[go: up one dir, main page]

CN118075077A - OFDM digital communication system and method based on reinforcement learning - Google Patents

OFDM digital communication system and method based on reinforcement learning Download PDF

Info

Publication number
CN118075077A
CN118075077A CN202410464693.3A CN202410464693A CN118075077A CN 118075077 A CN118075077 A CN 118075077A CN 202410464693 A CN202410464693 A CN 202410464693A CN 118075077 A CN118075077 A CN 118075077A
Authority
CN
China
Prior art keywords
modulation
decoding
input
module
adder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202410464693.3A
Other languages
Chinese (zh)
Other versions
CN118075077B (en
Inventor
赵城基
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing University of Posts and Telecommunications
Original Assignee
Beijing University of Posts and Telecommunications
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing University of Posts and Telecommunications filed Critical Beijing University of Posts and Telecommunications
Priority to CN202410464693.3A priority Critical patent/CN118075077B/en
Publication of CN118075077A publication Critical patent/CN118075077A/en
Application granted granted Critical
Publication of CN118075077B publication Critical patent/CN118075077B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N20/00Machine learning
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L15/00Speech recognition
    • G10L15/26Speech to text systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2626Arrangements specific to the transmitter only
    • H04L27/2627Modulators
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2649Demodulators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Landscapes

  • Engineering & Computer Science (AREA)
  • Software Systems (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Theoretical Computer Science (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Data Mining & Analysis (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Acoustics & Sound (AREA)
  • Human Computer Interaction (AREA)
  • Artificial Intelligence (AREA)
  • Health & Medical Sciences (AREA)
  • Evolutionary Computation (AREA)
  • Multimedia (AREA)
  • Medical Informatics (AREA)
  • Computational Linguistics (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Audiology, Speech & Language Pathology (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)

Abstract

An OFDM digital communication system and method based on reinforcement learning belongs to the technical field of digital communication. In an OFDM digital communication system, a modulation calculation module comprises an M-level modulation calculation submodule, an M-level modulation calculation submodule comprises 2 M‑m modulation basic units, and each modulation basic unit comprises two input ends and an output end; 2 M‑m modulation basic units of the 1 st-stage modulation calculation sub-module are input with 2 M mapping symbols in parallel, and the output of the modulation basic units of the M-1 st-stage modulation calculation sub-module is used as the input of the modulation basic units of the M-stage modulation calculation sub-module, and the rotation factors are sequentially utilized to perform operation until the M-stage modulation calculation sub-module sequentially and serially outputs OFDM symbols to be transmitted, wherein m=1, 2 … and M. In the invention, when information is transmitted, the modulation module directly outputs serial information; when receiving information, the decoding module directly outputs serial information without parallel-serial conversion, thereby simplifying the OFDM digital communication system and further saving the cost.

Description

一种基于强化学习的OFDM数字通信系统及方法An OFDM digital communication system and method based on reinforcement learning

技术领域Technical Field

本发明涉及一种基于强化学习的OFDM数字通信系统及方法,属于数字通信技术领域。The invention relates to an OFDM digital communication system and method based on reinforcement learning, belonging to the technical field of digital communication.

背景技术Background technique

例如公开号为CN103595685A的中国发明申请公开了一种SIM-OFDMOFDM数字通信方法,该中国发明申请中,在发送信息时,将待传送的比特信息进行串并变换、IFFT变换和并串变换;在接收信息时,将接收的信息进行串并变换、FFT变换和并串变换,也就是说,在发送信息时需要将IFFT变换后的信息进行并串变换变换为串行输出的信息,而在接信息时,同样需要FFT变换后的信息进行并串变换变换为串行输出的信息,如此增加了OFDM数字通信系统的复杂性。For example, a Chinese invention application with publication number CN103595685A discloses a SIM-OFDMOFDM digital communication method. In the Chinese invention application, when sending information, the bit information to be transmitted is subjected to serial-to-parallel conversion, IFFT conversion and parallel-to-serial conversion; when receiving information, the received information is subjected to serial-to-parallel conversion, FFT conversion and parallel-to-serial conversion. That is, when sending information, the information after IFFT conversion needs to be subjected to parallel-to-serial conversion to be converted into serial output information, and when receiving information, the information after FFT conversion also needs to be subjected to parallel-to-serial conversion to be converted into serial output information, which increases the complexity of the OFDM digital communication system.

发明内容Summary of the invention

为克服现有技术中存在的缺点,本发明的发明目的是提供一种基于强化学习的OFDM数字通信系统及方法,在发送信息时,通过调制模块直接输出的是串行信息;在接收信息时,解码模块直接输出的也是串行信息,无需再进行并串变换,从而使OFDM数字通信系统进行了简化,进而节省了成本。In order to overcome the shortcomings of the prior art, the purpose of the present invention is to provide an OFDM digital communication system and method based on reinforcement learning. When sending information, serial information is directly output by the modulation module; when receiving information, the decoding module also directly outputs serial information, and there is no need to perform parallel-to-serial conversion, thereby simplifying the OFDM digital communication system and saving costs.

为克服现有技术中存在的缺点,本发明一方面提供一种基于强化学习的OFDM数字 通信系统,其包括发送装置,发送装置包括语音识别模块、编码模块、第一存储模块和调制 模块,语音识别模块将语音信息识别为文本串,其包括自注意力机制模型;编码模块对文本 串编码生成比特信息序列;调制模块包括调制分割模块、调制符号映射模块和OFDM符号生 成模块,所述调制分割模块将比特信息序列以K比特为一组B={b0… bk… bK-1}进行划分得 到多组比特组并提供给调制符号映射模块;调制符号映射模块以比特组为单位将比特信息 序列映射为映射符号序列{X(n)},n=0,1,…,; OFDM符号生成模块包括调制码位倒读模 块、调制控制计数模块、调制旋转因子生成模块和调制计算模块,所述码位倒读模块从映射 符号序列{X(n)}中以二进制码位倒读2M个映射符号X(q)并存储到第一存储模块中,所述第 一存储模块并行输出码位倒读模块输入的2M个映射符号X(q);调制旋转因子生成模块包括 M级调制旋转因子生成子模块,第m级调制旋转因子生成子模块在调制控制计数模块的控制 下生成旋转因子,m=1,2,…,M,M为大于或者等于2的正整数; p=0,1,2,…,2M -1; q= 0,1,2,…,2M -1; In order to overcome the shortcomings of the prior art, the present invention provides an OFDM digital communication system based on reinforcement learning, which includes a sending device, the sending device includes a speech recognition module, an encoding module, a first storage module and a modulation module, the speech recognition module recognizes speech information as a text string, and includes a self-attention mechanism model; the encoding module encodes the text string to generate a bit information sequence; the modulation module includes a modulation segmentation module, a modulation symbol mapping module and an OFDM symbol generation module, the modulation segmentation module divides the bit information sequence into a group of K bits B={b 0 … b k … b K-1 } to obtain multiple groups of bit groups and provides them to the modulation symbol mapping module; the modulation symbol mapping module maps the bit information sequence into a mapping symbol sequence {X(n)}, n=0,1,…, The OFDM symbol generation module includes a modulation code bit reverse reading module, a modulation control counting module, a modulation rotation factor generation module and a modulation calculation module. The code bit reverse reading module reads 2 M mapping symbols X(q) from the mapping symbol sequence {X(n)} in binary code bits and stores them in the first storage module. The first storage module outputs the 2 M mapping symbols X(q) input by the code bit reverse reading module in parallel. The modulation rotation factor generation module includes an M-level modulation rotation factor generation submodule. The m-th level modulation rotation factor generation submodule generates a rotation factor under the control of the modulation control counting module. , m = 1, 2, ..., M, M is a positive integer greater than or equal to 2; p = 0, 1, 2, ..., 2 M -1; q = 0, 1, 2, ..., 2 M -1;

调制计算模块包括M级调制计算子模块,第m级调制计算子模块包括2M-m个调制基 本单元,每个调制基本单元包括两个输入端和一个输出端;第1级调制计算子模块的2M-m个 调制基本单元并行输入2M个映射符号X(q),第m-1级的调制计算子模块的调制基本单元的 输出作为第m级调制计算子模块的调制基本单元的输入,依次利用旋转因子进行运 算,直到第M级调制计算子模块依次串行输出待传送的OFDM符号The modulation calculation module includes M-level modulation calculation submodules, and the m-th level modulation calculation submodule includes 2 Mm modulation basic units, each of which includes two input terminals and one output terminal; the 2 Mm modulation basic units of the first-level modulation calculation submodule input 2 M mapping symbols X(q) in parallel, and the output of the modulation basic unit of the m-1-th level modulation calculation submodule is used as the input of the modulation basic unit of the m-th level modulation calculation submodule, and the rotation factors are used in turn. The calculation is performed until the M-th level modulation calculation submodule sequentially outputs the OFDM symbols to be transmitted .

为克服现有技术中存在的缺点,本发明还提供一种基于强化学习的OFDM数字通信 方法,其通过调制模块将比特信息序列转换为OFDM符号序列,所述调制模块包括调制分割 模块、调制符号映射模块和OFDM符号生成模块,所述调制分割模块将比特信息序列以K比特 为一组B={b0…bk… bK-1}进行划分得到多组比特组并提供给调制符号映射模块;调制符号 映射模块比特组为单位将比特信息序列映射为映射符号序列{X(n)},n=0,1,…,; OFDM 符号生成模块包括调制码位倒读模块、调制控制计数模块、调制旋转因子生成模块和调制 计算模块,所述码位倒读模块从映射符号序列{X(n)}中以二进制码位倒读2M个映射符号X (q)并存储到第一存储模块中,所述第一存储模块并行输出码位倒读模块输入的2M个映射 符号X(q);调制旋转因子生成模块包括M个调制旋转因子生成子模块,第m个调制旋转因子 生成子模块在控制计数模块的控制下分别生成旋转因子,m=1,2,…,M,M为大于或者 等于2的正整数; p=0,1,2,…,2M -1; q=0,1,2,…,2M -1; In order to overcome the shortcomings of the prior art, the present invention also provides an OFDM digital communication method based on reinforcement learning, which converts a bit information sequence into an OFDM symbol sequence through a modulation module, wherein the modulation module includes a modulation segmentation module, a modulation symbol mapping module and an OFDM symbol generation module, wherein the modulation segmentation module divides the bit information sequence into a group of K bits B={b 0 …b k …b K-1 } to obtain multiple groups of bit groups and provides them to the modulation symbol mapping module; the modulation symbol mapping module maps the bit information sequence into a mapping symbol sequence {X(n)}, n=0, 1, …, The OFDM symbol generation module includes a modulation code bit reverse reading module, a modulation control counting module, a modulation rotation factor generation module and a modulation calculation module. The code bit reverse reading module reads 2 M mapping symbols X (q) from the mapping symbol sequence {X (n)} in binary code bits and stores them in a first storage module. The first storage module outputs the 2 M mapping symbols X (q) input by the code bit reverse reading module in parallel. The modulation rotation factor generation module includes M modulation rotation factor generation submodules. The m-th modulation rotation factor generation submodule generates rotation factors respectively under the control of the control counting module. , m=1,2,…,M, M is a positive integer greater than or equal to 2; p=0,1,2,…,2 M -1; q=0,1,2,…,2 M -1;

调制计算模块包括M级调制计算子模块,第m级调制计算子模块包括2M-m个调制基 本单元,每个调制基本单元包括两个输入端和一个输出端;第1级调制计算子模块的2M-m个 调制基本单元并行输入2M个映射符号,第m-1级的调制计算子模块的调制基本单元的输出 作为第m级调制计算子模块的调制基本单元的输入,依次利用旋转因子进行运算,直 到第M级调制计算子模块依次串行输出待传送的OFDM符号The modulation calculation module includes M-level modulation calculation submodules, and the m-th level modulation calculation submodule includes 2 Mm modulation basic units, each of which includes two input terminals and one output terminal; the 2 Mm modulation basic units of the first-level modulation calculation submodule input 2 M mapping symbols in parallel, and the output of the modulation basic unit of the m-1-th level modulation calculation submodule is used as the input of the modulation basic unit of the m-th level modulation calculation submodule, and the rotation factors are used in turn. The calculation is performed until the M-th level modulation calculation submodule sequentially outputs the OFDM symbols to be transmitted .

与现有技术相比,本发明提供的基于强化学习的OFDM数字通信系统及方法具有如下有益效果:Compared with the prior art, the OFDM digital communication system and method based on reinforcement learning provided by the present invention have the following beneficial effects:

1、发送信息时,利用调制模块就可以产生OFDM符号Y(p),节省了大量振荡器和调制器构成的硬件成本;接收信息时,利用解码模块就可以得到发送端发送的映射符号X(q),节省了大量振荡器和解码器构成的硬件成本;1. When sending information, the modulation module can generate OFDM symbol Y(p), saving a lot of hardware costs of oscillators and modulators; when receiving information, the decoding module can obtain the mapping symbol X(q) sent by the transmitter, saving a lot of hardware costs of oscillators and decoders;

2、发送信息时,调制模块直接输出的是串行信息;接收信息时,解码模块直接输出的是串行信息,无需再进行并串变换,从而使OFDM数字通信系统进行了简化,从而节省了成本。2. When sending information, the modulation module directly outputs serial information; when receiving information, the decoding module directly outputs serial information without the need for parallel-to-serial conversion, thereby simplifying the OFDM digital communication system and saving costs.

附图说明BRIEF DESCRIPTION OF THE DRAWINGS

图1是本发明提供的基于强化学习的OFDM数字通信系统的组成框图;FIG1 is a block diagram of an OFDM digital communication system based on reinforcement learning provided by the present invention;

图2是本发明提供的语音识别模块的组成框图;FIG2 is a block diagram of a speech recognition module provided by the present invention;

图3是本发明提供的调制模块的组成框图;FIG3 is a block diagram of a modulation module provided by the present invention;

图4是本发明提供的解码模块的组成框图。FIG. 4 is a block diagram of the decoding module provided by the present invention.

具体实施方式Detailed ways

需要说明的是,以下,参照附图对本发明的优选实施例进行详细说明。参照附图和详细后述的实施例,本发明的优点和特征以及实现这些优点和特征的方法将变得明确。It should be noted that the preferred embodiments of the present invention will be described in detail below with reference to the accompanying drawings. The advantages and features of the present invention and methods for achieving the advantages and features will become clear with reference to the accompanying drawings and the embodiments described in detail below.

但是,本发明并不局限于以下所公开的实施例,能够以互不相同的多种形态实现,本实施例仅用于使本发明的公开更加完整,并向本发明所属技术领域的普通技术人员完整地告知发明的范畴,本发明仅由发明要求保护范围定义。However, the present invention is not limited to the embodiments disclosed below, and can be implemented in a variety of different forms. This embodiment is only used to make the disclosure of the present invention more complete and to fully inform the scope of the invention to ordinary technicians in the technical field to which the present invention belongs. The present invention is only defined by the scope of protection claimed in the invention.

虽然“第一”、“第二”等用于描述各种元件、部件和/或部分,但是这些元件、部件和/或部分不受这些术语的限制。这些术语仅用于将一个元件、构成要素或部分与其他元件、构成要素或部分区分开。因此,显而易见的是,在本公开的技术精神内,下面提到的第一元件、第一元件或第一部分也可以是第二元件、第二元件或第二部分,并且本说明书中使用的术语仅用于描述实施例,而不旨在限制本公开。Although "first", "second", etc. are used to describe various elements, components and/or parts, these elements, components and/or parts are not limited by these terms. These terms are only used to distinguish one element, constituent element or part from other elements, constituent elements or parts. Therefore, it is obvious that within the technical spirit of the present disclosure, the first element, first element or first part mentioned below may also be the second element, second element or second part, and the terms used in this specification are only used to describe the embodiments and are not intended to limit the present disclosure.

在本说明书中,只要在语句中没有特别提及,单数型也包括复数型。在说明书中所使用的“包括”和/或“由……构成”并不排除所提及的结构要素、步骤、动作和/或元件存在或追加一个以上的其他结构要素、步骤、动作和/或元件。In this specification, as long as there is no special mention in the sentence, the singular also includes the plural. The use of "comprising" and/or "consisting of..." in the specification does not exclude the existence or addition of one or more other structural elements, steps, actions and/or elements of the mentioned structural elements, steps, actions and/or elements.

除非另有定义,否则本文使用的所有术语(包括技术和科学术语)具有与本发明所属领域的普通技术人员通常理解的含义相同的含义。另外,在通常使用的词典中定义的术语,只要没有明确地特别定义,不得理想地或过度地解释。Unless otherwise defined, all terms (including technical and scientific terms) used herein have the same meaning as those commonly understood by ordinary technicians in the field to which the present invention belongs. In addition, terms defined in commonly used dictionaries shall not be interpreted ideally or excessively unless they are clearly defined.

另外,对相同或同样的结构标注相同的附图标记,并省略重复的说明。In addition, the same reference numerals are given to the same or similar structures, and duplicate descriptions are omitted.

图1是本发明提供的基于强化学习的OFDM数字通信系统的组成框图,如图1所示, 本发明提供的基于强化学习的OFDM数字通信系统包括发送装置,发送装置包括语音识别模 块、编码模块、第一存储模块和调制模块,语音识别模块将语音信息识别为文本串,其包括 自动注意力机制模型;编码模块对文本串编码生成比特信息序列;调制模块包括调制分割 模块、调制符号映射模块和OFDM符号生成模块,所述调制分割模块将比特信息序列以K比特 为一组B={b0… bk… bK-1}进行划分得到多组比特组并提供给调制符号映射模块;调制符号 映射模块以比特组为单位将比特信息序列映射为映射符号序列{X(n)},n=0,1,…,; OFDM符号生成模块包括调制码位倒读模块、调制控制计数模块、调制旋转因子生成模块和 调制计算模块,所述码位倒读模块从映射符号序列{X(n)}中以二进制码位倒读2M个映射符 号X(q)并存储到第一存储模块中,所述第一存储模块并行输出码位倒读模块输入的2M个映 射符号X(q);调制旋转因子生成模块包括M级调制旋转因子生成子模块,第m级调制旋转因 子生成子模块在调制控制计数模块的控制下生成旋转因子,m=1,2,…,M,M为大于或 者等于2的正整数; p=0,1,2,…,2M -1; q=0,1,2,…,2M -1;,为子 载波角频率,为基带信号码元周期。 FIG1 is a block diagram of the OFDM digital communication system based on reinforcement learning provided by the present invention. As shown in FIG1 , the OFDM digital communication system based on reinforcement learning provided by the present invention includes a sending device, which includes a speech recognition module, an encoding module, a first storage module and a modulation module. The speech recognition module recognizes speech information as a text string, which includes an automatic attention mechanism model; the encoding module encodes the text string to generate a bit information sequence; the modulation module includes a modulation segmentation module, a modulation symbol mapping module and an OFDM symbol generation module, the modulation segmentation module divides the bit information sequence into a group of K bits B={b 0 … b k … b K-1 } to obtain multiple groups of bit groups and provides them to the modulation symbol mapping module; the modulation symbol mapping module maps the bit information sequence into a mapping symbol sequence {X(n)}, n=0,1,…, The OFDM symbol generation module includes a modulation code bit reverse reading module, a modulation control counting module, a modulation rotation factor generation module and a modulation calculation module. The code bit reverse reading module reads 2 M mapping symbols X(q) from the mapping symbol sequence {X(n)} in binary code bits and stores them in the first storage module. The first storage module outputs the 2 M mapping symbols X(q) input by the code bit reverse reading module in parallel. The modulation rotation factor generation module includes an M-level modulation rotation factor generation submodule. The m-th level modulation rotation factor generation submodule generates a rotation factor under the control of the modulation control counting module. , m=1,2,…,M, M is a positive integer greater than or equal to 2; p=0,1,2,…,2 M -1; q=0,1,2,…,2 M -1; , is the subcarrier angular frequency, is the baseband signal symbol period.

本发明中,调制符号映射模块包括2M个映射符号X(q)},每个映射符号对应该K个 比特信息的不同组合,第q个映射符号的表达式为:In the present invention, the modulation symbol mapping module includes 2 M mapping symbols X(q)}, each mapping symbol corresponds to a different combination of K bits of information, and the expression of the qth mapping symbol is: .

本发明中,调制码位倒读模块例如根据下表从映射符号序列{X(n)}中以二进制码位倒读2M个映射符号X(q):In the present invention, the modulation code bit reverse reading module reads 2 M mapping symbols X(q) in reverse order from the mapping symbol sequence {X(n)} in binary code bits according to the following table, for example:

十进制顺序Decimal order 二进制顺序Binary Order 位码倒读顺序二进制顺序Bit code reverse reading order binary order 位码倒读顺序十进制顺序Bit code reverse reading order decimal order 00 000000 000000 00 11 001001 100100 44 22 010010 010010 22 33 011011 110110 66 44 100100 001001 11 55 101101 101101 55 66 110110 011011 33 77 111111 111111 77

.

本发明中,调制计算模块包括M级调制计算子模块,第m级调制计算子模块包括2M-m 个调制基本单元,每个调制基本单元包括两个输入端和一个输出端;第1级调制计算子模块 的2M-m个调制基本单元并行输入2M个映射符号X(q),第m-1级的调制计算子模块的调制基本 单元的输出作为第m级调制计算子模块的调制基本单元的输入,依次利用旋转因子进 行运算,直到第M级调制计算子模块依次串行输出待传送的OFDM符号In the present invention, the modulation calculation module includes M-level modulation calculation submodules, the m-th level modulation calculation submodule includes 2 Mm modulation basic units, each modulation basic unit includes two input ends and one output end; the 2 Mm modulation basic units of the first-level modulation calculation submodule input 2 M mapping symbols X(q) in parallel, the output of the modulation basic unit of the m-1-th level modulation calculation submodule is used as the input of the modulation basic unit of the m-th level modulation calculation submodule, and the rotation factors are used in sequence. The calculation is performed until the M-th level modulation calculation submodule sequentially outputs the OFDM symbols to be transmitted .

发送信息时,本发明通过上述调制模块就可以产生OFDM符号Y(p),所述调制模块通过运算就可得到,不需要大量振荡器和调制器构成的硬件节省了大量振荡器和调制器构成的硬件成本;同时,调制模块直接输出的是串行信息无需再进行并串变换,从而使OFDM数字通信系统进行了简化,进一步节省了成本。When sending information, the present invention can generate OFDM symbols Y(p) through the above-mentioned modulation module, which can be obtained through calculation, and does not require a large number of hardware composed of oscillators and modulators, thereby saving a large amount of hardware costs composed of oscillators and modulators; at the same time, the modulation module directly outputs serial information without the need for parallel-to-serial conversion, thereby simplifying the OFDM digital communication system and further saving costs.

发送装置还包括DAC转换器和发送射频模块,DAC转换器将OFDM符号序列{Y(p)}转换成模拟信息,发送射频模块将DAC转换器提供的信息调制到高频上并进行功率放大,阻抗匹配而后通过发送天线转换为电磁波发送到空间。The transmitting device also includes a DAC converter and a transmitting radio frequency module. The DAC converter converts the OFDM symbol sequence {Y(p)} into analog information. The transmitting radio frequency module modulates the information provided by the DAC converter to a high frequency and performs power amplification, impedance matching, and then converts it into electromagnetic waves through a transmitting antenna and sends it into space.

图2是本发明提供的语音识别模块的组成框图,如图2所示,所述语音识别模块包括控制组件、控制模块、显示模块、语音获取模块和语言模型,其中,所述控制组件被配置为用户进行操作从而将用户的意图输入到控制模块中,控制模块根据控制组件形成的指令从第一存储模块中选择一段文本并输出到显示模块进行显示;用户根据显示模块的显示朗读显示的文本,以使语音获取模块获取用户的语音,并将获取的语音输入到语言模型;语言模型利用语音获取模块获取的用户的语音进行训练并将所识别的文本在显示模块进行显示;比较从第一存储模块中输入的文本和语言模型识别的文本的自相似度,若自相似度大或者等于设定的阈值,则停止对语言模块进行训练,将训练好的语言模型应用于OFDM数字通信系统,若自相似度小于设定的阈值,则对语言模型利用朗读显示的文本的语音继续进行训练。FIG2 is a block diagram of the speech recognition module provided by the present invention. As shown in FIG2 , the speech recognition module includes a control component, a control module, a display module, a speech acquisition module and a language model, wherein the control component is configured to be operated by a user so as to input the user's intention into the control module, and the control module selects a text from the first storage module according to the instruction formed by the control component and outputs it to the display module for display; the user reads the displayed text according to the display of the display module, so that the speech acquisition module acquires the user's voice and inputs the acquired voice into the language model; the language model is trained using the user's voice acquired by the speech acquisition module and displays the recognized text on the display module; the self-similarity of the text input from the first storage module and the text recognized by the language model is compared, if the self-similarity is greater than or equal to the set threshold, the training of the language module is stopped, and the trained language model is applied to the OFDM digital communication system, if the self-similarity is less than the set threshold, the language model continues to be trained using the voice of the read displayed text.

本发明中,语言模型包括自注意力机制模型,第一存储模块中输入的第i个文本的 特征值为,语言模型识别输出的第i个文本的特征值为,则它们相关度为: In the present invention, the language model includes a self-attention mechanism model, and the feature value of the i-th text input in the first storage module is , the feature value of the i-th text output by the language model recognition is , then their correlation for:

,

式中,为特征值的转换矩阵,为特征值的转换矩阵,T表示转置,i为大 于或者等于1的正整数。 In the formula, is the eigenvalue The transformation matrix, is the eigenvalue The transformation matrix of , T represents transpose, and i is a positive integer greater than or equal to 1.

本发明通过上述语音识别模块,可以达到不同的人利用不同的语音对语言模型进行训练,从而提高了对不同的人的语音识别的准确性。The present invention, through the above-mentioned speech recognition module, can achieve the goal that different people use different speech to train the language model, thereby improving the accuracy of speech recognition for different people.

本发明中,基于强化学习的OFDM数字通信系统还包括接收装置,所述接收装置包括接收射频模块和ADC转换器,所述接收射频模块通过接收天线感应空间电磁波,而后经小信号放大,变频和解码取出发送装置发送的模拟信息,ADC转换器将接收的模拟信息转换为OFDM符号序列{Y(p)}。In the present invention, the OFDM digital communication system based on reinforcement learning also includes a receiving device, which includes a receiving radio frequency module and an ADC converter. The receiving radio frequency module senses spatial electromagnetic waves through a receiving antenna, and then obtains the analog information sent by the sending device through small signal amplification, frequency conversion and decoding. The ADC converter converts the received analog information into an OFDM symbol sequence {Y(p)}.

接收装置还包括解码模块和第二存储模块,解码模块包括解码分割模块、解码码 位倒读模块、解码控制计数模块、解码旋转因子生成模块、解码计算模块和符号解映射模 块,解码分割模块对接收的OFDM符号序列进行分割获取OFDM符号组,每个组包括2M个OFDM 符号Y(p);所述解码码位倒读模块从OFDM符号组中以二进制码位倒读2M个OFDM符号Y(p)并 存储到第二存储模块中,所述第二存储模块并行输出解码码位倒读模块输入的2M个OFDM符 号Y(p);解码旋转因子生成模块包括M个解码旋转因子生成子模块,第m级解码旋转因子生 成子模块在解码控制计数模块的控制下分别生成旋转因子,m=1,2,…,M; p=0,1, 2,…,2M -1。 The receiving device also includes a decoding module and a second storage module. The decoding module includes a decoding segmentation module, a decoding code bit reverse reading module, a decoding control counting module, a decoding rotation factor generation module, a decoding calculation module and a symbol demapping module. The decoding segmentation module segments the received OFDM symbol sequence to obtain OFDM symbol groups, each group including 2M OFDM symbols Y(p); the decoding code bit reverse reading module reads 2M OFDM symbols Y(p) from the OFDM symbol group in binary code bits and stores them in the second storage module, and the second storage module outputs the 2M OFDM symbols Y(p) input by the decoding code bit reverse reading module in parallel; the decoding rotation factor generation module includes M decoding rotation factor generation submodules, and the m-th level decoding rotation factor generation submodule generates rotation factors respectively under the control of the decoding control counting module. ,m=1,2,…,M; p=0,1, 2,…,2 M -1.

解码计算模块包括M级解码计算子模块,第m级解码计算子模块包括2M-m个解码基 本单元,每个解码基本单元包括两个输入端和一个输出端;第1级解码计算子模块的2M-m个 解码基本单元并行输入2M个OFDM符号,第m-1级的解码计算子模块的解码基本单元的输出 作为第m级解码计算子模块的解码基本单元的输入,依次利用旋转因子进行运算,直到 第M级解码计算子模块依次串行输出发送装置发送的映射符号;符号解映射模块将映 射符号解映射为比特组, q=0,1,2,…,2M -1。 The decoding calculation module includes M-level decoding calculation submodules, and the m-th level decoding calculation submodule includes 2 Mm decoding basic units, each decoding basic unit includes two input terminals and one output terminal; the 2 Mm decoding basic units of the first-level decoding calculation submodule input 2 M OFDM symbols in parallel, and the output of the decoding basic unit of the m-1-th level decoding calculation submodule is used as the input of the decoding basic unit of the m-th level decoding calculation submodule, and the rotation factors are used in turn. The calculation is performed until the M-th level decoding calculation submodule sequentially outputs the mapping symbols sent by the sending device in series. ; The symbol demapping module will map the symbol Demap into bit groups, q = 0, 1, 2, …, 2 M -1.

接收信息时,本发明通过解码模块就可以得到发送端发送的映射符号X(q),所述解码模块通过运算就可得到,不需要大量振荡器和解码器构成的硬件,节省了大量振荡器和解码器构成的硬件成本;同时调制模块直接输出的是串行信息,无需再进行并串变换,从而使OFDM数字通信系统进行了简化,进一步节省了成本。When receiving information, the present invention can obtain the mapping symbol X(q) sent by the transmitter through a decoding module, and the decoding module can obtain it through calculation, without the need for a large number of hardware composed of oscillators and decoders, thus saving a large amount of hardware costs composed of oscillators and decoders; at the same time, the modulation module directly outputs serial information, and there is no need to perform parallel-to-serial conversion, thereby simplifying the OFDM digital communication system and further saving costs.

接收装置还包括合成模块,合成模块根据比特信息组合成文字,若合成模块为语音合成模块,则语音合成模块根据比特信息组利用语言模型合成语音。The receiving device also includes a synthesis module, which combines the bit information into text. If the synthesis module is a speech synthesis module, the speech synthesis module synthesizes speech according to the bit information group using a language model.

图3是本发明提供的调制模块的组成框图。图3所示的调制模块是以M=3为例的情 况,但本发明并不限于M=3,M可以是任意正整数。如图3所示,调制模块包括调制分割模块、 调制符号映射模块和OFDM符号生成模块,所述调制分割模块将比特信息序列以K比特为一 组B={b0 b1 b2}进行划分得到多组比特组并提供给调制符号映射模块;调制符号映射模块 比特组为单位将比特信息序列映射为映射符号序列{X(n)},n=0,1,…,; OFDM符号生成 模块包括调制码位倒读模块、调制控制计数模块、调制旋转因子生成模块和调制计算模块, 所述码位倒读模块从映射符号序列{X(n)}中以二进制码位倒读8个映射符号X(q)并存储到 第一存储模块中,所述第一存储模块并行输出码位倒读模块输入的8个映射符号X(q);调制 旋转因子生成模块包括M个调制旋转因子生成子模块,第m个调制旋转因子生成子模块在控 制计数模块的控制下生成旋转因子,m=1,2,3; p=0,1,2,…,7; q=0,1,2,…,7; FIG3 is a block diagram of the modulation module provided by the present invention. The modulation module shown in FIG3 takes M=3 as an example, but the present invention is not limited to M=3, and M can be any positive integer. As shown in FIG3, the modulation module includes a modulation segmentation module, a modulation symbol mapping module, and an OFDM symbol generation module. The modulation segmentation module divides the bit information sequence into a group of K bits B={b 0 b 1 b 2 } to obtain multiple groups of bit groups and provides them to the modulation symbol mapping module; the modulation symbol mapping module maps the bit information sequence into a mapping symbol sequence {X(n)}, n=0,1,…, The OFDM symbol generation module includes a modulation code bit reverse reading module, a modulation control counting module, a modulation rotation factor generation module and a modulation calculation module, wherein the code bit reverse reading module reads 8 mapping symbols X(q) in binary code from the mapping symbol sequence {X(n)} and stores them in the first storage module, and the first storage module outputs the 8 mapping symbols X(q) input by the code bit reverse reading module in parallel; the modulation rotation factor generation module includes M modulation rotation factor generation submodules, and the mth modulation rotation factor generation submodule generates a rotation factor under the control of the control counting module. , m=1,2,3; p=0,1,2,…,7; q=0,1,2,…,7;

如图3所示,每个调制基本单元由一个调制乘法器和一个调制加法器组成,其中, 调制基本单元第一输入端输入的信号提供给调制加法器的第一输入端,调制基本单元第二 输入端输入的信号与旋转因子相乘而后提供给调制加法器的第二输入端,调制加法器用于 对其第一输入端和第二输入端输入的信号进行相加运算并通过其输出端向下一级调制计 算子模块的调制基本单元提供输入信号或作为待传送的OFDM符号As shown in FIG3 , each modulation basic unit is composed of a modulation multiplier and a modulation adder, wherein the signal input to the first input terminal of the modulation basic unit is provided to the first input terminal of the modulation adder, the signal input to the second input terminal of the modulation basic unit is multiplied by the rotation factor and then provided to the second input terminal of the modulation adder, and the modulation adder is used to add the signals input to the first input terminal and the second input terminal and provide the input signal or the OFDM symbol to be transmitted to the modulation basic unit of the next level modulation calculation submodule through its output terminal. .

如图3所示,M=3,{X(q)}={X1(0), X1(4) , X1(2), X1(6), X1(1), X1(5), X1(3),X1(7)};As shown in Figure 3, M = 3, {X(q)} = {X 1 (0), X 1 (4), X 1 (2), X 1 (6), X 1 (1), X 1 (5), X 1 (3), X 1 (7)};

调制计算模块包括3级调制计算子模块,第m级调制计算子模块包括2M-m个调制基本单元,m=1,2,3;The modulation calculation module includes 3 levels of modulation calculation submodules, and the m-th level modulation calculation submodule includes 2 Mm modulation basic units, where m=1, 2, 3;

第1级调制计算子模块包括第一调制基本单元C11、第二调制基本单元C12、第三调 制基本单元C13和第四调制基本单元C14,第一调制基本单元C11的第一输入端输入X1(0),X1 (0)输入到第一调制加法器P11的第一输入端;第一调制基本单元C11的第二输入端输入 X1 (4), X1(4)与旋转因子在第一调制乘法器M11中相乘而后输入到第一调制加法器P11的 第二输入端,第一调制加法器P11用于对其第一输入端和第二输入端输入的信号进行相加运 算; The first-level modulation calculation submodule includes a first modulation basic unit C 11 , a second modulation basic unit C 12 , a third modulation basic unit C 13 and a fourth modulation basic unit C 14 . The first input terminal of the first modulation basic unit C 11 inputs X 1 (0), and X 1 (0) is input to the first input terminal of the first modulation adder P 11 . The second input terminal of the first modulation basic unit C 11 inputs X 1 (4), and X 1 (4) is combined with the rotation factor The signals are multiplied in the first modulation multiplier M11 and then input to the second input terminal of the first modulation adder P11 . The first modulation adder P11 is used to perform addition operation on the signals input from the first input terminal and the second input terminal.

第二调制基本单元C12的第一输入端输入X1(2),X1(2)输入到第二调制加法器P12的 第一输入端;第二调制基本单元C12的第二输入端输入 X1(6), X1(6)与旋转因子在第 二调制乘法器M12中相乘而后输入到第二调制加法器P12的第二输入端,第二调制加法器P12 用于对其第一输入端和第二输入端输入的信号进行相加运算; The first input terminal of the second modulation basic unit C12 inputs X1 (2), and X1 (2) is input to the first input terminal of the second modulation adder P12 ; the second input terminal of the second modulation basic unit C12 inputs X1 (6), and X1 (6) and the rotation factor In the second modulation multiplier M 12 is multiplied and then input to the second input terminal of the second modulation adder P 12 , the second modulation adder P 12 is used to add the signal input from the first input terminal and the second input terminal;

第三调制基本单元C13的第一输入端输入X1(1),X1(1)输入到第三调制加法器P13的 第一输入端;第三调制基本单元C13的第二输入端输入X1(5),X1(5)与旋转因子在第三 调制乘法器M13中相乘而后输入到第三调制加法器P13的第二输入端,第三调制加法器P13用 于对其第一输入端和第二输入端输入的信号进行相加运算; The first input terminal of the third modulation basic unit C13 inputs X1 (1), which is input to the first input terminal of the third modulation adder P13 ; the second input terminal of the third modulation basic unit C13 inputs X1 ( 5 ), which is combined with the rotation factor In the third modulation multiplier M 13 is multiplied and then input to the second input terminal of the third modulation adder P 13 , the third modulation adder P 13 is used to add the signal input from the first input terminal and the second input terminal thereof;

第四调制基本单元C14的第一输入端输入X1(3),X1(3)输入到第四调制加法器(P14) 的第一输入端;第四调制基本单元C14的第二输入端输入X1(7),X1(7)与旋转因子在第 四调制乘法器M14中相乘而后输入到第四调制加法器P14的第二输入端,第四调制加法器P14 用于对其第一输入端和第二输入端输入的信号进行相加运算; The first input terminal of the fourth modulation basic unit C14 inputs X1 (3), which is input to the first input terminal of the fourth modulation adder ( P14 ); the second input terminal of the fourth modulation basic unit C14 inputs X1 (7), which is combined with the rotation factor In the fourth modulation multiplier M 14 is multiplied and then input to the second input terminal of the fourth modulation adder P 14 , the fourth modulation adder P 14 is used to add the signal input from the first input terminal and the second input terminal thereof;

第2级调制计算子模块包括第五调制基本单元C21和第六调制基本单元C22,第五调 制基本单元C21的第一输入端输入第一调制加法器P11的输出信号, 第一调制加法器P11的输 出信号输入到第五调制加法器P21的第一输入端;第五调制基本单元C21的第二输入端输入 第二调制加法器P12的输出信号,第二调制加法器P12的输出信号与旋转因子在第五调 制乘法器M21中相乘而后输入到第五调制加法器P21的第二输入端,第五调制加法器P21用于 对其第一输入端和第二输入端输入的信号进行相加运算; The second-level modulation calculation submodule includes a fifth modulation basic unit C 21 and a sixth modulation basic unit C 22. The first input end of the fifth modulation basic unit C 21 inputs the output signal of the first modulation adder P 11 , and the output signal of the first modulation adder P 11 is input to the first input end of the fifth modulation adder P 21 ; the second input end of the fifth modulation basic unit C 21 inputs the output signal of the second modulation adder P 12 , and the output signal of the second modulation adder P 12 is combined with the rotation factor The signals are multiplied in the fifth modulation multiplier M21 and then input to the second input terminal of the fifth modulation adder P21 . The fifth modulation adder P21 is used to perform an addition operation on the signals input from the first input terminal and the second input terminal thereof;

第六调制基本单元C22的第一输入端输入第三调制加法器P13的输出信号, 第三调 制加法器P13的输出信号输入到第六调制加法器P22的第一输入端;第六调制基本单元C22的 第二输入端输入第四调制加法器P14的输出信号,第四调制加法器P14的输出信号与旋转因 子在第六调制乘法器M22中相乘而后输入到第六调制加法器P22的第二输入端,第六调 制加法器P22用于对其第一输入端和第二输入端输入的信号进行相加运算; The output signal of the third modulation adder P13 is input to the first input end of the sixth modulation adder C22 ; the output signal of the fourth modulation adder P14 is input to the second input end of the sixth modulation adder C22 ; the output signal of the fourth modulation adder P14 is input to the second input end of the sixth modulation adder C22 ; the output signal of the fourth modulation adder P14 is input to the rotation factor The signals are multiplied in the sixth modulation multiplier M22 and then input to the second input terminal of the sixth modulation adder P22 . The sixth modulation adder P22 is used to perform an addition operation on the signals input from the first input terminal and the second input terminal thereof.

第3级调制计算子模块包括第七调制基本单元C31,第七调制基本单元C31的第一输 入端输入第五调制加法器P21的输出信号, 第五调制加法器P21的输出信号输入到第七调制 加法器P31的第一输入端;第七调制基本单元C31的第二输入端输入第六调制加法器P22的输 出信号,第六调制加法器P22的输出信号与旋转因子在第七调制乘法器M31中相乘而后 输入到第七调制加法器P31的第二输入端,第七调制加法器P31用于对其第一输入端和第二 输入端输入的信号进行相加运算输出待传送的OFDM符号The third-level modulation calculation submodule includes a seventh modulation basic unit C 31 , a first input end of the seventh modulation basic unit C 31 inputs the output signal of the fifth modulation adder P 21 , and the output signal of the fifth modulation adder P 21 is input to the first input end of the seventh modulation adder P 31 ; a second input end of the seventh modulation basic unit C 31 inputs the output signal of the sixth modulation adder P 22 , and the output signal of the sixth modulation adder P 22 is combined with the rotation factor The signals are multiplied in the seventh modulation multiplier M31 and then input to the second input terminal of the seventh modulation adder P31 . The seventh modulation adder P31 is used to add the signals input from the first input terminal and the second input terminal to output the OFDM symbol to be transmitted. .

图4是本发明提供的解码模块的组成框图。图4所示的解码模块是以M=3为例的情 况,但本发明并不限于M=3,M可以是任意正整数。如图3所示,解码模块包括解码分割模块、 解码码位倒读模块、解码控制计数模块、解码旋转因子生成模块、解码计算模块和符号解映 射模块,解码分割模块对接收的OFDM符号序列进行分割获取OFDM符号组,每个组包括8个 OFDM符号Y(p);所述解码码位倒读模块从OFDM符号组中以二进制码位倒读8个OFDM符号Y (p)并存储到第二存储模块中,所述第二存储模块并行输出解码码位倒读模块输入的8个 OFDM符号Y(p);解码旋转因子生成模块包括M个解码旋转因子生成子模块,第m级解码旋转 因子生成子模块在解码控制计数模块的控制下生成旋转因子,m=1,2,3; p=0,1,2,…, 7; FIG4 is a block diagram of the composition of the decoding module provided by the present invention. The decoding module shown in FIG4 takes M=3 as an example, but the present invention is not limited to M=3, and M can be any positive integer. As shown in FIG3, the decoding module includes a decoding segmentation module, a decoding code bit reverse reading module, a decoding control counting module, a decoding rotation factor generation module, a decoding calculation module and a symbol demapping module. The decoding segmentation module segments the received OFDM symbol sequence to obtain OFDM symbol groups, and each group includes 8 OFDM symbols Y(p); the decoding code bit reverse reading module reads 8 OFDM symbols Y(p) from the OFDM symbol group in binary code bits and stores them in the second storage module, and the second storage module outputs the 8 OFDM symbols Y(p) input by the decoding code bit reverse reading module in parallel; the decoding rotation factor generation module includes M decoding rotation factor generation submodules, and the m-th level decoding rotation factor generation submodule generates the rotation factor under the control of the decoding control counting module. , m=1,2,3; p=0,1,2,…, 7;

如图4所示,每个解码基本单元由一个解码乘法器和一个解码加法器组成,其中, 解码基本单元第一输入端输入的信号提供给解码加法器的第一输入端,解码基本单元第二 输入端输入的信号与旋转因子相乘而后提供给解码加法器的第二输入端,解码加法器 用于对其第一输入端和第二输入端输入的信号进行相加运算并通过其输出端向下一级解 码计算子模块的解码基本单元提供输入信号或提供接收的映射符号As shown in FIG4 , each decoding basic unit is composed of a decoding multiplier and a decoding adder, wherein the signal inputted at the first input terminal of the decoding basic unit is provided to the first input terminal of the decoding adder, and the signal inputted at the second input terminal of the decoding basic unit is combined with the rotation factor The multiplication is then provided to the second input end of the decoding adder, and the decoding adder is used to perform an addition operation on the signals input from the first input end and the second input end and provide the input signal or the received mapping symbol to the decoding basic unit of the next level decoding calculation submodule through its output end .

当M=3,{Y(p)}={Y1(0), Y1(1) , Y1(2), Y1(3), Y1(4), Y1(5), Y1(6), Y1(7)}时;When M=3,{Y(p)}={Y 1 (0), Y 1 (1), Y 1 (2), Y 1 (3), Y 1 (4), Y 1 (5), Y 1 (6), Y 1 (7)};

解码计算模块包括3级解码计算子模块,第m级解码计算子模块包括2M-m个解码基本单元,m=1,2,3;q=0,1,2,…,7;The decoding calculation module includes 3-level decoding calculation submodules, the m-th level decoding calculation submodule includes 2 Mm basic decoding units, m = 1, 2, 3; q = 0, 1, 2, ..., 7;

第1级解码计算子模块包括第一解码基本单元C41、第二解码基本单元C42、第三解 码基本单元C43和第四解码基本单元C44,第一解码基本单元C41的第一输入端输入Y1(0),Y1 (0)输入到第一解码加法器P41的第一输入端;第一解码基本单元C41的第二输入端输入 Y1 (4), Y1(4)与旋转因子在第一解码乘法器M41中相乘而后输入到第一解码加法器P41的 第二输入端,第一解码加法器P41用于对其第一输入端和第二输入端输入的信号进行相加运 算; The first level decoding calculation submodule includes a first decoding basic unit C 41 , a second decoding basic unit C 42 , a third decoding basic unit C 43 and a fourth decoding basic unit C 44. The first input terminal of the first decoding basic unit C 41 inputs Y 1 (0), and Y 1 (0) is input to the first input terminal of the first decoding adder P 41 ; the second input terminal of the first decoding basic unit C 41 inputs Y 1 (4), and Y 1 (4) is combined with the rotation factor The signals are multiplied in the first decoding multiplier M41 and then input to the second input terminal of the first decoding adder P41 . The first decoding adder P41 is used to perform addition operation on the signals inputted from the first input terminal and the second input terminal thereof;

第二解码基本单元C42的第一输入端输入Y1(2),Y1(2)输入到第二解码加法器P42的 第一输入端;第二解码基本单元C42的第二输入端输入 X1(6), X1(6)与旋转因子在第二 解码乘法器M42中相乘而后输入到第二解码加法器P42的第二输入端,第二解码加法器P42用 于对其第一输入端和第二输入端输入的信号进行相加运算; The first input terminal of the second decoding basic unit C 42 inputs Y 1 (2), and Y 1 (2) is input to the first input terminal of the second decoding adder P 42 ; the second input terminal of the second decoding basic unit C 42 inputs X 1 (6), and X 1 (6) and the rotation factor In the second decoding multiplier M 42 is multiplied and then input to the second input terminal of the second decoding adder P 42 , the second decoding adder P 42 is used to add the signal input from the first input terminal and the second input terminal thereof;

第三解码基本单元C43的第一输入端输入X1(1),X1(1)输入到第三解码加法器P43的 第一输入端;第三解码基本单元C43的第二输入端输入的X1(5),X1(5)与旋转因子在第三 解码乘法器M43中相乘而后输入到第三解码加法器P43的第二输入端,第三解码加法器P43用 于对其第一输入端和第二输入端输入的信号进行相加运算; The first input terminal of the third decoding basic unit C 43 inputs X 1 (1), and X 1 (1) is input to the first input terminal of the third decoding adder P 43 ; the second input terminal of the third decoding basic unit C 43 inputs X 1 (5), and X 1 (5) is combined with the rotation factor In the third decoding multiplier M43, the multiplied signal is input to the second input terminal of the third decoding adder P 43 , and the third decoding adder P 43 is used to add the signal input from the first input terminal and the second input terminal thereof;

第四解码基本单元C44的第一输入端输入X1(3),X1(3)输入到第四解码加法器P44的 第一输入端;第四解码基本单元C44的第二输入端输入X1(7),X1(7)与旋转因子在第四解 码乘法器M44中相乘而后输入到第四解码加法器P44的第二输入端,第四解码加法器P44用于 对其第一输入端和第二输入端输入的信号进行相加运算; The first input terminal of the fourth decoding basic unit C 44 inputs X 1 (3), and X 1 (3) is input to the first input terminal of the fourth decoding adder P 44 ; the second input terminal of the fourth decoding basic unit C 44 inputs X 1 (7), and X 1 (7) and the rotation factor In the fourth decoding multiplier M 44 is multiplied and then input to the second input terminal of the fourth decoding adder P 44 , the fourth decoding adder P 44 is used to add the signal input from the first input terminal and the second input terminal thereof;

第2级计算子模块包括第五解码基本单元C51和第六解码基本单元C52,第五解码基 本单元C51的第一输入端输入第一解码加法器P41的输出信号, 第一解码加法器P41的输出信 号输入到第五解码加法器P51的第一输入端;第五解码基本单元C51的第二输入端输入第二 解码加法器P42的输出信号,第二解码加法器P42的输出信号与旋转因子在第五解码乘法 器M51中相乘而后输入到第五解码加法器P51的第二输入端,第五解码加法器P51用于对其第 一输入端和第二输入端输入的信号进行相加运算; The second-level calculation submodule includes a fifth decoding basic unit C 51 and a sixth decoding basic unit C 52. The first input end of the fifth decoding basic unit C 51 inputs the output signal of the first decoding adder P 41 , and the output signal of the first decoding adder P 41 is input to the first input end of the fifth decoding adder P 51 ; the second input end of the fifth decoding basic unit C 51 inputs the output signal of the second decoding adder P 42 , and the output signal of the second decoding adder P 42 is combined with the rotation factor The signals are multiplied in the fifth decoding multiplier M51 and then input to the second input terminal of the fifth decoding adder P51 . The fifth decoding adder P51 is used to perform addition operation on the signals input from the first input terminal and the second input terminal thereof;

第六解码基本单元C52的第一输入端输入第三解码加法器P43的输出信号, 第三解 码加法器P43的输出信号输入到第六解码加法器P52的第一输入端;第六解码基本单元C52的 第二输入端输入第四解码加法器P44的输出信号,第四解码加法器P44的输出信号与旋转因 子在第六解码乘法器M52中相乘而后输入到第六解码加法器P52的第二输入端,第六解码 加法器P52用于对其第一输入端和第二输入端输入的信号进行相加运算; The output signal of the third decoding adder P 43 is input to the first input terminal of the sixth decoding basic unit C 52 , and the output signal of the third decoding adder P 43 is input to the first input terminal of the sixth decoding adder P 52 ; the output signal of the fourth decoding adder P 44 is input to the second input terminal of the sixth decoding basic unit C 52 , and the output signal of the fourth decoding adder P 44 is combined with the rotation factor The signals are multiplied in the sixth decoding multiplier M52 and then input to the second input terminal of the sixth decoding adder P52 . The sixth decoding adder P52 is used to perform an addition operation on the signals input from the first input terminal and the second input terminal.

第3级计算子模块包括第七解码基本单元C61,第七解码基本单元C61的第一输入端 输入第五解码加法器P51的输出信号, 第五解码加法器P51的输出信号输入到第七解码加法 器P61的第一输入端;第七解码基本单元C61的第二输入端输入第六解码加法器P52的输出信 号,第六解码加法器P52的输出信号与旋转因子在第七解码乘法器M61中相乘而后输入到 第七解码加法器P61的第二输入端,第七解码加法器P61用于对其第一输入端和第二输入端 输入的信号进行相加运算并通过其输出端输入发送装置发送的映射符号。符号解映 射模块将映射符号解映射为比特组。 The third-level calculation submodule includes a seventh decoding basic unit C 61 , a first input terminal of the seventh decoding basic unit C 61 inputs an output signal of a fifth decoding adder P 51 , and an output signal of the fifth decoding adder P 51 is input to a first input terminal of the seventh decoding adder P 61 ; a second input terminal of the seventh decoding basic unit C 61 inputs an output signal of a sixth decoding adder P 52 , and the output signal of the sixth decoding adder P 52 is combined with the rotation factor The signals are multiplied in the seventh decoding multiplier M61 and then input to the second input terminal of the seventh decoding adder P61 . The seventh decoding adder P61 is used to add the signals input from the first input terminal and the second input terminal and input the mapping symbol sent by the sending device through its output terminal. The symbol demapping module maps the symbol Demap into bit groups.

本发明还提供一种基于强化学习的OFDM数字通信方法,其通过上述调制模块将比 特信息序列转换为OFDM符号序列,通过上述解码模块将OFDM符号序列转换为发送端 发送的映射符号序列{X(q)}。 The present invention also provides an OFDM digital communication method based on reinforcement learning, which converts the bit information sequence into an OFDM symbol sequence through the above modulation module, and converts the OFDM symbol sequence into an OFDM symbol sequence through the above decoding module. Converted into the mapping symbol sequence {X(q)} sent by the transmitter.

本发明还提供一种计算机程序产品,其将调制模块和解码模块利用计算机程序语言编码成可由处理器调用并存储于计算机存储介质的程序代码。The present invention also provides a computer program product, which encodes the modulation module and the decoding module into program codes that can be called by a processor and stored in a computer storage medium using a computer program language.

本发明还提供一种计算机存储介质,其用于存储上述程序代码,所述程序代码可被处理器调用并执行以实施调制模块和解码模块的功能。The present invention also provides a computer storage medium for storing the above program code, wherein the program code can be called and executed by a processor to implement the functions of a modulation module and a decoding module.

以上显示和描述了本发明的基本原理和主要特征和本发明的优点。本行业的技术人员应该了解,本发明不受上述实施例的限制,上述实施例和说明书中描述的只是说明本发明的原理,在不脱离本发明精神和范围的前提下,本发明还会有各种变化和改进,这些变化和改进都落入要求保护的本发明范围内。本发明要求保护范围由所附的权利要求书及其等效物界定。The above shows and describes the basic principles and main features of the present invention and the advantages of the present invention. It should be understood by those skilled in the art that the present invention is not limited to the above embodiments, and the above embodiments and descriptions are only for explaining the principles of the present invention. Without departing from the spirit and scope of the present invention, the present invention may have various changes and improvements, and these changes and improvements fall within the scope of the present invention to be protected. The scope of protection of the present invention is defined by the attached claims and their equivalents.

Claims (10)

1.一种基于强化学习的OFDM数字通信系统,其包括发送装置,其特征在于,发送装置包括语音识别模块、编码模块、第一存储模块和调制模块,语音识别模块将语音信息识别为文本串,其包括自注意力机制模型;编码模块对文本串编码生成比特信息序列;调制模块包括调制分割模块、调制符号映射模块和OFDM符号生成模块,所述调制分割模块将比特信息序列以K比特为一组B={b0… bk… bK-1}进行划分得到多组比特组并提供给调制符号映射模块;调制符号映射模块以比特组为单位将比特信息序列映射为映射符号序列{X(n)},n=0,1,…,; OFDM符号生成模块包括调制码位倒读模块、调制控制计数模块、调制旋转因子生成模块和调制计算模块,所述码位倒读模块从映射符号序列{X(n)}中以二进制码位倒读2M个映射符号X(q)并存储到第一存储模块中,所述第一存储模块并行输出码位倒读模块输入的2M个映射符号X(q);调制旋转因子生成模块包括M级调制旋转因子生成子模块,第m级调制旋转因子生成子模块在调制控制计数模块的控制下生成旋转因子/>,m=1,2,…,M,M为大于或者等于2的正整数; p=0,1,2,…,2M -1; q=0,1,2,…,2M -1;1. An OFDM digital communication system based on reinforcement learning, comprising a sending device, characterized in that the sending device comprises a speech recognition module, an encoding module, a first storage module and a modulation module, the speech recognition module recognizes speech information as a text string, which comprises a self-attention mechanism model; the encoding module encodes the text string to generate a bit information sequence; the modulation module comprises a modulation segmentation module, a modulation symbol mapping module and an OFDM symbol generation module, the modulation segmentation module divides the bit information sequence into a group of K bits B={b 0 … b k … b K-1 } to obtain a plurality of bit groups and provides them to the modulation symbol mapping module; the modulation symbol mapping module maps the bit information sequence into a mapping symbol sequence {X(n)}, n=0,1,…, The OFDM symbol generation module includes a modulation code bit reverse reading module, a modulation control counting module, a modulation rotation factor generation module and a modulation calculation module. The code bit reverse reading module reversely reads 2 M mapping symbols X(q) from the mapping symbol sequence {X(n)} in binary code bits and stores them in the first storage module. The first storage module outputs the 2 M mapping symbols X(q) input by the code bit reverse reading module in parallel. The modulation rotation factor generation module includes an M-level modulation rotation factor generation submodule. The m-th level modulation rotation factor generation submodule generates a rotation factor under the control of the modulation control counting module. , m=1,2,…,M, M is a positive integer greater than or equal to 2; p=0,1,2,…,2 M -1; q=0,1,2,…,2 M -1; 调制计算模块包括M级调制计算子模块,第m级调制计算子模块包括2M-m个调制基本单元,每个调制基本单元包括两个输入端和一个输出端;第1级调制计算子模块的2M-m个调制基本单元并行输入2M个映射符号X(q),第m-1级的调制计算子模块的调制基本单元的输出作为第m级调制计算子模块的调制基本单元的输入,依次利用旋转因子进行运算,直到第M级调制计算子模块依次串行输出待传送的OFDM符号/>The modulation calculation module includes M-level modulation calculation submodules, and the m-th level modulation calculation submodule includes 2 Mm modulation basic units, each of which includes two input terminals and one output terminal; the 2 Mm modulation basic units of the first-level modulation calculation submodule input 2 M mapping symbols X(q) in parallel, and the output of the modulation basic unit of the m-1-th level modulation calculation submodule is used as the input of the modulation basic unit of the m-th level modulation calculation submodule, and the rotation factors are used in turn. Perform calculations until the M-th level modulation calculation submodule sequentially outputs the OFDM symbols to be transmitted in series. . 2.根据权利要求1所述的基于强化学习的OFDM数字通信系统,其特征在于,每个调制基本单元由一个调制乘法器和一个调制加法器组成,其中,调制基本单元第一输入端输入的信号提供给调制加法器的第一输入端,调制基本单元第二输入端输入的信号与旋转因子相乘而后提供给调制加法器的第二输入端,调制加法器用于对其第一输入端和第二输入端输入的信号进行相加运算通过其输出端向下一级调制计算子模块的调制基本单元提供输入信号或作为待传送的OFDM符号2. According to the OFDM digital communication system based on reinforcement learning in claim 1, it is characterized in that each modulation basic unit is composed of a modulation multiplier and a modulation adder, wherein the signal inputted by the first input terminal of the modulation basic unit is provided to the first input terminal of the modulation adder, the signal inputted by the second input terminal of the modulation basic unit is multiplied by the rotation factor and then provided to the second input terminal of the modulation adder, and the modulation adder is used to perform addition operation on the signals inputted by the first input terminal and the second input terminal thereof, and provide the input signal or the OFDM symbol to be transmitted to the modulation basic unit of the modulation calculation submodule of the next level through its output terminal. . 3.根据权利要求2所述的基于强化学习的OFDM数字通信系统,其特征在于,3. The OFDM digital communication system based on reinforcement learning according to claim 2, characterized in that: M=3,{X(q)}={X1(0), X1(4) , X1(2), X1(6), X1(1), X1(5), X1(3), X1(7)}M=3,{X(q)}={ X1 (0), X1 (4), X1 (2), X1 (6), X1 (1), X1 (5), X1 (3), X1 (7)} 调制计算模块包括3级调制计算子模块,第m级调制计算子模块包括2M-m个调制基本单元,m=1,2,3;q=1,2,…,7;The modulation calculation module includes 3-level modulation calculation submodules, and the m-th level modulation calculation submodule includes 2 Mm modulation basic units, m = 1, 2, 3; q = 1, 2, ..., 7; 第1级调制计算子模块包括第一调制基本单元、第二调制基本单元、第三调制基本单元和第四调制基本单元,第一调制基本单元的第一输入端输入X1(0),X1(0)输入到第一调制加法器的第一输入端;第一调制基本单元的第二输入端输入 X1(4), X1(4)与旋转因子在第一调制乘法器中相乘而后输入到第一调制加法器的第二输入端,第一调制加法器用于对其第一输入端和第二输入端输入的信号进行相加运算;The first-level modulation calculation submodule includes a first modulation basic unit, a second modulation basic unit, a third modulation basic unit and a fourth modulation basic unit. The first input end of the first modulation basic unit inputs X 1 (0), and X 1 (0) is input to the first input end of the first modulation adder; the second input end of the first modulation basic unit inputs X 1 (4), and X 1 (4) is combined with the rotation factor The signals are multiplied in the first modulation multiplier and then input to the second input terminal of the first modulation adder, and the first modulation adder is used to perform addition operation on the signals input from the first input terminal and the second input terminal; 第二调制基本单元的第一输入端输入X1(2),X1(2)输入到第二调制加法器的第一输入端;第二调制基本单元的第二输入端输入 X1(6), X1(6)与旋转因子在第二调制乘法器中相乘而后输入到第二调制加法器的第二输入端,第二调制加法器用于对其第一输入端和第二输入端输入的信号进行相加运算;The first input terminal of the second modulation basic unit inputs X 1 (2), and X 1 (2) is input to the first input terminal of the second modulation adder; the second input terminal of the second modulation basic unit inputs X 1 (6), and X 1 (6) and the rotation factor Multiplied in the second modulation multiplier and then input to the second input terminal of the second modulation adder, the second modulation adder is used to add the signals input at its first input terminal and the second input terminal; 第三调制基本单元的第一输入端输入X1(1),X1(1)输入到第三调制加法器的第一输入端;第三调制基本单元的第二输入端输入X1(5),X1(5)与旋转因子在第三调制乘法器中相乘而后输入到第三调制加法器的第二输入端,第三调制加法器用于对其第一输入端和第二输入端输入的信号进行相加运算;The first input terminal of the third modulation basic unit inputs X 1 (1), and X 1 (1) is input to the first input terminal of the third modulation adder; the second input terminal of the third modulation basic unit inputs X 1 (5), and X 1 (5) and the rotation factor Multiplied in the third modulation multiplier and then input to the second input terminal of the third modulation adder, the third modulation adder for adding the signal input from the first input terminal and the second input terminal; 第四调制基本单元的第一输入端输入X1(3),X1(3)输入到第四调制加法器的第一输入端;第四调制基本单元的第二输入端输入X1(7),X1(7)与旋转因子在第四调制乘法器中相乘而后输入到第四调制加法器 的第二输入端,第四调制加法器用于对其第一输入端和第二输入端输入的信号进行相加运算;The first input terminal of the fourth modulation basic unit inputs X 1 (3), and X 1 (3) is input to the first input terminal of the fourth modulation adder; the second input terminal of the fourth modulation basic unit inputs X 1 (7), and X 1 (7) and the rotation factor Multiplied in the fourth modulation multiplier and then input to the second input terminal of the fourth modulation adder, the fourth modulation adder for adding the signal input from the first input terminal and the second input terminal; 第2级调制计算子模块包括第五调制基本单元和第六调制基本单元,第五调制基本单元的第一输入端输入第一调制加法器的输出信号, 第一调制加法器的输出信号输入到第五调制加法器的第一输入端;第五调制基本单元的第二输入端输入第二调制加法器的输出信号,第二调制加法器的输出信号与旋转因子在第五调制乘法器中相乘而后输入到第五调制加法器的第二输入端,第五调制加法器用于对其第一输入端和第二输入端输入的信号进行相加运算;The second-level modulation calculation submodule includes a fifth modulation basic unit and a sixth modulation basic unit. The first input end of the fifth modulation basic unit inputs the output signal of the first modulation adder, and the output signal of the first modulation adder is input to the first input end of the fifth modulation adder; the second input end of the fifth modulation basic unit inputs the output signal of the second modulation adder, and the output signal of the second modulation adder is input to the first input end of the fifth modulation adder. The signals are multiplied in the fifth modulation multiplier and then input to the second input terminal of the fifth modulation adder, and the fifth modulation adder is used to perform addition operation on the signals input from the first input terminal and the second input terminal; 第六调制基本单元的第一输入端输入第三调制加法器的输出信号, 第三调制加法器的输出信号输入到第六调制加法器的第一输入端;第六调制基本单元的第二输入端输入第四调制加法器的输出信号,第四调制加法器的输出信号与旋转因子在第六调制乘法器中相乘而后输入到第六调制加法器的第二输入端,第六调制加法器用于对其第一输入端和第二输入端输入的信号进行相加运算;The output signal of the third modulation adder is input to the first input end of the sixth modulation adder; the output signal of the third modulation adder is input to the first input end of the sixth modulation adder; the output signal of the fourth modulation adder is input to the second input end of the sixth modulation adder, and the output signal of the fourth modulation adder is added to the rotation factor The signals are multiplied in the sixth modulation multiplier and then input to the second input terminal of the sixth modulation adder, and the sixth modulation adder is used to perform an addition operation on the signals input from the first input terminal and the second input terminal; 第3级调制计算子模块包括第七调制基本单元,第七调制基本单元的第一输入端输入第五调制加法器的输出信号, 第五调制加法器的输出信号输入到第七调制加法器的第一输入端;第七调制基本单元的第二输入端输入第六调制加法器的输出信号,第六调制加法器的输出信号与旋转因子在第七调制乘法器中相乘而后输入到第七调制加法器的第二输入端,第七调制加法器用于对其第一输入端和第二输入端输入的信号进行相加运算输出待传送的OFDM符号/>, p=1,2,…,7。The third-level modulation calculation submodule includes a seventh modulation basic unit, a first input end of the seventh modulation basic unit inputs the output signal of the fifth modulation adder, the output signal of the fifth modulation adder is input to the first input end of the seventh modulation adder; a second input end of the seventh modulation basic unit inputs the output signal of the sixth modulation adder, the output signal of the sixth modulation adder and the rotation factor The signals are multiplied in the seventh modulation multiplier and then input to the second input terminal of the seventh modulation adder. The seventh modulation adder is used to add the signals input from the first input terminal and the second input terminal to output the OFDM symbol to be transmitted. , p=1,2,…,7. 4.根据权利要求1所述的基于强化学习的OFDM数字通信系统,其特征在于,调制符号映射模块包括2M个映射符号X(q)},每个映射符号对应该K个比特信息的不同组合,第q个映射符号的表达式为:4. The OFDM digital communication system based on reinforcement learning according to claim 1 is characterized in that the modulation symbol mapping module includes 2 M mapping symbols X(q)}, each mapping symbol corresponds to a different combination of K bits of information, and the expression of the qth mapping symbol is: . 5.根据权利要求1所述的基于强化学习的OFDM数字通信系统,其特征在于,还包括接收装置,所述接收装置包括解码模块和第二存储模块,解码模块包括解码分割模块、解码码位倒读模块、解码控制计数模块、解码旋转因子生成模块、解码计算模块和符号解映射模块,解码分割模块对接收的OFDM符号序列进行分割获取OFDM符号组,每个组包括2M个OFDM符号Y(p);所述解码码位倒读模块从OFDM符号组中以二进制码位倒读2M个OFDM符号Y(p)并存储到第二存储模块中,所述第二存储模块并行输出解码码位倒读模块输入的2M个OFDM符号Y(p);解码旋转因子生成模块包括M个解码旋转因子生成子模块,第m级解码旋转因子生成子模块在解码控制计数模块的控制下生成旋转因子;5. The OFDM digital communication system based on reinforcement learning according to claim 1, characterized in that it also includes a receiving device, the receiving device includes a decoding module and a second storage module, the decoding module includes a decoding segmentation module, a decoding code bit reverse reading module, a decoding control counting module, a decoding rotation factor generation module, a decoding calculation module and a symbol demapping module, the decoding segmentation module segments the received OFDM symbol sequence to obtain OFDM symbol groups, each group includes 2M OFDM symbols Y(p); the decoding code bit reverse reading module reads 2M OFDM symbols Y(p) from the OFDM symbol group in binary code bits and stores them in the second storage module, and the second storage module outputs the 2M OFDM symbols Y(p) input by the decoding code bit reverse reading module in parallel; the decoding rotation factor generation module includes M decoding rotation factor generation submodules, and the m-th level decoding rotation factor generation submodule generates the rotation factor under the control of the decoding control counting module. ; 解码计算模块包括M级解码计算子模块,第m级解码计算子模块包括2M-m个解码基本单元,每个解码基本单元包括两个输入端和一个输出端;第1级解码计算子模块的2M-m个解码基本单元并行输入2M个OFDM符号,第m-1级的解码计算子模块的解码基本单元的输出作为第m级解码计算子模块的解码基本单元的输入,依次利用旋转因子进行运算,直到第M级解码计算子模块依次串行输出发送装置发送的映射符号/>;符号解映射模块将映射符号/>解映射为比特组。The decoding calculation module includes M-level decoding calculation submodules, and the m-th level decoding calculation submodule includes 2 Mm decoding basic units, each decoding basic unit includes two input terminals and one output terminal; the 2 Mm decoding basic units of the first-level decoding calculation submodule input 2 M OFDM symbols in parallel, and the output of the decoding basic unit of the m-1-th level decoding calculation submodule is used as the input of the decoding basic unit of the m-th level decoding calculation submodule, and the rotation factors are used in turn. The operation is performed until the M-th level decoding calculation submodule sequentially outputs the mapping symbols sent by the sending device in series. ; The symbol demapping module will map the symbol /> Demap into bit groups. 6.根据权利要求5所述的基于强化学习的OFDM数字通信系统,其特征在于,每个解码基本单元由一个解码乘法器和一个解码加法器组成,其中,解码基本单元第一输入端输入的信号提供给解码加法器的第一输入端,解码基本单元第二输入端输入的信号与旋转因子相乘而后提供给解码加法器的第二输入端,解码加法器用于对其第一输入端和第二输入端输入的信号进行相加运算并通过其输出端向下一级解码计算子模块的解码基本单元提供输入信号或提供接收的映射符号/>6. The OFDM digital communication system based on reinforcement learning according to claim 5 is characterized in that each decoding basic unit is composed of a decoding multiplier and a decoding adder, wherein the signal input at the first input end of the decoding basic unit is provided to the first input end of the decoding adder, and the signal input at the second input end of the decoding basic unit is combined with the rotation factor The multiplication is then provided to the second input terminal of the decoding adder, and the decoding adder is used to perform an addition operation on the signals inputted from the first input terminal and the second input terminal and provide the input signal or the received mapping symbol to the decoding basic unit of the next level decoding calculation submodule through its output terminal. . 7.根据权利要求6所述的基于强化学习的OFDM数字通信系统,其特征在于,7. The OFDM digital communication system based on reinforcement learning according to claim 6, characterized in that: M=3,{Y(p)}={Y1(0), Y1(4) , Y1(2), Y1(6), Y1(1), Y1(5), Y1(3), Y1(7)}M=3,{Y(p)}={Y 1 (0), Y 1 (4), Y 1 (2), Y 1 (6), Y 1 (1), Y 1 (5), Y 1 (3), Y 1 (7)} 解码计算模块包括3级解码计算子模块,第m级解码计算子模块包括2M-m个解码基本单元,m=1,2,3;p=1,2,…,7;The decoding calculation module includes 3 levels of decoding calculation submodules, and the m-th level decoding calculation submodule includes 2 Mm decoding basic units, m = 1, 2, 3; p = 1, 2, ..., 7; 第1级解码计算子模块包括第一解码基本单元、第二解码基本单元、第三解码基本单元和第四解码基本单元,第一解码基本单元的第一输入端输入Y1(0),Y1(0)输入到第一解码加法器的第一输入端;第一解码基本单元的第二输入端输入 Y1(4), Y1(4)与旋转因子在第一解码乘法器中相乘而后输入到第一解码加法器的第二输入端,第一解码加法器用于对其第一输入端和第二输入端输入的信号进行相加运算;The first level decoding calculation submodule includes a first decoding basic unit, a second decoding basic unit, a third decoding basic unit and a fourth decoding basic unit. The first input end of the first decoding basic unit inputs Y 1 (0), and Y 1 (0) is input to the first input end of the first decoding adder; the second input end of the first decoding basic unit inputs Y 1 (4), and Y 1 (4) is combined with the rotation factor The signals are multiplied in the first decoding multiplier and then input to the second input terminal of the first decoding adder, and the first decoding adder is used to perform addition operation on the signals input from the first input terminal and the second input terminal; 第二解码基本单元的第一输入端输入Y1(2),Y1(2)输入到第二解码加法器的第一输入端;第二解码基本单元的第二输入端输入 X1(6), X1(6)与旋转因子在第二解码乘法器中相乘而后输入到第二解码加法器的第二输入端,第二解码加法器用于对其第一输入端和第二输入端输入的信号进行相加运算;The first input terminal of the second decoding basic unit inputs Y 1 (2), and Y 1 (2) is input to the first input terminal of the second decoding adder; the second input terminal of the second decoding basic unit inputs X 1 (6), and X 1 (6) and the rotation factor Multiplied in the second decoding multiplier and then input to the second input terminal of the second decoding adder, the second decoding adder is used to add the signal input to its first input terminal and the second input terminal; 第三解码基本单元的第一输入端输入X1(1),X1(1)输入到第三解码加法器的第一输入端;第三解码基本单元的第二输入端输入X1(5),X1(5)与旋转因子在第三解码乘法器中相乘而后输入到第三解码加法器的第二输入端,第三解码加法器用于对其第一输入端和第二输入端输入的信号进行相加运算;The first input terminal of the third decoding basic unit inputs X 1 (1), and X 1 (1) is input to the first input terminal of the third decoding adder; the second input terminal of the third decoding basic unit inputs X 1 (5), and X 1 (5) and the rotation factor Multiplied in the third decoding multiplier and then input to the second input terminal of the third decoding adder, the third decoding adder is used to add the signal input from the first input terminal and the second input terminal; 第四解码基本单元的第一输入端输入X1(3),X1(3)输入到第四解码加法器的第一输入端;第四解码基本单元的第二输入端输入X1(7),X1(7)与旋转因子在第四解码乘法器中相乘而后输入到第四解码加法器的第二输入端,第四解码加法器用于对其第一输入端和第二输入端输入的信号进行相加运算;The first input terminal of the fourth decoding basic unit inputs X 1 (3), and X 1 (3) is input to the first input terminal of the fourth decoding adder; the second input terminal of the fourth decoding basic unit inputs X 1 (7), and X 1 (7) and the rotation factor Multiplied in the fourth decoding multiplier and then input to the second input terminal of the fourth decoding adder, the fourth decoding adder for adding the signal input from the first input terminal and the second input terminal thereof; 第2级计算子模块包括第五解码基本单元和第六解码基本单元,第五解码基本单元的第一输入端输入第一解码加法器的输出信号, 第一解码加法器的输出信号输入到第五解码加法器的第一输入端;第五解码基本单元的第二输入端输入第二解码加法器的输出信号,第二解码加法器的输出信号与旋转因子在第五解码乘法器中相乘而后输入到第五解码加法器的第二输入端,第五解码加法器用于对其第一输入端和第二输入端输入的信号进行相加运算;The second-level calculation submodule includes a fifth decoding basic unit and a sixth decoding basic unit, wherein the first input end of the fifth decoding basic unit inputs the output signal of the first decoding adder, and the output signal of the first decoding adder is input to the first input end of the fifth decoding adder; the second input end of the fifth decoding basic unit inputs the output signal of the second decoding adder, and the output signal of the second decoding adder is added to the rotation factor The signals are multiplied in the fifth decoding multiplier and then input to the second input terminal of the fifth decoding adder, and the fifth decoding adder is used to perform addition operation on the signals input from the first input terminal and the second input terminal; 第六解码基本单元的第一输入端输入第三解码加法器的输出信号, 第三解码加法器的输出信号输入到第六解码加法器的第一输入端;第六解码基本单元的第二输入端输入第四解码加法器的输出信号,第四解码加法器的输出信号与旋转因子在第六解码乘法器中相乘而后输入到第六解码加法器的第二输入端,第六解码加法器用于对其第一输入端和第二输入端输入的信号进行相加运算;The output signal of the third decoding adder is input to the first input end of the sixth decoding basic unit, and the output signal of the third decoding adder is input to the first input end of the sixth decoding adder; the output signal of the fourth decoding adder is input to the second input end of the sixth decoding basic unit, and the output signal of the fourth decoding adder is input to the rotation factor The signals are multiplied in the sixth decoding multiplier and then input to the second input terminal of the sixth decoding adder, and the sixth decoding adder is used to perform addition operation on the signals input from the first input terminal and the second input terminal; 第3级计算子模块包括1个解码基本单元,第七解码基本单元的第一输入端输入第五解码加法器的输出信号, 第五解码加法器的输出信号输入到第七解码加法器的第一输入端;第七解码基本单元的第二输入端输入第六解码加法器的输出信号,第六解码加法器的输出信号与旋转因子在第七解码乘法器中相乘而后输入到第七解码加法器的第二输入端,第七解码加法器用于对其第一输入端和第二输入端输入的信号进行相加运算并通过其输出端输入发送装置发送的映射符号/>, q=1,2,…,7。The third-level calculation submodule includes a decoding basic unit, the first input end of the seventh decoding basic unit inputs the output signal of the fifth decoding adder, the output signal of the fifth decoding adder is input to the first input end of the seventh decoding adder; the second input end of the seventh decoding basic unit inputs the output signal of the sixth decoding adder, the output signal of the sixth decoding adder and the rotation factor The signals are multiplied in the seventh decoding multiplier and then input to the second input terminal of the seventh decoding adder. The seventh decoding adder is used to add the signals input from the first input terminal and the second input terminal and input the mapping symbol sent by the sending device through its output terminal. , q=1,2,…,7. 8.根据权利要求1-7任一所述的基于强化学习的OFDM数字通信系统,其特征在于,所述语音识别模块包括控制组件、控制模块、显示模块、语音获取模块和语言模型,其中,所述控制组件被配置为用户进行操作从而将用户的意图输入到控制模块中,控制模块根据控制组件形成的指令从第一存储模块中选择一段文本并输出到显示模块进行显示;用户根据显示模块的显示朗读显示的文本,以使语音获取模块获取用户的语音,并将获取的语音输入到语言模型;语言模型利用语音获取模块获取的用户的语音进行训练并将所识别的文本在显示模块进行显示,比较朗读的文本和语言模型识别的文本,若自相似度大或者等于设定的阈值,则停止对语言模型训练,将训练好的语言模型应用于OFDM数字通信系统,若自相似度小于设定的阈值,则对语言模型继续利用朗读显示的文本的语音进行训练。8. According to any one of claims 1-7, the OFDM digital communication system based on reinforcement learning is characterized in that the speech recognition module includes a control component, a control module, a display module, a speech acquisition module and a language model, wherein the control component is configured to be operated by a user so as to input the user's intention into the control module, and the control module selects a text from the first storage module according to the instruction formed by the control component and outputs it to the display module for display; the user reads the displayed text according to the display of the display module, so that the speech acquisition module acquires the user's voice and inputs the acquired voice into the language model; the language model is trained using the user's voice acquired by the speech acquisition module and the recognized text is displayed on the display module, and the read text is compared with the text recognized by the language model. If the self-similarity is greater than or equal to the set threshold, the language model training is stopped and the trained language model is applied to the OFDM digital communication system. If the self-similarity is less than the set threshold, the language model continues to be trained using the voice of the read displayed text. 9.一种基于强化学习的OFDM数字通信方法,其特征在于,通过调制模块将比特信息序列转换为OFDM符号序列,所述调制模块包括调制分割模块、调制符号映射模块和OFDM符号生成模块,所述调制分割模块将比特信息序列以K比特为一组B={b0…bk… bK-1}进行划分得到多组比特组并提供给调制符号映射模块;调制符号映射模块比特组为单位将比特信息序列映射为映射符号序列{X(n)},n=0,1,…,; OFDM符号生成模块包括调制码位倒读模块、调制控制计数模块、调制旋转因子生成模块和调制计算模块,所述码位倒读模块从映射符号序列{X(n)}中以二进制码位倒读2M个映射符号X(q)并存储到第一存储模块中,所述第一存储模块并行输出码位倒读模块输入的2M个映射符号X(q);调制旋转因子生成模块包括M个调制旋转因子生成子模块,第m个调制旋转因子生成子模块在控制计数模块的控制下分别生成旋转因子/>,m=1,2,…,M,M为大于或者等于2的正整数; p=0,1,2,…,2M -1; q=0,1,2,…,2M -1;9. An OFDM digital communication method based on reinforcement learning, characterized in that a bit information sequence is converted into an OFDM symbol sequence by a modulation module, the modulation module includes a modulation segmentation module, a modulation symbol mapping module and an OFDM symbol generation module, the modulation segmentation module divides the bit information sequence into a group of K bits B = {b 0 ...b k ...b K-1 } to obtain multiple groups of bit groups and provides them to the modulation symbol mapping module; the modulation symbol mapping module maps the bit information sequence into a mapping symbol sequence {X(n)}, n = 0, 1, ..., The OFDM symbol generation module includes a modulation code bit reverse reading module, a modulation control counting module, a modulation rotation factor generation module and a modulation calculation module. The code bit reverse reading module reversely reads 2 M mapping symbols X(q) from the mapping symbol sequence {X(n)} in binary code and stores them in the first storage module. The first storage module outputs the 2 M mapping symbols X(q) input by the code bit reverse reading module in parallel. The modulation rotation factor generation module includes M modulation rotation factor generation submodules. The m-th modulation rotation factor generation submodule generates rotation factors respectively under the control of the control counting module/> , m=1,2,…,M, M is a positive integer greater than or equal to 2; p=0,1,2,…,2 M -1; q=0,1,2,…,2 M -1; 调制计算模块包括M级调制计算子模块,第m级调制计算子模块包括2M-m个调制基本单元,每个调制基本单元包括两个输入端和一个输出端;第1级调制计算子模块的2M-m个调制基本单元并行输入2M个映射符号,第m-1级的调制计算子模块的调制基本单元的输出作为第m级调制计算子模块的调制基本单元的输入,依次利用旋转因子进行运算,直到第M级调制计算子模块依次串行输出待传送的OFDM符号/>The modulation calculation module includes M-level modulation calculation submodules, and the m-th level modulation calculation submodule includes 2 Mm modulation basic units, each of which includes two input terminals and one output terminal; the 2 Mm modulation basic units of the first-level modulation calculation submodule input 2 M mapping symbols in parallel, and the output of the modulation basic unit of the m-1-th level modulation calculation submodule is used as the input of the modulation basic unit of the m-th level modulation calculation submodule, and the rotation factors are used in turn. Perform calculations until the M-th level modulation calculation submodule sequentially outputs the OFDM symbols to be transmitted in series. . 10.根据权利要求9所述的基于强化学习的OFDM数字通信方法,其特征在于,通过解码模块将OFDM符号序列转换为发送端发送的映射符号序列, 解码模块包括解码分割模块、解码码位倒读模块、解码控制计数模块、解码旋转因子生成模块、解码计算模块和符号解映射模块,解码分割模块对接收的OFDM符号序列进行分割获取OFDM符号组,每个组包括2M个OFDM符号Y(p);所述解码码位倒读模块从OFDM符号组中以二进制码位倒读2M个OFDM符号Y(p)并存储到第二存储模块中,所述第二存储模块并行输出解码码位倒读模块输入的2M个OFDM符号Y(p);解码旋转因子生成模块包括M个解码旋转因子生成子模块,在解码控制计数模块的控制下分别生成旋转因子;10. The OFDM digital communication method based on reinforcement learning according to claim 9 is characterized in that the OFDM symbol sequence is converted into a mapping symbol sequence sent by the transmitter through a decoding module, the decoding module includes a decoding segmentation module, a decoding code bit reverse reading module, a decoding control counting module, a decoding rotation factor generation module, a decoding calculation module and a symbol demapping module, the decoding segmentation module segments the received OFDM symbol sequence to obtain OFDM symbol groups, each group includes 2M OFDM symbols Y(p); the decoding code bit reverse reading module reads 2M OFDM symbols Y(p) from the OFDM symbol group in binary code bits and stores them in a second storage module, and the second storage module outputs the 2M OFDM symbols Y(p) input by the decoding code bit reverse reading module in parallel; the decoding rotation factor generation module includes M decoding rotation factor generation submodules, which respectively generate rotation factors under the control of the decoding control counting module. ; 解码计算模块包括M级解码计算子模块,第m级解码计算子模块包括2M-m个解码基本单元,每个解码基本单元包括两个输入端和一个输出端;第1级解码计算子模块的2M-m个解码基本单元并行输入2M个OFDM符号,第m-1级的解码计算子模块的解码基本单元的输出作为第m级解码计算子模块的解码基本单元的输入,依次利用旋转因子进行运算,直到第M级解码计算子模块依次串行输出发送装置发送的映射符号/>;符号解映射模块将接收的映射符号/>解映射为比特组。The decoding calculation module includes M-level decoding calculation submodules, and the m-th level decoding calculation submodule includes 2 Mm decoding basic units, each decoding basic unit includes two input terminals and one output terminal; the 2 Mm decoding basic units of the first-level decoding calculation submodule input 2 M OFDM symbols in parallel, and the output of the decoding basic unit of the m-1-th level decoding calculation submodule is used as the input of the decoding basic unit of the m-th level decoding calculation submodule, and the rotation factors are used in turn. The operation is performed until the M-th level decoding calculation submodule sequentially outputs the mapping symbols sent by the sending device in series. ; The symbol demapping module receives the mapping symbol /> Demap into bit groups.
CN202410464693.3A 2024-04-18 2024-04-18 An OFDM digital communication system and method based on reinforcement learning Active CN118075077B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202410464693.3A CN118075077B (en) 2024-04-18 2024-04-18 An OFDM digital communication system and method based on reinforcement learning

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202410464693.3A CN118075077B (en) 2024-04-18 2024-04-18 An OFDM digital communication system and method based on reinforcement learning

Publications (2)

Publication Number Publication Date
CN118075077A true CN118075077A (en) 2024-05-24
CN118075077B CN118075077B (en) 2024-06-21

Family

ID=91097533

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202410464693.3A Active CN118075077B (en) 2024-04-18 2024-04-18 An OFDM digital communication system and method based on reinforcement learning

Country Status (1)

Country Link
CN (1) CN118075077B (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1331780A1 (en) * 2002-01-23 2003-07-30 Samsung Electronics Co., Ltd. Method and apparatus for peak power reduction in OFDM communications
CN1889383A (en) * 2006-07-28 2007-01-03 西安电子科技大学 AR model method and apparatus for lowering OFDM system peak-to-average power ratio
US20080240273A1 (en) * 2007-03-28 2008-10-02 Koji Akita Radio transmitting apparatus and radio receiving apparatus using ofdm
CN111327555A (en) * 2018-12-13 2020-06-23 北京神经元网络技术有限公司 Orthogonal frequency division multiplexing system and signal output method
CN111431832A (en) * 2020-03-20 2020-07-17 厦门大学 Signal modulation method and system based on multi-dimensional OFDM and MIMO communication system
CN114245980A (en) * 2019-08-12 2022-03-25 Lg电子株式会社 Method and apparatus for receiving PPDU over broadband in wireless LAN system
CN116738842A (en) * 2023-06-13 2023-09-12 哈尔滨工程大学 Interference detection shared signal design method based on deep reinforcement learning

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1331780A1 (en) * 2002-01-23 2003-07-30 Samsung Electronics Co., Ltd. Method and apparatus for peak power reduction in OFDM communications
CN1889383A (en) * 2006-07-28 2007-01-03 西安电子科技大学 AR model method and apparatus for lowering OFDM system peak-to-average power ratio
US20080240273A1 (en) * 2007-03-28 2008-10-02 Koji Akita Radio transmitting apparatus and radio receiving apparatus using ofdm
CN111327555A (en) * 2018-12-13 2020-06-23 北京神经元网络技术有限公司 Orthogonal frequency division multiplexing system and signal output method
CN114245980A (en) * 2019-08-12 2022-03-25 Lg电子株式会社 Method and apparatus for receiving PPDU over broadband in wireless LAN system
CN111431832A (en) * 2020-03-20 2020-07-17 厦门大学 Signal modulation method and system based on multi-dimensional OFDM and MIMO communication system
CN116738842A (en) * 2023-06-13 2023-09-12 哈尔滨工程大学 Interference detection shared signal design method based on deep reinforcement learning

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
朱正为: "基于OFDM的数字电视地面广播传输系统", 兵工自动化, no. 04, 15 August 2004 (2004-08-15) *
李振娜;: "基于OFDM系统的调制解调技术", 信息技术, no. 05, 25 May 2007 (2007-05-25) *

Also Published As

Publication number Publication date
CN118075077B (en) 2024-06-21

Similar Documents

Publication Publication Date Title
CN102132494B (en) Method and apparatus of communication
JP5221642B2 (en) Encoding method, decoding method, encoder, and decoder
CN111371531B (en) Time domain energy interleaving transmission method based on extended weighted fractional Fourier transform
CN113676426B (en) Intelligent digital predistortion system and method for dynamic transmission
CN105024751B (en) A kind of ACO ofdm system method for suppressing peak to average ratio based on coding
CN105763203A (en) Multi-element LDPC code decoding method based on hard reliability information
CN118075077B (en) An OFDM digital communication system and method based on reinforcement learning
CN106941394B (en) Joint detection decoding method and device for SCMA (sparse code multiple access) coded by polarization code
CN106936543A (en) The figure of the MIMO of polarization code coding merges detection decoding algorithm and device
CN112202534A (en) A high-speed transmission method based on LDPC and FQPSK joint coding and modulation
CN114595698A (en) Semantic communication method based on CCSK and deep learning
CN102130745B (en) Improved low density parity check code (LDPC) linear programming decoding method
CN118101408B (en) OFDM digital communication system and method based on convolutional neural network
CN101540663B (en) A construction method of precoding codebook for high-order MIMO system
CN118075075A (en) CIM-OFDM modulation method, demodulation method and system based on non-orthogonal image characteristics
JP2002158589A (en) Encoder and decoder
CN116436460A (en) Thermometer decoding circuit of digital-to-analog converter and digital-to-analog converter
CN111130697B (en) Method for reducing complexity of communication physical layer transmission system based on automatic encoder
CN117012407A (en) Disease pre-consultation system based on multitasking study and field adaptation
JP4587427B2 (en) Decoding method and apparatus and system using the same
Wang et al. A novel construction of complementary sequences set from complementary sequences pairs
Morishita Milnor's link invariants attached to certain Galois groups over Q
CN114579728A (en) Dialogue generation method, device, equipment and medium applied to multi-turn dialogue system
CN113556211A (en) An Asynchronous Multi-level Bit Interleaving Coding and Modulation Method Based on Polar Code
CN103208996A (en) Method for coding frequency domains of quasi-cyclic codes

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant