 23
- 102000007446 Glucagon-Like Peptide-1 Receptor Human genes 0.000 abstract description 18
- 241000283690 Bos taurus Species 0.000 abstract description 16
- 230000029087 digestion Effects 0.000 abstract description 16
- 230000002496 gastric effect Effects 0.000 abstract description 16
- 229920002527 Glycogen Polymers 0.000 abstract description 12
- 229940096919 glycogen Drugs 0.000 abstract description 12
- 238000010521 absorption reaction Methods 0.000 abstract description 9
- 230000006372 lipid accumulation Effects 0.000 abstract description 8
- 150000002632 lipids Chemical class 0.000 abstract description 8
- 238000002474 experimental method Methods 0.000 abstract description 7
- 230000001737 promoting effect Effects 0.000 abstract description 7
- 210000003158 enteroendocrine cell Anatomy 0.000 abstract description 6
- 238000000338 in vitro Methods 0.000 abstract description 6
- 230000002195 synergetic effect Effects 0.000 abstract description 6
- 230000003213 activating effect Effects 0.000 abstract description 5
- 230000036541 health Effects 0.000 abstract description 5
- 210000003494 hepatocyte Anatomy 0.000 abstract description 5
- 235000013305 food Nutrition 0.000 abstract description 3
- 239000000463 material Substances 0.000 abstract description 3
- 235000013336 milk Nutrition 0.000 abstract description 3
- 239000008267 milk Substances 0.000 abstract description 3
- 210000004080 milk Anatomy 0.000 abstract description 3
- 208000024891 symptom Diseases 0.000 abstract description 3
- 230000004580 weight loss Effects 0.000 abstract description 3
- 235000020604 functional milk Nutrition 0.000 abstract description 2
- 238000010172 mouse model Methods 0.000 abstract description 2
- 102100025101 GATA-type zinc finger protein 1 Human genes 0.000 abstract 2
- 101710198884 GATA-type zinc finger protein 1 Proteins 0.000 abstract 2
- 239000002994 raw material Substances 0.000 abstract 1
- 230000001105 regulatory effect Effects 0.000 abstract 1
- 102000004196 processed proteins & peptides Human genes 0.000 description 64
- 241000699670 Mus sp. Species 0.000 description 56
- 101800000224 Glucagon-like peptide 1 Proteins 0.000 description 48
- 102100040918 Pro-glucagon Human genes 0.000 description 48
- 108010067722 Dipeptidyl Peptidase 4 Proteins 0.000 description 43
- 102100025012 Dipeptidyl peptidase 4 Human genes 0.000 description 37
- 238000013218 HFD mouse model Methods 0.000 description 20
- 230000001965 increasing effect Effects 0.000 description 20
- 230000010030 glucose lowering effect Effects 0.000 description 19
- 230000000968 intestinal effect Effects 0.000 description 19
- 210000002966 serum Anatomy 0.000 description 19
- FWMNVWWHGCHHJJ-SKKKGAJSSA-N 4-amino-1-[(2r)-6-amino-2-[[(2r)-2-[[(2r)-2-[[(2r)-2-amino-3-phenylpropanoyl]amino]-3-phenylpropanoyl]amino]-4-methylpentanoyl]amino]hexanoyl]piperidine-4-carboxylic acid Chemical compound C([C@H](C(=O)N[C@H](CC(C)C)C(=O)N[C@H](CCCCN)C(=O)N1CCC(N)(CC1)C(O)=O)NC(=O)[C@H](N)CC=1C=CC=CC=1)C1=CC=CC=C1 FWMNVWWHGCHHJJ-SKKKGAJSSA-N 0.000 description 17
- 230000002401 inhibitory effect Effects 0.000 description 14
- 230000002829 reductive effect Effects 0.000 description 14
- 230000005764 inhibitory process Effects 0.000 description 13
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 10
- 125000003275 alpha amino acid group Chemical group 0.000 description 9
- 239000000243 solution Substances 0.000 description 9
- 230000007062 hydrolysis Effects 0.000 description 8
- 238000006460 hydrolysis reaction Methods 0.000 description 8
- MFFMDFFZMYYVKS-SECBINFHSA-N sitagliptin Chemical compound C([C@H](CC(=O)N1CC=2N(C(=NN=2)C(F)(F)F)CC1)N)C1=CC(F)=C(F)C=C1F MFFMDFFZMYYVKS-SECBINFHSA-N 0.000 description 8
- 229960004034 sitagliptin Drugs 0.000 description 8
- 230000002255 enzymatic effect Effects 0.000 description 7
- 238000000034 method Methods 0.000 description 7
- 108020004707 nucleic acids Proteins 0.000 description 7
- 102000039446 nucleic acids Human genes 0.000 description 7
- 150000007523 nucleic acids Chemical class 0.000 description 7
- 239000003531 protein hydrolysate Substances 0.000 description 7
- 102100032882 Glucagon-like peptide 1 receptor Human genes 0.000 description 6
- 239000012981 Hank's balanced salt solution Substances 0.000 description 6
- 102000007079 Peptide Fragments Human genes 0.000 description 6
- 108010033276 Peptide Fragments Proteins 0.000 description 6
- 230000009286 beneficial effect Effects 0.000 description 6
- 239000013604 expression vector Substances 0.000 description 6
- 239000000413 hydrolysate Substances 0.000 description 6
- 230000001976 improved effect Effects 0.000 description 6
- BDAGIHXWWSANSR-UHFFFAOYSA-N methanoic acid Natural products OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 description 6
- QKNYBSVHEMOAJP-UHFFFAOYSA-N 2-amino-2-(hydroxymethyl)propane-1,3-diol;hydron;chloride Chemical compound Cl.OCC(N)(CO)CO QKNYBSVHEMOAJP-UHFFFAOYSA-N 0.000 description 5
- 102000004190 Enzymes Human genes 0.000 description 5
- 108090000790 Enzymes Proteins 0.000 description 5
- 108010028554 LDL Cholesterol Proteins 0.000 description 5
- 239000002131 composite material Substances 0.000 description 5
- 230000007423 decrease Effects 0.000 description 5
- 230000007071 enzymatic hydrolysis Effects 0.000 description 5
- 238000006047 enzymatic hydrolysis reaction Methods 0.000 description 5
- 229940088598 enzyme Drugs 0.000 description 5
- 230000003914 insulin secretion Effects 0.000 description 5
- 239000000047 product Substances 0.000 description 5
- 239000000523 sample Substances 0.000 description 5
- 150000003626 triacylglycerols Chemical class 0.000 description 5
- 102000017011 Glycated Hemoglobin A Human genes 0.000 description 4
- 108010023302 HDL Cholesterol Proteins 0.000 description 4
- 241001465754 Metazoa Species 0.000 description 4
- 102000057297 Pepsin A Human genes 0.000 description 4
- 108090000284 Pepsin A Proteins 0.000 description 4
- 230000037396 body weight Effects 0.000 description 4
- HVYWMOMLDIMFJA-DPAQBDIFSA-N cholesterol Chemical compound C1C=C2C[C@@H](O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@H]([C@H](C)CCCC(C)C)[C@@]1(C)CC2 HVYWMOMLDIMFJA-DPAQBDIFSA-N 0.000 description 4
- 230000003247 decreasing effect Effects 0.000 description 4
- 108091005995 glycated hemoglobin Proteins 0.000 description 4
- 230000006872 improvement Effects 0.000 description 4
- 238000001727 in vivo Methods 0.000 description 4
- 210000004185 liver Anatomy 0.000 description 4
- 238000001819 mass spectrum Methods 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 230000004048 modification Effects 0.000 description 4
- 238000012986 modification Methods 0.000 description 4
- 229940111202 pepsin Drugs 0.000 description 4
- 239000008194 pharmaceutical composition Substances 0.000 description 4
- OSWFIVFLDKOXQC-UHFFFAOYSA-N 4-(3-methoxyphenyl)aniline Chemical compound COC1=CC=CC(C=2C=CC(N)=CC=2)=C1 OSWFIVFLDKOXQC-UHFFFAOYSA-N 0.000 description 3
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 3
- 241000605059 Bacteroidetes Species 0.000 description 3
- 108091005658 Basic proteases Proteins 0.000 description 3
- 241000192125 Firmicutes Species 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 150000001413 amino acids Chemical group 0.000 description 3
- 230000002596 correlated effect Effects 0.000 description 3
- 235000019253 formic acid Nutrition 0.000 description 3
- 235000011389 fruit/vegetable juice Nutrition 0.000 description 3
- 230000001771 impaired effect Effects 0.000 description 3
- 210000005229 liver cell Anatomy 0.000 description 3
- 108020004999 messenger RNA Proteins 0.000 description 3
- 230000004060 metabolic process Effects 0.000 description 3
- 239000008188 pellet Substances 0.000 description 3
- 239000012488 sample solution Substances 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 238000006467 substitution reaction Methods 0.000 description 3
- 239000006228 supernatant Substances 0.000 description 3
- 210000001519 tissue Anatomy 0.000 description 3
- 210000002237 B-cell of pancreatic islet Anatomy 0.000 description 2
- 101000946377 Bos taurus Alpha-lactalbumin Proteins 0.000 description 2
- 101001008231 Bos taurus Beta-lactoglobulin Proteins 0.000 description 2
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 2
- 102000000584 Calmodulin Human genes 0.000 description 2
- 108010041952 Calmodulin Proteins 0.000 description 2
- 108010016626 Dipeptides Proteins 0.000 description 2
- 102000051325 Glucagon Human genes 0.000 description 2
- 108060003199 Glucagon Proteins 0.000 description 2
- 208000002705 Glucose Intolerance Diseases 0.000 description 2
- 241000699666 Mus <mouse, genus> Species 0.000 description 2
- 108010019160 Pancreatin Proteins 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 210000000593 adipose tissue white Anatomy 0.000 description 2
- 125000000539 amino acid group Chemical group 0.000 description 2
- 210000000227 basophil cell of anterior lobe of hypophysis Anatomy 0.000 description 2
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 2
- 239000003833 bile salt Substances 0.000 description 2
- 229940093761 bile salts Drugs 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 229910052791 calcium Inorganic materials 0.000 description 2
- 239000011575 calcium Substances 0.000 description 2
- 230000009460 calcium influx Effects 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 2
- 230000001413 cellular effect Effects 0.000 description 2
- 235000012000 cholesterol Nutrition 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 238000006731 degradation reaction Methods 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 239000012153 distilled water Substances 0.000 description 2
- 210000002472 endoplasmic reticulum Anatomy 0.000 description 2
- 201000010063 epididymitis Diseases 0.000 description 2
- 230000037406 food intake Effects 0.000 description 2
- 235000012631 food intake Nutrition 0.000 description 2
- 230000030136 gastric emptying Effects 0.000 description 2
- 210000004051 gastric juice Anatomy 0.000 description 2
- MASNOZXLGMXCHN-ZLPAWPGGSA-N glucagon Chemical compound C([C@@H](C(=O)N[C@H](C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCSC)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H]([C@@H](C)O)C(O)=O)C(C)C)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@H](C)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CO)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)[C@H](CCCCN)NC(=O)[C@H](CO)NC(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CO)NC(=O)[C@@H](NC(=O)[C@H](CC=1C=CC=CC=1)NC(=O)[C@@H](NC(=O)CNC(=O)[C@H](CCC(N)=O)NC(=O)[C@H](CO)NC(=O)[C@@H](N)CC=1NC=NC=1)[C@@H](C)O)[C@@H](C)O)C1=CC=CC=C1 MASNOZXLGMXCHN-ZLPAWPGGSA-N 0.000 description 2
- 229960004666 glucagon Drugs 0.000 description 2
- 230000004190 glucose uptake Effects 0.000 description 2
- 230000002779 inactivation Effects 0.000 description 2
- 239000003112 inhibitor Substances 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 230000003834 intracellular effect Effects 0.000 description 2
- 244000005700 microbiome Species 0.000 description 2
- 238000012544 monitoring process Methods 0.000 description 2
- 235000021590 normal diet Nutrition 0.000 description 2
- 238000007410 oral glucose tolerance test Methods 0.000 description 2
- 229940055695 pancreatin Drugs 0.000 description 2
- 230000037361 pathway Effects 0.000 description 2
- 239000012466 permeate Substances 0.000 description 2
- 229920001184 polypeptide Polymers 0.000 description 2
- 239000013641 positive control Substances 0.000 description 2
- 201000009104 prediabetes syndrome Diseases 0.000 description 2
- 235000018102 proteins Nutrition 0.000 description 2
- 102000004169 proteins and genes Human genes 0.000 description 2
- 108090000623 proteins and genes Proteins 0.000 description 2
- 230000035945 sensitivity Effects 0.000 description 2
- 239000002356 single layer Substances 0.000 description 2
- 238000010532 solid phase synthesis reaction Methods 0.000 description 2
- 238000001228 spectrum Methods 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 230000004584 weight gain Effects 0.000 description 2
- 235000019786 weight gain Nutrition 0.000 description 2
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 1
- 102000014777 Adipokines Human genes 0.000 description 1
- 108010078606 Adipokines Proteins 0.000 description 1
- 101000741065 Bos taurus Beta-casein Proteins 0.000 description 1
- 241000282836 Camelus dromedarius Species 0.000 description 1
- 102000011632 Caseins Human genes 0.000 description 1
- 108010076119 Caseins Proteins 0.000 description 1
- 206010052360 Colorectal adenocarcinoma Diseases 0.000 description 1
- 238000008157 ELISA kit Methods 0.000 description 1
- 108010015776 Glucose oxidase Proteins 0.000 description 1
- 239000004366 Glucose oxidase Substances 0.000 description 1
- 102000001554 Hemoglobins Human genes 0.000 description 1
- 108010054147 Hemoglobins Proteins 0.000 description 1
- 101000908391 Homo sapiens Dipeptidyl peptidase 4 Proteins 0.000 description 1
- 101000827703 Homo sapiens Polyphosphoinositide phosphatase Proteins 0.000 description 1
- 101001095266 Homo sapiens Prolyl endopeptidase Proteins 0.000 description 1
- 206010061218 Inflammation Diseases 0.000 description 1
- 102100023591 Polyphosphoinositide phosphatase Human genes 0.000 description 1
- 102000056251 Prolyl Oligopeptidases Human genes 0.000 description 1
- 108010009736 Protein Hydrolysates Proteins 0.000 description 1
- 241000220317 Rosa Species 0.000 description 1
- 101100233916 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) KAR5 gene Proteins 0.000 description 1
- 108010022999 Serine Proteases Proteins 0.000 description 1
- 102000012479 Serine Proteases Human genes 0.000 description 1
- 102000004142 Trypsin Human genes 0.000 description 1
- 108090000631 Trypsin Proteins 0.000 description 1
- 108010093894 Xanthine oxidase Proteins 0.000 description 1
- 102100033220 Xanthine oxidase Human genes 0.000 description 1
- 238000002835 absorbance Methods 0.000 description 1
- 230000006978 adaptation Effects 0.000 description 1
- 238000007792 addition Methods 0.000 description 1
- 239000000478 adipokine Substances 0.000 description 1
- 230000011759 adipose tissue development Effects 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000006907 apoptotic process Effects 0.000 description 1
- 230000036528 appetite Effects 0.000 description 1
- 235000019789 appetite Nutrition 0.000 description 1
- 238000003149 assay kit Methods 0.000 description 1
- 210000000013 bile duct Anatomy 0.000 description 1
- 230000004071 biological effect Effects 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 150000001720 carbohydrates Chemical class 0.000 description 1
- 235000014633 carbohydrates Nutrition 0.000 description 1
- 210000000748 cardiovascular system Anatomy 0.000 description 1
- 239000005018 casein Substances 0.000 description 1
- BECPQYXYKAMYBN-UHFFFAOYSA-N casein, tech. Chemical compound NCCCCC(C(O)=O)N=C(O)C(CC(O)=O)N=C(O)C(CCC(O)=N)N=C(O)C(CC(C)C)N=C(O)C(CCC(O)=O)N=C(O)C(CC(O)=O)N=C(O)C(CCC(O)=O)N=C(O)C(C(C)O)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=O)N=C(O)C(CCC(O)=O)N=C(O)C(COP(O)(O)=O)N=C(O)C(CCC(O)=N)N=C(O)C(N)CC1=CC=CC=C1 BECPQYXYKAMYBN-UHFFFAOYSA-N 0.000 description 1
- 235000021240 caseins Nutrition 0.000 description 1
- 239000006143 cell culture medium Substances 0.000 description 1
- 230000010261 cell growth Effects 0.000 description 1
- 230000004663 cell proliferation Effects 0.000 description 1
- 239000006285 cell suspension Substances 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 230000001684 chronic effect Effects 0.000 description 1
- 201000010897 colon adenocarcinoma Diseases 0.000 description 1
- 208000029742 colonic neoplasm Diseases 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000000875 corresponding effect Effects 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 239000012228 culture supernatant Substances 0.000 description 1
- 230000006735 deficit Effects 0.000 description 1
- 238000012217 deletion Methods 0.000 description 1
- 230000037430 deletion Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 235000005911 diet Nutrition 0.000 description 1
- 230000037213 diet Effects 0.000 description 1
- 201000010099 disease Diseases 0.000 description 1
- 208000016097 disease of metabolism Diseases 0.000 description 1
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 230000000081 effect on glucose Effects 0.000 description 1
- 238000000132 electrospray ionisation Methods 0.000 description 1
- 238000010828 elution Methods 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 238000006911 enzymatic reaction Methods 0.000 description 1
- 210000002919 epithelial cell Anatomy 0.000 description 1
- 210000003743 erythrocyte Anatomy 0.000 description 1
- 230000028023 exocytosis Effects 0.000 description 1
- 238000004108 freeze drying Methods 0.000 description 1
- 235000013376 functional food Nutrition 0.000 description 1
- 239000003629 gastrointestinal hormone Substances 0.000 description 1
- 210000001035 gastrointestinal tract Anatomy 0.000 description 1
- 238000003304 gavage Methods 0.000 description 1
- 229940116332 glucose oxidase Drugs 0.000 description 1
- 235000019420 glucose oxidase Nutrition 0.000 description 1
- 239000001963 growth medium Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000007490 hematoxylin and eosin (H&E) staining Methods 0.000 description 1
- 238000004128 high performance liquid chromatography Methods 0.000 description 1
- 229940088597 hormone Drugs 0.000 description 1
- 239000005556 hormone Substances 0.000 description 1
- 201000001421 hyperglycemia Diseases 0.000 description 1
- 239000005457 ice water Substances 0.000 description 1
- 230000003832 immune regulation Effects 0.000 description 1
- 239000000859 incretin Substances 0.000 description 1
- MGXWVYUBJRZYPE-YUGYIWNOSA-N incretin Chemical class C([C@@H](C(=O)N[C@@H](CO)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](C)C(=O)N[C@@H](CCSC)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](CC=1NC=NC=1)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](C)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CCCCN)C(=O)NCC(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CC=1NC=NC=1)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CCC(N)=O)C(O)=O)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CO)NC(=O)[C@@H](NC(=O)[C@H](CC=1C=CC=CC=1)NC(=O)[C@@H](NC(=O)CNC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](C)NC(=O)[C@@H](N)CC=1C=CC(O)=CC=1)[C@@H](C)O)[C@@H](C)CC)C1=CC=C(O)C=C1 MGXWVYUBJRZYPE-YUGYIWNOSA-N 0.000 description 1
- 238000011534 incubation Methods 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 230000004054 inflammatory process Effects 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 230000004155 insulin signaling pathway Effects 0.000 description 1
- 230000002473 insulinotropic effect Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 210000002490 intestinal epithelial cell Anatomy 0.000 description 1
- 239000007928 intraperitoneal injection Substances 0.000 description 1
- 210000003734 kidney Anatomy 0.000 description 1
- 239000003446 ligand Substances 0.000 description 1
- 238000001294 liquid chromatography-tandem mass spectrometry Methods 0.000 description 1
- 210000005228 liver tissue Anatomy 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 230000001404 mediated effect Effects 0.000 description 1
- 208000030159 metabolic disease Diseases 0.000 description 1
- 230000000813 microbial effect Effects 0.000 description 1
- 238000003032 molecular docking Methods 0.000 description 1
- 238000002703 mutagenesis Methods 0.000 description 1
- 231100000350 mutagenesis Toxicity 0.000 description 1
- 239000013642 negative control Substances 0.000 description 1
- 239000002773 nucleotide Substances 0.000 description 1
- 125000003729 nucleotide group Chemical group 0.000 description 1
- 238000003305 oral gavage Methods 0.000 description 1
- 210000000056 organ Anatomy 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- 230000001766 physiological effect Effects 0.000 description 1
- GCYXWQUSHADNBF-AAEALURTSA-N preproglucagon 78-108 Chemical compound C([C@@H](C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](C)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CCCCN)C(=O)NCC(=O)N[C@@H](CCCNC(N)=N)C(=O)NCC(O)=O)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](CCCCN)NC(=O)[C@H](C)NC(=O)[C@H](C)NC(=O)[C@H](CCC(N)=O)NC(=O)CNC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)[C@H](CO)NC(=O)[C@H](CO)NC(=O)[C@@H](NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CO)NC(=O)[C@@H](NC(=O)[C@H](CC=1C=CC=CC=1)NC(=O)[C@@H](NC(=O)CNC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](C)NC(=O)[C@@H](N)CC=1N=CNC=1)[C@@H](C)O)[C@@H](C)O)C(C)C)C1=CC=CC=C1 GCYXWQUSHADNBF-AAEALURTSA-N 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 102000005962 receptors Human genes 0.000 description 1
- 108020003175 receptors Proteins 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000012216 screening Methods 0.000 description 1
- 238000002741 site-directed mutagenesis Methods 0.000 description 1
- 210000000813 small intestine Anatomy 0.000 description 1
- 239000007790 solid phase Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 238000010561 standard procedure Methods 0.000 description 1
- 230000000638 stimulation Effects 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 239000012588 trypsin Substances 0.000 description 1
- 210000003556 vascular endothelial cell Anatomy 0.000 description 1
- 210000000636 white adipocyte Anatomy 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K5/00—Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof
- C07K5/04—Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof containing only normal peptide links
- C07K5/10—Tetrapeptides
- C07K5/1019—Tetrapeptides with the first amino acid being basic
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23L—FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES, NOT OTHERWISE PROVIDED FOR; PREPARATION OR TREATMENT THEREOF
- A23L33/00—Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
- A23L33/10—Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
- A23L33/17—Amino acids, peptides or proteins
- A23L33/18—Peptides; Protein hydrolysates
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P3/00—Drugs for disorders of the metabolism
- A61P3/04—Anorexiants; Antiobesity agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P3/00—Drugs for disorders of the metabolism
- A61P3/06—Antihyperlipidemics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P3/00—Drugs for disorders of the metabolism
- A61P3/08—Drugs for disorders of the metabolism for glucose homeostasis
- A61P3/10—Drugs for disorders of the metabolism for glucose homeostasis for hyperglycaemia, e.g. antidiabetics
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/435—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- C07K14/46—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
- C07K14/47—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
- C07K14/4701—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals not used
- C07K14/4717—Plasma globulins, lactoglobulin
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/435—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- C07K14/76—Albumins
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K5/00—Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof
- C07K5/04—Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof containing only normal peptide links
- C07K5/10—Tetrapeptides
- C07K5/1021—Tetrapeptides with the first amino acid being acidic
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P21/00—Preparation of peptides or proteins
- C12P21/06—Preparation of peptides or proteins produced by the hydrolysis of a peptide bond, e.g. hydrolysate products
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23V—INDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
- A23V2002/00—Food compositions, function of food ingredients or processes for food or foodstuffs
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Organic Chemistry (AREA)
- General Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Molecular Biology (AREA)
- Biochemistry (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Genetics & Genomics (AREA)
- Diabetes (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Biophysics (AREA)
- General Chemical & Material Sciences (AREA)
- Zoology (AREA)
- Pharmacology & Pharmacy (AREA)
- Obesity (AREA)
- Animal Behavior & Ethology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Hematology (AREA)
- Wood Science & Technology (AREA)
- Toxicology (AREA)
- Gastroenterology & Hepatology (AREA)
- Polymers & Plastics (AREA)
- Microbiology (AREA)
- Biotechnology (AREA)
- Child & Adolescent Psychology (AREA)
- Endocrinology (AREA)
- General Engineering & Computer Science (AREA)
- Emergency Medicine (AREA)
- Food Science & Technology (AREA)
- Nutrition Science (AREA)
- Mycology (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
Abstract
本发明提供了一种以牛乳清蛋白为原料制备胃肠消化吸收稳定的降血糖肽。在体外细胞实验中,肽段可提高胰岛素抵抗的HepG2肝细胞摄取并利用葡萄糖合成糖原,可促进肠内分泌细胞NCI‑H716分泌GLP‑1,且具有一定的协同效果,联合使用可进一步发挥促GLP‑1分泌、激活GLP‑1受体的效果。利用高脂饮食构建胰岛素抵抗小鼠模型,采用肽段进行干预,进一步证明降血糖肽对减肥、减少脂质积累和辅助降血脂具有明显效果,同时可改善胰岛素抵抗相关症状。本发明提供的乳肽具有胃肠消化稳定性和降血糖活性,可作为功能乳基料用于开发具有调节血糖作用的食品、药品或保健品,应用前景广。
The present invention provides a hypoglycemic peptide with stable gastrointestinal digestion and absorption prepared by using bovine whey protein as a raw material. In an in vitro cell experiment, the peptide segment can improve the uptake of insulin-resistant HepG2 hepatocytes and utilize glucose to synthesize glycogen, can promote the secretion of GLP-1 by enteroendocrine cells NCI-H716, and has a certain synergistic effect. The combined use can further play the effect of promoting GLP-1 secretion and activating GLP-1 receptors. An insulin-resistant mouse model was constructed using a high-fat diet, and the peptide segment was used for intervention, which further proved that the hypoglycemic peptide has obvious effects on weight loss, reducing lipid accumulation and assisting in lowering blood lipids, and can also improve symptoms related to insulin resistance. The milk peptide provided by the present invention has gastrointestinal digestion stability and hypoglycemic activity, and can be used as a functional milk-based material for the development of foods, medicines or health products with blood sugar regulating effects, and has broad application prospects.
Description
技术领域Technical Field
本发明涉及食品医药领域,具体为一种具GLP-1受体激动剂活性的乳清蛋白源降血糖肽的制备及应用。The present invention relates to the field of food and medicine, and in particular to the preparation and application of a whey protein-derived hypoglycemic peptide with GLP-1 receptor agonist activity.
背景技术Background Art
糖尿病是一种由胰岛素代谢障碍或分泌不足引起的以血糖浓度较高为特征的慢性代谢性疾病,以血糖升高为主要特征。根据国际糖尿病联盟(IDF)发布的数据显示,2021年全球糖尿病患者人数多达5.37亿,预计在2030年和2045年分别达到6.43亿和7.83亿。2型糖尿病是最常见的糖尿病类型,约占全部糖尿病患者的90%,肥胖、遗传、生活方式和衰老等因素导致T2DM的发病率和患病率增加。Diabetes is a chronic metabolic disease characterized by high blood sugar concentration caused by impaired insulin metabolism or insufficient secretion, with elevated blood sugar as its main feature. According to data released by the International Diabetes Federation (IDF), the number of diabetes patients worldwide reached 537 million in 2021, and is expected to reach 643 million and 783 million in 2030 and 2045, respectively. Type 2 diabetes is the most common type of diabetes, accounting for about 90% of all diabetes patients. Factors such as obesity, genetics, lifestyle and aging have led to an increase in the incidence and prevalence of T2DM.
胰高血糖素样肽-1(glucagon-like peptide-1,GLP-1)是一种肠道激素,由肠内分泌L细胞产生和释放。GLP-1以葡萄糖依赖性方式刺激胰岛素的生物合成和分泌,从而增加对葡萄糖的敏感性。此外,GLP-1可增强胰腺β细胞分泌胰岛素,抑制胰高血糖素分泌,减弱胃排空,降低食欲,改善胰岛素抵抗。这些生理效应使GLP-1成为治疗2型糖尿病的靶点。然而,二肽基肽酶-4(dipeptidyl peptidase-4,DPP-IV)的内源性酶通过切割N端二肽残基使GLP-1迅速代谢,从而导致GLP-1失去促胰岛素活性。DPP-IV是一种新型脂肪因子,在脂肪生成/肥胖期间高度分泌并与观察到的低度炎症相关。它在葡萄糖和胰岛素代谢以及免疫调节中起着至关重要的作用。因此,DPP-Ⅳ抑制剂是一种新型2型糖尿病治疗药物。Glucagon-like peptide-1 (GLP-1) is an intestinal hormone produced and released by enteroendocrine L cells. GLP-1 stimulates insulin biosynthesis and secretion in a glucose-dependent manner, thereby increasing sensitivity to glucose. In addition, GLP-1 can enhance insulin secretion from pancreatic β cells, inhibit glucagon secretion, attenuate gastric emptying, reduce appetite, and improve insulin resistance. These physiological effects make GLP-1 a target for the treatment of type 2 diabetes. However, the endogenous enzyme dipeptidyl peptidase-4 (DPP-IV) rapidly metabolizes GLP-1 by cleaving the N-terminal dipeptide residue, resulting in the loss of GLP-1 insulinotropic activity. DPP-IV is a novel adipokine that is highly secreted during adipogenesis/obesity and is associated with the low-grade inflammation observed. It plays a crucial role in glucose and insulin metabolism and immune regulation. Therefore, DPP-IV inhibitors are a new type of drug for the treatment of type 2 diabetes.
此外,GLP-1受体激动剂是一类通过激活GLP-1受体、发挥肠促胰岛素作用的治疗2型糖尿病的方法。GLP-1受体激动剂具有类似GLP-1的作用,同时由于与天然GLP-1的结构差异可延长其作用时间。GLP-1受体激动剂促进胰岛素释放主要通过激活GLP-1受体实现的。GLP-1受体激动剂与GLP-1受体结合后通过cAMP/PKA途径增加钙离子内流和内质网钙离子释放而活化钙调蛋白,最终使胰岛素出胞作用增强。GLP-1受体激动剂的使用有利于2型糖尿病患者实现平稳降糖。In addition, GLP-1 receptor agonists are a type of method for treating type 2 diabetes by activating GLP-1 receptors and exerting incretin effects. GLP-1 receptor agonists have similar effects to GLP-1, and due to structural differences from natural GLP-1, their duration of action can be prolonged. GLP-1 receptor agonists promote insulin release mainly by activating GLP-1 receptors. After binding to the GLP-1 receptor, GLP-1 receptor agonists increase calcium influx and endoplasmic reticulum calcium release through the cAMP/PKA pathway to activate calmodulin, ultimately enhancing insulin exocytosis. The use of GLP-1 receptor agonists is beneficial for patients with type 2 diabetes to achieve stable blood sugar reduction.
发明内容Summary of the invention
本发明的目的在于提供一种具GLP-1受体激动剂活性的乳清蛋白源降血糖肽的制备及应用。The purpose of the present invention is to provide a preparation and application of a whey protein-derived hypoglycemic peptide with GLP-1 receptor agonist activity.
为实现上述发明目的,本发明采用的技术方案为:In order to achieve the above-mentioned invention object, the technical solution adopted by the present invention is:
一方面,本发明提供了一种牛乳清蛋白源胃肠消化吸收稳定的降血糖肽,其特征在于,所述肽的氨基酸序列如SEQ ID NO:1-5任一项所示。经验证,得到的肽段在体内具有胃肠消化吸收稳定性、DPP-Ⅳ抑制活性和GLP-1受体激动剂活性,可改善高脂饮食诱导的胰岛素抵抗和脂质积累,减轻体重。该降血糖肽段可用于降低样本中DPP-Ⅳ活性,提高GLP-1含量,激活GLP-1受体,利用该肽段制备的辅助降血糖、降血脂制品可用于高血糖、高脂血症、肥胖等相关疾病的预防、保健及辅助治疗,在保健及医药生物领域有广阔的应用前景。On the one hand, the present invention provides a glucose-lowering peptide with stable gastrointestinal digestion and absorption from bovine whey protein, characterized in that the amino acid sequence of the peptide is shown in any one of SEQ ID NOs: 1-5. It has been verified that the obtained peptide segment has gastrointestinal digestion and absorption stability, DPP-IV inhibitory activity and GLP-1 receptor agonist activity in vivo, and can improve insulin resistance and lipid accumulation induced by a high-fat diet, and reduce body weight. The glucose-lowering peptide segment can be used to reduce DPP-IV activity in samples, increase GLP-1 content, and activate GLP-1 receptors. The auxiliary glucose-lowering and lipid-lowering products prepared using the peptide segment can be used for the prevention, health care and auxiliary treatment of hyperglycemia, hyperlipidemia, obesity and other related diseases, and have broad application prospects in the fields of health care and medical biology.
另一方面,本发明提供了一种核酸分子,其特征在于,所述核酸分子编码如SEQ IDNO:1-5任一项所示的肽,所述核酸分子为DNA或RNA。On the other hand, the present invention provides a nucleic acid molecule, characterized in that the nucleic acid molecule encodes a peptide as shown in any one of SEQ ID NOs: 1-5, and the nucleic acid molecule is DNA or RNA.
另一方面,本发明提供了一种表达载体,其特征在于,所述表达载体的核苷酸序列上述核酸分子。On the other hand, the present invention provides an expression vector, characterized in that the nucleotide sequence of the expression vector is the above-mentioned nucleic acid molecule.
另一方面,本发明提供了一种重组细胞,其特征在于,所述重组细胞是通过将上述表达载体引入至宿主细胞中而获得的。On the other hand, the present invention provides a recombinant cell, characterized in that the recombinant cell is obtained by introducing the above expression vector into a host cell.
另一方面,本发明提供了一种药物组合物,其特征在于,所述药物组合物包含如SEQ ID NO:1-5任一项所示的肽,或上述核酸分子,或上述表达载体,或上述重组细胞。On the other hand, the present invention provides a pharmaceutical composition, characterized in that the pharmaceutical composition comprises a peptide as shown in any one of SEQ ID NOs: 1-5, or the above-mentioned nucleic acid molecule, or the above-mentioned expression vector, or the above-mentioned recombinant cell.
另一方面,本发明提供了一种具有降血糖活性的乳清蛋白酶解物制备方法,其特征在于,所述方法包括以下步骤:On the other hand, the present invention provides a method for preparing a whey protein hydrolysate having hypoglycemic activity, characterized in that the method comprises the following steps:
S1.一定温度下利用碱性蛋白酶和胃蛋白酶对牛乳清蛋白进行复合酶解,得到牛乳清蛋白酶解物;S1. Performing a composite enzymatic hydrolysis of bovine whey protein using alkaline protease and pepsin at a certain temperature to obtain a bovine whey protein hydrolysate;
S2.利用牛乳清蛋白酶解物进行模拟胃消化和模拟肠消化;S2. Simulated gastric digestion and simulated intestinal digestion using bovine whey protein hydrolysate;
S3.利用Transwell板中完全分化的人克隆结肠腺癌细胞Caco-2单细胞层进行模拟吸收,收集底层透过物,冻干得到牛乳清蛋白胃肠消化吸收稳定酶解物。S3. The fully differentiated human cloned colon adenocarcinoma Caco-2 monolayer in the Transwell plate was used for simulated absorption, and the bottom permeate was collected and freeze-dried to obtain the stable enzymatic hydrolysate of bovine whey protein for gastrointestinal digestion and absorption.
另一方面,本发明在细胞水平证明了如SEQ ID NO:1-5任一项所示的肽段可以提高胰岛素抵抗的HepG2肝细胞摄取并利用葡萄糖合成糖原,可促进肠内分泌细胞NCI-H716分泌GLP-1,且多个肽段联合使用可进一步发挥促GLP-1分泌、激活GLP-1受体效果。根据本发明的实施例,所述DPP-Ⅳ抑制活性和GLP-1受体激动剂活性的肽具有上述氨基酸序列或其保守修饰形式的氨基酸序列。On the other hand, the present invention proves at the cellular level that the peptides shown in any one of SEQ ID NOs: 1-5 can increase the uptake of insulin-resistant HepG2 hepatocytes and use glucose to synthesize glycogen, and can promote the secretion of GLP-1 by enteroendocrine cells NCI-H716, and the combined use of multiple peptides can further promote the secretion of GLP-1 and activate the GLP-1 receptor. According to an embodiment of the present invention, the peptide with DPP-IV inhibitory activity and GLP-1 receptor agonist activity has the above-mentioned amino acid sequence or its conservatively modified amino acid sequence.
另一方面,本发明在体内水平证明了如SEQ ID NO:1-3任一项所示的肽段可以降低高脂饮食小鼠的体重和血脂水平,激活胰岛素信号通路改善胰岛素抵抗水平,提高血清中GLP-1含量,减少白色脂肪组织的脂质积累,调节肠道菌群。根据本发明的实施例,所述DPP-Ⅳ抑制活性和GLP-1受体激动剂活性的肽具有上述氨基酸序列或其保守修饰形式的氨基酸序列。On the other hand, the present invention has demonstrated at the in vivo level that the peptide segment shown in any one of SEQ ID NO: 1-3 can reduce the body weight and blood lipid level of mice fed a high-fat diet, activate the insulin signaling pathway to improve insulin resistance, increase the GLP-1 content in serum, reduce lipid accumulation in white adipose tissue, and regulate intestinal flora. According to an embodiment of the present invention, the peptide with DPP-IV inhibitory activity and GLP-1 receptor agonist activity has the above-mentioned amino acid sequence or its conservatively modified amino acid sequence.
另一方面,本发明提供了上述肽,或上述核酸分子,或上述表达载体,或上述重组细胞,或上述药物组合物,或上述方法在制备预防和/或治疗糖尿病或高血脂症或肥胖症药物中的用途。On the other hand, the present invention provides the use of the above-mentioned peptide, or the above-mentioned nucleic acid molecule, or the above-mentioned expression vector, or the above-mentioned recombinant cell, or the above-mentioned pharmaceutical composition, or the above-mentioned method in the preparation of drugs for preventing and/or treating diabetes, hyperlipidemia or obesity.
另一方面,本发明提供了上述肽,或上述核酸分子,或上述表达载体,或上述重组细胞,或上述药物组合物,或上述方法在制备辅助改善胰岛素抵抗或降低血脂水平或减肥的保健产品或功能食品中的用途。On the other hand, the present invention provides the use of the above-mentioned peptide, or the above-mentioned nucleic acid molecule, or the above-mentioned expression vector, or the above-mentioned recombinant cell, or the above-mentioned pharmaceutical composition, or the above-mentioned method in preparing a health care product or functional food that assists in improving insulin resistance or lowering blood lipid levels or losing weight.
本发明相比现有技术的有益效果为:Compared with the prior art, the present invention has the following beneficial effects:
1.本发明经酶解、模拟胃肠消化、Caco-2细胞吸收作用获得具有胃肠消化吸收稳定的乳清蛋白降血糖肽,利用LC-MS/MS鉴定乳清蛋白肽序列,得到的多个肽段具有胃肠消化稳定性、DPP-IV抑制活性和胰高血糖素样肽-1(GLP-1)受体激动剂活性。1. The present invention obtains whey protein hypoglycemic peptides with stable gastrointestinal digestion and absorption through enzymatic hydrolysis, simulated gastrointestinal digestion, and Caco-2 cell absorption. The whey protein peptide sequence is identified by LC-MS/MS, and the obtained multiple peptide segments have gastrointestinal digestion stability, DPP-IV inhibitory activity, and glucagon-like peptide-1 (GLP-1) receptor agonist activity.
2.本发明提供的降糖肽在体外细胞实验具有良好效果,肽段可提高胰岛素抵抗的HepG2肝细胞摄取并利用葡萄糖合成糖原,可促进肠内分泌细胞NCI-H716分泌GLP-1,且多个肽段联合使用可进一步发挥促GLP-1分泌、激活GLP-1受体效果。2. The glucose-lowering peptide provided by the present invention has good effects in in vitro cell experiments. The peptide segment can increase the uptake of insulin-resistant HepG2 hepatocytes and utilize glucose to synthesize glycogen, and can promote the secretion of GLP-1 by enteroendocrine cells NCI-H716. The combined use of multiple peptide segments can further promote the secretion of GLP-1 and activate the GLP-1 receptor.
3.本发明提供的降糖肽在高脂饮食构建胰岛素抵抗小鼠模型中也具有优异效果,肽段对减肥、减少脂质积累和辅助降血脂具有明显效果,同时可改善胰岛素抵抗相关症状。3. The glucose-lowering peptide provided by the present invention also has excellent effects in the construction of an insulin-resistant mouse model on a high-fat diet. The peptide segment has obvious effects on weight loss, reducing lipid accumulation and assisting in lowering blood lipids, and can also improve symptoms related to insulin resistance.
4.本发明提供的乳基降糖肽具有胃肠消化稳定性和降血糖活性,可作为功能乳基料用于开发具有调节血糖作用的食品、药品或保健品,应用前景广。4. The milk-based glucose-lowering peptide provided by the present invention has gastrointestinal digestion stability and blood sugar-lowering activity, and can be used as a functional milk-based material for developing foods, medicines or health products with blood sugar-regulating effects, and has broad application prospects.
附图说明BRIEF DESCRIPTION OF THE DRAWINGS
图1显示了肽段的体外DPP-Ⅳ抑制率。Figure 1 shows the in vitro DPP-IV inhibition rate of the peptide fragments.
图2显示了肽段对胰岛素抵抗HepG2细胞葡萄糖利用率的影响。Figure 2 shows the effect of the peptides on glucose utilization in insulin-resistant HepG2 cells.
图3显示了肽段对胰岛素抵抗HepG2细胞内相对糖原含量的影响。FIG3 shows the effect of the peptides on the relative glycogen content in insulin-resistant HepG2 cells.
图4显示了肽段对NCI-H716细胞GLP-1分泌的影响。FIG4 shows the effect of the peptides on GLP-1 secretion in NCI-H716 cells.
图5显示了肽段对NCI-H716细胞cAMP的影响。FIG5 shows the effect of the peptides on cAMP in NCI-H716 cells.
图6显示了肽段对NCI-H716细胞GLP-1分泌的协同效果研究。FIG6 shows the study of the synergistic effect of peptides on GLP-1 secretion in NCI-H716 cells.
图7显示了肽段LPMHIR的质谱图。Figure 7 shows the mass spectrum of the peptide LPMHIR.
图8显示了肽段KFDK的质谱图。FIG8 shows the mass spectrum of the peptide KFDK.
图9显示了肽段IPAVFKID的质谱图。FIG9 shows the mass spectrum of the peptide IPAVFKID.
图10显示了肽段对高脂饮食诱导的胰岛素抵抗小鼠葡萄糖耐量的影响。A为灌胃后不同时间的血糖监测结果;B为不同肽段对OGTT试验期间曲线下面积的影响。Figure 10 shows the effect of peptides on glucose tolerance in insulin-resistant mice induced by a high-fat diet. A is the blood glucose monitoring results at different times after oral gavage; B is the effect of different peptides on the area under the curve during the OGTT test.
图11显示了肽段对高脂饮食诱导的胰岛素抵抗小鼠胰岛素耐受性的影响。A为胰岛素腹腔注射后不同时间的血糖监测结果;B为不同肽段对小鼠血糖曲线下面积的影响。Figure 11 shows the effect of peptides on insulin resistance in mice induced by a high-fat diet. A is the blood glucose monitoring results at different times after intraperitoneal injection of insulin; B is the effect of different peptides on the area under the blood glucose curve of mice.
图12显示了肽段对高脂饮食诱导的胰岛素抵抗小鼠血清中DPP-Ⅳ酶活性的影响。FIG12 shows the effect of the peptide fragments on the DPP-IV enzyme activity in the serum of mice with insulin resistance induced by a high-fat diet.
图13显示了肽段对高脂饮食诱导的胰岛素抵抗小鼠血清中GLP-1含量的影响。FIG13 shows the effect of the peptide fragments on the serum GLP-1 content in mice with insulin resistance induced by a high-fat diet.
图14显示了肽段对高脂饮食诱导的胰岛素抵抗小鼠肝脏中GLP-1R mRNA表达的影响。FIG. 14 shows the effect of the peptides on the expression of GLP-1R mRNA in the liver of high-fat diet-induced insulin-resistant mice.
图15显示了肽段对高脂饮食小鼠体重的影响。FIG. 15 shows the effect of the peptides on body weight in mice fed a high-fat diet.
图16显示了肽段对高脂饮食诱导的胰岛素抵抗小鼠肝脏脂质积累的影响。FIG. 16 shows the effect of the peptides on lipid accumulation in the liver of insulin-resistant mice induced by a high-fat diet.
图17显示了肽段对高脂饮食诱导的胰岛素抵抗小鼠肠道菌群多样性的影响。A为不同肽段对肠道菌群Ace指数的影响;B为不同肽段对肠道菌群Chao指数的影响;C为不同肽段对肠道菌群Shannon指数的影响。Figure 17 shows the effect of peptides on the diversity of intestinal flora in insulin-resistant mice induced by a high-fat diet. A is the effect of different peptides on the Ace index of intestinal flora; B is the effect of different peptides on the Chao index of intestinal flora; C is the effect of different peptides on the Shannon index of intestinal flora.
图18显示了肽段对高脂饮食诱导的胰岛素抵抗小鼠肠道菌群组成的影响。FIG18 shows the effect of the peptides on the composition of intestinal flora in high-fat diet-induced insulin-resistant mice.
具体实施方式DETAILED DESCRIPTION
以下实施例用于说明本发明,但不用来限制本发明的范围。The following examples are used to illustrate the present invention but are not intended to limit the scope of the present invention.
以下实施例中所使用的实验方法如无特殊说明,均为常规方法。Unless otherwise specified, the experimental methods used in the following examples are conventional methods.
以下实施例中所用的材料、试剂等,如无特殊说明,均可从商业途径得到。Unless otherwise specified, the materials and reagents used in the following examples can be obtained from commercial sources.
下面结合附图通过实施例来对本发明进行详细说明,但并不是对本发明的限制,仅作为示例说明。The present invention is described in detail below through embodiments in conjunction with the accompanying drawings, but the present invention is not limited thereto and is only described as an example.
需要说明的是,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。It should be noted that the terms "first" and "second" are used for descriptive purposes only and should not be understood as indicating or implying relative importance or implicitly indicating the number of technical features indicated. Therefore, features defined as "first" and "second" may explicitly or implicitly include one or more of the features.
实施例中的质量检测指标数据均为平均值。The quality inspection index data in the embodiments are all average values.
在文本中,术语“保守修饰形式的氨基酸序列”是指这样的氨基酸修饰:所述修饰不显著影响或改变包含该氨基酸序列的多肽的生物活性,该修饰包括氨基酸置换、增加和缺失。修饰可通过例如定点诱变和PCR介导的诱变等标准技术引入本发明的黄嘌呤氧化酶抑制肽中。保守氨基酸置换系其中的氨基酸残基被具有相似侧链的氨基酸残基替换的置换。In the text, the term "conservatively modified amino acid sequence" refers to amino acid modifications that do not significantly affect or change the biological activity of the polypeptide comprising the amino acid sequence, including amino acid substitutions, additions and deletions. Modifications can be introduced into the xanthine oxidase inhibitory peptides of the present invention by standard techniques such as site-directed mutagenesis and PCR-mediated mutagenesis. Conservative amino acid substitutions are substitutions in which amino acid residues are replaced by amino acid residues with similar side chains.
实施例1.胃肠消化稳定的降血糖肽的制备Example 1. Preparation of hypoglycemic peptides that are stable to gastrointestinal digestion
在该实施例中,通过以下方法制备具有DPP-Ⅳ抑制活性的牛乳清蛋白酶解物:In this example, a bovine whey protein hydrolysate having DPP-IV inhibitory activity was prepared by the following method:
(1)酶解:牛乳清蛋白按10%比例溶解在蒸馏水中,按酶与底物的比例为5%(w/w)在37℃条件下利用碱性蛋白酶和胃蛋白酶(碱性蛋白酶:胃蛋白酶=1:1)对牛乳清蛋白进行复合酶解;酶解0h,0.25h,0.5h,1h,2h,3h,4h,5h后取样,85℃加热20min将酶灭活;调节酶解液pH值至7.0,冷冻干燥得到复合酶解物(WPCH)。(1) Enzymatic hydrolysis: bovine whey protein was dissolved in distilled water at a ratio of 10%, and the bovine whey protein was subjected to composite enzymatic hydrolysis at 37°C using alkaline protease and pepsin (alkaline protease: pepsin = 1:1) at a ratio of 5% (w/w) of enzyme to substrate; samples were taken after enzymatic hydrolysis for 0 h, 0.25 h, 0.5 h, 1 h, 2 h, 3 h, 4 h, and 5 h, and the enzymes were inactivated by heating at 85°C for 20 min; the pH value of the enzymatic hydrolyzate was adjusted to 7.0, and the composite enzymatic hydrolyzate (WPCH) was obtained by freeze-drying.
(2)测定不同水解时间下得到的酶解物的水解度及DPP-Ⅳ抑制率。研究发现,不同水解时间条件下的牛乳清蛋白酶解物均具有DPP-Ⅳ抑制活性,随着水解时间的延长,水解度增加的同时DPP-Ⅳ抑制率逐渐增大。在水解时间达到4h时,水解度和DPP-Ⅳ抑制率与水解时间5h得到的酶解物无显著性差异。在另一方面,酶解4h的骆驼乳酪蛋白酶解物具有最大的DPP-Ⅳ抑制活性,可进行进一步实验。(2) Determine the degree of hydrolysis and DPP-IV inhibition rate of the hydrolysates obtained under different hydrolysis times. The study found that the bovine whey protein hydrolysates under different hydrolysis time conditions all have DPP-IV inhibition activity. As the hydrolysis time increases, the degree of hydrolysis increases and the DPP-IV inhibition rate gradually increases. When the hydrolysis time reaches 4h, there is no significant difference in the degree of hydrolysis and DPP-IV inhibition rate compared with the hydrolysate obtained after 5h of hydrolysis. On the other hand, the camel casein protein hydrolysate hydrolyzed for 4h has the greatest DPP-IV inhibition activity, which can be further experimented.
(3)模拟胃肠消化:复合酶解物按照5%的比例溶解在蒸馏水中,于85℃水浴15min。37℃预热模拟胃液,将模拟胃液加入样品溶液中,最终比例为1:1(vol/vol)。加入1M的HCl调节pH值至3.0。加入胃蛋白酶,使其在最终消化混合物中的活性达到2000U/mL。保持pH值为3.0,在37℃水浴搅拌2h。37℃水浴中预热模拟肠液。在模拟胃消化产物中加入模拟肠液,最终达到1:1的比例(vol/vol)。加入1M的NaOH调节pH值至7.0。加入胆盐,使其最终浓度为10mM。将溶液置于37℃水浴锅中搅拌至少30min,使胆盐完全溶解。加入CaCl2(H2O)2溶液,使其在模拟肠液中最终浓度为0.6mM。加入胰酶,使最终混合物中的胰酶活性为100U/mL。保持pH值为7.0,在37℃水浴下搅拌2h。沸水浴5min灭酶,冷冻干燥得到牛乳清蛋白模拟胃肠消化物(GD-WPCH)。(3) Simulated gastrointestinal digestion: The composite enzymatic hydrolysate was dissolved in distilled water at a ratio of 5% and placed in a water bath at 85°C for 15 min. Preheat simulated gastric juice at 37°C and add the simulated gastric juice to the sample solution at a final ratio of 1:1 (vol/vol). Add 1M HCl to adjust the pH to 3.0. Add pepsin to a final activity of 2000U/mL in the digestion mixture. Keep the pH at 3.0 and stir in a water bath at 37°C for 2 h. Preheat simulated intestinal juice in a water bath at 37°C. Add simulated intestinal juice to the simulated gastric digestion product to a final ratio of 1:1 (vol/vol). Add 1M NaOH to adjust the pH to 7.0. Add bile salts to a final concentration of 10mM. Place the solution in a water bath at 37°C and stir for at least 30 min to completely dissolve the bile salts. Add CaCl 2 (H 2 O) 2 solution to a final concentration of 0.6mM in the simulated intestinal juice. Pancreatin was added to make the pancreatin activity in the final mixture 100 U/mL. The pH value was maintained at 7.0 and stirred in a 37°C water bath for 2 h. The enzyme was inactivated in a boiling water bath for 5 min and freeze-dried to obtain bovine whey protein simulated gastrointestinal digest (GD-WPCH).
(4)Caco-2细胞吸收作用:完全分化的Caco-2单细胞层用预热的Hank's平衡盐溶液(HBSS)(pH 7.2)清洗2次。Transwell板上层小室加入1.5mL HBSS,底层加入2mL HBSS,37℃平衡30min。随后,将上层小室中的HBSS换成牛乳清蛋白模拟胃肠消化物(浓度为25mg/mL,HBSS缓冲液溶解)。37℃孵育2h后,收集底层透过物,冻干得到牛乳清蛋白胃肠消化吸收稳定酶解物(CA-WPCH)。(4) Caco-2 cell absorption: The fully differentiated Caco-2 monolayer was washed twice with preheated Hank's balanced salt solution (HBSS) (pH 7.2). 1.5 mL HBSS was added to the upper chamber of the Transwell plate, and 2 mL HBSS was added to the bottom chamber, and the plates were equilibrated at 37°C for 30 min. Subsequently, the HBSS in the upper chamber was replaced with bovine whey protein simulated gastrointestinal digest (concentration of 25 mg/mL, dissolved in HBSS buffer). After incubation at 37°C for 2 h, the bottom permeate was collected and freeze-dried to obtain bovine whey protein gastrointestinal digestion and absorption stable enzymatic hydrolysate (CA-WPCH).
(5)肽段鉴定:牛乳清蛋白胃肠消化吸收稳定酶解物(CA-WPCH)溶于0.1%甲酸溶液中,将高效液相色谱系统与配备电喷雾电离源的质谱仪相连,一阶光谱检测扫描范围为50~1500m/z,扫描分辨率为60000,二次光谱扫描范围为50~1400m/z,扫描分辨率为15000。流动性A为0.1%(v/v)甲酸,流动相B为80%乙腈(含0.1%甲酸)。在洗脱过程中,溶剂B在200nL/min的流速中从8%增加到50%(v/v)。(5) Peptide identification: The stable enzymatic hydrolysate of bovine whey protein digested and absorbed by the gastrointestinal tract (CA-WPCH) was dissolved in 0.1% formic acid solution, and the high performance liquid chromatography system was connected to a mass spectrometer equipped with an electrospray ionization source. The first order spectrum detection scanning range was 50-1500 m/z, the scanning resolution was 60000, and the second order spectrum scanning range was 50-1400 m/z, the scanning resolution was 15000. The flowability A was 0.1% (v/v) formic acid, and the mobile phase B was 80% acetonitrile (containing 0.1% formic acid). During the elution process, the solvent B was increased from 8% to 50% (v/v) at a flow rate of 200 nL/min.
(6)肽段筛选:利用肽段与DPP-Ⅳ酶和GLP-1受体进行分子对接。从RCSB蛋白数据库获得DPP-Ⅳ(PDB编码:4PNZ)和GLP-1受体(PDB编码:6X18)的晶体结构;肽段结构在ChemDraw 20.0中生成,并在Chem3D 20.0中转化为立体结构;DPP-Ⅳ和GLP-1受体和在Discovery Studio去除配体和水分子,氢化,并确定其活性位点;用LibDock模块确定DPP-Ⅳ、GLP-1受体和肽段之间的相互作用。(6) Peptide screening: Molecular docking was performed with peptides and DPP-IV enzyme and GLP-1 receptor. The crystal structures of DPP-IV (PDB code: 4PNZ) and GLP-1 receptor (PDB code: 6X18) were obtained from the RCSB protein database; the peptide structures were generated in ChemDraw 20.0 and converted into stereostructures in Chem3D 20.0; the DPP-IV and GLP-1 receptors were freed of ligands and water molecules, hydrogenated, and their active sites were determined in Discovery Studio; the interaction between DPP-IV, GLP-1 receptor, and peptides was determined using the LibDock module.
从鉴定得到的肽段中筛选出五条多肽(表1),分别为LPMHIR(SEQ ID NO:1)、KFDK(SEQ ID NO:2)、IPAVFKID(SEQ ID NO:3)、EVFR(SEQ ID NO:4)、ILDKVGINY(SEQ ID NO:5)。Five polypeptides were screened out from the identified peptides (Table 1), namely LPMHIR (SEQ ID NO: 1), KFDK (SEQ ID NO: 2), IPAVFKID (SEQ ID NO: 3), EVFR (SEQ ID NO: 4), and ILDKVGINY (SEQ ID NO: 5).
表1实施例1中牛乳清蛋白酶解物鉴定得到的氨基酸序列Table 1 Amino acid sequence obtained by identifying the bovine whey protein hydrolysate in Example 1
*α-La:牛α-乳白蛋白,α-lactalbumin;β-Lg:牛β-乳球蛋白,β-lactoglobulin。*α-La: bovine α-lactalbumin; β-Lg: bovine β-lactoglobulin.
本发明提供的活性肽可源自牛乳清蛋白复合酶解物,也可通过固相合成得到。以下实施例所用到的肽段LPMHIR(SEQ ID NO:1)、KFDK(SEQ ID NO:2)、IPAVFKID(SEQ ID NO:3)、EVFR(SEQ ID NO:4)、ILDKVGINY(SEQ ID NO:5)为固相合成所得。委托上海诺优生物科技有限公司固相合成了上述降血糖肽段,进行后续实验。The active peptides provided by the present invention can be derived from a composite enzymatic hydrolysate of bovine whey protein, or can be obtained by solid phase synthesis. The peptide segments LPMHIR (SEQ ID NO: 1), KFDK (SEQ ID NO: 2), IPAVFKID (SEQ ID NO: 3), EVFR (SEQ ID NO: 4), and ILDKVGINY (SEQ ID NO: 5) used in the following examples are obtained by solid phase synthesis. Shanghai Nuoyou Biotechnology Co., Ltd. was commissioned to solid phase synthesize the above-mentioned hypoglycemic peptide segments for subsequent experiments.
实施例2.肽段DPP-Ⅳ抑制活性的测定Example 2. Determination of the DPP-IV inhibitory activity of peptide fragments
96孔板中加入100μL的Gly-Pro-PNA HCl溶液(1mM)、50μLTris-HCl缓冲液(100mM,pH 8.0)、20μL样品(10mg/mL),37℃下孵育10min,加入30μL的DPP-Ⅳ的Tris-HCl溶液液(0.02μg/μL)进行30min酶反应,测定405nm下的吸光度值,每个样品进行3次重复分析,根据公式计算DPP-Ⅳ抑制率。样品对照组用同体积的Tris-HCl缓冲液(100mM,pH 8.0)代替DPP-Ⅳ,阴性对照组中使用同体积的Tris-HCl缓冲液(100mM,pH 8.0)代替样品,空白对照组中使用同体积的Tris-HCl缓冲液(100mM,pH 8.0)代替样品和DPP-Ⅳ。DPP-Ⅳ抑制率用下列公式计算。100 μL of Gly-Pro-PNA HCl solution (1 mM), 50 μL of Tris-HCl buffer (100 mM, pH 8.0), and 20 μL of sample (10 mg/mL) were added to a 96-well plate, incubated at 37°C for 10 min, and 30 μL of DPP-Ⅳ Tris-HCl solution (0.02 μg/μL) was added for 30 min enzyme reaction. The absorbance value at 405 nm was measured, and each sample was analyzed three times. The DPP-Ⅳ inhibition rate was calculated according to the formula. The sample control group used the same volume of Tris-HCl buffer (100 mM, pH 8.0) instead of DPP-Ⅳ, the negative control group used the same volume of Tris-HCl buffer (100 mM, pH 8.0) instead of the sample, and the blank control group used the same volume of Tris-HCl buffer (100 mM, pH 8.0) instead of the sample and DPP-Ⅳ. The DPP-Ⅳ inhibition rate was calculated using the following formula.
DPP-Ⅳ也称为CD26,是一种跨膜丝氨酸蛋白酶,属脯氨酰寡肽酶家族中的一员,能够特异性地裂解GLP-1的N端二肽残基:AA-Pro或AA-Ala(AA为任意氨基酸),是体内外促使GLP-1降解失活的关键酶之一。DPP-Ⅳ在体内分布广泛,不仅存在于血浆,还存在于肾脏、小肠、胆管和胰腺的上皮细胞、血管的内皮细胞等组织器官中。因此选择性抑制DPP-4能提高体内GLP-1的浓度,延长其作用时间,同时也可以抑制胰增血糖素的生成,延长GLP-1刺激胰岛素分泌的持续时间。因此,DPP-IV酶在葡萄糖和胰岛素代谢中起着至关重要的作用。肽段的DPP-Ⅳ抑制率如图1及表2所示,阳性对照组使用西格列汀药物(sitagliptin),肽段LPMHIR(LR)、KFDK(KK)、IPAVFKID(ID)均显示出较大的DPP-Ⅳ抑制活性(>70%)。其中,在同等浓度下,肽段KFDK显示出最大的DPP-Ⅳ抑制率,高达78.28±4.29%。此外,肽段EVFR(ER)、ILDKVGINY(IY)的体外DPP-Ⅳ抑制率<50%。DPP-IV, also known as CD26, is a transmembrane serine protease and a member of the prolyl oligopeptidase family. It can specifically cleave the N-terminal dipeptide residue of GLP-1: AA-Pro or AA-Ala (AA is any amino acid), and is one of the key enzymes that promote the degradation and inactivation of GLP-1 in vivo and in vitro. DPP-IV is widely distributed in the body, not only in plasma, but also in tissues and organs such as kidneys, small intestines, bile ducts and pancreatic epithelial cells, and vascular endothelial cells. Therefore, selective inhibition of DPP-4 can increase the concentration of GLP-1 in the body and prolong its duration of action. It can also inhibit the production of glucagon and prolong the duration of insulin secretion stimulated by GLP-1. Therefore, the DPP-IV enzyme plays a vital role in glucose and insulin metabolism. The DPP-IV inhibition rate of the peptides is shown in Figure 1 and Table 2. The positive control group used sitagliptin, and the peptides LPMHIR (LR), KFDK (KK), and IPAVFKID (ID) all showed a large DPP-IV inhibitory activity (>70%). Among them, at the same concentration, the peptide KFDK showed the greatest DPP-Ⅳ inhibition rate, up to 78.28±4.29%. In addition, the in vitro DPP-Ⅳ inhibition rate of the peptides EVFR (ER) and ILDKVGINY (IY) was <50%.
表2肽段的DPP-Ⅳ抑制率Table 2 DPP-Ⅳ inhibition rate of peptides
半抑制浓度(half maximal inhibitory concentration,IC50)指某一种物质对另一种物质,如酶,抑制作用达到50%时的浓度,用以衡量灵敏度。关于乳源DPP-Ⅳ抑制肽的研究颇多,来源于牛β-酪蛋白的肽段VLGP的IC50=580.0μM,来源于牛β-乳球蛋白VLVLDTDYK的IC50=424.0μM,来源于牛α-乳白蛋白的肽段WLAHKAL的IC50=286.0μM。IC50值越小,表明肽段对DPP-Ⅳ抑制作用越强。本实施例中的降糖肽段IC50值测定结果如表3。Half maximal inhibitory concentration (IC 50 ) refers to the concentration at which a substance has an inhibitory effect of 50% on another substance, such as an enzyme, and is used to measure sensitivity. There are many studies on milk-derived DPP-Ⅳ inhibitory peptides. The IC 50 of the peptide segment VLGP derived from bovine β-casein is 580.0 μM, the IC 50 of the peptide segment VLVLDTDYK derived from bovine β-lactoglobulin is 424.0 μM, and the IC 50 of the peptide segment WLAHKAL derived from bovine α-lactalbumin is 286.0 μM. The smaller the IC 50 value, the stronger the inhibitory effect of the peptide segment on DPP-Ⅳ. The results of the determination of the IC 50 value of the glucose-lowering peptide segment in this example are shown in Table 3.
表3降糖肽段的半抑制浓度Table 3 Half inhibitory concentration of glucose-lowering peptide segments
实施例3.肽段对胰岛素抵抗HepG2细胞葡萄糖利用的改善效果Example 3. Effect of peptides on improving glucose utilization in insulin-resistant HepG2 cells
通过构建胰岛素抵抗的HepG2细胞,评价肽段对胰岛素抵抗肝脏细胞的葡萄糖利用和糖原合成的影响。By constructing insulin-resistant HepG2 cells, the effects of the peptides on glucose utilization and glycogen synthesis in insulin-resistant liver cells were evaluated.
胰岛素抵抗的HepG2细胞模型构建:将HepG2肝细胞接种于96孔板中,贴壁24h。配制600mM的葡萄糖PBS溶液,过0.22μm水性滤膜,吸取10μL,使得孔内葡萄糖浓度为30mM,空白对照组加10μL的PBS。置于37℃、5% CO2培养箱中培养24h,测定葡萄糖消耗率和相对糖原含量。结果如图2所示,高糖刺激的HepG2细胞的葡萄糖消耗率和细胞内相对糖原含量显著低于正常HepG2细胞,胰岛素抵抗的HepG2细胞模型构建成功。Construction of HepG2 cell model of insulin resistance: HepG2 hepatocytes were inoculated in 96-well plates and adhered for 24 hours. A 600mM glucose PBS solution was prepared, filtered through a 0.22μm aqueous filter, and 10μL was aspirated to make the glucose concentration in the well 30mM. 10μL of PBS was added to the blank control group. The cells were cultured in a 37°C, 5% CO2 incubator for 24 hours, and the glucose consumption rate and relative glycogen content were measured. The results are shown in Figure 2. The glucose consumption rate and relative glycogen content of HepG2 cells stimulated by high sugar were significantly lower than those of normal HepG2 cells, and the HepG2 cell model of insulin resistance was successfully constructed.
对葡萄糖消耗率和相对糖原含量的影响:将HepG2肝细胞接种于96孔板中,贴壁24h后,加入10μL葡萄糖(终浓度为30mM),同时加入10μL终浓度为100μM的降糖肽PBS溶液,空白孔用同体积的PBS代替葡萄糖溶液和样品溶液,标准孔用同体积的PBS代替样品溶液。培养24h后吸取培养基,利用葡萄糖氧化酶检测试剂盒(南京建成生物工程研究所,A154-1-1)。将细胞接种至直径为6cm的培养皿中,贴壁12h后,加入30mM葡萄糖刺激24h。用胰酶将细胞消化制成细胞悬液,1000rpm离心10min,弃上清留细胞沉淀。在细胞沉淀中加入1mL的PBS缓冲液,轻轻混匀,1000rpm离心10min,弃上清留细胞沉淀。加入0.2mL的PBS缓冲液,冰水浴条件下超声破碎,不离心,直接测定。采用糖原试剂盒测定细胞糖原含量。Effect on glucose consumption rate and relative glycogen content: HepG2 hepatocytes were inoculated in 96-well plates. After 24 hours of attachment, 10 μL of glucose (final concentration of 30 mM) was added, and 10 μL of PBS solution of glucose-lowering peptide with a final concentration of 100 μM was added at the same time. The blank wells were replaced with the same volume of PBS instead of glucose solution and sample solution, and the standard wells were replaced with the same volume of PBS instead of sample solution. After 24 hours of culture, the culture medium was aspirated and the glucose oxidase detection kit (Nanjing Jiancheng Bioengineering Institute, A154-1-1) was used. The cells were inoculated into a culture dish with a diameter of 6 cm. After 12 hours of attachment, 30 mM glucose was added for stimulation for 24 hours. The cells were digested with trypsin to make a cell suspension, centrifuged at 1000 rpm for 10 minutes, and the supernatant was discarded to keep the cell pellet. 1 mL of PBS buffer was added to the cell pellet, gently mixed, centrifuged at 1000 rpm for 10 minutes, and the supernatant was discarded to keep the cell pellet. 0.2 mL of PBS buffer was added, ultrasonically disrupted under ice water bath conditions, and directly measured without centrifugation. The glycogen content of cells was measured using a glycogen assay kit.
各组的葡糖糖消耗率和细胞内相对糖原含量如图2及图3所示,与对照组相比,肽段LPMHIR(LR)、KFDK(KK)、IPAVFKID(ID)的干预显著提高胰岛素抵抗HepG2细胞的葡萄糖消耗率和细胞内糖原含量,说明肽段提高了胰岛素抵抗肝脏细胞的葡萄糖摄取利用能力,一定程度上起到降低血糖,改善胰岛素抵抗的作用。肽段EVFR(ER)、ILDKVGINY(IY)对胰岛素抵抗肝脏细胞的葡萄糖摄取利用能力的改善效果不明显。The glucose consumption rate and relative intracellular glycogen content of each group are shown in Figures 2 and 3. Compared with the control group, the intervention of peptides LPMHIR (LR), KFDK (KK), and IPAVFKID (ID) significantly increased the glucose consumption rate and intracellular glycogen content of insulin-resistant HepG2 cells, indicating that the peptides improved the glucose uptake and utilization ability of insulin-resistant liver cells, and to a certain extent played a role in lowering blood sugar and improving insulin resistance. The peptides EVFR (ER) and ILDKVGINY (IY) had no obvious effect on improving the glucose uptake and utilization ability of insulin-resistant liver cells.
实施例4.肽段对肠内分泌细胞分泌GLP-1的影响Example 4. Effect of peptide fragments on GLP-1 secretion by enteroendocrine cells
以肠内分泌细胞NCI-H716细胞为模型,研究肽段对肠内分泌细胞分泌GLP-1的促进作用及肽段之间是否存在促GLP-1分泌的协同作用。Using enteroendocrine cells NCI-H716 cells as a model, the effects of peptides on promoting the secretion of GLP-1 by enteroendocrine cells and whether there is a synergistic effect between peptides in promoting the secretion of GLP-1 were studied.
将生长稳定的NCI-H716细胞按照1.5×106的密度接种在涂有基质胶的12孔培养板中培养48h,将NCI-H716细胞分别与五条肽段一起孵育24h,阳性对照组使用sitagliptin,使用酶联免疫吸附试剂盒检测细胞上清液中GLP-1含量。NCI-H716为人结直肠腺癌细胞,可以分泌GLP-1等激素,用以研究活性肽干预对肠上皮细胞分泌GLP-1的影响。如图4所示,以对照组作为基准,肽段LPMHIR(SEQ ID NO:1)、KFDK(SEQ ID NO:2)、IPAVFKID(SEQ ID NO:3)均促进了NCI-H716分泌GLP-1,表明降糖肽可在细胞层面促进GLP-1的分泌,通过GLP-1发挥降血糖、改善胰岛素抵抗等效果。合成分泌的GLP-1通过与细胞表面的GLP-1受体结合发挥有益作用。GLP-1受体激动剂与GLP-1受体结合后通过cAMP/PKA途径增加钙离子内流和内质网钙离子释放而活化钙调蛋白,促进胰岛素的释放。为了进一步肽段是否具备作为GLP-1受体激动剂的活性,测定培养基上清液中cAMP水平。如图5所示,肽段LPMHIR(SEQ ID NO:1)、KFDK(SEQ ID NO:2)、IPAVFKID(SEQ ID NO:3)、EVFR(SEQ ID NO:4)均在一定程度上提高了cAMP水平,表明降糖肽段可以通过提高cAMP水平,激活GLP-1受体。Stably growing NCI-H716 cells were inoculated at a density of 1.5×10 6 in a 12-well culture plate coated with matrix gel and cultured for 48 hours. NCI-H716 cells were incubated with five peptides for 24 hours, and sitagliptin was used as the positive control group. The GLP-1 content in the cell supernatant was detected using an enzyme-linked immunosorbent assay kit. NCI-H716 is a human colorectal adenocarcinoma cell that can secrete hormones such as GLP-1. It is used to study the effect of active peptide intervention on the secretion of GLP-1 by intestinal epithelial cells. As shown in Figure 4, with the control group as the benchmark, the peptides LPMHIR (SEQ ID NO: 1), KFDK (SEQ ID NO: 2), and IPAVFKID (SEQ ID NO: 3) all promoted the secretion of GLP-1 by NCI-H716, indicating that hypoglycemic peptides can promote the secretion of GLP-1 at the cellular level, and exert the effects of lowering blood sugar and improving insulin resistance through GLP-1. The synthetically secreted GLP-1 exerts a beneficial effect by binding to the GLP-1 receptor on the cell surface. After binding to the GLP-1 receptor, the GLP-1 receptor agonist increases calcium influx and endoplasmic reticulum calcium release through the cAMP/PKA pathway to activate calmodulin and promote insulin release. In order to further determine whether the peptide has the activity as a GLP-1 receptor agonist, the cAMP level in the culture supernatant was measured. As shown in Figure 5, the peptides LPMHIR (SEQ ID NO: 1), KFDK (SEQ ID NO: 2), IPAVFKID (SEQ ID NO: 3), and EVFR (SEQ ID NO: 4) all increased the cAMP level to a certain extent, indicating that the glucose-lowering peptide can activate the GLP-1 receptor by increasing the cAMP level.
结合实施例2、3,肽段LPMHIR(SEQ ID NO:1)、KFDK(SEQ ID NO:2)、IPAVFKID(SEQID NO:3)具有良好的GLP-1受体激动剂活性。在此基础上,进一步研究肽段LPMHIR(SEQ IDNO:1)、KFDK(SEQ ID NO:2)、IPAVFKID(SEQ ID NO:3)之间是否存在促GLP-1分泌的协同作用。如图6所示,同时给予肽的组合干预,细胞培养基中GLP-1分泌水平均高于单独干预。肽LPMHIR+KFDK组合和肽KFDK+IPAVFKID组合干预,其GLP-1分泌效果高于单独干预的效果之和,表明KFDK与LPMHIR、IPAVFKID分别具有协同效果,联合使用可提高两者促GLP-1分泌、激活GLP-1受体的作用。肽LPMHI和IPAVFKID不具备明显的协同作用。以上结果表明,联合使用KFDK与LPMHIR或KFDK与IPAVFKID可进一步发挥降糖肽促GLP-1分泌、激活GLP-1受体的作用。Combined with Examples 2 and 3, the peptides LPMHIR (SEQ ID NO: 1), KFDK (SEQ ID NO: 2), and IPAVFKID (SEQID NO: 3) have good GLP-1 receptor agonist activity. On this basis, it was further studied whether there was a synergistic effect between the peptides LPMHIR (SEQ ID NO: 1), KFDK (SEQ ID NO: 2), and IPAVFKID (SEQ ID NO: 3) in promoting GLP-1 secretion. As shown in Figure 6, when the combined intervention of the peptides was given at the same time, the GLP-1 secretion level in the cell culture medium was higher than that of the single intervention. The GLP-1 secretion effect of the combination of peptides LPMHIR+KFDK and the combination of peptides KFDK+IPAVFKID was higher than the sum of the effects of the single interventions, indicating that KFDK has a synergistic effect with LPMHIR and IPAVFKID, respectively, and the combined use can improve the effects of both in promoting GLP-1 secretion and activating the GLP-1 receptor. Peptides LPMHI and IPAVFKID do not have obvious synergistic effects. The above results indicate that the combined use of KFDK and LPMHIR or KFDK and IPAVFKID can further exert the role of glucose-lowering peptides in promoting GLP-1 secretion and activating GLP-1 receptors.
实施例5.肽段对高脂饮食小鼠胰岛素抵抗的改善效果Example 5. Effect of peptide fragments on improving insulin resistance in mice fed a high-fat diet
根据实施例2、3、4,肽段LPMHIR(SEQ ID NO:1)、KFDK(SEQ ID NO:2)、IPAVFKID(SEQ ID NO:3)具有较好的降糖效果,在体外可同时发挥DPP-Ⅳ抑制剂和GLP-1激动剂的双重作用。因此,采用乳清蛋白源降血糖肽LPMHIR(SEQ ID NO:1)、KFDK(SEQ ID NO:2)、IPAVFKID(SEQ ID NO:3)进行动物实验,研究其在体内的降血糖效果。三条肽段的质谱图如图7-9所示。According to Examples 2, 3, and 4, the peptides LPMHIR (SEQ ID NO: 1), KFDK (SEQ ID NO: 2), and IPAVFKID (SEQ ID NO: 3) have good hypoglycemic effects and can simultaneously play the dual roles of DPP-IV inhibitor and GLP-1 agonist in vitro. Therefore, whey protein-derived hypoglycemic peptides LPMHIR (SEQ ID NO: 1), KFDK (SEQ ID NO: 2), and IPAVFKID (SEQ ID NO: 3) were used for animal experiments to study their hypoglycemic effects in vivo. The mass spectra of the three peptides are shown in Figures 7-9.
选取3-4周龄的雄性C57/6J小鼠,购自北京维通利华实验技术有限公司,按照SPF级动物饲养标准进行饲养。动物实验经中国农业大学动物实验委员会审查批准。小鼠自由饮食饮水,在22±1℃、12:12日夜循环的环境中适应一周。适应1周后,将小鼠随机分为正常饮食(Normal diet,ND)组(n=6)和高脂饮食(High-fat diet,HFD)组(n=30)。ND组小鼠饲喂普通饲料,HFD组小鼠饲喂高脂饲料(供能比20%蛋白质、20%碳水化合物、60%脂肪)10周,构建高脂饮食诱导的胰岛素抵抗小鼠。10周后测定空腹血糖和空腹胰岛素,计算胰岛素抵抗指数(HOMA-IR)。HFD组小鼠的胰岛素抵抗指数大于2.69,表明高脂饮食诱导的胰岛素抵抗模型构建成功。将高脂饮食小鼠随机分为HFD组、LPMHIR组(LR)、KFDK组(KK组)、IPAVFKID(ID组)、西格列汀组(Sitagliptin组),每组6只。给予相应干预物质干预十周,期间每周监测小鼠的摄食量和体重。Male C57/6J mice aged 3-4 weeks were selected and purchased from Beijing Weitong Lihua Experimental Technology Co., Ltd. They were raised in accordance with the SPF animal husbandry standards. The animal experiments were reviewed and approved by the Animal Experiment Committee of China Agricultural University. The mice were free to eat and drink water and adapted for one week in an environment with a 22±1℃ and 12:12 day and night cycle. After 1 week of adaptation, the mice were randomly divided into a normal diet (Normal diet, ND) group (n=6) and a high-fat diet (High-fat diet, HFD) group (n=30). The mice in the ND group were fed with ordinary feed, and the mice in the HFD group were fed with a high-fat diet (energy supply ratio 20% protein, 20% carbohydrates, 60% fat) for 10 weeks to construct high-fat diet-induced insulin resistance mice. After 10 weeks, fasting blood glucose and fasting insulin were measured, and the insulin resistance index (HOMA-IR) was calculated. The insulin resistance index of mice in the HFD group was greater than 2.69, indicating that the high-fat diet-induced insulin resistance model was successfully constructed. The high-fat diet mice were randomly divided into HFD group, LPMHIR group (LR), KFDK group (KK group), IPAVFKID (ID group), and sitagliptin group (Sitagliptin group), with 6 mice in each group. The corresponding intervention substances were given for ten weeks, during which the food intake and body weight of the mice were monitored every week.
干预九周后,小鼠禁食不禁水8h,以2g/kg BW剂量对小鼠进行葡萄糖灌胃,并在灌胃第0、30、60、90和120min对小鼠进行尾尖采血,用血糖仪测定血糖值,绘制曲线,计算曲线下面积(Area under cure,AUC)。After nine weeks of intervention, the mice were fasted but not watered for 8 h, and were gavaged with glucose at a dose of 2 g/kg BW. Blood was collected from the tail tip of the mice at 0, 30, 60, 90 and 120 min after gavage. Blood glucose levels were measured with a blood glucose meter, and curves were drawn to calculate the area under the curve (Area under cure, AUC).
如图10所示,小鼠在灌胃葡萄糖后血糖上升,之后下降,并在90min之后基本趋于平缓。与ND组相比,HFD组小鼠的血糖始终维持在较高水平,OGTT试验期间的曲线下面积(Area-under-the-curve,AUC)是ND组的1.39倍,显著高于对照组,表明高脂饮食诱导下,小鼠葡萄糖耐量受到损伤,对血糖的调节能力下降。降糖肽段的干预及西格列汀干预提高了HFD小鼠对血糖的调节能力,对高脂饮食诱导的葡萄糖耐量损伤起到了较好的改善效果。西格列汀干预使HFD小鼠的AUC下降27.2%。三种降糖肽段LPMHIR(SEQ ID NO:1)、KFDK(SEQID NO:2)、IPAVFKID(SEQ ID NO:3)分别使HFD小鼠AUC下降18.8%,23.0%,21.3%。以上结果表明,降糖肽可改善高脂饮食诱导的糖耐量受损,提高高脂饮食小鼠的血糖调节能力。As shown in Figure 10, the blood sugar of mice rose after oral administration of glucose, then fell, and basically flattened after 90 minutes. Compared with the ND group, the blood sugar of mice in the HFD group was always maintained at a higher level. The area under the curve (AUC) during the OGTT test was 1.39 times that of the ND group, which was significantly higher than that of the control group, indicating that under the induction of a high-fat diet, the glucose tolerance of mice was impaired and the ability to regulate blood sugar decreased. The intervention of hypoglycemic peptides and sitagliptin intervention improved the ability of HFD mice to regulate blood sugar, and had a good improvement effect on the impairment of glucose tolerance induced by a high-fat diet. Sitagliptin intervention reduced the AUC of HFD mice by 27.2%. The three hypoglycemic peptides LPMHIR (SEQ ID NO: 1), KFDK (SEQID NO: 2), and IPAVFKID (SEQ ID NO: 3) reduced the AUC of HFD mice by 18.8%, 23.0%, and 21.3%, respectively. The above results indicate that glucose-lowering peptides can improve impaired glucose tolerance induced by a high-fat diet and enhance the blood glucose regulation ability of mice fed a high-fat diet.
小鼠禁食不禁水6h,以0.75U/kg BW剂量对小鼠进行胰岛素腹腔注射,并在注射的第0、30、60、90和120min对小鼠进行尾尖采血,用血糖仪测定血糖值,绘制曲线,计算曲线下面积(Area under cure,AUC)。The mice were fasted but not watered for 6 h, and insulin was injected intraperitoneally at a dose of 0.75 U/kg BW. Blood was collected from the tail tip of the mice at 0, 30, 60, 90 and 120 min after injection. Blood glucose levels were measured with a blood glucose meter, and curves were drawn to calculate the area under the curve (Area under cure, AUC).
如图11所示,与ND组相比,HFD组小鼠空腹血糖水平显著升高,且注射胰岛素后血糖降低的速度更慢,降幅较低,曲线下面积(Area-under-the-curve,AUC)为ND组的1.63倍,显著高于对照组,说明高脂饮食喂养导致小鼠空腹血糖升高,胰岛素耐受性受损。降糖肽段和西格列汀干预提高了HFD小鼠血糖下降速度,同时血糖的降幅增加,曲线下面积显著减少。西格列汀干预使HFD小鼠的AUC下降42.3%。三种降糖肽LPMHIR(SEQ ID NO:1)、KFDK(SEQ ID NO:2)、IPAVFKID(SEQ ID NO:3)改善高脂饮食诱导的糖耐量受损,分别使HFD小鼠AUC下降26.1%、33.3%、30.8%,说明降糖肽提高了HFD小鼠的胰岛素耐受性,减轻胰岛素抵抗程度。As shown in Figure 11, compared with the ND group, the fasting blood glucose level of mice in the HFD group was significantly increased, and the blood glucose decreased more slowly after insulin injection, with a lower decrease. The area under the curve (AUC) was 1.63 times that of the ND group, which was significantly higher than that of the control group, indicating that high-fat diet feeding caused the mice to have increased fasting blood glucose and impaired insulin tolerance. The intervention of hypoglycemic peptides and sitagliptin increased the rate of blood glucose decrease in HFD mice, while the decrease in blood glucose increased, and the area under the curve was significantly reduced. Sitagliptin intervention reduced the AUC of HFD mice by 42.3%. The three hypoglycemic peptides LPMHIR (SEQ ID NO: 1), KFDK (SEQ ID NO: 2), and IPAVFKID (SEQ ID NO: 3) improved the impaired glucose tolerance induced by high-fat diet, and reduced the AUC of HFD mice by 26.1%, 33.3%, and 30.8%, respectively, indicating that the hypoglycemic peptides improved the insulin tolerance of HFD mice and reduced the degree of insulin resistance.
干预十周后处死小鼠,收集血清,测定血清中DPP-Ⅳ酶活性,探究本发明应用实例对高脂饮食诱导的胰岛素抵抗小鼠血清中DPP-Ⅳ酶活性的影响。如图12,相比于ND组,HFD小鼠的血清中DPP-Ⅳ酶活性显著上升。不同降糖肽的干预降低了HFD小鼠血清中DPP-Ⅳ活性,表明降糖肽干预可抑制高脂饮食小鼠体内的DPP-Ⅳ活性,从而发挥抑制GLP-1降解失活的作用。After ten weeks of intervention, the mice were killed, the serum was collected, and the DPP-IV enzyme activity in the serum was measured to explore the effect of the application example of the present invention on the DPP-IV enzyme activity in the serum of mice with insulin resistance induced by a high-fat diet. As shown in Figure 12, compared with the ND group, the DPP-IV enzyme activity in the serum of HFD mice increased significantly. The intervention of different glucose-lowering peptides reduced the DPP-IV activity in the serum of HFD mice, indicating that the glucose-lowering peptide intervention can inhibit the DPP-IV activity in mice fed a high-fat diet, thereby inhibiting the degradation and inactivation of GLP-1.
测定血清中GLP-1活性,探究本发明应用实例对高脂饮食诱导的胰岛素抵抗小鼠血清中GLP-1含量的影响。GLP-1不仅能够刺激胰岛素的分泌,还与胰腺β细胞和心血管系统的保护作用,能抑制β细胞的凋亡,促进β细胞生长及增殖,上调胰岛素的分泌,降低血糖,与减少食物摄入、促进胃排空及体重减轻有关,在缓解糖尿病起着重要作用。如图所示13,相比于ND组,HFD小鼠血清中的GLP-1含量显著降低,表明在高脂饮食小鼠体内,GLP-1发挥改善胰岛素抵抗的效果较低。给予不同降糖肽干预显著提高了高脂饮食小鼠血清中的GLP-1含量,LPMHIR(SEQ ID NO:1)、KFDK(SEQ ID NO:2)、IPAVFKID(SEQ ID NO:3)分别使HFD小鼠血清中GLP-1含量上升46.4%、57.8%、61.8%,表明本应用实例中的降糖肽有利于增加血清中GLP-1含量,发挥GLP-1改善胰岛素抵抗的作用。另一方面,GLP-1通过与不同组织细胞表面的GLP-1受体结合,从而发挥其有益作用。为了研究降糖肽段对高脂饮食诱导的胰岛素抵抗小鼠肝脏中GLP-1R表达的影响,通过PCR检测GLP-1R在小鼠肝脏中的表达,如图14所示。相比于ND组,HFD饮食显著降低了GLP-1R mRNA的表达,表明高脂饮食在诱导血清GLP-1含量降低的同时,降低了GLP-1R的表达,不利于GLP-1与组织细胞受体结合从而发挥改善血糖的作用。降糖肽段LPMHIR(SEQ ID NO:1)、KFDK(SEQ ID NO:2)、IPAVFKID(SEQ ID NO:3)的干预可提高HFD小鼠肝脏组织中GLP-1R mRNA的表达,激活GLP-1受体。The activity of GLP-1 in serum was determined to explore the effect of the application example of the present invention on the GLP-1 content in the serum of mice with insulin resistance induced by a high-fat diet. GLP-1 can not only stimulate the secretion of insulin, but also has a protective effect on pancreatic β cells and the cardiovascular system, inhibits the apoptosis of β cells, promotes β cell growth and proliferation, upregulates insulin secretion, lowers blood sugar, and is related to reducing food intake, promoting gastric emptying and weight loss, and plays an important role in alleviating diabetes. As shown in Figure 13, compared with the ND group, the GLP-1 content in the serum of HFD mice was significantly reduced, indicating that in mice on a high-fat diet, GLP-1 has a lower effect on improving insulin resistance. The intervention of different glucose-lowering peptides significantly increased the GLP-1 content in the serum of mice fed a high-fat diet. LPMHIR (SEQ ID NO: 1), KFDK (SEQ ID NO: 2), and IPAVFKID (SEQ ID NO: 3) increased the GLP-1 content in the serum of HFD mice by 46.4%, 57.8%, and 61.8%, respectively, indicating that the glucose-lowering peptides in this application example are beneficial to increase the GLP-1 content in serum and play the role of GLP-1 in improving insulin resistance. On the other hand, GLP-1 exerts its beneficial effects by binding to GLP-1 receptors on the surface of different tissue cells. In order to study the effect of glucose-lowering peptide segments on the expression of GLP-1R in the liver of insulin-resistant mice induced by a high-fat diet, the expression of GLP-1R in the liver of mice was detected by PCR, as shown in Figure 14. Compared with the ND group, the HFD diet significantly reduced the expression of GLP-1R mRNA, indicating that the high-fat diet reduced the expression of GLP-1R while inducing a decrease in serum GLP-1 content, which is not conducive to the binding of GLP-1 to tissue cell receptors to improve blood sugar. Intervention with the glucose-lowering peptide segments LPMHIR (SEQ ID NO: 1), KFDK (SEQ ID NO: 2), and IPAVFKID (SEQ ID NO: 3) can increase the expression of GLP-1R mRNA in the liver tissue of HFD mice and activate the GLP-1 receptor.
干预期间监测小鼠体重变化情况,探究本发明应用实例对高脂饮食诱导肥胖的改善效果。如图15所示,相比于ND组,HFD组小鼠体重显著增加,达ND组的1.52倍。给予LPMHIR(SEQ ID NO:1)、KFDK(SEQ ID NO:2)、IPAVFKID(SEQ ID NO:3)干预可显著降低高脂饮食引发的肥胖,减轻小鼠体重。The weight changes of mice were monitored during the intervention period to explore the improvement effect of the application example of the present invention on high-fat diet-induced obesity. As shown in Figure 15, compared with the ND group, the weight of mice in the HFD group increased significantly, reaching 1.52 times that of the ND group. Intervention with LPMHIR (SEQ ID NO: 1), KFDK (SEQ ID NO: 2), and IPAVFKID (SEQ ID NO: 3) can significantly reduce obesity induced by a high-fat diet and reduce the weight of mice.
取小鼠附睾脂肪进行H&E染色,探究本发明应用实例对高脂饮食诱导的脂质积累的影响。如图16所示,相比ND组,HFD小鼠附睾脂肪的细胞直径增大,脂肪指数增加,表明高脂饮食诱导了小鼠脂质积累,增大白色脂肪细胞。给予LPMHIR(SEQ ID NO:1)、KFDK(SEQ IDNO:2)、IPAVFKID(SEQ ID NO:3)干预显著减小了白色脂肪直径,表明肽段对减少脂质积累具有改善效果。Mouse epididymal fat was taken for H&E staining to explore the effect of the application example of the present invention on lipid accumulation induced by a high-fat diet. As shown in Figure 16, compared with the ND group, the cell diameter of epididymal fat in HFD mice increased and the fat index increased, indicating that the high-fat diet induced lipid accumulation in mice and enlarged white adipocytes. The intervention of LPMHIR (SEQ ID NO: 1), KFDK (SEQ ID NO: 2), and IPAVFKID (SEQ ID NO: 3) significantly reduced the diameter of white fat, indicating that the peptide segment has an improvement effect on reducing lipid accumulation.
测定小鼠血清中总胆固醇(TC)、总甘油三酯(TG)、高密度脂蛋白胆固醇(HDL-c)、低密度脂蛋白胆固醇(LDL-c),表征小鼠血脂水平。如表4所示,高脂饮食干预显著提高了小鼠TC、TG、LDL-c,引发高脂血症。给予LPMHIR(SEQ ID NO:1)、KFDK(SEQ ID NO:2)、IPAVFKID(SEQ ID NO:3)干预,降低了HFD小鼠血清中TC、TG、LDL-c水平,同时提高了HDL-c水平,表明肽段干预显著改善高脂饮食小鼠的血脂水平,改善高脂血症,具有辅助降血脂的效果。Total cholesterol (TC), total triglycerides (TG), high-density lipoprotein cholesterol (HDL-c), and low-density lipoprotein cholesterol (LDL-c) in mouse serum were measured to characterize the blood lipid level of mice. As shown in Table 4, high-fat diet intervention significantly increased TC, TG, and LDL-c in mice, causing hyperlipidemia. LPMHIR (SEQ ID NO: 1), KFDK (SEQ ID NO: 2), and IPAVFKID (SEQ ID NO: 3) intervention reduced the levels of TC, TG, and LDL-c in the serum of HFD mice, and increased the level of HDL-c, indicating that peptide intervention significantly improved the blood lipid level of mice on a high-fat diet, improved hyperlipidemia, and had the effect of assisting in lowering blood lipids.
表4降糖肽段干预对HFD小鼠血脂水平的影响Table 4 Effects of glucose-lowering peptide intervention on blood lipid levels in HFD mice
测定小鼠空腹胰岛素和糖化血红蛋白,探究本发明应用实例对高脂饮食诱导的胰岛素抵抗小鼠血清中指标的影响。糖化血红蛋白(HbA1c)是红细胞中的血红蛋白与血中的葡萄糖相结合的产物,可以直接有效反应患者在过去3-6个月内血糖水平,且与胰岛素抵抗水平呈正相关,与胆固醇、甘油三酯和低密度脂蛋白胆固醇呈直接相关,与高密度脂蛋白胆固醇呈负相关。如表5所示,相比于ND组,HFD小鼠糖化血红蛋白水平显著升高,表明高脂饮食诱导了小鼠糖尿病和胰岛素抵抗。给予LPMHIR(SEQ ID NO:1)、KFDK(SEQ ID NO:2)、IPAVFKID(SEQ ID NO:3)干预显著降低高脂饮食小鼠糖化血红蛋白水平。The fasting insulin and glycated hemoglobin of mice were measured to explore the effect of the application examples of the present invention on the indicators in the serum of mice with insulin resistance induced by a high-fat diet. Glycated hemoglobin (HbA1c) is the product of the combination of hemoglobin in red blood cells and glucose in the blood. It can directly and effectively reflect the patient's blood sugar level in the past 3-6 months, and is positively correlated with the level of insulin resistance, directly correlated with cholesterol, triglycerides and low-density lipoprotein cholesterol, and negatively correlated with high-density lipoprotein cholesterol. As shown in Table 5, compared with the ND group, the glycated hemoglobin level of HFD mice was significantly increased, indicating that the high-fat diet induced diabetes and insulin resistance in mice. Giving LPMHIR (SEQ ID NO: 1), KFDK (SEQ ID NO: 2), and IPAVFKID (SEQ ID NO: 3) intervention significantly reduced the glycated hemoglobin level of mice on a high-fat diet.
表5降糖肽段干预对HFD小鼠血清指标的影响Table 5 Effects of hypoglycemic peptide intervention on serum parameters of HFD mice
Alpha多样性分析反映微生物群落的多样性和差异性,最常用的指数包括Ace指数、Chao指数和Shannon指数。测定小鼠肠道菌群,探究本发明应用实例对高脂饮食诱导的胰岛素抵抗小鼠肠道菌群多样性的影响。如图17所示,相比于ND组,HFD小鼠的Ace指数和Chao指数均显著下降,表明HFD使小鼠的肠道微生物丰富度显著降低。LPMHIR(SEQ ID NO:1)、KFDK(SEQ ID NO:2)、IPAVFKID(SEQ ID NO:3)肽段干预提高了高脂饮食小鼠肠道菌群的多样性,在一定程度上得到恢复。Alpha diversity analysis reflects the diversity and variability of microbial communities. The most commonly used indexes include the Ace index, Chao index, and Shannon index. The intestinal flora of mice was measured to explore the effect of the application example of the present invention on the diversity of intestinal flora in mice with insulin resistance induced by a high-fat diet. As shown in Figure 17, compared with the ND group, the Ace index and Chao index of HFD mice were significantly decreased, indicating that HFD significantly reduced the richness of intestinal microorganisms in mice. LPMHIR (SEQ ID NO: 1), KFDK (SEQ ID NO: 2), and IPAVFKID (SEQ ID NO: 3) peptide intervention increased the diversity of intestinal flora in mice fed a high-fat diet and restored it to a certain extent.
肠道微生物被认为是与脂肪储存、体重增加和胰岛素抵抗相关的因素。当体重增加处于肥胖状态时,拟杆菌门丰度减少,厚壁菌门丰度增加。如图18所示,与ND组相比,HFD组小鼠肠道菌群中拟杆菌门/厚壁菌门相对丰度的比例显著下降,说明高脂饮食能够造成门水平上造成小鼠的肠道菌群失衡。LPMHIR(SEQ ID NO:1)、KFDK(SEQ ID NO:2)、IPAVFKID(SEQ ID NO:3)干预显著提高拟杆菌门/厚壁菌门的比例,说明三条肽段在门水平上调节HFD小鼠的肠道菌群组成,有利于发挥肠道菌群改善肥胖、胰岛素抵抗等相关症状的作用。Intestinal microorganisms are considered to be factors related to fat storage, weight gain, and insulin resistance. When weight gain is in an obese state, the abundance of Bacteroidetes decreases and the abundance of Firmicutes increases. As shown in Figure 18, compared with the ND group, the ratio of the relative abundance of Bacteroidetes/Firmicutes in the intestinal flora of mice in the HFD group decreased significantly, indicating that a high-fat diet can cause an imbalance in the intestinal flora of mice at the phylum level. LPMHIR (SEQ ID NO: 1), KFDK (SEQ ID NO: 2), and IPAVFKID (SEQ ID NO: 3) intervention significantly increased the ratio of Bacteroidetes/Firmicutes, indicating that the three peptides regulate the intestinal flora composition of HFD mice at the phylum level, which is beneficial to the role of intestinal flora in improving obesity, insulin resistance and other related symptoms.
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。The above description is only a preferred embodiment of the present invention and is not intended to limit the present invention. For those skilled in the art, the present invention may have various modifications and variations. Any modification, equivalent replacement, improvement, etc. made within the spirit and principle of the present invention shall be included in the protection scope of the present invention.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202410341330.0A CN118108790B (en) | 2024-03-25 | 2024-03-25 | Preparation and application of whey protein-derived hypoglycemic peptide with GLP-1 receptor agonist activity |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202410341330.0A CN118108790B (en) | 2024-03-25 | 2024-03-25 | Preparation and application of whey protein-derived hypoglycemic peptide with GLP-1 receptor agonist activity |
Publications (2)
Publication Number | Publication Date |
---|---|
CN118108790A CN118108790A (en) | 2024-05-31 |
CN118108790B true CN118108790B (en) | 2024-11-05 |
Family
ID=91221179
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202410341330.0A Active CN118108790B (en) | 2024-03-25 | 2024-03-25 | Preparation and application of whey protein-derived hypoglycemic peptide with GLP-1 receptor agonist activity |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN118108790B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN118787658B (en) * | 2024-06-14 | 2025-01-21 | 中国农业大学 | Application of a glucagon-like peptide-1 receptor-specific nucleic acid aptamer in the intervention of metabolic diseases |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108314705A (en) * | 2018-01-26 | 2018-07-24 | 海普诺凯营养品有限公司 | Inhibit sheep whey protein peptide, preparation method and its application of function with DPP-IV |
CN117247431A (en) * | 2023-11-17 | 2023-12-19 | 中国农业大学 | A kind of tartary buckwheat peptide with DPP-IV inhibitory activity and its application |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2002022802A1 (en) * | 2000-09-13 | 2002-03-21 | Smithkline Beecham Corporation | Novel compounds |
BR112018068544A2 (en) * | 2016-03-14 | 2019-04-24 | Baylor College Medicine | tc24-c4, Chagas disease antigen with improved stability and decreased aggregation |
CN114129704B (en) * | 2021-11-23 | 2023-12-15 | 中国药科大学 | Application of milk-derived oligopeptide in preparation of medicine for preventing and treating diabetes and diabetic complications |
-
2024
- 2024-03-25 CN CN202410341330.0A patent/CN118108790B/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108314705A (en) * | 2018-01-26 | 2018-07-24 | 海普诺凯营养品有限公司 | Inhibit sheep whey protein peptide, preparation method and its application of function with DPP-IV |
CN117247431A (en) * | 2023-11-17 | 2023-12-19 | 中国农业大学 | A kind of tartary buckwheat peptide with DPP-IV inhibitory activity and its application |
Non-Patent Citations (1)
Title |
---|
乳清蛋白及其生物活性肽调节血糖功能研究进展;吴尚仪等;食品科学;20200403;第第41卷卷(第第3期期);参见摘要,第2页左栏第2段-第4页右栏第2段 * |
Also Published As
Publication number | Publication date |
---|---|
CN118108790A (en) | 2024-05-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5068174B2 (en) | Protein hydrolyzate concentrated in peptides inhibiting DPP-IV and uses thereof | |
US8431531B2 (en) | Methods for stimulating glucagon-like peptide-1(GLP-1) secretion and treatments comprising same | |
Morifuji et al. | Comparison of different sources and degrees of hydrolysis of dietary protein: effect on plasma amino acids, dipeptides, and insulin responses in human subjects | |
JP7268202B2 (en) | Fusion proteins for treating metabolic diseases | |
KR101652778B1 (en) | Composition containing peptide as the active ingredient | |
Chen et al. | Novel umami peptide IPIPATKT with dual dipeptidyl peptidase-IV and angiotensin I-converting enzyme inhibitory activities | |
AU2020417121B2 (en) | Lactobacillus fermentum strain, and composition for preventing or treating metabolic diseases containing same | |
JP2019510014A (en) | Glucagon and GLP-1 co-agonist for the treatment of obesity | |
CN102292348A (en) | Glucagon analogues | |
CN1235611A (en) | Use of glucagon-like peptide-1 (GLP-1) or analogs to abolish catabolic changes after surgery | |
CN118108790B (en) | Preparation and application of whey protein-derived hypoglycemic peptide with GLP-1 receptor agonist activity | |
CA3135910C (en) | Acylated glp-1 derivative | |
JP2008539203A (en) | New nutritional supplement composition | |
Drummond et al. | Casein hydrolysate with glycemic control properties: Evidence from cells, animal models, and humans | |
JP2012511506A (en) | New insulin analogue | |
CN112080542A (en) | A kind of preparation method of low phenylalanine egg white protein peptide | |
Chaudhari et al. | Evaluation of casein & whey protein hydrolysates as well as milk fermentates from Lactobacillus helveticus for expression of gut hormones | |
US20080221023A1 (en) | Use of Protein Hydrolysates For the Manufacture of a Medicament For Prophylaxis and/or Treatment of a Dpp-IV Mediated Condition | |
CN103483418A (en) | DPP-IV inhibiting polypeptide and application thereof | |
US20190381128A1 (en) | GLP-1 Secretagogue and Composition | |
TW201521756A (en) | Reducing the risk of autoimmune disease | |
JPWO2004078195A1 (en) | Inducing agent for converting intestinal cells into insulin-producing cells, and therapeutic agent for diabetes | |
CN116947973A (en) | A kind of polypeptide, its preparation method and application | |
US20200131495A1 (en) | Proteins derived from clpb and uses thereof | |
CN110305206A (en) | A class of dual-target polypeptide compound and its application in the preparation of medicines for treating diabetes and diseases characterized by it |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |