CN118102318B - Data transmission system based on 5G technology - Google Patents
Data transmission system based on 5G technology Download PDFInfo
- Publication number
- CN118102318B CN118102318B CN202410487322.7A CN202410487322A CN118102318B CN 118102318 B CN118102318 B CN 118102318B CN 202410487322 A CN202410487322 A CN 202410487322A CN 118102318 B CN118102318 B CN 118102318B
- Authority
- CN
- China
- Prior art keywords
- data
- network
- spectrum
- urgency
- encryption
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W16/00—Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
- H04W16/02—Resource partitioning among network components, e.g. reuse partitioning
- H04W16/10—Dynamic resource partitioning
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L47/00—Traffic control in data switching networks
- H04L47/10—Flow control; Congestion control
- H04L47/24—Traffic characterised by specific attributes, e.g. priority or QoS
- H04L47/2425—Traffic characterised by specific attributes, e.g. priority or QoS for supporting services specification, e.g. SLA
- H04L47/2433—Allocation of priorities to traffic types
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L63/00—Network architectures or network communication protocols for network security
- H04L63/20—Network architectures or network communication protocols for network security for managing network security; network security policies in general
- H04L63/205—Network architectures or network communication protocols for network security for managing network security; network security policies in general involving negotiation or determination of the one or more network security mechanisms to be used, e.g. by negotiation between the client and the server or between peers or by selection according to the capabilities of the entities involved
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L9/00—Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
- H04L9/40—Network security protocols
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W12/00—Security arrangements; Authentication; Protecting privacy or anonymity
- H04W12/03—Protecting confidentiality, e.g. by encryption
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W16/00—Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
- H04W16/02—Resource partitioning among network components, e.g. reuse partitioning
- H04W16/04—Traffic adaptive resource partitioning
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W28/00—Network traffic management; Network resource management
- H04W28/02—Traffic management, e.g. flow control or congestion control
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/04—Wireless resource allocation
- H04W72/044—Wireless resource allocation based on the type of the allocated resource
- H04W72/0453—Resources in frequency domain, e.g. a carrier in FDMA
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/04—Wireless resource allocation
- H04W72/044—Wireless resource allocation based on the type of the allocated resource
- H04W72/0457—Variable allocation of band or rate
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/50—Allocation or scheduling criteria for wireless resources
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02D—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
- Y02D30/00—Reducing energy consumption in communication networks
- Y02D30/70—Reducing energy consumption in communication networks in wireless communication networks
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Computer Security & Cryptography (AREA)
- Computer Hardware Design (AREA)
- Computing Systems (AREA)
- General Engineering & Computer Science (AREA)
- Data Exchanges In Wide-Area Networks (AREA)
Abstract
本发明公开了一种基于5G技术的数据传输系统,涉及无线通信网络技术领域,包括:动态频谱资源分配模块、数据重排序和加密模块,以及智能传输控制中心;动态频谱资源分配模块采用一种针对5G网络优化的频谱动态分配算法,该算法能够基于网络的实时负载、用户需求和频谱使用状况自适应地管理和分配频谱资源,数据重排序和加密模块能够根据数据包的优先级、大小和目的地智能地调整其处理顺序,此外,该模块还采用自适应加密技术,智能传输控制中心是系统的核心,负责综合评估动态频谱资源分配模块和数据重排序及加密模块的运行结果,基于这些综合评估的结果,智能传输控制中心能够采取针对性的调整,显著提升了5G网络的性能和用户体验。
The present invention discloses a data transmission system based on 5G technology, which relates to the technical field of wireless communication networks, and includes: a dynamic spectrum resource allocation module, a data reordering and encryption module, and an intelligent transmission control center; the dynamic spectrum resource allocation module adopts a spectrum dynamic allocation algorithm optimized for 5G networks, and the algorithm can adaptively manage and allocate spectrum resources based on the real-time load of the network, user needs and spectrum usage conditions; the data reordering and encryption module can intelligently adjust the processing order of the data packet according to its priority, size and destination; in addition, the module also adopts adaptive encryption technology; the intelligent transmission control center is the core of the system, and is responsible for comprehensively evaluating the operating results of the dynamic spectrum resource allocation module and the data reordering and encryption module; based on the results of these comprehensive evaluations, the intelligent transmission control center can take targeted adjustments, which significantly improves the performance and user experience of the 5G network.
Description
技术领域Technical Field
本发明涉及无线通信网络技术领域,具体的是一种基于5G技术的数据传输系统。The present invention relates to the field of wireless communication network technology, and specifically to a data transmission system based on 5G technology.
背景技术Background technique
随着5G技术的快速发展和广泛部署,对于高效、安全的数据传输系统的需求日益增长。5G网络承诺提供比以往任何移动通信技术更高的数据传输速度、更低的延迟以及更大的连接密度,这为各种新兴应用,如增强现实(AR)、虚拟现实(VR)、自动驾驶汽车以及物联网(IoT)设备等,提供了无限的可能。然而,这些优势同时带来了对网络资源管理、数据安全和用户体验优化的新挑战。With the rapid development and widespread deployment of 5G technology, the demand for efficient and secure data transmission systems is growing. 5G networks promise to provide higher data transmission speeds, lower latency, and greater connection density than any previous mobile communication technology, which provides unlimited possibilities for various emerging applications such as augmented reality (AR), virtual reality (VR), self-driving cars, and Internet of Things (IoT) devices. However, these advantages also bring new challenges to network resource management, data security, and user experience optimization.
在现有技术中,5G网络的频谱资源管理通常较为静态,缺乏针对实时网络负载和用户需求的动态调整能力。这可能导致频谱资源的利用不充分和网络拥塞的问题,特别是在用户密集或数据需求高峰时段。此外,传统的数据加密技术可能无法满足5G高速数据流的需求,或者在提供足够安全保护的同时影响数据传输的效率。In existing technologies, spectrum resource management of 5G networks is usually relatively static and lacks the ability to dynamically adjust to real-time network load and user needs. This may lead to insufficient utilization of spectrum resources and network congestion, especially during periods of high user density or peak data demand. In addition, traditional data encryption technology may not meet the needs of 5G high-speed data flows, or affect the efficiency of data transmission while providing adequate security protection.
发明内容Summary of the invention
为解决上述背景技术中提到的不足,本发明的目的在于提供一种基于5G技术的数据传输系统,能够提升5G网络的性能和用户体验。In order to solve the deficiencies mentioned in the above background technology, the purpose of the present invention is to provide a data transmission system based on 5G technology, which can improve the performance and user experience of 5G networks.
第一方面,本发明的目的可以通过以下技术方案实现:一种基于5G技术的数据传输系统,包括:In the first aspect, the purpose of the present invention can be achieved by the following technical solution: A data transmission system based on 5G technology, comprising:
动态频谱资源分配模块,用于执行针对5G网络优化的频谱动态分配算法,其中,所述频谱动态分配算法基于5G网络的负载、用户需求和频谱使用情况,自适应地管理和分配5G频谱资源,输出得到第一执行结果,将第一执行结果发送至智能传输控制中心;A dynamic spectrum resource allocation module, used to execute a spectrum dynamic allocation algorithm optimized for a 5G network, wherein the spectrum dynamic allocation algorithm adaptively manages and allocates 5G spectrum resources based on the load of the 5G network, user demand, and spectrum usage, outputs a first execution result, and sends the first execution result to an intelligent transmission control center;
数据重排序和加密模块,用于执行专为5G数据包设计的数据重排序算法和自适应加密技术,其中,所述数据重排序算法根据5G数据包的优先级、大小和目的地智能地进行重排序,所述自适应加密技术根据5G数据特征动态选择加密策略,输出得到第二执行结果,将第二执行结果发送至智能传输控制中心;A data reordering and encryption module, used to execute a data reordering algorithm and an adaptive encryption technology designed specifically for 5G data packets, wherein the data reordering algorithm intelligently reorders the 5G data packets according to the priority, size and destination of the 5G data packets, and the adaptive encryption technology dynamically selects an encryption strategy according to the characteristics of the 5G data, outputs a second execution result, and sends the second execution result to the intelligent transmission control center;
智能传输控制中心,用于根据第一执行结果和第二执行结果,以及实时分析的5G网络状态进行综合评估,得到综合评估结果,基于综合评估结果,调节网络流量分布、启动优先级调整和安全加固。The intelligent transmission control center is used to perform a comprehensive evaluation based on the first execution result and the second execution result, as well as the real-time analysis of the 5G network status, to obtain a comprehensive evaluation result, and based on the comprehensive evaluation result, adjust the network traffic distribution, start priority adjustment and security reinforcement.
结合第一方面,在第一方面的某些实现方式中,该系统还包括:所述动态频谱资源分配模块执行针对5G网络优化的频谱动态分配算法基于网络状态评分执行频谱资源的管理和分配,其中,所述网络状态评分计算公式如下:In combination with the first aspect, in some implementations of the first aspect, the system further includes: the dynamic spectrum resource allocation module executes a spectrum dynamic allocation algorithm optimized for a 5G network to perform management and allocation of spectrum resources based on a network status score, wherein the network status score calculation formula is as follows:
其中,代表网络负载度,表示一个特定区域内当前正在使用的频谱资源与该区域总可用频谱资源的比例;代表服务优先度,用于表示特定区域内各种服务类型的加权重要性;代表需求动态变化度,表示特定区域内用户需求的变化趋势;和是权重系数,用于调整和在评分过程中的权重;和是非线性调整系数,用于调整和的非线性影响;in, Represents the network load, which indicates the ratio of the spectrum resources currently in use in a specific area to the total available spectrum resources in the area; Represents service priority, which is used to indicate the weighted importance of various service types in a specific area; Represents the dynamic change degree of demand, indicating the changing trend of user demand in a specific area; and is the weight coefficient used to adjust and weight in the scoring process; and is the nonlinear adjustment coefficient used to adjust and The nonlinear effect of
根据计算出的网络状态评分,确定频谱资源需求级别;Determine the spectrum resource requirement level according to the calculated network status score;
根据确定的频谱资源需求级别动态调整频谱分配。Dynamically adjust spectrum allocation based on determined spectrum resource demand levels.
结合第一方面,在第一方面的某些实现方式中,该系统还包括:所述频谱资源需求级别包括低需求、中需求和高需求。In combination with the first aspect, in some implementations of the first aspect, the system further includes: the spectrum resource demand level includes low demand, medium demand and high demand.
结合第一方面,在第一方面的某些实现方式中,该系统还包括:所述频谱资源需求级别的确定过程:In combination with the first aspect, in some implementations of the first aspect, the system further includes: a process for determining the spectrum resource requirement level:
当计算出的网络状态评分不大于0.3时,频谱资源需求级别为低需求;When the calculated network status score is not greater than 0.3, the spectrum resource demand level is low demand;
当计算出的网络状态评分大于0.3并且不大于0.6时,频谱资源需求级别为中需求;When the calculated network status score is greater than 0.3 and not greater than 0.6, the spectrum resource demand level is medium demand;
当计算出的网络状态评分大于0.6时,频谱资源需求级别为高需求。When the calculated network status score is greater than 0.6, the spectrum resource demand level is high.
结合第一方面,在第一方面的某些实现方式中,该系统还包括:所述根据确定的频谱资源需求级别动态调整频谱分配的过程:In combination with the first aspect, in some implementations of the first aspect, the system further includes: the process of dynamically adjusting spectrum allocation according to the determined spectrum resource demand level:
当确定频谱资源需求级别为低需求时,保留当前频谱分配或者减少5%的当前频谱分配;When it is determined that the spectrum resource demand level is low, retain the current spectrum allocation or reduce the current spectrum allocation by 5%;
当确定频谱资源需求级别为中需求时,增加10%的当前频谱分配;When the spectrum resource demand level is determined to be medium demand, increase the current spectrum allocation by 10%;
当确定频谱资源需求级别为高需求时,增加20%的当前频谱分配。When the spectrum resource demand level is determined to be high, the current spectrum allocation is increased by 20%.
结合第一方面,在第一方面的某些实现方式中,该系统还包括:所述数据重排序和加密模块包括用于执行数据重排序算法的执行单元和用于实现自适应加密技术的加密单元。In combination with the first aspect, in certain implementations of the first aspect, the system further includes: the data reordering and encryption module includes an execution unit for executing a data reordering algorithm and an encryption unit for implementing an adaptive encryption technology.
结合第一方面,在第一方面的某些实现方式中,该系统还包括:所述执行单元用于:In combination with the first aspect, in some implementations of the first aspect, the system further includes: the execution unit is configured to:
根据如下公式计算5G数据包的综合评分:The comprehensive score of 5G data packets is calculated according to the following formula: :
其中,、、和是权重系数;是5G数据包的紧急度,根据数据包的属性或服务需求确定;是系统定义的最大紧急度值,为优先级衰减函数,为大小敏感度函数,为目的地流量调节函数;in, , , and is the weight coefficient; It is the urgency of the 5G data packet, which is determined based on the attributes of the data packet or the service requirements; is the maximum urgency value defined by the system, is the priority decay function, is the size sensitivity function, is the destination traffic regulation function;
根据计算出来的每一个5G数据包的综合评分,进行重排序。Reordering is performed based on the calculated comprehensive score of each 5G data packet.
结合第一方面,在第一方面的某些实现方式中,该系统还包括:所述优先级衰减函数采用如下的公式实现:In combination with the first aspect, in some implementations of the first aspect, the system further includes: the priority decay function This is achieved using the following formula:
其中,P是5G数据包的优先级,根据5G数据包的类型确定;T是5G数据包在队列中的等待时间;是衰减系数;Among them, P is the priority of the 5G data packet, which is determined according to the type of the 5G data packet; T is the waiting time of the 5G data packet in the queue; is the attenuation coefficient;
大小敏感度函数采用如下的公式实现:Size Sensitivity Function This is achieved using the following formula:
其中,S是5G数据包的大小;是5G数据包的大小对优先级影响的阈值;C是当前网络的拥塞程度;Where S is the size of the 5G data packet; is the threshold of the impact of the size of 5G data packets on priority; C is the current network congestion level;
目的地流量调节函数采用如下的公式实现:Destination Traffic Conditioning Function This is achieved using the following formula:
其中,D是5G数据包的目的地的量化值,表示数据包的目的地对于网络性能的重要性;N表示当前的网络流量水平,量化为网络使用率的百分比;是一个调节系数,用于平衡网络流量对目的地优先级影响的权重。Where D is the quantified value of the destination of the 5G data packet, indicating the importance of the destination of the data packet to network performance; N represents the current network traffic level, quantified as a percentage of network utilization; It is an adjustment factor used to balance the weight of the impact of network traffic on destination priority.
结合第一方面,在第一方面的某些实现方式中,该系统还包括:所述加密单元用于:In combination with the first aspect, in some implementations of the first aspect, the system further includes: the encryption unit is used to:
识别5G数据包的关键特征,所述关键特征包括数据类型、数据敏感性级别和数据传输的紧急度;Identify key characteristics of 5G data packets, including data type, data sensitivity level, and urgency of data transmission;
根据识别出的关键特征,确定适合的加密算法;Determine the appropriate encryption algorithm based on the identified key features;
使用确定的加密算法对于5G数据包进行加密。Use a certain encryption algorithm to encrypt 5G data packets.
结合第一方面,在第一方面的某些实现方式中,该系统还包括:所述智能传输控制中心用于:In combination with the first aspect, in some implementations of the first aspect, the system further includes: the intelligent transmission control center is used to:
接收动态频谱资源分配模块的频谱分配记录,包括分配的频谱带宽和分配成功率,所述频谱分配记录为第一执行结果;receiving a spectrum allocation record of a dynamic spectrum resource allocation module, including an allocated spectrum bandwidth and an allocation success rate, wherein the spectrum allocation record is a first execution result;
从数据重排序及加密模块获取数据处理的详细记录,所述数据处理的详细记录包括5G数据包的处理延迟、加密算法选择和加密成功率,所述数据处理的详细记录为第二执行结果;Obtaining a detailed record of data processing from the data reordering and encryption module, wherein the detailed record of data processing includes a processing delay of a 5G data packet, an encryption algorithm selection, and an encryption success rate, and the detailed record of data processing is a second execution result;
监测网络流量和负载情况,记录网络的总吞吐量、平均延迟、实时拥塞水平;Monitor network traffic and load, record the network's total throughput, average latency, and real-time congestion level;
根据所述频谱分配记录、数据处理的详细记录、网络的总吞吐量、平均延迟、实时拥塞水平,调节网络流量分布、启动优先级调整和安全加固。According to the spectrum allocation records, detailed records of data processing, the total throughput of the network, the average delay, and the real-time congestion level, the network traffic distribution is adjusted, and priority adjustment and security reinforcement are initiated.
本发明的有益效果:Beneficial effects of the present invention:
本发明(1)通过动态频谱资源分配模块,本系统能够根据实时网络负载、用户需求和频谱使用情况自适应地管理和分配5G频谱资源。这种动态分配算法优化了频谱资源的利用,减少了资源闲置和浪费,使得网络能够支持更多的用户和服务,同时保持高速的数据传输率。(2)动态频谱分配机制能够有效应对网络负载变化,通过智能分配资源以避免网络瓶颈和拥塞现象。这不仅提升了网络的整体性能,也保证了在高需求情况下用户仍能享受到稳定可靠的服务。(3)数据重排序和加密模块采用专为5G数据包设计的算法,根据数据包的特征如优先级、大小和目的地进行智能重排序,并动态选择加密策略,既提高了数据传输的效率,又确保了传输过程中的数据安全。这种方法特别适合于处理大量的高速数据流,同时保护用户数据免受未授权访问和攻击。(4)智能传输控制中心通过综合评估网络运行状态,能够及时调整网络策略,如调节网络流量分布、启动数据处理的优先级调整和加强安全措施。这种自适应调整机制使得网络能够灵活应对各种情况,优化用户体验,特别是在网络负载高或安全威胁出现时。The present invention (1) uses a dynamic spectrum resource allocation module to adaptively manage and allocate 5G spectrum resources according to real-time network load, user demand and spectrum usage. This dynamic allocation algorithm optimizes the utilization of spectrum resources, reduces resource idleness and waste, and enables the network to support more users and services while maintaining a high data transmission rate. (2) The dynamic spectrum allocation mechanism can effectively respond to changes in network load and avoid network bottlenecks and congestion by intelligently allocating resources. This not only improves the overall performance of the network, but also ensures that users can still enjoy stable and reliable services under high demand conditions. (3) The data reordering and encryption module uses an algorithm designed specifically for 5G data packets, intelligently reorders data packets according to their characteristics such as priority, size and destination, and dynamically selects encryption strategies, which not only improves the efficiency of data transmission, but also ensures data security during transmission. This method is particularly suitable for processing large amounts of high-speed data streams while protecting user data from unauthorized access and attacks. (4) The intelligent transmission control center can adjust network policies in a timely manner by comprehensively evaluating the network operation status, such as adjusting network traffic distribution, starting data processing priority adjustment and strengthening security measures. This adaptive adjustment mechanism enables the network to flexibly respond to various situations and optimize the user experience, especially when the network load is high or security threats occur.
附图说明BRIEF DESCRIPTION OF THE DRAWINGS
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图;In order to more clearly illustrate the embodiments of the present invention or the technical solutions in the prior art, the following briefly introduces the drawings required for use in the embodiments or the description of the prior art. Obviously, for those skilled in the art, other drawings can be obtained based on these drawings without creative work.
图1是本发明系统结构示意图。FIG. 1 is a schematic diagram of the system structure of the present invention.
具体实施方式Detailed ways
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护的范围。The following will be combined with the drawings in the embodiments of the present invention to clearly and completely describe the technical solutions in the embodiments of the present invention. Obviously, the described embodiments are only part of the embodiments of the present invention, not all of the embodiments. Based on the embodiments of the present invention, all other embodiments obtained by ordinary technicians in this field without creative work are within the scope of protection of the present invention.
实施例一:Embodiment 1:
下面,对本申请实施例涉及的相关术语进行介绍:The following is an introduction to the relevant terms involved in the embodiments of the present application:
如图1所示,一种基于5G技术的数据传输系统,包括:As shown in FIG1 , a data transmission system based on 5G technology includes:
动态频谱资源分配模块101,数据重排序和加密模块102以及智能传输控制中心103。Dynamic spectrum resource allocation module 101, data reordering and encryption module 102 and intelligent transmission control center 103.
动态频谱资源分配模块101,用于执行针对5G网络优化的频谱动态分配算法,其中,所述频谱动态分配算法基于5G网络的特定负载、用户需求和频谱使 用情况,自适应地管理和分配5G频谱资源,以优化5G频谱利用率并减少5G网络拥塞。The dynamic spectrum resource allocation module 101 is used to execute a spectrum dynamic allocation algorithm optimized for the 5G network, wherein the spectrum dynamic allocation algorithm adaptively manages and allocates 5G spectrum resources based on the specific load, user demand and spectrum usage of the 5G network to optimize 5G spectrum utilization and reduce 5G network congestion.
在本实施例中,动态频谱资源分配模块101是为了应对5G网络中频谱管理的挑战而特别设计的。该模块采用频谱动态分配算法,该算法专门针对5G网络环境进行了优化,能够根据5G网络的实时负载、用户的具体需求以及当前的频谱使用状况自动进行调整。该模块能够动态地管理和分配5G频谱资源,以确保在任何给定时间,都能最大化频谱的使用效率,同时显著减少或避免网络拥塞的发生。In this embodiment, the dynamic spectrum resource allocation module 101 is specially designed to meet the challenges of spectrum management in 5G networks. The module adopts a spectrum dynamic allocation algorithm that is optimized specifically for the 5G network environment and can automatically adjust according to the real-time load of the 5G network, the specific needs of users, and the current spectrum usage. The module can dynamically manage and allocate 5G spectrum resources to ensure that at any given time, the spectrum usage efficiency can be maximized while significantly reducing or avoiding the occurrence of network congestion.
具体来说,动态频谱资源分配模块101的工作开始于持续监测5G网络的状态。这包括实时收集关于网络负载、用户活动和频谱占用的数据。基于这些信息,频谱动态分配算法分析当前的网络状况,预测未来的需求变化,并据此做出决策,以动态调整频谱分配。这个过程考虑到了多种因素,包括但不限于,用户的地理位置、服务类型的优先级以及网络中的其他动态变化。Specifically, the work of the dynamic spectrum resource allocation module 101 begins by continuously monitoring the status of the 5G network. This includes collecting data about network load, user activity, and spectrum occupancy in real time. Based on this information, the spectrum dynamic allocation algorithm analyzes the current network status, predicts future demand changes, and makes decisions accordingly to dynamically adjust spectrum allocation. This process takes into account a variety of factors, including but not limited to the user's geographic location, the priority of the service type, and other dynamic changes in the network.
此外,该模块还能够响应来自智能传输控制中心103的反馈。虽然智能传输控制中心103不直接指导动态频谱资源分配模块101的每一项操作,但它通过分析整个网络的运行结果和状态,提供宝贵的洞见和建议。这包括基于全局网络状况调整频谱分配策略,以优化整体网络性能和用户体验。In addition, the module is also able to respond to feedback from the intelligent transmission control center 103. Although the intelligent transmission control center 103 does not directly guide every operation of the dynamic spectrum resource allocation module 101, it provides valuable insights and suggestions by analyzing the operating results and status of the entire network. This includes adjusting the spectrum allocation strategy based on the global network status to optimize the overall network performance and user experience.
动态频谱资源分配模块101应具备高度的可配置性和灵活性,以适应不同的网络环境和需求。实施该模块时,可以根据具体的网络架构和用户需求,调整算法参数,例如频谱分配的优先级规则、频谱需求预测的时间窗口大小以及响应网络变化的速度。The dynamic spectrum resource allocation module 101 should be highly configurable and flexible to adapt to different network environments and requirements. When implementing this module, algorithm parameters such as the priority rules for spectrum allocation, the time window size for spectrum demand prediction, and the speed of responding to network changes can be adjusted according to the specific network architecture and user needs.
更进一步地,所述动态频谱资源分配模块利用一个基于网络状态评分的频谱动态分配算法来执行频谱资源的管理和分配,其中所述网络状态评分根据以下公式1计算得出:Furthermore, the dynamic spectrum resource allocation module uses a spectrum dynamic allocation algorithm based on network status scoring to perform spectrum resource management and allocation, wherein the network status scoring Calculated according to the following formula 1:
其中,代表网络负载度,表示一个特定区域内当前正在使用的频谱资源与该区域总可用频谱资源的比例;代表服务优先度,用于表示特定区域内各种服务类型的加权重要性;代表需求动态变化度,表示特定区域内用户需求的变化趋势;和是权重系数,用于调整和在评分过程中的权重;和是非线性调整系数,用于调整和的非线性影响;根据计算出的网络状态评分,确定频谱资源需求级别;in, Represents the network load, which indicates the ratio of the spectrum resources currently in use in a specific area to the total available spectrum resources in the area; Represents service priority, which is used to indicate the weighted importance of various service types in a specific area; Represents the dynamic change degree of demand, indicating the changing trend of user demand in a specific area; and is the weight coefficient used to adjust and weight in the scoring process; and is the nonlinear adjustment coefficient used to adjust and The nonlinear impact of the network status is determined based on the calculated network status score.
根据确定的频谱资源需求级别动态调整频谱分配。Dynamically adjust spectrum allocation based on determined spectrum resource demand levels.
网络负载度、服务优先度以及需求动态变化度都是针对具体区域内的度量指标。这些指标反映了该区域内5G网络的使用情况、服务类型的重要性以及用户需求的变化趋势。下面将详细说明如何计算这些指标。Network load, service priority, and demand dynamics are all metrics for a specific area. These metrics reflect the usage of 5G networks in the area, the importance of service types, and the changing trends of user demand. The following will explain in detail how to calculate these metrics.
网络负载度的计算:Network load Calculation:
网络负载度表示一个特定区域内当前正在使用的频谱资源与该区域总可用频谱资源的比例。它是衡量网络拥塞程度的直接指标。Network load indicates the ratio of spectrum resources currently in use in a specific area to the total available spectrum resources in the area. It is a direct indicator of network congestion.
首先,需要收集有关特定区域内频谱使用情况的数据。这包括该区域总可用的频谱资源量(总频谱资源)和当前正在使用的频谱资源量(已用频谱资源)。First, data on spectrum usage in a specific region needs to be collected. This includes the total amount of spectrum resources available in the region (total spectrum resources) and the amount of spectrum resources currently in use (used spectrum resources).
然后,根据如下的公式2计算网络负载度:Then, the network load is calculated according to the following formula 2: :
例如,如果一个区域有100MHz的总频谱资源,当前有70MHz正在使用,那么:For example, if a region has a total spectrum resource of 100 MHz and 70 MHz is currently in use, then:
这意味着该区域的网络负载度为0.7,或70%。This means that the network load in this area is 0.7, or 70%.
服务优先度(SPD)的计算:Calculation of service priority degree (SPD):
服务优先度基于特定区域内不同服务类型的重要性或优先级进行计算。不同的服务(如紧急通信、视频流、数据下载等)将被赋予不同的优先级权重。Service priority is calculated based on the importance or priority of different service types within a specific area. Different services (such as emergency communications, video streaming, data downloading, etc.) will be given different priority weights.
1.定义优先级权重:首先,为每种服务类型定义一个优先级权重。紧急服务可能权重最高,其次是视频流,然后是常规数据服务,所述常规数据服务包括数据下载。1. Define priority weights: First, define a priority weight for each service type. Emergency services may have the highest weight, followed by video streaming, and then regular data services, which include data downloads.
2.收集服务使用数据:收集特定区域内不同服务类型的使用情况数据。2. Collect service usage data: Collect usage data of different service types in a specific area.
3.根据如下公式3,计算服务优先度:3. Calculate the service priority according to the following formula 3 :
例如,如果一个区域内视频流(服务类型优先级权重为0.8)使用了40%的资源,紧急服务(服务类型优先级权重为1.0)使用了30%的资源,其余为常规数据服务(服务类型优先级权重为0.5),使用了剩余的30%的资源,则:For example, if video streaming (service type priority weight is 0.8) uses 40% of resources in a region, emergency services (service type priority weight is 1.0) use 30% of resources, and regular data services (service type priority weight is 0.5) use the remaining 30% of resources, then:
这意味着该区域的服务优先度为0.65。This means that the service priority for this area is 0.65.
需求动态变化度的计算:Demand dynamics Calculation:
需求动态变化度反映了一定时间内用户需求的变化率。这可以通过比较两个时间点的网络使用情况来确定。The dynamic change of demand reflects the rate of change of user demand within a certain period of time. This can be determined by comparing the network usage at two points in time.
1.选择时间窗口:确定分析的时间窗口,例如,比较今天与昨天同一时间段的数据。1. Select the time window: Determine the time window for analysis, for example, compare the data of today and yesterday in the same time period.
2.收集时间点数据:收集在两个时间点的网络使用数据。2. Collect time point data: Collect network usage data at two time points.
3.根据如下的公式4计算需求动态变化度:3. Calculate the dynamic change degree of demand according to the following formula 4:
例如,如果昨天这个时间,特定区域的网络使用量是50MHz,而今天同一时间特定区域的网络使用量是60MHz,则:For example, if at this time yesterday, the network usage in a specific area was 50MHz, and at the same time today, the network usage in a specific area was 60MHz, then:
这意味着该区域的需求动态变化度为0.2,或20%的增长。This means that the demand dynamics in this area is 0.2, or a 20% increase.
假设在某一时刻,网络负载度较高,表明网络正面临较大的数据传输需求。服务优先度反映了当前服务中有高优先级服务的需求。需求动态变化度表示近期内需求的增长速度。Assume that at a certain moment, the network load A high value indicates that the network is facing a large data transmission demand. It reflects the demand for high-priority services in the current services. Demand dynamic change degree Indicates the growth rate of demand in the near future.
通过引入和参数,该公式能够更精确地调整网络负载度和服务优先度的影响,使其在不同的网络状态下具有不同的敏感度。同时,项确保即使在需求迅速变化的情况下,需求动态变化度的影响也能被合理控制,避免因暂时的需求激增而导致的频谱资源过度偏向某一方面。by Introduced and parameters, the formula can more accurately adjust the impact of network load and service priority, making it have different sensitivities in different network conditions. This ensures that even when demand changes rapidly, the impact of dynamic changes in demand can be reasonably controlled to avoid excessive bias of spectrum resources in one direction due to temporary surges in demand.
通过这种方法,动态频谱资源分配模块101可以更加细致和动态地响应网络的实时状态和需求,为5G网络提供了一个更为复杂和适应性强的频谱资源分配策略。Through this method, the dynamic spectrum resource allocation module 101 can respond to the real-time status and needs of the network more carefully and dynamically, providing a more complex and adaptable spectrum resource allocation strategy for the 5G network.
确定权重系数和以及非线性调整系数和通常涉及对网络环境、服务需求以及历史数据的深入分析。这些系数的设定旨在反映不同网络参数对总体网络性能的实际影响程度,以及这些参数之间的相对重要性。下面是一个详细的解释和确定这些系数的方法。Determine the weight coefficient and And the nonlinear adjustment coefficient and Usually involves in-depth analysis of the network environment, service requirements, and historical data. The setting of these coefficients is intended to reflect the actual impact of different network parameters on the overall network performance, as well as the relative importance of these parameters. The following is a detailed explanation and method for determining these coefficients.
确定权重系数和可以采用如下方式中的至少一种:Determine the weight coefficient and At least one of the following methods can be used:
1.历史数据分析:通过分析历史网络性能数据,可以评估网络负载度()和服务优先度()对网络性能(如吞吐量、延迟等)的影响。如果发现网络负载度对性能的影响更为显著,则应该设置得比更高,反之亦然。1. Historical data analysis: By analyzing historical network performance data, the network load can be evaluated ( ) and service priority ( ) on network performance (such as throughput, latency, etc.). If it is found that the network load has a more significant impact on performance, then Should be set higher than Higher and vice versa.
2.专家意见:网络运营商和系统设计师的经验和知识也是决定权重系数的重要来源。他们对网络运行的理解可以帮助设定这些系数以反映不同因素的实际影响。2. Expert opinion: The experience and knowledge of network operators and system designers are also important sources for determining weight coefficients. Their understanding of network operation can help set these coefficients to reflect the actual impact of different factors.
3.优化和仿真:通过建立网络模型并进行仿真,可以尝试不同的权重组合,并观察哪一组合能够提供最优的网络性能。这种方法可以帮助精细调整权重系数。3. Optimization and simulation: By building a network model and performing simulation, you can try different weight combinations and observe which combination provides the best network performance. This method can help fine-tune the weight coefficients.
确定非线性调整系数和可以采用如下方式中的至少一种:Determine the nonlinear adjustment coefficient and At least one of the following methods can be used:
1.非线性影响分析:非线性调整系数的设定首先需要分析和的非线性影响。例如,如果网络负载度接近容量极限时,其对网络性能的负面影响可能超过线性预期,此时需要较大的值来反映这种非线性影响。1. Nonlinear impact analysis: The setting of nonlinear adjustment coefficients first requires analysis and For example, if the network load is close to the capacity limit, the negative impact on network performance may exceed the linear expectation, and a larger value to reflect this nonlinear effect.
2.参数调整与测试:通过调整和的值,并监测这些调整如何影响网络状态评分函数()对实际网络状况的反映,可以找到最适合的非线性调整系数。这可能需要多轮的测试和优化。2. Parameter adjustment and testing: By adjusting and , and monitor how these adjustments affect the network state scoring function ( ) Based on the actual network conditions, the most suitable nonlinear adjustment coefficient can be found. This may require multiple rounds of testing and optimization.
3.数学建模和优化算法:使用数学建模方法来描述和对网络性能影响的非线性特性。然后,可以使用优化算法(如梯度下降法)来找到最佳的和值,使得模型最准确地预测网络性能。3. Mathematical modeling and optimization algorithm: Use mathematical modeling methods to describe and The nonlinear characteristics of the network performance. Then, optimization algorithms (such as gradient descent) can be used to find the best and value that makes the model most accurately predict network performance.
4.专家意见:网络运营商和系统设计师的经验和知识也是决定非线性调整系数的重要来源。他们对网络运行的理解可以帮助设定这些系数以反映不同因素的实际影响。4. Expert opinion: The experience and knowledge of network operators and system designers are also important sources for determining nonlinear adjustment coefficients. Their understanding of network operation can help set these coefficients to reflect the actual impact of different factors.
在实际应用中,确定这些系数的过程可能需要迭代和调整,以便在不断变化的网络环境中保持评分函数的准确性和有效性。此外,随着网络技术的发展和用户行为的变化,这些系数可能需要定期重新评估和调整。In practical applications, the process of determining these coefficients may require iteration and adjustment in order to maintain the accuracy and effectiveness of the scoring function in a changing network environment. In addition, as network technology develops and user behavior changes, these coefficients may need to be re-evaluated and adjusted regularly.
更进一步地,所述频谱资源需求级别包括低需求、中需求和高需求;所述根据计算出的网络状态评分,确定频谱资源需求级别包括:Furthermore, the spectrum resource demand level includes low demand, medium demand and high demand; and determining the spectrum resource demand level according to the calculated network status score includes:
当计算出的网络状态评分不大于0.3时,频谱资源需求级别为低需求;When the calculated network status score is not greater than 0.3, the spectrum resource demand level is low demand;
当计算出的网络状态评分大于0.3并且不大于0.6时,频谱资源需求级别为中需求;When the calculated network status score is greater than 0.3 and not greater than 0.6, the spectrum resource demand level is medium demand;
当计算出的网络状态评分大于0.6时,频谱资源需求级别为高需求;When the calculated network status score is greater than 0.6, the spectrum resource demand level is high;
所述根据确定的频谱资源需求级别动态调整频谱分配,包括:The dynamically adjusting spectrum allocation according to the determined spectrum resource demand level includes:
当确定频谱资源需求级别为低需求时,保留当前频谱分配或者减少5%的当前频谱分配;When it is determined that the spectrum resource demand level is low, retain the current spectrum allocation or reduce the current spectrum allocation by 5%;
当确定频谱资源需求级别为中需求时,增加10%的当前频谱分配;When the spectrum resource demand level is determined to be medium demand, increase the current spectrum allocation by 10%;
当确定频谱资源需求级别为高需求时,增加20%的当前频谱分配。When the spectrum resource demand level is determined to be high, the current spectrum allocation is increased by 20%.
例如,如果经过计算,区域A的NSF值为0.55,属于“中需求”区间;区域B的NSF值为0.75,属于“高需求”区间。根据频谱资源调整决策模型:For example, if the NSF value of area A is 0.55, it belongs to the "medium demand" range; the NSF value of area B is 0.75, it belongs to the "high demand" range. Adjust the decision model according to spectrum resources:
对于区域A,将增加10%的频谱资源分配。如果区域A原本被分配了100MHz的频谱资源,那么现在将增加到110MHz。For region A, the spectrum resource allocation will be increased by 10%. If region A was originally allocated 100MHz of spectrum resources, it will now be increased to 110MHz.
对于区域B,将增加20%的频谱资源分配。如果区域B原本被分配了100MHz的频谱资源,那么现在将增加到120MHz。For region B, the spectrum resource allocation will be increased by 20%. If region B was originally allocated 100MHz of spectrum resources, it will now be increased to 120MHz.
通过这种方式,频谱动态分配算法能够根据实时计算出的NSF值,以量化的方法动态调整频谱分配策略,确保更有效地满足不同区域的服务类型和用户需求,同时优化5G频谱利用率并减少网络拥塞。In this way, the spectrum dynamic allocation algorithm can dynamically adjust the spectrum allocation strategy in a quantitative way based on the NSF value calculated in real time, ensuring that the service types and user needs of different regions are more effectively met, while optimizing 5G spectrum utilization and reducing network congestion.
总而言之,动态频谱资源分配模块101通过其算法和策略,有效地优化了5G网络的频谱利用,提高了网络的效率和用户的满意度。这种动态和自适应的频谱管理方法,不仅为5G网络的运营商提供了强大的工具来应对网络负载的波动和变化,也为最终用户带来了更加稳定和高质量的服务体验。In summary, the dynamic spectrum resource allocation module 101 effectively optimizes the spectrum utilization of the 5G network through its algorithms and strategies, improving the efficiency of the network and user satisfaction. This dynamic and adaptive spectrum management method not only provides 5G network operators with powerful tools to cope with fluctuations and changes in network load, but also brings a more stable and high-quality service experience to end users.
数据重排序和加密模块102,用于执行专为5G数据包设计的数据重排序算法和自适应加密技术,其中,所述数据重排序算法根据5G数据包的优先级、大小和目的地智能地进行重排序,所述自适应加密技术根据5G数据特征动态选择加密策略,以确保在5G网络传输过程中的数据安全。The data reordering and encryption module 102 is used to execute a data reordering algorithm and an adaptive encryption technology designed specifically for 5G data packets, wherein the data reordering algorithm intelligently reorders the 5G data packets according to their priority, size and destination, and the adaptive encryption technology dynamically selects an encryption strategy according to the characteristics of the 5G data to ensure data security during transmission over the 5G network.
在本实施例提供的5G数据传输系统中,数据重排序和加密模块102扮演着至关重要的角色,旨在通过智能地处理数据流来增强数据传输的效率和安全性。这个模块包含两个主要的功能部分:一部分负责根据数据包的特性进行重排序,另一部分则应用自适应加密技术以保障数据在传输过程中的安全。In the 5G data transmission system provided in this embodiment, the data reordering and encryption module 102 plays a vital role, aiming to enhance the efficiency and security of data transmission by intelligently processing data streams. This module includes two main functional parts: one part is responsible for reordering according to the characteristics of the data packet, and the other part applies adaptive encryption technology to ensure the security of data during transmission.
数据重排序的过程是基于5G数据包的优先级、大小和目的地来进行的。首先,系统会对进入的数据包进行分析,识别出每个数据包的这些关键属性。例如,紧急的语音通话数据包会被赋予高优先级,而大型的非紧急文件传输可能则被标记为低优先级。通过这种方式,重排序算法确保高优先级的数据能够被更快地处理和转发,从而满足实时或高敏感性服务的需求。The data reordering process is based on the priority, size and destination of the 5G data packets. First, the system analyzes the incoming data packets and identifies these key attributes of each packet. For example, urgent voice call packets will be given high priority, while large non-urgent file transfers may be marked as low priority. In this way, the reordering algorithm ensures that high-priority data can be processed and forwarded faster to meet the needs of real-time or highly sensitive services.
实施这一过程时,需要开发一个算法,该算法能够实时分析和分类进入的数据包,并根据预设的规则对它们进行排序。这可能涉及到构建一个优先队列,其中数据包根据它们的优先级、大小和目的地被插入到合适的位置,以便于后续的处理和传输。Implementing this process requires developing an algorithm that can analyze and classify incoming packets in real time and sort them according to preset rules. This may involve building a priority queue where packets are inserted into the appropriate position based on their priority, size and destination for subsequent processing and transmission.
在数据重排序之后,自适应加密技术则被应用于这些已排序的数据包。这一技术基于5G数据的特征来动态选择加密策略,意味着不同类型的数据(如文本消息、视频流或文件传输)可能会应用不同强度或类型的加密方法。这种自适应性不仅增强了数据的安全性,也优化了加密过程的效率——确保只有在必要时才使用更复杂、计算量更大的加密方法。After the data is reordered, adaptive encryption technology is applied to these ordered data packets. This technology dynamically selects encryption strategies based on the characteristics of 5G data, which means that different types of data (such as text messages, video streaming, or file transfers) may apply different strengths or types of encryption methods. This adaptability not only enhances the security of the data, but also optimizes the efficiency of the encryption process - ensuring that more complex and computationally intensive encryption methods are used only when necessary.
为了实现这一点,需要设计一个能够评估数据包敏感性和安全需求的系统,并据此选择合适的加密算法。这可能涉及到建立一个加密策略数据库,其中包含了不同数据类型和场景下的推荐加密方法。系统将根据数据包的属性,如数据类型、目的地和优先级,以及当前网络的安全状况,从数据库中选择最适合的加密策略进行应用。To achieve this, a system needs to be designed that can evaluate the sensitivity and security requirements of data packets and select appropriate encryption algorithms accordingly. This may involve building an encryption policy database that contains recommended encryption methods for different data types and scenarios. The system will select the most suitable encryption policy from the database for application based on the attributes of the data packet, such as data type, destination and priority, as well as the current security status of the network.
将数据重排序和自适应加密结合起来,数据重排序和加密模块102为5G数据传输提供了一条高效且安全的通道。在部署此模块时,需要确保系统能够实时处理大量数据包,同时在选择重排序规则和加密策略时保持足够的灵活性和适应性。此外,系统的设计还需考虑到与网络的其他部分,如动态频谱资源分配模块101和智能传输控制中心103的协同工作,以确保整个网络的性能和安全性得到优化。Combining data reordering and adaptive encryption, the data reordering and encryption module 102 provides an efficient and secure channel for 5G data transmission. When deploying this module, it is necessary to ensure that the system can handle a large number of data packets in real time while maintaining sufficient flexibility and adaptability in selecting reordering rules and encryption strategies. In addition, the system design also needs to take into account the collaborative work with other parts of the network, such as the dynamic spectrum resource allocation module 101 and the intelligent transmission control center 103, to ensure that the performance and security of the entire network are optimized.
通过这样的设计和实现,本实施例提供的5G数据传输系统能够在保证高效数据处理的同时,为用户提供强大的数据保护,满足现代通信网络对速度和安全性的双重要求。Through such design and implementation, the 5G data transmission system provided in this embodiment can provide users with powerful data protection while ensuring efficient data processing, meeting the dual requirements of modern communication networks for speed and security.
更进一步地,所述数据重排序和加密模块包括用于执行数据重排序算法的执行单元,所述执行单元具体用于:Furthermore, the data reordering and encryption module includes an execution unit for executing a data reordering algorithm, wherein the execution unit is specifically used for:
根据如下公式计算5G数据包的综合评分:The comprehensive score of 5G data packets is calculated according to the following formula: :
其中,、、和是权重系数,这些权重系数可以通过实验数据获得,或者根据专家经验获得;in, , , and are weight coefficients, which can be obtained through experimental data or based on expert experience;
是5G数据包的紧急度,可以根据数据包的属性或服务需求确定;是系统定义的最大紧急度值; It is the urgency of the 5G data packet, which can be determined based on the attributes of the data packet or the service requirements; is the maximum urgency value defined by the system;
紧急度是一个关键指标,用于评估数据包的传输优先级,特别是在网络拥塞或资源有限的情况下。以下步骤提供了一个框架,用于量化和实施紧急度的判断。Urgency is a key metric used to assess the priority of a packet's transmission, especially in situations of network congestion or limited resources. The following steps provide a framework for quantifying and implementing urgency decisions.
确定数据包的紧急度的步骤包括:The steps to determine the urgency of a data packet include:
(1)定义紧急度指标:首先,需要定义何为紧急度以及如何量化。紧急度可以基于数据包的实时性要求、对延迟的敏感度、以及服务质量(QoS)需求等因素来确定。例如,实时视频或语音通信可能具有高紧急度,而电子邮件或普通的数据下载可能具有较低的紧急度。(1) Define urgency metrics: First, we need to define what urgency is and how to quantify it. Urgency can be determined based on factors such as the real-time requirements of data packets, sensitivity to delay, and quality of service (QoS) requirements. For example, real-time video or voice communication may have high urgency, while email or ordinary data downloads may have lower urgency.
(2)识别数据包属性:紧急度的确定需要对数据包的具体属性进行分析。这些属性可能包括:(2) Identify data packet attributes: Determining the urgency requires analyzing the specific attributes of the data packet. These attributes may include:
服务类型:如VoIP、实时视频、即时消息、文件下载等。Service type: such as VoIP, real-time video, instant messaging, file download, etc.
QoS参数:数据包头部通常包含QoS相关的字段,如差分服务代码点(DSCP)字段,可以用来标识数据流的优先级和类型。QoS parameters: The packet header usually contains QoS-related fields, such as the Differentiated Services Code Point (DSCP) field, which can be used to identify the priority and type of data flow.
应用标识:某些情况下,数据包可能包含特定的应用标识信息,如特定应用的API调用,这可以用来推断数据包的紧急度。Application Identification: In some cases, a data packet may contain specific application identification information, such as an API call for a specific application, which can be used to infer the urgency of the data packet.
(3)量化紧急度:基于识别出的数据包属性,将紧急度量化为一个具体的数值。这一步骤可以采用以下方式进行:(3) Quantify the urgency: Based on the identified packet attributes, quantify the urgency into a specific value. This step can be performed in the following ways:
预定义的紧急度等级:为不同的服务类型或QoS需求预定义一组紧急度等级,并分配相应的数值。例如,将紧急度划分为0到1的范围,其中1表示最高紧急度,0表示最低紧急度。Predefined urgency levels: A set of urgency levels are predefined for different service types or QoS requirements, and corresponding values are assigned. For example, urgency is divided into a range of 0 to 1, where 1 represents the highest urgency and 0 represents the lowest urgency.
动态计算:在某些情况下,紧急度可能需要根据当前网络状态或数据包的实时性要求动态计算。例如,如果网络拥塞严重,即使是普通的数据下载也可能被赋予较高的紧急度以确保服务质量。Dynamic calculation: In some cases, the urgency may need to be dynamically calculated based on the current network status or the real-time requirements of the data packet. For example, if the network is severely congested, even ordinary data downloads may be given a higher urgency to ensure service quality.
(4)实施紧急度判定:分析进入的数据包,并根据上述标准为每个数据包分配紧急度值。(4) Implement urgency determination: Analyze incoming data packets and assign an urgency value to each packet based on the above criteria.
通过以上步骤,可以为5G数据包确定紧急度,从而在数据重排序和加密模块中实现基于紧急度的优先级管理。这种方法不仅提高了网络资源的利用效率,而且确保了在关键时刻能够满足用户对高质量服务的需求。Through the above steps, the urgency of 5G data packets can be determined, so that priority management based on urgency can be implemented in the data reordering and encryption modules. This method not only improves the utilization efficiency of network resources, but also ensures that users' needs for high-quality services can be met at critical moments.
优先级衰减函数采用如下的公式实现:Priority decay function This is achieved using the following formula:
优先级衰减函数考虑了5G数据包的优先级和等待时间,确保高优先级和/或等待时间较长的数据包得到更快处理。Priority decay function The priority and latency of 5G data packets are taken into account, ensuring that high priority and/or long latency data packets are processed faster.
其中,是5G数据包的优先级,根据5G数据包的类型确定。常见的类型包括但不限于紧急通信(如紧急呼叫、警报信号)、实时服务(如VoIP通话、实时视频流)、大数据传输(如文件下载、视频上传)和常规数据传输(如网页浏览、电子邮件)。紧急通信可以被赋予接近1的值,而常规数据传输可能接近0。;in, is the priority of 5G data packets, which is determined by the type of 5G data packets. Common types include but are not limited to emergency communications (such as emergency calls, alarm signals), real-time services (such as VoIP calls, real-time video streaming), large data transmission (such as file downloads, video uploads), and regular data transmission (such as web browsing, email). Emergency communications can be assigned a value close to 1, while regular data transmission may be close to 0. ;
T是5G数据包在队列中的等待时间;是衰减系数,可以通过实验数据确定或者通过专家知识获取;T is the waiting time of 5G data packets in the queue; is the attenuation coefficient, which can be determined from experimental data or obtained from expert knowledge;
大小敏感度函数采用如下的公式实现:Size Sensitivity Function This is achieved using the following formula:
大小敏感度函数通过逻辑斯蒂函数考虑了数据包的大小对其处理优先级的影响,以及当前网络拥塞程度的反馈。Size Sensitivity Function The effect of packet size on its processing priority and the feedback of current network congestion level are considered through logistic function.
其中,S是5G数据包的大小;Where S is the size of the 5G data packet;
是5G数据包的大小对优先级影响的阈值; is the threshold value of the impact of the size of 5G data packets on priority;
C是当前网络的拥塞程度;C is the current network congestion level;
下面详细阐述如何确定数据包大小对优先级影响的阈值以及当前网络的拥塞程度C。The following details how to determine the threshold value of the impact of packet size on priority. And the current network congestion level C.
是一个关键参数,用于区分可能对网络性能影响较大的大型数据包和影响较小的小型数据包。其确定方法包括: is a key parameter used to differentiate between large packets that may have a greater impact on network performance and small packets that have a lesser impact. It is determined by:
1.网络性能分析:首先,通过对网络的性能进行历史数据分析,确定不同大小的数据包对网络延迟和吞吐量的影响。特别是,分析在网络开始表现出拥塞迹象时,数据包的平均大小。1. Network performance analysis: First, we analyze historical data on the network’s performance to determine how different packet sizes affect network latency and throughput. In particular, we analyze the average size of packets when the network begins to show signs of congestion.
2.服务质量要求:参考不同类型服务的服务质量(QoS)要求,例如,实时视频流可能对数据包的最大延迟有严格限制,从而影响的设定。2. Quality of Service Requirements: Refer to the Quality of Service (QoS) requirements for different types of services. For example, real-time video streaming may have strict limits on the maximum delay of data packets, thus affecting Settings.
3.经验值:在许多情况下,的设定也可能依赖于网络管理员的经验和预期的网络使用情况。例如,如果网络主要用于传输小型数据包的服务,如即时消息,可能相对较小。3. Experience: In many cases, The settings may also depend on the experience of the network administrator and the expected network usage. For example, if the network is mainly used for services such as instant messaging that transmit small data packets, Probably relatively small.
网络的拥塞程度C是一个动态变化的指标,反映了当前网络资源使用情况和网络能够承载的数据流量水平。其确定方法包括:The network congestion level C is a dynamically changing indicator that reflects the current network resource usage and the data traffic level that the network can carry. Its determination methods include:
1.实时流量监测:通过持续监控网络的实时流量和资源使用情况(如带宽使用率、路由器队列长度等),来评估网络的拥塞程度。1. Real-time traffic monitoring: Assess the degree of network congestion by continuously monitoring the real-time network traffic and resource usage (such as bandwidth utilization, router queue length, etc.).
2.拥塞指标计算:使用特定的算法或模型,如TCP拥塞控制算法中的丢包率、往返时间(RTT)增加等指标,来量化网络的拥塞程度。C可以被设定为一个介于0(无拥塞)到1(极度拥塞)的值。2. Congestion indicator calculation: Use specific algorithms or models, such as packet loss rate and round-trip time (RTT) increase in the TCP congestion control algorithm, to quantify the degree of network congestion. C can be set to a value between 0 (no congestion) and 1 (extreme congestion).
通过综合应用上述方法确定的和C,数据重排序和加密模块102能够更智能地根据实时网络状况和数据包特性调整优先级,以优化5G网络的数据传输效率和响应性。例如,当网络拥塞程度C较高时,系统可能会优先处理小于的数据包,以减少网络延迟和提高吞吐量,从而在保证服务质量的同时,合理分配网络资源。The above methods were used to determine and C, the data reordering and encryption module 102 can more intelligently adjust the priority according to the real-time network conditions and data packet characteristics to optimize the data transmission efficiency and responsiveness of the 5G network. For example, when the network congestion level C is high, the system may prioritize processing less than data packets to reduce network delays and improve throughput, thereby reasonably allocating network resources while ensuring service quality.
目的地流量调节函数采用如下的公式实现:Destination Traffic Conditioning Function This is achieved using the following formula:
其中,D是5G数据包的目的地的量化值,表示数据包的目的地对于网络性能的重要性;Where D is the quantitative value of the destination of the 5G data packet, indicating the importance of the destination of the data packet to the network performance;
量化5G数据包的目的地D涉及将目的地的重要性转化为可度量和可比较的数值。这个量化过程需要考虑目的地对网络性能的潜在影响,包括数据包传输的紧急性、服务质量需求以及目标节点的网络地位等因素。以下是一个量化过程的框架,旨在为本领域技术人员提供如何实现这一目标的指导。Quantifying the destination D of 5G packets involves converting the importance of the destination into a measurable and comparable value. This quantification process needs to take into account the potential impact of the destination on network performance, including factors such as the urgency of packet transmission, quality of service requirements, and the network status of the destination node. The following is a framework for the quantification process, which is intended to provide technical personnel with guidance on how to achieve this goal.
定义目的地重要性指标包括;Defining the indicators of destination importance include;
1.网络拓扑角色:识别目的地节点在网络拓扑中的角色和地位。例如,边缘计算节点、核心网络节点或云数据中心可能因其在处理和分发数据中的关键作用而被赋予较高的重要性。1. Network topology role: Identify the role and status of the destination node in the network topology. For example, edge computing nodes, core network nodes, or cloud data centers may be given higher importance due to their key role in processing and distributing data.
2.服务类型需求:考虑目的地相关联的服务类型。特定服务,如实时视频流、在线游戏或紧急响应系统,可能要求更高的数据传输优先级和更低的延迟,因此目的地的重要性会更高。2. Service type requirements: Consider the type of service associated with the destination. Specific services, such as real-time video streaming, online gaming, or emergency response systems, may require higher data transmission priority and lower latency, so the importance of the destination will be higher.
3.用户体验影响:评估目的地节点的故障或性能下降对最终用户体验的潜在影响。对用户体验影响较大的节点,其目的地重要性更高。3. User experience impact: Evaluate the potential impact of a destination node failure or performance degradation on the end-user experience. The node with a greater impact on the user experience has a higher destination importance.
量化方法包括:Quantification methods include:
1.分级系统:建立一个分级系统,为不同的目的地类型或类别分配预定义的重要性等级。例如,可以将重要性分为低、中、高三个等级,分别对应数值0.3、0.6和0.9。1. Grading system: Establish a grading system to assign predefined importance levels to different destination types or categories. For example, importance can be divided into three levels: low, medium, and high, corresponding to values 0.3, 0.6, and 0.9 respectively.
2.权重分配:为每个重要性指标分配权重,反映其对目的地总重要性的贡献程度。例如,网络拓扑角色可能占总重要性的50%,服务类型需求30%,用户体验影响20%。2. Weight assignment: Assign weights to each importance indicator to reflect its contribution to the total importance of the destination. For example, network topology role may account for 50% of the total importance, service type demand 30%, and user experience impact 20%.
3.计算综合重要性值:根据目的地的不同属性和分配的权重,计算其综合重要性值D。例如,如果一个目的地是边缘计算节点(高重要性),支持实时视频流(高需求)并对用户体验影响大(高影响),则其可能获得接近最高的量化值。3. Calculate the comprehensive importance value: According to the different attributes of the destination and the assigned weights, calculate its comprehensive importance value D. For example, if a destination is an edge computing node (high importance), supports real-time video streaming (high demand) and has a great impact on user experience (high impact), it may obtain a quantitative value close to the highest.
N表示当前的网络流量水平,量化为网络使用率的百分比;N represents the current network traffic level, quantified as a percentage of network utilization;
是一个调节系数,用于平衡网络流量对目的地优先级影响的权重,其可以通过实验数据获取或者通过专家知识获得; It is an adjustment coefficient used to balance the weight of the impact of network traffic on destination priority, which can be obtained through experimental data or expert knowledge;
根据计算出来的每一个5G数据包的综合评分,进行重排序。例如可以根据综合评分由高到低进行重排序。Reordering is performed based on the calculated comprehensive score of each 5G data packet. For example, the comprehensive score can be reordered from high to low.
更进一步地,所述数据重排序和加密模块包括用于实现自适应加密技术的加密单元,所述加密单元具体用于:Furthermore, the data reordering and encryption module includes an encryption unit for implementing an adaptive encryption technology, and the encryption unit is specifically used to:
识别5G数据包的关键特征,所述关键特征包括数据类型、数据敏感性级别和数据传输的紧急度;Identify key characteristics of 5G data packets, including data type, data sensitivity level, and urgency of data transmission;
根据识别出的关键特征,确定适合的加密算法;Determine the appropriate encryption algorithm based on the identified key features;
使用确定的加密算法对于5G数据包进行加密。Use a certain encryption algorithm to encrypt 5G data packets.
在本实施例提供的基于5G技术的数据传输系统中,数据重排序和加密模块扮演着至关重要的角色,尤其是其中的加密单元,它采用自适应加密技术来确保数据传输过程中的安全。这项技术的核心在于智能识别数据包的关键特征,并据此选择最合适的加密算法进行数据加密。以下对这一技术进行详细说明。In the data transmission system based on 5G technology provided in this embodiment, the data reordering and encryption module plays a vital role, especially the encryption unit, which uses adaptive encryption technology to ensure the security of data transmission. The core of this technology is to intelligently identify the key features of the data packet and select the most appropriate encryption algorithm for data encryption. This technology is described in detail below.
加密单元首先需要对进入的5G数据包进行深入分析,以识别其关键特征,这些特征包括:The encryption unit first needs to perform in-depth analysis of incoming 5G data packets to identify their key characteristics, which include:
数据类型:数据包可能包含各种类型的数据,如文本、图片、音频或视频。这一步骤涉及分析数据包的内容或头部信息,以确定其携带的数据类型。Data Type: Data packets may contain various types of data, such as text, images, audio, or video. This step involves analyzing the contents or header information of the packet to determine the type of data it carries.
数据敏感性级别:根据数据的内容和用途,数据包可以被分类为公开、敏感或机密等不同的敏感性级别。这通常需要预先定义的策略或规则,以及可能的内容检测技术,来自动判断数据的敏感性。Data sensitivity level: Depending on the content and purpose of the data, data packets can be classified into different sensitivity levels such as public, sensitive or confidential. This usually requires pre-defined policies or rules, and possible content detection technology, to automatically determine the sensitivity of the data.
数据传输的紧急度:某些数据包,如实时通信或紧急响应数据,可能具有较高的传输紧急度。紧急度的评估可能基于数据包的服务类型标识或其他相关指标。Urgency of data transmission: Some data packets, such as real-time communication or emergency response data, may have a higher urgency of transmission. The assessment of urgency may be based on the service type identification or other relevant indicators of the data packet.
一旦识别出数据包的关键特征,加密单元接下来会根据这些特征来确定使用哪种加密算法最为适合。这一过程包括:Once the key characteristics of the data packet are identified, the encryption unit will then determine which encryption algorithm is most appropriate based on these characteristics. This process includes:
建立加密算法库:首先,需要建立一个包含多种加密算法的库,每种算法都对应特定的数据特征组合。Establish an encryption algorithm library: First, you need to establish a library containing multiple encryption algorithms, each of which corresponds to a specific combination of data features.
匹配算法:通过比较数据包的特征与算法库中各算法的适用条件,加密单元选择最匹配的算法。例如,对于高敏感性和紧急度的数据,可能选择加密强度高但计算复杂度适中的算法。Matching algorithm: By comparing the characteristics of the data packet with the applicable conditions of each algorithm in the algorithm library, the encryption unit selects the most matching algorithm. For example, for highly sensitive and urgent data, an algorithm with high encryption strength but moderate computational complexity may be selected.
最后,加密单元将使用选定的加密算法对5G数据包进行加密。这包括:Finally, the encryption unit will encrypt the 5G data packets using the selected encryption algorithm. This includes:
生成密钥:根据选定的加密算法生成必要的加密密钥。这一步可能涉及到密钥交换协议,确保数据发送方和接收方都能安全地共享密钥。Generate keys: Generate the necessary encryption keys based on the selected encryption algorithm. This step may involve a key exchange protocol to ensure that both the sender and receiver of the data can share the key securely.
执行加密:使用生成的密钥和确定的算法对数据包内容进行加密,确保其内容在传输过程中不被未授权访问或篡改。Perform encryption: Use the generated key and the determined algorithm to encrypt the data packet content to ensure that its content cannot be accessed or tampered with by unauthorized persons during transmission.
密钥管理:加密过程中还需要实施有效的密钥管理策略,包括密钥的更新、撤销和存储,以防止密钥泄露或被滥用。Key management: An effective key management strategy must also be implemented during the encryption process, including key updating, revocation, and storage, to prevent key leakage or abuse.
通过上述过程,加密单元能够为5G数据传输系统中的每个数据包提供高度定制化的安全保护。通过智能识别数据特征并动态选择加密算法,这种自适应加密技术不仅提高了数据传输的安全性,也优化了加密过程的效率和性能。Through the above process, the encryption unit can provide highly customized security protection for each data packet in the 5G data transmission system. By intelligently identifying data features and dynamically selecting encryption algorithms, this adaptive encryption technology not only improves the security of data transmission, but also optimizes the efficiency and performance of the encryption process.
智能传输控制中心103,用于根据动态频谱资源分配模块、数据重排序和加密模块的运行结果,以及实时分析的5G网络状态、用户行为和数据特征进行综合评估;并基于综合评估的结果,调节网络流量分布、启动优先级调整和安全加固。The intelligent transmission control center 103 is used to conduct a comprehensive evaluation based on the operating results of the dynamic spectrum resource allocation module, the data reordering and encryption module, and the real-time analysis of the 5G network status, user behavior and data characteristics; and based on the results of the comprehensive evaluation, adjust the network traffic distribution, start priority adjustment and security reinforcement.
在基于5G技术的数据传输系统中,智能传输控制中心103起着至关重要的角色,它作为系统的大脑,负责综合评估网络状态、用户行为、数据特征以及其他模块的运行结果,并据此做出智能决策以优化网络性能和安全性。In the data transmission system based on 5G technology, the intelligent transmission control center 103 plays a vital role. As the brain of the system, it is responsible for comprehensively evaluating the network status, user behavior, data characteristics and the operating results of other modules, and making intelligent decisions based on this to optimize network performance and security.
智能传输控制中心103的主要功能包括收集和分析来自动态频谱资源分配模块101和数据重排序与加密模块102的数据,以及实时监测网络状态和流量分布。基于这些信息,它能够做出精确的决策,调整网络配置和资源分配,以实现网络流量的优化分布、优化数据传输的优先级排序,以及加强数据传输过程中的安全性。The main functions of the intelligent transmission control center 103 include collecting and analyzing data from the dynamic spectrum resource allocation module 101 and the data reordering and encryption module 102, and monitoring the network status and traffic distribution in real time. Based on this information, it can make accurate decisions and adjust the network configuration and resource allocation to achieve the optimal distribution of network traffic, optimize the priority sorting of data transmission, and enhance the security during data transmission.
实施方法包括如下步骤:The implementation method includes the following steps:
1.数据收集与分析:智能传输控制中心首先需要实时收集网络的运行数据,包括但不限于频谱使用情况、数据包的类型和大小、加密状态、网络拥塞情况等。此外,还需要收集关于用户行为的数据,如数据使用模式、服务质量要求等,以及5G网络的实时状态信息,如信号强度、节点间的连接质量等。1. Data collection and analysis: The intelligent transmission control center first needs to collect network operation data in real time, including but not limited to spectrum usage, data packet type and size, encryption status, network congestion, etc. In addition, it is also necessary to collect data on user behavior, such as data usage patterns, service quality requirements, etc., as well as real-time status information of the 5G network, such as signal strength, connection quality between nodes, etc.
2.综合评估:通过对收集到的数据进行深入分析和处理,智能传输控制中心能够对当前网络的整体性能和安全状况进行综合评估。这一过程可能涉及到复杂的数据处理和分析算法,如机器学习模型,以识别网络中的潜在问题或优化机会。2. Comprehensive evaluation: Through in-depth analysis and processing of the collected data, the intelligent transmission control center is able to conduct a comprehensive evaluation of the overall performance and security status of the current network. This process may involve complex data processing and analysis algorithms, such as machine learning models, to identify potential problems or optimization opportunities in the network.
3.决策制定:基于综合评估的结果,智能传输控制中心将做出一系列决策,包括调整频谱资源的分配策略,优化数据包的重排序规则,以及加强数据加密措施等。这些决策旨在提升网络的性能和效率,减少拥塞,提高数据传输的安全性,以及改善用户的服务体验。3. Decision making: Based on the results of the comprehensive evaluation, the intelligent transmission control center will make a series of decisions, including adjusting the allocation strategy of spectrum resources, optimizing the reordering rules of data packets, and strengthening data encryption measures. These decisions are aimed at improving network performance and efficiency, reducing congestion, improving the security of data transmission, and improving the user's service experience.
通过实施智能传输控制中心103,5G数据传输系统能够实现更高的网络性能和安全性,满足日益增长的数据传输需求,为用户提供更优质的服务。这一系统的设计和实现展现了5G技术在智能网络管理和优化方面的巨大潜力。By implementing the intelligent transmission control center 103, the 5G data transmission system can achieve higher network performance and security, meet the growing demand for data transmission, and provide users with better services. The design and implementation of this system demonstrates the great potential of 5G technology in intelligent network management and optimization.
更进一步地,所述智能传输控制中心具体用于:Furthermore, the intelligent transmission control center is specifically used for:
收集动态频谱资源分配模块101的频谱分配记录,包括分配的频谱带宽和分配成功率;Collecting spectrum allocation records of the dynamic spectrum resource allocation module 101, including allocated spectrum bandwidth and allocation success rate;
从数据重排序及加密模块102获取数据处理的详细记录,所述详细记录包括5G数据包的处理延迟、加密算法选择和加密成功率;Obtain detailed records of data processing from the data reordering and encryption module 102, wherein the detailed records include processing delay of 5G data packets, encryption algorithm selection, and encryption success rate;
监测网络流量和负载情况,记录网络的总吞吐量、平均延迟、实时拥塞水平;Monitor network traffic and load, and record the network's total throughput, average latency, and real-time congestion level;
根据所述频谱分配记录、数据处理的详细记录、网络的总吞吐量、平均延迟、实时拥塞水平,调节网络流量分布、启动优先级调整和安全加固。According to the spectrum allocation records, detailed records of data processing, the total throughput of the network, the average delay, and the real-time congestion level, the network traffic distribution is adjusted, and priority adjustment and security reinforcement are initiated.
在基于5G技术的数据传输系统中,智能传输控制中心扮演着核心角色,负责整合来自不同模块的数据,监测网络状态,并据此做出智能决策以优化网络性能和安全性。该过程包括如下几个关键步骤,下面详细解释这些步骤,并提供示例说明。In the data transmission system based on 5G technology, the intelligent transmission control center plays a core role, responsible for integrating data from different modules, monitoring network status, and making intelligent decisions to optimize network performance and security. The process includes the following key steps, which are explained in detail below and provide examples.
1.收集频谱分配记录:智能传输控制中心首先从动态频谱资源分配模块101收集频谱分配的记录。这些记录包括了分配给各个服务和用户的频谱带宽量以及频谱分配的成功率,反映了频谱资源的使用效率和分配策略的有效性。1. Collect spectrum allocation records: The intelligent transmission control center first collects spectrum allocation records from the dynamic spectrum resource allocation module 101. These records include the spectrum bandwidth allocated to each service and user and the success rate of spectrum allocation, reflecting the efficiency of spectrum resource use and the effectiveness of allocation strategy.
2.获取数据处理记录:同时,控制中心也会从数据重排序及加密模块102获取关于5G数据包处理的详细记录,这包括了数据包的处理延迟时间、所选用的加密算法及其成功率。这些信息有助于评估数据流处理和加密操作的性能。2. Obtaining data processing records: At the same time, the control center also obtains detailed records of 5G data packet processing from the data reordering and encryption module 102, including the processing delay time of the data packet, the selected encryption algorithm and its success rate. This information helps to evaluate the performance of data flow processing and encryption operations.
3.监测网络状态:控制中心继续监测整个网络的流量和负载情况,包括记录网络的总吞吐量、平均延迟时间和实时拥塞水平。这些指标直接反映了网络的运行状况和性能瓶颈。3. Monitor network status: The control center continues to monitor the traffic and load of the entire network, including recording the total throughput, average latency, and real-time congestion level of the network. These indicators directly reflect the network's operating status and performance bottlenecks.
根据上述收集到的数据,智能传输控制中心综合评估网络的整体性能、安全性和用户满意度,然后根据评估结果做出相应的调整,以优化网络。这可能包括调节网络流量分布以减轻拥塞、调整数据处理和加密操作的优先级以提高效率,以及加强数据安全措施以保护用户数据。Based on the data collected above, the Intelligent Transport Control Center comprehensively evaluates the overall performance, security and user satisfaction of the network, and then makes corresponding adjustments based on the evaluation results to optimize the network. This may include adjusting network traffic distribution to alleviate congestion, adjusting the priority of data processing and encryption operations to improve efficiency, and strengthening data security measures to protect user data.
下面进行示例说明:The following is an example:
示例1:拥塞缓解:如果智能传输控制中心发现某一区域的实时拥塞水平持续升高,通过分析频谱分配记录和网络吞吐量,可能决定重新分配频谱资源,增加该区域的带宽,或调整数据流的路由以分散流量,从而缓解拥塞。Example 1: Congestion relief: If the intelligent transmission control center finds that the real-time congestion level in a certain area continues to rise, by analyzing the spectrum allocation records and network throughput, it may decide to reallocate spectrum resources, increase the bandwidth in the area, or adjust the routing of data flows to disperse the traffic, thereby alleviating congestion.
示例2:加密策略优化:基于数据处理的详细记录,如果控制中心发现某一加密算法的成功率低于预期,可能会选择另一种加密算法进行替换,或调整加密操作的优先级,确保敏感数据的安全传输。Example 2: Encryption strategy optimization: Based on detailed records of data processing, if the control center finds that the success rate of a certain encryption algorithm is lower than expected, it may choose another encryption algorithm to replace it, or adjust the priority of encryption operations to ensure the secure transmission of sensitive data.
通过这些步骤和示例,智能传输控制中心能够有效地管理和优化5G网络,确保高效、安全的数据传输,同时提升用户体验。这种综合评估和自动调整机制是实现动态、智能化网络管理的关键,为5G网络的高性能运行提供了坚实的技术支持。Through these steps and examples, the intelligent transmission control center can effectively manage and optimize the 5G network, ensuring efficient and secure data transmission while improving user experience. This comprehensive evaluation and automatic adjustment mechanism is the key to achieving dynamic and intelligent network management, and provides solid technical support for the high-performance operation of 5G networks.
基于同一种发明构思,本发明还提供一种计算机设备,该计算机设备包括:一个或多个处理器,以及存储器,用于存储一个或多个计算机程序;程序包括程序指令,处理器用于执行存储器存储的程序指令。处理器可能是中央处理单元(Central Processing Unit,CPU),还可以是其他通用处理器、数字信号处理器(Digital Signal Processor、DSP)、专用集成电路(Application SpecificIntegrated Circuit,ASIC)、现场可编程门阵列(Field-Programmable GateArray,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等,其是终端的计算核心以及控制核心,其用于实现一条或一条以上指令,具体用于加载并执行计算机存储介质内一条或一条以上指令从而实现上述方法。Based on the same inventive concept, the present invention also provides a computer device, which includes: one or more processors, and a memory for storing one or more computer programs; the program includes program instructions, and the processor is used to execute the program instructions stored in the memory. The processor may be a central processing unit (CPU), or other general-purpose processors, digital signal processors (DSP), application-specific integrated circuits (ASIC), field-programmable gate arrays (FPGA) or other programmable logic devices, discrete gates or transistor logic devices, discrete hardware components, etc. It is the computing core and control core of the terminal, which is used to implement one or more instructions, specifically used to load and execute one or more instructions in a computer storage medium to implement the above method.
需要进一步进行说明的是,基于同一种发明构思,本发明还提供一种计算机存储介质,该存储介质上存储有计算机程序,所述计算机程序被处理器运行时执行上述方法。该存储介质可以采用一个或多个计算机可读的介质的任意组合。计算机可读介质可以是计算机可读信号介质或者计算机可读存储介质。计算机可读存储介质例如可以是但不限于电、磁、光、电、磁、红外线、或半导体的系统、装置或器件,或者任意以上的组合。计算机可读存储介质的更具体的例子(非穷举的列表)包括:具有一个或多个导线的电连接、便携式计算机磁盘、硬盘、随机存取存储器(RAM)、只读存储器(ROM)、可擦式可编程只读存储器(EPROM或闪存)、光纤、便携式紧凑磁盘只读存储器(CD-ROM)、光存储器件、磁存储器件、或者上述的任意合适的组合。在本发明中,计算机可读存储介质可以是任何包含或存储程序的有形介质,该程序可以被指令执行系统、装置或者器件使用或者与其结合使用。It should be further explained that, based on the same inventive concept, the present invention also provides a computer storage medium, on which a computer program is stored, and the computer program is executed by the processor to execute the above method. The storage medium can adopt any combination of one or more computer-readable media. The computer-readable medium can be a computer-readable signal medium or a computer-readable storage medium. The computer-readable storage medium can be, for example, but not limited to, an electrical, magnetic, optical, electrical, magnetic, infrared, or semiconductor system, device or device, or any combination of the above. More specific examples (non-exhaustive list) of computer-readable storage media include: an electrical connection with one or more wires, a portable computer disk, a hard disk, a random access memory (RAM), a read-only memory (ROM), an erasable programmable read-only memory (EPROM or flash memory), an optical fiber, a portable compact disk read-only memory (CD-ROM), an optical storage device, a magnetic storage device, or any suitable combination of the above. In the present invention, a computer-readable storage medium can be any tangible medium containing or storing a program, which can be used by an instruction execution system, device or device or used in combination with it.
在本说明书的描述中,参考术语“一个实施例”、“示例”、“具体示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本公开的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。In the description of this specification, the description with reference to the terms "one embodiment", "example", "specific example", etc. means that the specific features, structures, materials or characteristics described in conjunction with the embodiment or example are included in at least one embodiment or example of the present disclosure. In this specification, the schematic representation of the above terms does not necessarily refer to the same embodiment or example. Moreover, the specific features, structures, materials or characteristics described can be combined in any one or more embodiments or examples in a suitable manner.
以上显示和描述了本公开的基本原理、主要特征和本公开的优点。本行业的技术人员应该了解,本公开不受上述实施例的限制,上述实施例和说明书中描述的只是说明本公开的原理,在不脱离本公开精神和范围的前提下,本公开还会有各种变化和改进,这些变化和改进都落入要求保护的本公开范围内容。The above shows and describes the basic principles, main features and advantages of the present disclosure. Those skilled in the art should understand that the present disclosure is not limited by the above embodiments, and the above embodiments and descriptions are only for explaining the principles of the present disclosure. Without departing from the spirit and scope of the present disclosure, the present disclosure may have various changes and improvements, and these changes and improvements all fall within the scope of the present disclosure to be protected.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202410487322.7A CN118102318B (en) | 2024-04-23 | 2024-04-23 | Data transmission system based on 5G technology |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202410487322.7A CN118102318B (en) | 2024-04-23 | 2024-04-23 | Data transmission system based on 5G technology |
Publications (2)
Publication Number | Publication Date |
---|---|
CN118102318A CN118102318A (en) | 2024-05-28 |
CN118102318B true CN118102318B (en) | 2024-07-05 |
Family
ID=91160164
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202410487322.7A Active CN118102318B (en) | 2024-04-23 | 2024-04-23 | Data transmission system based on 5G technology |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN118102318B (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN118316733B (en) * | 2024-06-07 | 2024-08-06 | 威海双子星软件科技有限公司 | Intelligent data quick encryption transmission system based on block chain |
CN118524546B (en) * | 2024-06-12 | 2024-11-22 | 北京宏数科技有限公司 | 5G network resource dynamic adjustment method |
CN118429139B (en) * | 2024-07-03 | 2024-10-01 | 深圳市凯宏膜环保科技有限公司 | Intelligent sewage treatment cloud platform-based control method and system |
CN118870305B (en) * | 2024-08-23 | 2025-02-25 | 长江科技(苏州)有限公司 | An intelligent transmission system for positioning information based on 5G communication network |
CN119135576A (en) * | 2024-09-05 | 2024-12-13 | 中国地质科学院 | A cloud storage system for logging data in high-cold areas |
CN119383620A (en) * | 2024-12-31 | 2025-01-28 | 陕西旭信通网络科技有限公司 | A wireless communication spectrum optimization method and system based on artificial intelligence |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102474869A (en) * | 2009-07-27 | 2012-05-23 | 高通股份有限公司 | Method and apparatus for managing flexible usage of unpaired frequencies |
CN103650440A (en) * | 2011-06-22 | 2014-03-19 | 赛格纳斯广播公司 | Systems and methods for detection for prioritizing and scheduling packets in a communication network |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014130764A1 (en) * | 2013-02-22 | 2014-08-28 | Rivada Networks, Llc | Methods and systems for dynamic spectrum arbitrage |
WO2016153984A1 (en) * | 2015-03-20 | 2016-09-29 | Rivada Networks, Llc | System and method for interfacing with a dynamic spectrum controller |
CN117914790A (en) * | 2024-01-30 | 2024-04-19 | 固安聚龙自动化设备有限公司 | Multi-network hybrid acceleration method and system |
-
2024
- 2024-04-23 CN CN202410487322.7A patent/CN118102318B/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102474869A (en) * | 2009-07-27 | 2012-05-23 | 高通股份有限公司 | Method and apparatus for managing flexible usage of unpaired frequencies |
CN103650440A (en) * | 2011-06-22 | 2014-03-19 | 赛格纳斯广播公司 | Systems and methods for detection for prioritizing and scheduling packets in a communication network |
Also Published As
Publication number | Publication date |
---|---|
CN118102318A (en) | 2024-05-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN118102318B (en) | Data transmission system based on 5G technology | |
US10069911B2 (en) | System and method for prioritization of data backup and recovery traffic using QoS tagging | |
US7660252B1 (en) | System and method for regulating data traffic in a network device | |
US7826351B2 (en) | MMPP analysis of network traffic using a transition window | |
US12245070B2 (en) | Method and system for managing quality-of-service (QOS) in communication networks | |
CN101547159B (en) | Method and device for preventing network congestion | |
CN110266606B (en) | A kind of active queue management optimization method and device in edge network | |
US12199876B2 (en) | Transmission control method and apparatus | |
CN117336249A (en) | Method for adjusting Qos based on data flow | |
CN118509373A (en) | Flow scheduling method and system for multi-core SDN switch | |
CN107409315A (en) | Performance-based QoS factor optimization | |
WO2024066623A1 (en) | Method for determining scheduling policy, and related apparatus | |
CN118764438A (en) | Data flow priority management method and system for optical communication device | |
CN109905331A (en) | Array dispatching method and device, communication equipment, storage medium | |
CN108513318A (en) | A kind of customer service queuing optimization method based on edge calculations | |
Asaduzzaman et al. | The eight class of service model-an improvement over the five classes of service | |
Basyoni et al. | Proportionally fair approach for tor’s circuits scheduling | |
Deshmukh et al. | QoS-Aware Routing and Resource Allocation Techniques for Enhanced Network Performance. | |
Tiwana et al. | Enhancing Multimedia Forwarding in Software-Defined Networks: An Optimal Flow Mechanism Approach | |
Fang et al. | Buffer management algorithm design and implementation based on network processors | |
Kim et al. | Dynamic bandwidth allocation scheme for video streaming in wireless cellular networks | |
CN118827563A (en) | Flow control method, device, equipment, storage medium and program product | |
Akkala et al. | Navigating Network Currents with Traffic Shapping | |
He et al. | Critical Flow Rerouting Based on Policy Gradient algorithm | |
CN118612139A (en) | A routing system traffic diversion method based on FREEBSD underlying architecture |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |