CN118022500A - Ship carbon capture integrated circulating device and working method thereof - Google Patents
Ship carbon capture integrated circulating device and working method thereof Download PDFInfo
- Publication number
- CN118022500A CN118022500A CN202410372060.XA CN202410372060A CN118022500A CN 118022500 A CN118022500 A CN 118022500A CN 202410372060 A CN202410372060 A CN 202410372060A CN 118022500 A CN118022500 A CN 118022500A
- Authority
- CN
- China
- Prior art keywords
- carbon dioxide
- seawater
- decomposition
- hydrate
- reactor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 title claims abstract description 28
- 229910052799 carbon Inorganic materials 0.000 title claims abstract description 28
- 238000000034 method Methods 0.000 title claims abstract description 11
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 claims abstract description 86
- 239000013535 sea water Substances 0.000 claims abstract description 59
- 239000007789 gas Substances 0.000 claims abstract description 55
- 238000000354 decomposition reaction Methods 0.000 claims abstract description 45
- 229910002092 carbon dioxide Inorganic materials 0.000 claims abstract description 43
- 239000001569 carbon dioxide Substances 0.000 claims abstract description 39
- VTVVPPOHYJJIJR-UHFFFAOYSA-N carbon dioxide;hydrate Chemical compound O.O=C=O VTVVPPOHYJJIJR-UHFFFAOYSA-N 0.000 claims abstract description 33
- 239000012528 membrane Substances 0.000 claims abstract description 16
- 238000001816 cooling Methods 0.000 claims abstract description 13
- 238000006243 chemical reaction Methods 0.000 claims abstract description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 20
- 230000006835 compression Effects 0.000 claims description 10
- 238000007906 compression Methods 0.000 claims description 10
- 229910052757 nitrogen Inorganic materials 0.000 claims description 10
- 238000005057 refrigeration Methods 0.000 claims description 10
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 claims description 7
- 239000003546 flue gas Substances 0.000 claims description 7
- 238000012544 monitoring process Methods 0.000 claims description 7
- 238000004064 recycling Methods 0.000 claims description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 5
- 239000000498 cooling water Substances 0.000 abstract description 7
- 238000000926 separation method Methods 0.000 abstract description 5
- 239000002918 waste heat Substances 0.000 abstract description 4
- 239000002912 waste gas Substances 0.000 abstract 1
- 239000002699 waste material Substances 0.000 abstract 1
- 239000000243 solution Substances 0.000 description 22
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 9
- 230000015572 biosynthetic process Effects 0.000 description 9
- 230000007613 environmental effect Effects 0.000 description 4
- 150000004677 hydrates Chemical class 0.000 description 3
- HZAXFHJVJLSVMW-UHFFFAOYSA-N 2-Aminoethan-1-ol Chemical compound NCCO HZAXFHJVJLSVMW-UHFFFAOYSA-N 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- 238000011084 recovery Methods 0.000 description 2
- 230000001172 regenerating effect Effects 0.000 description 2
- 101001121408 Homo sapiens L-amino-acid oxidase Proteins 0.000 description 1
- 102100026388 L-amino-acid oxidase Human genes 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- AXCZMVOFGPJBDE-UHFFFAOYSA-L calcium dihydroxide Chemical compound [OH-].[OH-].[Ca+2] AXCZMVOFGPJBDE-UHFFFAOYSA-L 0.000 description 1
- 239000000920 calcium hydroxide Substances 0.000 description 1
- 229910001861 calcium hydroxide Inorganic materials 0.000 description 1
- 238000006477 desulfuration reaction Methods 0.000 description 1
- 230000023556 desulfurization Effects 0.000 description 1
- 238000005868 electrolysis reaction Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000012510 hollow fiber Substances 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/22—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion
- B01D53/228—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion characterised by specific membranes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/14—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
- B01D53/1456—Removing acid components
- B01D53/1475—Removing carbon dioxide
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/14—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
- B01D53/18—Absorbing units; Liquid distributors therefor
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D21/00—Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Analytical Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Treating Waste Gases (AREA)
Abstract
Description
技术领域Technical Field
本发明涉及船舶能源应用的技术领域,是一项船舶碳捕集一体化循环装置。The present invention relates to the technical field of ship energy application, and is a ship carbon capture integrated circulation device.
背景技术Background technique
目前全球对环境问题和碳排放的日益关注日渐增加。船舶作为重要的运输工具,虽然是全球贸易的支柱,但也是碳排放的主要来源之一。因此,发明一种能够在船舶上捕集和处理二氧化碳的装置,可以减少其对气候变化的影响,全球对气候变化的关注度不断增加,政府、组织和企业都在寻找减少碳排放的方式。 国际海运业务的碳排放持续增加,出于环保和法规要求,寻求降低碳排放的方法变得尤为重要。这种背景下,发明一个能够在船舶上捕集、处理和储存二氧化碳的装置,可以被视为对全球气候变化和环境保护的一种有效回应。这样的装置有望减少船舶运行过程中的碳排放,并在航运业的可持续发展方面发挥重要作用。There is a growing global concern about environmental issues and carbon emissions. Ships, as an important means of transportation, are the backbone of global trade, but they are also one of the main sources of carbon emissions. Therefore, inventing a device that can capture and treat carbon dioxide on ships can reduce its impact on climate change. As global attention to climate change continues to increase, governments, organizations and companies are looking for ways to reduce carbon emissions. Carbon emissions from international shipping operations continue to increase, and it has become particularly important to find ways to reduce carbon emissions due to environmental protection and regulatory requirements. In this context, the invention of a device that can capture, treat and store carbon dioxide on ships can be seen as an effective response to global climate change and environmental protection. Such a device is expected to reduce carbon emissions during ship operation and play an important role in the sustainable development of the shipping industry.
我国在船载CCS方面的研究较晚,仅在近几年公开了几个相关专利,如CN201410621722.9公开了以乙醇胺捕集回收利用船舶废气中CO2的技术方案,CN201910217968.2公开的以氢氧化钠吸收废气中的CO2,采用氢氧化钙再生氢氧化钠,CN201710589328.5公开了以氢氧化钠吸收CO2,采用电解的方式再生吸收液并收集析出的高浓度CO2,以上方案普遍存在成本高、技术不成熟的问题。China started research on shipborne CCS relatively late, and only published a few related patents in recent years. For example, CN201410621722.9 discloses a technical solution for capturing and recycling CO2 in ship exhaust gas with ethanolamine, CN201910217968.2 discloses absorbing CO2 in exhaust gas with sodium hydroxide and regenerating sodium hydroxide with calcium hydroxide, and CN201710589328.5 discloses absorbing CO2 with sodium hydroxide, regenerating the absorption liquid by electrolysis and collecting the precipitated high-concentration CO2 . The above solutions generally have the problems of high cost and immature technology.
发明内容Summary of the invention
本发明为解决现有的二氧化碳排放问题,提供一种船舶碳捕集一体化循环系统,该系统基于对船舶尾气成分的分析使用膜分离脱氮工艺与船舶自带的脱硫工艺结合后,对二氧化碳气体进行富集可大大提高捕集效率,既降低了成本,又具有一定的环保性和可实施性。In order to solve the existing carbon dioxide emission problem, the present invention provides an integrated carbon capture circulation system for ships. The system uses a membrane separation denitrification process based on the analysis of the exhaust gas components of the ship and combines it with the ship's own desulfurization process to enrich the carbon dioxide gas, which can greatly improve the capture efficiency, thereby reducing costs and having certain environmental protection and feasibility.
为实现上述目的,本发明采用如下的技术方案:船舶碳捕集一体化循环装置,它包括废气接收集碳单元、海水供应冷却单元、二氧化碳水合物生成单元、二氧化碳水合物分解储存单元;To achieve the above-mentioned object, the present invention adopts the following technical solution: a ship carbon capture integrated circulation device, which includes an exhaust gas receiving and carbon collection unit, a seawater supply cooling unit, a carbon dioxide hydrate generation unit, and a carbon dioxide hydrate decomposition and storage unit;
所述废气接收集碳单元中高温尾气罐中尾气经过烟气过滤器、压缩机后连接至膜分离器,膜分离器上设置氮气浓度检测仪和放气阀;The tail gas in the high-temperature tail gas tank in the exhaust gas receiving carbon collection unit is connected to the membrane separator after passing through the flue gas filter and the compressor, and the membrane separator is provided with a nitrogen concentration detector and a vent valve;
所述海水冷却单元中经过膜分离器后的尾气依次经过尾气泵、第一海水换热器、第二海水换热器进入到反应釜内;低温海水储存罐分别经过第一海水泵连接至第一海水换热器,经过第二海水泵连接至第二海水换热器;The tail gas in the seawater cooling unit after passing through the membrane separator enters the reactor through the tail gas pump, the first seawater heat exchanger, and the second seawater heat exchanger in sequence; the low-temperature seawater storage tank is connected to the first seawater heat exchanger through the first seawater pump, and is connected to the second seawater heat exchanger through the second seawater pump;
所述二氧化碳水合物生成单元中,水合物生成溶液从水合物生成溶液罐经过第三海水换热器后进入到反应釜;低温海水储存罐经过第三海水泵连接至第三海水换热器;In the carbon dioxide hydrate generation unit, the hydrate generation solution enters the reactor from the hydrate generation solution tank through the third seawater heat exchanger; the low-temperature seawater storage tank is connected to the third seawater heat exchanger through the third seawater pump;
所述二氧化碳水合物分解储存单元中,反应釜中生成的二氧化碳水合物经管道进入分解反应釜中,分解后的二氧化碳气体经过二氧化碳泵进入到二氧化碳储气罐中;分解反应釜经过缸套换热循环泵连接至换热器,与发动机进行换热。In the carbon dioxide hydrate decomposition and storage unit, the carbon dioxide hydrate generated in the reactor enters the decomposition reactor through a pipeline, and the decomposed carbon dioxide gas enters the carbon dioxide storage tank through a carbon dioxide pump; the decomposition reactor is connected to the heat exchanger through a cylinder jacket heat exchange circulation pump to exchange heat with the engine.
所述反应釜上设置排气阀、第一温度传感器和第一压力传感器。The reactor is provided with an exhaust valve, a first temperature sensor and a first pressure sensor.
所述反应釜上设置压缩制冷循环设备,压缩制冷循环设备采用蒸发器依次连接压缩机、冷凝器和节流阀。The reactor is provided with a compression refrigeration cycle device, which uses an evaporator to sequentially connect a compressor, a condenser and a throttle valve.
所述分解反应釜上设置第二温度传感器和第二压力传感器。The decomposition reactor is provided with a second temperature sensor and a second pressure sensor.
该循环装置还设有计算机监控系统,计算机监控系统与第一温度传感器、第一压力传感器、第二温度传感器、第二压力传感器进行电连接。The circulation device is also provided with a computer monitoring system, which is electrically connected with the first temperature sensor, the first pressure sensor, the second temperature sensor and the second pressure sensor.
船舶碳捕集一体化循环装置的工作方法,包括以下步骤:The working method of the integrated carbon capture cycle device for ships comprises the following steps:
二氧化碳水合物生成阶段:尾气经过降温冷却后进入反应釜中,水合物生成溶液从水合物生成溶液罐中经过第三海水换热器降温冷却后通入反应釜中,通过压缩制冷循环设备向反应釜提供冷量,剩余未被捕获的尾气通过排气阀排出;Carbon dioxide hydrate formation stage: the tail gas is cooled and then enters the reactor, the hydrate formation solution is cooled from the hydrate formation solution tank through the third seawater heat exchanger and then introduced into the reactor, the compression refrigeration cycle equipment provides cooling to the reactor, and the remaining tail gas that is not captured is discharged through the exhaust valve;
二氧化碳水合物分解储存阶段:二氧化碳水合物生成后进入分解反应釜中进行分解,分解生成的二氧化碳经二氧化碳泵进入二氧化碳储气罐中,分解生成的反应溶液通入水合物生成溶液罐中回收循环利用,在二氧化碳水合物分解过程中由发动机缸套冷循环水提供所需的热量,发动机缸套中的循环水通过换热器与分解反应釜进行换热。Carbon dioxide hydrate decomposition and storage stage: After carbon dioxide hydrate is generated, it enters the decomposition reactor for decomposition. The carbon dioxide generated by the decomposition enters the carbon dioxide storage tank through the carbon dioxide pump. The reaction solution generated by the decomposition is passed into the hydrate generation solution tank for recycling and reuse. During the decomposition process of carbon dioxide hydrate, the required heat is provided by the engine cylinder liner cold circulating water, and the circulating water in the engine cylinder liner exchanges heat with the decomposition reactor through a heat exchanger.
本发明的有益效果是:一种船舶碳捕集一体化循环系统,该系统通过脱氮实现了二氧化碳气体的富集,并且以水合物的方式高效捕获来自船舶废气中的二氧化碳并储存下来,利用船舶自身的的废热以及低温海水等能源实现二氧化碳水合物的分解和冷却。The beneficial effects of the present invention are: a ship carbon capture integrated circulation system, which achieves the enrichment of carbon dioxide gas through denitrification, and efficiently captures and stores carbon dioxide from ship exhaust gas in the form of hydrates, and utilizes the ship's own waste heat and low-temperature seawater and other energy sources to achieve the decomposition and cooling of carbon dioxide hydrates.
该装置利用废热和废气中的能量来进行二氧化碳分解和再循环水冷却,可以提高船舶系统的能源利用效率。同时通过膜分离装置脱氮,此装置中利用中空纤维气体分离膜实现了废气中二氧化碳气体的富集,大大提高了二氧化碳在废气中的占比以及提高了水合物捕集二氧化碳的效率。将废气中的二氧化碳转化成水合物并再次分解,并且水合物生成溶液可以再次循环利用,实现了对二氧化碳资源的循环利用,通过降低船舶排放的二氧化碳,有助于减少船舶对气候变化的影响。The device uses waste heat and energy in the exhaust gas to decompose carbon dioxide and recirculate water for cooling, which can improve the energy efficiency of the ship system. At the same time, denitrification is carried out through a membrane separation device. The hollow fiber gas separation membrane is used in this device to achieve the enrichment of carbon dioxide gas in the exhaust gas, which greatly increases the proportion of carbon dioxide in the exhaust gas and improves the efficiency of hydrate capture of carbon dioxide. The carbon dioxide in the exhaust gas is converted into hydrates and decomposed again, and the hydrate-generated solution can be recycled again, realizing the recycling of carbon dioxide resources. By reducing the carbon dioxide emitted by ships, it helps to reduce the impact of ships on climate change.
附图说明BRIEF DESCRIPTION OF THE DRAWINGS
图1是一种船舶碳捕集一体化循环装置。FIG1 is a ship carbon capture integrated circulation device.
图中:1、高温尾气罐,2、烟气过滤器,3、尾气泵,4、第一阀门,5、第一海水换热器,6、第二海水换热器,7、低温海水储存罐,8、第二阀门,9、第三阀门,10、第一海水泵,11、第二海水泵,12、第四阀门,13、第三海水泵,14、第三海水换热器,15、水合物生成溶液罐,16、反应釜,17、分解反应釜,18、第五阀门,19、第六阀门,20、二氧化碳泵,21、第七阀门,22、二氧化碳储气罐,23、排气阀,24、第一温度传感器,25、第一压力传感器,26、第二温度传感器,27、第二压力传感器,28、计算机监测系统,29、压缩机,30、冷凝器,31、节流阀,32、蒸发器,33、缸套换热循环泵,34、换热器,35、发动机,36压缩机,37、第一进气阀,38、第一放气阀,39、第一氮气浓度检测仪,40、第一膜分离器,41、第二进气阀, 42、第二放气阀, 43、第二氮气浓度检测仪, 44、第二膜分离器。In the figure: 1, high temperature tail gas tank, 2, flue gas filter, 3, tail gas pump, 4, first valve, 5, first seawater heat exchanger, 6, second seawater heat exchanger, 7, low temperature seawater storage tank, 8, second valve, 9, third valve, 10, first seawater pump, 11, second seawater pump, 12, fourth valve, 13, third seawater pump, 14, third seawater heat exchanger, 15, hydrate formation solution tank, 16, reactor, 17, decomposition reactor, 18, fifth valve, 19, sixth valve, 20, carbon dioxide pump, 21, seventh valve , 22. Carbon dioxide storage tank, 23. Exhaust valve, 24. First temperature sensor, 25. First pressure sensor, 26. Second temperature sensor, 27. Second pressure sensor, 28. Computer monitoring system, 29. Compressor, 30. Condenser, 31. Throttle valve, 32. Evaporator, 33. Cylinder liner heat exchange circulation pump, 34. Heat exchanger, 35. Engine, 36 Compressor, 37. First intake valve, 38. First exhaust valve, 39. First nitrogen concentration detector, 40. First membrane separator, 41. Second intake valve, 42. Second exhaust valve, 43. Second nitrogen concentration detector, 44. Second membrane separator.
具体实施方式Detailed ways
实施例Example
图1是一种船舶碳捕集一体化循环装置,该装置通过生成水合物捕集和储存废气中的二氧化碳,利用废热和低温海水等能源来实现二氧化碳水合物的生成和分解;该装置包括废气接收集碳单元、海水供应冷却单元、二氧化碳水合物生成单元、二氧化碳水合物分解储存单元、控制与监测单元。Figure 1 is an integrated carbon capture circulation device for ships, which captures and stores carbon dioxide in exhaust gas by generating hydrates, and uses energy such as waste heat and low-temperature seawater to achieve the generation and decomposition of carbon dioxide hydrates; the device includes an exhaust gas receiving and carbon collection unit, a seawater supply and cooling unit, a carbon dioxide hydrate generation unit, a carbon dioxide hydrate decomposition and storage unit, and a control and monitoring unit.
废气接收集碳单元包括高温尾气储气罐1、烟气过滤器2、压缩机36、第一进气阀37、第一氮气浓度检测仪39、第一膜分离器40,第二进气阀41、第二放气阀42、第二氮气浓度检测仪43、第二膜分离器44、第一阀门4和尾气泵3。海水供应冷却单元包括海水过滤处理装置、海水换热器;海水过滤处理装置中海水经泵与换热器相连,流经换热器的海水集中排放;二氧化碳水合物生成单元包括反应釜、向反应釜中注入水合物生成溶液的管路、经冷却处理后的高温尾气的注入管路、水合物生成溶液罐、水合物生成溶液冷却换热器、向反应釜停供冷量的压缩制冷循环装置;压缩制冷循环装置包括压缩机、冷凝器、蒸发器、节流阀;The exhaust gas receiving and carbon collecting unit includes a high-temperature tail gas storage tank 1, a flue gas filter 2, a compressor 36, a first air intake valve 37, a first nitrogen concentration detector 39, a first membrane separator 40, a second air intake valve 41, a second air release valve 42, a second nitrogen concentration detector 43, a second membrane separator 44, a first valve 4 and a tail gas pump 3. The seawater supply cooling unit includes a seawater filtration treatment device and a seawater heat exchanger; the seawater in the seawater filtration treatment device is connected to the heat exchanger through a pump, and the seawater flowing through the heat exchanger is discharged centrally; the carbon dioxide hydrate generation unit includes a reactor, a pipeline for injecting a hydrate generation solution into the reactor, an injection pipeline for high-temperature tail gas after cooling treatment, a hydrate generation solution tank, a hydrate generation solution cooling heat exchanger, and a compression refrigeration cycle device for stopping the supply of cold to the reactor; the compression refrigeration cycle device includes a compressor, a condenser, an evaporator, and a throttle valve;
二氧化碳水合物分解储存单元包括缸套冷却水循环装置、水合物分解反应釜、反应溶液回收管路、二氧化碳储气罐。The carbon dioxide hydrate decomposition and storage unit includes a cylinder jacket cooling water circulation device, a hydrate decomposition reactor, a reaction solution recovery pipeline, and a carbon dioxide gas storage tank.
高温尾气储存到高温尾气罐1中,随后经过烟气过滤器2用于过滤烟气中的固体颗粒物。经过滤后的高温尾气经压缩机36升压到相应的分离压力后进入到两个并联的第一膜分离器40、第二膜分离器44,随后尾气中的氮气被膜组件分离下来,当第一氮气浓度检测仪39和第二氮气浓度检测仪43达到设定值时,氮气通过第一放气阀38和第二放气阀42排出,以此来富集尾气中的二氧化碳,高温尾气中剩余气体通过第一阀门4经尾气泵3加压进入海水供应冷却单元。The high-temperature exhaust gas is stored in the high-temperature exhaust gas tank 1, and then passes through the flue gas filter 2 to filter the solid particles in the flue gas. The filtered high-temperature exhaust gas is boosted to the corresponding separation pressure by the compressor 36 and enters the two parallel first membrane separators 40 and second membrane separators 44. Then the nitrogen in the exhaust gas is separated by the membrane assembly. When the first nitrogen concentration detector 39 and the second nitrogen concentration detector 43 reach the set value, the nitrogen is discharged through the first vent valve 38 and the second vent valve 42 to enrich the carbon dioxide in the exhaust gas. The remaining gas in the high-temperature exhaust gas passes through the first valve 4 and is pressurized by the exhaust pump 3 to enter the seawater supply cooling unit.
剩余的高温尾气通过第一海水换热器5,第二海水换热器6进行降温换热,低温海水从低温海水储存罐7分别通过第二阀门8、第三阀门9经由第一海水泵10、第二海水泵11进入第一海水换热器5、第二海水换热器6作为低温介质与高温烟气进行换热,最终经过换热后的海水集中排放。The remaining high-temperature exhaust gas is cooled and heat-exchanged through the first seawater heat exchanger 5 and the second seawater heat exchanger 6. The low-temperature seawater enters the first seawater heat exchanger 5 and the second seawater heat exchanger 6 from the low-temperature seawater storage tank 7 through the second valve 8 and the third valve 9 via the first seawater pump 10 and the second seawater pump 11 as a low-temperature medium to exchange heat with the high-temperature flue gas. Finally, the seawater after heat exchange is discharged in a centralized manner.
高温尾气经过降温冷却后进入反应釜16中,水合物生成溶液从水合物生成溶液罐15中经过第三海水换热器14降温冷却到相应温度后通入反应釜中,其中通过压缩制冷循环向反应釜提供冷量,剩余未被捕获的尾气通过放气阀23排出。压缩制冷循环包括压缩机29、冷凝器30、蒸发器32、节流阀31。The high-temperature tail gas is cooled and then enters the reactor 16, and the hydrate formation solution is cooled from the hydrate formation solution tank 15 to the corresponding temperature through the third seawater heat exchanger 14 and then introduced into the reactor, wherein the reactor is provided with cold energy through the compression refrigeration cycle, and the remaining tail gas not captured is discharged through the vent valve 23. The compression refrigeration cycle includes a compressor 29, a condenser 30, an evaporator 32, and a throttle valve 31.
二氧化碳水合物在相应的温度压力下生成后进入分解反应釜17中,在较高的温度下进行分解,分解生成的二氧化碳经二氧化碳泵20进入二氧化碳储气罐22中,等待船舶靠岸后回收。After being generated at the corresponding temperature and pressure, the carbon dioxide hydrate enters the decomposition reactor 17 and is decomposed at a relatively high temperature. The carbon dioxide generated by the decomposition enters the carbon dioxide storage tank 22 through the carbon dioxide pump 20 and waits for recovery after the ship docks.
在二氧化碳水合物分解过程中由缸套冷却水循环提供所需的热量,发动机35缸套中的高温冷却水通过换热器34与分解反应釜进行换热。During the decomposition process of carbon dioxide hydrate, the required heat is provided by the cylinder jacket cooling water circulation, and the high-temperature cooling water in the cylinder jacket of the engine 35 exchanges heat with the decomposition reactor through the heat exchanger 34.
控制与监测单元包括位于生成反应釜上的第一温度传感器24和第一压力传感器25,以及位于分解反应釜上的第二温度传感器26和第二压力传感器27,均由数据传输线与计算机监测系统28连接。The control and monitoring unit includes a first temperature sensor 24 and a first pressure sensor 25 located on the generation reactor, and a second temperature sensor 26 and a second pressure sensor 27 located on the decomposition reactor, all of which are connected to a computer monitoring system 28 via a data transmission line.
采用上述技术方案工作时,包括以下步骤:When the above technical solution is used, the following steps are included:
二氧化碳水合物生成阶段:高温尾气经过降温冷却后进入反应釜16中,水合物生成溶液从水合物生成溶液罐15中经过第三海水换热器14降温冷却到相应温度后通入反应釜中,其中通过压缩制冷循环向反应釜提供冷量,剩余未被捕获的尾气通过放气阀23排出。Carbon dioxide hydrate formation stage: the high-temperature tail gas enters the reactor 16 after being cooled, and the hydrate formation solution is cooled from the hydrate formation solution tank 15 to the corresponding temperature through the third seawater heat exchanger 14 and then introduced into the reactor, wherein the reactor is provided with cold energy through the compression refrigeration cycle, and the remaining tail gas that is not captured is discharged through the vent valve 23.
二氧化碳水合物分解储存阶段:二氧化碳水合物在相应的温度压力下生成后进入分解反应釜17中,在较高的温度下进行分解,分解生成的二氧化碳经二氧化碳泵20进入二氧化碳储气罐22中,分解生成的反应溶液通入水合物生成溶液罐15中回收循环利用,在二氧化碳水合物分解过程中由缸套冷却水循环提供所需的热量,发动机35缸套中的高温冷却水通过换热器34与分解反应釜进行换热。Carbon dioxide hydrate decomposition and storage stage: After carbon dioxide hydrate is generated under corresponding temperature and pressure, it enters the decomposition reactor 17 and is decomposed at a relatively high temperature. The carbon dioxide generated by the decomposition enters the carbon dioxide storage tank 22 through the carbon dioxide pump 20, and the reaction solution generated by the decomposition is passed into the hydrate generation solution tank 15 for recycling and reuse. During the decomposition process of carbon dioxide hydrate, the required heat is provided by the cylinder jacket cooling water circulation, and the high-temperature cooling water in the cylinder jacket of the engine 35 exchanges heat with the decomposition reactor through the heat exchanger 34.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202410372060.XA CN118022500A (en) | 2024-03-29 | 2024-03-29 | Ship carbon capture integrated circulating device and working method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202410372060.XA CN118022500A (en) | 2024-03-29 | 2024-03-29 | Ship carbon capture integrated circulating device and working method thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
CN118022500A true CN118022500A (en) | 2024-05-14 |
Family
ID=91004364
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202410372060.XA Pending CN118022500A (en) | 2024-03-29 | 2024-03-29 | Ship carbon capture integrated circulating device and working method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN118022500A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN118881435A (en) * | 2024-09-29 | 2024-11-01 | 西安石油大学 | Gas-steam combined cycle generator system with energy storage |
-
2024
- 2024-03-29 CN CN202410372060.XA patent/CN118022500A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN118881435A (en) * | 2024-09-29 | 2024-11-01 | 西安石油大学 | Gas-steam combined cycle generator system with energy storage |
CN118881435B (en) * | 2024-09-29 | 2024-12-06 | 西安石油大学 | Energy-storage gas-steam combined cycle generator system |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN211370579U (en) | System for generating power on board | |
US20200381757A1 (en) | Hydrated magnesium hydride energy system | |
AU2008270468B2 (en) | Removal of carbon dioxide from flue gas with ammonia comprising medium | |
CN113669175B (en) | Low-temperature desublimated carbon capture system and method for tail gas of marine natural gas engine | |
CN112833325A (en) | A decarbonization system for LNG powered ships utilizing fuel cold energy | |
CN113731134B (en) | A ship-borne carbon dioxide capture and storage device and method | |
CN118022500A (en) | Ship carbon capture integrated circulating device and working method thereof | |
CN103861444A (en) | Carbon dioxide capturing and seawater desalting co-production device and method based on hydrate method | |
CN103111172B (en) | System and method for waste heat recovery and exhaust gas treatment of ship main engine | |
CN113175687B (en) | Flue gas carbon dioxide capture and purification system and method | |
WO2010097047A1 (en) | Apparatus and method for compressing co2, system and method for separating and recovering co2 | |
WO2000057990A1 (en) | Method for controlling the co2 content flue gas from thermal power plants and a thermal power plant using the method | |
US20140369914A1 (en) | Acidic gas collection system | |
CN102515099A (en) | Membrane separation method and device for recovering hydrogen from the purge gas of synthetic ammonia liquid ammonia storage tank | |
CN114349195B (en) | A marine seawater desalination system and working method taking into account carbon dioxide recovery | |
WO2022268002A1 (en) | Fossil fuel thermodynamic system and carbon dioxide emission reduction method and device thereof | |
CN214700775U (en) | A flue gas carbon dioxide capture and purification system | |
CN214319689U (en) | A system for recovering and storing CO2 in flue gas by hydrate method | |
CN118751020A (en) | Ship carbon treatment system and control method thereof | |
CN115768971A (en) | Exhaust Gas Recirculation (EGR) combined greenhouse gas emission reduction device for ship and ship with same | |
CN116078116B (en) | A containerized modular ship exhaust carbon capture system | |
CN206556046U (en) | Low-carbon type combustion system | |
CN116371134A (en) | System and method for capturing carbon dioxide in flue gas of fuel gas electric plant | |
CN114811425A (en) | CO for ship 2 Trapping and sealing system and ship | |
TWI805331B (en) | Carbon dioxide reduction and resource regeneration system and its implementation method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |