[go: up one dir, main page]

CN118043690A - Apparatus and method for diagnosing battery cells - Google Patents

Apparatus and method for diagnosing battery cells Download PDF

Info

Publication number
CN118043690A
CN118043690A CN202380013810.8A CN202380013810A CN118043690A CN 118043690 A CN118043690 A CN 118043690A CN 202380013810 A CN202380013810 A CN 202380013810A CN 118043690 A CN118043690 A CN 118043690A
Authority
CN
China
Prior art keywords
battery cell
voltage
cell
battery
information
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202380013810.8A
Other languages
Chinese (zh)
Inventor
李淳钟
金喆泽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LG Energy Solution Ltd
Original Assignee
LG Energy Solution Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by LG Energy Solution Ltd filed Critical LG Energy Solution Ltd
Priority claimed from PCT/KR2023/006935 external-priority patent/WO2023229326A1/en
Publication of CN118043690A publication Critical patent/CN118043690A/en
Pending legal-status Critical Current

Links

Landscapes

  • Secondary Cells (AREA)

Abstract

A battery cell diagnosis apparatus according to an embodiment of the present invention includes: a current measurement unit configured to measure a current of a battery cell; a voltage sensing unit configured to sense a cell voltage of the battery cell; and a first control unit configured to transmit first information of the battery cell including data acquired from the current measurement unit and the voltage sensing unit to an external device, and to receive second information including diagnostic information of the battery cell acquired based on the first information from the external device, and to diagnose an abnormal state of the battery cell based on the first information and the second information.

Description

用于诊断电池电芯的设备及方法Device and method for diagnosing battery cells

技术领域Technical Field

本申请要求于2022年5月26日在韩国提交的韩国专利申请10-2022-0065020、10-2022-0065021和10-2022-0065022的优先权,其公开内容通过引用并入本文中。This application claims priority to Korean Patent Application Nos. 10-2022-0065020, 10-2022-0065021, and 10-2022-0065022 filed in Korea on May 26, 2022, the disclosures of which are incorporated herein by reference.

本公开涉及一种电池电芯诊断设备及方法,尤其涉及一种用于诊断电池电芯的状态的电芯诊断设备及方法。The present disclosure relates to a battery cell diagnosis device and method, and more particularly to a battery cell diagnosis device and method for diagnosing the state of a battery cell.

背景技术Background Art

近来,对便携式电子产品(诸如膝上型计算机、摄像机和移动电话)的需求急剧增长,并且随着电动车辆、储能用的蓄能器、机器人和卫星的大力发展,人们正在对可以重复充电的高性能电池进行大量研究。Recently, the demand for portable electronic products such as laptop computers, cameras, and mobile phones has increased dramatically, and with the vigorous development of electric vehicles, accumulators for energy storage, robots, and satellites, a lot of research is being conducted on high-performance batteries that can be repeatedly charged.

目前,市售的电池包括镍镉电池、镍氢电池、镍锌电池、锂电池等,其中锂电池的记忆效应很小或没有记忆效应,因此与镍基电池相比,锂电池具有充放电自由、自放电率极低和能量密度高的优点,正受到越来越多的关注。At present, commercially available batteries include nickel-cadmium batteries, nickel-metal hydride batteries, nickel-zinc batteries, lithium batteries, etc. Among them, lithium batteries have little or no memory effect. Therefore, compared with nickel-based batteries, lithium batteries have the advantages of free charge and discharge, extremely low self-discharge rate and high energy density, and are receiving more and more attention.

近来,随着需要高电压的应用(如电动车辆、储能系统)的普及,在某些情况下,电动车辆或储能系统(ESS)中使用的电池会在使用过程中起火。Recently, as applications requiring high voltages (e.g., electric vehicles, energy storage systems) have become popular, batteries used in electric vehicles or energy storage systems (ESS) may catch fire during use in some cases.

因此,越来越需要一种诊断技术来准确检测电池组中连接的多个电池电芯的异常。Therefore, there is an increasing need for a diagnostic technology that can accurately detect abnormalities in multiple battery cells connected in a battery pack.

发明内容Summary of the invention

技术问题Technical issues

本公开旨在解决相关技术的问题,因此本公开旨在提供一种用于通过将车载诊断装置和非车载诊断装置链接来有效地诊断电池电芯的异常状态的设备和方法。The present disclosure is intended to solve the problems of the related art, and thus the present disclosure is intended to provide an apparatus and method for effectively diagnosing an abnormal state of a battery cell by linking an on-board diagnostic device and a non-on-board diagnostic device.

本公开的这些和其它目的和优点可以从以下详细描述中理解,并且将从本公开的示例性实施方式中变得更加显而易见。而且,将容易理解,本公开的目的和优点可以通过所附权利要求中所示的装置及其组合来实现。These and other objects and advantages of the present disclosure can be understood from the following detailed description and will become more apparent from the exemplary embodiments of the present disclosure. Moreover, it will be easily understood that the objects and advantages of the present disclosure can be achieved by the means shown in the appended claims and their combinations.

技术方案Technical Solution

根据本公开的实施方式的一种电池电芯诊断设备包括:所述电池电芯诊断设备包括:电流测量单元,所述电流测量单元被配置为测量电池电芯的电流;电压感测单元,所述电压感测单元被配置为感测所述电池电芯的电芯电压;以及第一控制单元,所述第一控制单元被配置为将所述电池电芯的包括从所述电流测量单元和所述电压感测单元获取的数据的第一信息发送到外部装置,从所述外部装置接收包括基于所述第一信息获取的所述电池电芯的诊断信息的第二信息,并且基于所述第一信息和所述第二信息诊断所述电池电芯的异常状态。A battery cell diagnostic device according to an embodiment of the present disclosure includes: the battery cell diagnostic device includes: a current measuring unit, which is configured to measure the current of the battery cell; a voltage sensing unit, which is configured to sense the cell voltage of the battery cell; and a first control unit, which is configured to send first information of the battery cell including data obtained from the current measuring unit and the voltage sensing unit to an external device, receive second information from the external device including diagnostic information of the battery cell obtained based on the first information, and diagnose an abnormal state of the battery cell based on the first information and the second information.

所述电池电芯的所述诊断信息可以包括所述电池电芯的析锂诊断、所述电池电芯的并联连接异常和所述电池电芯的内部短路中的至少一种信息。The diagnostic information of the battery cell may include at least one of lithium plating diagnosis of the battery cell, abnormal parallel connection of the battery cell, and internal short circuit of the battery cell.

所述第一控制单元可以被配置为基于所述第二信息中包括的所述电池电芯的所述诊断信息在显示单元上显示关于所述电池电芯的异常状态的信息。The first control unit may be configured to display information about an abnormal state of the battery cell on a display unit based on the diagnosis information of the battery cell included in the second information.

所述第一控制单元可以被配置为:基于所述第一信息检测所述电池电芯的电压异常和所述电池电芯的行为异常中的至少一者;以及基于所述电压异常、所述行为异常和所述第二信息中的至少一者来诊断所述电池电芯的异常状态。The first control unit may be configured to: detect at least one of a voltage abnormality of the battery cell and a behavior abnormality of the battery cell based on the first information; and diagnose an abnormal state of the battery cell based on at least one of the voltage abnormality, the behavior abnormality and the second information.

所述第一控制单元可以被配置为基于所述电压异常、所述行为异常和所述第二信息中的至少一者来生成表示所述电池电芯是否处于所述异常状态的第三信息。The first control unit may be configured to generate third information indicating whether the battery cell is in the abnormal state based on at least one of the voltage abnormality, the behavior abnormality, and the second information.

所述第一控制单元可以被配置为在显示单元上显示所述第三信息。The first control unit may be configured to display the third information on a display unit.

所述第一控制单元可以被配置为将所述第三信息发送到配备有所述电池电芯的装置的第二控制单元。The first control unit may be configured to send the third information to a second control unit of a device equipped with the battery cell.

所述第一控制单元可以被配置为:生成表示所述第一信息中包括的所述电芯电压随时间流逝的历史的时间序列数据;基于所述时间序列数据确定每个电池电芯的第一平均电芯电压和第二平均电芯电压,所述第一平均电芯电压是短期移动平均值,所述第二平均电芯电压是长期移动平均值;以及基于所述第一平均电芯电压和所述第二平均电芯电压之间的差检测所述电池电芯的电压异常。The first control unit can be configured to: generate time series data representing the history of the battery cell voltage included in the first information over time; determine a first average battery cell voltage and a second average battery cell voltage for each battery cell based on the time series data, the first average battery cell voltage being a short-term moving average and the second average battery cell voltage being a long-term moving average; and detect voltage abnormality of the battery cell based on the difference between the first average battery cell voltage and the second average battery cell voltage.

所述电池电芯诊断设备可以被配置为诊断多个电池电芯。The battery cell diagnostic device may be configured to diagnose a plurality of battery cells.

所述第一控制单元可以被配置为:针对所述多个电池电芯中的每个电池电芯,确定与所述第一平均电芯电压和所述第二平均电芯电压之间的差对应的长期和短期平均差;确定所述多个电池电芯的所述长期和短期平均差的平均值;针对所述多个电池电芯中的每个电池电芯,确定所述长期和短期平均差的平均值与所述长期和短期平均差之间的偏差对应的电芯诊断偏差;以及将满足所述电芯诊断偏差超过诊断阈值的条件的电池电芯检测为电压异常电芯。The first control unit can be configured to: determine, for each battery cell among the multiple battery cells, a long-term and short-term average difference corresponding to the difference between the first average cell voltage and the second average cell voltage; determine an average value of the long-term and short-term average differences of the multiple battery cells; determine, for each battery cell among the multiple battery cells, a cell diagnostic deviation corresponding to a deviation between the average value of the long-term and short-term average differences and the long-term and short-term average differences; and detect a battery cell that satisfies the condition that the cell diagnostic deviation exceeds a diagnostic threshold as a cell with abnormal voltage.

在本公开的另一方面中,所述电池电芯诊断设备可以被配置为诊断多个电池电芯。In another aspect of the present disclosure, the battery cell diagnostic apparatus may be configured to diagnose a plurality of battery cells.

所述第一控制单元可以被配置为:针对所述多个电池电芯中的每个电池电芯,确定与所述第一平均电芯电压和所述第二平均电芯电压之间的差对应的长期和短期平均差;确定所述多个电池电芯的所述长期和短期平均差的平均值;针对所述多个电池电芯中的每个电池电芯,确定所述长期和短期平均差的平均值与所述长期和短期平均差之间的偏差对应的电芯诊断偏差;确定取决于所述多个电池电芯的所述电芯诊断偏差的标准偏差的统计变量阈值;基于所述统计变量阈值对所述时间序列数据进行滤波以生成经滤波的时间序列数据;以及基于所述经滤波的时间序列数据超过诊断阈值的时间或数据数量来检测所述电池电芯的电压异常。The first control unit can be configured to: determine, for each of the multiple battery cells, a long-term and short-term average difference corresponding to the difference between the first average cell voltage and the second average cell voltage; determine the average of the long-term and short-term average differences of the multiple battery cells; determine, for each of the multiple battery cells, a cell diagnostic deviation corresponding to the deviation between the average of the long-term and short-term average differences and the long-term and short-term average differences; determine a statistical variable threshold value that depends on the standard deviation of the cell diagnostic deviation of the multiple battery cells; filter the time series data based on the statistical variable threshold value to generate filtered time series data; and detect voltage abnormality of the battery cell based on the time or number of data when the filtered time series data exceeds the diagnostic threshold.

所述第一控制单元可以被配置为:针对所述多个电池电芯中的每个电池电芯,确定与所述第一平均电芯电压和所述第二平均电芯电压之间的差相对应的长期和短期平均差;确定与所述多个电池电芯的所述长期和短期平均差的平均值相对应的归一化值;针对所述多个电池电芯中的每个电池电芯,根据所述归一化值对所述长期和短期平均差进行归一化;确定取决于所述多个电池电芯的归一化电芯诊断偏差的标准偏差的统计变量阈值;针对所述多个电池电芯中的每个电池电芯,基于所述统计变量阈值对每个电池电芯的归一化长期和短期平均差进行滤波,以生成经滤波的时间序列数据;以及基于所述经滤波的时间序列数据超过诊断阈值的时间或数据数量来检测所述电池电芯的电压异常。The first control unit may be configured to: determine, for each of the plurality of battery cells, a long-term and short-term average difference corresponding to the difference between the first average cell voltage and the second average cell voltage; determine a normalized value corresponding to the average of the long-term and short-term average differences of the plurality of battery cells; normalize, for each of the plurality of battery cells, the long-term and short-term average differences according to the normalized value; determine a statistical variable threshold value depending on a standard deviation of the normalized cell diagnostic deviations of the plurality of battery cells; filter, for each of the plurality of battery cells, the normalized long-term and short-term average differences of each battery cell based on the statistical variable threshold value to generate filtered time series data; and detect voltage abnormality of the battery cell based on the time or number of data at which the filtered time series data exceeds a diagnostic threshold.

所述第一控制单元可以被配置为:通过将第一时间长度的移动窗口应用于所述第一信息中包括的所述电芯电压的时间序列来确定多条子电压曲线;使用所述第一时间长度的第一平均滤波器来确定每条子电压曲线的长期平均电压值;使用比所述第一时间长度短的第二时间长度的第二平均滤波器来确定每条子电压曲线的短期平均电压值;确定与每条子电压曲线的所述长期平均电压值和所述短期平均电压值之间的差对应的电压偏差;以及将针对所述多条子电压曲线确定的多个电压偏差中的每一者与第一阈值偏差和第二阈值偏差中的至少一者进行比较,以检测所述电池电芯的行为异常。The first control unit can be configured to: determine multiple sub-voltage curves by applying a moving window of a first time length to the time series of the battery cell voltage included in the first information; determine the long-term average voltage value of each sub-voltage curve using a first averaging filter of the first time length; determine the short-term average voltage value of each sub-voltage curve using a second averaging filter of a second time length shorter than the first time length; determine a voltage deviation corresponding to the difference between the long-term average voltage value and the short-term average voltage value of each sub-voltage curve; and compare each of the multiple voltage deviations determined for the multiple sub-voltage curves with at least one of a first threshold deviation and a second threshold deviation to detect abnormal behavior of the battery cell.

所述第一控制单元可以被配置为检测所述多个电压偏差中的分别满足第一条件、第二条件和第三条件的两个电压偏差所对应的所述行为异常。The first control unit may be configured to detect the behavioral abnormality corresponding to two voltage deviations among the plurality of voltage deviations that respectively satisfy a first condition, a second condition, and a third condition.

当所述两个电压偏差中的第一电压偏差等于或大于所述第一阈值偏差时,可以满足所述第一条件。The first condition may be satisfied when a first voltage deviation of the two voltage deviations is equal to or greater than the first threshold deviation.

当所述两个电压偏差中的第二电压偏差等于或小于所述第二阈值偏差时,可以满足所述第二条件。The second condition may be satisfied when a second voltage deviation of the two voltage deviations is equal to or smaller than the second threshold deviation.

当所述两个电压偏差之间的时间间隔等于或小于阈值时间时,可以满足所述第三条件。The third condition may be satisfied when the time interval between the two voltage deviations is equal to or less than a threshold time.

所述第二信息可以表示累积容量差变化量是否大于或等于阈值,并且所述累积容量差变化量为容量差变化量之和。The second information may indicate whether a cumulative capacity difference change amount is greater than or equal to a threshold, and the cumulative capacity difference change amount is a sum of capacity difference change amounts.

每个所述容量差变化量可以为所述电池电芯的第k充放电循环的容量差与所述电池电芯的第k-1充放电循环的容量差之间的差,并且所述k可以为大于或等于2的自然数。Each of the capacity difference changes may be a difference between the capacity difference of the battery cell in a kth charge and discharge cycle and the capacity difference of the battery cell in a k-1th charge and discharge cycle, and k may be a natural number greater than or equal to 2.

每个充放电循环的容量差可以对应于所述电池电芯在所述充放电循环的充电过程中的充电容量与所述电池电芯在所述充放电循环的放电过程中的放电容量之间的差。The capacity difference of each charge and discharge cycle may correspond to a difference between a charge capacity of the battery cell during a charge process of the charge and discharge cycle and a discharge capacity of the battery cell during a discharge process of the charge and discharge cycle.

所述充电容量和所述放电容量中的每一者均可以是能从获取自所述电流测量单元并包括在所述第一信息中的数据导出。Each of the charge capacity and the discharge capacity may be derivable from data acquired from the current measurement unit and included in the first information.

所述第二信息可以表示所述电池电芯的连续充放电循环之间的容量差变化量。The second information may represent a capacity difference variation between consecutive charge and discharge cycles of the battery cell.

所述电池电芯的每个充放电循环的容量差可以为(i)所述电池电芯在该电池电芯的所述充放电循环的充电过程中的充电容量与(ii)所述电池电芯在该电池电芯的所述充放电循环的放电过程中的放电容量之间的差。The capacity difference of each charge and discharge cycle of the battery cell may be a difference between (i) a charge capacity of the battery cell during the charge and discharge cycle of the battery cell and (ii) a discharge capacity of the battery cell during the discharge cycle of the battery cell.

所述第二信息可以表示基于所述外部装置监测估计容量值随时间变化的结果,所述电池电芯中包括的多个单元电芯的并联连接是否异常。The second information may indicate whether parallel connection of a plurality of unit cells included in the battery cell is abnormal based on a result of monitoring, by the external device, a change in the estimated capacity value over time.

所述估计容量值可以表示所述电池电芯基于充放电数据的满充电容量。The estimated capacity value may represent a full charge capacity of the battery cell based on charge and discharge data.

所述充放电数据可以包括表示所述电池电芯的所述电压随时间变化的电压时间序列和表示所述电池电芯的充放电电流随时间变化的电流时间序列。The charge and discharge data may include a voltage time series indicating that the voltage of the battery cell varies with time and a current time series indicating that the charge and discharge current of the battery cell varies with time.

所述第二信息可以表示基于所述电池电芯的第一SOC变化和标准因子所述电池电芯是否具有内部短路。The second information may indicate whether the battery cell has an internal short circuit based on a first SOC change of the battery cell and a standard factor.

可以通过对多个电池电芯中的至少两个电池电芯的所述第一SOC变化应用统计算法来确定所述标准因子。The standard factor may be determined by applying a statistical algorithm to the first SOC variation of at least two battery cells of a plurality of battery cells.

所述第一SOC变化可以是每个电池电芯的第一充电时间点的第一SOC与第二充电时间点的第二SOC之间的差。The first SOC change may be a difference between a first SOC at a first charging time point and a second SOC at a second charging time point of each battery cell.

可以通过对所述电池电芯在所述第一充电时间点的状态参数应用SOC估计算法来估计所述第一SOC。The first SOC may be estimated by applying a SOC estimation algorithm to the state parameters of the battery cell at the first charging time point.

可以通过对所述电池电芯在所述第二充电时间点的状态参数应用所述SOC估计算法来估计所述第二SOC。The second SOC may be estimated by applying the SOC estimation algorithm to the state parameters of the battery cell at the second charging time point.

可以基于所述第一信息获取所述状态参数。The state parameter may be acquired based on the first information.

在本公开的另一方面中,还提供了一种电池电芯诊断系统,其包括根据本公开的一方面的电池电芯诊断设备。In another aspect of the present disclosure, a battery cell diagnosis system is further provided, which includes the battery cell diagnosis device according to one aspect of the present disclosure.

所述外部装置可以被配置为基于所述第一信息的至少一部分导出所述第二信息。The external device may be configured to derive the second information based on at least a portion of the first information.

在本公开的又一方面中,还提供一种电池电芯诊断方法,包括:借助控制单元,获取包括电池电芯的充电电流和放电电流中的至少一者以及所述电池电芯的电芯电压的数据;借助所述控制单元,向外部装置发送所述电池电芯的包括所获取的数据的第一信息;借助所述控制单元,从所述外部装置接收第二信息,所述第二信息包括所述电池电芯的基于所述第一信息获取的诊断信息;以及借助所述控制单元,基于所述第一信息和所述第二信息诊断所述电池电芯的异常状态。In another aspect of the present disclosure, a battery cell diagnosis method is provided, comprising: acquiring, with the aid of a control unit, data including at least one of a charging current and a discharging current of a battery cell and a cell voltage of the battery cell; sending, with the aid of the control unit, first information including the acquired data of the battery cell to an external device; receiving, with the aid of the control unit, second information from the external device, the second information including diagnostic information of the battery cell acquired based on the first information; and diagnosing, with the aid of the control unit, an abnormal state of the battery cell based on the first information and the second information.

在本公开的又一方面中,所述的电池电芯诊断方法还可以包括:借助所述控制单元,基于所述电池电芯的所述第一信息,检测所述电池电芯的电压异常和行为异常中的至少一者;以及借助所述控制单元,基于所述电池电芯的电压异常、所述电池电芯的行为异常和所述第二信息中的至少一者诊断所述电池电芯的异常状态。In another aspect of the present disclosure, the battery cell diagnosis method may further include: detecting at least one of voltage abnormality and behavior abnormality of the battery cell with the help of the control unit based on the first information of the battery cell; and diagnosing the abnormal state of the battery cell based on the voltage abnormality of the battery cell, the behavior abnormality of the battery cell and at least one of the second information with the help of the control unit.

有益效果Beneficial Effects

根据本公开的至少一个实施方式,通过链接车载装置和非车载装置,可以有效地诊断电池电芯的异常状态。According to at least one embodiment of the present disclosure, by linking an on-board device and an off-board device, an abnormal state of a battery cell may be effectively diagnosed.

根据本公开的至少一个实施方式,可以通过将车载装置和非车载装置链接来节省诊断每个电池电芯的异常所需的软件资源和时间,并且可以降低多个电池电芯中由于异常电池电芯的数量增加而导致误诊的可能性。According to at least one embodiment of the present disclosure, software resources and time required to diagnose abnormalities in each battery cell can be saved by linking an on-board device and an off-board device, and the possibility of misdiagnosis due to an increase in the number of abnormal battery cells in multiple battery cells can be reduced.

根据本公开的至少一个实施方式,可以考虑每个电池电芯的电芯电压的长期趋势和短期趋势两者,从而可以精确地检测对应的电池电芯的异常变化。According to at least one embodiment of the present disclosure, both the long-term trend and the short-term trend of the cell voltage of each battery cell may be considered, so that an abnormal change of the corresponding battery cell may be accurately detected.

附图说明BRIEF DESCRIPTION OF THE DRAWINGS

附图示出了本公开的优选实施方式并与前述公开内容一起用于提供对本公开的技术特征的进一步理解,因此本公开不被解释为限于附图。The accompanying drawings illustrate preferred embodiments of the present disclosure and, together with the foregoing disclosure, are used to provide a further understanding of the technical features of the present disclosure, and thus the present disclosure is not to be construed as being limited to the accompanying drawings.

图1是示出包括根据本公开的实施方式的电池电芯诊断设备的系统的示例图。FIG. 1 is an exemplary diagram illustrating a system including a battery cell diagnosis apparatus according to an embodiment of the present disclosure.

图2是示意性地示出根据本公开的实施方式的电池电芯诊断设备的功能配置的框图。FIG. 2 is a block diagram schematically showing a functional configuration of a battery cell diagnostic apparatus according to an embodiment of the present disclosure.

图3是概念性地示出根据本公开的实施方式的电动车辆的配置的示例图。FIG. 3 is an exemplary diagram conceptually illustrating a configuration of an electric vehicle according to an embodiment of the present disclosure.

图4a至图4h是示例性地示出根据表示图3中所示的多个电池电芯中的每个电池电芯的电芯电压变化的时间序列数据检测每个电池电芯的电压异常的过程的图表。4 a to 4 h are graphs exemplarily illustrating a process of detecting voltage abnormality of each battery cell based on time series data indicating a cell voltage variation of each of the plurality of battery cells shown in FIG. 3 .

图5是示例性地示出本公开的各种实施方式中提及的电池电芯的与电芯电压的实际电压值的原始时间序列对应的电压曲线的图表。FIG. 5 is a graph exemplarily showing a voltage curve of a battery cell mentioned in various embodiments of the present disclosure corresponding to an original time series of an actual voltage value of the cell voltage.

图6是示例性地示出通过将测量噪声与对应于图5的电压曲线的原始时间序列进行综合而获取的测量电压曲线的图表。FIG. 6 is a graph exemplarily showing a measured voltage curve obtained by integrating measurement noise with an original time series corresponding to the voltage curve of FIG. 5 .

图7是示例性地示出通过将第一平均滤波器应用于图6的电压曲线而获取的第一移动平均曲线的图表。FIG. 7 is a graph exemplarily showing a first moving average curve obtained by applying a first averaging filter to the voltage curve of FIG. 6 .

图8是示例性地示出通过将第二平均滤波器应用于图6的电压曲线而获取的第二移动平均曲线的图表。FIG. 8 is a graph exemplarily showing a second moving average curve obtained by applying a second averaging filter to the voltage curve of FIG. 6 .

图9是示例性地示出作为图7的第一移动平均曲线与图8的第二移动平均曲线之间的差的电压偏差曲线的图表。FIG. 9 is a graph exemplarily showing a voltage deviation curve as a difference between the first moving average curve of FIG. 7 and the second moving average curve of FIG. 8 .

图10是示出根据本公开的实施方式的外部装置的示意性配置的框图。FIG. 10 is a block diagram illustrating a schematic configuration of an external device according to an embodiment of the present disclosure.

图11是示例性地示出在本公开的各种实施方式中提及的电池电芯的示意性配置的图。FIG. 11 is a diagram exemplarily showing a schematic configuration of a battery cell mentioned in various embodiments of the present disclosure.

图12是用于示出本公开的各种实施方式中提及的电池电芯的第一容量异常(不完全断开故障)的图。FIG. 12 is a diagram for illustrating a first capacity abnormality (incomplete disconnection fault) of a battery cell mentioned in various embodiments of the present disclosure.

图13是用于示出本公开的各种实施方式中提及的电池电芯的第二容量异常(完全断开故障)的图。FIG. 13 is a diagram for illustrating a second capacity abnormality (complete disconnection fault) of a battery cell mentioned in various embodiments of the present disclosure.

图14是用于示出在本公开的各种实施方式中提及的电池电芯的容量异常与满充电容量之间的关系的示例图。FIG. 14 is an exemplary diagram for illustrating a relationship between a capacity abnormality and a full charge capacity of a battery cell mentioned in various embodiments of the present disclosure.

图15是用于示出在本公开的各种实施方式中提及的电池电芯的示例性等效电路的参考图。FIG. 15 is a reference diagram for illustrating an exemplary equivalent circuit of a battery cell mentioned in various embodiments of the present disclosure.

图16是用于根据存在或不存在本公开的各种实施方式中提及的内部短路异常来比较电池电芯的SOC变化的示例性图表。FIG. 16 is an exemplary graph for comparing SOC changes of battery cells according to the presence or absence of an internal short circuit abnormality mentioned in various embodiments of the present disclosure.

图17是用于根据存在或不存在本公开的各种实施方式中提及的内部短路异常来比较电池电芯的SOC变化的另一示例性图表。FIG. 17 is another exemplary graph for comparing SOC changes of battery cells according to the presence or absence of the internal short circuit abnormality mentioned in various embodiments of the present disclosure.

图18是用于根据存在或不存在本公开的各种实施方式中提及的内部短路异常来比较电池电芯的SOC变化的又一示例性图表。FIG. 18 is yet another exemplary graph for comparing SOC changes of battery cells according to the presence or absence of the internal short circuit abnormality mentioned in various embodiments of the present disclosure.

图19是根据本公开的实施方式的电池电芯诊断设备使用外部装置对电池电芯的异常状态进行诊断的流程图。FIG. 19 is a flowchart of the battery cell diagnostic apparatus diagnosing an abnormal state of a battery cell using an external device according to an embodiment of the present disclosure.

图20是示例性地示出根据本公开的实施方式的一种电压异常检测方法的流程图。FIG. 20 is a flow chart exemplarily illustrating a voltage anomaly detection method according to an embodiment of the present disclosure.

图21是示例性示出根据本公开的实施方式的电压异常检测方法的另一流程图。FIG. 21 is another flowchart exemplarily illustrating a voltage abnormality detection method according to an embodiment of the present disclosure.

图22是示例性示出根据本公开的实施方式的电压异常检测方法的另一流程图。FIG. 22 is another flowchart exemplarily illustrating a voltage abnormality detection method according to an embodiment of the present disclosure.

图23是示例性示出根据本公开的实施方式的电压异常检测方法的再一流程图。FIG. 23 is another flowchart exemplarily illustrating a voltage abnormality detection method according to an embodiment of the present disclosure.

图24是示例性示出根据本公开的实施方式的电压异常检测方法的再一流程图。FIG. 24 is another flowchart exemplarily illustrating a voltage abnormality detection method according to an embodiment of the present disclosure.

图25是示例性示出根据本公开的实施方式的行为异常检测方法的流程图。FIG. 25 is a flow chart illustrating a method for detecting abnormal behavior according to an embodiment of the present disclosure.

图26是示意性地示出根据本公开的实施方式的行为异常检测方法的另一流程图。FIG. 26 is another flowchart schematically illustrating a behavior anomaly detection method according to an embodiment of the present disclosure.

图27是示例性示出根据本公开的实施方式的析锂异常检测方法的流程图。FIG. 27 is a flow chart exemplarily illustrating a method for detecting lithium plating anomalies according to an embodiment of the present disclosure.

图28是示例性示出根据本公开的实施方式的析锂异常检测方法的另一流程图。FIG. 28 is another flow chart exemplarily illustrating a method for detecting lithium plating anomalies according to an embodiment of the present disclosure.

图29是示例性示出根据本公开的实施方式的析锂异常检测方法的再一流程图。FIG. 29 is another flowchart exemplarily illustrating a method for detecting lithium plating anomalies according to an embodiment of the present disclosure.

图30是示例性示出根据本公开的实施方式的析锂异常检测方法的再一流程图。FIG. 30 is another flowchart exemplarily illustrating a method for detecting lithium plating anomalies according to an embodiment of the present disclosure.

图31是示出在应用根据本公开的实施方式的用于外部装置检测是否发生析锂的方法的实验例中测量的数据的变化的图表。FIG. 31 is a graph showing changes in data measured in an experimental example to which the method for an external device to detect whether lithium plating occurs according to an embodiment of the present disclosure is applied.

图32是示出在应用根据本公开的实施方式的析锂异常检测方法的另一实验例中测量的数据变化的图表。FIG. 32 is a graph showing changes in data measured in another experimental example in which the lithium plating abnormality detection method according to an embodiment of the present disclosure is applied.

图33是根据本公开的实施方式的电池电芯诊断设备使用外部装置对电池电芯的异常状态进行诊断的流程图。33 is a flowchart of the battery cell diagnostic apparatus diagnosing an abnormal state of a battery cell using an external device according to an embodiment of the present disclosure.

图34是示例性地示出根据本公开的实施方式的电池诊断方法的流程图。FIG. 34 is a flowchart exemplarily illustrating a battery diagnosis method according to an embodiment of the present disclosure.

图35是根据本公开的实施方式的电池电芯诊断设备使用外部装置对电池电芯的异常状态进行诊断的流程图。FIG. 35 is a flowchart of the battery cell diagnostic apparatus diagnosing an abnormal state of a battery cell using an external device according to an embodiment of the present disclosure.

图36是示例性地示出根据本公开的实施方式的电池管理方法的流程图。FIG. 36 is a flow chart exemplarily illustrating a battery management method according to an embodiment of the present disclosure.

图37是示例性地示出根据本公开的实施方式的电池管理方法的另一流程图。FIG. 37 is another flow chart exemplarily illustrating a battery management method according to an embodiment of the present disclosure.

具体实施方式DETAILED DESCRIPTION

下文中,将参考附图详细描述本公开的优选实施方式。在描述之前,应当理解,说明书和所附权利要求中使用的术语不应解释为限于一般和字典含义,而是基于允许发明人适当地定义术语以便于进行最佳解释的原则,基于与本公开的技术方面相对应的含义和概念来解释。Hereinafter, preferred embodiments of the present disclosure will be described in detail with reference to the accompanying drawings. Before the description, it should be understood that the terms used in the specification and the appended claims should not be interpreted as limited to the general and dictionary meanings, but are interpreted based on the meanings and concepts corresponding to the technical aspects of the present disclosure based on the principle of allowing the inventor to appropriately define the terms for the best interpretation.

因此,本文提出的描述仅仅是出于说明之目的的优选实施例,而不旨在限制本公开的范围,因此应当理解,在不脱离本公开的范围的情况下,可以对本公开进行其它等同和变型。Therefore, the descriptions presented herein are merely preferred embodiments for illustrative purposes, and are not intended to limit the scope of the present disclosure, and it should be appreciated that other equivalents and modifications may be made to the present disclosure without departing from the scope of the present disclosure.

图1是示出包括电池电芯诊断设备1000的电池电芯诊断系统1的示例图。FIG. 1 is a diagram showing an example of a battery cell diagnosis system 1 including a battery cell diagnosis apparatus 1000 .

参考图1,电池电芯诊断系统1可以被配置为包括电池电芯诊断设备1000和外部装置2000。然而,这仅仅是用于实现本公开的优选实施方式,并且可以根据需要添加或删除一些部件。应当注意,图1中所示的电池电芯诊断系统1的部件表示功能上不同的功能元件,并且多个部件可以实施成在实际物理环境中彼此集成。1 , the battery cell diagnostic system 1 may be configured to include a battery cell diagnostic device 1000 and an external device 2000. However, this is merely a preferred embodiment for implementing the present disclosure, and some components may be added or deleted as needed. It should be noted that the components of the battery cell diagnostic system 1 shown in FIG. 1 represent functionally different functional elements, and a plurality of components may be implemented to be integrated with each other in an actual physical environment.

在电池电芯诊断系统1中,电池电芯诊断设备1000是诊断电池电芯的异常状态并向用户提供诊断结果的运算装置。电池电芯诊断设备1000可以是指包括在BMS(电池管理系统)中的车载运算装置。例如,电池电芯诊断设备1000可以是设置在用户的电动车辆中的BMS中包括的运算装置。这是实施例,并且本公开不限于此,而是可以包括配备有运算功能和通信功能的各种装置。In the battery cell diagnostic system 1, the battery cell diagnostic device 1000 is a computing device that diagnoses an abnormal state of a battery cell and provides a diagnostic result to a user. The battery cell diagnostic device 1000 may refer to an on-board computing device included in a BMS (battery management system). For example, the battery cell diagnostic device 1000 may be a computing device included in a BMS provided in an electric vehicle of a user. This is an embodiment, and the present disclosure is not limited thereto, but may include various devices equipped with computing functions and communication functions.

电池电芯诊断设备1000可以获取包括电池电芯的充电电流和放电电流中的至少一者以及作为电池电芯两端的电压的电芯电压的数据。例如,电池电芯诊断设备1000可以获取关于设置在电动车辆中的电池电芯的充电电流和放电电流中的至少一者以及作为电池电芯两端的电压的电芯电压的数据。The battery cell diagnostic device 1000 may acquire data including at least one of a charge current and a discharge current of a battery cell and a cell voltage as a voltage across the battery cell. For example, the battery cell diagnostic device 1000 may acquire data regarding at least one of a charge current and a discharge current of a battery cell provided in an electric vehicle and a cell voltage as a voltage across the battery cell.

根据本公开的实施方式,电池电芯诊断设备1000可以生成电池电芯的第一信息。第一信息可以包括与电池电芯的充电电流和放电电流中的至少一者以及作为电池电芯两端的电压的电芯电压有关的数据。According to an embodiment of the present disclosure, the battery cell diagnostic apparatus 1000 may generate first information of the battery cell. The first information may include data related to at least one of a charge current and a discharge current of the battery cell and a cell voltage as a voltage across the battery cell.

电池电芯诊断设备1000可以将第一信息发送到外部装置2000。外部装置2000可以接收第一信息并且基于所接收的第一信息的至少一部分来导出关于电池电芯的第二信息。外部装置2000可以将第二信息发送到电池电芯诊断设备1000。电池电芯诊断设备1000可以基于第一信息和第二信息来诊断电池电芯的异常状态。The battery cell diagnostic apparatus 1000 may transmit the first information to the external device 2000. The external device 2000 may receive the first information and derive second information about the battery cell based on at least a portion of the received first information. The external device 2000 may transmit the second information to the battery cell diagnostic apparatus 1000. The battery cell diagnostic apparatus 1000 may diagnose an abnormal state of the battery cell based on the first information and the second information.

在电池电芯诊断系统1中,外部装置2000可以是指将使用第一信息生成的第二信息提供给电池电芯诊断设备1000的非车载运算装置。为此,外部装置2000可以从各种电动车辆接收关于电池电芯的电压、电流或温度的信息,并且存储能够基于所接收的信息对电池电芯进行诊断的至少一种算法。此外,外部装置2000可以将从各种电动车辆接收的关于电池电芯的电压、电流或温度的信息存储为大数据,并且存储能够基于大数据对电池电芯进行诊断的至少一个人工智能模型。运算装置可以是笔记本、台式计算机、膝上型计算机等,但不限于此,并且可以包括配备有运算功能和通信功能的任何类型的装置。然而,如果第二信息被提供给用于诊断电池电芯的多个设备1000,则外部装置2000可以优选地实施为服务器运算装置。In the battery cell diagnostic system 1, the external device 2000 may refer to an off-board computing device that provides the second information generated using the first information to the battery cell diagnostic device 1000. To this end, the external device 2000 may receive information about the voltage, current or temperature of the battery cell from various electric vehicles, and store at least one algorithm that can diagnose the battery cell based on the received information. In addition, the external device 2000 may store the information about the voltage, current or temperature of the battery cell received from various electric vehicles as big data, and store at least one artificial intelligence model that can diagnose the battery cell based on the big data. The computing device may be a notebook, a desktop computer, a laptop computer, etc., but is not limited thereto, and may include any type of device equipped with a computing function and a communication function. However, if the second information is provided to a plurality of devices 1000 for diagnosing battery cells, the external device 2000 may preferably be implemented as a server computing device.

电池电芯诊断系统1的部件可以通过网络进行通信。这里,网络可以实施为所有类型的有线/无线网络,诸如局域网(LAN)、广域网(WAN)、移动无线电通信网络、Wibro(无线宽带互联网)等。The components of the battery cell diagnosis system 1 can communicate via a network. Here, the network can be implemented as all types of wired/wireless networks, such as a local area network (LAN), a wide area network (WAN), a mobile radio communication network, Wibro (wireless broadband Internet), etc.

至此,参考图1描述了根据本公开的实施方式的电池电芯诊断系统1。下文中,将参考图2详细描述根据本公开的实施方式的电池电芯诊断设备1000。Hereinafter, the battery cell diagnosis system 1 according to the embodiment of the present disclosure is described with reference to Fig. 1. Hereinafter, the battery cell diagnosis apparatus 1000 according to the embodiment of the present disclosure will be described in detail with reference to Fig. 2.

图2是示意性地示出根据本公开的实施方式的电池电芯诊断设备1000的功能配置的框图。参考图2,电池电芯诊断设备1000可以包括电流测量单元100、电压感测单元200、数据获取单元300、第一控制单元400和显示单元500。2 is a block diagram schematically illustrating a functional configuration of a battery cell diagnostic apparatus 1000 according to an embodiment of the present disclosure. Referring to FIG. 2 , the battery cell diagnostic apparatus 1000 may include a current measuring unit 100 , a voltage sensing unit 200 , a data acquiring unit 300 , a first control unit 400 , and a display unit 500 .

电流测量单元100可以测量电池电芯的电流。这里,电流可以是电池电芯的充电电流和放电电流中的至少一者。The current measuring unit 100 may measure the current of the battery cell. Here, the current may be at least one of a charging current and a discharging current of the battery cell.

优选地,电流测量单元100可以在电池电芯充电时测量充电电流。此外,电流测量单元100可以在电池电芯放电时测量放电电流。Preferably, the current measuring unit 100 can measure the charging current when the battery cell is charged. In addition, the current measuring unit 100 can measure the discharging current when the battery cell is discharged.

电压感测单元200可以被配置为感测电池电芯的电芯电压。例如,电压感测单元200可以感测表示电池电芯两端的电压的电压信号。稍后将参考图3对此进行详细描述。The voltage sensing unit 200 may be configured to sense a cell voltage of a battery cell. For example, the voltage sensing unit 200 may sense a voltage signal representing a voltage across the battery cell. This will be described in detail later with reference to FIG. 3 .

数据获取单元300可以周期性地从电流测量单元100和电压感测单元200获取数据。The data acquiring unit 300 may periodically acquire data from the current measuring unit 100 and the voltage sensing unit 200 .

在一个实施方式中,第一控制单元400可以基于数据获取单元300获取的数据生成电池电芯的第一信息。例如,第一信息可以包括关于电池电芯的充电电流和放电电流中的至少一者的电流信息以及关于电池电芯的电芯电压的电压信息。In one embodiment, the first control unit 400 may generate first information of the battery cell based on the data acquired by the data acquisition unit 300. For example, the first information may include current information about at least one of a charging current and a discharging current of the battery cell and voltage information about a cell voltage of the battery cell.

在另一个实施方式中,第一控制单元400可以直接从电流测量单元100获取关于电池电芯的电流信息,并且直接从电压感测单元200获取关于电池电芯的电压信息。In another embodiment, the first control unit 400 may directly acquire the current information about the battery cell from the current measuring unit 100 , and directly acquire the voltage information about the battery cell from the voltage sensing unit 200 .

第一控制单元400可以被配置为将生成的第一信息发送到外部装置2000。此外,第一控制单元400可以从外部装置2000接收第二信息,该第二信息包括基于第一信息获取的电池电芯的诊断信息。The first control unit 400 may be configured to transmit the generated first information to the external device 2000. In addition, the first control unit 400 may receive second information from the external device 2000, the second information including diagnostic information of the battery cell acquired based on the first information.

具体地,第二信息是由外部装置2000基于第一信息生成的电池电芯的诊断信息。例如,电池电芯的诊断信息可以包括电池电芯的析锂诊断、电池电芯的并联连接异常或电池电芯的内部短路中的至少一种信息。Specifically, the second information is battery cell diagnostic information generated by the external device 2000 based on the first information. For example, the battery cell diagnostic information may include at least one of battery cell lithium plating diagnosis, battery cell parallel connection abnormality, or battery cell internal short circuit.

第一控制单元400可以被配置为基于第一信息和第二信息来诊断电池电芯的异常状态。The first control unit 400 may be configured to diagnose an abnormal state of the battery cell based on the first information and the second information.

具体地,第一控制单元400可以基于第一信息来检测电池电芯的电压异常和电池电芯的行为异常中的至少一者。此外,第一控制单元400可以被配置为基于电压异常、行为异常和第二信息中的至少一者来诊断电池电芯的异常状态。因此,本公开的特征在于,电池电芯诊断设备1000和外部装置2000诊断不同的诊断项目,而不是诊断相同的诊断项目。例如,电池电芯诊断设备1000可以诊断电池电芯的电压异常和行为异常中的至少一者,并且外部装置2000可以诊断电池电芯的析锂、电池电芯的并联连接异常和电池电芯的内部短路。Specifically, the first control unit 400 can detect at least one of the voltage abnormality of the battery cell and the behavior abnormality of the battery cell based on the first information. In addition, the first control unit 400 can be configured to diagnose the abnormal state of the battery cell based on at least one of the voltage abnormality, the behavior abnormality and the second information. Therefore, the present disclosure is characterized in that the battery cell diagnostic device 1000 and the external device 2000 diagnose different diagnostic items instead of diagnosing the same diagnostic items. For example, the battery cell diagnostic device 1000 can diagnose at least one of the voltage abnormality and the behavior abnormality of the battery cell, and the external device 2000 can diagnose the lithium plating of the battery cell, the parallel connection abnormality of the battery cell and the internal short circuit of the battery cell.

稍后将描述第一控制单元400基于第一信息检测电池电芯的电压异常或行为异常的特征。Features of the first control unit 400 detecting the voltage abnormality or the behavior abnormality of the battery cell based on the first information will be described later.

显示单元500可以包括至少一个显示器。显示单元500可以在所包括的显示器上显示关于电池电芯的异常状态的信息。The display unit 500 may include at least one display. The display unit 500 may display information about an abnormal state of the battery cell on the included display.

这里,显示单元500可以电连接到第一控制单元400,并且可以包括在从电芯组CG接收电力的负载装置中。当负载装置为电动车辆、混合动力车辆或插电式混合动力车辆等时,可以经由车辆的集成信息显示器输出诊断结果信息。Here, the display unit 500 may be electrically connected to the first control unit 400 and may be included in a load device that receives power from the cell group CG. When the load device is an electric vehicle, a hybrid vehicle, a plug-in hybrid vehicle, etc., the diagnostic result information may be output via an integrated information display of the vehicle.

例如,第一控制单元400可以被配置为基于第二信息中包括的电池电芯的诊断信息,在显示单元500上显示关于电池电芯的异常状态的信息。For example, the first control unit 400 may be configured to display information about an abnormal state of the battery cell on the display unit 500 based on the diagnosis information of the battery cell included in the second information.

作为另一实施例,第一控制单元400可以基于电压异常、行为异常和第二信息中的至少一者来生成表示电池电芯是否处于异常状态的第三信息。此外,第一控制单元400可以使用包括在显示单元500中的显示器来显示第三信息。通过由第一控制单元400使用包括在显示单元500中的显示器显示第三信息,可以具体地向用户提供电池电芯的异常。As another embodiment, the first control unit 400 may generate third information indicating whether the battery cell is in an abnormal state based on at least one of the voltage abnormality, the behavior abnormality, and the second information. In addition, the first control unit 400 may display the third information using a display included in the display unit 500. By displaying the third information by the first control unit 400 using the display included in the display unit 500, the abnormality of the battery cell may be specifically provided to the user.

此外,第一控制单元400可以将第三信息发送到配备有电池电芯的装置的第二控制单元。In addition, the first control unit 400 may transmit the third information to the second control unit of the device equipped with the battery cell.

这里,第二控制单元可以被配置为执行控制配备有电池电芯的装置的功能。例如,配备有电池电芯的装置可以是电动车辆。在这种情况下,第二控制单元可以是配置成控制电动车辆的ECU(电子控制单元)。第一控制单元400可以将第三信息发送到配备有电池电芯的电动车辆的第二控制单元。Here, the second control unit may be configured to perform a function of controlling a device equipped with a battery cell. For example, the device equipped with a battery cell may be an electric vehicle. In this case, the second control unit may be an ECU (electronic control unit) configured to control the electric vehicle. The first control unit 400 may send the third information to the second control unit of the electric vehicle equipped with the battery cell.

图3是概念性地示出根据本公开的实施方式的电动车辆的配置的示例图。参考图3,电动车辆包括电池组10、逆变器INV、电动马达M和第二控制单元600。3 is an exemplary diagram conceptually showing a configuration of an electric vehicle according to an embodiment of the present disclosure. Referring to FIG. 3 , the electric vehicle includes a battery pack 10 , an inverter INV, an electric motor M, and a second control unit 600 .

电池组10可以包括电芯组CG、开关S和电池电芯诊断设备1000。The battery pack 10 may include a cell group CG, a switch S, and a battery cell diagnostic apparatus 1000 .

电芯组CG可以借助设置在电池组10中的一对电力端子联接到逆变器INV。电芯组CG包括串联连接的多个电池电芯BC1至BCN(其中N是等于或大于2的自然数)。每个电池电芯BCi的类型没有特别限制,只要可以像锂离子电池电芯那样再充电即可。i是电芯标识的索引。i为1至N的自然数。The cell group CG can be connected to the inverter INV by means of a pair of power terminals provided in the battery pack 10. The cell group CG includes a plurality of battery cells BC1 to BCN connected in series (where N is a natural number equal to or greater than 2). The type of each battery cell BCi is not particularly limited as long as it can be recharged like a lithium-ion battery cell. i is an index of the cell identification. i is a natural number from 1 to N.

开关S串联连接到电芯组CG。开关S安装在用于对电芯组CG充放电的电流路径上。开关S被控制成响应于来自电池电芯诊断设备1000的切换信号而开启/关断。优选地,开关S的工作状态可以由第一控制单元400控制为开启状态或关断状态。The switch S is connected in series to the cell group CG. The switch S is installed on a current path for charging and discharging the cell group CG. The switch S is controlled to be turned on/off in response to a switching signal from the battery cell diagnostic device 1000. Preferably, the working state of the switch S can be controlled by the first control unit 400 to be an on state or an off state.

例如,开关S可以是由线圈的磁力开启/关断的机械继电器。作为另一实施例,开关S可以是半导体开关,诸如场效应晶体管(FET)或金属氧化物半导体场效应晶体管(MOSFET)。For example, the switch S may be a mechanical relay turned on/off by the magnetic force of a coil. As another embodiment, the switch S may be a semiconductor switch such as a field effect transistor (FET) or a metal oxide semiconductor field effect transistor (MOSFET).

逆变器INV设置成响应于来自电池电芯诊断设备1000的命令而将来自电芯组CG的DC电流转换成AC电流。The inverter INV is configured to convert the DC current from the cell group CG into AC current in response to a command from the battery cell diagnostic device 1000 .

电动马达M可以是例如三相AC马达。使用来自逆变器INV的AC电力驱动电动马达M。The electric motor M may be, for example, a three-phase AC motor. The electric motor M is driven using AC power from an inverter INV.

电池电芯诊断设备1000设置成负责与电芯组CG的充放电有关的整体控制。The battery cell diagnostic device 1000 is configured to be responsible for overall control related to charging and discharging of the cell group CG.

电池电芯诊断设备1000还可以包括温度传感器T和接口单元I/F中的至少一者。The battery cell diagnosis apparatus 1000 may further include at least one of a temperature sensor T and an interface unit I/F.

电压感测单元200借助多条电压感测线连接到多个电池电芯BC1至BCN中的每一者的正极和负极。电压感测单元200被配置为测量每个电池电芯BCi两端的电芯电压,并生成表示所测量的电芯电压的电压信号。The voltage sensing unit 200 is connected to the positive and negative electrodes of each of the plurality of battery cells BC1 to BC N via a plurality of voltage sensing lines. The voltage sensing unit 200 is configured to measure a cell voltage across each battery cell BC i and generate a voltage signal representing the measured cell voltage.

电流测量单元100借助电流路径串联连接到电芯组CG。电流测量单元100被配置为检测流过电芯组CG的电池电流并生成表示检测到的电池电流的电流信号(其也可以称为“充放电电流”)。由于多个电池电芯BC1至BCN串联连接,因此流过多个电池电芯BC1至BCN中的任一者的电池电流可以与流过其它电池电芯的电池电流相同。可以使用诸如分流电阻器和霍尔效应元件之类的已知电流检测元件中的一个或者两个或更多个的组合来实施电流测量单元100。The current measuring unit 100 is connected in series to the cell group CG via a current path. The current measuring unit 100 is configured to detect a battery current flowing through the cell group CG and generate a current signal representing the detected battery current (which may also be referred to as a "charge and discharge current"). Since the plurality of battery cells BC1 to BCN are connected in series, the battery current flowing through any one of the plurality of battery cells BC1 to BCN may be the same as the battery current flowing through the other battery cells. The current measuring unit 100 may be implemented using one or a combination of two or more of known current detection elements such as a shunt resistor and a Hall effect element.

温度传感器T被配置为检测电芯组CG的温度并生成指示检测到的温度的温度信号。例如,温度传感器T可以测量电芯组CG的温度,或者可以单独测量电芯组CG中包括的每个电池电芯BCi的温度。The temperature sensor T is configured to detect the temperature of the cell group CG and generate a temperature signal indicating the detected temperature. For example, the temperature sensor T may measure the temperature of the cell group CG, or may individually measure the temperature of each battery cell BC i included in the cell group CG.

第一控制单元400可以可操作地联接到电压感测单元200、温度传感器T、电流测量单元100、接口单元I/F和/或开关S。第一控制单元400可以从电压感测单元200、电流测量单元100和温度传感器T收集感测信号。感测信号是指同步检测到的电压信号、电流信号和/或温度信号。The first control unit 400 may be operably coupled to the voltage sensing unit 200, the temperature sensor T, the current measuring unit 100, the interface unit I/F, and/or the switch S. The first control unit 400 may collect sensing signals from the voltage sensing unit 200, the current measuring unit 100, and the temperature sensor T. The sensing signal refers to a synchronously detected voltage signal, current signal, and/or temperature signal.

接口单元I/F可以包括通信电路,该通信电路被配置为支持第一控制单元400和第二控制单元600之间的有线通信或无线通信。例如,有线通信可以是CAN(控制器局域网)和/或CAN-FD(具有灵活数据速率的控制器局域网)通信,并且无线通信可以是ZigBee或蓝牙通信。当然,只要支持第一控制单元400和第二控制单元600之间的有线/无线通信,通信协议的类型不受特别限制。The interface unit I/F may include a communication circuit configured to support wired communication or wireless communication between the first control unit 400 and the second control unit 600. For example, the wired communication may be CAN (Controller Area Network) and/or CAN-FD (Controller Area Network with Flexible Data Rate) communication, and the wireless communication may be ZigBee or Bluetooth communication. Of course, as long as the wired/wireless communication between the first control unit 400 and the second control unit 600 is supported, the type of communication protocol is not particularly limited.

接口单元I/F可以与输出装置(例如,显示器、扬声器)联接,该输出装置以用户可辨识的形式提供从第二控制单元600和/或第一控制单元400接收的信息。The interface unit I/F may be coupled with an output device (eg, a display, a speaker) that provides information received from the second control unit 600 and/or the first control unit 400 in a user-recognizable form.

第二控制单元600可以基于通过与电池电芯诊断设备1000通信收集的电池信息(例如,电压、电流、温度、SOC)来控制逆变器INV。The second control unit 600 may control the inverter INV based on battery information (eg, voltage, current, temperature, SOC) collected through communication with the battery cell diagnostic apparatus 1000 .

在电负载和/或充电器操作时开关S开启的情况下,电池组10中包括的电池电芯BC1至BCN可以充电或放电。在电池电芯BC1至BCN充电或放电时开关S关断的情况下,电池电芯BC1至BCN可以切换到空闲状态。When the switch S is turned on when the electric load and/or charger operates, the battery cells BC1 to BC N included in the battery pack 10 can be charged or discharged. When the switch S is turned off when the battery cells BC1 to BC N are charged or discharged, the battery cells BC1 to BC N can be switched to an idle state.

第一控制单元400可以响应于接通信号而开启开关S。第一控制单元400可以响应于断开信号而关断开关S。接通信号是请求从空闲状态转换到充电或放电的信号。断开信号是请求从充电或放电状态转换到空闲状态的信号。另选地,可以由第二控制单元600而不是第一控制单元400进行开关S的通/断控制。The first control unit 400 may turn on the switch S in response to the on signal. The first control unit 400 may turn off the switch S in response to the off signal. The on signal is a signal requesting a transition from an idle state to a charge or discharge state. The off signal is a signal requesting a transition from a charge or discharge state to an idle state. Alternatively, the on/off control of the switch S may be performed by the second control unit 600 instead of the first control unit 400.

在图3中,电池电芯诊断设备1000示出为包括在电动车辆的电池组10中,但是这应当被理解为实施例。例如,电池电芯诊断设备1000可以包括在用于在电池电芯BC1至BCN的制造过程中选择行为异常电池电芯的测试系统中。作为另一实施例,电池电芯诊断设备1000还可以被包括在包括电池电芯BC1至BCN的储能系统(ESS)中。In FIG3 , the battery cell diagnostic device 1000 is shown as being included in the battery pack 10 of the electric vehicle, but this should be understood as an embodiment. For example, the battery cell diagnostic device 1000 may be included in a test system for selecting abnormally behaving battery cells in the manufacturing process of the battery cells BC 1 to BC N. As another embodiment, the battery cell diagnostic device 1000 may also be included in an energy storage system (ESS) including the battery cells BC 1 to BC N.

第一控制单元400可以通过使用第一信息来检测电池电芯的电压异常和行为异常。首先,将参考图4详细描述第一控制单元400使用第一信息检测电池电芯的电压异常的方法。The first control unit 400 may detect voltage abnormality and behavior abnormality of the battery cell by using the first information. First, a method in which the first control unit 400 detects voltage abnormality of the battery cell using the first information will be described in detail with reference to FIG.

图4a至图4h是示例性地示出根据表示图3中所示的多个电池电芯BC1至BCN中的每一者的电芯电压变化的时间序列数据检测每个电池电芯的电压异常的过程的图表。FIGS. 4 a to 4 h are graphs exemplarily showing a process of detecting voltage abnormality of each battery cell based on time series data indicating a cell voltage variation of each of the plurality of battery cells BC 1 to BC N shown in FIG. 3 .

图4a示出了多个电池电芯BC1至BCN中的每一者的电压曲线。图4a中所示的电池电芯的数量为14。第一控制单元400每隔单位时间从电压感测单元200收集电压信号,并将每个电池电芯BCi的电芯电压的电压值记录在第一信息中。单位时间可以是电压感测单元200的电压测量时段的整数倍。FIG4a shows a voltage curve of each of a plurality of battery cells BC 1 to BC N. The number of battery cells shown in FIG4a is 14. The first control unit 400 collects a voltage signal from the voltage sensing unit 200 every unit time and records the voltage value of the cell voltage of each battery cell BC i in the first information. The unit time may be an integer multiple of the voltage measurement period of the voltage sensing unit 200.

第一控制单元400可以被配置为生成时间序列数据,该时间序列数据表示包括在第一信息中的电芯电压随时间流逝的历史。The first control unit 400 may be configured to generate time series data representing a history of the cell voltage included in the first information over time.

具体地,第一控制单元400可以基于每个电池电芯BCi的包括在第一信息中的电芯电压的电压值来生成表示每个电池电芯的电芯电压随时间流逝的历史的电芯电压时间序列数据。每当测量电芯电压时,电芯电压时间序列数据数量增加1。Specifically, the first control unit 400 may generate cell voltage time series data representing the history of the cell voltage of each battery cell over time based on the voltage value of the cell voltage of each battery cell BC i included in the first information. The number of cell voltage time series data increases by 1 each time the cell voltage is measured.

图4a中所示的多条电压曲线与多个电池电芯BC1至BCN一对一相关。因此,每条电压曲线均表示与其相关联的任何一个电池电芯BC的电芯电压的变化历史。The plurality of voltage curves shown in Fig. 4a are associated one-to-one with the plurality of battery cells BC1 to BC N. Therefore, each voltage curve represents a change history of the cell voltage of any one of the battery cells BC associated therewith.

第一控制单元400可以被配置为基于时间序列数据确定每个电池电芯的第一平均电芯电压和第二平均电芯电压。这里,第一平均电芯电压可以是短期移动平均值,并且第二平均电芯电压可以是长期移动平均值。The first control unit 400 may be configured to determine a first average cell voltage and a second average cell voltage of each battery cell based on the time series data. Here, the first average cell voltage may be a short-term moving average, and the second average cell voltage may be a long-term moving average.

具体地,第一控制单元400可以通过使用一个移动窗口或两个移动窗口来确定多个电池电芯BC1至BCN中每一者针对每个单位时间的移动平均值。当使用两个移动窗口时,一个移动窗口的时间长度不同于另一个移动窗口的时间长度。Specifically, the first control unit 400 may determine a moving average value for each unit time of each of the plurality of battery cells BC1 to BC N by using one moving window or two moving windows. When two moving windows are used, a time length of one moving window is different from a time length of the other moving window.

这里,每个移动窗口的时间长度为单位时间的整数倍,每个移动窗口的终点为当前时间点,并且每个移动窗口的起点为当前时间点之前预定时间长度的点。Here, the time length of each moving window is an integer multiple of the unit time, the end point of each moving window is the current time point, and the starting point of each moving window is a point of a predetermined time length before the current time point.

下文中,为了便于描述,在两个移动窗口中,与较短的时间长度相关联的一者将被称为第一移动窗口,并且与较长的时间长度相关联的一者将被称为第二移动窗口。Hereinafter, for convenience of description, of the two moving windows, the one associated with the shorter time length will be referred to as a first moving window, and the one associated with the longer time length will be referred to as a second moving window.

第一控制单元400可以仅使用第一移动窗口或者使用第一移动窗口和第二移动窗口两者来诊断每个电池电芯BCi的电压异常。The first control unit 400 may diagnose the voltage abnormality of each battery cell BC i using only the first moving window or using both the first moving window and the second moving window.

第一控制单元400可以基于针对每个单位时间收集的第i电池电芯BCi的电芯电压来比较第i电池电芯BCi的电芯电压的短期和长期变化趋势。The first control unit 400 may compare short-term and long-term variation trends of the cell voltage of the ith battery cell BC i based on the cell voltage of the ith battery cell BC i collected for each unit time.

第一控制单元400可以通过使用下面的等式1或等式2来确定关于每个单位时间的第一平均电芯电压,该第一平均电芯电压是借助第一移动窗口的第i电池电芯BCi的移动平均值。即,第一控制单元400可以使用第一移动窗口来确定每个电池电芯的第一平均电芯电压。The first control unit 400 may determine a first average cell voltage for each unit time, which is a moving average of the i-th battery cell BC i by means of a first moving window, by using the following Equation 1 or Equation 2. That is, the first control unit 400 may determine the first average cell voltage of each battery cell by using the first moving window.

等式1是使用算术平均方法的移动平均计算公式,等式2是使用加权平均方法的移动平均计算公式。Equation 1 is a moving average calculation formula using the arithmetic average method, and Equation 2 is a moving average calculation formula using the weighted average method.

<等式1><Equation 1>

<等式2><Equation 2>

在等式1和等式2中,k是指示当前时间点的时间索引,SMAi[k]是当前时间的第i电池电芯BCi的第一平均电芯电压,S是除以单位时间的第一移动窗口的时间长度,并且Vi[k]是当前时间点的第i电池电芯BCi的电芯电压。例如,如果单位时间为1秒,并且第一移动窗口的时间长度为10秒,则S为10。当x是小于或等于k的自然数时,Vi[k-x]和SMAi[k-x]分别表示时间索引为k-x时,第i电池电芯BCi的电芯电压和第一平均电芯电压。作为参考,第一控制单元400可以设定为关于每个单位时间将时间索引增加1。In Equation 1 and Equation 2, k is a time index indicating a current time point, SMA i [k] is a first average cell voltage of an i-th battery cell BC i at the current time, S is a time length of a first moving window divided by a unit time, and Vi [k] is a cell voltage of an i-th battery cell BC i at the current time point. For example, if the unit time is 1 second and the time length of the first moving window is 10 seconds, S is 10. When x is a natural number less than or equal to k, Vi [kx] and SMA i [kx] represent a cell voltage and a first average cell voltage of an i-th battery cell BC i when the time index is kx, respectively. For reference, the first control unit 400 may be set to increase the time index by 1 for each unit time.

第一控制单元400可以通过使用下面的等式3或等式4来确定关于每个单位时间的第二平均电芯电压,该第二平均电芯电压是借助第二移动窗口的第i电池电芯BCi的移动平均值。即,第二控制单元400可以使用第二移动窗口来确定第二平均电芯电压。The first control unit 400 may determine a second average cell voltage per unit time, which is a moving average of the i-th battery cell BC i by means of a second moving window, by using the following Equation 3 or Equation 4. That is, the second control unit 400 may determine the second average cell voltage by using the second moving window.

等式3是使用算术平均方法的移动平均计算公式,并且等式4是使用加权平均方法的移动平均计算公式。Equation 3 is a moving average calculation formula using an arithmetic average method, and Equation 4 is a moving average calculation formula using a weighted average method.

<等式3><Equation 3>

<等式4><Equation 4>

在等式3和等式4中,k是指示当前时间点的时间索引,LMAi[k]是当前时间的第i电池电芯BCi的第二平均电芯电压,L是除以单位时间的第二移动窗口的时间长度,并且Vi[k]是当前时间点的第i电池电芯BCi的电芯电压。例如,如果单位时间为1秒,并且第二移动窗口的时间长度为100秒,则L为100。当x是小于或等于k的自然数时,LMAi[k-x]表示时间索引为k-x时的第二平均电芯电压。In Equation 3 and Equation 4, k is a time index indicating a current time point, LMA i [k] is a second average cell voltage of an i-th battery cell BC i at the current time, L is a time length of a second moving window divided by a unit time, and V i [k] is a cell voltage of an i-th battery cell BC i at the current time point. For example, if the unit time is 1 second and the time length of the second moving window is 100 seconds, L is 100. When x is a natural number less than or equal to k, LMA i [kx] represents a second average cell voltage when the time index is kx.

在一个实施方式中,作为等式1至4的Vi[k],第一控制单元400可以输入电芯组CG在当前时间点的标准电芯电压与电池电芯BCi的电芯电压之间的差,而不是输入每个电池电芯BCi在当前时间点的电芯电压。In one embodiment, as Vi [k] of Equations 1 to 4, the first control unit 400 may input the difference between the standard cell voltage of the cell group CG at the current time point and the cell voltage of the battery cell BC i , instead of inputting the cell voltage of each battery cell BC i at the current time point.

电芯组CG在当前时间点的标准电芯电压为根据多个电池电芯BC1至BCN确定的多个电芯电压在当前时间点的平均值。在变型例中,多个电芯电压的平均值可以由中值替换。The standard cell voltage of the cell group CG at the current time point is an average value of a plurality of cell voltages at the current time point determined based on the plurality of battery cells BC1 to BC N. In a modified example, the average value of the plurality of cell voltages may be replaced by a median value.

具体地,第一控制单元400可以将下面等式5的VDi[k]设定为等式1至4的Vi[k]。Specifically, the first control unit 400 may set VD i [k] of the following Equation 5 to V i [k] of Equations 1 to 4.

<等式5><Equation 5>

VDi[k]=Vav[k]–Vi[k]VD i [k] = Vav [k] – V i [k]

在等式5中,Vav[k]是多个电芯电压的平均值,该多个电芯电压的平均值作为电芯组CG在当前时间点的标准电芯电压。In Equation 5, Vav[k] is an average value of multiple cell voltages, which is used as the standard cell voltage of the cell group CG at the current time point.

当第一移动窗口的时间长度短于第二移动窗口的时间长度时,第一平均电芯电压可以称为电芯电压的“短期移动平均值”,并且第二平均电芯电压可以称为电芯电压的“长期移动平均值”。When the time length of the first moving window is shorter than the time length of the second moving window, the first average cell voltage may be referred to as a “short-term moving average” of the cell voltage, and the second average cell voltage may be referred to as a “long-term moving average” of the cell voltage.

第一控制单元可以基于第一平均电芯电压和第二平均电芯电压之间的差来检测电池电芯的电压异常。将参考图4b对此进行详细描述。The first control unit may detect voltage abnormality of the battery cell based on a difference between the first average cell voltage and the second average cell voltage. This will be described in detail with reference to FIG. 4b.

第一控制单元可以针对多个电池电芯中的每一者确定与电池电芯的第一平均电芯电压和第二平均电芯电压之间的差相对应的长期和短期平均差。The first control unit may determine, for each of the plurality of battery cells, long-term and short-term average differences corresponding to a difference between a first average cell voltage and a second average cell voltage of the battery cells.

图4b示出了根据图4a中所示的多条电压曲线确定的第i电池电芯BCi的电芯电压的短期移动平均线和长期移动平均线。在图4b中,横轴表示时间,纵轴表示电芯电压的移动平均值。Fig. 4b shows the short-term moving average and the long-term moving average of the cell voltage of the i-th battery cell BC i determined according to the multiple voltage curves shown in Fig. 4a. In Fig. 4b, the horizontal axis represents time and the vertical axis represents the moving average of the cell voltage.

参考图4b,由虚线指示的多条移动平均线Si与多个电池电芯BC1至BCN一对一相关,并且表示每个电池电芯BC的第一平均电芯电压(SMAi[k])根据时间的变化历史。此外,实线指示的多条移动平均线Li与多个电池电芯BC1至BCN一对一相关,并且表示每个电池电芯BC的第二平均电芯电压(LMAi[k])根据时间的变化历史。4b, a plurality of moving average lines Si indicated by dotted lines are one-to-one related to a plurality of battery cells BC1 to BC N , and represent a change history of a first average cell voltage (SMA i [k]) of each battery cell BC according to time. In addition, a plurality of moving average lines Li indicated by solid lines are one-to-one related to a plurality of battery cells BC1 to BC N , and represent a change history of a second average cell voltage (LMA i [k]) of each battery cell BC according to time.

分别使用等式2和等式4获取虚线图表和实线图表。此外,等式5的VDi[k]被用作等式2和等式4的Vi[k],并且Vav[k]设定为多个电芯电压的平均值。第一移动窗口的时间长度为10秒,并且第二移动窗口的时间长度为100秒。The dashed line graph and the solid line graph are obtained using Equation 2 and Equation 4, respectively. In addition, VD i [k] of Equation 5 is used as V i [k] of Equation 2 and Equation 4, and Vav [k] is set to the average value of the plurality of cell voltages. The time length of the first moving window is 10 seconds, and the time length of the second moving window is 100 seconds.

第一控制单元400可以确定多个电池电芯的所确定的长期平均差和短期平均差的平均值。The first control unit 400 may determine an average value of the determined long-term average differences and short-term average differences of the plurality of battery cells.

此外,针对多个电池电芯中的每一者,第一控制单元400可以确定对应于所有电池电芯的长期和短期平均差的平均值与该电池电芯的长期和短期平均差之间的偏差的电池电芯诊断偏差。例如,第一控制单元400可以通过计算每个电池电芯的长期和短期平均差与长期和短期平均差之间的偏差来确定每个电池电芯的电芯诊断偏差。In addition, for each of the plurality of battery cells, the first control unit 400 may determine a battery cell diagnostic deviation corresponding to a deviation between an average of the long-term and short-term average differences of all the battery cells and the long-term and short-term average difference of the battery cell. For example, the first control unit 400 may determine the battery cell diagnostic deviation of each battery cell by calculating a deviation between the long-term and short-term average difference of each battery cell and the long-term and short-term average difference.

图4c示出了与图4b中所示的每个电池电芯的第一平均电芯电压(SMAi[k])和第二平均电芯电压(LMAi[k])之间的差相对应的长期和短期平均差(绝对值)根据时间的变化。在图4c中,横轴表示时间,纵轴表示每个电池电芯BCi的长期和短期平均差。Fig. 4c shows the change of the long-term and short-term average differences (absolute values) corresponding to the difference between the first average cell voltage (SMA i [k]) and the second average cell voltage (LMA i [k]) of each battery cell shown in Fig. 4b according to time. In Fig. 4c, the horizontal axis represents time, and the vertical axis represents the long-term and short-term average differences of each battery cell BC i .

每个电池电芯BCi的长期和短期平均差是针对每个单位时间的每个电池电芯BCi的第一平均电芯电压SMAi和第二平均电芯电压LMAi之间的差。作为实施例,第i电池电芯BCi的长期和短期平均差可以与通过从SMAi[k]和LMAi[k]中的一者(例如,较大的一者)减去另一者(例如,较小的一者)而获取的值相同。The long-term and short-term average difference of each battery cell BC i is the difference between the first average cell voltage SMA i and the second average cell voltage LMA i of each battery cell BC i for each unit time. As an example, the long-term and short-term average difference of the i-th battery cell BC i may be the same as a value obtained by subtracting one (e.g., the larger one) of SMA i [k] and LMA i [k] from the other (e.g., the smaller one).

第i电池电芯BCi的长期和短期平均差取决于第i电池电芯BCi的电芯电压的短期和长期变化。The long-term and short-term average differences of the ith battery cell BC i depend on the short-term and long-term variations of the cell voltage of the ith battery cell BC i .

第i电池电芯BCi的温度或SOH短期以及长期地连续影响第i电池电芯BCi的电芯电压。因此,如果不存在第i电池电芯BCi的电压异常,则第i电池电芯BCi的长期和短期平均差与其它电池电芯的长期和短期平均差没有显著不同。The temperature or SOH of the i-th battery cell BC i continuously affects the cell voltage of the i-th battery cell BC i in the short term and in the long term. Therefore, if there is no voltage abnormality of the i-th battery cell BC i , the long-term and short-term average differences of the i-th battery cell BC i are not significantly different from those of other battery cells.

另一方面,由于第i电池电芯BCi中的内部短路和/或外部短路而突然产生的电压异常对第一平均电芯电压(SMAi[k])的影响程度大于对第二平均电芯电压(LMAi[k])的影响。结果,第i电池电芯BCi的长期和短期平均差与没有电压异常的剩余电池电芯的长期和短期平均差具有较大偏差。On the other hand, the voltage abnormality suddenly generated due to the internal short circuit and/or the external short circuit in the i-th battery cell BCi affects the first average cell voltage ( SMAi [k]) to a greater extent than the second average cell voltage ( LMAi [k]). As a result, the long-term and short-term average differences of the i-th battery cell BCi have a large deviation from the long-term and short-term average differences of the remaining battery cells without voltage abnormality.

第一控制单元400可以针对每个单位时间确定每个电池电芯BCi的长期和短期平均差(|SMAi[k]-LMAi[k]|)。此外,第一控制单元400可以确定长期和短期平均差(|SMAi[k]-LMAi[k]|)的平均值。下文中,平均值表示为|SMAi[k]-LMAi[k]|av。第一控制单元400还可以确定长期和短期平均差(|SMAi[k]-LMAi[k]|)与长期和短期平均差的平均值(|SMAi[k]-LMAi[k]|av)相比的偏差作为电芯诊断偏差(Ddiag,i[k])。此外,第一控制单元400可以基于电芯诊断偏差(Ddiag,i[k])来检测每个电池电芯BCi的电压异常。The first control unit 400 may determine the long-term and short-term average differences (|SMA i [k]-LMA i [k]|) of each battery cell BC i for each unit time. In addition, the first control unit 400 may determine the average value of the long-term and short-term average differences (|SMA i [k]-LMA i [k]|). Hereinafter, the average value is expressed as |SMA i [k]-LMA i [k]|av. The first control unit 400 may also determine the deviation of the long-term and short-term average differences (|SMAi[k]-LMAi[k]|) from the average value of the long-term and short-term average differences (|SMAi[k]-LMAi[k]|av) as a cell diagnostic deviation (Ddiag, i[k]). In addition, the first control unit 400 may detect the voltage abnormality of each battery cell BC i based on the cell diagnostic deviation (Ddiag, i[k]).

在实施方式中,对于多个电池电芯中的至少一个电池电芯,第一控制单元400可以将满足电芯诊断偏差超过诊断阈值的条件的电芯检测为电压异常电芯。例如,当第i电池电芯BCi的电芯诊断偏差(Ddiag,i[k])超过预设诊断阈值(例如,0.015)时,第一控制单元400可以判断对应的第i电池电芯BCi中发生了电压异常,并检测电池电芯的电压异常。In an embodiment, for at least one battery cell among the plurality of battery cells, the first control unit 400 may detect a battery cell that satisfies a condition that the battery cell diagnosis deviation exceeds a diagnosis threshold as a battery cell with abnormal voltage. For example, when the battery cell diagnosis deviation (Ddiag, i[k]) of the i-th battery cell BCi exceeds a preset diagnosis threshold (e.g., 0.015), the first control unit 400 may determine that a voltage abnormality has occurred in the corresponding i-th battery cell BCi , and detect the voltage abnormality of the battery cell.

在另一实施方式中,第一控制单元400可以根据多个电池电芯的电芯诊断偏差的标准偏差来确定统计变量阈值。此外,第一控制单元400可以基于统计变量阈值来对时间序列数据进行滤波,以便生成经滤波的时间序列数据。最后,第一控制单元400可以被配置为针对多个电池电芯中的至少一个电池电芯,基于时间或经滤波的时间序列数据的数据数量超过诊断阈值来检测电池电芯的电压异常。这里,为了便于说明,稍后将通过考虑归一化电芯诊断偏差的以下实施方式来详细描述使用统计变量阈值来检测电池电芯的电压异常的特征。In another embodiment, the first control unit 400 may determine a statistical variable threshold value based on a standard deviation of the cell diagnostic deviations of the plurality of battery cells. In addition, the first control unit 400 may filter the time series data based on the statistical variable threshold value to generate filtered time series data. Finally, the first control unit 400 may be configured to detect a voltage anomaly of the battery cell based on a time or a number of data of the filtered time series data exceeding a diagnostic threshold value for at least one of the plurality of battery cells. Here, for ease of explanation, the features of detecting a voltage anomaly of a battery cell using a statistical variable threshold value will be described in detail later by considering the following embodiments of normalized cell diagnostic deviations.

同时,第一控制单元400可以确定与所确定的多个电池电芯的长期和短期平均差的平均值相对应的归一化值。此外,第一控制单元400可以针对多个电池电芯中的每一者根据归一化值来将长期和短期平均差归一化。Meanwhile, the first control unit 400 may determine a normalization value corresponding to the determined average of the long-term and short-term average differences of the plurality of battery cells. In addition, the first control unit 400 may normalize the long-term and short-term average differences according to the normalization value for each of the plurality of battery cells.

例如,第一控制单元400可以使用归一化标准值来将每个电池电芯BCi的长期和短期平均差(|SMAi[k]-LMAi[k]|)归一化,以便检测电压异常。优选地,归一化标准值是长期和短期平均差的平均值(|SMAi[k]-LMAi[k]|av)。For example, the first control unit 400 may use the normalized standard value to normalize the long-term and short-term average differences (|SMAi[k]-LMAi[k]|) of each battery cell BC i in order to detect voltage abnormality. Preferably, the normalized standard value is the average value of the long-term and short-term average differences (|SMAi[k]-LMAi[k]|av).

具体地,第一控制单元400可以将第一至第N电池电芯BCi至BCN的长期和短期平均差的平均值(|SMAi[k]-LMAi[k]|av)设定为归一化标准值。第一控制单元400还可以将每个电池电芯BCi的长期和短期平均差(|SMAi[k]-LMAi[k]|)除以归一化标准值以将长期和短期平均差(|SMAi[k]-LMAi[k]|)归一化。Specifically, the first control unit 400 may set the average value (|SMA i [k]-LMA i [k]|av) of the long-term and short-term average differences of the first to Nth battery cells BC i to BC N as a normalized standard value. The first control unit 400 may also divide the long-term and short-term average differences (|SMA i [k]-LMA i [k]|) of each battery cell BC i by the normalized standard value to normalize the long-term and short-term average differences (|SMA i [k]-LMA i [k]|).

下面的等式6表示将每个电池电芯BCi的长期和短期平均差(|SMAi[k]-LMAi[k]|)归一化等式。在实施方式中,由等式6计算的值可以称为归一化电芯诊断偏差(D*diag,i[k])。The following equation 6 represents an equation for normalizing the long-term and short-term average differences (|SMA i [k]-LMA i [k]|) of each battery cell BC i . In an embodiment, the value calculated by equation 6 may be referred to as a normalized cell diagnostic deviation (D*diag,i[k]).

<等式6><Equation 6>

D*diag,i[k]=(|SMAi[k]-LMAi[k]|)÷(|SMAi[k]-LMAi[k]|av)D*diag, i[k]=(|SMA i [k]-LMA i [k]|)÷(|SMA i [k]-LMA i [k]|av)

在等式6中,|SMAi[k]-LMAi[k]|是第i电池电芯BCi在当前时间点的长期和短期平均差,|SMAi[k]-LMAi[k]|av是所有电池电芯的长期和短期平均差的平均值(归一化标准值),并且D*diag,i[k]是第i电池电芯BCi在当前时间点的归一化电芯诊断偏差。符号“*”指示参数被归一化。In Equation 6, |SMA i [k]-LMA i [k]| is the long-term and short-term average differences of the i-th battery cell BC i at the current time point, |SMA i [k]-LMA i [k]|av is the average value (normalized standard value) of the long-term and short-term average differences of all battery cells, and D*diag,i[k] is the normalized cell diagnostic deviation of the i-th battery cell BC i at the current time point. The symbol “*” indicates that the parameter is normalized.

每个电池电芯BCi的长期和短期平均差(|SMAi[k]-LMAi[k]|)也可以通过下面的等式7的对数运算来归一化。在实施方式中,由等式7计算的值也可以称为归一化电芯诊断偏差(D*diag,i[k])。The long-term and short-term average differences (|SMA i [k]-LMA i [k]|) of each battery cell BC i may also be normalized by the logarithmic operation of the following equation 7. In an embodiment, the value calculated by equation 7 may also be referred to as a normalized cell diagnostic deviation (D*diag,i[k]).

<等式7><Equation 7>

D*diag,i[k]=Log|SMAi[k]-LMAi[k]|D*diag,i[k]=Log|SMA i [k]-LMA i [k]|

图4d示出了每个电池电芯BCi的归一化电芯诊断偏差(D*diag,i[k])随时间的变化。使用等式6计算电芯诊断偏差(D*diag,i[k])。在图4d中,横轴表示时间,纵轴表示每个电池电芯BCi的电芯诊断偏差(D*diag,i[k])。FIG4d shows the change of the normalized cell diagnostic deviation (D*diag, i[k]) of each battery cell BC i over time. The cell diagnostic deviation (D*diag, i[k]) is calculated using Equation 6. In FIG4d, the horizontal axis represents time, and the vertical axis represents the cell diagnostic deviation (D*diag, i[k]) of each battery cell BC i .

参考图4d,随着每个电池电芯BCi的长期和短期平均差(|SMAi[k]-LMAi[k]|)被归一化,可以看出每个电池电芯BCi的长期和短期平均差的变化基于平均值被放大。因此,可以更准确地检测电池电芯的电压异常。4d, as the long-term and short-term average differences (|SMA i [k]-LMA i [k]|) of each battery cell BC i are normalized, it can be seen that the change in the long-term and short-term average differences of each battery cell BC i is amplified based on the average value. Therefore, the voltage abnormality of the battery cell can be detected more accurately.

第一控制单元400可以根据多个电池电芯的归一化电芯诊断偏差的标准偏差来确定统计变量阈值。The first control unit 400 may determine the statistical variable threshold value according to the standard deviation of the normalized cell diagnostic deviations of the plurality of battery cells.

例如,第一控制单元400可以通过将每个电池电芯BCi的归一化电芯诊断偏差(D*diag,i[k])与统计变量阈值(Dthreshold[k])进行比较来检测每个电池电芯BCi中的电压异常。For example, the first control unit 400 may detect a voltage abnormality in each battery cell BC i by comparing the normalized cell diagnostic deviation (D*diag,i[k]) of each battery cell BC i with a statistical variable threshold value (Dthreshold[k]).

例如,第一控制单元400可以使用下面的等式8来确定针对每个单位时间的统计变量阈值(Dthreshold[k])。For example, the first control unit 400 may determine the statistical variable threshold value (Dthreshold[k]) for each unit time using Equation 8 below.

<等式8><Equation 8>

Dthreshold[k]=β*Sigma(D*diag,i[k])Dthreshold[k]=β*Sigma(D*diag,i[k])

在等式8中,Sigma是计算时间索引k处的所有电池电芯BC的归一化电芯诊断偏差(D*diag,i[k])的标准偏差的函数。β是确定诊断灵敏度的因子。可以通过试错适当地确定β,使得当本公开应用于包含具有实际电压异常的电池电芯的电芯组时,可以将对应的电池电芯检测为电压异常电芯。在一个实施例中,β可以设定为5或更大、或者6或更大、或者7或更大、或者8或更大、或者9或更大。由于等式8产生的Dthreshold[k]为多个,因此它们构成时间序列数据。In Equation 8, Sigma is a function that calculates the standard deviation of the normalized cell diagnostic deviation (D*diag, i[k]) of all battery cells BC at time index k. β is a factor that determines the diagnostic sensitivity. β can be appropriately determined by trial and error so that when the present disclosure is applied to a cell group containing battery cells with actual voltage anomalies, the corresponding battery cells can be detected as voltage abnormal cells. In one embodiment, β can be set to 5 or greater, or 6 or greater, or 7 or greater, or 8 or greater, or 9 or greater. Since the Dthreshold[k] generated by Equation 8 is multiple, they constitute time series data.

另一方面,在电压异常的电池电芯中,归一化电芯诊断偏差(D*diag,i[k])相对大于正常的电池电芯。因此,在计算时间索引k处的Sigma(D*diag,i[k])以提高检测准确度和可靠性时,期望排除对应于最大值的max(D*diag,i[k])。这里,max是返回多个输入变量的最大值的函数,并且输入变量是所有电池电芯的归一化电芯诊断偏差(D*diag,i[k])。On the other hand, in a battery cell with abnormal voltage, the normalized cell diagnostic deviation (D*diag, i[k]) is relatively greater than that of a normal battery cell. Therefore, when calculating Sigma(D*diag, i[k]) at time index k to improve detection accuracy and reliability, it is desirable to exclude max(D*diag, i[k]) corresponding to the maximum value. Here, max is a function that returns the maximum value of multiple input variables, and the input variable is the normalized cell diagnostic deviation (D*diag, i[k]) of all battery cells.

在图4d中,表示统计变量阈值(Dthreshold[k])的时间变化的时间序列数据对应于所有分布中最暗颜色中指示的分布。In FIG. 4 d , time series data representing temporal changes in the threshold value (Dthreshold[k]) of a statistical variable corresponds to the distribution indicated in the darkest color among all the distributions.

第一控制单元400可以被配置为基于统计变量阈值对每个电池电芯的归一化长期和短期平均差进行滤波,以便针对多个电池电芯中的每个电池电芯生成经滤波的时间序列数据。The first control unit 400 may be configured to filter the normalized long-term and short-term average differences of each battery cell based on a statistical variable threshold value to generate filtered time series data for each battery cell of the plurality of battery cells.

具体地,第一控制单元400可以通过基于统计变量阈值对每个电池电芯的电芯诊断偏差的时间序列数据进行滤波来生成滤波诊断值的时间序列数据。Specifically, the first control unit 400 may generate the time series data of the filtered diagnosis value by filtering the time series data of the cell diagnosis deviation of each battery cell based on the statistical variable threshold.

例如,第一控制单元400可以确定时间索引k处的统计变量阈值(Dthreshold[k]),然后通过使用下面的等式9对每个电池电芯BCi的归一化电芯诊断偏差(D*diag,i[k])进行滤波来确定滤波诊断值(Dfilter,i[k])。For example, the first control unit 400 may determine a statistical variable threshold value (Dthreshold[k]) at time index k, and then determine a filtered diagnostic value (Dfilter,i[k]) by filtering the normalized cell diagnostic deviation (D*diag,i[k]) of each battery cell BC i using Equation 9 below.

<等式9><Equation 9>

Dfilter,i[k]=D*diag,i[k]-Dthreshold[k](IF D*diag,i[k]>Dthreshold[k])Dfilter, i[k]=D*diag, i[k]-Dthreshold[k] (IF D*diag, i[k]>Dthreshold[k])

Dfilter,i[k]=0(IF D*diag,i[k]≤Dthreshold[k])Dfilter, i[k]=0(IF D*diag, i[k]≤Dthreshold[k])

可以关于每个电池电芯BCi向滤波诊断值(Dfilter,i[k])分配两个值。即,如果电芯诊断偏差(D*diag,i[k])大于统计变量阈值(Dthreshold[k]),则将电芯诊断偏差(D*diag,i[k])和统计变量阈值(Dthreshold[k])的差分配给滤波诊断值(Dfilter,i[k])。另一方面,如果电芯诊断偏差(D*diag,i[k])小于或等于统计变量阈值(Dthreshold[k]),则将0分配给滤波诊断值(Dfilter,i[k])。Two values may be assigned to the filter diagnostic value (Dfilter, i[k]) for each battery cell BCi. That is, if the cell diagnostic deviation (D*diag, i[k]) is greater than the statistical variable threshold value (Dthreshold[k]), the difference between the cell diagnostic deviation (D*diag, i[k]) and the statistical variable threshold value (Dthreshold[k]) is assigned to the filter diagnostic value (Dfilter, i[k]). On the other hand, if the cell diagnostic deviation (D*diag, i[k]) is less than or equal to the statistical variable threshold value (Dthreshold[k]), 0 is assigned to the filter diagnostic value (Dfilter, i[k]).

第一控制单元400可以被配置为针对多个电池电芯中的至少一个电池电芯基于经滤波的时间序列数据超过诊断阈值的时间或数据数量来检测电池电芯的电压异常。The first control unit 400 may be configured to detect voltage abnormality of the battery cell based on a time or a data number at which the filtered time series data exceeds a diagnosis threshold for at least one battery cell among the plurality of battery cells.

具体地,第一控制单元400可以根据滤波诊断值超过诊断阈值的时间或超过诊断阈值的滤波诊断值的数据数量检测电池电芯的电压异常。Specifically, the first control unit 400 may detect the voltage abnormality of the battery cell according to the time when the filtered diagnostic value exceeds the diagnostic threshold or the number of data of the filtered diagnostic value exceeding the diagnostic threshold.

图4e是示出通过对时间索引k处的电芯诊断偏差(D*diag,i[k])进行滤波而获取的滤波诊断值(Dfilter,i[k])的时间序列数据的图。FIG. 4 e is a diagram showing time series data of filtered diagnostic values (D filter, i[k]) obtained by filtering the cell diagnostic deviation (D*diag, i[k]) at time index k.

参考图4e,在特定电池电芯的滤波诊断值(Dfilter,i[k])中找到具有约3000秒的正值的不规则图案。作为参考,具有不规则图案的特定电池电芯是具有由图4d中的A指示的时间序列数据的电池电芯。4e, an irregular pattern having a positive value of about 3000 seconds is found in the filtered diagnostic value (Dfilter,i[k]) of the specific battery cell. For reference, the specific battery cell having the irregular pattern is the battery cell having the time series data indicated by A in FIG4d.

在一个实施例中,第一控制单元400可以针对每个电池电芯BCi对滤波诊断值(Dfilter,i[k])的时间序列数据中滤波诊断值(Dfilter,i[k])大于诊断阈值(例如,0)的时间区域进行积分,并将使积分时间大于预设标准时间的条件成立的电池电芯检测为电压异常电芯。In one embodiment, the first control unit 400 may integrate the time region in which the filtered diagnostic value (Dfilter, i[k]) is greater than a diagnostic threshold value (e.g., 0) in the time series data of the filtered diagnostic value (Dfilter, i[k]) for each battery cell BC i, and detect the battery cell for which the condition that the integration time is greater than a preset standard time is met as a battery cell with abnormal voltage.

优选地,第一控制单元400可以对连续满足滤波诊断值(Dfilter,i[k])大于诊断阈值的条件的时间区域进行积分。如果存在多个对应的时间区间,则第一控制单元400可以针对每个时间区间独立地计算积分时间。Preferably, the first control unit 400 may integrate the time region that continuously satisfies the condition that the filter diagnosis value (Dfilter, i[k]) is greater than the diagnosis threshold. If there are multiple corresponding time intervals, the first control unit 400 may independently calculate the integration time for each time interval.

第一控制单元400可以根据滤波诊断值超过诊断阈值的时间或超过诊断阈值的滤波诊断值的数据数量来检测电池电芯的电压异常。The first control unit 400 may detect the voltage abnormality of the battery cell according to the time for which the filtered diagnostic value exceeds the diagnostic threshold or the number of data of the filtered diagnostic value exceeding the diagnostic threshold.

例如,第一控制单元400可以针对每个电池电芯BCi对滤波诊断值(Dfilter,i[k])的时间序列数据中滤波诊断值(Dfilter,i[k])大于诊断阈值(例如,0)的时间区域中包括的数据数量进行积分,并将使数据积分值大于预设标准计数的条件成立的电池电芯检测为电压异常电芯。For example, the first control unit 400 can integrate the number of data included in the time region in which the filtered diagnostic value (Dfilter, i[k]) is greater than the diagnostic threshold (e.g., 0) in the time series data of the filtered diagnostic value (Dfilter, i[k]) for each battery cell BC i, and detect the battery cell for which the condition that the data integration value is greater than a preset standard count is met as a battery cell with abnormal voltage.

优选地,第一控制单元400可以仅对连续满足滤波诊断值(Dfilter,i[k])大于诊断阈值的条件的时间区域中包括的数据数量进行积分。如果对应的时间区域为多个,则第一控制单元400可以独立地对每个时间区域的数据数量进行积分。Preferably, the first control unit 400 may integrate only the amount of data included in the time region that continuously satisfies the condition that the filter diagnosis value (Dfilter, i[k]) is greater than the diagnosis threshold. If there are multiple corresponding time regions, the first control unit 400 may independently integrate the amount of data in each time region.

同时,第一控制单元400可以将等式1至5的Vi[k]替换为图4d中所示的每个电池电芯BCi的归一化电芯诊断偏差(D*diag,i[k])。另外,在时间索引k处,第一控制单元400可以计算电芯诊断偏差(D*diag,i[k])的长期和短期平均差(|SMAi[k]-LMAi[k]|)的平均值,计算电芯诊断偏差(D*diag,i[k])的长期和短期平均差(|SMAi[k]-LMAi[k]|)的平均值,计算与平均值相比的长期和短期平均差(|SMAi[k]-LMAi[k]|)的差对应的电芯诊断偏差(Ddiag,i[k]),使用等式6计算长期和短期平均差(|SMAi[k]-LMAi[k]|)的归一化电芯诊断偏差(D*diag,i[k]),使用等式8确定归一化电芯诊断偏差(D*diag,i[k])的统计变量阈值(Dthreshold[k]),使用等式9通过对电芯诊断偏差(D*diag,i[k])进行滤波来确定滤波诊断值(Dfilter,i[k]),并且以递归方式使用时间序列数据来检测电池电芯的电压异常。At the same time, the first control unit 400 may replace V i [k] in equations 1 to 5 with the normalized cell diagnostic deviation (D*diag, i[k]) of each battery cell BC i shown in FIG. 4d. In addition, at time index k, the first control unit 400 may calculate the average value of the long-term and short-term average differences (|SMA i [k]-LMA i [k]|) of the cell diagnostic deviation (D*diag, i[k]), calculate the average value of the long-term and short-term average differences (|SMA i [k]-LMA i [k]|) of the cell diagnostic deviation (D*diag, i[k]), calculate the cell diagnostic deviation (Ddiag, i [k]) corresponding to the difference between the long-term and short-term average differences (|SMA i [k]-LMA i [k]|) compared with the average value, and calculate the long-term and short-term average differences (|SMA i [k]-LMA i [k]| ) using equation 6. [k]|), determine the statistical variable threshold (Dthreshold[k]) of the normalized cell diagnostic deviation (D*diag, i[k]) using Equation 8, determine the filtered diagnostic value (Dfilter, i[k]) by filtering the cell diagnostic deviation (D*diag, i[k]) using Equation 9, and recursively use the time series data to detect voltage anomalies of the battery cells.

图4f是示出归一化电芯诊断偏差(D*diag,i[k])的时间序列数据(图4d)的长期和短期平均差(|SMAi[k]-LMAi[k]|)根据时间进行变化的图表。在用于计算长期和短期平均差(|SMAi[k]-LMAi[k]|)的等式2、等式4和等式5中,Vi[k]可以用D*diag i[k]替换,并且Vav[k]可以用D*diag i[k]的平均值替换。FIG4f is a graph showing changes in the long-term and short-term average differences (|SMA i [k]-LMA i [k]|) of the time series data ( FIG4d ) of the normalized cell diagnostic deviation (D*diag, i [k]) according to time. In Equations 2, 4, and 5 for calculating the long-term and short-term average differences (|SMA i [k]-LMA i [k]|), V i [k] may be replaced with D*diag i[k], and Vav[k] may be replaced with the average value of D*diag i[k].

图4g是示出使用等式6计算的归一化电芯诊断偏差(D*diag,i[k])的时间序列数据的图表。在图4g中,统计变量阈值(Dthreshold[k])的时间序列数据对应于以最暗颜色指示的分布。4g is a graph showing time series data of normalized cell diagnostic deviation (D*diag,i[k]) calculated using Equation 6. In FIG4g , time series data of the statistical variable threshold value (Dthreshold[k]) corresponds to the distribution indicated in the darkest color.

图4h是示出通过使用等式9对电芯诊断偏差(D*diag,i[k])的时间序列数据进行滤波而获取的滤波诊断值(Dfilter,i[k])的时间序列数据的分布。FIG. 4h is a graph showing the distribution of time series data of filtered diagnostic values (Dfilter, i[k]) obtained by filtering the time series data of cell diagnostic deviations (D*diag, i[k]) using Equation 9. FIG.

在一个实施例中,第一控制单元400可以针对每个电池电芯BCi对滤波诊断值(Dfilter,i[k])的时间序列数据中滤波诊断值(Dfilter,i[k])大于诊断阈值(例如,0)的时间区域进行积分,并将使积分时间大于预设标准时间的条件成立的电池电芯检测为电压异常电芯。In one embodiment, the first control unit 400 may integrate the time region in which the filtered diagnostic value (Dfilter, i[k]) is greater than a diagnostic threshold value (e.g., 0) in the time series data of the filtered diagnostic value (Dfilter, i[k]) for each battery cell BC i, and detect the battery cell for which the condition that the integration time is greater than a preset standard time is met as a battery cell with abnormal voltage.

优选地,第一控制单元400可以对连续满足滤波诊断值(Dfilter,i[k])大于诊断阈值的条件的时间区域进行积分。如果对应的时间区域为多个,则第一控制单元400可以针对每个时间区域独立地计算积分时间。Preferably, the first control unit 400 may integrate the time region that continuously satisfies the condition that the filter diagnosis value (Dfilter, i[k]) is greater than the diagnosis threshold. If there are multiple corresponding time regions, the first control unit 400 may independently calculate the integration time for each time region.

在另一实施例中,第一控制单元400可以针对每个电池电芯BCi对滤波诊断值(Dfilter,i[k])的时间序列数据中滤波诊断值(Dfilter,i[k])大于诊断阈值(例如,0)的时间区域中包括的数据数量进行积分,并将使数据积分值大于预设标准计数的条件成立的电池电芯检测为电压异常电芯。In another embodiment, the first control unit 400 may integrate the number of data included in the time region in which the filtered diagnostic value (Dfilter, i[k]) is greater than a diagnostic threshold value (e.g., 0) in the time series data of the filtered diagnostic value (Dfilter, i[k]) for each battery cell BC i, and detect the battery cell for which the condition that the data integration value is greater than a preset standard count is met as a battery cell with abnormal voltage.

优选地,第一控制单元400可以仅对连续满足滤波诊断值(Dfilter,i[k])大于诊断阈值的时间区域中包括的数据数量进行积分。如果对应的时间区域为多个,则第一控制单元400可以独立地对每个时间区域的数据数量进行积分。Preferably, the first control unit 400 may integrate only the amount of data included in the time region that continuously satisfies the filter diagnosis value (Dfilter, i[k]) greater than the diagnosis threshold. If there are multiple corresponding time regions, the first control unit 400 may independently integrate the amount of data in each time region.

第一控制单元400可以另外按标准数量重复上述递归运算过程多次。即,第一控制单元400可以用归一化电芯诊断偏差(D*diag,i[k])的时间序列数据(例如,图4g的数据)替换图4a中所示的电压时间序列数据。另外,在时间索引k处,第一控制单元400可以计算长期和短期平均差(|SMAi[k]-LMAi[k]|),计算长期和短期平均差(|SMAi[k]-LMAi[k]|)的平均值,计算与平均值相比的长期和短期平均差(|SMAi[k]-LMAi[k]|)的差对应的电芯诊断偏差(Ddiag,i[k]),计算长期和短期平均差(|SMAi[k]-LMAi[k]|)的归一化电芯诊断偏差(D*diag,i[k]),使用等式6计算长期和短期平均差(|SMAi[k]-LMAi[k]|)的归一化电芯诊断偏差(D*diag,i[k]),使用等式8确定电芯诊断偏差(D*diag,i[k])的统计变量阈值(Dthreshold[k]),通过使用等式9对电芯诊断偏差(D*diag,i[k])进行滤波来确定滤波诊断值Dfilter,i[k],并且以递归方式使用滤波诊断值Dfilter,i[k]的时间序列数据来检测电池电芯的电压异常。The first control unit 400 may additionally repeat the above recursive operation process multiple times according to a standard number. That is, the first control unit 400 may replace the voltage time series data shown in FIG. 4a with the time series data of the normalized cell diagnostic deviation (D*diag, i[k]) (e.g., the data of FIG. 4g). In addition, at time index k, the first control unit 400 may calculate the long-term and short-term average differences (|SMA i [k]-LMA i [k]|), calculate the average value of the long-term and short-term average differences (|SMA i [k]-LMA i [k]|), calculate the cell diagnostic deviation (Ddiag, i[k]) corresponding to the difference between the long-term and short-term average differences (|SMA i [k]-LMA i [k]|) and the average value, calculate the normalized cell diagnostic deviation (D*diag, i[k]) of the long-term and short-term average differences (|SMA i [k]-LMA i [k]|), and calculate the long-term and short-term average differences (|SMA i [k]-LMA i [k]|) using Equation 6. [k]|), determine a statistical variable threshold value (Dthreshold[k]) of the cell diagnostic deviation (D*diag, i[k]) using Equation 8, determine a filtered diagnostic value Dfilter, i[k] by filtering the cell diagnostic deviation (D*diag, i[k]) using Equation 9, and recursively use time series data of the filtered diagnostic value Dfilter, i[k] to detect voltage abnormality of the battery cell.

如果重复如上所述的递归运算过程,则可以更精确地诊断电池电芯的电压异常。即,参考图4e,仅在具有电压异常的电池电芯的滤波诊断值(Dfilter,i[k])的时间序列数据中的两个时间区域中观察到正分布图案。然而,参考图4h,在具有电压异常的电池电芯的滤波诊断值(Dfilter,i[k])的时间序列数据中,在比图4e中更多的时间区域中观察到正分布图案。因此,如果重复递归运算过程,则可以更准确地检测电池电芯中发生电压异常的时间点。If the recursive operation process as described above is repeated, the voltage abnormality of the battery cell can be diagnosed more accurately. That is, referring to FIG4e, a positive distribution pattern is observed only in two time regions in the time series data of the filtered diagnostic value (Dfilter, i[k]) of the battery cell with voltage abnormality. However, referring to FIG4h, in the time series data of the filtered diagnostic value (Dfilter, i[k]) of the battery cell with voltage abnormality, a positive distribution pattern is observed in more time regions than in FIG4e. Therefore, if the recursive operation process is repeated, the time point at which the voltage abnormality occurs in the battery cell can be detected more accurately.

至此,描述了用于由第一控制单元400使用第一信息来检测电压异常的详细方法。下面,将参考图5至图9详细描述第一控制单元400使用第一信息检测行为异常的方法。So far, a detailed method for detecting voltage abnormality using the first information by the first control unit 400 is described. Hereinafter, a method for detecting behavior abnormality using the first information by the first control unit 400 will be described in detail with reference to FIGS.

图5是示例性地示出本公开的各种实施方式中提及的电池电芯的与电芯电压的实际电压值的原始时间序列对应的电压曲线的图表,并且图6是示例性地示出通过将测量噪声与对应于图5的电压曲线C1的原始时间序列进行综合而获取的测量电压曲线C2的图表。图7是示例性地示出通过将第一平均滤波器应用于图6的电压曲线C2而获取的第一移动平均曲线AC1的图表,并且图8是示例性地示出通过将第二平均滤波器应用于图6的电压曲线C2而获取的第二移动平均曲线AC2的图表。图9是示例性地示出作为图7的第一移动平均曲线AC1与图8的第二移动平均曲线AC2之间的差的电压偏差曲线VC的图表。FIG. 5 is a graph exemplarily showing a voltage curve corresponding to an original time series of an actual voltage value of a cell voltage of a battery cell mentioned in various embodiments of the present disclosure, and FIG. 6 is a graph exemplarily showing a measured voltage curve C2 obtained by integrating measurement noise with an original time series corresponding to the voltage curve C1 of FIG. 5 . FIG. 7 is a graph exemplarily showing a first moving average curve AC1 obtained by applying a first averaging filter to the voltage curve C2 of FIG. 6 , and FIG. 8 is a graph exemplarily showing a second moving average curve AC2 obtained by applying a second averaging filter to the voltage curve C2 of FIG. 6 . FIG. 9 is a graph exemplarily showing a voltage deviation curve VC which is a difference between the first moving average curve AC1 of FIG. 7 and the second moving average curve AC2 of FIG. 8 .

首先,参考图5,电压曲线C1是包括在预定时段t1至tM内的充电期间电池电芯BC的电芯电压的实际电压值的原始时间序列的实施例。为了更好地理解,电芯电压线性增加,并且省略了t1之前和tM之后的时段的实际电压值的图示。5, the voltage curve C1 is an example of an original time series of actual voltage values of the cell voltage of the battery cell BC during charging including a predetermined period t1 to tM. For better understanding, the cell voltage increases linearly, and illustrations of actual voltage values for periods before t1 and after tM are omitted.

如果电池电芯BC正常,则电芯电压在充电期间继续逐渐上升。另一方面,如果电池电芯BC具有其中具有任何故障状况(例如,微短路,电极接头的一部分被撕裂)的行为异常,则可能不规则地观察到即使在充电期间电芯电压暂时下降或上升的异常行为。If the battery cell BC is normal, the cell voltage continues to gradually rise during charging. On the other hand, if the battery cell BC has abnormal behavior with any fault condition (e.g., micro short circuit, part of the electrode joint is torn), abnormal behavior in which the cell voltage temporarily drops or rises even during charging may be observed irregularly.

图5的电压曲线C1与其中电池电芯BC具有行为异常的实施方式相关,在该电压曲线C1中,区域X表示电芯电压作为行为异常急剧下降的时间范围,并且区域Y表示电芯电压作为行为异常快速上升的时间范围。图5示出了充电期间的电芯电压,但是行为异常电池电芯的电芯电压作为行为异常即使在放电或搁置期间也可能改变。例如,在放电期间,正常电池电芯的电芯电压连续缓慢下降,而行为异常电池电芯的电芯电压可能暂时急剧上升或下降。The voltage curve C1 of FIG5 is related to an embodiment in which the battery cell BC has a behavioral anomaly, in which region X represents a time range in which the cell voltage drops sharply as a behavioral anomaly, and region Y represents a time range in which the cell voltage rises rapidly as a behavioral anomaly. FIG5 shows the cell voltage during charging, but the cell voltage of the battery cell with abnormal behavior may change even during discharge or storage as a behavioral anomaly. For example, during discharge, the cell voltage of a normal battery cell drops continuously and slowly, while the cell voltage of the battery cell with abnormal behavior may temporarily rise or fall sharply.

接下来,参考图6,电压曲线C2表示将测量噪声与图5的电压曲线C1的实际电芯电压综合的结果。即,图6的电压曲线C2表示时间序列,在该时间序列中,表示测量的电芯电压的电压值按时间顺序排列。Next, referring to Fig. 6, voltage curve C2 represents the result of integrating measurement noise with the actual cell voltage of voltage curve C1 of Fig. 5. That is, voltage curve C2 of Fig. 6 represents a time series in which voltage values representing measured cell voltages are arranged in time order.

当M是指示采样时间的预定总数的自然数(例如,300)并且K是小于或等于M的自然数时,tK是电压曲线C2中包括的总数M个电压值中按时间顺序的第K电压值(Vm[K])的测量正时(第K测量正时tK),并且两个相邻测量正时之间的时间间隔隔开预定采样时间(例如,0.1秒)。电压值(Vm[K])是在包括在电压曲线C2中的总数M个电压值中索引到测量正时tK的数据点。When M is a natural number indicating a predetermined total number of sampling times (e.g., 300) and K is a natural number less than or equal to M, tK is a measurement timing (Kth measurement timing tK) of a Kth voltage value (Vm[K]) in chronological order among a total number of M voltage values included in the voltage curve C2, and a time interval between two adjacent measurement timings is separated by a predetermined sampling time (e.g., 0.1 seconds). The voltage value (Vm[K]) is a data point indexed to the measurement timing tK among a total number of M voltage values included in the voltage curve C2.

由于电压感测单元200的内部和外部因子(例如,电压测量装置的温度、采样率、电磁波等),可以随时间流逝不规则地产生测量噪声。电流曲线C3是包括在预定时段(t1至tM)内测量的电池电流的电流值的时间序列。为了便于解释,电池电流被例示为在预定时段(t1至tM)期间恒定。Due to internal and external factors of the voltage sensing unit 200 (e.g., temperature, sampling rate, electromagnetic waves, etc. of the voltage measuring device), measurement noise may be irregularly generated over time. The current curve C3 is a time series of current values of the battery current measured within a predetermined period (t1 to tM). For ease of explanation, the battery current is illustrated as being constant during the predetermined period (t1 to tM).

如果将图6的电压曲线C2与图5的电压曲线C1进行比较,则可以从图5的没有测量噪声的电压曲线C1中容易地识别出异常行为(X,Y),但是存在难以从在整个预定时段(t1至tM)内混合有测量噪声的电压曲线C2中识别出异常行为(X,Y)的问题。If the voltage curve C2 of Figure 6 is compared with the voltage curve C1 of Figure 5, the abnormal behavior (X, Y) can be easily identified from the voltage curve C1 of Figure 5 without measurement noise, but there is a problem that it is difficult to identify the abnormal behavior (X, Y) from the voltage curve C2 mixed with measurement noise throughout the predetermined period (t1 to tM).

本公开的发明人已经证实,可以通过将第一平均滤波器和第二平均滤波器应用于电压值(测量值)的时间序列来解决上述问题,所述的电压值(测量值)包括在电芯电压的测量正时中产生的测量噪声。在过去的预定时段内获取的关于待检测的电池电芯BC的电压值的时间序列可以称为“标准电压曲线”,并且电流值的时间序列可以称为“标准电流曲线”。下文中,图6的电压曲线C2和电流曲线C3将被描述为分别被假设为标准电压曲线C2和标准电流曲线C3。The inventors of the present disclosure have confirmed that the above-mentioned problem can be solved by applying a first averaging filter and a second averaging filter to a time series of voltage values (measured values) including measurement noise generated in the measurement timing of the cell voltage. The time series of voltage values of the battery cell BC to be detected acquired within a predetermined period of time in the past can be referred to as a "standard voltage curve", and the time series of current values can be referred to as a "standard current curve". Hereinafter, the voltage curve C2 and the current curve C3 of FIG. 6 will be described as being assumed to be the standard voltage curve C2 and the standard current curve C3, respectively.

第一控制单元400可以被配置为通过将第一时间长度的移动窗口应用于第一信息中包括的电芯电压的时间序列来确定多条子电压曲线。The first control unit 400 may be configured to determine a plurality of sub-voltage curves by applying a moving window of a first time length to a time series of cell voltages included in the first information.

具体地,第一控制单元400可以通过将第一时间长度的移动窗口应用于标准电压曲线C2来确定多条子电压曲线。另外,第一控制单元400可以通过将第一时间长度的移动窗口应用于标准电流曲线C3来确定与多条子电压曲线一对一相关联的多条子电流曲线。Specifically, the first control unit 400 can determine multiple sub-voltage curves by applying a moving window of the first time length to the standard voltage curve C2. In addition, the first control unit 400 can determine multiple sub-current curves that are one-to-one associated with the multiple sub-voltage curves by applying a moving window of the first time length to the standard current curve C3.

当K是小于或等于M的自然数时,可以根据标准电压曲线C2确定总数M条子电压曲线(即,第一至第M子电压曲线)。标准电压曲线C2包括针对每个采样时间W依次测量的总数M个电压值(即,第一至M第电压值)。When K is a natural number less than or equal to M, a total of M sub-voltage curves (i.e., first to Mth sub-voltage curves) can be determined according to the standard voltage curve C2. The standard voltage curve C2 includes a total of M voltage values (i.e., first to Mth voltage values) measured sequentially for each sampling time W.

子电压曲线SK是标准电压曲线C2的子集,并且包括按时间顺序连续的(A/W+1)个电压值。例如,当采样时间W=0.1秒,并且第一时间长度A=10秒时,子电压曲线SK为总共101个电压值的时间序列,即从第(K-P)电压值到第(K+P)电压值。P=A/2W=50。The sub-voltage curve SK is a subset of the standard voltage curve C2 and includes (A/W+1) voltage values that are continuous in time sequence. For example, when the sampling time W=0.1 seconds and the first time length A=10 seconds, the sub-voltage curve SK is a time sequence of a total of 101 voltage values, i.e., from the (K-P)th voltage value to the (K+P)th voltage value. P=A/2W=50.

在图6中,RK是与子电压曲线SK相关的子电流曲线。因此,子电流曲线RK也可以包括按时间顺序连续的(A/W+1)个数据点(电流值)。In Fig. 6, RK is a sub-current curve associated with the sub-voltage curve SK. Therefore, the sub-current curve RK may also include (A/W+1) data points (current values) that are continuous in time sequence.

由于电池电流波动较大,因此电芯电压也波动较大。电池电流引起的电芯电压的突然波动可能会妨碍从标准电压曲线C2识别电芯电压的异常行为。Since the battery current fluctuates greatly, the cell voltage also fluctuates greatly. The sudden fluctuation of the cell voltage caused by the battery current may prevent the abnormal behavior of the cell voltage from being identified from the standard voltage curve C2.

第一控制单元400可以确定子电流曲线RK的电流变化量,该电流变化量为子电流曲线RK的最大电流值与最小电流值之间的差。第一控制单元400可以通过使用子电流曲线RK根据在电池电流的变化较小(诸如恒定电流充电或搁置)时测量的电芯电压的时间序列检测电池电芯的行为异常。The first control unit 400 may determine a current variation of the sub-current curve RK, which is a difference between a maximum current value and a minimum current value of the sub-current curve RK. The first control unit 400 may detect abnormal behavior of a battery cell by using the sub-current curve RK based on a time series of cell voltages measured when a change in battery current is small, such as constant current charging or shelving.

第一控制单元400可以在电流变化量小于阈值变化量的情况下确定与子电流曲线RK相关的子电压曲线SK的长期平均电压值和短期平均电压值。The first control unit 400 may determine a long-term average voltage value and a short-term average voltage value of the sub-voltage curve SK associated with the sub-current curve RK when the current variation is less than the threshold variation.

第一控制单元400可以在子电流曲线RK的电流变化量等于或小于阈值变化量的情况下,针对子电压曲线SK执行下面描述的计算过程。The first control unit 400 may perform a calculation process described below with respect to the sub-voltage curve SK when the current change amount of the sub-current curve RK is equal to or less than the threshold change amount.

第一控制单元400可以通过使用第一时间长度的第一平均滤波器来确定每条子电压曲线SK的长期平均电压值。The first control unit 400 may determine a long-term average voltage value of each sub-voltage curve SK by using a first average filter of a first time length.

参考图7,可以通过将第一时间长度A的第一平均滤波器应用于标准电压曲线C2来获取第一平均电压曲线AC1。第一平均滤波器是一种低通滤波器,并且可以是居中移动平均,其子集大小(A/W+1)对应于第一时间长度A。例如,第一控制单元400通过对子电压曲线SK中包括的(A/W+1)个电压值(即,第(K-P)电压值到第(K-1)电压值、第K电压值以及第(K+1)电压值到第(K+P)电压值)求平均来确定索引到测量正时tK的长期平均电压值(Vav1[K])。下面的等式10示出了第一平均滤波器。7 , the first average voltage curve AC1 may be acquired by applying a first average filter of a first time length A to the standard voltage curve C2. The first average filter is a low-pass filter and may be a centered moving average whose subset size (A/W+1) corresponds to the first time length A. For example, the first control unit 400 determines a long-term average voltage value (Vav1[K]) indexed to the measurement timing tK by averaging the (A/W+1)th voltage values (i.e., the (K-P)th voltage value to the (K-1)th voltage value, the Kth voltage value, and the (K+1)th voltage value to the (K+P)th voltage value) included in the sub-voltage curve SK. The following equation 10 shows the first average filter.

<等式10><Equation 10>

在等式10中,Vm[i]是包括在标准电压曲线C2中的第i电压值,A是第一时间长度,W是采样时间,P=A/2W,并且Vav1[K]是在测量正时tK处的长期平均电压值。第一控制单元400可以通过用1到M替代等式10的K来确定图7的第一平均电压曲线AC1。第一时间长度A预定为采样时间W的整数倍。因此,第一时间长度A指示用于获取长期平均电压值(Vav1[K])的子集(A/W+1)的大小。In equation 10, Vm[i] is the i-th voltage value included in the standard voltage curve C2, A is the first time length, W is the sampling time, P=A/2W, and Vav1[K] is the long-term average voltage value at the measurement timing tK. The first control unit 400 can determine the first average voltage curve AC1 of FIG. 7 by replacing K of equation 10 with 1 to M. The first time length A is predetermined to be an integer multiple of the sampling time W. Therefore, the first time length A indicates the size of the subset (A/W+1) used to obtain the long-term average voltage value (Vav1[K]).

此外,第一控制单元400可以通过使用具有比第一时间长度短的第二时间长度的第二平均滤波器来确定子电压曲线的短期平均电压值。In addition, the first control unit 400 may determine the short-term average voltage value of the sub-voltage curve by using a second average filter having a second time length shorter than the first time length.

参考图8,通过将比第一时间长度A短的第二时间长度B的第二平均滤波器应用于标准电压曲线C2而获取第二平均电压曲线AC2。第二平均滤波器是一种低通滤波器,可以是居中移动平均,其子集大小(B/W+1)对应于第二时间长度B。8 , the second average voltage curve AC2 is obtained by applying a second average filter of a second time length B shorter than the first time length A to the standard voltage curve C2. The second average filter is a low-pass filter and may be a centered moving average, with a subset size (B/W+1) corresponding to the second time length B.

作为实施例,第一控制单元400通过对子电压曲线SK中包括的(B/W+1)个电压值(即,第(K-Q)电压值到第(K-1)电压值、第K电压值和第(K+1)电压值到第(K+Q)电压值)求平均来确定索引到测量正时tK的短期平均电压值(Vav2[K])。Q=B/2W。短期平均电压值(Vav2[K])是子电压曲线SK的子集UK的平均值。子集UK位于子电压曲线SK的时间范围(tK-P至tK+P)内,并且是具有与时间范围(tK-P至tK+P)相同的测量正时tK的时间范围(tK-Q至tK+Q)的电压曲线。下面的等式11示出了第二平均滤波器。As an embodiment, the first control unit 400 determines a short-term average voltage value (Vav2[K]) indexed to the measurement timing tK by averaging the (B/W+1)th voltage values included in the sub-voltage curve SK (i.e., the (K-Q)th voltage value to the (K-1)th voltage value, the Kth voltage value, and the (K+1)th voltage value to the (K+Q)th voltage value). Q=B/2W. The short-term average voltage value (Vav2[K]) is the average value of a subset UK of the sub-voltage curve SK. The subset UK is located within the time range (tK-P to tK+P) of the sub-voltage curve SK, and is a voltage curve having a time range (tK-Q to tK+Q) with the same measurement timing tK as the time range (tK-P to tK+P). The following equation 11 shows the second averaging filter.

<等式11><Equation 11>

在等式11中,Vm[i]是包括在标准电压曲线C2中的第i电压值,B是第二时间长度,W是采样时间,Q=B/2W,并且Vav2[K]是在测量正时tK处的短期平均电压值。第一控制单元400可以通过用1到M逐个替代等式11的K来确定图8的第二平均电压曲线AC2。第二时间长度B预定为采样时间W的整数倍。因此,第二时间长度B指示用于获取短期平均电压值(Vav2[K])的子集(B/W+1)的大小。In equation 11, Vm[i] is the i-th voltage value included in the standard voltage curve C2, B is the second time length, W is the sampling time, Q=B/2W, and Vav2[K] is the short-term average voltage value at the measurement timing tK. The first control unit 400 can determine the second average voltage curve AC2 of FIG. 8 by substituting 1 to M for K of equation 11 one by one. The second time length B is predetermined to be an integer multiple of the sampling time W. Therefore, the second time length B indicates the size of the subset (B/W+1) used to obtain the short-term average voltage value (Vav2[K]).

第一时间长度A>第二时间长度B,第一平均电压曲线AC1的每个数据点(即,长期平均电压值)可以称为“长期平均值”,并且第二平均电压曲线AC2的每个数据点(即,短期平均电压值)可以称为“短期平均值”。例如,A可以是B的十倍。The first time length A>the second time length B, each data point of the first average voltage curve AC1 (i.e., the long-term average voltage value) can be called a "long-term average value", and each data point of the second average voltage curve AC2 (i.e., the short-term average voltage value) can be called a "short-term average value". For example, A can be ten times B.

第一控制单元400可以确定对应于子电压曲线的长期平均电压值与短期平均电压值之间的差的电压偏差。The first control unit 400 may determine a voltage deviation corresponding to a difference between a long-term average voltage value and a short-term average voltage value of the sub voltage curve.

例如,第一控制单元400可以通过从每条子电压曲线的长期平均电压值和短期平均电压值中的一者减去另一者来确定与子电压曲线相关联的电压偏差。For example, the first control unit 400 may determine the voltage deviation associated with the sub-voltage curve by subtracting one of the long-term average voltage value and the short-term average voltage value of each sub-voltage curve from the other.

参考图9,电压偏差曲线VC是从第一平均电压曲线AC1和第二平均电压曲线AC2中的一者减去另一者的结果。即,电压偏差曲线VC是针对预定时段(t1至tM)的总数M个电压偏差的时间序列。与子电压曲线SK相关的电压偏差(ΔV[K])是通过从长期平均电压值(Vav1[K])和短期平均电压值(Vav2[K])中的一者减去另一者而获取的值。例如,ΔV[K]=Vav2[K]-Vav1[K]。9, the voltage deviation curve VC is the result of subtracting one of the first average voltage curve AC1 and the second average voltage curve AC2 from the other. That is, the voltage deviation curve VC is a time series of a total of M voltage deviations for a predetermined period (t1 to tM). The voltage deviation (ΔV[K]) associated with the sub-voltage curve SK is a value obtained by subtracting one of the long-term average voltage value (Vav1[K]) and the short-term average voltage value (Vav2[K]) from the other. For example, ΔV[K]=Vav2[K]-Vav1[K].

如上所述,长期平均电压值(Vav1[K])是以测量正时tK为中心的第一时间长度A的长期平均电芯电压,并且短期平均电压值(Vav2[K])是以测量正时tK为中心的第二时间长度B的短期平均电芯电压。因此,通过从长期平均电压值(Vav1[K])及短期平均电压值(Vav2[K])中的一者减去另一者以获取电压偏差(ΔV[K]),存在这样的效应:有效地去除在测量正时tK之前及之后的预定时段内产生的测量噪声。As described above, the long-term average voltage value (Vav1[K]) is the long-term average cell voltage of the first time length A centered at the measurement timing tK, and the short-term average voltage value (Vav2[K]) is the short-term average cell voltage of the second time length B centered at the measurement timing tK. Therefore, by subtracting one of the long-term average voltage value (Vav1[K]) and the short-term average voltage value (Vav2[K]) from the other to obtain the voltage deviation (ΔV[K]), there is an effect of effectively removing the measurement noise generated in the predetermined period before and after the measurement timing tK.

存在的优点在于,通过从长期平均电压值(Vav1[K])和短期平均电压值(Vav2[K])中的一者减去另一者的处理,在相当大的程度上抵消了在测量正时tK之前和之后的特定时间段内产生的测量噪声。There is an advantage in that measurement noise generated in a specific period before and after the measurement timing tK is offset to a considerable extent by subtracting the long-term average voltage value (Vav1[K]) and the short-term average voltage value (Vav2[K]) from the other.

第一控制单元400可以将针对多条子电压曲线确定的多个电压偏差(ΔV[K])中的每一者与第一阈值偏差TH1和第二阈值偏差TH2中的至少一者进行比较,以便检测电池电芯的行为异常。The first control unit 400 may compare each of the plurality of voltage deviations (ΔV[K]) determined for the plurality of sub-voltage curves with at least one of the first threshold deviation TH1 and the second threshold deviation TH2 in order to detect abnormal behavior of the battery cell.

例如,第一控制单元400可以将电压偏差(ΔV[K])与第一阈值偏差TH1和第二阈值偏差TH2进行比较。第一阈值偏差TH1可以是预定正数(例如,+0.001V),并且第二阈值偏差TH2可以是具有与第一阈值偏差TH1相同的绝对值的预定负数(例如,-0.001V)。For example, the first control unit 400 may compare the voltage deviation (ΔV[K]) with a first threshold deviation TH1 and a second threshold deviation TH2. The first threshold deviation TH1 may be a predetermined positive number (e.g., +0.001V), and the second threshold deviation TH2 may be a predetermined negative number having the same absolute value as the first threshold deviation TH1 (e.g., -0.001V).

当在电压偏差曲线VC中包括的所有电压偏差中,预定数量(例如,10个)的电压偏差等于或大于第一阈值偏差TH1或等于或小于第二阈值偏差TH2时,第一控制单元400可以检测出电池电芯BC具有行为异常。When a predetermined number (eg, 10) of voltage deviations among all voltage deviations included in the voltage deviation curve VC are equal to or greater than the first threshold deviation TH1 or equal to or less than the second threshold deviation TH2, the first control unit 400 may detect that the battery cell BC has abnormal behavior.

第一控制单元400可以被配置为响应于多个电压偏差中的任何两个电压偏差分别满足第一条件、第二条件和第三条件而检测出行为异常。The first control unit 400 may be configured to detect the behavior abnormality in response to any two voltage deviations among the plurality of voltage deviations satisfying a first condition, a second condition, and a third condition, respectively.

具体地,第一控制单元400可以被配置为当针对多条子电压曲线确定的多个电压偏差中的任意两个电压偏差满足第一条件、第二条件和第三条件时,确定电池电芯具有行为异常。Specifically, the first control unit 400 may be configured to determine that the battery cell has abnormal behavior when any two voltage deviations among the plurality of voltage deviations determined for the plurality of sub-voltage curves satisfy the first condition, the second condition, and the third condition.

例如,当在电压偏差曲线VC中包括的总数M个电压偏差中,任意两个电压偏差满足第一条件、第二条件和第三条件时,第一控制单元400可以判断电池电芯BC具有行为异常。当两个电压偏差中的一者大于或等于第一阈值偏差TH1时,满足第一条件。当两个电压偏差中的另一者小于或等于第二阈值偏差TH2时,满足第二条件。当两个电压偏差之间的时间间隔等于或小于阈值时间时,满足第三条件。阈值时间可以被预定为小于第一时间长度A。参考图9,电压偏差(ΔV[a])小于或等于第二阈值偏差TH2(满足第二条件),并且电压偏差(ΔV[b])大于或等于第一阈值偏差TH1(满足第一条件)。因此,当两个电压偏差(ΔV[a]、ΔV[b])之间的时间间隔(Δt=tb-ta)小于或等于阈值时间时,电池电芯BC可以被检测为具有行为异常。For example, when any two voltage deviations satisfy the first condition, the second condition, and the third condition among the total number of M voltage deviations included in the voltage deviation curve VC, the first control unit 400 may determine that the battery cell BC has abnormal behavior. The first condition is satisfied when one of the two voltage deviations is greater than or equal to the first threshold deviation TH1. The second condition is satisfied when the other of the two voltage deviations is less than or equal to the second threshold deviation TH2. The third condition is satisfied when the time interval between the two voltage deviations is equal to or less than the threshold time. The threshold time may be predetermined to be less than the first time length A. Referring to FIG. 9 , the voltage deviation (ΔV[a]) is less than or equal to the second threshold deviation TH2 (satisfying the second condition), and the voltage deviation (ΔV[b]) is greater than or equal to the first threshold deviation TH1 (satisfying the first condition). Therefore, when the time interval (Δt=tb-ta) between the two voltage deviations (ΔV[a], ΔV[b]) is less than or equal to the threshold time, the battery cell BC may be detected as having abnormal behavior.

至此,已经参考图3至图9根据本公开的各种实施方式描述了第一控制单元400通过使用第一信息来检测电压异常和行为异常中的至少一种异常的方法。下文中,将参考图10详细描述根据本公开的实施方式的外部装置2000。Hereinafter, the external device 2000 according to an embodiment of the present disclosure will be described in detail with reference to FIG. 10 .

图10是示出根据本公开的实施方式的外部装置2000的示意性配置的框图。外部装置2000可以是用于诊断电池电芯的专用装置。外部装置2000可以包括存储单元2100和第三控制单元2200。10 is a block diagram showing a schematic configuration of an external device 2000 according to an embodiment of the present disclosure. The external device 2000 may be a dedicated device for diagnosing a battery cell. The external device 2000 may include a storage unit 2100 and a third control unit 2200.

存储单元2100可以收集第一信息中包括的充放电数据,并存储所收集的充放电数据。The storage unit 2100 may collect the charge and discharge data included in the first information and store the collected charge and discharge data.

存储单元2100的类型不受特别限制,只要其能够记录和擦除数据和/或信息即可。作为实施例,存储单元2100可以是RAM、ROM、寄存器、闪存、硬盘或磁记录介质。The type of the storage unit 2100 is not particularly limited as long as it can record and erase data and/or information. As an embodiment, the storage unit 2100 may be a RAM, a ROM, a register, a flash memory, a hard disk, or a magnetic recording medium.

存储单元2100可以经由数据总线等与第三控制单元2200电连接,从而可以被第三控制单元2200访问。The storage unit 2100 may be electrically connected to the third control unit 2200 via a data bus or the like, and thus may be accessed by the third control unit 2200 .

存储单元2100存储和/或更新和/或擦除和/或发送包括由第三控制单元2200执行的各种控制逻辑的程序和/或当执行控制逻辑时生成的数据和/或预设数据、参数、查找信息/表等。The storage unit 2100 stores and/or updates and/or erases and/or sends programs including various control logics executed by the third control unit 2200 and/or data and/or preset data, parameters, lookup information/tables, etc. generated when the control logics are executed.

首先,将描述这样的实施方式,在该实施方式中,包括在第二信息中的电池电芯的诊断信息是关于电池电芯的析锂诊断的信息。First, an embodiment in which the diagnosis information of the battery cell included in the second information is information on lithium plating diagnosis of the battery cell will be described.

在一个实施方式中,第二信息可以表示累积的容量差变化量是否大于或等于阈值。这里,累积的容量差变化量可以是容量差变化量之和。即,可以计算多个容量差变化量之和作为累积容量差变化量。这里,容量差变化量中的每一者均为电池电芯的第k充放电循环的容量差与该电池电芯的第k-1充放电循环的容量差之间的差(k为大于等于2的自然数)。这里,每个充放电循环的容量差对应于电池电芯在充放电循环的充电过程中的充电容量与电池电芯在充放电循环的放电过程中的放电容量之间的差。这里,可以从获取自电流测量单元并包括在第一信息中的数据导出充电容量和放电容量中的每一者。In one embodiment, the second information may indicate whether the accumulated capacity difference change is greater than or equal to a threshold value. Here, the accumulated capacity difference change may be the sum of the capacity difference changes. That is, the sum of multiple capacity difference changes may be calculated as the accumulated capacity difference change. Here, each of the capacity difference changes is the difference between the capacity difference of the kth charge and discharge cycle of the battery cell and the capacity difference of the k-1th charge and discharge cycle of the battery cell (k is a natural number greater than or equal to 2). Here, the capacity difference of each charge and discharge cycle corresponds to the difference between the charge capacity of the battery cell during the charging process of the charge and discharge cycle and the discharge capacity of the battery cell during the discharge process of the charge and discharge cycle. Here, each of the charge capacity and the discharge capacity can be derived from the data obtained from the current measurement unit and included in the first information.

第三控制单元2200可以通过使用第一信息生成包括电池电芯的与析锂诊断相关的诊断信息的第二信息。可以提前设定生成第二信息所需的充放电循环数量。在一个实施例中,生成第二信息所需的充放电循环的数量可以是20。The third control unit 2200 may generate second information including diagnostic information related to lithium plating diagnosis of the battery cell by using the first information. The number of charge and discharge cycles required to generate the second information may be set in advance. In one embodiment, the number of charge and discharge cycles required to generate the second information may be 20.

例如,充放电循环可以包括充电循环和放电循环。充电循环可以是指将电池从预设充电电压区域的下限充电到上限并停止充电,同时维持电池电芯温度恒定。放电循环可以是指在充电循环完成后将电池稳定预定时间,然后将电池从预设放电电压区域的上限放电到下限并且停止放电,同时将电池电芯温度维持为与充电循环相同。充电电压区域和放电电压区域可以相同或不同。然而,在进行多个充放电循环时,优选地,充电循环的充电电压区域相同,并且放电循环的放电电压区域也相同。For example, a charge and discharge cycle may include a charge cycle and a discharge cycle. A charge cycle may refer to charging a battery from a lower limit of a preset charge voltage region to an upper limit and stopping charging, while maintaining a constant battery cell temperature. A discharge cycle may refer to stabilizing the battery for a predetermined time after the charge cycle is completed, and then discharging the battery from an upper limit of a preset discharge voltage region to a lower limit and stopping discharging, while maintaining the battery cell temperature the same as the charge cycle. The charge voltage region and the discharge voltage region may be the same or different. However, when performing multiple charge and discharge cycles, preferably, the charge voltage region of the charge cycle is the same, and the discharge voltage region of the discharge cycle is also the same.

在另一个实施例中,充电循环是指将电池从预设充电电压区域的下限充电到上限并停止充电,同时保持电池电芯温度恒定。放电循环从预设放电电压区域的上限开始放电,通过对放电电流进行积分,在累积电流值达到预设放电容量时停止放电。在进行多个充放电循环时,优选地,充电循环的充电电压区域相同并且放电循环的放电容量相同。In another embodiment, the charging cycle refers to charging the battery from the lower limit of the preset charging voltage range to the upper limit and stopping the charging, while keeping the battery cell temperature constant. The discharging cycle starts discharging from the upper limit of the preset discharge voltage range, and stops discharging when the cumulative current value reaches the preset discharge capacity by integrating the discharge current. When performing multiple charge and discharge cycles, preferably, the charging voltage range of the charging cycle is the same and the discharge capacity of the discharge cycle is the same.

第三控制单元2200可以从包括在第一信息中的数据导出电池电芯的充电容量和放电容量。具体地,第三控制单元2200可以通过使用第一信息中包括的关于充电电流或放电电流的信息,接收第K(k为大于或等于2的自然数)充放电循环中包括在第一信息中的电流测量值,并计算充电容量(ChgAh[k])和放电容量(DchgAh[k])。The third control unit 2200 may derive the charge capacity and discharge capacity of the battery cell from the data included in the first information. Specifically, the third control unit 2200 may receive the current measurement value included in the first information in the Kth (k is a natural number greater than or equal to 2) charge and discharge cycle by using the information about the charge current or discharge current included in the first information, and calculate the charge capacity (ChgAh[k]) and the discharge capacity (DchgAh[k]).

例如,第三控制单元2200可以将充放电循环索引k初始化为1,并且分别将第一容量差变化量ΔdAh[1]和第一累积容量差变化量初始化为0。For example, the third control unit 2200 may initialize the charge-discharge cycle index k to 1, and respectively set the first capacity difference change amount ΔdAh[1] and the first cumulative capacity difference change amount Initialized to 0.

第三控制单元2200可以开始电池的第一充放电循环。在本说明书中,当外部装置2000开始充放电循环时,意味着使用第一信息获取充放电循环对应的数据。The third control unit 2200 may start a first charge and discharge cycle of the battery. In this specification, when the external device 2000 starts a charge and discharge cycle, it means that the data corresponding to the charge and discharge cycle is acquired using the first information.

第三控制单元2200可以在第一充放电循环期间使用第一信息中包括的电流测量值来计算充电容量(ChgAh[1])和放电容量(DchgAh[1])。The third control unit 2200 may calculate the charging capacity (ChgAh[1]) and the discharging capacity (DchgAh[1]) using the current measurement value included in the first information during the first charge and discharge cycle.

第一信息可以包括关于预设充电电压区域中进行的充电循环和预设放电电压区域中进行的放电循环的信息。The first information may include information on a charge cycle performed in a preset charge voltage region and a discharge cycle performed in a preset discharge voltage region.

充电电压区域和放电电压区域可以相同或不同。优选地,在充电循环结束之后,在电池电芯的电压稳定之后开始放电循环。此外,放电循环可以在电池电芯的电压达到预设放电结束电压时或者在放电电流的积分值达到预设放电容量时结束。当基于电压值控制充电循环和放电循环的开始和结束时,外部装置2000可以参考第一信息中包括的电压测量值。第一信息中包括的电压测量值可以是通过电压感测单元200测量的值。The charging voltage region and the discharging voltage region may be the same or different. Preferably, after the charging cycle ends, the discharging cycle begins after the voltage of the battery cell stabilizes. In addition, the discharging cycle may end when the voltage of the battery cell reaches a preset discharge end voltage or when the integrated value of the discharge current reaches a preset discharge capacity. When the start and end of the charging cycle and the discharging cycle are controlled based on the voltage value, the external device 2000 may refer to the voltage measurement value included in the first information. The voltage measurement value included in the first information may be a value measured by the voltage sensing unit 200.

第三控制单元2200可以继续进行充放电循环,直到用于充放电循环的索引k等于n。n是预设的自然数,其是可以用于检测析锂异常所继续进行的充放电循环的总数量。在一个实施例中,n可以是20。The third control unit 2200 may continue to perform the charge-discharge cycle until the index k for the charge-discharge cycle is equal to n. n is a preset natural number, which is the total number of charge-discharge cycles that can be continued to detect the lithium deposition anomaly. In one embodiment, n may be 20.

第三控制单元2200可以确定与充电容量(ChgAh[k])和放电容量(DchgAh[k])之间的差相对应的容量差(dAh[k])。即,容量差(dAh[k])可以被计算为充电容量(ChgAh[k])和放电容量(DchgAh[k])之间的差。The third control unit 2200 may determine a capacity difference (dAh[k]) corresponding to the difference between the charge capacity (ChgAh[k]) and the discharge capacity (DchgAh[k]). That is, the capacity difference (dAh[k]) may be calculated as the difference between the charge capacity (ChgAh[k]) and the discharge capacity (DchgAh[k]).

例如,将描述第一充放电循环(例如,k=1)。第三控制单元2200可以将所确定的容量差(dAh[1])与时间戳一起记录在存储单元2100中。在一个实施例中,可以通过从充电容量(ChgAh[1])减去放电容量(DchgAh[1])来确定容量差(dAh[1])。第三控制单元2200可以确定与充电容量(ChgAh[1])和放电容量(DchgAh[1])之间的差相对应的容量差(dAh[1]),并将所确定的容量差(dAh[1])与时间戳一起记录在存储单元2100中。在一个实施例中,可以通过从充电容量(ChgAh[1])减去放电容量(DchgAh[1])来确定容量差(dAh[1])。For example, the first charge and discharge cycle (e.g., k=1) will be described. The third control unit 2200 may record the determined capacity difference (dAh[1]) in the storage unit 2100 together with a timestamp. In one embodiment, the capacity difference (dAh[1]) may be determined by subtracting the discharge capacity (DchgAh[1]) from the charge capacity (ChgAh[1]). The third control unit 2200 may determine the capacity difference (dAh[1]) corresponding to the difference between the charge capacity (ChgAh[1]) and the discharge capacity (DchgAh[1]), and record the determined capacity difference (dAh[1]) in the storage unit 2100 together with a timestamp. In one embodiment, the capacity difference (dAh[1]) may be determined by subtracting the discharge capacity (DchgAh[1]) from the charge capacity (ChgAh[1]).

第三控制单元2200可以通过从第k-1充放电循环的容量差(dAh[k-1])减去第K充放电循环的容量差(dAh[k])来确定第K容量差变化量(ΔdAh[k])。即,容量差变化量(ΔdAh[k])可以被计算为第K充放电循环的容量差(dAh[k])与第k-1充放电循环的容量差(dAh[k-1])之间的差。The third control unit 2200 may determine the Kth capacity difference variation (ΔdAh[k]) by subtracting the capacity difference (dAh[k]) of the Kth charge and discharge cycle from the capacity difference (dAh[k-1]) of the k-1th charge and discharge cycle. That is, the capacity difference variation (ΔdAh[k]) may be calculated as the difference between the capacity difference (dAh[k]) of the Kth charge and discharge cycle and the capacity difference (dAh[k-1]) of the k-1th charge and discharge cycle.

例如,第三控制单元2200可以通过从第一充放电循环的容量差(dAh[1])减去第二充放电循环的容量差(dAh[2])来确定第二容量差变化量(ΔdAh[2])。For example, the third control unit 2200 may determine the second capacity difference variation amount (ΔdAh[2]) by subtracting the capacity difference (dAh[2]) of the second charge and discharge cycle from the capacity difference (dAh[1]) of the first charge and discharge cycle.

如果第K容量差变化量(ΔdAh[k])大于标准值,则第三控制单元2200可以通过将第K容量差变化量(ΔdAh[k])与累积容量差变化量相加来更新累积容量差变化量。这里,累积容量差变化量可以是多个所计算的容量差变化量之和。If the Kth capacity difference variation (ΔdAh[k]) is greater than the standard value, the third control unit 2200 may update the cumulative capacity difference variation by adding the Kth capacity difference variation (ΔdAh[k]) to the cumulative capacity difference variation. Here, the cumulative capacity difference variation may be the sum of a plurality of calculated capacity difference variations.

例如,第三控制单元2200通过将第二容量差变化量(ΔdAh[2])与第一累积容量差变化量相加来更新累积容量差变化量,并确定第二累积容量差变化量的更新值。作为参考,第一累积容量差变化量为0,即初始化值。For example, the third control unit 2200 calculates the second capacity difference change amount (ΔdAh[2]) and the first cumulative capacity difference change amount (ΔdAh[2]). The cumulative capacity difference change is updated by adding and the second cumulative capacity difference change is determined. As a reference, the first cumulative capacity difference change It is 0, which is the initialization value.

如果更新的累积容量差变化量大于或等于阈值,则第三控制单元2200可以检测出存在析锂异常并生成第二信息。If the updated cumulative capacity difference variation is greater than or equal to the threshold, the third control unit 2200 may detect the presence of lithium deposition abnormality and generate second information.

阈值可以是指适合于检测析锂异常的值。例如,阈值可以是电池容量的0.1%。阈值可以是外部装置2000中预设的值或第一信息中包括的值。The threshold value may refer to a value suitable for detecting lithium plating abnormality. For example, the threshold value may be 0.1% of the battery capacity. The threshold value may be a value preset in the external device 2000 or a value included in the first information.

如果更新的累积容量差变化量大于或等于阈值,则第三控制单元2200可以判断电池内部发生析锂异常,并生成第二信息。即,第二信息可以表示累积容量差变化量是否大于或等于阈值。If the updated cumulative capacity difference change is greater than or equal to the threshold, the third control unit 2200 may determine that lithium deposition abnormality occurs inside the battery and generate second information. That is, the second information may indicate whether the cumulative capacity difference change is greater than or equal to the threshold.

在另一个实施方式中,第二信息还可以表示电池电芯的连续充放电循环之间的容量差变化量。这里,电池电芯的每个充放电循环的容量差可以是(i)在电池电芯的充放电循环的充电过程期间电池电芯的充电容量与(ii)在电池电芯的充放电循环的放电过程期间电池电芯的放电容量之间的差。在这种情况下,第一控制单元400可以通过根据第二信息计算容量差变化量的总和来计算累积容量差变化量。此外,第一控制单元400可以判断累积容量差变化量是否大于或等于阈值。In another embodiment, the second information may also represent the capacity difference change between consecutive charge and discharge cycles of the battery cell. Here, the capacity difference of each charge and discharge cycle of the battery cell may be the difference between (i) the charge capacity of the battery cell during the charging process of the charge and discharge cycle of the battery cell and (ii) the discharge capacity of the battery cell during the discharge process of the charge and discharge cycle of the battery cell. In this case, the first control unit 400 may calculate the cumulative capacity difference change by calculating the sum of the capacity difference changes based on the second information. In addition, the first control unit 400 may determine whether the cumulative capacity difference change is greater than or equal to a threshold value.

接下来,将描述第二信息中包括的电池电芯的诊断信息是关于电池电芯的并联连接异常的信息的实施方式。Next, an embodiment will be described in which the diagnosis information of the battery cells included in the second information is information on abnormality in parallel connection of the battery cells.

第二信息可以表示电池电芯中包括的多个单元电芯基于由外部装置2000监测估计容量值随时间变化的结果的并联连接异常。这里,估计容量值可以表示电池电芯的基于充放电数据的满充电容量。这里,充放电数据可以包括表示电池电芯的电压随时间变化的电压时间序列和表示电池电芯的充放电电流随时间变化的电流时间序列。The second information may indicate that a plurality of unit cells included in the battery cell are abnormally connected in parallel based on a result of monitoring the estimated capacity value over time by the external device 2000. Here, the estimated capacity value may indicate a full charge capacity of the battery cell based on the charge and discharge data. Here, the charge and discharge data may include a voltage time series indicating the voltage of the battery cell over time and a current time series indicating the charge and discharge current of the battery cell over time.

存储单元2100可以通过使用第一信息中包括的关于充电电流或放电电流的信息,收集包括表示电池电芯两端的电压随时间变化的电压时间序列和表示流经电池电芯的充放电电流随时间变化的电流时间序列的充放电数据,并存储收集到的充放电数据。The storage unit 2100 can collect charge and discharge data including a voltage time series representing the voltage across the battery cell varying over time and a current time series representing the charge and discharge current flowing through the battery cell varying over time by using the information about the charge current or discharge current included in the first information, and store the collected charge and discharge data.

第三控制单元2200可以基于充放电数据确定表示电池电芯的满充电容量的估计容量值。此外,第三控制单元2200可以通过监测所确定的估计容量值随时间的变化来检测并联连接异常。其中,并联连接异常对应的电池电芯的诊断信息可以包括在第二信息中。The third control unit 2200 may determine an estimated capacity value representing the full charge capacity of the battery cell based on the charge and discharge data. In addition, the third control unit 2200 may detect a parallel connection abnormality by monitoring a change in the determined estimated capacity value over time. The diagnostic information of the battery cell corresponding to the parallel connection abnormality may be included in the second information.

将参考图11至图14详细描述外部装置2000检测并联连接异常的方法。A method in which the external device 2000 detects a parallel connection abnormality will be described in detail with reference to FIGS. 11 to 14 .

图11是示例性地示出图3中所示的电池电芯的示意性配置的图,图12是用于示出电池电芯的第一容量异常(不完全断开故障)所涉及的图,并且图13是用于示出电池电芯的第二容量异常(完全断开故障)所涉及的图。Figure 11 is a diagram exemplarily showing the schematic configuration of the battery cell shown in Figure 3, Figure 12 is a diagram for showing the first capacity abnormality (incomplete disconnection fault) of the battery cell, and Figure 13 is a diagram for showing the second capacity abnormality (complete disconnection fault) of the battery cell.

参考图11,电池B包括电极组件B200、正极引线B210、负极引线B220和外壳B230。11 , the battery B includes an electrode assembly B200 , a positive electrode lead B210 , a negative electrode lead B220 , and a housing B230 .

电极组件B200是多个单元电芯BUC1至UCM的并联连接的实施例(M是2或更大的自然数)。单元电芯BUC包括隔膜B203、正极板B201和借助隔膜B203与正极板B201绝缘的负极板B202。The electrode assembly B200 is an embodiment of a plurality of unit cells BUC1 to UCM connected in parallel (M is a natural number of 2 or more). The unit cell BUC includes a separator B203, a positive electrode plate B201, and a negative electrode plate B202 insulated from the positive electrode plate B201 by the separator B203.

正极板B201具有作为连接到正极引线B210的一端的部分的正极接头B205,并且负极板B202具有作为连接到负极引线B220的一端的部分的负极接头B206。The positive electrode plate B201 has a positive electrode tab B205 as a portion connected to one end of a positive electrode lead B210, and the negative electrode plate B202 has a negative electrode tab B206 as a portion connected to one end of a negative electrode lead B220.

在多个单元电芯UC1至UCM的正极接头B205和负极接头B206分别联接到正极引线B210和负极引线B220的一端的状态下,电极组件B200与电解质一起容纳在外壳B230中。正极引线B210和负极引线B220的暴露于外壳B230外部的另一端分别设置为电池B的正极端子和负极端子。The electrode assembly B200 is accommodated in the housing B230 together with the electrolyte in a state where the positive electrode connector B205 and the negative electrode connector B206 of the plurality of unit cells UC1 to UCM are respectively connected to one end of the positive electrode lead B210 and the negative electrode lead B220. The other ends of the positive electrode lead B210 and the negative electrode lead B220 exposed to the outside of the housing B230 are respectively set as the positive terminal and the negative terminal of the battery B.

参考图12,电极组件B200的第一容量异常可以是指这样的状态:由于多个单元电芯UC1至UCM中的一些单元电芯UC1、UC2的电极接头B205、B206中发生微小的损坏和/或不完全的断开故障,单元电芯UC1、UC2与电极引线B210、B220之间的接触电阻R1、R2大幅且不规则地变更。Referring to Figure 12, the first capacity abnormality of the electrode assembly B200 may refer to a state in which the contact resistances R1, R2 between the unit cells UC1, UC2 and the electrode leads B210, B220 change significantly and irregularly due to minor damage and/or incomplete disconnection failures in the electrode connectors B205, B206 of some unit cells UC1, UC2 among the multiple unit cells UC1 to UCM.

不完全断开故障可以是指电极接头B205、B206的断开部分不维持彼此分离的状态,断开部分根据电池B的收缩膨胀而柔性地连接和分离,并且连接期间的接触面积也是可变的。The incomplete disconnection failure may mean that the disconnected portions of the electrode tabs B205, B206 do not maintain a state of being separated from each other, the disconnected portions are flexibly connected and separated according to the contraction and expansion of the battery B, and the contact area during connection is also variable.

当单元电芯UC1、UC2中的接触电阻保持较小时,所有单元电芯UC1至UCM几乎同样地充电和放电,并且随着接触电阻R1、R2增加,单元电芯UC1、UC2紧跟着进入与剩余单元电芯UC3至UCM分离(断开)的状态,因此电池B的容量显示出快速增加或减小的不规则行为,此不规则行为在很大程度上取决于单元电芯UC1、UC2的接触电阻R1、R2。例如,当由于电池B的膨胀而在单元电芯UC1、UC2的电极接头B205、B206与电极引线B210、B220之间作用有大的张力时,单元电芯UC1、UC2的接触电阻R1、R2增大,相反地随着张力逐渐减小,单元电芯UC1、UC2的接触电阻R1、R2减小。When the contact resistance in the unit cells UC1 and UC2 remains small, all the unit cells UC1 to UCM are charged and discharged almost in the same manner, and as the contact resistance R1 and R2 increase, the unit cells UC1 and UC2 immediately enter a state of separation (disconnection) from the remaining unit cells UC3 to UCM, so the capacity of the battery B shows an irregular behavior of rapid increase or decrease, and this irregular behavior depends largely on the contact resistance R1 and R2 of the unit cells UC1 and UC2. For example, when a large tension acts between the electrode terminals B205 and B206 of the unit cells UC1 and UC2 and the electrode leads B210 and B220 due to the expansion of the battery B, the contact resistance R1 and R2 of the unit cells UC1 and UC2 increase, and conversely, as the tension gradually decreases, the contact resistance R1 and R2 of the unit cells UC1 and UC2 decrease.

参考图13,电极组件B200的第二容量异常等同于多个单元电芯UC1至UCM中的一些单元电芯UC1、UC2不可逆地断裂的状态,即:单元电芯UC1、UC2与电极引线B210、B220之间的充放电电流路径由于单元电芯UC1、UC2的完全断开故障而不可逆地丧失。Referring to Figure 13, the second capacity abnormality of the electrode assembly B200 is equivalent to the state that some unit cells UC1, UC2 among the multiple unit cells UC1 to UCM are irreversibly broken, that is, the charging and discharging current paths between the unit cells UC1, UC2 and the electrode leads B210, B220 are irreversibly lost due to the complete disconnection failure of the unit cells UC1, UC2.

完全断开故障是将单元电芯UC1、UC2的电极接头B205、B206或电极板B201、B202切割成隔开为不能重新连接的多个部分的状态,并且区别于上述不完全断开故障。The complete disconnection fault is a state in which the electrode terminals B205, B206 or the electrode plates B201, B202 of the unit cells UC1, UC2 are cut into a plurality of parts separated and cannot be reconnected, and is distinguished from the above-mentioned incomplete disconnection fault.

在电池B的制造或使用期间的特定时间由单元电芯UC1、UC2导致发生第二容量异常可以是指不可恢复地从电极引线B210、B220去除了单元电芯UC1、UC2。因此,从发生第二容量异常的特定时间开始,单元电芯UC1、UC2根本不对电池B的充放电做出贡献,因此电池B的容量仅取决于除了单元电芯UC1、UC2之外的剩余单元电芯UC3至UCM的容量。The occurrence of the second capacity abnormality caused by the unit cells UC1 and UC2 at a specific time during the manufacture or use of the battery B may mean that the unit cells UC1 and UC2 are irreversibly removed from the electrode leads B210 and B220. Therefore, from the specific time when the second capacity abnormality occurs, the unit cells UC1 and UC2 do not contribute to the charge and discharge of the battery B at all, and therefore the capacity of the battery B depends only on the capacity of the remaining unit cells UC3 to UCM except the unit cells UC1 and UC2.

外部装置2000可以周期性地或非周期性地重复用于通过将容量估计模型应用于充放电数据来确定表示电池电芯的满充电容量(FCC)的估计容量值的过程。外部装置2000可以监测估计容量值随时间的变化。容量估计模型是接收充放电数据并提供估计容量值作为相应输出的一种算法,是若干函数的组合。The external device 2000 may periodically or non-periodically repeat a process for determining an estimated capacity value representing the full charge capacity (FCC) of the battery cell by applying the capacity estimation model to the charge and discharge data. The external device 2000 may monitor changes in the estimated capacity value over time. The capacity estimation model is an algorithm that receives the charge and discharge data and provides an estimated capacity value as a corresponding output, and is a combination of several functions.

具体地,容量估计模型可以包括:(i)第一函数,其根据电池B的当前时间序列计算电池B在过去的某个时段或可变时段内的充放电电流的电流积分值;(ii)第二函数,其根据电池B的电压时间序列和/或电流时间序列计算电池B在过去的某个时段或可变时段内的OCV(开路电压);(iii)第三函数,其使用给定的OCV-SOC关系表根据电池B的OCV计算电池B的SOC(荷电状态);以及(iv)第四函数,其根据针对共同时段分别计算的电流积分值和SOC变化值的比率计算电池B的满充电容量的估计结果,即估计容量值。下面的等式12是第四函数的实施例。Specifically, the capacity estimation model may include: (i) a first function that calculates the current integral value of the charge and discharge current of battery B in a certain period or variable period in the past according to the current time series of battery B; (ii) a second function that calculates the OCV (open circuit voltage) of battery B in a certain period or variable period in the past according to the voltage time series and/or current time series of battery B; (iii) a third function that calculates the SOC (state of charge) of battery B according to the OCV of battery B using a given OCV-SOC relationship table; and (iv) a fourth function that calculates the estimated result of the full charge capacity of battery B, i.e., the estimated capacity value, according to the ratio of the current integral value and the SOC change value calculated for the common period. The following equation 12 is an embodiment of the fourth function.

<等式12><Equation 12>

在以上等式中,ΔAht1-t2为在t1和t2两个时间之间的时间范围内重复测量的充放电电流的电流积分值,ΔSOCt1-t2为在t1和t2两个时间之间的时间范围内的SOC变化值,并且FCCt2为表示t2时刻满充电容量的估计容量值。时间t1可以是在时间t2之前并且满足ΔAht1-t2的绝对值大于或等于标准积分值和/或ΔSOCt1-t2的绝对值大于或等于标准变化值的最近时间。可以预定标准积分值和标准变化值,以防止由于ΔAht1-t2和/或ΔSOCt1-t2的非常小的绝对值而导致FCCt2的准确度劣化。In the above equation, ΔAht1 -t2 is a current integral value of the charge and discharge current repeatedly measured within the time range between t1 and t2, ΔSOC t1-t2 is a SOC change value within the time range between t1 and t2, and FCC t2 is an estimated capacity value representing the full charge capacity at time t2. Time t1 may be the latest time before time t2 and satisfying that the absolute value of ΔAh t1-t2 is greater than or equal to the standard integral value and/or the absolute value of ΔSOC t1-t2 is greater than or equal to the standard change value. The standard integral value and the standard change value may be predetermined to prevent the accuracy of FCC t2 from being deteriorated due to very small absolute values of ΔAh t1-t2 and/or ΔSOC t1-t2 .

在计算电流积分值时,充电电流可以设定为正数,并且放电电流可以设定为负数。时间t2是满充电容量的计算正时。如果在每隔第一时间间隔重复计算满充电容量,那么所属领域的技术人员将容易理解,时间t2移位到第一时间间隔。When calculating the current integral value, the charging current can be set as a positive number, and the discharging current can be set as a negative number. Time t2 is the calculation timing of the full charge capacity. If the full charge capacity is calculated repeatedly at every first time interval, it will be easily understood by those skilled in the art that time t2 is shifted to the first time interval.

例如,当在过去的共同时段内的电流积分值和SOC变化值分别为+100Ah[安培-小时]和+80%时,满充电容量的估计容量值为125Ah。作为另一实施例,如果在过去的共同时段内的电流积分值和SOC变化值分别是-75Ah[安培-小时]和-60%,则满充电容量的估计容量值也是125Ah。For example, when the current integral value and the SOC change value in the past common period are +100Ah [ampere-hour] and +80%, respectively, the estimated capacity value of the full charge capacity is 125Ah. As another embodiment, if the current integral value and the SOC change value in the past common period are -75Ah [ampere-hour] and -60%, respectively, the estimated capacity value of the full charge capacity is also 125Ah.

满充电容量表示电池B的最大存储容量,即,电池B在SOC100%时的剩余容量。正常情况下,满充电容量随着电池B退化而缓慢减小。因此,当满充电容量关于短时间间隔减少的量超过一定水平时,表示发生第一容量异常或第二容量异常。The full charge capacity indicates the maximum storage capacity of the battery B, that is, the remaining capacity of the battery B at SOC 100%. Normally, the full charge capacity decreases slowly as the battery B degrades. Therefore, when the amount by which the full charge capacity decreases with respect to a short time interval exceeds a certain level, it indicates that the first capacity abnormality or the second capacity abnormality occurs.

图14是用于示出电池电芯的容量异常和满充电容量之间的关系的示例图。FIG. 14 is an exemplary diagram for illustrating the relationship between the capacity abnormality of a battery cell and the full charge capacity.

参考图14,曲线C21示出了正常电池电芯的满充电容量随时间的变化。为了更好地理解,曲线C21被简化以示出正常电池电芯的满充电容量随时间线性减小。14 , a curve C21 shows the change of the full charge capacity of a normal battery cell over time. For better understanding, the curve C21 is simplified to show that the full charge capacity of a normal battery cell decreases linearly over time.

曲线C22例示了当第一容量异常和第二容量异常依次发生时电池B的满充电容量随时间的变化。如图12中所示,曲线C22表示由于单元电芯UC1、UC2的微小损坏和/或不完全断开故障而发生第一容量异常的电池B的满充电容量。在曲线C22中,满充电容量从时间ta(例如,电池电芯的释放时间)到时间tb逐渐减小,然后从时间tb到时间tc快速减小,然后从时间tc到时间td快速增加。即,在时间tb和时间tc之间的满充电容量的减小量大部分在时间tc和时间td之间得到恢复。如上文参考图12所述,这是因为单元电芯UC1、UC2的接触电阻R1、R2在时间tb和时间tc之间快速增加,然后在时间tc和时间td之间返回到正常电平。Curve C22 illustrates the change of the full charge capacity of battery B over time when the first capacity abnormality and the second capacity abnormality occur sequentially. As shown in FIG12, curve C22 represents the full charge capacity of battery B in which the first capacity abnormality occurs due to minor damage and/or incomplete disconnection failure of unit cells UC1, UC2. In curve C22, the full charge capacity gradually decreases from time ta (e.g., the release time of the battery cell) to time tb, then decreases rapidly from time tb to time tc, and then increases rapidly from time tc to time td. That is, most of the reduction in the full charge capacity between time tb and time tc is recovered between time tc and time td. As described above with reference to FIG12, this is because the contact resistances R1, R2 of the unit cells UC1, UC2 increase rapidly between time tb and time tc, and then return to normal levels between time tc and time td.

这意味着如果第一容量异常长期持续,则可能发展(加强)为第二容量异常。参见曲线C22,在时间td之后,从时间te到时间tf,类似于从时间tb到时间tc的先前时段,满充电容量快速减小。然而,与时间tc至td的行为相反,即使在时间tf之后,当满充电容量的快速减小停止时,曲线C22在满充电容量未恢复到正常水平的状态下具有与曲线C21类似的斜率。如上文参考图13所述,这是因为在时间te附近发生了单元电芯UC1、UC2的完全断开故障,即,第二容量异常。This means that if the first capacity anomaly persists for a long time, it may develop (intensify) into a second capacity anomaly. Referring to curve C22, after time td, from time te to time tf, similar to the previous period from time tb to time tc, the full charge capacity decreases rapidly. However, in contrast to the behavior from time tc to td, even after time tf, when the rapid decrease in full charge capacity stops, curve C22 has a slope similar to curve C21 in a state where the full charge capacity has not returned to a normal level. As described above with reference to FIG. 13, this is because a complete disconnection failure of unit cells UC1, UC2, i.e., a second capacity anomaly, occurs near time te.

外部装置2000通过根据曲线C22(即,估计容量值随时间的变化(时间序列))监测满充电容量来判断是否发生并联连接B200的第一容量异常和/或第二容量异常。The external device 2000 determines whether the first capacity abnormality and/or the second capacity abnormality of the parallel connection B200 occurs by monitoring the full charge capacity according to the curve C22 (ie, the change in the estimated capacity value over time (time series)).

具体地,外部装置2000通过将诊断逻辑应用于移位到第一时间间隔的第一时间和第二时间的两个估计容量值来判断是否发生并联连接B200的第一容量异常和/或第二容量异常,其中第二时间间隔等于或大于第一时间间隔。第二时间是第一时间经过第二时间间隔之后的时间,并且第一时间和第二时间可以由外部装置2000设定为对于每个第一时间间隔增加一个第一时间间隔。第一时间间隔可以等于充放电数据的收集时段(或估计容量值的计算时段),并且第二时间间隔可以是第一时间间隔的整数倍(例如,10倍)。Specifically, the external device 2000 determines whether the first capacity abnormality and/or the second capacity abnormality of the parallel connection B200 occurs by applying the diagnostic logic to two estimated capacity values of the first time and the second time shifted to the first time interval, wherein the second time interval is equal to or greater than the first time interval. The second time is the time after the first time passes the second time interval, and the first time and the second time can be set by the external device 2000 to increase one first time interval for each first time interval. The first time interval can be equal to the collection period of the charge and discharge data (or the calculation period of the estimated capacity value), and the second time interval can be an integer multiple (e.g., 10 times) of the first time interval.

诊断逻辑可以包括(i)第一例程,其确定第二时间的阈值容量值小于第一时间的估计容量值,以及(ii)第二例程,其将第二时间的估计容量值与第二时间的阈值容量值进行比较。The diagnostic logic may include (i) a first routine that determines that the threshold capacity value at the second time is less than the estimated capacity value at the first time, and (ii) a second routine that compares the estimated capacity value at the second time to the threshold capacity value at the second time.

在第一例程中,第二时间的阈值容量值可以等于从第一时间的估计容量值减去标准容量值的结果或将第一时间的估计容量值乘以小于1的标准因子的结果。在考虑到电池B中包括的多个单元电芯UC1至UCM的总数M和电池B的设计容量(新状态下的满充电容量)的情况下,标准容量值可以记录在存储器120中作为预定值。在考虑到电池B中包括的多个单元电芯UC1至UCM的总数M的情况下,标准因子可以记录在存储器120中作为预定值(例如,(M-1)/M、(M-2)/M)。图14的曲线C23示出了通过将第一例程应用于曲线C22而计算的阈值容量值随时间的变化。In the first routine, the threshold capacity value at the second time may be equal to the result of subtracting the standard capacity value from the estimated capacity value at the first time or the result of multiplying the estimated capacity value at the first time by a standard factor less than 1. The standard capacity value may be recorded in the memory 120 as a predetermined value in consideration of the total number M of the plurality of unit cells UC1 to UCM included in the battery B and the design capacity of the battery B (full charge capacity in a new state). The standard factor may be recorded in the memory 120 as a predetermined value (e.g., (M-1)/M, (M-2)/M) in consideration of the total number M of the plurality of unit cells UC1 to UCM included in the battery B. Curve C23 of FIG. 14 shows the change over time of the threshold capacity value calculated by applying the first routine to curve C22.

如果第二时间的估计容量值小于第二时间的阈值容量值,则外部装置2000可以判断在并联连接B200中已经发生第一容量异常和第二容量异常中的至少一者。此外,外部装置2000可以生成表示是否存在并联连接异常的第二信息。If the estimated capacity value at the second time is less than the threshold capacity value at the second time, the external device 2000 may determine that at least one of the first capacity abnormality and the second capacity abnormality has occurred in the parallel connection B200. In addition, the external device 2000 may generate second information indicating whether there is a parallel connection abnormality.

具体地,每当第二时间的估计容量值小于第二时间的阈值容量值时,外部装置2000可以将诊断计数增加1。每当第二时间的估计容量值大于或等于第二时间的阈值容量值时,计算电路130可以将诊断计数重置为初始值(例如,0)或将诊断计数减小1。响应于第二时间的估计容量值在诊断计数达到阈值计数之前恢复到第二时间的阈值容量值或更高,外部装置2000可以判断并联连接B200的异常类型为第一容量异常。响应于诊断计数达到阈值计数(例如,5),外部装置2000可以判断已经发生并联连接B200的第二容量异常。Specifically, whenever the estimated capacity value at the second time is less than the threshold capacity value at the second time, the external device 2000 may increase the diagnostic count by 1. Whenever the estimated capacity value at the second time is greater than or equal to the threshold capacity value at the second time, the calculation circuit 130 may reset the diagnostic count to an initial value (e.g., 0) or reduce the diagnostic count by 1. In response to the estimated capacity value at the second time being restored to the threshold capacity value at the second time or higher before the diagnostic count reaches the threshold count, the external device 2000 may determine that the abnormality type of the parallel connection B200 is the first capacity abnormality. In response to the diagnostic count reaching the threshold count (e.g., 5), the external device 2000 may determine that the second capacity abnormality of the parallel connection B200 has occurred.

在图14中,时间ta+、tb+、tc+、td+、te+和tf+是在正方向上分别从时间ta、tb、tc、td、te和tf以第二时间间隔进行移位的时间。在时间tx和时间ty之间的时间范围内,曲线C22位于曲线C22下方。因此,从时间tx到时间ty,对于每个第一时间间隔的诊断计数增加1。外部装置2000可以响应于诊断计数在时间ty之前达到阈值计数而激活与电池B的第二容量异常相关的预定保护功能。In FIG. 14 , time ta+, tb+, tc+, td+, te+, and tf+ are times shifted in the positive direction from time ta, tb, tc, td, te, and tf, respectively, at the second time interval. In the time range between time tx and time ty, curve C22 is located below curve C22. Therefore, from time tx to time ty, the diagnostic count for each first time interval increases by 1. The external device 2000 may activate a predetermined protection function associated with the second capacity abnormality of battery B in response to the diagnostic count reaching the threshold count before time ty.

最后,将描述这样的实施方式:第二信息中包括的电池电芯的诊断信息是关于电池电芯的内部短路的信息。Finally, an embodiment will be described in which the diagnosis information of the battery cell included in the second information is information on the internal short circuit of the battery cell.

第二信息可以表示基于第一SOC变化和电池电芯的标准因子,电池电芯是否具有内部短路。这里,可以通过将统计算法应用于多个电池电芯中的至少两个电池电芯的第一SOC变化来确定标准因子。这里,第一SOC变化可以是每个电池电芯在第一充电时间点的第一SOC与在第二充电时间点的第二SOC之间的差。这里,可以通过将SOC估计算法应用于电池电芯在第一充电时间点的状态参数来估计第一SOC。这里,可以通过将SOC估计算法应用于电池电芯在第二充电时间点的状态参数来估计第二SOC。这里,可以基于第一信息获取状态参数。The second information may indicate whether the battery cell has an internal short circuit based on the first SOC change and the standard factor of the battery cell. Here, the standard factor may be determined by applying a statistical algorithm to the first SOC change of at least two battery cells among the plurality of battery cells. Here, the first SOC change may be the difference between the first SOC of each battery cell at a first charging time point and the second SOC at a second charging time point. Here, the first SOC may be estimated by applying an SOC estimation algorithm to the state parameters of the battery cell at the first charging time point. Here, the second SOC may be estimated by applying an SOC estimation algorithm to the state parameters of the battery cell at the second charging time point. Here, the state parameters may be acquired based on the first information.

存储单元2100可以通过使用第一信息中包括的信息来获取多个电池电芯中的每一者的状态参数。状态参数可以包括电池电芯BC的电压、电流和/或温度。The storage unit 2100 may acquire a state parameter of each of the plurality of battery cells by using the information included in the first information. The state parameter may include a voltage, a current, and/or a temperature of the battery cell BC.

第三控制单元2200可以通过对电池电芯BC的状态参数应用SOC估计算法来监测电池组10的充电时段、放电时段和/或空闲时段期间电池电芯BC的SOC变化。例如,作为SOC估计算法,可以使用OCV-SOC关系图或卡尔曼滤波器。OCV-SOC关系图和卡尔曼滤波器是广泛使用的SOC估计技术,因此将不再详细描述。The third control unit 2200 can monitor the SOC change of the battery cell BC during the charging period, the discharging period and/or the idle period of the battery pack 10 by applying the SOC estimation algorithm to the state parameters of the battery cell BC. For example, as the SOC estimation algorithm, an OCV-SOC relationship diagram or a Kalman filter can be used. The OCV-SOC relationship diagram and the Kalman filter are widely used SOC estimation techniques, and therefore will not be described in detail.

第三控制单元2200可以通过将SOC估计算法应用于在充电期间获取的多个电池电芯BC1至BCN中的每一者的状态参数来确定每个电池电芯BC的第一SOC变化,该第一SOC变化是第一充电时间点的第一SOC和第二充电时间点的第二SOC之间的差。第一充电时间点和第二充电时间点不受特别限制,只要它们是最近充电时段内的两个不同时间点即可。The third control unit 2200 can determine a first SOC variation of each battery cell BC, which is a difference between a first SOC at a first charging time point and a second SOC at a second charging time point, by applying an SOC estimation algorithm to a state parameter of each of the plurality of battery cells BC1 to BC N acquired during charging. The first charging time point and the second charging time point are not particularly limited as long as they are two different time points within a recent charging period.

第三控制单元2200可以通过将统计算法应用于多个电池电芯中的至少两个电池电芯的第一SOC变化来确定标准因子。标准因子可以是多个电池电芯BC1至BCN中的至少两个电池电芯的第一SOC变化的代表值。例如,标准因子可以是多个电池电芯中的至少两个电池电芯的第一SOC变化的平均值或中值。The third control unit 2200 may determine the standard factor by applying a statistical algorithm to the first SOC changes of at least two battery cells among the plurality of battery cells. The standard factor may be a representative value of the first SOC changes of at least two battery cells among the plurality of battery cells BC 1 to BC N. For example, the standard factor may be an average value or a median value of the first SOC changes of at least two battery cells among the plurality of battery cells.

第三控制单元2200可以基于每个电池电芯的第一SOC变化和标准因子来检测每个电池电芯的内部短路异常。此外,与电池电芯是否具有内部短路相对应的电池电芯的诊断信息可以包括在第二信息中。The third control unit 2200 may detect an internal short circuit abnormality of each battery cell based on the first SOC variation of each battery cell and the standard factor. In addition, diagnosis information of the battery cell corresponding to whether the battery cell has an internal short circuit may be included in the second information.

下文中,将参考图15至图18详细描述通过外部装置2000检测内部短路异常的方法。Hereinafter, a method of detecting an internal short circuit abnormality by the external device 2000 will be described in detail with reference to FIGS. 15 to 18 .

图15是用于示出电池电芯的示例性等效电路所涉及的图。在本说明书中,正常电池电芯是指多个电池电芯BC1至BCN中没有内部短路异常的电池电芯,异常电池电芯是指多个电池电芯BC1至BCN中具有内部短路异常的电池电芯。15 is a diagram for illustrating an exemplary equivalent circuit of a battery cell. In this specification, a normal battery cell refers to a battery cell without an internal short circuit abnormality among a plurality of battery cells BC1 to BCN , and an abnormal battery cell refers to a battery cell with an internal short circuit abnormality among a plurality of battery cells BC1 to BCN .

参考图15,正常的电池电芯可以等效于DC电压源(VDC)、内部电阻部件(R0)和RC对(R1,C)的串联电路。相比之下,异常电池电芯可以等效于其中在对应于正常电池电芯的串联电路的两端之间连接附加电阻部件(RISC)的电池电芯。附加电阻部件(RISC)用作泄漏电流(IISC)的路径。15 , a normal battery cell may be equivalent to a series circuit of a DC voltage source (V DC ), an internal resistance component (R 0 ), and an RC pair (R 1 , C). In contrast, an abnormal battery cell may be equivalent to a battery cell in which an additional resistance component (R ISC ) is connected between both ends of the series circuit corresponding to the normal battery cell. The additional resistance component (R ISC ) serves as a path for a leakage current (I ISC ).

当异常电池电芯充电时,一些充电功率作为泄漏电流(IISC)被消耗,而不被存储在异常电池电芯中。此外,当异常电池电芯放电时,一些放电功率作为泄漏电流(IISC)被消耗,而不被供应到电负载。作为参考,当异常电池电芯空闲时,存储在异常电池电芯中的能量作为泄漏电流(IISC)被消耗,类似于放电。电阻器(RISC)的电阻值减小是指内部短路异常增强,并且随着内部短路异常恶化,作为泄漏电流(IISC)消耗的功率量可能增加。When the abnormal battery cell is charged, some of the charging power is consumed as leakage current (I ISC ) without being stored in the abnormal battery cell. In addition, when the abnormal battery cell is discharged, some of the discharge power is consumed as leakage current (I ISC ) without being supplied to the electrical load. For reference, when the abnormal battery cell is idle, the energy stored in the abnormal battery cell is consumed as leakage current (I ISC ), similar to discharge. The decrease in the resistance value of the resistor (R ISC ) means that the internal short circuit abnormality is enhanced, and as the internal short circuit abnormality worsens, the amount of power consumed as leakage current (I ISC ) may increase.

因此,在充电期间,异常电池电芯的电压变化(即,SOC的增加量)小于正常电池的电压变化。同时,在放电期间,异常电池电芯的电压变化(即,SOC的减小量)大于正常电池电芯的电压变化。Therefore, during charging, the voltage change of the abnormal battery cell (i.e., the increase in SOC) is smaller than that of the normal battery cell. Meanwhile, during discharging, the voltage change of the abnormal battery cell (i.e., the decrease in SOC) is greater than that of the normal battery cell.

图16至图18是用于根据内部短路异常的存在或不存在来比较电池电芯的SOC变化的示例性图表。图16至图18分别示出了相同时段内的充放电电流、电池电芯BC的电压和电池电芯BC的SOC的变化。16 to 18 are exemplary graphs for comparing changes in the SOC of a battery cell according to the presence or absence of an internal short circuit abnormality. FIGS. 16 to 18 respectively show changes in charge and discharge current, voltage of a battery cell BC, and SOC of a battery cell BC in the same period.

参考图16,时间点t0和时间点t4表示空闲状态切换到充电状态的时间点,时间点t1和时间点t5表示充电状态切换到空闲状态的时间点,时间点t2表示空闲状态切换到放电状态的时间点,时间点t3表示放电状态切换到空闲状态的时间点。即,在图16中,从时间点t0至时间点t1的时段以及从时间点t4至时间点t5的时段为充电时段,从时间点t2至时间点t3的时段为放电时段,而剩余时段为搁置时段。为了便于说明,在图16中,为每个充电时段的充电电流分配正值,为放电时段的放电电流分配负值,并且每个时段中的电流被示为恒定。Referring to FIG. 16 , time point t0 and time point t4 represent time points when the idle state is switched to the charging state, time point t1 and time point t5 represent time points when the charging state is switched to the idle state, time point t2 represents time points when the idle state is switched to the discharging state, and time point t3 represents time points when the discharging state is switched to the idle state. That is, in FIG. 16 , the period from time point t0 to time point t1 and the period from time point t4 to time point t5 are charging periods, the period from time point t2 to time point t3 is a discharging period, and the remaining period is a standby period. For ease of explanation, in FIG. 16 , a positive value is assigned to the charging current of each charging period, a negative value is assigned to the discharging current of the discharging period, and the current in each period is shown as constant.

在图17中,曲线VC2表示对应于图16中所示的电流曲线的正常电池电芯的电压曲线,曲线VC3表示对应于图16中所示的电流曲线的异常电池电芯的电压曲线。曲线VC2可以视为多个电池电芯BC1至BCN的平均电压的时间序列。外部装置2000可周期性地或非周期性地获取多个电池电芯BC1到BCN中的每一者的状态参数,并将状态参数的时间序列记录在存储单元2100中。In FIG17 , curve VC2 represents a voltage curve of a normal battery cell corresponding to the current curve shown in FIG16 , and curve VC3 represents a voltage curve of an abnormal battery cell corresponding to the current curve shown in FIG16 . Curve VC2 may be considered as a time series of average voltages of the plurality of battery cells BC1 to BC N. The external device 2000 may periodically or non-periodically acquire a state parameter of each of the plurality of battery cells BC1 to BC N , and record the time series of the state parameters in the storage unit 2100.

参考图17,在充电期间,正常电池电芯和异常电池电芯两者的电压都逐渐增加。然而,由于异常电池电芯比正常电池电芯具有低充电功率容量,因此异常电池电芯的电压增加小于正常电池电芯的电压增加。17 , during charging, the voltages of both the normal battery cells and the abnormal battery cells gradually increase. However, since the abnormal battery cells have a lower charging power capacity than the normal battery cells, the voltage increase of the abnormal battery cells is smaller than the voltage increase of the normal battery cells.

在放电期间,正常电池电芯和异常电池电芯两者的电压都逐渐减小。然而,在异常电池电芯中,除了正常电池电芯的放电功率之外,由于泄漏电流(IISC)而消耗额外的功率,因此异常电池电芯的电压减小量大于正常电池电芯的电压减小量。During discharge, the voltages of both the normal battery cells and the abnormal battery cells gradually decrease. However, in the abnormal battery cells, in addition to the discharge power of the normal battery cells, additional power is consumed due to the leakage current (IISC), so the voltage decrease amount of the abnormal battery cells is greater than the voltage decrease amount of the normal battery cells.

在图18中,曲线VC4表示对应于图17中所示的电压曲线VC2的正常电池电芯的SOC曲线,曲线VC5表示对应于图17中所示的电压曲线VC3的异常电池电芯的SOC曲线。曲线VC4也可以视为多个电池电芯BC1到BCN的平均SOC的时间序列。In Fig. 18, curve VC4 represents the SOC curve of a normal battery cell corresponding to the voltage curve VC2 shown in Fig. 17, and curve VC5 represents the SOC curve of an abnormal battery cell corresponding to the voltage curve VC3 shown in Fig. 17. Curve VC4 can also be regarded as a time series of the average SOC of a plurality of battery cells BC1 to BC N.

外部装置2000可以通过将SOC估计算法应用于电池电芯BC的状态参数来监测电池电芯BC在电池组10的充电时段、放电时段和/或空闲时段期间的SOC变化。例如,关于SOC估计算法,可以使用OCV-SOC关系图或卡尔曼滤波器。OCV-SOC关系图和卡尔曼滤波器是广泛使用的SOC估计技术,因此将不再详细描述。The external device 2000 can monitor the SOC change of the battery cell BC during the charging period, the discharging period and/or the idle period of the battery pack 10 by applying the SOC estimation algorithm to the state parameters of the battery cell BC. For example, regarding the SOC estimation algorithm, an OCV-SOC relationship diagram or a Kalman filter can be used. The OCV-SOC relationship diagram and the Kalman filter are widely used SOC estimation techniques, and therefore will not be described in detail.

参考图18,在充电时段中,异常电池电芯比正常电池电芯具有更小的SOC增加率和增加量。在放电时段中,异常电池电芯比正常电池电芯具有更高的SOC下降率和下降量。另外,在空闲时段,正常电池电芯的SOC通常是恒定的,而异常电池电芯的SOC即使在充放电电流不流动的情况下也逐渐减小。Referring to FIG. 18 , in the charging period, the abnormal battery cell has a smaller SOC increase rate and increase amount than the normal battery cell. In the discharging period, the abnormal battery cell has a higher SOC decrease rate and decrease amount than the normal battery cell. In addition, in the idle period, the SOC of the normal battery cell is generally constant, while the SOC of the abnormal battery cell gradually decreases even when the charge and discharge current does not flow.

每当电池组10充电时,外部装置2000可以基于多个电池电芯BC1至BCN中的所有电池电芯在最近充电时段中的SOC变化来执行用于检测电池电芯BC的内部短路异常的诊断过程。例如,当外部装置2000在时间点t1从充电切换到空闲时,可以基于在充电时段(t0至t1)期间获取的多个电池电芯BC1至BCN中的所有电池电芯的SOC变化来检测电池电芯BC的内部短路异常。Whenever the battery pack 10 is charged, the external device 2000 may perform a diagnostic process for detecting an internal short circuit abnormality of the battery cell BC based on a change in SOC of all the battery cells among the plurality of battery cells BC 1 to BC N in a recent charging period. For example, when the external device 2000 switches from charging to idle at time point t1, an internal short circuit abnormality of the battery cell BC may be detected based on a change in SOC of all the battery cells among the plurality of battery cells BC 1 to BC N acquired during the charging period (t0 to t1).

作为另一实施例,当外部装置2000在时间点t5从充电切换到空闲时,可以基于在最近充电时段(t4至t5)中获取的多个电池电芯BC1至BCN中的所有电池电芯的SOC变化来检测内部短路异常。As another embodiment, when the external device 2000 switches from charging to idling at time point t5, an internal short circuit abnormality may be detected based on SOC changes of all battery cells of the plurality of battery cells BC1 to BCN acquired in the most recent charging period (t4 to t5).

另选地,每当电池组10充电或放电时,外部装置2000可以基于多个电池电芯BC1至BCN中的所有电池电芯在最近充电时段中的SOC变化以及多个电池电芯BC1至BCN中的所有电池电芯在最近放电时段中的SOC变化来执行用于检测电池电芯BC的内部短路异常的诊断过程。Alternatively, whenever the battery pack 10 is charged or discharged, the external device 2000 may perform a diagnostic process for detecting an internal short circuit abnormality of a battery cell BC based on SOC changes of all battery cells among the plurality of battery cells BC 1 to BC N in a recent charging period and SOC changes of all battery cells among the plurality of battery cells BC 1 to BC N in a recent discharging period.

例如,当外部装置2000在时间点t3从放电状态切换到空闲状态时,外部装置2000可以基于在最近充电时段(t0至t1)中获取的多个电池电芯BC1至BCN中的所有电池电芯的SOC变化以及基于在最近放电时段(t2至t3)中获取的多个电池电芯BC1至BCN中的所有电池电芯的SOC变化来检测电池电芯BC的内部短路异常。For example, when the external device 2000 switches from a discharging state to an idle state at time point t3, the external device 2000 can detect an internal short circuit abnormality of the battery cell BC based on the SOC changes of all battery cells among the multiple battery cells BC 1 to BC N obtained in the most recent charging period (t0 to t1) and based on the SOC changes of all battery cells among the multiple battery cells BC 1 to BC N obtained in the most recent discharging period (t2 to t3).

作为另一实施例,当在时间点t5从充电状态切换到空闲状态时,外部装置2000可以基于在最近放电时段(t2至t3)中获取的多个电池电芯BC1至BCN中的所有电池电芯的SOC变化以及在最近充电时段(t4至t5)中获取的多个电池电芯BC1至BCN中的所有电池电芯的SOC变化来检测电池电芯BC的内部短路异常。As another embodiment, when switching from a charging state to an idle state at time point t5, the external device 2000 can detect an internal short circuit abnormality of the battery cell BC based on the SOC changes of all battery cells among the multiple battery cells BC 1 to BC N obtained in the most recent discharge period (t2 to t3) and the SOC changes of all battery cells among the multiple battery cells BC 1 to BC N obtained in the most recent charging period (t4 to t5).

在图16至图18中,空闲模式位于充电时段和放电时段之间,但这仅是一个实施例。例如,可以从充电状态切换到放电状态而无空闲状态,或者从放电状态切换到充电状态而无空闲状态。In Figures 16 to 18, the idle mode is located between the charging period and the discharging period, but this is only one embodiment. For example, it is possible to switch from the charging state to the discharging state without the idle state, or from the discharging state to the charging state without the idle state.

下文中,将详细描述本公开的使用电池电芯诊断设备1000和外部装置2000的电池电芯异常状态诊断方法。将在电池诊断方法的各种实施方式中更详细地描述控制电路220的操作。Hereinafter, the battery cell abnormal state diagnosis method using the battery cell diagnosis apparatus 1000 and the external device 2000 of the present disclosure will be described in detail. The operation of the control circuit 220 will be described in more detail in various embodiments of the battery diagnosis method.

在本说明书中,外部装置2000所执行的功能可以包括第三控制单元2200所执行的功能。In this specification, the function performed by the external device 2000 may include the function performed by the third control unit 2200 .

下文中,将详细描述使用上文描述的本公开的电池电芯诊断设备1000和外部装置2000的电池电芯诊断方法异常状态。将在电池诊断方法的各种实施方式中更详细地描述控制电路220的操作。Hereinafter, a battery cell diagnosis method abnormal state using the battery cell diagnosis apparatus 1000 of the present disclosure described above and the external device 2000 will be described in detail. The operation of the control circuit 220 will be described in more detail in various embodiments of the battery diagnosis method.

图19是根据本公开的实施方式的电池电芯诊断设备1000使用外部装置2000对电芯的异常状态进行诊断的流程图。FIG. 19 is a flowchart of the battery cell diagnostic apparatus 1000 diagnosing an abnormal state of a cell using an external device 2000 according to an embodiment of the present disclosure.

在步骤S1000中,电池电芯诊断设备1000可以获取数据。例如,电池电芯诊断设备1000可以使用数据获取单元300获取由电流测量单元100或电压感测单元200测量的数据。具体地,电池电芯诊断设备1000可以通过使用数据获取单元300获取关于电流测量单元100或电压感测单元200测量的充电电流、放电电流和电压信号中的至少一者的数据。此外,电池电芯诊断设备1000可以使用数据获取单元300获取关于温度传感器T检测到的温度信号的数据。In step S1000, the battery cell diagnostic device 1000 may acquire data. For example, the battery cell diagnostic device 1000 may acquire data measured by the current measuring unit 100 or the voltage sensing unit 200 using the data acquisition unit 300. Specifically, the battery cell diagnostic device 1000 may acquire data about at least one of the charging current, discharging current, and voltage signal measured by the current measuring unit 100 or the voltage sensing unit 200 by using the data acquisition unit 300. In addition, the battery cell diagnostic device 1000 may acquire data about the temperature signal detected by the temperature sensor T using the data acquisition unit 300.

在步骤S2000中,电池电芯诊断设备1000可以生成第一信息。例如,电池电芯诊断设备1000可以基于在步骤S1000中获取的数据来生成电池电芯的第一信息。第一信息可以包括关于作为异常判断目标的电池电芯的充电电流、放电电流和电压信号中的至少一者的数据。In step S2000, the battery cell diagnostic device 1000 may generate first information. For example, the battery cell diagnostic device 1000 may generate first information of the battery cell based on the data acquired in step S1000. The first information may include data on at least one of a charging current, a discharging current, and a voltage signal of the battery cell as an abnormality judgment target.

在步骤S3000中,电池电芯诊断设备1000可以将生成的第一信息发送到外部装置2000。In step S3000 , the battery cell diagnosis apparatus 1000 may transmit the generated first information to the external device 2000 .

在步骤S4000中,电池电芯诊断设备1000可以检测电压异常。将参考图20至图24对此进行详细描述。In step S4000, the battery cell diagnosis apparatus 1000 may detect voltage abnormality. This will be described in detail with reference to FIGS. 20 to 24.

在步骤S5000中,电池电芯诊断设备1000可以检测行为异常。将参考图25至图26对此进行详细描述。In step S5000, the battery cell diagnosis apparatus 1000 may detect a behavior abnormality. This will be described in detail with reference to FIGS. 25 to 26.

在步骤S7000中,外部装置2000可以检测析锂异常。将参考图27至图32对此进行详细描述。In step S7000, the external device 2000 may detect lithium deposition abnormality. This will be described in detail with reference to FIGS. 27 to 32.

在步骤S8000中,外部装置2000可以生成第二信息。第二信息可以包括是否检测到析锂异常。In step S8000, the external device 2000 may generate second information. The second information may include whether lithium plating abnormality is detected.

在步骤S9000中,外部装置2000可以将第二信息发送到电池电芯诊断设备1000。In step S9000 , the external device 2000 may transmit the second information to the battery cell diagnosis apparatus 1000 .

在步骤S6000中,电池电芯诊断设备1000可以诊断电池电芯异常状态。电池电芯诊断设备1000可以基于电压异常、行为异常和第二信息来诊断电池电芯的异常状态。In step S6000, the battery cell diagnosis apparatus 1000 may diagnose the abnormal state of the battery cell. The battery cell diagnosis apparatus 1000 may diagnose the abnormal state of the battery cell based on the voltage abnormality, the behavior abnormality and the second information.

图20至图24是详细示出根据本公开的实施方式的电池电芯诊断设备1000检测电压异常的过程的流程图。20 to 24 are flowcharts illustrating in detail a process of detecting voltage abnormality by the battery cell diagnosis apparatus 1000 according to an embodiment of the present disclosure.

图20是示例性示出根据本公开的实施方式的电压异常检测方法的流程图。可以由第一控制单元400每单位时间周期性地执行图20的方法。Fig. 20 is a flowchart exemplarily illustrating a voltage abnormality detection method according to an embodiment of the present disclosure. The method of Fig. 20 may be periodically performed by the first control unit 400 per unit time.

在步骤S4310中,第一控制单元400可以收集表示第一信息中包括的多个电池电芯BC1至BCN中的每一者的电芯电压的电压信号,并生成每个电池电芯BC的电芯电压的时间序列数据(参见图4a)。在电芯电压的时间序列数据中,每过一个单位时间,数据数量可以增加1。In step S4310, the first control unit 400 may collect a voltage signal representing a cell voltage of each of the plurality of battery cells BC1 to BCN included in the first information, and generate time series data of the cell voltage of each battery cell BC (see FIG. 4a). In the time series data of the cell voltage, the number of data may increase by 1 for each unit time.

例如,等式5的Vi[k]或VDi[k]可以用作电芯电压。For example, Vi [k] or VDi [k] of Equation 5 may be used as the cell voltage.

在步骤S4320中,第一控制单元400可以基于每个电池电芯BCi的电芯电压的时间序列数据(参见图4b)来确定每个电池电芯BCi的第一平均电芯电压(S4MAi[k],参见等式1和等式11)和第二平均电芯电压(LMAi[k],参见等式3和等式4)。In step S4320, the first control unit 400 may determine a first average cell voltage (S4MA i [k], see Equation 1 and Equation 11) and a second average cell voltage (LMA i [k], see Equation 3 and Equation 4) of each battery cell BC i based on the time series data of the cell voltage of each battery cell BC i (see FIG. 4 b ).

第一平均电芯电压(S4MAi[k])可以是指每个电池电芯BCi的电芯电压在具有第一时间长度的第一移动窗口内的短期移动平均值。第二平均电芯电压(LMAi[k])可以是指每个电池电芯BCi的电芯电压在具有第二时间长度的第二移动窗口内的长期移动平均值。当计算第一平均电芯电压(S4MAi[k])和第二平均电芯电压(LMAi[k])时,可以使用Vi[k]或VDi[k]。The first average cell voltage (S4MA i [k]) may refer to a short-term moving average value of the cell voltage of each battery cell BC i within a first moving window having a first time length. The second average cell voltage (LMA i [k]) may refer to a long-term moving average value of the cell voltage of each battery cell BC i within a second moving window having a second time length. When calculating the first average cell voltage (S4MA i [k]) and the second average cell voltage (LMA i [k]), Vi [ k] or VD i [k] may be used.

在步骤S4330中,第一控制单元400可以确定每个电池电芯BCi的长期和短期平均差(|S4MAi[k]-LMAi[k]|)(参见图4c)。In step S4330, the first control unit 400 may determine the long-term and short-term average differences (|S4MA i [k]-LMA i [k]|) of each battery cell BC i (see FIG. 4 c ).

在步骤S4340中,第一控制单元400可以确定每个电池电芯BCi的电芯诊断偏差(Ddiag,i[k])。电芯诊断偏差(Ddiag,i[k])可以是指所有电池电芯的长期和短期平均差的平均值(|S4MAi[k]-LMAi[k]|av)与第i电池电芯BCi的长期和短期平均差(|S4MAi[k]-LMAi[k]|)的偏差。In step S4340, the first control unit 400 may determine a cell diagnostic deviation (Ddiag, i[k]) of each battery cell BC i . The cell diagnostic deviation (Ddiag, i[k]) may refer to a deviation between an average value of the long-term and short-term average differences of all battery cells (|S4MA i [k]-LMA i [k]|av) and the long-term and short-term average difference (|S4MA i [k]-LMA i [k]|) of the i-th battery cell BC i .

在步骤S4350中,第一控制单元400可以判断是否已经过了诊断时间。诊断时间可以是预设的。如果步骤S4350的判断为是,则步骤S4360继续进行,如果步骤S4350的判断为否,则再次重复步骤S4310至步骤S4340。In step S4350, the first control unit 400 may determine whether the diagnosis time has passed. The diagnosis time may be preset. If the determination of step S4350 is yes, step S4360 is continued, and if the determination of step S4350 is no, steps S4310 to S4340 are repeated again.

在步骤S4360中,第一控制单元400可以生成在诊断时间期间收集的每个电池电芯BCi的关于电芯诊断偏差(Ddiag,i[k])的时间序列数据。In step S4360, the first control unit 400 may generate time series data regarding the cell diagnosis deviation (Ddiag,i[k]) of each battery cell BC i collected during the diagnosis time.

在步骤S4370中,第一控制单元400可以通过分析关于电芯诊断偏差(Ddiag,i[k])的时间序列数据来检测每个电池电芯BCi的电压异常。In step S4370, the first control unit 400 may detect the voltage abnormality of each battery cell BC i by analyzing the time series data regarding the cell diagnosis deviation (Ddiag,i[k]).

在一个实施例中,第一控制单元400可以将每个电池电芯BCi的关于电芯诊断偏差(Ddiag,i[k])的时间序列数据中电芯诊断偏差(Ddiag,i[k])大于诊断阈值(例如,0.015)的时间区域进行积分,并将使积分时间大于预设标准时间的条件成立的电芯检测为电压异常电芯。In one embodiment, the first control unit 400 may integrate the time region in which the cell diagnostic deviation (Ddiag, i[k]) is greater than a diagnostic threshold (e.g., 0.015) in the time series data of the cell diagnostic deviation (Ddiag, i[k]) of each battery cell BCi, and detect the cell for which the condition that the integration time is greater than a preset standard time is met as a cell with abnormal voltage.

例如,第一控制单元400可以仅对连续满足电芯诊断偏差(Ddiag,i[k])大于诊断阈值的条件的时间区域进行积分。如果对应的时间区域为多个,则第一控制单元400可以针对每个时间区域独立地计算积分时间。For example, the first control unit 400 may integrate only the time region that continuously satisfies the condition that the cell diagnosis deviation (Ddiag, i[k]) is greater than the diagnosis threshold. If there are multiple corresponding time regions, the first control unit 400 may calculate the integration time independently for each time region.

在另一实施例中,第一控制单元400可以对每个电池电芯BCi的电芯诊断偏差(Ddiag,i[k])的时间序列数据中电芯诊断偏差(Ddiag,i[k])大于诊断阈值(例如,0.015)的数据数量进行积分,并将使数据积分值大于预设标准计数的条件成立的电池电芯检测为电压异常电芯。In another embodiment, the first control unit 400 may integrate the number of data in which the cell diagnostic deviation (Ddiag, i[k]) is greater than a diagnostic threshold (e.g., 0.015) in the time series data of the cell diagnostic deviation (Ddiag, i[k]) of each battery cell BC i, and detect the battery cell for which the condition that the data integral value is greater than a preset standard count is met as a battery cell with abnormal voltage.

第一控制单元400可以仅对连续满足电芯诊断偏差(Ddiag,i[k])大于诊断阈值的条件的时间区域中包括的数据数量进行积分。如果对应的时间区域为多个,则第一控制单元400可以独立地对每个时间区域的数据数量进行积分。The first control unit 400 may integrate only the amount of data included in the time zone that continuously satisfies the condition that the cell diagnosis deviation (Ddiag, i[k]) is greater than the diagnosis threshold. If there are multiple corresponding time zones, the first control unit 400 may independently integrate the amount of data in each time zone.

图21是示例性示出根据本公开的实施方式的电压异常检测方法的另一流程图。图21的方法可以由第一控制单元400每隔单位时间周期性地执行。Fig. 21 is another flowchart exemplarily illustrating a voltage abnormality detection method according to an embodiment of the present disclosure. The method of Fig. 21 may be periodically performed by the first control unit 400 every unit time.

在图21的检测电压异常的方法中,步骤S4310至步骤S4360与图20的实施方式基本相同,因此将省略其描述。在步骤S4360之后,步骤S4380继续进行。In the method for detecting voltage abnormality of Fig. 21, steps S4310 to S4360 are substantially the same as those of the embodiment of Fig. 20, and thus description thereof will be omitted. After step S4360, step S4380 is continued.

在步骤S4380中,第一控制单元400可以使用等式8生成统计变量阈值(Dthreshold[k])的时间序列数据。等式8的Sigma函数的输入是步骤S4360中生成的所有电池电芯的电芯诊断偏差(Ddiag,i[k])的时间序列数据。优选地,可以从Sigma函数的输入值中排除电芯诊断偏差(Ddiag,i[k])的最大值。电芯诊断偏差(Ddiag,i[k])是与长期和短期平均差的平均值的偏差(|SMAi[k]-LMAi[k]|)。In step S4380, the first control unit 400 may generate time series data of a statistical variable threshold value (Dthreshold[k]) using Equation 8. The input of the Sigma function of Equation 8 is the time series data of the cell diagnostic deviation (Ddiag, i[k]) of all battery cells generated in step S4360. Preferably, the maximum value of the cell diagnostic deviation (Ddiag, i[k]) may be excluded from the input value of the Sigma function. The cell diagnostic deviation (Ddiag, i[k]) is the deviation from the average of the long-term and short-term mean differences (|SMA i [k]-LMA i [k]|).

在步骤S4390中,第一控制单元400可以通过使用等式9对每个电池电芯BCi的电芯诊断偏差(Ddiag,i[k])进行滤波来生成滤波诊断值(Dfilter,i[k])的时间序列数据。In step S4390, the first control unit 400 may generate time series data of a filtered diagnosis value (Dfilter,i[k]) by filtering the cell diagnosis deviation (Ddiag,i[k]) of each battery cell BC i using Equation 9.

在使用等式9时,D*diag,i[k]可以用Ddiag,i[k]替换。When using Equation 9, D*diag,i[k] can be replaced by Ddiag,i[k].

在步骤S4400中,第一控制单元400可以通过分析滤波诊断值(Dfilter,i[k])的时间序列数据来判断每个电池电芯BCi的电压异常。In step S4400 , the first control unit 400 may determine whether the voltage of each battery cell BC i is abnormal by analyzing the time series data of the filtered diagnosis value (Dfilter, i[k]).

在一个实施例中,第一控制单元400可以对每个电池电芯BCi的滤波诊断值(Dfilter,i[k])的时间序列数据中滤波诊断值(Dfilter,i[k])大于诊断阈值(例如,0)的时间区域进行积分,并将使积分时间大于预设标准时间的条件成立的电芯判断为电压异常电芯。In one embodiment, the first control unit 400 can integrate the time region in which the filtered diagnostic value (Dfilter, i[k]) is greater than a diagnostic threshold (e.g., 0) in the time series data of the filtered diagnostic value (Dfilter, i[k]) of each battery cell BC i, and judge the battery cell for which the condition that the integration time is greater than a preset standard time is met as a battery cell with abnormal voltage.

优选地,第一控制单元400可以仅对连续满足滤波诊断值(Dfilter,i[k])大于诊断阈值的条件的时间区域进行积分。如果对应的时间区域为多个,则第一控制单元400可以独立地计算每个时间区域的积分时间。Preferably, the first control unit 400 may integrate only the time regions that continuously satisfy the condition that the filter diagnosis value (Dfilter, i[k]) is greater than the diagnosis threshold. If there are multiple corresponding time regions, the first control unit 400 may independently calculate the integration time of each time region.

在另一实施例中,第一控制单元400可以对每个电池电芯BCi的滤波诊断值(Dfilter,i[k])的时间序列数据中滤波诊断值(Dfilter,i[k])大于诊断阈值(例如,0)的时间区域中包括的数据数量进行积分,并且将使数据积分值大于预设标准计数的条件成立的电池电芯检测为电压异常电芯。In another embodiment, the first control unit 400 may integrate the number of data included in the time region in which the filtered diagnostic value (Dfilter, i[k]) is greater than a diagnostic threshold value (e.g., 0) in the time series data of the filtered diagnostic value (Dfilter, i[k]) of each battery cell BC i, and detect the battery cell for which the condition that the data integral value is greater than a preset standard count is met as a battery cell with abnormal voltage.

优选地,第一控制单元400可以仅对连续满足滤波诊断值(Dfilter,i[k])大于诊断阈值的时间区域中包括的数据数量进行积分。如果对应的时间区域为多个,则第一控制单元400可以独立地对每个时间区域的数据数量进行积分。Preferably, the first control unit 400 may integrate only the amount of data included in the time region that continuously satisfies the filter diagnosis value (Dfilter, i[k]) greater than the diagnosis threshold. If there are multiple corresponding time regions, the first control unit 400 may independently integrate the amount of data in each time region.

图22是示例性示出根据本公开的实施方式的电压异常检测方法的再一流程图。图22的方法可以由第一控制单元400每隔单位时间周期性地执行。Fig. 22 is another flowchart exemplarily illustrating a voltage abnormality detection method according to an embodiment of the present disclosure. The method of Fig. 22 may be periodically executed by the first control unit 400 every unit time.

除了步骤S4340、S4360和S4370分别改变为步骤S4341、S4361和S4371之外,根据第三实施方式的电池诊断方法与第一实施方式基本相同。因此,将仅描述具有差异的配置。The battery diagnosis method according to the third embodiment is substantially the same as the first embodiment except that steps S4340, S4360, and S4370 are changed to steps S4341, S4361, and S4371, respectively. Therefore, only the configuration having a difference will be described.

在步骤S4341中,第一控制单元400可以使用等式6确定每个电池电芯BCi的长期和短期平均差(|SMAi[k]-LMAi[k]|)的归一化电芯诊断偏差(D*diag,i[k])。归一化标准值是长期和短期平均差(|SMAi[k]-LMAi[k]|)的平均值。等式6可以用等式7替换。In step S4341, the first control unit 400 may determine a normalized cell diagnostic deviation (D*diag,i[k]) of the long-term and short-term average differences (|SMA i [k]-LMA i [k]|) of each battery cell BC i using Equation 6. The normalized standard value is the average value of the long-term and short-term average differences (|SMA i [k]-LMA i [k]|). Equation 6 may be replaced by Equation 7.

在步骤S4361中,第一控制单元400可以生成在诊断时间期间收集的每个电池电芯BCi的归一化电芯诊断偏差(D*diag,i[k])的时间序列数据(参见图4d)。In step S4361, the first control unit 400 may generate time series data of a normalized cell diagnostic deviation (D*diag,i[k]) of each battery cell BC i collected during the diagnosis time (see FIG. 4d).

在步骤S4371中,第一控制单元400可以通过分析归一化电芯诊断偏差(D*diag,i[k])的时间序列数据来检测每个电池电芯BCi的电压异常。In step S4371, the first control unit 400 may detect the voltage abnormality of each battery cell BC i by analyzing the time series data of the normalized cell diagnostic deviation (D*diag,i[k]).

在一个实施例中,第一控制单元400可以对每个电池电芯BCi的归一化电芯诊断偏差(D*diag,i[k])的时间序列数据中电芯诊断偏差(D*diag,i[k])大于诊断阈值(例如,4)的时间区域进行积分,并将使积分时间大于预设标准时间的条件成立的电池电芯检测为电压异常电芯。In one embodiment, the first control unit 400 may integrate the time region in which the cell diagnostic deviation (D*diag, i[k] ) is greater than a diagnostic threshold (e.g., 4) in the time series data of the normalized cell diagnostic deviation (D*diag, i[k]) of each battery cell BC i, and detect the battery cell for which the condition that the integration time is greater than a preset standard time is met as a battery cell with abnormal voltage.

第一控制单元400可以仅对连续满足归一化电芯诊断偏差(D*diag,i[k])大于诊断阈值的条件的时间区域进行积分。如果对应的时间区域为多个,则第一控制单元400可以独立地计算每个时间区域的积分时间。The first control unit 400 may integrate only the time regions that continuously satisfy the condition that the normalized cell diagnostic deviation (D*diag, i[k]) is greater than the diagnostic threshold. If there are multiple corresponding time regions, the first control unit 400 may independently calculate the integration time for each time region.

在另一实施例中,第一控制单元400可以对每个电池电芯BCi的归一化电芯诊断偏差(D*diag,i[k])的时间序列数据中电芯诊断偏差大于诊断阈值(例如,4)的数据数量进行积分,并将使数据积分值大于预设标准计数的条件成立的电池电芯检测为电压异常电芯。In another embodiment, the first control unit 400 may integrate the number of data in which the cell diagnostic deviation is greater than a diagnostic threshold (e.g., 4 ) in the time series data of the normalized cell diagnostic deviation (D*diag, i[k]) of each battery cell BC i, and detect the battery cell for which the condition that the data integral value is greater than a preset standard count is met as a battery cell with abnormal voltage.

第一控制单元400可以仅对连续满足归一化电芯诊断偏差(D*diag,i[k])大于诊断阈值的时间区域中包括的数据数量进行积分。如果对应的时间区域为多个,则第一控制单元400可以独立地对每个时间区域的数据数量进行积分。The first control unit 400 may integrate only the amount of data included in the time region that continuously satisfies the normalized cell diagnostic deviation (D*diag, i[k]) greater than the diagnostic threshold. If there are multiple corresponding time regions, the first control unit 400 may independently integrate the amount of data in each time region.

图23是示例性示出根据本公开的实施方式的电压异常检测方法的再一流程图。图23的方法可以由第一控制单元400每隔单位时间周期性地执行。Fig. 23 is another flowchart exemplarily showing a voltage abnormality detection method according to an embodiment of the present disclosure. The method of Fig. 23 may be periodically performed by the first control unit 400 every unit time.

除了步骤S4340、S4360、S4380、S4390和S4400分别改变为步骤S4341、S4361、S4381、S4391和S4401之外,根据图23的电池诊断方法与图21的电池诊断方法基本相同,并且其余配置基本相同。因此,将仅关于图23的实施方式描述不同于图21的配置。The battery diagnosis method according to FIG. 23 is substantially the same as the battery diagnosis method of FIG. 21 except that steps S4340, S4360, S4380, S4390, and S4400 are respectively changed to steps S4341, S4361, S4381, S4391, and S4401, and the remaining configurations are substantially the same. Therefore, only the configuration different from FIG. 21 will be described with respect to the embodiment of FIG. 23.

在步骤S4341中,第一控制单元400可以使用等式6确定每个电池电芯BCi的长期和短期平均差(|SMAi[k]-LMAi[k]|)的归一化电芯诊断偏差(D*diag,i[k])。归一化标准值可以是指长期和短期平均差(|SMAi[k]-LMAi[k]|)的平均值。等式6可以用等式7替换。In step S4341, the first control unit 400 may determine a normalized cell diagnostic deviation (D*diag,i[k]) of the long-term and short-term average differences (|SMA i [k]-LMA i [k]|) of each battery cell BC i using Equation 6. The normalized standard value may refer to an average value of the long-term and short-term average differences (|SMA i [k]-LMA i [k]|). Equation 6 may be replaced by Equation 7.

在步骤S4361中,第一控制单元400可以生成在诊断时间期间收集的每个电池电芯BCi的归一化电芯诊断偏差(D*diag,i[k])的时间序列数据(参见图4d)。In step S4361, the first control unit 400 may generate time series data of a normalized cell diagnostic deviation (D*diag,i[k]) of each battery cell BC i collected during the diagnosis time (see FIG. 4d).

在步骤S4381中,第一控制单元400可以使用等式8生成统计变量阈值(Dthreshold[k])的时间序列数据。等式8的Sigma函数的输入是步骤S4361中生成的所有电池电芯的归一化电芯诊断偏差(D*diag,i[k])的时间序列数据。根据实施方式,在每个时间索引处,可以从Sigma函数的输入值中排除电芯诊断偏差(D*diag,i[k])的最大值。In step S4381, the first control unit 400 may generate time series data of a statistical variable threshold value (Dthreshold[k]) using equation 8. The input of the Sigma function of equation 8 is the time series data of the normalized cell diagnostic deviation (D*diag, i[k]) of all battery cells generated in step S4361. According to an embodiment, at each time index, the maximum value of the cell diagnostic deviation (D*diag, i[k]) may be excluded from the input value of the Sigma function.

在步骤S4391中,第一控制单元400可以通过使用等式9基于统计变量阈值(Dthreshold[k])过滤每个电池电芯BCi的电芯诊断偏差(D*diag,i[k])来生成诊断值(Dfilter,i[k])的时间序列数据。In step S4391, the first control unit 400 may generate time series data of a diagnosis value (Dfilter, i[k]) by filtering the cell diagnosis deviation (D*diag, i[k]) of each battery cell BC i based on the statistical variable threshold (Dthreshold[k]) using Equation 9.

在步骤S4401中,第一控制单元400可以通过分析滤波诊断值(Dfilter,i[k])的时间序列数据来检测每个电池电芯BCi的电压异常。In step S4401 , the first control unit 400 may detect voltage abnormality of each battery cell BC i by analyzing time series data of the filtered diagnosis value (Dfilter,i[k]).

在一个实施例中,第一控制单元400可以对每个电池电芯BCi的滤波诊断值(Dfilter,i[k])的时间序列数据中滤波诊断值(Dfilter,i[k])大于诊断阈值(例如,0)的时间区域进行积分,并将使积分时间大于预设标准时间的条件成立的电池电芯检测为电压异常电芯。In one embodiment, the first control unit 400 may integrate the time region in which the filtered diagnostic value (Dfilter, i[k]) is greater than a diagnostic threshold value (e.g., 0) in the time series data of the filtered diagnostic value (Dfilter, i[k]) of each battery cell BC i, and detect the battery cell for which the condition that the integration time is greater than a preset standard time is met as a battery cell with abnormal voltage.

例如,第一控制单元400可以对连续满足滤波诊断值(Dfilter,i[k])大于诊断阈值的条件的时间区域进行积分。如果对应的时间区域为多个,则第一控制单元400可以独立地计算每个时间区域的积分时间。For example, the first control unit 400 may integrate the time region that continuously satisfies the condition that the filter diagnosis value (Dfilter, i[k]) is greater than the diagnosis threshold. If there are multiple corresponding time regions, the first control unit 400 may independently calculate the integration time of each time region.

在另一实施例中,第一控制单元400可以对每个电池电芯BCi的滤波诊断值(Dfilter,i[k])的时间序列数据中滤波诊断值(Dfilter,i[k])大于诊断阈值(例如,0)的时间区域中包括的数据数量进行积分,并且将使数据积分值大于预设标准计数的条件成立的电池电芯检测为电压异常电芯。In another embodiment, the first control unit 400 may integrate the number of data included in the time region in which the filtered diagnostic value (Dfilter, i[k]) is greater than a diagnostic threshold value (e.g., 0) in the time series data of the filtered diagnostic value (Dfilter, i[k]) of each battery cell BC i, and detect the battery cell for which the condition that the data integral value is greater than a preset standard count is met as a battery cell with abnormal voltage.

第一控制单元400可以仅对连续满足滤波诊断值(Dfilter,i[k])大于诊断阈值的条件的时间区域中包括的数据数量进行积分。如果对应的时间区域为多个,则第一控制单元400可以独立地对每个时间区域的数据数量进行积分。The first control unit 400 may integrate only the amount of data included in the time region that continuously satisfies the condition that the filter diagnosis value (Dfilter, i[k]) is greater than the diagnosis threshold. If there are multiple corresponding time regions, the first control unit 400 may independently integrate the amount of data in each time region.

图24是示例示出根据本公开的实施方式的电压异常检测方法的再一流程图。FIG. 24 is a flowchart illustrating another method for detecting voltage abnormality according to an embodiment of the present disclosure.

在图24中,步骤S4310至步骤S4361与图23中的基本相同。因此,将仅描述不同于图23的配置。In Fig. 24, steps S4310 to S4361 are substantially the same as those in Fig. 23. Therefore, only the configuration different from Fig. 23 will be described.

在步骤S4410中,第一控制单元400可以使用每个电池电芯BCi的归一化电芯诊断偏差(D*diag,i[k])的时间序列数据(参见图4f)来生成电芯诊断偏差(D*diag,i[k])的第一移动平均值(SMAi[k])的时间序列数据和第二移动平均值(LMAi[k])的时间序列数据。In step S4410, the first control unit 400 may use the time series data of the normalized cell diagnostic deviation (D*diag, i[k]) of each battery cell BC i (see FIG. 4f ) to generate time series data of a first moving average value (SMA i [k]) and a second moving average value (LMA i [k]) of the cell diagnostic deviation (D*diag, i[k]).

在步骤S4420中,第一控制单元400可以使用等式6(参见图4g)生成用于每个电池电芯BCi的第一移动平均值(SMAi[k])的时间序列数据和第二移动平均值(LMAi[k])的时间序列数据的归一化电芯诊断偏差(D*diag,i[k])的时间序列数据。In step S4420, the first control unit 400 can use Equation 6 (see Figure 4g ) to generate time series data of normalized cell diagnostic deviation (D*diag, i[k]) for time series data of first moving average value (SMA i [k]) and time series data of second moving average value (LMA i [k]) for each battery cell BC i.

在步骤S4430中,第一控制单元400可以使用等式8(参见图4g)生成统计变量阈值(Dthreshold[k])的时间序列数据。In step S4430, the first control unit 400 may generate time series data of a statistical variable threshold value (Dthreshold[k]) using Equation 8 (see FIG. 4g).

在步骤S4440中,第一控制单元400可以使用等式9(参见图4h)基于统计变量阈值(Dthreshold[k])生成每个电池电芯BCi的滤波诊断值(Dfilter,i[k])的时间序列数据。In step S4440, the first control unit 400 may generate time series data of a filtered diagnosis value (Dfilter,i[k]) of each battery cell BC i based on a statistical variable threshold value (Dthreshold[k]) using Equation 9 (see FIG. 4h).

在步骤S4450中,第一控制单元400可以通过分析每个电池电芯BCi的滤波诊断值(Dfilter,i[k])的时间序列数据来检测每个电池电芯BCi的电压异常。In step S4450 , the first control unit 400 may detect the voltage abnormality of each battery cell BC i by analyzing the time series data of the filtered diagnosis value (Dfilter,i[k]) of each battery cell BC i .

在一个实施例中,第一控制单元400可以对每个电池电芯BCi的滤波诊断值(Dfilter,i[k])的时间序列数据中滤波诊断值(Dfilter,i[k])大于诊断阈值(例如,0)的时间区域进行积分,并将使积分时间大于预设标准时间的条件成立的电池电芯检测为电压异常电芯。In one embodiment, the first control unit 400 may integrate the time region in which the filtered diagnostic value (Dfilter, i[k]) is greater than a diagnostic threshold (e.g., 0) in the time series data of the filtered diagnostic value (Dfilter, i[k]) of each battery cell BC i, and detect the battery cell for which the condition that the integration time is greater than a preset standard time is met as a battery cell with abnormal voltage.

第一控制单元400可以对连续满足滤波诊断值(Dfilter,i[k])大于诊断阈值的条件的时间区域进行积分。如果对应的时间区域为多个,则第一控制单元400可以独立地计算每个时间区域的积分时间。The first control unit 400 may integrate the time region that continuously satisfies the condition that the filter diagnosis value (Dfilter, i[k]) is greater than the diagnosis threshold. If there are multiple corresponding time regions, the first control unit 400 may independently calculate the integration time of each time region.

第一控制单元400可以将每个电池电芯BCi的滤波诊断值(Dfilter,i[k])的时间序列数据中滤波诊断值(Dfilter,i[k])大于诊断阈值(例如,0)的时间区域中包括的数据数量进行积分,并将数据积分值大于预设标准计数的电池电芯检测为电压异常电芯。The first control unit 400 can integrate the number of data included in the time region where the filtered diagnostic value (Dfilter, i[k]) is greater than the diagnostic threshold (for example, 0) in the time series data of the filtered diagnostic value (Dfilter, i[k]) of each battery cell BC i, and detect the battery cell whose data integration value is greater than a preset standard count as a battery cell with abnormal voltage.

第一控制单元400可以仅对连续满足滤波诊断值(Dfilter,i[k])大于诊断阈值的条件的时间区域中包括的数据数量进行积分。如果对应的时间区域为多个,则第一控制单元400可以独立地对每个时间区域的数据数量进行积分。The first control unit 400 may integrate only the amount of data included in the time region that continuously satisfies the condition that the filter diagnosis value (Dfilter, i[k]) is greater than the diagnosis threshold. If there are multiple corresponding time regions, the first control unit 400 may independently integrate the amount of data in each time region.

在图24中,第一控制单元400可以递归地进行步骤S4410和步骤S4420两次或更多次。第一控制单元400可以通过使用在步骤S4420中生成的归一化电芯诊断偏差(D*diag,i[k])的时间序列数据再次生成步骤S4410中的电芯诊断偏差(D*diag,i[k])的第一移动平均值(SMAi[k])和第二移动平均值(LMAi[k])的时间序列数据。24, the first control unit 400 may recursively perform step S4410 and step S4420 two or more times. The first control unit 400 may regenerate the time series data of the first moving average (SMA i [k]) and the second moving average (LMA i [k]) of the cell diagnostic deviation (D*diag, i[k]) in step S4410 by using the time series data of the normalized cell diagnostic deviation (D*diag, i [k]) generated in step S4420.

在步骤S4420中,第一控制单元400可以通过使用每个电池电芯BCi的第一移动平均值(SMAi[k])的时间序列数据和第二移动平均值(LMAi[k])的时间序列数据,再次基于等式6生成归一化电芯诊断偏差(D*diag,i[k])的时间序列数据。这种递归算法可以重复预定次数。In step S4420, the first control unit 400 may generate time series data of the normalized cell diagnostic deviation (D*diag, i [k]) again based on Equation 6 by using the time series data of the first moving average value (SMA i[k]) and the time series data of the second moving average value (LMA i [k]) of each battery cell BC i. This recursive algorithm may be repeated a predetermined number of times.

当根据递归算法进行步骤S4410和步骤S4420时,可以使用借助递归算法最终计算出的电芯诊断偏差(D*diag,i[k])的时间序列数据实施步骤S4430至步骤S4450。When steps S4410 and S4420 are performed according to the recursive algorithm, steps S4430 to S4450 may be implemented using the time series data of the cell diagnostic deviation (D*diag, i[k]) finally calculated by the recursive algorithm.

在本公开的实施方式中,第一控制单元400可以检测所有电池电芯的电压异常,然后,当在特定电池电芯中检测到电压异常时,第一控制单元400可以生成包括检测结果信息的第三信息。此外,第一控制单元400可以将诊断出电压异常的电池电芯的标识信息ID、检测到电压异常的时间点和检测标志记录在存储单元(未示出)中。In an embodiment of the present disclosure, the first control unit 400 may detect voltage abnormalities of all battery cells, and then, when voltage abnormalities are detected in specific battery cells, the first control unit 400 may generate third information including detection result information. In addition, the first control unit 400 may record the identification information ID of the battery cell diagnosed with voltage abnormality, the time point at which the voltage abnormality is detected, and the detection flag in a storage unit (not shown).

第三信息可以包括指示电芯组CG中存在电压异常的电芯的消息。可选地,第三信息可以包括指示需要对电池电芯BC1至BCN进行详细检查的警告消息。The third information may include a message indicating that a cell with abnormal voltage exists in the cell group CG. Alternatively, the third information may include a warning message indicating that a detailed inspection of the battery cells BC1 to BC N is required.

根据上述实施方式,对于每个单位时间,针对两个不同时间长度,确定每个电池电芯的电芯电压的两个移动平均值,并且基于多个电池电芯中的每一者的两个移动平均值之间的差,可以高效且准确地检测每个电池电芯的电压异常。According to the above embodiment, for each unit time, two moving average values of the cell voltage of each battery cell are determined for two different time lengths, and based on the difference between the two moving average values of each of the multiple battery cells, the voltage abnormality of each battery cell can be detected efficiently and accurately.

根据另一方面,可以通过在分析每个电池电芯的两个移动平均值的变化趋势的差异时应用诸如归一化和/或统计变量阈值的高级技术来准确地检测每个电池电芯的电压异常。According to another aspect, voltage abnormality of each battery cell may be accurately detected by applying advanced techniques such as normalization and/or statistical variable thresholds when analyzing the difference in the variation trends of two moving average values of each battery cell.

根据又一方面,可以通过分析基于统计变量阈值确定的滤波诊断值的时间序列数据来精确地检测每个电池电芯发生电压异常的时间区域和/或电压异常检测计数。According to yet another aspect, a time region where a voltage abnormality occurs for each battery cell and/or a voltage abnormality detection count may be accurately detected by analyzing time series data of a filtered diagnosis value determined based on a statistical variable threshold.

如上所述,已经综述了借助包括在电池电芯诊断设备1000中的第一控制单元400进行检测电压异常的方法。下文中,将综述借助包括在电池电芯诊断设备1000中的第一控制单元400进行检测行为异常的方法。As described above, the method of detecting voltage abnormality by the first control unit 400 included in the battery cell diagnosis apparatus 1000 has been reviewed. Hereinafter, the method of detecting behavior abnormality by the first control unit 400 included in the battery cell diagnosis apparatus 1000 will be reviewed.

图25和图26是详细示出根据本公开的实施方式的电池电芯诊断设备1000检测行为异常的过程的流程图。图25是示例性示出根据本公开的实施方式的行为异常检测方法的流程图。25 and 26 are flowcharts showing in detail the process of detecting abnormal behavior by the battery cell diagnosis apparatus 1000 according to an embodiment of the present disclosure. FIG25 is a flowchart exemplarily showing a method for detecting abnormal behavior according to an embodiment of the present disclosure.

在步骤S5710中,第一控制单元400通过将第一时间长度A的移动窗口应用于标准电压曲线C2来确定多条子电压曲线。标准电压曲线C2是表示在预定时段(t1至tM)的每个采样时间测量的电池电芯BC的电芯电压的多个电压值的时间序列。In step S5710, the first control unit 400 determines a plurality of sub-voltage curves by applying a moving window of a first time length A to the standard voltage curve C2. The standard voltage curve C2 is a time series representing a plurality of voltage values of the cell voltage of the battery cell BC measured at each sampling time of a predetermined period (t1 to tM).

在步骤S5720中,第一控制单元400确定与多条子电压曲线中的每条子电压曲线SK相关联的电压偏差(ΔV[K])。步骤S5720可以包括步骤S5722、S5724和S5726作为子步骤。In step S5720, the first control unit 400 determines a voltage deviation (ΔV[K]) associated with each sub-voltage curve SK of the plurality of sub-voltage curves. Step S5720 may include steps S5722, S5724, and S5726 as sub-steps.

在步骤S5722中,第一控制单元400可以通过使用第一时间长度A的第一平均滤波器来确定子电压曲线SK的长期平均电压值(Vav1[K])(参见等式10)。In step S5722, the first control unit 400 may determine a long-term average voltage value (Vav1[K]) of the sub-voltage curve SK by using a first averaging filter of a first time length A (see Equation 10).

在步骤S5724中,第一控制单元400可以通过使用第二时间长度B的第二平均滤波器来确定子电压曲线SK的短期平均电压值(Vav2[K])(参见等式11)。In step S5724, the first control unit 400 may determine a short-term average voltage value (Vav2[K]) of the sub-voltage curve SK by using a second averaging filter of a second time length B (see Equation 11).

在步骤S5726中,第一控制单元400可以通过从长期平均电压值(Vav1[K])和短期平均电压值(Vav2[K])中的一者减去另一者来确定电压偏差(ΔV[K])。In step S5726 , the first control unit 400 may determine the voltage deviation (ΔV[K]) by subtracting one of the long-term average voltage value ( Vav1 [K]) and the short-term average voltage value ( Vav2 [K]) from the other.

在步骤S5730中,第一控制单元400可以通过将针对多条子电压曲线确定的多个电压偏差中的每一者与第一阈值偏差和第二阈值偏差中的至少一者进行比较来判断电池电芯BC是否具有行为异常。当步骤S5730的值为“是”时,过程可以继续进行到步骤S5740。In step S5730, the first control unit 400 may determine whether the battery cell BC has a behavioral abnormality by comparing each of the plurality of voltage deviations determined for the plurality of sub-voltage curves with at least one of the first threshold deviation and the second threshold deviation. When the value of step S5730 is "yes", the process may proceed to step S5740.

在步骤S5740中,第一控制单元400可以检测电池电芯BC的行为异常。In step S5740 , the first control unit 400 may detect abnormal behavior of the battery cell BC.

图26是示例性示出根据本公开的实施方式的行为异常检测方法的另一流程图。FIG. 26 is another flowchart exemplarily illustrating a behavior anomaly detection method according to an embodiment of the present disclosure.

在步骤S5800中,第一控制单元400可以通过将第一时间长度A的移动窗口应用于标准电流曲线C3来确定多条子电流曲线。标准电流曲线C3是表示在预定时段(t1至tM)的每个采样时间测量的电池电芯BC的电池电流的多个电流值的时间序列。In step S5800, the first control unit 400 may determine a plurality of sub-current curves by applying a moving window of a first time length A to the standard current curve C3. The standard current curve C3 is a time series of a plurality of current values representing the battery current of the battery cell BC measured at each sampling time of a predetermined period (t1 to tM).

在步骤S5810中,第一控制单元400可以通过将第一时间长度A的移动窗口应用于标准电压曲线C2来确定多条子电压曲线。步骤S5810与步骤S5710相同。In step S5810, the first control unit 400 may determine a plurality of sub-voltage curves by applying a moving window of a first time length A to the standard voltage curve C2. Step S5810 is the same as step S5710.

在步骤S5812中,第一控制单元400可以确定多条子电流曲线中每条子电流曲线RK的电流变化量。In step S5812, the first control unit 400 may determine a current change amount of each sub-current curve RK among the plurality of sub-current curves.

在步骤S5820中,第一控制单元400可以确定与多条子电压曲线中的电流变化量等于或小于阈值变化量的每条子电流曲线RK相关联的每条子电压曲线SK的电压偏差(ΔV[K])。步骤S5820可以包括图25的步骤S5722、S5724和S5726。In step S5820, the first control unit 400 may determine a voltage deviation (ΔV[K]) of each sub-voltage curve SK associated with each sub-current curve RK in which the current variation is equal to or less than the threshold variation among the plurality of sub-voltage curves. Step S5820 may include steps S5722, S5724, and S5726 of FIG. 25 .

在步骤S5830中,第一控制单元400可以通过将在步骤S5820中确定的每个电压偏差与第一阈值偏差和第二阈值偏差中的至少一者进行比较来判断电池电芯BC是否具有行为异常。如果步骤S5830的值为“是”,则过程继续进行到步骤S5840。In step S5830, the first control unit 400 may determine whether the battery cell BC has a behavioral abnormality by comparing each voltage deviation determined in step S5820 with at least one of the first threshold deviation and the second threshold deviation. If the value of step S5830 is "yes", the process proceeds to step S5840.

在步骤S5840中,第一控制单元400可以检测电池电芯BC的行为异常。In step S5840 , the first control unit 400 may detect abnormal behavior of the battery cell BC.

图27至图30是详细示出外部装置2000根据本公开的实施方式在使用第一信息重复进行充放电循环的同时检测析锂异常的过程的流程图。27 to 30 are flowcharts illustrating in detail a process in which the external device 2000 detects lithium plating abnormality while repeatedly performing charge and discharge cycles using first information according to an embodiment of the present disclosure.

外部装置2000可以如图27至图30的流程图中所示根据本公开的实施方式检测析锂异常,并且生成包括检测结果的第二信息。The external device 2000 may detect lithium plating abnormality according to an embodiment of the present disclosure as shown in the flowcharts of FIGS. 27 to 30 , and generate second information including the detection result.

图27是示例性示出根据本公开的实施方式的析锂异常检测方法的流程图。FIG. 27 is a flow chart exemplarily illustrating a method for detecting lithium plating anomalies according to an embodiment of the present disclosure.

首先,外部装置2000在步骤S7010中将充放电循环索引k初始化为1,并且在步骤S7020中将第一容量差变化量(ΔdAh[1])和第一累积容量差变化量分别初始化为0。First, the external device 2000 initializes the charge-discharge cycle index k to 1 in step S7010, and calculates the first capacity difference change amount (ΔdAh[1]) and the first cumulative capacity difference change amount (ΔdAh[1]) in step S7020. Initialized to 0 respectively.

随后,外部装置2000可以在步骤S7030中开始电池的第一充放电循环。在本说明书中,当外部装置2000开始充放电循环时,可以意味着使用第一信息获取与充放电循环对应的数据。Subsequently, the external device 2000 may start a first charge and discharge cycle of the battery in step S7030. In this specification, when the external device 2000 starts the charge and discharge cycle, it may mean that data corresponding to the charge and discharge cycle is acquired using the first information.

随后,外部装置2000可以在步骤S7040中的第一充放电循环期间使用第一信息中包括的电流测量值来计算充电容量(ChgAh[1])和放电容量(DchgAh[1])。Subsequently, the external device 2000 may calculate the charge capacity (ChgAh[1]) and the discharge capacity (DchgAh[1]) using the current measurement value included in the first information during the first charge and discharge cycle in step S7040.

第一信息可以包括关于在预设充电电压区域中进行的充电循环和在预设放电电压区域中进行的放电循环的信息。The first information may include information on a charge cycle performed in a preset charge voltage region and a discharge cycle performed in a preset discharge voltage region.

充电电压区域和放电电压区域可以相同或不同。优选地,在充电循环完成之后,在电池电芯电压稳定之后启动放电循环。此外,当电池电芯电压达到预设放电结束电压时或者当放电电流的积分值达到预设放电容量时,放电循环可以结束。当基于电压值控制充电循环和放电循环的开始和结束时,外部装置2000可以参考第一信息中包括的电压测量值。第一信息中包括的电压测量值可以是通过电压感测单元200测量的值。The charging voltage region and the discharging voltage region may be the same or different. Preferably, after the charging cycle is completed, the discharging cycle is started after the battery cell voltage is stabilized. In addition, the discharging cycle may end when the battery cell voltage reaches a preset discharge end voltage or when the integrated value of the discharge current reaches a preset discharge capacity. When the start and end of the charging cycle and the discharging cycle are controlled based on the voltage value, the external device 2000 may refer to the voltage measurement value included in the first information. The voltage measurement value included in the first information may be a value measured by the voltage sensing unit 200.

在步骤S7050中,外部装置2000可以确定与充电容量(ChgAh[1])与放电容量(DchgAh[1])之间的差对应的容量差(dAh[1])。In step S7050 , the external device 2000 may determine a capacity difference (dAh[ 1 ]) corresponding to a difference between a charge capacity (ChgAh[ 1 ]) and a discharge capacity (DchgAh[ 1 ]).

外部装置2000可以将所确定的容量差(dAh[1])与时间戳一起记录在存储单元2100中。在一个实施例中,可以通过从充电容量(ChgAh[1])减去放电容量(DchgAh[1])来确定容量差(dAh[1])。The external device 2000 may record the determined capacity difference (dAh[1]) together with a time stamp in the storage unit 2100. In one embodiment, the capacity difference (dAh[1]) may be determined by subtracting the discharge capacity (DchgAh[1]) from the charge capacity (ChgAh[1]).

在步骤S7060中,外部装置2000可以判断充放电循环的索引k是否等于n,n为预设自然数,其可以是用于检测析锂异常所继续进行的充放电循环的总数量。在一个实施例中,n可以是20。In step S7060, the external device 2000 may determine whether the index k of the charge-discharge cycle is equal to n, where n is a preset natural number, which may be the total number of charge-discharge cycles continued to detect lithium deposition anomalies. In one embodiment, n may be 20.

如果步骤S7060的判断为是,则外部装置2000可以终止用于检测析锂异常的过程。另一方面,如果步骤S7060的判断为否,则外部装置2000可以将过程移至S7070。If the determination of step S7060 is yes, the external device 2000 may terminate the process for detecting lithium deposition abnormality. On the other hand, if the determination of step S7060 is no, the external device 2000 may move the process to S7070.

在步骤S7070中,外部装置2000可以开始第二充放电循环。第二充放电循环的条件可以与第一充放电循环的条件基本相同。In step S7070, the external device 2000 may start a second charge and discharge cycle. The conditions of the second charge and discharge cycle may be substantially the same as the conditions of the first charge and discharge cycle.

随后,外部装置2000可以在步骤S7080中确定电池的第二充放电循环的充电容量(Chg Ah[2])和放电容量(Dchg Ah[2]),并且在步骤S7090中确定与充电容量(Chg Ah[2])和放电容量(Dchg Ah[2])之间的差相对应的容量差(dAh[2])。Subsequently, the external device 2000 may determine the charge capacity (Chg Ah[2]) and the discharge capacity (Dchg Ah[2]) of the second charge and discharge cycle of the battery in step S7080, and determine the capacity difference (dAh[2]) corresponding to the difference between the charge capacity (Chg Ah[2]) and the discharge capacity (Dchg Ah[2]) in step S7090.

随后,外部装置2000可以在步骤S7100中通过从第一充放电循环的容量差(dAh[1])减去第二充放电循环的容量差(dAh[2])来确定第二容量差改变量(ΔdAh[2])。在步骤S7100之后,可以进行图28的步骤S7110。Subsequently, the external device 2000 may determine a second capacity difference change amount (ΔdAh[2]) by subtracting the capacity difference (dAh[2]) of the second charge and discharge cycle from the capacity difference (dAh[1]) of the first charge and discharge cycle in step S7100. After step S7100, step S7110 of FIG. 28 may be performed.

图28是示例性示出根据本公开的实施方式的析锂异常检测方法的另一流程图。FIG. 28 is another flow chart exemplarily illustrating a method for detecting lithium plating anomalies according to an embodiment of the present disclosure.

外部装置2000可以在步骤S7110中判断第二容量差变化量(ΔdAh[2])是否大于标准值。标准值可以是0。The external device 2000 may determine whether the second capacity difference variation (ΔdAh[2]) is greater than a standard value in step S7110. The standard value may be zero.

如果步骤S7110的判断为是,则外部装置2000可以在步骤S7120中通过将第二容量差变化量(ΔdAh[2])与第一累积容量差变化量相加来更新累积容量差变化量,并将更新值确定为第二累积容量差变化量第一累积容量差变化量可以是作为初始化值的0。If the determination in step S7110 is yes, the external device 2000 may, in step S7120, compare the second capacity difference change amount (ΔdAh[2]) with the first cumulative capacity difference change amount (ΔdAh[2]). The cumulative capacity difference change is updated by adding, and the updated value is determined as the second cumulative capacity difference change First cumulative capacity difference change amount Can be 0 as an initialization value.

另一方面,如果步骤S7110的判断为否,则可以将初始值0分配给第二累积容量差变化量而不将第二容量差变化量(ΔdAh[2])与第一累积容量差变化量相加。On the other hand, if the determination in step S7110 is negative, an initial value of 0 may be assigned to the second cumulative capacity difference change amount. Instead of comparing the second capacity difference change (ΔdAh[2]) with the first cumulative capacity difference change Add.

外部装置2000可以在步骤S7140中判断第二累积容量差变化量是否大于或等于阈值。阈值可以是指适合于检测析锂异常的值。例如,阈值可以是电池容量的0.1%。阈值可以是外部装置2000中预设的值或第一信息中包括的值。The external device 2000 may determine the second cumulative capacity difference change amount in step S7140. Whether it is greater than or equal to a threshold value. The threshold value may refer to a value suitable for detecting lithium plating abnormality. For example, the threshold value may be 0.1% of the battery capacity. The threshold value may be a value preset in the external device 2000 or a value included in the first information.

如果步骤S7140的判断为是,则外部装置2000可以在步骤S7150中检测到析锂异常。If the determination in step S7140 is yes, the external device 2000 may detect lithium deposition abnormality in step S7150.

如果步骤S7140的判断为否,即,如果第二累积容量差变化量小于阈值(或为0),则外部装置2000可以在步骤S7160中判断充放电循环的索引k是否等于n。这里,n是可以用来检测析锂异常所进行的充放电循环的总数量。If the determination in step S7140 is negative, that is, if the second cumulative capacity difference change amount If the value is less than the threshold value (or equal to 0), the external device 2000 can determine in step S7160 whether the index k of the charge-discharge cycle is equal to n. Here, n is the total number of charge-discharge cycles that can be used to detect lithium deposition anomalies.

如果步骤S7160的判断为是,则外部装置2000可以最终判断出电池中未发生析锂异常,并且由于完成了用于检测析锂的充放电循环而终止该过程。If the determination in step S7160 is yes, the external device 2000 may finally determine that no lithium deposition abnormality has occurred in the battery, and terminate the process because the charge and discharge cycle for detecting lithium deposition is completed.

外部装置2000可以通过第二信息输出未检测到析锂异常。例如,第二信息可以包括指示未发生析锂异常的消息。The external device 2000 may output that no lithium deposition abnormality has been detected through the second information. For example, the second information may include a message indicating that no lithium deposition abnormality has occurred.

另一方面,如果步骤S7160的判断为否,则外部装置2000可以进一步继续进行充放电循环以检测析锂异常。在步骤S7160之后,进行图29的步骤S7180。On the other hand, if the determination in step S7160 is negative, the external device 2000 may further continue the charge-discharge cycle to detect the lithium deposition abnormality. After step S7160, step S7180 of FIG. 29 is performed.

图29是示例性示出根据本发明的实施方式的析锂异常检测方法的再一流程图。FIG. 29 is a flowchart exemplarily illustrating another method for detecting lithium plating anomaly according to an embodiment of the present invention.

在步骤S7180中,外部装置2000开始第三充放电循环。第三充放电循环的条件可以与第一充放电循环的条件基本相同。In step S7180, the external device 2000 starts the third charge and discharge cycle. The conditions of the third charge and discharge cycle may be substantially the same as the conditions of the first charge and discharge cycle.

外部装置2000可以在步骤S7190中确定电池在第三充放电循环期间的充电容量(Chg Ah[3])和放电容量(Dchg Ah[3]),并且在步骤S7200中确定与充电容量(Chg Ah[3])和放电容量(Dchg Ah[3])之间的差对应的容量差(dAh[3])。The external device 2000 may determine the charge capacity (Chg Ah[3]) and the discharge capacity (Dchg Ah[3]) of the battery during the third charge and discharge cycle in step S7190, and determine the capacity difference (dAh[3]) corresponding to the difference between the charge capacity (Chg Ah[3]) and the discharge capacity (Dchg Ah[3]) in step S7200.

外部装置2000可以在步骤S7210中通过从第二充放电循环的容量差(dAh[2])减去第三充放电循环的容量差(dAh[3])来确定第三容量差改变量(ΔdAh[3])。The external device 2000 may determine a third capacity difference change amount (ΔdAh[3]) by subtracting the capacity difference (dAh[3]) of the third charge and discharge cycle from the capacity difference (dAh[2]) of the second charge and discharge cycle in step S7210 .

外部装置2000可以在步骤S7220中判断第三容量差变化量(ΔdAh[3])是否大于标准值。例如,标准值可以是0。The external device 2000 may determine whether the third capacity difference variation (ΔdAh[3]) is greater than a standard value in step S7220. For example, the standard value may be zero.

如果步骤S7220的判断为是,则外部装置2000可以在步骤S7230中通过将第三容量差变化量(ΔdAh[3])与第二累积容量差变化量相加来更新累积容量差变化量,并将更新值确定为第三累积容量差变化量 If the determination in step S7220 is yes, the external device 2000 may, in step S7230, compare the third capacity difference change amount (ΔdAh[3]) with the second cumulative capacity difference change amount (ΔdAh[3]). The cumulative capacity difference change amount is updated by adding, and the updated value is determined as the third cumulative capacity difference change amount

另一方面,如果步骤S7220的判断为否,则在步骤S7240中,外部装置2000可以将初始值0分配给第三累积容量差变化量而不将第三容量差变化量(ΔdAh[3])与第二累积容量差变化量相加。On the other hand, if the determination in step S7220 is negative, then in step S7240, the external device 2000 may assign an initial value of 0 to the third accumulated capacity difference change amount. Instead of comparing the third capacity difference change (ΔdAh[3]) with the second cumulative capacity difference change Add.

在步骤S7230和步骤S7240之后,可以进行步骤S7250。After step S7230 and step S7240, step S7250 may be performed.

在步骤S7250中,外部装置2000可判断第三累积容量差变化量是否大于或等于阈值。In step S7250, the external device 2000 may determine the third cumulative capacity difference change amount. Is it greater than or equal to the threshold?

如果步骤S7250的判断为是,则外部装置2000可以在步骤S7260中检测电池内部的析锂异常。If the determination in step S7250 is yes, the external device 2000 may detect abnormal lithium deposition inside the battery in step S7260.

外部装置2000可以在步骤S7260中检测到析锂异常之后终止该过程。The external device 2000 may terminate the process after detecting the lithium deposition abnormality in step S7260.

如果步骤S7250的判断为否,即,如果第三累积容量差变化量小于阈值(或为0),则外部装置2000可以在步骤S7270中判断充放电循环的索引k是否等于n。这里,n是可以用于检测电池内部是否已经发生析锂所进行的充放电循环的总数量。If the determination in step S7250 is negative, that is, if the third cumulative capacity difference change amount If the value is less than the threshold value (or 0), the external device 2000 can determine in step S7270 whether the index k of the charge-discharge cycle is equal to n. Here, n is the total number of charge-discharge cycles that can be used to detect whether lithium plating has occurred inside the battery.

如果步骤S7270的判断为是,则用于检测析锂异常的充放电循环已经完成,因此判断电池中未发生析锂异常,并且可以终止该过程。If the judgment in step S7270 is yes, the charge and discharge cycle for detecting lithium deposition abnormality has been completed, so it is judged that no lithium deposition abnormality has occurred in the battery, and the process can be terminated.

外部装置2000可以在过程终止之后生成第二信息。外部装置2000可以在第二信息中生成指示已经检测到析锂的警告消息。另选地,第二信息可以包括指示未检测到析锂异常的消息。The external device 2000 may generate the second information after the process is terminated. The external device 2000 may generate a warning message indicating that lithium plating has been detected in the second information. Alternatively, the second information may include a message indicating that no lithium plating abnormality has been detected.

另一方面,如果步骤S7270的判断为否,则外部装置2000可以进一步继续进行充放电循环以检测析锂异常。On the other hand, if the determination in step S7270 is negative, the external device 2000 may further continue the charge and discharge cycle to detect lithium plating abnormality.

外部装置2000在第四充放电循环以及后续充放电循环中继续进行的析锂异常的检测逻辑与上述基本相同。The detection logic of lithium plating anomaly continued by the external device 2000 in the fourth charge-discharge cycle and subsequent charge-discharge cycles is substantially the same as described above.

图30是示例性示出根据本公开的实施方式的析锂异常检测方法的再一流程图。下文中,将参考图30概括并描述在第四至第n充放电循环中由外部装置2000进行的过程。30 is another flowchart exemplarily illustrating a lithium plating abnormality detection method according to an embodiment of the present disclosure. Hereinafter, the process performed by the external device 2000 in the fourth to nth charge and discharge cycles will be summarized and described with reference to FIG.

在步骤S7280中,外部装置2000开始第K充放电循环(k为4至n的自然数)。第K充放电循环的条件与第一充放电循环的条件基本相同。In step S7280, the external device 2000 starts the Kth charge-discharge cycle (k is a natural number from 4 to n). The conditions of the Kth charge-discharge cycle are substantially the same as those of the first charge-discharge cycle.

随后,外部装置2000在步骤S7290中确定电池在第K充放电循环期间的充电容量(ChgAh[k])和放电容量(DchgAh[k]),并且确定与充电容量(ChgAh[k])和放电容量(DchgAh[k])之间的差对应的容量差(dAh[k])。Subsequently, the external device 2000 determines the charge capacity (ChgAh[k]) and the discharge capacity (DchgAh[k]) of the battery during the Kth charge and discharge cycle in step S7290, and determines the capacity difference (dAh[k]) corresponding to the difference between the charge capacity (ChgAh[k]) and the discharge capacity (DchgAh[k]).

随后,外部装置2000在步骤S7310中通过从第k-1充放电循环的容量差(dAh[k])减去第K充放电循环的容量差(dAh[k])来确定第K容量差变化量(ΔdAh[k])。Subsequently, the external device 2000 determines a Kth capacity difference variation amount (ΔdAh[k]) by subtracting the capacity difference (dAh[k]) of the Kth charge and discharge cycle from the capacity difference (dAh[k]) of the k-1th charge and discharge cycle in step S7310 .

随后,外部装置2000在步骤S7320中判断第K容量差变化量(ΔdAh[k])是否大于标准值。优选地,该标准值为0。Then, the external device 2000 determines whether the Kth capacity difference variation (ΔdAh[k]) is greater than a standard value in step S7320. Preferably, the standard value is zero.

如果步骤S7320的判断为是,则外部装置2000可以在步骤S7330中通过将第K容量差变化量(ΔdAh[k])与第k-1累积容量差变化量相加来更新累积容量差变化量,并将更新值确定为第K累积容量差变化量 If the determination in step S7320 is yes, the external device 2000 may, in step S7330, compare the Kth capacity difference change amount (ΔdAh[k]) with the k-1th cumulative capacity difference change amount (ΔdAh[k]). The cumulative capacity difference change is updated by adding, and the updated value is determined as the Kth cumulative capacity difference change

另一方面,如果步骤S7320的判断为否,则在步骤S7340中,外部装置2000可以将初始值0分配给第K累积容量差变化量而不将第K容量差变化量(ΔdAh[k])与第k-1累积容量差变化量相加。On the other hand, if the determination in step S7320 is negative, then in step S7340, the external device 2000 may assign an initial value of 0 to the Kth cumulative capacity difference change amount. Instead of comparing the Kth capacity difference change (ΔdAh[k]) with the k-1th cumulative capacity difference change Add.

在步骤S7330和步骤S7340之后继续进行步骤S7350。After step S7330 and step S7340, proceed to step S7350.

在步骤S7350中,外部装置2000判断第K累积容量差变化量是否大于或等于阈值。In step S7350, the external device 2000 determines the Kth cumulative capacity difference change amount. Is it greater than or equal to the threshold?

如果步骤S7350中的判断为是,则外部装置2000可以在步骤S7360中判断在电池中检测到析锂异常并终止该过程。If the determination in step S7350 is yes, the external device 2000 may determine in step S7360 that lithium deposition abnormality is detected in the battery and terminate the process.

如果步骤S7350的判断为否,即,如果第K累积容量差变化量小于阈值(或,为0),则外部装置2000可以在步骤S7370中判断充放电循环的索引k是否等于n。这里,n是可以用于检测电池内部是否已经发生析锂所进行的充放电循环的总数量。If the judgment of step S7350 is no, that is, if the Kth cumulative capacity difference change amount If the value is less than the threshold value (or 0), the external device 2000 may determine in step S7370 whether the index k of the charge-discharge cycle is equal to n. Here, n is the total number of charge-discharge cycles that can be used to detect whether lithium plating has occurred inside the battery.

如果步骤S7370的判断为是,则完成用于检测析锂的充放电循环,从而最终判断出电池中未发生析锂异常,并且可以终止该过程。If the judgment in step S7370 is yes, the charge and discharge cycle for detecting lithium plating is completed, thereby ultimately determining that no lithium plating abnormality has occurred in the battery, and the process can be terminated.

另一方面,如果步骤S7370的判断为否,则外部装置2000将过程返回到步骤S7280,以便进一步继续进行充放电循环以检测析锂异常。因此,步骤S7280至S7370可以周期性地重复,直到充放电循环的索引k变为n。On the other hand, if the determination of step S7370 is negative, the external device 2000 returns the process to step S7280 to further continue the charge-discharge cycle to detect the lithium deposition anomaly. Therefore, steps S7280 to S7370 may be repeated periodically until the index k of the charge-discharge cycle becomes n.

根据本公开的实施方式,如果在当前充放电循环中计算的容量差变化量等于或小于标准值,则可以将直到前一循环计算的累积容量差变化量初始化为0。此外,如果在当前充放电循环中计算的容量差变化量大于标准值,则可以将当前容量差变化量与先前的累积容量差变化量相加。因此,累积容量差变化量增加。先前累积容量差变化量具有0值或正值。如果其具有正值,则可以对在连续充放电循环中计算的超过标准值的容量差变化量进行积分。According to an embodiment of the present disclosure, if the capacity difference change amount calculated in the current charge and discharge cycle is equal to or less than the standard value, the cumulative capacity difference change amount calculated until the previous cycle may be initialized to 0. In addition, if the capacity difference change amount calculated in the current charge and discharge cycle is greater than the standard value, the current capacity difference change amount may be added to the previous cumulative capacity difference change amount. Thus, the cumulative capacity difference change amount increases. The previous cumulative capacity difference change amount has a value of 0 or a positive value. If it has a positive value, the capacity difference change amount calculated in the continuous charge and discharge cycle that exceeds the standard value may be integrated.

此外,当容量差变化量被积分并且容量差变化量在特定充放电循环中减小到标准值或更小时,累积容量差变化量可以被初始化为0。通过应用该逻辑,累积容量差变化量对应于测量一种析锂异常的定量指标。即,如果容量差变化量大于标准值,则可能意味着存在析锂的可能性。In addition, when the capacity difference variation is integrated and the capacity difference variation decreases to a standard value or less in a specific charge and discharge cycle, the cumulative capacity difference variation can be initialized to 0. By applying this logic, the cumulative capacity difference variation corresponds to a quantitative indicator for measuring a lithium plating anomaly. That is, if the capacity difference variation is greater than the standard value, it may mean that there is a possibility of lithium plating.

此外,如果随着在时间序列上连续的多个充放电循环中容量差变化量超过标准值的条件相继满足,累积容量差变化量增加到阈值或更大,则可以意味着析锂的可能性高。本公开的技术意义在于,使用累积容量差变化量的因子来量化析锂的可能性。In addition, if the condition that the capacity difference change exceeds the standard value in multiple consecutive charge and discharge cycles in a time series is successively satisfied, and the cumulative capacity difference change increases to a threshold value or more, it may mean that the possibility of lithium precipitation is high. The technical significance of the present disclosure is to use the factor of the cumulative capacity difference change to quantify the possibility of lithium precipitation.

图31是示出实验例中测量的数据的变化的图表,在该实验例中,应用了根据本公开的实施方式的用于外部装置2000检测是否发生析锂的方法。FIG. 31 is a graph showing changes in data measured in an experimental example in which a method for an external device 2000 to detect whether lithium plating occurs according to an embodiment of the present disclosure is applied.

在该实验例中,使用袋型锂聚合物电池。选择用于实验的锂聚合物电池退化,因此处于已经开始在负极上析锂的状态。反映退化程度的锂聚合物电池的电流容量为约50Ah。充电循环的充电条件为CC-CV充电。当达到CC充电目标电压时,CC充电终止并转换为CV充电,并且当CV充电电流达到目标电流时,充电终止。放电循环的放电条件是CC放电,并且当进行多达给定放电容量的放电时终止放电。充电循环和放电循环的温度条件为45℃。将用于确定是否对容量差变化量进行积分的标准值设定为0,并将用于诊断析锂异常的阈值设定为0.06Ah。In this experimental example, a pouch-type lithium polymer battery was used. The lithium polymer battery selected for the experiment was degraded and was therefore in a state where lithium deposition on the negative electrode had begun. The current capacity of the lithium polymer battery, which reflects the degree of degradation, is about 50Ah. The charging condition of the charging cycle is CC-CV charging. When the CC charging target voltage is reached, the CC charging is terminated and converted to CV charging, and when the CV charging current reaches the target current, the charging is terminated. The discharge condition of the discharge cycle is CC discharge, and the discharge is terminated when the discharge is up to a given discharge capacity. The temperature condition for the charging cycle and the discharge cycle is 45°C. The standard value for determining whether to integrate the capacity difference change is set to 0, and the threshold for diagnosing lithium deposition anomalies is set to 0.06Ah.

图表①是示出每个充放电循环的充电容量(ChgAh[k])和放电容量(DchgAh[k])的测量结果的图表。通过对经由感测电阻器测量的电流值进行积分来计算充电容量(ChgAh[k])和放电容量(DchgAh[k])。由于放电电流测量值的误差,从第四放电循环开始,放电容量大于充电容量。Graph ① is a graph showing the measurement results of the charge capacity (ChgAh[k]) and the discharge capacity (DchgAh[k]) for each charge and discharge cycle. The charge capacity (ChgAh[k]) and the discharge capacity (DchgAh[k]) are calculated by integrating the current value measured via the sense resistor. Due to the error in the discharge current measurement value, the discharge capacity is greater than the charge capacity from the fourth discharge cycle.

图表②是示出每个充放电循环的容量差(dAh[k])的图表。参考图表,由于放电容量从第四充放电循环开始大于充电容量,因此容量差(dAh[k])从第四循环开始变为负。Graph ② is a graph showing the capacity difference (dAh[k]) for each charge and discharge cycle. Referring to the graph, since the discharge capacity is greater than the charge capacity from the fourth charge and discharge cycle, the capacity difference (dAh[k]) becomes negative from the fourth cycle.

图表③是示出每个充放电循环的容量差变化量(ΔdAh[k])的图表。容量差变化量(ΔdAh[k])为正的充放电循环的索引为2至13、17、18和20。容量差变化量(ΔdAh[k])为负的充放电循环的索引为14至16和19。Graph ③ is a graph showing the capacity difference change (ΔdAh[k]) for each charge and discharge cycle. The indexes of the charge and discharge cycles in which the capacity difference change (ΔdAh[k]) is positive are 2 to 13, 17, 18, and 20. The indexes of the charge and discharge cycles in which the capacity difference change (ΔdAh[k]) is negative are 14 to 16 and 19.

图表④是示出每个充放电循环的累积容量差变化量的图表。容量差变化量(ΔdAh[k])为正的充放电循环的索引为2至13。因此,随着对第二至第13充放电循环的容量差变化量(ΔdAh[k])进行积分,累积的容量差变化量增加。此外,当累积到第13充放电循环的容量差变化量时,累积的容量差变化量超过阈值0.06Ah。因此,外部装置2000一直继续进行到第13充放电循环,然后判断电池内部发生析锂异常,经由第二信息输出析锂异常检测结果,并终止检测过程。由于本实验中使用的锂聚合物电池的负极析出锂,因此可以看出本公开的检测准确度高。Graph ④ shows the cumulative capacity difference change for each charge and discharge cycle. The indexes of the charge and discharge cycles in which the capacity difference change (ΔdAh[k]) is positive are 2 to 13. Therefore, as the capacity difference change (ΔdAh[k]) of the second to 13th charge and discharge cycles are integrated, the accumulated capacity difference change In addition, when the capacity difference change amount of the 13th charge and discharge cycle is accumulated, the accumulated capacity difference change amount The threshold value exceeds 0.06Ah. Therefore, the external device 2000 continues to perform the charge and discharge cycle until the 13th cycle, and then determines that abnormal lithium deposition occurs inside the battery, outputs the abnormal lithium deposition detection result through the second information, and terminates the detection process. Since lithium is deposited at the negative electrode of the lithium polymer battery used in this experiment, it can be seen that the detection accuracy of the present disclosure is high.

图32是示出在应用根据本公开的实施方式的析锂异常检测方法的另一实验例中测量的数据变化的图表。FIG. 32 is a graph showing changes in data measured in another experimental example in which the lithium plating abnormality detection method according to an embodiment of the present disclosure is applied.

在图32中,图表①’与上述实验例的图表①相同。图表①’是示出当使用具有与上述实验例不同的电流测量值误差的电流测量装置时充电容量(ChgAh[k])和放电容量(DchgAh[k])的测量结果的图表。在本实验例中,放电电流测量值的误差比上述实验例中的放电电流测量值的误差大。因此,与上述实验例相比,放电容量(DchgAh[k])图表向上偏移。In FIG. 32 , graph ①′ is the same as graph ① of the above-mentioned experimental example. Graph ①′ is a graph showing the measurement results of the charge capacity (ChgAh[k]) and the discharge capacity (DchgAh[k]) when a current measuring device having a current measurement value error different from that of the above-mentioned experimental example is used. In this experimental example, the error of the discharge current measurement value is larger than that of the above-mentioned experimental example. Therefore, the discharge capacity (DchgAh[k]) graph is shifted upward compared with the above-mentioned experimental example.

图表②和②’是示出每个充放电循环的容量差(dAh[k])的图表,图表③和③’是示出每个充放电循环的容量差变化量(ΔdAh[k])的图表,并且图④和④’是示出每个充放电循环的累积容量差变化量的图表。Graphs ② and ②' are graphs showing the capacity difference (dAh[k]) per charge and discharge cycle, graphs ③ and ③' are graphs showing the capacity difference change (ΔdAh[k]) per charge and discharge cycle, and graphs ④ and ④' are graphs showing the cumulative capacity difference change per charge and discharge cycle. of charts.

使用图表①的数据计算图表②、③和④,并且使用图表①’的数据计算图表②’、③’和④’。Graphs ②, ③, and ④ are calculated using the data of graph ①, and graphs ②’, ③’, and ④’ are calculated using the data of graph ①’.

如图32中所示,图表②、③和④以及图表②’、③’和④’基本相同。因此,即使放电电流值包括测量误差,不管误差的大小如何,外部装置2000也继续进行到第13充放电循环,然后判断电池内部发生析锂异常,经由第二信息输出析锂异常检测结果,并终止检测过程。从实验结果可以看出,不管电流测量值的误差如何,本公开都能够可靠地检测析锂异常,。As shown in Figure 32, charts ②, ③ and ④ and charts ②', ③' and ④' are basically the same. Therefore, even if the discharge current value includes a measurement error, regardless of the size of the error, the external device 2000 continues to the 13th charge and discharge cycle, and then determines that lithium deposition abnormality occurs inside the battery, outputs the lithium deposition abnormality detection result via the second information, and terminates the detection process. It can be seen from the experimental results that regardless of the error of the current measurement value, the present disclosure can reliably detect lithium deposition abnormality.

图33是根据本公开的实施方式的电池电芯诊断设备1000使用外部装置2000对电池电芯的异常状态进行诊断的流程图。将不再详细描述与前一实施方式相同的特征。33 is a flowchart of the battery cell diagnostic apparatus 1000 according to an embodiment of the present disclosure diagnosing an abnormal state of a battery cell using an external device 2000. The same features as the previous embodiment will not be described in detail.

在图33的步骤S7000中,外部装置2000可以检测是否存在并联连接异常。将参考图34对此进行详细描述。In step S7000 of Fig. 33, the external device 2000 may detect whether there is a parallel connection abnormality. This will be described in detail with reference to Fig. 34.

图34是示例性地示出根据本公开的实施方式的电池诊断方法的流程图。可以以第一时间间隔重复执行图34的方法。Fig. 34 is a flow chart exemplarily illustrating a battery diagnosis method according to an embodiment of the present disclosure. The method of Fig. 34 may be repeatedly performed at a first time interval.

参见图34,在步骤S7610中,外部装置2000可以收集第一信息中包括的电池B的充放电数据。34 , in step S7610 , the external device 2000 may collect the charge and discharge data of the battery B included in the first information.

在步骤S7620中,外部装置2000可以确定表示电池B的满充电容量的估计容量值。步骤S7620可以包括步骤S7622和S7624。在步骤S7622中,外部装置2000可以通过将充放电数据输入到容量估计模型来确定电池B的电流积分值和SOC变化值。在步骤S7624中,外部装置2000可以根据电池B的电流积分值与SOC变化值之间的比率来确定表示电池B的满充电容量的估计容量值。外部装置2000可以存储估计容量值的时间序列。In step S7620, the external device 2000 may determine an estimated capacity value representing the full charge capacity of the battery B. Step S7620 may include steps S7622 and S7624. In step S7622, the external device 2000 may determine the current integral value and the SOC change value of the battery B by inputting the charge and discharge data into the capacity estimation model. In step S7624, the external device 2000 may determine the estimated capacity value representing the full charge capacity of the battery B based on the ratio between the current integral value and the SOC change value of the battery B. The external device 2000 may store a time series of the estimated capacity values.

在步骤S7630中,外部装置2000可以通过监测估计容量值随时间的变化来检测并联连接B200中的异常。步骤S7630可以包括步骤S7632、S7634、S7636、S7638和S7639。在步骤S7632中,外部装置2000可以确定第二时间的阈值容量值小于第一时间的估计容量值。例如,第二时间可以是计算当前估计容量值的正时,并且第一时间可以是计算10次之前的估计容量值的正时。在步骤S7634中,外部装置2000可以将第二时间的估计容量值与第二时间的阈值容量值进行比较。如果第二时间的估计容量值小于第二时间的阈值容量值,则这指示并联连接B200发生了第一容量异常和第二容量异常中的至少一者。如果步骤S7634的值为“是”,则过程继续进行到步骤S7636。否则,过程可以继续进行到步骤S7638。在步骤S7636中,外部装置2000可以将诊断计数增加1。在步骤S7638中,外部装置2000可以重置诊断计数。在步骤S7639中,外部装置2000可以确定诊断计数是否达到阈值计数。如果步骤S7639的值为“是”,则这指示检测到并联连接B200的至少一个单元电芯UC具有第二容量异常,第二容量异常为完全断开故障。In step S7630, the external device 2000 can detect an abnormality in the parallel connection B200 by monitoring the change of the estimated capacity value over time. Step S7630 may include steps S7632, S7634, S7636, S7638, and S7639. In step S7632, the external device 2000 may determine that the threshold capacity value of the second time is less than the estimated capacity value of the first time. For example, the second time may be the timing of calculating the current estimated capacity value, and the first time may be the timing of calculating the estimated capacity value 10 times before. In step S7634, the external device 2000 may compare the estimated capacity value of the second time with the threshold capacity value of the second time. If the estimated capacity value of the second time is less than the threshold capacity value of the second time, this indicates that at least one of the first capacity abnormality and the second capacity abnormality has occurred in the parallel connection B200. If the value of step S7634 is "yes", the process proceeds to step S7636. Otherwise, the process may proceed to step S7638. In step S7636, the external device 2000 may increase the diagnostic count by 1. In step S7638, the external device 2000 may reset the diagnostic count. In step S7639, the external device 2000 may determine whether the diagnostic count reaches a threshold count. If the value of step S7639 is "yes", this indicates that at least one unit cell UC of the parallel connection B200 is detected to have a second capacity abnormality, which is a complete disconnection fault.

在步骤S7640中,外部装置2000可以检测到并联连接异常。外部装置2000可以确定被检测出并联连接异常的单位电芯的数量。外部装置2000可以根据具有第二时间间隔或更小时间间隔的过去两个时间(例如,te、tf,在这两个时间,出现了估计容量值的最大减小值)的两个估计容量值来确定多个单元电芯UC1至UCM中具有完全断开故障的单元电芯的数量。In step S7640, the external device 2000 may detect a parallel connection abnormality. The external device 2000 may determine the number of unit cells in which the parallel connection abnormality is detected. The external device 2000 may determine the number of unit cells having a complete disconnection fault among the plurality of unit cells UC1 to UCM based on two estimated capacity values at two past times (e.g., te, tf, at which the maximum decrease value of the estimated capacity value occurs) with a second time interval or smaller.

外部装置2000可以确定多个单元电芯UC1至UCM中具有完全断开故障的单元电芯的数量。可以确定异常单元电芯的数量等于不大于ΔAhmax/(Ahp/M)的最大整数。Ahp是两个时间(例如,te、tf)中较早时间(te)的估计容量值。ΔAhmax是在检测到并联连接200的异常的正时之前的两个时间(例如,te、tf)内的满充电容量的最大减小量,并且是通过从先前时间(te)的估计容量值减去稍后时间(tf)的估计容量值而获取的结果。例如,当Ahp=122Ah,ΔAhmax=27Ah,并且M=10时,由于2≤27Ah/(122Ah/10)<3,因此可以确定异常单元电芯的数量为2。The external device 2000 can determine the number of unit cells having a complete disconnection fault among the plurality of unit cells UC1 to UCM. The number of abnormal unit cells can be determined to be equal to the maximum integer not greater than ΔAhmax/(Ahp/M). Ahp is the estimated capacity value at the earlier time (te) of two times (e.g., te, tf). ΔAhmax is the maximum reduction in full charge capacity within two times (e.g., te, tf) before the timing of detecting the abnormality of the parallel connection 200, and is the result obtained by subtracting the estimated capacity value at the later time (tf) from the estimated capacity value at the previous time (te). For example, when Ahp=122Ah, ΔAhmax=27Ah, and M=10, since 2≤27Ah/(122Ah/10)<3, the number of abnormal unit cells can be determined to be 2.

图35是根据本公开的实施方式的电池电芯诊断设备1000使用外部装置2000对电芯的异常状态进行诊断的流程图。将不再详细描述与前一实施方式相同的特征。35 is a flowchart of the battery cell diagnostic apparatus 1000 according to an embodiment of the present disclosure diagnosing an abnormal state of a cell using an external device 2000. The same features as the previous embodiment will not be described in detail.

在图35的步骤S7000中,外部装置2000可以检测是否存在内部短路异常。将参考图36和37对此进行详细描述。In step S7000 of Fig. 35, the external device 2000 may detect whether there is an internal short circuit abnormality. This will be described in detail with reference to Figs. 36 and 37.

图36和图37是具体示出根据本公开的实施方式的在外部装置2000使用第一信息重复进行充放电循环时检测内部短路异常的过程的流程图。36 and 37 are flowcharts specifically illustrating a process of detecting an internal short circuit abnormality when the external device 2000 repeats a charge and discharge cycle using first information according to an embodiment of the present disclosure.

根据图36和图37中所示的流程图,外部装置2000可以检测根据本公开的实施方式的内部短路异常,并生成包括检测结果的第二信息。According to the flowcharts shown in FIGS. 36 and 37 , the external device 2000 may detect an internal short circuit abnormality according to an embodiment of the present disclosure, and generate second information including a detection result.

图36是示例性示出根据本公开的实施方式的电池管理方法的流程图。图36的方法用于基于在最近充电时段中监测的所有的多个电池电芯BC1至BCN的SOC趋势来检测电池电芯BC的内部短路异常。为了便于说明,假设最近的充电时段是从时间点t4到时间点t5。FIG36 is a flow chart exemplarily showing a battery management method according to an embodiment of the present disclosure. The method of FIG36 is used to detect an internal short circuit abnormality of a battery cell BC based on the SOC trends of all the plurality of battery cells BC1 to BCN monitored in a recent charging period. For ease of explanation, it is assumed that the recent charging period is from time point t4 to time point t5.

参考图36,在步骤S7610中,外部装置2000可以通过将SOC估计算法应用于针对每个电池电芯BC使用第一信息获取的多个电池电芯BC1至BCN中的每个电池电芯在电池组10的充电期间每个状态参数来确定第一SOC变化,该第一SOC变化是第一充电时间点的第一SOC与第二充电时间点的第二SOC之间的差。第一充电时间点和第二充电时间点不受特别限制,只要它们是最近充电时段内的两个不同时间点即可。36, in step S7610, the external device 2000 may determine a first SOC variation, which is a difference between a first SOC at a first charging time point and a second SOC at a second charging time point, by applying an SOC estimation algorithm to each state parameter of each battery cell BC1 to BCN acquired using the first information for each battery cell BC during charging of the battery pack 10. The first charging time point and the second charging time point are not particularly limited as long as they are two different time points within a recent charging period.

例如,第一充电时间点可以是最近充电时段的开始时间点t4,并且第二充电时间点可以是最近充电时段的结束时间点t5。由于图36的方法涉及充电,因此第一SOC变化表示SOC从第一充电时间点到第二充电时间点的增加。例如,参考图18,异常电池电芯的第一SOC变化是第一SOC VC54和第二SOC VC55之间的差。For example, the first charging time point may be the start time point t4 of the most recent charging period, and the second charging time point may be the end time point t5 of the most recent charging period. Since the method of FIG. 36 involves charging, the first SOC change represents an increase in SOC from the first charging time point to the second charging time point. For example, referring to FIG. 18, the first SOC change of the abnormal battery cell is the difference between the first SOC VC54 and the second SOC VC55.

在步骤S7620中,外部装置2000通过对多个电池电芯BC1至BCN中的至少两个电池电芯的第一SOC变化应用统计算法来确定标准因子。标准因子可以等于多个电池电芯BC1到BCN中的至少两个电池电芯的第一SOC变化的平均值或中值。例如,参考图18,当曲线VC4是第一SOC变化的平均值时,标准因子是SOC VC44和SOC VC45之间的差。In step S7620, the external device 2000 determines a standard factor by applying a statistical algorithm to the first SOC variation of at least two battery cells among the plurality of battery cells BC 1 to BC N. The standard factor may be equal to an average value or a median value of the first SOC variation of at least two battery cells among the plurality of battery cells BC 1 to BC N. For example, referring to FIG. 18 , when curve VC4 is an average value of the first SOC variation, the standard factor is a difference between SOC VC44 and SOC VC45.

在步骤S7630中,外部装置2000通过将第一SOC变化与每个电池电芯BC的标准因子进行比较来检测内部短路异常。在检测内部短路异常时,可以利用以下检测条件中的一个或两个或更多个的组合。In step S7630, the external device 2000 detects the internal short circuit abnormality by comparing the first SOC variation with a standard factor of each battery cell BC. In detecting the internal short circuit abnormality, one or a combination of two or more of the following detection conditions may be used.

[条件#1:第一SOC变化必须比标准因子小阈值TH1或小更多][Condition #1: The first SOC change must be smaller than the standard factor by a threshold value TH1 or more]

[条件#2:第一SOC变化与标准因子的比率必须等于或小于标准值TH2,其中TH2为0至1][Condition #2: The ratio of the first SOC change to the standard factor must be equal to or less than the standard value TH2, where TH2 is 0 to 1]

[条件#3:第一SOC变化与标准因子的比率必须比先前比率小阈值TH3或小更多][Condition #3: The ratio of the first SOC change to the standard factor must be smaller than the previous ratio by a threshold value TH3 or more]

在条件#3中,先前比率是第一SOC变化与最近充电时段(图17中的t0至t1)之前的充电时段中的标准因子的比率。In condition #3, the previous ratio is the ratio of the first SOC change to the standard factor in the charging period before the most recent charging period (t0 to t1 in FIG. 17 ).

阈值TH1、TH2、TH3可以是预定的固定值。另选地,外部装置2000可以基于在从第一充电时间点到第二充电时间点的时间段内测量的充电电流的积分值来确定阈值TH1、TH2、TH3中的至少一者。The thresholds TH1, TH2, TH3 may be predetermined fixed values. Alternatively, the external device 2000 may determine at least one of the thresholds TH1, TH2, TH3 based on an integrated value of the charging current measured during a period from the first charging time point to the second charging time point.

每当重新开始电池组10的充电模式时,可以重新更新阈值TH1、TH2、TH3中的至少一者。例如,外部装置2000可以通过将充电电流的积分值(例如,3Ah[安培小时])除以电池电芯BC的设计容量(例如,5Ah)来获取SOC变化(例如,60%)的目标值,并且通过将标准因子与目标值的比率乘以预定缩放常数(其是正值)来确定阈值TH1、TH2、TH3中的至少一者。用于确定阈值TH1、TH2、TH3中的任何一者的缩放常数可以不同于用于确定阈值TH1、TH2、TH3中的另一者的缩放常数。可以在步骤S7610、S7620和S7630中的至少一者期间确定目标值。可以在步骤S7620和S7630中的至少一者期间确定阈值TH1、TH2、TH3中的至少一者。Whenever the charging mode of the battery pack 10 is restarted, at least one of the threshold values TH1, TH2, TH3 may be re-updated. For example, the external device 2000 may obtain a target value of the SOC change (e.g., 60%) by dividing the integrated value of the charging current (e.g., 3Ah [ampere-hour]) by the design capacity of the battery cell BC (e.g., 5Ah), and determine at least one of the threshold values TH1, TH2, TH3 by multiplying the ratio of the standard factor to the target value by a predetermined scaling constant (which is a positive value). The scaling constant used to determine any one of the threshold values TH1, TH2, TH3 may be different from the scaling constant used to determine the other of the threshold values TH1, TH2, TH3. The target value may be determined during at least one of steps S7610, S7620, and S7630. At least one of the threshold values TH1, TH2, TH3 may be determined during at least one of steps S7620 and S7630.

当所有的多个电池电芯BC1至BCN都正常时,目标值和标准因子可以基本上彼此相等。同时,随着多个电池电芯BC1至BCN中具有内部短路异常的电池电芯的数量增加,标准因子从目标值大幅减小。因此,通过根据上述方法确定阈值TH1、TH2、TH3中的至少一者,可以提高检测内部短路异常的准确度。When all of the plurality of battery cells BC1 to BC N are normal, the target value and the standard factor may be substantially equal to each other. Meanwhile, as the number of battery cells having an internal short circuit abnormality among the plurality of battery cells BC1 to BC N increases, the standard factor is greatly reduced from the target value. Therefore, by determining at least one of the threshold values TH1, TH2, TH3 according to the above method, the accuracy of detecting the internal short circuit abnormality may be improved.

同时,在步骤S7620之前确定目标值之后,在步骤S7620中,可以仅使用多个电池电芯BC1至BCN的所有第一SOC变化中小于或等于目标值的第一SOC变化来确定标准因子。在这种情况下,在确定标准因子时,在多个电池电芯BC1到BCN的所有第一SOC变化中,排除超过目标值的第一SOC变化,从而可以优先从多个电池电芯BC1到BCN中检测具有相对严重的内部短路异常的电池电芯BC。Meanwhile, after the target value is determined before step S7620, in step S7620, the standard factor may be determined using only the first SOC changes that are less than or equal to the target value among all the first SOC changes of the plurality of battery cells BC 1 to BC N. In this case, when determining the standard factor, the first SOC change that exceeds the target value is excluded among all the first SOC changes of the plurality of battery cells BC 1 to BC N , so that the battery cell BC having a relatively severe internal short circuit abnormality can be preferentially detected from among the plurality of battery cells BC 1 to BC N.

图37是示例性示出根据本公开的实施方式的电池管理方法的另一流程图。图37的方法用于基于分别在最近放电时段和最近充电时段中监测的所有的多个电池电芯BC1至BCN的SOC趋势来检测电池电芯BC的内部短路异常。为了便于说明,假设最近的充电时段是从时间点t4到时间点t5,并且最近的放电时段是从时间点t6到时间点t7。FIG37 is another flowchart exemplarily illustrating a battery management method according to an embodiment of the present disclosure. The method of FIG37 is used to detect an internal short circuit abnormality of a battery cell BC based on the SOC trends of all of the plurality of battery cells BC1 to BCN monitored in the most recent discharge period and the most recent charge period, respectively. For ease of explanation, it is assumed that the most recent charge period is from time point t4 to time point t5, and the most recent discharge period is from time point t6 to time point t7.

参考图37,在步骤S7710中,外部装置2000可以通过将SOC估计算法应用于针对每个电池电芯BC使用第一信息在电池组10充电期间获取的多个电池电芯BC1至BCN中的每个电池电芯的每个状态参数来确定第一SOC变化,该第一SOC变化是第一充电时间点的第一SOC与第二充电时间点的第二SOC之间的差。第一充电时间点和第二充电时间点不受特别限制,只要它们是最近充电时段内的两个不同时间点即可。例如,第一充电时间点可以是最近充电时段的开始时间点t4,并且第二充电时间点可以是最近充电时段的结束时间点t5。37, in step S7710, the external device 2000 may determine a first SOC change, which is a difference between a first SOC at a first charging time point and a second SOC at a second charging time point, by applying an SOC estimation algorithm to each state parameter of each of the plurality of battery cells BC1 to BCN acquired during charging of the battery pack 10 using first information for each battery cell BC. The first charging time point and the second charging time point are not particularly limited as long as they are two different time points within a recent charging period. For example, the first charging time point may be a start time point t4 of the recent charging period, and the second charging time point may be an end time point t5 of the recent charging period.

在步骤S7720中,外部装置2000可以通过针对每个电池电芯BC将SOC估计算法应用于在电池组10的放电期间获取的多个电池电芯BC1至BCN中的每个电池电芯的状态参数来确定第二SOC变化,该第二SOC变化是第一放电时间点的第三SOC与第二放电时间点的第四SOC之间的差。第一放电时间点和第二放电时间点不受特别限制,只要它们是最近放电时段内的两个不同时间点即可。例如,第一放电时间点可以是最近充电时段的开始时间点t6,并且第二放电时间点可以是最近充电时段的结束时间点t7。In step S7720, the external device 2000 may determine a second SOC change, which is a difference between a third SOC at a first discharge time point and a fourth SOC at a second discharge time point, by applying an SOC estimation algorithm to a state parameter of each of the plurality of battery cells BC1 to BCN acquired during discharge of the battery pack 10 for each battery cell BC. The first discharge time point and the second discharge time point are not particularly limited as long as they are two different time points within a recent discharge period. For example, the first discharge time point may be a start time point t6 of a recent charge period, and the second discharge time point may be an end time point t7 of a recent charge period.

参考图18,在异常电池电芯中,第一SOC变化是第一SOC VC54和第二SOC VC55之间的差,并且第二SOC变化是第三SOC VC56和第四SOC VC57之间的差。18 , in the abnormal battery cell, the first SOC variation is a difference between a first SOC VC54 and a second SOC VC55 , and the second SOC variation is a difference between a third SOC VC56 and a fourth SOC VC57 .

在图37中,步骤S7710在步骤S7720之前,但是这应当被理解为实施例。例如,如果最近充电时段在最近放电时段之前,则步骤S7720可以在步骤S7710之前。作为另一实施例,在最近充电时段和最近放电时段都结束之后,可以同时进行步骤S7710和步骤S7720。In FIG. 37 , step S7710 is before step S7720, but this should be understood as an embodiment. For example, if the most recent charging period is before the most recent discharging period, step S7720 may be before step S7710. As another embodiment, after both the most recent charging period and the most recent discharging period have ended, step S7710 and step S7720 may be performed simultaneously.

在步骤S7730中,外部装置2000可以通过针对每个电池电芯BC将第一SOC变化除以第二SOC变化来确定异常因子。即,可以根据“异常因子=(第一SOC变化)÷(第二SOC变化)”的公式来确定异常因子。In step S7730, the external device 2000 may determine the abnormal factor by dividing the first SOC variation by the second SOC variation for each battery cell BC. That is, the abnormal factor may be determined according to the formula of "abnormal factor = (first SOC variation) ÷ (second SOC variation)".

例如,参考图18,可以根据公式“{SOC(VC55)-SOC(VC54)}÷{SOC(VC56)-SOC(VC57)}来确定异常电池电芯的异常因子。异常因子也可以称为库伦效率。For example, referring to FIG. 18 , the abnormal factor of the abnormal battery cell may be determined according to the formula “{SOC(VC55)-SOC(VC54)}÷{SOC(VC56)-SOC(VC57)}”. The abnormal factor may also be referred to as coulombic efficiency.

在步骤S7740中,外部装置2000可以通过对多个电池电芯BC1至BCN中的至少两个电池电芯的异常因子应用统计算法来确定标准因子。In step S7740 , the external device 2000 may determine a standard factor by applying a statistical algorithm to abnormal factors of at least two battery cells among the plurality of battery cells BC 1 to BC N.

标准因子可以等于多个电池电芯BC1至BCN中的至少两个电池电芯的异常因子的平均值或中值。例如,参考图18,当曲线VC4是多个电池电芯BC1至BCN的平均SOC时,可以根据公式“{SOC(VC45)-SOC(VC44)}÷{SOC(VC46)-SOC(VC47)}”来确定标准因子。The standard factor may be equal to an average value or a median value of abnormal factors of at least two battery cells among the plurality of battery cells BC 1 to BC N. For example, referring to FIG. 18 , when curve VC4 is an average SOC of the plurality of battery cells BC 1 to BC N , the standard factor may be determined according to the formula “{SOC(VC45)-SOC(VC44)}÷{SOC(VC46)-SOC(VC47)}”.

在步骤S7750中,外部装置2000可以通过针对每个电池电芯BC将异常因子与标准因子进行比较来检测电池电芯BC的内部短路异常。在检测内部短路异常时,可以利用以下检测条件中的一个或两个或更多个的组合。In step S7750, the external device 2000 may detect the internal short circuit abnormality of the battery cell BC by comparing the abnormal factor with the standard factor for each battery cell BC. In detecting the internal short circuit abnormality, one or a combination of two or more of the following detection conditions may be used.

[条件#1:异常因子必须比标准因子小阈值TH11或小更多][Condition #1: The abnormal factor must be smaller than the standard factor by a threshold of TH11 or more]

[条件#2:相对库仑效率必须等于或小于阈值TH12,其中TH12为0至1][Condition #2: Relative Coulombic efficiency must be equal to or less than threshold TH12, where TH12 is 0 to 1]

[条件#3:异常因子与标准因子的比率必须比前一比率小阈值TH13或小更多][Condition #3: The ratio of the abnormal factor to the standard factor must be smaller than the previous ratio by a threshold value of TH13 or more]

在条件#2中,相对库伦效率可以是异常因子与标准因子的比率,即“异常因子÷标准因子”。In condition #2, the relative coulombic efficiency can be the ratio of the anomalous factor to the standard factor, ie, "abnormal factor ÷ standard factor".

在条件#3中,前一比率是基于最近放电时段(t6至t7)之前的充电时段(图17中的t4至t5)中的第一SOC和放电时段(图17中的t2至t3)中的第二SOC的异常因子与标准因子的比率。In condition #3, the previous ratio is a ratio of an abnormal factor to a standard factor based on a first SOC in a charging period (t4 to t5 in FIG. 17) and a second SOC in a discharging period (t2 to t3 in FIG. 17) before the most recent discharging period (t6 to t7).

阈值TH11、TH12、TH13可以是预定值。作为实施例,阈值TH11、TH12、TH13可以与上文参考图36描述的预定阈值TH1、TH2、TH3相同。The thresholds TH11, TH12, TH13 may be predetermined values. As an embodiment, the thresholds TH11, TH12, TH13 may be the same as the predetermined thresholds TH1, TH2, TH3 described above with reference to FIG. 36 .

外部装置2000可以基于在从第一充电时间点到第二充电时间点的时间段内测量的充电电流的积分值和在从第一放电时间点到第二放电时间点的时间段内测量的放电电流的积分值来确定阈值TH11、TH12、TH13中的至少一者。The external device 2000 may determine at least one of the thresholds TH11, TH12, TH13 based on an integrated value of a charging current measured during a period from a first charging time point to a second charging time point and an integrated value of a discharging current measured during a period from a first discharging time point to a second discharging time point.

每当重新开始电池组10的充电模式或放电模式时,就可以重新更新阈值TH11、TH12、TH13中的至少一者。例如,外部装置2000可以通过将充电电流的积分值除以放电电流的积分值来获取目标值。外部装置2000可以通过将标准因子与目标值的比率乘以预定缩放常数(其为正值)来确定阈值TH11、TH12、TH13中的至少一者。用于确定阈值TH11、TH12、TH13中的任何一者的缩放常数可以不同于用于确定阈值TH11、TH12、TH13中的另一者的缩放常数。可以在步骤S7710、S7720、S7730和S7740中的至少一者期间确定目标值。可以在步骤S7730和S7740中的至少一者期间确定阈值TH1、TH2、TH3中的至少一者。Whenever the charging mode or the discharging mode of the battery pack 10 is restarted, at least one of the threshold values TH11, TH12, and TH13 may be re-updated. For example, the external device 2000 may obtain the target value by dividing the integral value of the charging current by the integral value of the discharging current. The external device 2000 may determine at least one of the threshold values TH11, TH12, and TH13 by multiplying the ratio of the standard factor to the target value by a predetermined scaling constant (which is a positive value). The scaling constant used to determine any one of the threshold values TH11, TH12, and TH13 may be different from the scaling constant used to determine the other of the threshold values TH11, TH12, and TH13. The target value may be determined during at least one of steps S7710, S7720, S7730, and S7740. At least one of the threshold values TH1, TH2, and TH3 may be determined during at least one of steps S7730 and S7740.

当所有的多个电池电芯BC1至BCN都正常时,目标值和标准因子可以基本上彼此相等。同时,随着多个电池电芯BC1至BCN中具有内部短路异常的电池电芯的数量增加,标准因子从目标值大幅减小。因此,通过根据上述方法确定阈值TH11、TH12、TH13中的至少一者,可以提高检测内部短路异常的准确度。When all of the plurality of battery cells BC1 to BC N are normal, the target value and the standard factor may be substantially equal to each other. Meanwhile, as the number of battery cells having an internal short circuit abnormality among the plurality of battery cells BC1 to BC N increases, the standard factor is greatly reduced from the target value. Therefore, by determining at least one of the threshold values TH11, TH12, TH13 according to the above method, the accuracy of detecting the internal short circuit abnormality may be improved.

同时,在步骤S7740之前确定目标值之后,在步骤S7740中,可以仅使用多个电池电芯BC1至BCN的所有异常因子中小于或等于目标值的异常因子来确定标准因子。在这种情况下,在确定标准因子时,由于从多个电池电芯BC1至BCN的所有异常因子中排除超过目标值的异常因子,因此可以优先从多个电池电芯BC1至BCN中检测具有相对严重的内部短路异常的电池电芯BC。Meanwhile, after the target value is determined before step S7740, in step S7740, the standard factor may be determined using only the abnormal factors less than or equal to the target value among all the abnormal factors of the plurality of battery cells BC 1 to BC N. In this case, when determining the standard factor, since the abnormal factors exceeding the target value are excluded from all the abnormal factors of the plurality of battery cells BC 1 to BC N , the battery cell BC having a relatively severe internal short circuit abnormality may be preferentially detected from among the plurality of battery cells BC 1 to BC N.

在每个实施方式中,当在多个电池电芯BC1至BCN中的预定数量或更多个电池电芯中检测到内部短路异常时,外部装置2000可以生成表示检测到内部短路异常的第二信息。In each embodiment, when the internal short circuit abnormality is detected in a predetermined number or more of the plurality of battery cells BC1 to BC N , the external device 2000 may generate second information indicating that the internal short circuit abnormality is detected.

在每个实施方式中,当在多个电池电芯BC1至BCN中的预定数量或更多个电池电芯中检测到内部短路异常时,外部装置2000可以减小充放电电流的允许范围。例如,允许范围的上限(正值)可以减小,或者允许范围的下限(负值)可以与异常电池电芯的数量成比例地增加。In each embodiment, when an internal short circuit abnormality is detected in a predetermined number or more of the plurality of battery cells BC1 to BC N , the external device 2000 may reduce the allowable range of the charge and discharge current. For example, the upper limit (positive value) of the allowable range may be reduced, or the lower limit (negative value) of the allowable range may be increased in proportion to the number of abnormal battery cells.

例如,根据本公开的实施方式的外部装置2000可以包括在用于诊断电池电芯的异常的诊断系统中。可以在电动车辆维修店、电池制造商或电池维护公司中操作该诊断系统。例如,诊断系统可以用于诊断电动车辆或储能系统中装载的电池电芯的异常,或者可以用于诊断由电池制造商生产的新开发的型号的电池中的异常。特别地,在后一种情况下,在将新开发的型号的电池商业化之前,可以通过使用外部装置2000来检查电池的状态。For example, the external device 2000 according to an embodiment of the present disclosure may be included in a diagnostic system for diagnosing an abnormality of a battery cell. The diagnostic system may be operated in an electric vehicle repair shop, a battery manufacturer, or a battery maintenance company. For example, the diagnostic system may be used to diagnose an abnormality of a battery cell loaded in an electric vehicle or an energy storage system, or may be used to diagnose an abnormality in a newly developed model of battery produced by a battery manufacturer. In particular, in the latter case, before the newly developed model of battery is commercialized, the state of the battery may be checked by using the external device 2000.

作为另一实施例,外部装置2000可以包括在配备有电池的系统的控制元件中。As another embodiment, the external device 2000 may be included in a control element of a system equipped with a battery.

在一个实施例中,外部装置2000可以包括在电动车辆的控制系统中。在这种情况下,外部装置2000可以在对安装在电动车辆中的电池进行充放电的过程中收集关于电池电芯的充电容量和放电容量的数据,使用所收集的数据来诊断电池电芯的状态,并且将诊断结果输出到电动车辆的集成控制显示器。In one embodiment, the external device 2000 may be included in the control system of the electric vehicle. In this case, the external device 2000 may collect data on the charge capacity and discharge capacity of the battery cell during the process of charging and discharging the battery installed in the electric vehicle, diagnose the state of the battery cell using the collected data, and output the diagnosis result to the integrated control display of the electric vehicle.

在另一实施例中,外部装置2000可以包括在储能系统的控制系统中。在这种情况下,外部装置2000可以在储能系统的充放电期间收集关于电池电芯的充电容量和放电容量的数据,使用所收集的数据诊断电池电芯的状态,并且经由操作者可访问的集成管理计算机的显示器输出诊断结果。In another embodiment, the external device 2000 may be included in the control system of the energy storage system. In this case, the external device 2000 may collect data on the charge capacity and discharge capacity of the battery cells during the charge and discharge of the energy storage system, diagnose the state of the battery cells using the collected data, and output the diagnosis results via a display of an integrated management computer accessible to an operator.

当经由显示器输出关于析锂异常的诊断结果时,电动车辆的用户或储能系统的操作者可以采取适当的安全措施。在一个实施例中,电动车辆的用户可以访问维修店并接受检查。在另一实施例中,储能系统的操作者可以用新电池替换对应的电池。When the diagnostic result about lithium plating anomaly is output via the display, the user of the electric vehicle or the operator of the energy storage system can take appropriate safety measures. In one embodiment, the user of the electric vehicle can visit a repair shop and undergo an inspection. In another embodiment, the operator of the energy storage system can replace the corresponding battery with a new battery.

在本公开中,外部装置2000可以可选地包括本领域已知的处理器、专用集成电路(ASIC)、其它芯片组、逻辑电路、寄存器、通信调制解调器、数据处理装置等,以执行上述各种控制逻辑。此外,当控制逻辑以软件实施时,外部装置2000可以实施为一组程序模块。在这种情况下,程序模块可以存储在存储器中并由处理器执行。存储器可以设置在处理器内部或外部,并且可以借助各种公知的计算机部件连接到处理器。此外,存储器可以包括在本公开的存储单元2100中。此外,存储器是指不管装置的类型如何其中存储信息的装置,不是指特定的存储装置。In the present disclosure, the external device 2000 may optionally include a processor, an application specific integrated circuit (ASIC), other chipsets, logic circuits, registers, communication modems, data processing devices, etc. known in the art to perform the above-mentioned various control logics. In addition, when the control logic is implemented in software, the external device 2000 can be implemented as a group of program modules. In this case, the program modules can be stored in a memory and executed by a processor. The memory can be arranged inside or outside the processor and can be connected to the processor by means of various known computer components. In addition, the memory can be included in the storage unit 2100 of the present disclosure. In addition, the memory refers to a device in which information is stored regardless of the type of the device, not a specific storage device.

可以组合外部装置2000的各种控制逻辑中的至少一个或多个,并且组合的控制逻辑可以用计算机可读代码方案编写并记录在计算机可读记录介质中。记录介质的类型没有特别限制,只要其可以被包括在计算机中的处理器访问即可。作为实施例,记录介质包括选自由ROM、RAM、寄存器、CD-ROM、磁带、硬盘、软盘和光学数据记录装置组成的组中的至少一个。此外,代码方案可以在联网计算机上分布、存储并被执行。此外,用于实施组合控制逻辑的功能程序、代码和代码段可以由本公开所属领域的程序员容易地推断出。At least one or more of the various control logics of the external device 2000 can be combined, and the combined control logic can be written in a computer-readable code scheme and recorded in a computer-readable recording medium. The type of recording medium is not particularly limited as long as it can be accessed by a processor included in the computer. As an embodiment, the recording medium includes at least one selected from the group consisting of ROM, RAM, registers, CD-ROM, magnetic tape, hard disk, floppy disk and optical data recording device. In addition, the code scheme can be distributed, stored and executed on a networked computer. In addition, the functional program, code and code segment for implementing the combined control logic can be easily inferred by a programmer in the field to which the present disclosure belongs.

已经详细描述了本公开。然而,应当理解,详细描述和具体实施例虽然指示了本公开的优选实施方式,但是仅通过说明的方式给出,因为根据该详细描述,本公开的范围内的各种改变和变型对于本领域技术人员将变得显而易见。The present disclosure has been described in detail. However, it should be understood that the detailed description and specific examples, while indicating preferred embodiments of the present disclosure, are given by way of illustration only, since various changes and modifications within the scope of the present disclosure will become apparent to those skilled in the art from this detailed description.

(附图标记说明)(Explanation of Reference Numerals)

1:电池电芯诊断系统1: Battery cell diagnostic system

1000:电池电芯诊断设备1000: Battery cell diagnostic equipment

2000:外部装置2000: External Devices

100:电流测量单元100: Current measurement unit

200:电压感测单元200: Voltage sensing unit

300:数据获取单元300: Data acquisition unit

400:第一控制单元400: First control unit

500:显示单元500: Display unit

600:第二控制单元600: Second control unit

10:电池组10: Battery Pack

Claims (20)

1.一种电池电芯诊断设备,所述电池电芯诊断设备包括:1. A battery cell diagnostic device, the battery cell diagnostic device comprising: 电流测量单元,所述电流测量单元被配置为测量电池电芯的电流;a current measuring unit configured to measure a current of a battery cell; 电压感测单元,所述电压感测单元被配置为感测所述电池电芯的电芯电压;以及a voltage sensing unit configured to sense a cell voltage of the battery cell; and 第一控制单元,所述第一控制单元被配置为将所述电池电芯的包括从所述电流测量单元和所述电压感测单元获取的数据的第一信息发送到外部装置,从所述外部装置接收包括基于所述第一信息获取的所述电池电芯的诊断信息的第二信息,并且基于所述第一信息和所述第二信息诊断所述电池电芯的异常状态。a first control unit, the first control unit being configured to send first information of the battery cell including data acquired from the current measuring unit and the voltage sensing unit to an external device, receive second information including diagnostic information of the battery cell acquired based on the first information from the external device, and diagnose an abnormal state of the battery cell based on the first information and the second information. 2.根据权利要求1所述的电池电芯诊断设备,2. The battery cell diagnostic device according to claim 1, 其中,所述电池电芯的所述诊断信息包括所述电池电芯的析锂诊断、所述电池电芯的并联连接异常和所述电池电芯的内部短路中的至少一种信息。The diagnostic information of the battery cell includes at least one of lithium plating diagnosis of the battery cell, abnormal parallel connection of the battery cell and internal short circuit of the battery cell. 3.根据权利要求1所述的电池电芯诊断设备,3. The battery cell diagnostic device according to claim 1, 其中,所述第一控制单元被配置为基于所述第二信息中包括的所述电池电芯的所述诊断信息在显示单元上显示关于所述电池电芯的异常状态的信息。Wherein, the first control unit is configured to display information about an abnormal state of the battery cell on a display unit based on the diagnostic information of the battery cell included in the second information. 4.根据权利要求1所述的电池电芯诊断设备,4. The battery cell diagnostic device according to claim 1, 其中,所述第一控制单元被配置为:Wherein, the first control unit is configured as: 基于所述第一信息检测所述电池电芯的电压异常和所述电池电芯的行为异常中的至少一者;以及detecting at least one of a voltage abnormality of the battery cell and a behavior abnormality of the battery cell based on the first information; and 基于所述电压异常、所述行为异常和所述第二信息中的至少一者来诊断所述电池电芯的异常状态。An abnormal state of the battery cell is diagnosed based on at least one of the voltage abnormality, the behavior abnormality, and the second information. 5.根据权利要求4所述的电池电芯诊断设备,5. The battery cell diagnostic device according to claim 4, 其中,所述第一控制单元被配置为基于所述电压异常、所述行为异常和所述第二信息中的至少一者来生成表示所述电池电芯是否处于所述异常状态的第三信息。The first control unit is configured to generate third information indicating whether the battery cell is in the abnormal state based on at least one of the voltage abnormality, the behavior abnormality and the second information. 6.根据权利要求5所述的电池电芯诊断设备,6. The battery cell diagnostic device according to claim 5, 其中,所述第一控制单元被配置为在显示单元上显示所述第三信息。Wherein, the first control unit is configured to display the third information on a display unit. 7.根据权利要求5所述的电池电芯诊断设备,7. The battery cell diagnostic device according to claim 5, 其中,所述第一控制单元被配置为将所述第三信息发送到配备有所述电池电芯的装置的第二控制单元。The first control unit is configured to send the third information to a second control unit of a device equipped with the battery cell. 8.根据权利要求1所述的电池电芯诊断设备,8. The battery cell diagnostic device according to claim 1, 其中,所述第一控制单元被配置为:Wherein, the first control unit is configured as: 生成表示所述第一信息中包括的所述电芯电压随时间流逝的历史的时间序列数据;generating time series data representing a history of the cell voltage included in the first information over time; 基于所述时间序列数据确定每个电池电芯的第一平均电芯电压和第二平均电芯电压,所述第一平均电芯电压是短期移动平均值,所述第二平均电芯电压是长期移动平均值;以及Determining a first average cell voltage and a second average cell voltage for each battery cell based on the time series data, the first average cell voltage being a short-term moving average and the second average cell voltage being a long-term moving average; and 基于所述第一平均电芯电压和所述第二平均电芯电压之间的差检测所述电池电芯的电压异常。A voltage abnormality of the battery cell is detected based on a difference between the first average cell voltage and the second average cell voltage. 9.根据权利要求8所述的电池电芯诊断设备,9. The battery cell diagnostic device according to claim 8, 其中,所述电池电芯诊断设备被配置为诊断多个电池电芯,并且Wherein, the battery cell diagnostic device is configured to diagnose a plurality of battery cells, and 其中,所述第一控制单元被配置为:Wherein, the first control unit is configured as: 针对所述多个电池电芯中的每个电池电芯,确定与所述第一平均电芯电压和所述第二平均电芯电压之间的差对应的长期和短期平均差;determining, for each battery cell of the plurality of battery cells, long-term and short-term average differences corresponding to a difference between the first average cell voltage and the second average cell voltage; 确定所述多个电池电芯的所述长期和短期平均差的平均值;determining an average of the long-term and short-term average differences for the plurality of battery cells; 针对所述多个电池电芯中的每个电池电芯,确定所述长期和短期平均差的平均值与所述长期和短期平均差之间的偏差对应的电芯诊断偏差;以及determining, for each battery cell of the plurality of battery cells, a cell diagnostic deviation corresponding to a deviation between an average of the long-term and short-term average differences and the long-term and short-term average differences; and 将满足所述电芯诊断偏差超过诊断阈值的条件的电池电芯检测为电压异常电芯。The battery cell that satisfies the condition that the battery cell diagnosis deviation exceeds the diagnosis threshold is detected as a battery cell with abnormal voltage. 10.根据权利要求8所述的电池电芯诊断设备,10. The battery cell diagnostic device according to claim 8, 其中,所述电池电芯诊断设备被配置为诊断多个电池电芯,并且Wherein, the battery cell diagnostic device is configured to diagnose a plurality of battery cells, and 其中,所述第一控制单元被配置为:Wherein, the first control unit is configured as: 针对所述多个电池电芯中的每个电池电芯,确定与所述第一平均电芯电压和所述第二平均电芯电压之间的差对应的长期和短期平均差;determining, for each battery cell of the plurality of battery cells, long-term and short-term average differences corresponding to a difference between the first average cell voltage and the second average cell voltage; 确定所述多个电池电芯的所述长期和短期平均差的平均值;determining an average of the long-term and short-term average differences for the plurality of battery cells; 针对所述多个电池电芯中的每个电池电芯,确定所述长期和短期平均差的平均值与所述长期和短期平均差之间的偏差对应的电芯诊断偏差;determining, for each battery cell of the plurality of battery cells, a cell diagnostic deviation corresponding to a deviation between an average of the long-term and short-term average differences and the long-term and short-term average differences; 确定取决于所述多个电池电芯的所述电芯诊断偏差的标准偏差的统计变量阈值;determining a statistical variable threshold value dependent on a standard deviation of the cell diagnostic deviations of the plurality of battery cells; 基于所述统计变量阈值对所述时间序列数据进行滤波以生成经滤波的时间序列数据;以及filtering the time series data based on the statistical variable threshold to generate filtered time series data; and 基于所述经滤波的时间序列数据超过诊断阈值的时间或数据数量来检测所述电池电芯的电压异常。The voltage abnormality of the battery cell is detected based on the time or the number of data when the filtered time series data exceeds a diagnosis threshold. 11.根据权利要求8所述的电池电芯诊断设备,11. The battery cell diagnostic device according to claim 8, 其中,所述电池电芯诊断设备被配置为诊断多个电池电芯,并且Wherein, the battery cell diagnostic device is configured to diagnose a plurality of battery cells, and 所述第一控制单元被配置为:The first control unit is configured as: 针对所述多个电池电芯中的每个电池电芯,确定与所述第一平均电芯电压和所述第二平均电芯电压之间的差相对应的长期和短期平均差;determining, for each battery cell of the plurality of battery cells, long-term and short-term average differences corresponding to a difference between the first average cell voltage and the second average cell voltage; 确定与所述多个电池电芯的所述长期和短期平均差的平均值相对应的归一化值;determining a normalized value corresponding to an average of the long-term and short-term average differences for the plurality of battery cells; 针对所述多个电池电芯中的每个电池电芯,根据所述归一化值对所述长期和短期平均差进行归一化;for each battery cell in the plurality of battery cells, normalizing the long-term and short-term average differences according to the normalized value; 确定取决于所述多个电池电芯的归一化电芯诊断偏差的标准偏差的统计变量阈值;determining a statistical variable threshold value that is dependent on a standard deviation of normalized cell diagnostic deviations of the plurality of battery cells; 针对所述多个电池电芯中的每个电池电芯,基于所述统计变量阈值对每个电池电芯的归一化长期和短期平均差进行滤波,以生成经滤波的时间序列数据;以及for each battery cell in the plurality of battery cells, filtering the normalized long-term and short-term mean differences for each battery cell based on the statistical variable threshold to generate filtered time series data; and 基于所述经滤波的时间序列数据超过诊断阈值的时间或数据数量来检测所述电池电芯的电压异常。The voltage abnormality of the battery cell is detected based on the time or the number of data when the filtered time series data exceeds a diagnosis threshold. 12.根据权利要求1所述的电池电芯诊断设备,12. The battery cell diagnostic device according to claim 1, 其中,所述第一控制单元被配置为:Wherein, the first control unit is configured as: 通过将第一时间长度的移动窗口应用于所述第一信息中包括的所述电芯电压的时间序列来确定多条子电压曲线;determining a plurality of sub-voltage curves by applying a moving window of a first time length to a time series of the cell voltages included in the first information; 使用所述第一时间长度的第一平均滤波器来确定每条子电压曲线的长期平均电压值;Determine a long-term average voltage value of each sub-voltage curve using a first average filter of the first time length; 使用比所述第一时间长度短的第二时间长度的第二平均滤波器来确定每条子电压曲线的短期平均电压值;determining a short-term average voltage value of each sub-voltage curve using a second averaging filter of a second time length shorter than the first time length; 确定与每条子电压曲线的所述长期平均电压值和所述短期平均电压值之间的差对应的电压偏差;以及determining a voltage deviation corresponding to a difference between the long-term average voltage value and the short-term average voltage value of each sub-voltage curve; and 将针对所述多条子电压曲线确定的多个电压偏差中的每一者与第一阈值偏差和第二阈值偏差中的至少一者进行比较,以检测所述电池电芯的行为异常。Each of the plurality of voltage deviations determined for the plurality of sub-voltage curves is compared with at least one of a first threshold deviation and a second threshold deviation to detect abnormal behavior of the battery cell. 13.根据权利要求12所述的电池电芯诊断设备,13. The battery cell diagnostic device according to claim 12, 其中,所述第一控制单元被配置为检测所述多个电压偏差中的分别满足第一条件、第二条件和第三条件的两个电压偏差所对应的所述行为异常,The first control unit is configured to detect the behavioral anomaly corresponding to two voltage deviations among the plurality of voltage deviations that respectively meet the first condition, the second condition, and the third condition, 其中,当所述两个电压偏差中的第一电压偏差等于或大于所述第一阈值偏差时,满足所述第一条件,Wherein, when a first voltage deviation of the two voltage deviations is equal to or greater than the first threshold deviation, the first condition is satisfied, 其中,当所述两个电压偏差中的第二电压偏差等于或小于所述第二阈值偏差时,满足所述第二条件,并且Wherein, when the second voltage deviation of the two voltage deviations is equal to or less than the second threshold deviation, the second condition is satisfied, and 其中,当所述两个电压偏差之间的时间间隔等于或小于阈值时间时,满足所述第三条件。When the time interval between the two voltage deviations is equal to or less than a threshold time, the third condition is satisfied. 14.根据权利要求1所述的电池电芯诊断设备,14. The battery cell diagnostic device according to claim 1, 其中,所述第二信息表示累积容量差变化量是否大于或等于阈值,The second information indicates whether the cumulative capacity difference change is greater than or equal to a threshold value. 所述累积容量差变化量为容量差变化量之和,The cumulative capacity difference change is the sum of the capacity difference changes. 每个所述容量差变化量为所述电池电芯的第k充放电循环的容量差与所述电池电芯的第k-1充放电循环的容量差之间的差,Each of the capacity difference changes is the difference between the capacity difference of the kth charge-discharge cycle of the battery cell and the capacity difference of the k-1th charge-discharge cycle of the battery cell, 所述k为大于或等于2的自然数,The k is a natural number greater than or equal to 2, 每个充放电循环的容量差对应于所述电池电芯在所述充放电循环的充电过程中的充电容量与所述电池电芯在所述充放电循环的放电过程中的放电容量之间的差,并且The capacity difference of each charge-discharge cycle corresponds to the difference between the charge capacity of the battery cell during the charge process of the charge-discharge cycle and the discharge capacity of the battery cell during the discharge process of the charge-discharge cycle, and 所述充电容量和所述放电容量中的每一者均能从获取自所述电流测量单元并包括在所述第一信息中的数据导出。Each of the charge capacity and the discharge capacity can be derived from data acquired from the current measurement unit and included in the first information. 15.根据权利要求1所述的电池电芯诊断设备,15. The battery cell diagnostic device according to claim 1, 其中,所述第二信息表示所述电池电芯的连续充放电循环之间的容量差变化量,并且The second information represents the capacity difference change between consecutive charge and discharge cycles of the battery cell, and 所述电池电芯的每个充放电循环的容量差为(i)所述电池电芯在该电池电芯的所述充放电循环的充电过程中的充电容量与(ii)所述电池电芯在该电池电芯的所述充放电循环的放电过程中的放电容量之间的差。The capacity difference of each charge and discharge cycle of the battery cell is the difference between (i) the charge capacity of the battery cell during the charge and discharge cycle of the battery cell and (ii) the discharge capacity of the battery cell during the discharge cycle of the battery cell. 16.根据权利要求1所述的电池电芯诊断设备,16. The battery cell diagnostic device according to claim 1, 其中,所述第二信息表示基于所述外部装置监测估计容量值随时间变化的结果,所述电池电芯中包括的多个单元电芯的并联连接是否异常,The second information indicates whether the parallel connection of the plurality of unit cells included in the battery cell is abnormal based on the result of the external device monitoring the estimated capacity value over time. 所述估计容量值表示所述电池电芯基于充放电数据的满充电容量,并且The estimated capacity value represents a full charge capacity of the battery cell based on charge and discharge data, and 所述充放电数据包括表示所述电池电芯的所述电压随时间变化的电压时间序列和表示所述电池电芯的充放电电流随时间变化的电流时间序列。The charge and discharge data include a voltage time series indicating that the voltage of the battery cell changes with time and a current time series indicating that the charge and discharge current of the battery cell changes with time. 17.根据权利要求1所述的电池电芯诊断设备,17. The battery cell diagnostic device according to claim 1, 其中,所述第二信息表示基于所述电池电芯的第一SOC变化和标准因子所述电池电芯是否具有内部短路,wherein the second information indicates whether the battery cell has an internal short circuit based on a first SOC change of the battery cell and a standard factor, 通过对多个电池电芯中的至少两个电池电芯的所述第一SOC变化应用统计算法来确定所述标准因子,determining the standard factor by applying a statistical algorithm to the first SOC variation of at least two battery cells of a plurality of battery cells, 所述第一SOC变化是每个电池电芯的第一充电时间点的第一SOC与第二充电时间点的第二SOC之间的差,The first SOC change is the difference between a first SOC at a first charging time point and a second SOC at a second charging time point of each battery cell, 通过对所述电池电芯在所述第一充电时间点的状态参数应用SOC估计算法来估计所述第一SOC,estimating the first SOC by applying an SOC estimation algorithm to the state parameters of the battery cell at the first charging time point, 通过对所述电池电芯在所述第二充电时间点的状态参数应用所述SOC估计算法来估计所述第二SOC,并且estimating the second SOC by applying the SOC estimation algorithm to the state parameters of the battery cell at the second charging time point, and 基于所述第一信息获取所述状态参数。The state parameter is acquired based on the first information. 18.一种电池电芯诊断系统,所述电池电芯诊断系统包括外部装置以及根据权利要求1所述的电池电芯诊断设备,18. A battery cell diagnostic system, comprising an external device and the battery cell diagnostic apparatus according to claim 1, 其中,所述外部装置被配置为基于所述第一信息的至少一部分导出所述第二信息。The external device is configured to derive the second information based on at least a portion of the first information. 19.一种电池电芯诊断方法,所述电池电芯诊断方法包括以下步骤:19. A battery cell diagnosis method, the battery cell diagnosis method comprising the following steps: 借助控制单元,获取包括电池电芯的充电电流和放电电流中的至少一者以及所述电池电芯的电芯电压的数据;Acquiring, by means of a control unit, data including at least one of a charging current and a discharging current of a battery cell and a cell voltage of the battery cell; 借助所述控制单元,向外部装置发送所述电池电芯的包括所获取的数据的第一信息;By means of the control unit, sending first information of the battery cell including the acquired data to an external device; 借助所述控制单元,从所述外部装置接收第二信息,所述第二信息包括所述电池电芯的基于所述第一信息获取的诊断信息;以及receiving, by means of the control unit, second information from the external device, the second information including diagnostic information of the battery cell obtained based on the first information; and 借助所述控制单元,基于所述第一信息和所述第二信息诊断所述电池电芯的异常状态。With the control unit, an abnormal state of the battery cell is diagnosed based on the first information and the second information. 20.根据权利要求19所述的电池电芯诊断方法,所述电池电芯诊断方法还包括以下步骤:20. The battery cell diagnosis method according to claim 19, further comprising the following steps: 借助所述控制单元,基于所述电池电芯的所述第一信息,检测所述电池电芯的电压异常和行为异常中的至少一者;以及detecting, by means of the control unit, at least one of a voltage anomaly and a behavior anomaly of the battery cell based on the first information of the battery cell; and 借助所述控制单元,基于所述电池电芯的电压异常、所述电池电芯的行为异常和所述第二信息中的至少一者诊断所述电池电芯的异常状态。With the control unit, an abnormal state of the battery cell is diagnosed based on at least one of an abnormal voltage of the battery cell, an abnormal behavior of the battery cell, and the second information.
CN202380013810.8A 2022-05-26 2023-05-22 Apparatus and method for diagnosing battery cells Pending CN118043690A (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
KR10-2022-0065022 2022-05-26
KR10-2022-0065021 2022-05-26
KR10-2022-0065020 2022-05-26
KR20220065022 2022-05-26
PCT/KR2023/006935 WO2023229326A1 (en) 2022-05-26 2023-05-22 Apparatus and method for diagnosing battery cell

Publications (1)

Publication Number Publication Date
CN118043690A true CN118043690A (en) 2024-05-14

Family

ID=90993737

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202380013810.8A Pending CN118043690A (en) 2022-05-26 2023-05-22 Apparatus and method for diagnosing battery cells

Country Status (1)

Country Link
CN (1) CN118043690A (en)

Similar Documents

Publication Publication Date Title
KR102684286B1 (en) Battery diagnosis apparatus, battery diagnosis method, battery pack, and vehicle including the same
JP7463008B2 (en) Battery cell diagnostic device and method
CN113811781B (en) Battery diagnostic device and method
KR102632629B1 (en) Apparatus and method for diagnosing battery cell
CN114096433B (en) Battery management apparatus and battery management method
KR20210141212A (en) Apparatus and method for diagnosing battery
KR20230010545A (en) Battery diagnosis apparatus, battery pack, electric vehicle, and battery diagnosis method
KR20210095051A (en) Battery diagnosis system, power system, and battery diagnosis method
KR20230036929A (en) Battery diagnosis device, battery management system, battery pack, electric vehicle, and battery diagnosis method
EP4016099B1 (en) Apparatus and method for diagnosing battery
US12210070B2 (en) Battery diagnosis system, power system and battery diagnosis method
KR102793471B1 (en) Apparatus and method for diagnosing voltage sensor
CN118043690A (en) Apparatus and method for diagnosing battery cells
KR102837694B1 (en) Battery diagnosis apparatus, battery diagnosis method, battery pack, and vehicle including the same
EP4545991A1 (en) Battery diagnosis device, battery diagnosis method, battery pack and vehicle
KR20250112219A (en) Battery diagnosis apparatus, battery diagnosis method, battery pack, and vehicle including the same
KR20220047472A (en) Method and apparatus for calculating state of health resistance of battery

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination