CN118001528A - Remote noninvasive respiratory parameter analysis and management system based on Internet - Google Patents
Remote noninvasive respiratory parameter analysis and management system based on Internet Download PDFInfo
- Publication number
- CN118001528A CN118001528A CN202410273391.8A CN202410273391A CN118001528A CN 118001528 A CN118001528 A CN 118001528A CN 202410273391 A CN202410273391 A CN 202410273391A CN 118001528 A CN118001528 A CN 118001528A
- Authority
- CN
- China
- Prior art keywords
- respiratory
- coefficient
- intention
- index
- noninvasive
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000000241 respiratory effect Effects 0.000 title claims abstract description 169
- 238000004458 analytical method Methods 0.000 title claims abstract description 49
- 230000029058 respiratory gaseous exchange Effects 0.000 claims abstract description 139
- 238000012544 monitoring process Methods 0.000 claims abstract description 35
- 230000002159 abnormal effect Effects 0.000 claims abstract description 28
- 238000013461 design Methods 0.000 claims abstract description 16
- 230000000007 visual effect Effects 0.000 claims abstract description 11
- 230000005856 abnormality Effects 0.000 claims abstract description 9
- 239000008280 blood Substances 0.000 claims description 113
- 210000004369 blood Anatomy 0.000 claims description 113
- 238000011156 evaluation Methods 0.000 claims description 100
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 70
- 229910052760 oxygen Inorganic materials 0.000 claims description 70
- 239000001301 oxygen Substances 0.000 claims description 70
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 claims description 68
- 238000000034 method Methods 0.000 claims description 38
- 230000033001 locomotion Effects 0.000 claims description 37
- 229910002092 carbon dioxide Inorganic materials 0.000 claims description 34
- 239000001569 carbon dioxide Substances 0.000 claims description 34
- 238000012545 processing Methods 0.000 claims description 31
- 238000007781 pre-processing Methods 0.000 claims description 8
- 238000010276 construction Methods 0.000 claims description 3
- 208000024584 respiratory abnormality Diseases 0.000 claims description 3
- 238000004088 simulation Methods 0.000 claims 4
- 238000002372 labelling Methods 0.000 claims 2
- 230000035565 breathing frequency Effects 0.000 claims 1
- 230000036387 respiratory rate Effects 0.000 claims 1
- 230000000694 effects Effects 0.000 abstract description 11
- 238000007405 data analysis Methods 0.000 abstract description 7
- 238000003745 diagnosis Methods 0.000 abstract description 6
- 230000036391 respiratory frequency Effects 0.000 description 9
- 238000009423 ventilation Methods 0.000 description 6
- 238000010586 diagram Methods 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 5
- 230000004060 metabolic process Effects 0.000 description 4
- 230000002685 pulmonary effect Effects 0.000 description 4
- 239000007789 gas Substances 0.000 description 3
- 210000004072 lung Anatomy 0.000 description 3
- 238000013211 curve analysis Methods 0.000 description 2
- 239000012634 fragment Substances 0.000 description 2
- 230000001105 regulatory effect Effects 0.000 description 2
- 210000002345 respiratory system Anatomy 0.000 description 2
- 230000005236 sound signal Effects 0.000 description 2
- 208000014085 Chronic respiratory disease Diseases 0.000 description 1
- 208000012661 Dyskinesia Diseases 0.000 description 1
- 101001121408 Homo sapiens L-amino-acid oxidase Proteins 0.000 description 1
- 102100026388 L-amino-acid oxidase Human genes 0.000 description 1
- 208000037656 Respiratory Sounds Diseases 0.000 description 1
- 101100012902 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) FIG2 gene Proteins 0.000 description 1
- 101100233916 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) KAR5 gene Proteins 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 210000000988 bone and bone Anatomy 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 208000015181 infectious disease Diseases 0.000 description 1
- 230000003434 inspiratory effect Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 235000020938 metabolic status Nutrition 0.000 description 1
- 230000003020 moisturizing effect Effects 0.000 description 1
- 230000009325 pulmonary function Effects 0.000 description 1
- 230000004202 respiratory function Effects 0.000 description 1
- 208000023504 respiratory system disease Diseases 0.000 description 1
- 201000002859 sleep apnea Diseases 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 238000002627 tracheal intubation Methods 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M16/00—Devices for influencing the respiratory system of patients by gas treatment, e.g. ventilators; Tracheal tubes
- A61M16/021—Devices for influencing the respiratory system of patients by gas treatment, e.g. ventilators; Tracheal tubes operated by electrical means
- A61M16/022—Control means therefor
- A61M16/024—Control means therefor including calculation means, e.g. using a processor
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/02—Detecting, measuring or recording for evaluating the cardiovascular system, e.g. pulse, heart rate, blood pressure or blood flow
- A61B5/0205—Simultaneously evaluating both cardiovascular conditions and different types of body conditions, e.g. heart and respiratory condition
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/08—Measuring devices for evaluating the respiratory organs
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/08—Measuring devices for evaluating the respiratory organs
- A61B5/0816—Measuring devices for examining respiratory frequency
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/08—Measuring devices for evaluating the respiratory organs
- A61B5/087—Measuring breath flow
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/145—Measuring characteristics of blood in vivo, e.g. gas concentration or pH-value ; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid or cerebral tissue
- A61B5/14542—Measuring characteristics of blood in vivo, e.g. gas concentration or pH-value ; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid or cerebral tissue for measuring blood gases
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M16/00—Devices for influencing the respiratory system of patients by gas treatment, e.g. ventilators; Tracheal tubes
- A61M16/0003—Accessories therefor, e.g. sensors, vibrators, negative pressure
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M16/00—Devices for influencing the respiratory system of patients by gas treatment, e.g. ventilators; Tracheal tubes
- A61M16/0051—Devices for influencing the respiratory system of patients by gas treatment, e.g. ventilators; Tracheal tubes with alarm devices
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M2205/00—General characteristics of the apparatus
- A61M2205/18—General characteristics of the apparatus with alarm
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M2205/00—General characteristics of the apparatus
- A61M2205/50—General characteristics of the apparatus with microprocessors or computers
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M2230/00—Measuring parameters of the user
- A61M2230/20—Blood composition characteristics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M2230/00—Measuring parameters of the user
- A61M2230/20—Blood composition characteristics
- A61M2230/202—Blood composition characteristics partial carbon oxide pressure, e.g. partial dioxide pressure (P-CO2)
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M2230/00—Measuring parameters of the user
- A61M2230/20—Blood composition characteristics
- A61M2230/205—Blood composition characteristics partial oxygen pressure (P-O2)
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M2230/00—Measuring parameters of the user
- A61M2230/40—Respiratory characteristics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M2230/00—Measuring parameters of the user
- A61M2230/40—Respiratory characteristics
- A61M2230/42—Rate
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Veterinary Medicine (AREA)
- Pulmonology (AREA)
- Public Health (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- General Health & Medical Sciences (AREA)
- Physics & Mathematics (AREA)
- Biophysics (AREA)
- Surgery (AREA)
- Molecular Biology (AREA)
- Medical Informatics (AREA)
- Pathology (AREA)
- Physiology (AREA)
- Emergency Medicine (AREA)
- Anesthesiology (AREA)
- Hematology (AREA)
- Cardiology (AREA)
- Optics & Photonics (AREA)
- Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
Abstract
Description
技术领域Technical Field
本发明涉及无创呼吸技术领域,尤其涉及基于互联网的远程无创呼吸参数分析管理系统。The present invention relates to the field of non-invasive breathing technology, and in particular to a remote non-invasive breathing parameter analysis and management system based on the Internet.
背景技术Background technique
无创呼吸是通过口鼻罩或面罩等装置,将氧气或空气经过一定压力送入患者的肺部,以改善呼吸功能和治疗呼吸系统疾病的一种治疗方法,与有创呼吸相比,无创呼吸不需要气管插管或气管切开手术,采用更为温和的方式实现通气支持,减少了感染和并发症的风险,患者更易耐受无创呼吸,在特定条件下可保持清醒、进食和言语沟通,“互联网+无创呼吸”适用于慢性呼吸系统疾病、睡眠呼吸暂停、肺功能康复治疗、老年人护理与居家医疗的远程监测等应用场景;Non-invasive breathing is a treatment method that uses a mouth-nasal mask or a mask to deliver oxygen or air to the patient's lungs at a certain pressure to improve respiratory function and treat respiratory diseases. Compared with invasive breathing, non-invasive breathing does not require endotracheal intubation or tracheotomy, and uses a gentler way to achieve ventilation support, reducing the risk of infection and complications. Patients are more likely to tolerate non-invasive breathing and can stay awake, eat and communicate verbally under certain conditions. "Internet + non-invasive breathing" is suitable for application scenarios such as chronic respiratory diseases, sleep apnea, pulmonary function rehabilitation, elderly care and remote monitoring of home medical care;
由于患者当前的身体状态、呼吸强度以及呼吸意图都能影响无创呼吸的监测准确性,但是,现有的远程无创呼吸难以进行多角度参数综合分析,使得呼吸机设备与病患的个性化和适配性不足,会导致呼吸监测效果不佳,在远程居家护理的条件下可能难以及时发现呼吸异常情况,影响医护人员决策诊断与应急救助;Since the patient's current physical condition, breathing intensity and breathing intention can affect the accuracy of non-invasive breathing monitoring, however, it is difficult to conduct comprehensive analysis of multi-angle parameters in existing remote non-invasive breathing, which makes the ventilator equipment and the patient's personalization and adaptability insufficient, resulting in poor respiratory monitoring results. Under the conditions of remote home care, it may be difficult to detect abnormal breathing in time, affecting the decision-making diagnosis and emergency rescue of medical staff;
针对上述的技术缺陷,现提出一种解决方案。In view of the above technical defects, a solution is now proposed.
发明内容Summary of the invention
本发明的目的在于:解决了现有技术的远程无创呼吸难以进行多角度参数综合分析,使得呼吸机设备与病患的个性化和适配性不足,导致呼吸监测效果不佳,影响医护人员决策诊断与应急救助的缺陷,通过采集无创呼吸参数并进行分析处理,实现了根据患者的生理特征和临床表现,从身体状态、呼吸意图和呼吸强度多角度进行参数分析,保证数据全面性,以实现最佳的个性化呼吸监测效果,提高病人与呼吸机设备的适配性,并通过反馈分析初步判定呼吸异常原因并进行可视化显示,提高数据分析利用率,且辅助决策的针对性强。The purpose of the present invention is to solve the problem that the prior art remote non-invasive breathing is difficult to perform comprehensive analysis of multi-angle parameters, resulting in insufficient personalization and adaptability of ventilator equipment to patients, leading to poor respiratory monitoring effects and affecting the decision-making diagnosis and emergency rescue of medical staff. By collecting non-invasive respiratory parameters and analyzing and processing them, parameter analysis is performed from multiple angles such as physical state, respiratory intention and respiratory intensity according to the patient's physiological characteristics and clinical manifestations, ensuring the comprehensiveness of data to achieve the best personalized respiratory monitoring effect, improve the adaptability of patients to ventilator equipment, and preliminarily determine the cause of abnormal breathing through feedback analysis and perform visual display, thereby improving the utilization rate of data analysis and making the auxiliary decision-making highly targeted.
为了实现上述目的,本发明采用了如下技术方案:In order to achieve the above object, the present invention adopts the following technical solutions:
基于互联网的远程无创呼吸参数分析管理系统,包括参数监测单元、模型设计单元和调控警报单元,其中,参数监测单元、模型设计单元和调控警报单元之间信号连接;The remote non-invasive respiratory parameter analysis and management system based on the Internet includes a parameter monitoring unit, a model design unit and a control alarm unit, wherein the parameter monitoring unit, the model design unit and the control alarm unit are signal-connected;
参数监测单元用于采集无创呼吸参数,其中,无创呼吸参数包括身体状态数据、呼吸意图数据和呼吸强度数据;The parameter monitoring unit is used to collect non-invasive breathing parameters, wherein the non-invasive breathing parameters include body state data, breathing intention data and breathing intensity data;
模型设计单元用于建立参数分析模型对无创呼吸参数进行分析处理:通过分析处理身体状态数据、呼吸意图数据和呼吸强度数据,从而评估患者的身体状态、呼吸意图和呼吸强度;进而综合判定患者当前的无创呼吸状态,生成相应的参数调控信号;再通过动态监测无创呼吸状态,从而对呼吸异常波动状态进行预警,并初步判定异常原因,生成相应的警报提示信号;The model design unit is used to establish a parameter analysis model to analyze and process the non-invasive breathing parameters: by analyzing and processing the body state data, breathing intention data and breathing intensity data, the body state, breathing intention and breathing intensity of the patient are evaluated; then the current non-invasive breathing state of the patient is comprehensively determined, and the corresponding parameter control signal is generated; then the non-invasive breathing state is dynamically monitored, so as to warn of the abnormal breathing fluctuation state, preliminarily determine the abnormal cause, and generate the corresponding alarm prompt signal;
调控警报单元用于接收参数调控信号和警报提示信号,并进行相应的处理操作以及可视化显示。The control alarm unit is used to receive parameter control signals and alarm prompt signals, and perform corresponding processing operations and visual displays.
进一步的,无创呼吸参数的采集过程如下:Furthermore, the process of collecting non-invasive respiratory parameters is as follows:
身体状态数据包括动脉血与静脉血的血氧饱和度、血氧分压及二氧化碳分压;将动脉血的血氧饱和度标记为SaO2,将静脉血的血氧饱和度标记为SvO2;将动脉血氧分压值标记为PaO2,将静脉血氧分压值标记为PvO2;将动脉血二氧化碳分压值标记为PaCO2,将静脉血二氧化碳分压值标记为PvCO2;The physical status data includes the blood oxygen saturation, blood oxygen partial pressure and carbon dioxide partial pressure of arterial blood and venous blood; the blood oxygen saturation of arterial blood is marked as SaO2, and the blood oxygen saturation of venous blood is marked as SvO2; the arterial blood oxygen partial pressure value is marked as PaO2, and the venous blood oxygen partial pressure value is marked as PvO2; the arterial blood carbon dioxide partial pressure value is marked as PaCO2, and the venous blood carbon dioxide partial pressure value is marked as PvCO2;
呼吸意图数据包括声音特征信息和动作特征信息,声音特征信息包括患者的声音分贝值与声音频率值,动作特征信息包括患者的动作幅度值和动作频率值;The breathing intention data includes sound feature information and motion feature information. The sound feature information includes the patient's sound decibel value and sound frequency value. The motion feature information includes the patient's motion amplitude value and motion frequency value.
呼吸强度数据包括呼吸面罩内的呼吸频率、气流速度和潮气量;将单位时间内的呼吸频率标记为Fh,将单位时间内的气流速度标记为Vq,将单位时间内的潮气量标记为Lc;The respiratory intensity data includes the respiratory frequency, airflow velocity and tidal volume in the breathing mask; the respiratory frequency per unit time is marked as Fh, the airflow velocity per unit time is marked as Vq, and the tidal volume per unit time is marked as Lc;
设置参数采集周期对无创呼吸参数进行定期采集,并发送到模型设计单元进行参数分析处理。The parameter collection cycle is set to regularly collect non-invasive respiratory parameters and send them to the model design unit for parameter analysis and processing.
进一步的,参数分析模型的具体构建过程为:Furthermore, the specific construction process of the parameter analysis model is as follows:
参数分析模型包括身体状态评估子模型、呼吸意图评估子模型、呼吸强度评估子模型和综合评估子模型;The parameter analysis model includes a physical state assessment sub-model, a breathing intention assessment sub-model, a breathing intensity assessment sub-model and a comprehensive assessment sub-model;
Sa:先通过身体状态评估子模型、呼吸意图评估子模型、呼吸强度评估子模型依次进行无创呼吸参数的初步分析:Sa: First, the preliminary analysis of non-invasive respiratory parameters is performed in sequence through the body state assessment sub-model, the breathing intention assessment sub-model, and the breathing intensity assessment sub-model:
Sa-1:身体状态评估子模型通过分析处理身体状态数据,生成身体状态评估系数,从而评估患者身体状态;Sa-1: The physical state assessment sub-model generates physical state assessment coefficients by analyzing and processing physical state data, thereby assessing the patient's physical state;
Sa-2:呼吸意图评估子模型通过分析处理呼吸意图数据,生成呼吸意图评估系数,从而评估患者呼吸意图;Sa-2: The breathing intention assessment submodel generates a breathing intention assessment coefficient by analyzing and processing the breathing intention data, thereby assessing the patient's breathing intention;
Sa-3:呼吸强度评估子模型通过分析处理呼吸强度数据,生成呼吸强度评估系数,从而评估患者的呼吸强度;Sa-3: The respiratory intensity assessment sub-model generates a respiratory intensity assessment coefficient by analyzing and processing the respiratory intensity data, thereby assessing the patient's respiratory intensity;
Sb:再通过综合评估子模型进行综合分析:Sb: Comprehensive analysis is then performed through the comprehensive evaluation sub-model:
Sb-1:综合评估子模型通过身体状态评估系数、呼吸意图评估系数和呼吸强度评估系数相结合,生成无创呼吸综合评估指数;Sb-1: The comprehensive assessment sub-model generates a non-invasive respiratory comprehensive assessment index by combining the physical state assessment coefficient, the respiratory intention assessment coefficient and the respiratory intensity assessment coefficient;
Sb-2:判定患者当前的无创呼吸状态,生成相应的参数调控信号;Sb-2: Determine the patient's current non-invasive breathing status and generate corresponding parameter control signals;
Sb-3:再进行无创呼吸综合评估指数的动态监测,对于无创呼吸的异常波动状态进行预警,并初步判定异常原因,生成相应的警报提示信号。Sb-3: Dynamic monitoring of the comprehensive evaluation index of non-invasive breathing is then performed to warn of abnormal fluctuations in non-invasive breathing, preliminarily determine the cause of the abnormality, and generate corresponding alarm prompt signals.
进一步的,分析处理身体状态数据的具体过程如下:Furthermore, the specific process of analyzing and processing the body status data is as follows:
Sa-101:先将动脉血的血氧饱和度SaO2、静脉血的血氧饱和度SvO2、动脉血氧分压值PaO2、静脉血氧分压值PvO2、动脉血二氧化碳分压值PaCO2以及静脉血二氧化碳分压值PvCO2整合为身体状态数据的指标数集;Sa-101: First, integrate the arterial blood oxygen saturation SaO2, venous blood oxygen saturation SvO2, arterial blood oxygen partial pressure PaO2, venous blood oxygen partial pressure PvO2, arterial blood carbon dioxide partial pressure PaCO2 and venous blood carbon dioxide partial pressure PvCO2 into an indicator set of body status data;
Sa-102:对身体状态数据的各个指标进行预处理:Sa-102: Preprocessing of various indicators of physical status data:
将身体状态数据的任一个指标标记为a,标记指标a的数据值为Ja,设置指标a的标准区间Qa[q1,q2];Mark any indicator of the physical state data as a, mark the data value of indicator a as Ja, and set the standard interval of indicator a as Qa[q1, q2];
通过数据值Ja与标准区间Qa相结合,获取指标a的参考值Va;By combining the data value Ja with the standard interval Qa, the reference value Va of the indicator a is obtained;
Sa-103:将预处理后的身体状态数据的各个指标,整合为身体状态数据的指标参考集,身体状态数据的指标参考集包括动脉血氧饱和度参考值VSa、静脉血氧饱和度参考值VSv、动脉血氧分压参考值VPa1、静脉血氧分压参考值VPv1、动脉血二氧化碳分压参考值VPa2以及静脉血二氧化碳分压参考值VPv2;Sa-103: Integrate various indicators of the pre-processed body state data into an indicator reference set of the body state data, which includes an arterial blood oxygen saturation reference value VSa, a venous blood oxygen saturation reference value VSv, an arterial blood oxygen partial pressure reference value VPa1, a venous blood oxygen partial pressure reference value VPv1, an arterial blood carbon dioxide partial pressure reference value VPa2, and a venous blood carbon dioxide partial pressure reference value VPv2;
Sa-104:通过身体状态数据的指标参考集生成身体状态评估系数Xst的具体过程为:先通过对相同指标类别下的动脉血与静脉血的参考值,分别赋予相应的权重系数,从而生成该指标类别的影响系数,再对影响系数进行综合处理,从而生成身体状态评估系数Xst;Sa-104: The specific process of generating the body state evaluation coefficient Xst through the index reference set of the body state data is as follows: first, by assigning corresponding weight coefficients to the reference values of arterial blood and venous blood under the same index category, respectively, so as to generate the influence coefficient of the index category, and then comprehensively processing the influence coefficient to generate the body state evaluation coefficient Xst;
Sa-105:再对身体状态评估系数Xst设置相应的对比区间,从而判定患者身体状态程度。Sa-105: Then set the corresponding comparison interval for the physical condition evaluation coefficient Xst to determine the degree of the patient's physical condition.
进一步的,分析处理呼吸意图数据的具体过程如下:Furthermore, the specific process of analyzing and processing the breathing intention data is as follows:
Sa-201:先将患者的声音分贝值与声音频率值、动作幅度值和动作频率值整合为呼吸意图数据的指标数集;Sa-201: First, the patient's voice decibel value, voice frequency value, movement amplitude value and movement frequency value are integrated into an index set of breathing intention data;
Sa-202:对呼吸意图数据的各个指标进行预处理:Sa-202: Preprocessing of various indicators of breathing intention data:
将呼吸意图数据的任一指标标记为m,将指标m的动态曲线标记为Sm,预设指标m的模拟标准曲线为s0,将曲线Sm与模拟标准曲线s0进行对比:Mark any index of the breathing intention data as m, mark the dynamic curve of index m as Sm, preset the simulated standard curve of index m as s0, and compare the curve Sm with the simulated standard curve s0:
分别从曲线Sm与模拟标准曲线s0上按照相同时刻提取n0个点,将曲线Sm的任一点标记为p(Xp,Yp),将模拟标准曲线s0上与点p同一时刻的点标记为q(Xq,Yq),进而测算n0组对应点的纵坐标差值,从而获取曲线差异系数Cm,预设曲线差异系数Cm的阈值Um,通过阈值对比判定指标m的状态;Extract n0 points from the curve Sm and the simulated standard curve s0 at the same time, mark any point of the curve Sm as p (Xp, Yp), mark the point on the simulated standard curve s0 at the same time as point p as q (Xq, Yq), and then calculate the vertical coordinate difference of n0 groups of corresponding points, so as to obtain the curve difference coefficient Cm, preset the threshold Um of the curve difference coefficient Cm, and judge the state of the indicator m by comparing the threshold value;
Sa-203:将预处理后的呼吸意图数据的各个指标,整合为呼吸意图数据的指标参考集,呼吸意图数据的指标参考集包括声音分贝值差异系数Ceb和声音频率值差异系数Cfb、动作幅度值差异系数Dwg和动作频率值差异系数Drg;Sa-203: Integrate the various indicators of the preprocessed breathing intention data into an indicator reference set of the breathing intention data, the indicator reference set of the breathing intention data includes the sound decibel value difference coefficient Ceb and the sound frequency value difference coefficient Cfb, the movement amplitude value difference coefficient Dwg and the movement frequency value difference coefficient Drg;
Sa-204:通过呼吸意图数据的指标参考集生成呼吸意图评估系数Xyt的具体过程如下:Sa-204: The specific process of generating the breathing intention evaluation coefficient Xyt through the indicator reference set of breathing intention data is as follows:
Sa-204-1:对声音特征信息的各个指标进行分析,通过声音分贝值差异系数Ceb和声音频率值差异系数Cfb相结合,综合生成声音特征评估系数Xc;Sa-204-1: Analyze various indicators of sound feature information, and generate a comprehensive sound feature evaluation coefficient Xc by combining the sound decibel value difference coefficient Ceb and the sound frequency value difference coefficient Cfb;
Sa-204-2:对动作特征信息的各个指标进行分析,通过动作幅度值差异系数Dwg和动作频率值差异系数Drg相结合,综合生成动作特征评估系数Xd;Sa-204-2: Analyze various indicators of motion feature information, and generate the motion feature evaluation coefficient Xd by combining the motion amplitude value difference coefficient Dwg and the motion frequency value difference coefficient Drg;
Sa-204-3:再通过声音特征评估系数Xc和动作特征评估系数Xd相结合,生成呼吸意图作用系数Xyz;Sa-204-3: The sound feature evaluation coefficient Xc and the action feature evaluation coefficient Xd are combined to generate the breathing intention action coefficient Xyz;
设置呼吸意图作用系数Xyz的标准区间Qy,通过呼吸意图作用系数Xyz与标准区间Qy相结合,获取呼吸意图评估系数Xyt,通过区间对比判定当前患者的呼吸意图状态。A standard interval Qy of the respiratory intention action coefficient Xyz is set, and the respiratory intention evaluation coefficient Xyt is obtained by combining the respiratory intention action coefficient Xyz with the standard interval Qy. The current patient's respiratory intention state is determined by interval comparison.
进一步的,分析处理呼吸强度数据的具体过程如下:Furthermore, the specific process of analyzing and processing the respiratory intensity data is as follows:
通过呼吸频率Fh、气流速度Vq和潮气量Lc相结合,生成呼吸强度作用系数Xqz;By combining the respiratory frequency Fh, airflow velocity Vq and tidal volume Lc, the respiratory intensity effect coefficient Xqz is generated;
再设置呼吸强度作用系数Xqz的标准区间Qd,通过呼吸强度作用系数Xqz与标准区间Qd相结合,获取呼吸强度评估系数Xqd;Then set the standard interval Qd of the respiratory intensity action coefficient Xqz, and obtain the respiratory intensity evaluation coefficient Xqd by combining the respiratory intensity action coefficient Xqz with the standard interval Qd;
进而通过区间对比判定当前患者的呼吸状态。Then, the current breathing state of the patient is determined by interval comparison.
进一步的,综合判定患者当前的无创呼吸状态的具体过程为:Furthermore, the specific process of comprehensively determining the patient's current non-invasive breathing status is as follows:
综合评估子模型通过身体状态评估系数Xst、呼吸意图评估系数Xyt和呼吸强度评估系数Xqd相结合,生成无创呼吸综合评估指数WC;The comprehensive evaluation sub-model generates a non-invasive respiratory comprehensive evaluation index WC by combining the physical state evaluation coefficient Xst, the respiratory intention evaluation coefficient Xyt and the respiratory intensity evaluation coefficient Xqd;
设置无创呼吸综合评估指数WC的风险区间,通过区间对比判定患者当前的无创呼吸状态的风险程度,并生成相应级别的参数调控信号。Set the risk interval of the non-invasive respiratory comprehensive assessment index WC, determine the risk level of the patient's current non-invasive respiratory status through interval comparison, and generate parameter control signals of corresponding levels.
进一步的,动态监测无创呼吸状态的具体过程为:Furthermore, the specific process of dynamically monitoring the non-invasive respiratory state is as follows:
构建无创呼吸综合评估指数WC的动态曲线,预设无创呼吸综合评估指数的波动区间,当无创呼吸综合评估指数WC超出预设波动区间时,则判定患者无创呼吸异常,对于无创呼吸的异常波动状态进行预警;Construct a dynamic curve of the non-invasive respiratory comprehensive evaluation index WC, preset the fluctuation range of the non-invasive respiratory comprehensive evaluation index, and when the non-invasive respiratory comprehensive evaluation index WC exceeds the preset fluctuation range, the patient's non-invasive breathing is judged to be abnormal, and an early warning is issued for the abnormal fluctuation state of non-invasive breathing;
再通过反馈分析身体状态评估系数Xst、呼吸意图评估系数Xyt和呼吸强度评估系数Xqd,从而初步判定异常原因,生成相应的警报提示信号进行可视化显示。Then, through feedback analysis of the body state assessment coefficient Xst, breathing intention assessment coefficient Xyt and breathing intensity assessment coefficient Xqd, the cause of the abnormality can be preliminarily determined, and the corresponding alarm prompt signal can be generated for visual display.
综上所述,由于采用了上述技术方案,本发明的有益效果是:In summary, due to the adoption of the above technical solution, the beneficial effects of the present invention are:
1、本发明通过参数监测单元采集无创呼吸参数,再通过模型设计单元建立参数分析模型进行分析处理,从而评估患者的身体状态、呼吸意图和呼吸强度,再综合判定患者当前的无创呼吸状态并进行动态监测,生成参数调控信号与警报提示信号,对呼吸异常波动状态进行预警,从而及时进行呼吸设备参数的调控管理,以及初步判定异常原因进行可视化显示,便于医护人员辅助诊断决策;1. The present invention collects non-invasive respiratory parameters through a parameter monitoring unit, and then establishes a parameter analysis model through a model design unit for analysis and processing, thereby evaluating the patient's physical state, respiratory intention and respiratory intensity, and then comprehensively determining the patient's current non-invasive respiratory state and performing dynamic monitoring, generating parameter control signals and alarm prompt signals, and giving early warnings for abnormal respiratory fluctuations, thereby timely regulating and managing respiratory equipment parameters, and preliminarily determining the cause of the abnormality for visual display, which is convenient for medical staff to assist in diagnosis and decision-making;
2、本发明实现了对患者无创呼吸护理的远程监测,根据患者的生理特征和临床表现,从身体状态、呼吸意图和呼吸强度多角度进行参数分析,保证数据全面性,以实现最佳的个性化呼吸监测效果,提高病人与呼吸机设备的适配性,并通过反馈分析初步判定呼吸异常原因并进行可视化显示,提高数据分析利用率,且辅助决策的针对性强。2. The present invention realizes remote monitoring of non-invasive respiratory care for patients. According to the physiological characteristics and clinical manifestations of patients, parameter analysis is performed from multiple angles such as physical state, respiratory intention and respiratory intensity to ensure the comprehensiveness of data, so as to achieve the best personalized respiratory monitoring effect, improve the compatibility of patients and ventilator equipment, and preliminarily determine the cause of abnormal breathing through feedback analysis and display it visually, thereby improving the utilization rate of data analysis and assisting in decision-making with strong pertinence.
附图说明BRIEF DESCRIPTION OF THE DRAWINGS
图1示出了本发明的整体模块示意图;FIG1 shows a schematic diagram of an overall module of the present invention;
图2示出了本发明的整体流程示意图;FIG2 shows a schematic diagram of the overall process of the present invention;
图3示出了本发明的参数分析模型的模块示意图。FIG3 shows a schematic diagram of modules of the parameter analysis model of the present invention.
具体实施方式Detailed ways
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护的范围。The following will be combined with the drawings in the embodiments of the present invention to clearly and completely describe the technical solutions in the embodiments of the present invention. Obviously, the described embodiments are only part of the embodiments of the present invention, not all of the embodiments. Based on the embodiments of the present invention, all other embodiments obtained by ordinary technicians in this field without creative work are within the scope of protection of the present invention.
实施例1:Embodiment 1:
如图1-3所示,基于互联网的远程无创呼吸参数分析管理系统,包括参数监测单元、模型设计单元和调控警报单元,其中,参数监测单元、模型设计单元和调控警报单元之间信号连接;As shown in FIG1-3, the Internet-based remote non-invasive respiratory parameter analysis and management system includes a parameter monitoring unit, a model design unit, and a control alarm unit, wherein the parameter monitoring unit, the model design unit, and the control alarm unit are signal-connected;
工作步骤如下:The working steps are as follows:
S1:参数监测单元用于采集无创呼吸参数,其中,无创呼吸参数包括身体状态数据、呼吸意图数据和呼吸强度数据;S1: The parameter monitoring unit is used to collect non-invasive breathing parameters, wherein the non-invasive breathing parameters include body state data, breathing intention data and breathing intensity data;
无创呼吸参数的采集过程如下:The process of collecting non-invasive respiratory parameters is as follows:
身体状态数据包括动脉血与静脉血的血氧饱和度、血氧分压及二氧化碳分压;通过血氧仪采集获取身体状态数据,将动脉血的血氧饱和度标记为SaO2,将静脉血的血氧饱和度标记为SvO2;将动脉血氧分压值标记为PaO2,将静脉血氧分压值标记为PvO2;将动脉血二氧化碳分压值标记为PaCO2,将静脉血二氧化碳分压值标记为PvCO2;The body status data includes the blood oxygen saturation, blood oxygen partial pressure and carbon dioxide partial pressure of arterial blood and venous blood; the body status data is collected by the oximeter, and the blood oxygen saturation of arterial blood is marked as SaO2, and the blood oxygen saturation of venous blood is marked as SvO2; the arterial blood oxygen partial pressure value is marked as PaO2, and the venous blood oxygen partial pressure value is marked as PvO2; the arterial blood carbon dioxide partial pressure value is marked as PaCO2, and the venous blood carbon dioxide partial pressure value is marked as PvCO2;
呼吸意图数据包括声音特征信息和动作特征信息,声音特征信息包括患者的声音分贝值与声音频率值,动作特征信息包括患者的动作幅度值和动作频率值;通过声音传感器与视频监测设备采集获取呼吸意图数据;The breathing intention data includes sound feature information and motion feature information. The sound feature information includes the patient's voice decibel value and sound frequency value, and the motion feature information includes the patient's motion amplitude value and motion frequency value. The breathing intention data is collected and acquired through sound sensors and video monitoring equipment.
呼吸强度数据包括呼吸面罩内的呼吸频率、气流速度和潮气量;通过气体流量传感器和压力传感器采集呼吸强度数据;将单位时间内的呼吸频率标记为Fh,将单位时间内的气流速度标记为Vq,将单位时间内的潮气量标记为Lc;The respiratory intensity data includes the respiratory frequency, airflow velocity and tidal volume in the respiratory mask; the respiratory intensity data is collected through a gas flow sensor and a pressure sensor; the respiratory frequency per unit time is marked as Fh, the airflow velocity per unit time is marked as Vq, and the tidal volume per unit time is marked as Lc;
设置参数采集周期对无创呼吸参数进行定期采集,并发送到模型设计单元进行参数分析处理;需要说明的是,基于互联网对上述参数信息进行采集与远程传输,并通过大数据技术进行系统用户的同步测算与整体对比,并结合专业医科知识进行方案内各参数的标准区间的预设;The parameter collection cycle is set to regularly collect non-invasive respiratory parameters and send them to the model design unit for parameter analysis and processing; it should be noted that the above parameter information is collected and remotely transmitted based on the Internet, and the system users are synchronously measured and compared as a whole through big data technology, and the standard range of each parameter in the program is preset in combination with professional medical knowledge;
S2:模型设计单元用于建立参数分析模型对无创呼吸参数进行分析处理,参数分析模型的具体构建过程为:S2: The model design unit is used to establish a parameter analysis model to analyze and process non-invasive respiratory parameters. The specific construction process of the parameter analysis model is as follows:
参数分析模型包括身体状态评估子模型、呼吸意图评估子模型、呼吸强度评估子模型和综合评估子模型;The parameter analysis model includes a physical state assessment sub-model, a breathing intention assessment sub-model, a breathing intensity assessment sub-model and a comprehensive assessment sub-model;
Sa:先通过身体状态评估子模型、呼吸意图评估子模型、呼吸强度评估子模型依次进行无创呼吸参数的初步分析:Sa: First, the preliminary analysis of non-invasive respiratory parameters is performed in sequence through the body state assessment sub-model, the breathing intention assessment sub-model, and the breathing intensity assessment sub-model:
Sa-1:身体状态评估子模型通过分析处理身体状态数据,生成身体状态评估系数,从而评估患者身体状态;Sa-1: The physical state assessment sub-model generates physical state assessment coefficients by analyzing and processing physical state data, thereby assessing the patient's physical state;
分析处理身体状态数据的具体过程如下:The specific process of analyzing and processing body status data is as follows:
Sa-101:先将动脉血的血氧饱和度SaO2、静脉血的血氧饱和度SvO2、动脉血氧分压值PaO2、静脉血氧分压值PvO2、动脉血二氧化碳分压值PaCO2以及静脉血二氧化碳分压值PvCO2整合为身体状态数据的指标数集;Sa-101: First, integrate the arterial blood oxygen saturation SaO2, venous blood oxygen saturation SvO2, arterial blood oxygen partial pressure PaO2, venous blood oxygen partial pressure PvO2, arterial blood carbon dioxide partial pressure PaCO2 and venous blood carbon dioxide partial pressure PvCO2 into an indicator set of body status data;
Sa-102:对身体状态数据的各个指标进行预处理:Sa-102: Preprocessing of various indicators of physical status data:
将身体状态数据的任一个指标标记为a,标记指标a的数据值为Ja,设置指标a的标准区间Qa[q1,q2];Mark any indicator of the physical state data as a, mark the data value of indicator a as Ja, and set the standard interval of indicator a as Qa[q1, q2];
通过数据值Ja与标准区间Qa相结合,获取指标a的参考值Va:By combining the data value Ja with the standard interval Qa, the reference value Va of indicator a is obtained:
Va=(Ja-q1)*(q2-Ja)+1Va=(Ja-q1)*(q2-Ja)+1
当指标a的数据值Ja位于标准区间Qa内,则参考值Va大于1,判定该指标数据正常;反之,当指标a的数据值Ja高于或低于标准区间Qa,则参考值Va小于1,判定该指标数据异常;When the data value Ja of indicator a is within the standard interval Qa, the reference value Va is greater than 1, and the indicator data is judged to be normal; conversely, when the data value Ja of indicator a is higher or lower than the standard interval Qa, the reference value Va is less than 1, and the indicator data is judged to be abnormal;
Sa-103:将预处理后的身体状态数据的各个指标,整合为身体状态数据的指标参考集,身体状态数据的指标参考集包括动脉血氧饱和度参考值VSa、静脉血氧饱和度参考值VSv、动脉血氧分压参考值VPa1、静脉血氧分压参考值VPv1、动脉血二氧化碳分压参考值VPa2以及静脉血二氧化碳分压参考值VPv2;Sa-103: Integrate various indicators of the pre-processed body state data into an indicator reference set of the body state data, which includes an arterial blood oxygen saturation reference value VSa, a venous blood oxygen saturation reference value VSv, an arterial blood oxygen partial pressure reference value VPa1, a venous blood oxygen partial pressure reference value VPv1, an arterial blood carbon dioxide partial pressure reference value VPa2, and a venous blood carbon dioxide partial pressure reference value VPv2;
Sa-104:通过身体状态数据的指标参考集生成身体状态评估系数Xst的具体过程为:先通过对相同指标类别下的动脉血与静脉血的参考值,分别赋予相应的权重系数,从而生成该指标类别的影响系数,再对影响系数进行综合处理,从而生成身体状态评估系数Xst,具体过程如下:Sa-104: The specific process of generating the body state evaluation coefficient Xst through the index reference set of the body state data is as follows: first, the reference values of arterial blood and venous blood under the same index category are assigned corresponding weight coefficients respectively, thereby generating the influence coefficient of the index category, and then the influence coefficient is comprehensively processed to generate the body state evaluation coefficient Xst. The specific process is as follows:
Sa-104-1:通过动脉血氧饱和度参考值VSa与静脉血氧饱和度参考值VSv相结合,生成血氧饱和度影响系数X1:X1=α1*VSa+α2*VSv;Sa-104-1: Generate the blood oxygen saturation influence coefficient X1 by combining the arterial blood oxygen saturation reference value VSa with the venous blood oxygen saturation reference value VSv: X1 = α1*VSa + α2*VSv;
其中,α1和α2分别为动脉血氧饱和度参考值VSa与静脉血氧饱和度参考值VSv的权重系数,且α1和α2均大于0;权重系数通过大量数据测算进行预设获取,当动脉血氧饱和度参考值VSa与静脉血氧饱和度参考值VSv越高时,则血氧饱和度影响系数X1越高,表示患者的血氧饱和度状态越好,从而评估患者肺部通气代谢状况越好;Among them, α1 and α2 are weight coefficients of the arterial blood oxygen saturation reference value VSa and the venous blood oxygen saturation reference value VSv, respectively, and α1 and α2 are both greater than 0; the weight coefficients are preset and obtained through a large amount of data measurement. When the arterial blood oxygen saturation reference value VSa and the venous blood oxygen saturation reference value VSv are higher, the blood oxygen saturation influence coefficient X1 is higher, indicating that the patient's blood oxygen saturation state is better, thereby evaluating the patient's pulmonary ventilation and metabolic status.
Sa-104-2:通过动脉血氧分压参考值VPa1和静脉血氧分压参考值VPv1相结合,生成血氧分压影响系数X2:X2=α3*VPa1+α4*VPv1;Sa-104-2: Generate the blood oxygen partial pressure influence coefficient X2 by combining the arterial blood oxygen partial pressure reference value VPa1 and the venous blood oxygen partial pressure reference value VPv1: X2 = α3*VPa1+α4*VPv1;
其中,α3和α4分别为动脉血氧分压参考值VPa1和静脉血氧分压参考值VPv1的权重系数,且α3和α4均大于0;当动脉血氧分压参考值VPa1和静脉血氧分压参考值VPv1越高时,则血氧分压影响系数X2越高,表示患者的血氧分压状态越好,从而评估患者肺部通气代谢状况越好;Among them, α3 and α4 are weight coefficients of the reference value of arterial oxygen partial pressure VPa1 and the reference value of venous oxygen partial pressure VPv1, respectively, and both α3 and α4 are greater than 0; when the reference value of arterial oxygen partial pressure VPa1 and the reference value of venous oxygen partial pressure VPv1 are higher, the blood oxygen partial pressure influence coefficient X2 is higher, indicating that the patient's blood oxygen partial pressure state is better, thereby evaluating the patient's pulmonary ventilation and metabolism state better;
Sa-104-3:通过动脉血二氧化碳分压参考值VPa2和静脉血二氧化碳分压参考值VPv2相结合,生成血二氧化碳分压影响系数X3:X3=α5*VPa2+α6*VPv2;Sa-104-3: Generate the influence coefficient of blood carbon dioxide partial pressure X3 by combining the reference value of arterial blood carbon dioxide partial pressure VPa2 and the reference value of venous blood carbon dioxide partial pressure VPv2: X3 = α5*VPa2+α6*VPv2;
其中,α5和α6分别为动脉血二氧化碳分压参考值VPa2和静脉血二氧化碳分压参考值VPv2的权重系数,且α5和α6均大于0;当动脉血二氧化碳分压参考值VPa2和静脉血二氧化碳分压参考值VPv2越高时,则血二氧化碳分压影响系数X3越高,表示患者的血二氧化碳分压状态越好,从而评估患者肺部通气代谢状况越好;Among them, α5 and α6 are weight coefficients of the reference value VPa2 of the partial pressure of carbon dioxide in arterial blood and the reference value VPv2 of the partial pressure of carbon dioxide in venous blood, respectively, and both α5 and α6 are greater than 0; when the reference value VPa2 of the partial pressure of carbon dioxide in arterial blood and the reference value VPv2 of the partial pressure of carbon dioxide in venous blood are higher, the influence coefficient X3 of the partial pressure of carbon dioxide in blood is higher, indicating that the patient's partial pressure of carbon dioxide in blood is better, thereby evaluating the patient's pulmonary ventilation and metabolism status better;
Sa-104-4:通过血氧饱和度影响系数X1、血氧分压影响系数X2和血二氧化碳分压影响系数X3相结合,生成身体状态评估系数Xst:Sa-104-4: The body condition assessment coefficient Xst is generated by combining the blood oxygen saturation influence coefficient X1, the blood oxygen partial pressure influence coefficient X2 and the blood carbon dioxide partial pressure influence coefficient X3:
Xst=μ1*X1+μ2*X2+μ3*X3Xst=μ1*X1+μ2*X2+μ3*X3
其中,μ1、μ2和μ3分别为血氧饱和度影响系数X1、血氧分压影响系数X2和血二氧化碳分压影响系数X3的权重因子,且μ1、μ2和μ3均大于0;当血氧饱和度影响系数X1、血氧分压影响系数X2和血二氧化碳分压影响系数X3越高时,则身体状态评估系数Xst越高,综合判定评估患者肺部通气代谢状况越好,说明患者的身体状态越好;Among them, μ1, μ2 and μ3 are weight factors of blood oxygen saturation influence coefficient X1, blood oxygen partial pressure influence coefficient X2 and blood carbon dioxide partial pressure influence coefficient X3, respectively, and μ1, μ2 and μ3 are all greater than 0; when the blood oxygen saturation influence coefficient X1, blood oxygen partial pressure influence coefficient X2 and blood carbon dioxide partial pressure influence coefficient X3 are higher, the physical state assessment coefficient Xst is higher, the comprehensive judgment and assessment of the patient's pulmonary ventilation and metabolism status is better, indicating that the patient's physical state is better;
Sa-105:再对身体状态评估系数Xst设置相应的对比区间,从而判定患者身体状态程度,例如,设置一级区间H1、二级区间H2和三级区间H3,当身体状态评估系数Xst位于一级区间H1,则判定患者身体状态程度为优良;当身体状态评估系数Xst位于二级区间H2,则判定患者身体状态程度为一般;当身体状态评估系数Xst位于三级区间H3,则判定患者身体状态程度为较差;Sa-105: Then set a corresponding comparison interval for the physical state evaluation coefficient Xst, so as to determine the degree of the patient's physical state. For example, a first-level interval H1, a second-level interval H2 and a third-level interval H3 are set. When the physical state evaluation coefficient Xst is in the first-level interval H1, the degree of the patient's physical state is determined to be excellent; when the physical state evaluation coefficient Xst is in the second-level interval H2, the degree of the patient's physical state is determined to be average; when the physical state evaluation coefficient Xst is in the third-level interval H3, the degree of the patient's physical state is determined to be poor;
由上,身体状态评估子模型通过监测血氧饱和度与二氧化碳水平,评估患者肺部通气代谢状况,生成身体状态评估系数,从而评估患者身体状态;From the above, the physical state assessment sub-model monitors the blood oxygen saturation and carbon dioxide level, assesses the patient's lung ventilation and metabolism status, generates a physical state assessment coefficient, and thus assesses the patient's physical state;
Sa-2:呼吸意图评估子模型通过分析处理呼吸意图数据,生成呼吸意图评估系数,从而评估患者呼吸意图;Sa-2: The breathing intention assessment sub-model generates a breathing intention assessment coefficient by analyzing and processing the breathing intention data, thereby assessing the patient's breathing intention;
分析处理呼吸意图数据的具体过程如下:The specific process of analyzing and processing breathing intention data is as follows:
Sa-201:先将患者的声音分贝值与声音频率值、动作幅度值和动作频率值整合为呼吸意图数据的指标数集;Sa-201: First, the patient's voice decibel value, voice frequency value, movement amplitude value and movement frequency value are integrated into an index set of breathing intention data;
Sa-202:对呼吸意图数据的各个指标进行预处理:Sa-202: Preprocessing of various indicators of breathing intention data:
将呼吸意图数据的任一指标标记为m,将指标m的动态曲线标记为Sm,预设指标m的模拟标准曲线为s0,将曲线Sm与模拟标准曲线s0进行对比:Mark any index of the breathing intention data as m, mark the dynamic curve of index m as Sm, preset the simulated standard curve of index m as s0, and compare the curve Sm with the simulated standard curve s0:
分别从曲线Sm与模拟标准曲线s0上按照相同时刻提取n0个点,将曲线Sm的任一点标记为p(Xp,Yp),将模拟标准曲线s0上与点p同一时刻的点标记为q(Xq,Yq),进而测算n0组对应点的纵坐标差值,从而获取曲线差异系数Cm:Extract n0 points from the curve Sm and the simulated standard curve s0 at the same time, mark any point of the curve Sm as p (Xp, Yp), mark the point on the simulated standard curve s0 at the same time as point p as q (Xq, Yq), and then calculate the vertical coordinate difference of n0 groups of corresponding points to obtain the curve difference coefficient Cm:
预设曲线差异系数Cm的阈值Um,当曲线差异系数Cm超出阈值Um时,则判定指标m呈异常状态,表示呼吸状态不平稳,此时呼吸意图越高;反之,则判定指标m呈正常状态,表示呼吸状态平稳,此时呼吸意图正常;A threshold value Um of the curve difference coefficient Cm is preset. When the curve difference coefficient Cm exceeds the threshold value Um, the indicator m is judged to be in an abnormal state, indicating that the breathing state is not stable, and the breathing intention is higher at this time; otherwise, the indicator m is judged to be in a normal state, indicating that the breathing state is stable, and the breathing intention is normal at this time;
Sa-203:将预处理后的呼吸意图数据的各个指标,整合为呼吸意图数据的指标参考集,呼吸意图数据的指标参考集包括声音分贝值差异系数Ceb和声音频率值差异系数Cfb、动作幅度值差异系数Dwg和动作频率值差异系数Drg;Sa-203: Integrate various indicators of the preprocessed breathing intention data into an indicator reference set of the breathing intention data, wherein the indicator reference set of the breathing intention data includes a sound decibel value difference coefficient Ceb, a sound frequency value difference coefficient Cfb, a motion amplitude value difference coefficient Dwg, and a motion frequency value difference coefficient Drg;
Sa-204:通过呼吸意图数据的指标参考集生成呼吸意图评估系数Xyt的具体过程为:先通过对声音特征信息和动作特征信息的各个指标分别进行数据分析,从而获取声音特征评估系数Xc和动作特征评估系数Xd,再对评估系数进行综合处理,从而生成呼吸意图评估系数Xyt,具体过程如下:Sa-204: The specific process of generating the breathing intention evaluation coefficient Xyt through the index reference set of the breathing intention data is as follows: firstly, data analysis is performed on each index of the sound feature information and the motion feature information to obtain the sound feature evaluation coefficient Xc and the motion feature evaluation coefficient Xd, and then the evaluation coefficients are comprehensively processed to generate the breathing intention evaluation coefficient Xyt. The specific process is as follows:
Sa-204-1:对声音特征信息的各个指标进行分析的过程如下:Sa-204-1: The process of analyzing each indicator of sound characteristic information is as follows:
在患者的胸腔、呼吸道与咽喉位置进行声音特征信息采集,将任一呼吸音位置标记为b,将位置b的声音分贝值标记为Eb、声音频率值标记为Fb,先拟合构建声音特征信息的动态变化图,通过大数据分析与声音信号对比技术识别并标记患者的异常声音片段;Acquire sound feature information from the patient's chest, respiratory tract, and throat, mark any respiratory sound position as b, mark the sound decibel value at position b as Eb, and the sound frequency value as Fb, first fit and construct a dynamic change graph of the sound feature information, and identify and mark the patient's abnormal sound fragments through big data analysis and sound signal comparison technology;
其中,识别并标记患者的异常声音片段是利用录音设备进行记录,并通过现有的声音频谱分析仪进行声音信号的分析,从而获取声音分贝值Eb和声音频率值Fb;Among them, the abnormal sound clips of the patient are identified and marked by recording them with a recording device, and the sound signals are analyzed by an existing sound spectrum analyzer to obtain the sound decibel value Eb and the sound frequency value Fb;
将声音分贝值Eb和声音频率值Fb整合作为声音特征的指标,构建声音特征各个指标的曲线变化图,通过对声音分贝值Eb和声音频率值Fb进行预处理和曲线分析,依次获取声音分贝值Eb和声音频率值Fb的差异系数,将声音分贝值差异系数标记为Ceb、将声音频率值差异系数标记为Cfb;The sound decibel value Eb and the sound frequency value Fb are integrated as the indicators of the sound characteristics, and the curve change diagram of each indicator of the sound characteristics is constructed. By preprocessing the sound decibel value Eb and the sound frequency value Fb and performing curve analysis, the difference coefficients of the sound decibel value Eb and the sound frequency value Fb are obtained in turn, and the sound decibel value difference coefficient is marked as Ceb, and the sound frequency value difference coefficient is marked as Cfb;
通过声音分贝值差异系数Ceb和声音频率值差异系数Cfb相结合,生成声音特征评估系数Xc:Xc=λ1*Ceb+λ2*Cfb;The sound characteristic evaluation coefficient Xc is generated by combining the sound decibel value difference coefficient Ceb and the sound frequency value difference coefficient Cfb: Xc = λ1*Ceb+λ2*Cfb;
其中,λ1和λ2分别为声音分贝值差异系数Ceb和声音频率值差异系数Cfb的权重系数,且λ1和λ2均大于0;当声音分贝值差异系数Ceb和声音频率值差异系数Cfb越高时,则声音特征评估系数Xc越高,表示患者的呼吸意图越高;Among them, λ1 and λ2 are weight coefficients of the sound decibel value difference coefficient Ceb and the sound frequency value difference coefficient Cfb, respectively, and both λ1 and λ2 are greater than 0; when the sound decibel value difference coefficient Ceb and the sound frequency value difference coefficient Cfb are higher, the sound feature evaluation coefficient Xc is higher, indicating that the patient's breathing intention is higher;
Sa-204-2:对动作特征信息的各个指标进行分析的过程如下:Sa-204-2: The process of analyzing each indicator of motion feature information is as follows:
在患者睡眠状态下对胸腔、呼吸道与四肢位置进行声音特征信息采集,将任一动作位置标记为g,将位置g的动作幅度值标记为Wg、动作频率值标记为Rg,先拟合构建动作特征信息的动态变化图,通过大数据分析与动作信号对比技术识别并标记患者的异常动作片段;The sound feature information of the chest, respiratory tract and limbs is collected while the patient is sleeping. Any movement position is marked as g, the movement amplitude value of position g is marked as Wg, and the movement frequency value is marked as Rg. The dynamic change graph of the movement feature information is first fitted and constructed, and the abnormal movement fragments of the patient are identified and marked through big data analysis and movement signal comparison technology.
其中,识别并标记患者的异常动作片段是通过现有的视觉技术,利用摄像头或深度相机等设备,对人体图像或深度图像的分析和处理,提取人体关键点或骨骼信息,从而实现对肢体运动的检测和跟踪,以获取动作幅度值Wg和动作频率值Rg;Among them, identifying and marking abnormal action clips of patients is to use existing visual technology, use cameras or depth cameras and other equipment to analyze and process human body images or depth images, extract human body key points or bone information, thereby realizing the detection and tracking of limb movements to obtain the action amplitude value Wg and action frequency value Rg;
将动作幅度值Wg和动作频率值Rg整合作为动作特征的指标,构建动作特征各个指标的曲线变化图,通过对动作幅度值Wg和动作频率值Rg进行预处理和曲线分析,依次获取动作幅度值Wg和动作频率值Rg的差异系数,将动作幅度值差异系数标记为Dwg、将动作频率值差异系数标记为Drg;The action amplitude value Wg and the action frequency value Rg are integrated as indicators of the action characteristics, and the curve change diagram of each indicator of the action characteristics is constructed. By preprocessing and curve analysis of the action amplitude value Wg and the action frequency value Rg, the difference coefficients of the action amplitude value Wg and the action frequency value Rg are obtained in turn, and the difference coefficients of the action amplitude value are marked as Dwg, and the difference coefficients of the action frequency value are marked as Drg;
通过动作幅度值差异系数Dwg和动作频率值差异系数Drg相结合,生成动作特征评估系数Xd:Xd=λ3*Dwg+λ4*Drg;By combining the action amplitude value difference coefficient Dwg and the action frequency value difference coefficient Drg, the action feature evaluation coefficient Xd is generated: Xd = λ3*Dwg+λ4*Drg;
其中,λ3和λ4分别为动作幅度值差异系数Dwg和动作频率值差异系数Drg的权重系数,且λ3和λ4均大于0;当动作幅度值差异系数Dwg和动作频率值差异系数Drg越高时,则动作特征评估系数Xd越高,表示患者的呼吸意图越高;Among them, λ3 and λ4 are weight coefficients of the action amplitude value difference coefficient Dwg and the action frequency value difference coefficient Drg, respectively, and both λ3 and λ4 are greater than 0; when the action amplitude value difference coefficient Dwg and the action frequency value difference coefficient Drg are higher, the action characteristic evaluation coefficient Xd is higher, indicating that the patient's breathing intention is higher;
Sa-204-3:再通过声音特征评估系数Xc和动作特征评估系数Xd相结合,生成呼吸意图作用系数Xyz:Xyz=υ1*Xc+υ2*Xd;Sa-204-3: Then, the sound feature evaluation coefficient Xc and the action feature evaluation coefficient Xd are combined to generate the breathing intention effect coefficient Xyz: Xyz = υ1*Xc+υ2*Xd;
其中,υ1和υ2分别为声音特征评估系数Xc和动作特征评估系数Xd的权重因子,且υ1和υ2均大于0;当声音特征评估系数Xc和动作特征评估系数Xd越高时,则呼吸意图作用系数Xyz越高,综合判定评估患者的呼吸意图越强,说明当前患者的无创呼吸状态越不平稳,患者的呼吸需求越高;Among them, υ1 and υ2 are weight factors of the sound feature evaluation coefficient Xc and the motion feature evaluation coefficient Xd, respectively, and both υ1 and υ2 are greater than 0; when the sound feature evaluation coefficient Xc and the motion feature evaluation coefficient Xd are higher, the respiratory intention effect coefficient Xyz is higher, and the comprehensive judgment and evaluation of the patient's respiratory intention is stronger, indicating that the current patient's non-invasive respiratory state is more unstable and the patient's respiratory demand is higher;
设置呼吸意图作用系数Xyz的标准区间Qy,通过呼吸意图作用系数Xyz与标准区间Qy相结合,预设标准区间Qy的区间范围为[y1,y2],获取呼吸意图评估系数Xyt:Xyt=(Xyz-y1)*(y2-Xyz);A standard interval Qy of the breathing intention effect coefficient Xyz is set, and the breathing intention effect coefficient Xyz is combined with the standard interval Qy, and the interval range of the preset standard interval Qy is [y1, y2], and the breathing intention evaluation coefficient Xyt is obtained: Xyt = (Xyz-y1)*(y2-Xyz);
通过区间对比判定当前患者的呼吸意图状态:Determine the patient's current breathing intention state by comparing the intervals:
当呼吸意图作用系数Xyz位于标准区间Qy时,则呼吸意图评估系数Xyt大于0,判定患者的呼吸意图处于正常平稳状态;反之,当呼吸意图作用系数Xyz高于或低于标准区间Qy时,则呼吸意图评估系数Xyt小于0,其中:当呼吸意图作用系数Xyz低于标准区间Qy时,则判定患者的呼吸意图处于微弱状态;当呼吸意图作用系数Xyz高于标准区间Qy时,则判定患者的呼吸意图处于强烈状态;微弱与强烈的呼吸意图都能表示患者当前无创呼吸情况危急,状态危险;When the respiratory intention action coefficient Xyz is in the standard interval Qy, the respiratory intention evaluation coefficient Xyt is greater than 0, and the patient's respiratory intention is judged to be in a normal and stable state; conversely, when the respiratory intention action coefficient Xyz is higher or lower than the standard interval Qy, the respiratory intention evaluation coefficient Xyt is less than 0, wherein: when the respiratory intention action coefficient Xyz is lower than the standard interval Qy, the patient's respiratory intention is judged to be in a weak state; when the respiratory intention action coefficient Xyz is higher than the standard interval Qy, the patient's respiratory intention is judged to be in a strong state; both weak and strong respiratory intentions can indicate that the patient's current non-invasive breathing situation is critical and the state is dangerous;
由上,呼吸意图评估子模型通过声音特征与动作特征分析,生成呼吸意图评估系数,从而评估患者呼吸意图;From the above, the breathing intention assessment sub-model generates a breathing intention assessment coefficient by analyzing the sound features and action features, thereby assessing the patient's breathing intention;
Sa-3:呼吸强度评估子模型通过分析处理呼吸强度数据,生成呼吸强度评估系数,从而评估患者的呼吸强度;Sa-3: The respiratory intensity assessment sub-model generates a respiratory intensity assessment coefficient by analyzing and processing the respiratory intensity data, thereby assessing the patient's respiratory intensity;
分析处理呼吸强度数据的具体过程如下:The specific process of analyzing and processing respiratory intensity data is as follows:
通过呼吸频率Fh、气流速度Vq和潮气量Lc相结合,生成呼吸强度作用系数Xqz:Xqz=ε1*Fh+ε2*Vq+ε3*Lc;By combining the respiratory frequency Fh, airflow velocity Vq and tidal volume Lc, the respiratory intensity effect coefficient Xqz is generated: Xqz = ε1*Fh+ε2*Vq+ε3*Lc;
其中,ε1、ε2和ε3分别为呼吸频率Fh、气流速度Vq和潮气量Lc的权重因子,且ε1、ε2和ε3均大于0;当呼吸频率Fh、气流速度Vq和潮气量Lc越高时,则表示患者的呼吸强度越高;Among them, ε1, ε2 and ε3 are weight factors of respiratory frequency Fh, airflow velocity Vq and tidal volume Lc, respectively, and ε1, ε2 and ε3 are all greater than 0; when the respiratory frequency Fh, airflow velocity Vq and tidal volume Lc are higher, it means that the patient's breathing intensity is higher;
设置呼吸强度作用系数Xqz的标准区间Qd,通过呼吸强度作用系数Xqz与标准区间Qd相结合,预设标准区间Qd的区间范围为[d1,d2],获取呼吸强度评估系数Xqd:Xqd=(Xqz-d1)*(d2-Xqz);The standard interval Qd of the respiratory intensity action coefficient Xqz is set. By combining the respiratory intensity action coefficient Xqz with the standard interval Qd, the interval range of the preset standard interval Qd is [d1, d2], and the respiratory intensity evaluation coefficient Xqd is obtained: Xqd = (Xqz-d1)*(d2-Xqz);
通过区间对比判定当前患者的呼吸状态:Determine the patient's current respiratory status by comparing the intervals:
当呼吸强度作用系数Xqz位于标准区间Qd时,则呼吸强度评估系数Xqd大于0,判定患者的呼吸强度处于平稳状态,当呼吸强度作用系数Xqz越高,说明患者的无创呼吸状态越好;反之,当呼吸强度作用系数Xqz高于或低于标准区间Qd时,则呼吸强度评估系数Xqd小于0,其中:当呼吸强度作用系数Xqz低于标准区间Qd时,则判定患者的呼吸强度处于微弱状态;当呼吸强度作用系数Xqz高于标准区间Qd时,则判定患者的呼吸强度处于急促状态;When the respiratory intensity action coefficient Xqz is in the standard interval Qd, the respiratory intensity assessment coefficient Xqd is greater than 0, and it is determined that the patient's respiratory intensity is in a stable state. The higher the respiratory intensity action coefficient Xqz is, the better the patient's non-invasive respiratory state is. On the contrary, when the respiratory intensity action coefficient Xqz is higher or lower than the standard interval Qd, the respiratory intensity assessment coefficient Xqd is less than 0, wherein: when the respiratory intensity action coefficient Xqz is lower than the standard interval Qd, it is determined that the patient's respiratory intensity is in a weak state; when the respiratory intensity action coefficient Xqz is higher than the standard interval Qd, it is determined that the patient's respiratory intensity is in a rapid state.
由上,呼吸强度评估子模型通过呼吸面罩内的呼吸频率、气体流速和潮气量相结合,评估患者呼吸强度平稳与否,生成呼吸强度评估系数,从而评估患者的呼吸强度状态是否平稳;From the above, the respiratory intensity assessment sub-model evaluates whether the patient's respiratory intensity is stable by combining the respiratory frequency, gas flow rate and tidal volume in the respiratory mask, generates a respiratory intensity assessment coefficient, and thus evaluates whether the patient's respiratory intensity state is stable;
Sb:再通过综合评估子模型进行综合分析:Sb: Comprehensive analysis is then performed through the comprehensive evaluation sub-model:
Sb-1:综合评估子模型通过身体状态评估系数、呼吸意图评估系数和呼吸强度评估系数相结合,生成无创呼吸综合评估指数;Sb-1: The comprehensive assessment sub-model generates a non-invasive respiratory comprehensive assessment index by combining the physical state assessment coefficient, the respiratory intention assessment coefficient and the respiratory intensity assessment coefficient;
综合判定患者当前的无创呼吸状态的具体过程为:The specific process of comprehensively determining the patient's current non-invasive breathing status is as follows:
综合评估子模型通过身体状态评估系数Xst、呼吸意图评估系数Xyt和呼吸强度评估系数Xqd相结合,生成无创呼吸综合评估指数WC:The comprehensive evaluation sub-model generates a non-invasive respiratory comprehensive evaluation index WC by combining the body state evaluation coefficient Xst, the respiratory intention evaluation coefficient Xyt, and the respiratory intensity evaluation coefficient Xqd:
WC=Xstω1+Xytω2+Xqdω3 WC= Xstω1 + Xytω2 + Xqdω3
其中,ω1、ω2和ω3分别为身体状态评估系数Xst、呼吸意图评估系数Xyt和呼吸强度评估系数Xqd的权重因子,且ω1、ω2和ω3均大于0;当身体状态评估系数Xst、呼吸意图评估系数Xyt和呼吸强度评估系数Xqd越高,则无创呼吸综合评估指数WC越高,表示患者的无创呼吸状态越平稳、体征越好;Among them, ω1, ω2 and ω3 are weight factors of the physical state assessment coefficient Xst, the respiratory intention assessment coefficient Xyt and the respiratory intensity assessment coefficient Xqd, respectively, and ω1, ω2 and ω3 are all greater than 0; when the physical state assessment coefficient Xst, the respiratory intention assessment coefficient Xyt and the respiratory intensity assessment coefficient Xqd are higher, the non-invasive respiratory comprehensive assessment index WC is higher, indicating that the patient's non-invasive respiratory state is more stable and the physical signs are better;
Sb-2:判定患者当前的无创呼吸状态,生成相应的参数调控信号;Sb-2: Determine the patient's current non-invasive breathing status and generate corresponding parameter control signals;
设置无创呼吸综合评估指数WC的风险区间,通过区间对比判定患者当前的无创呼吸状态的风险程度,并生成相应级别的参数调控信号;Set the risk interval of the non-invasive respiratory comprehensive assessment index WC, determine the risk level of the patient's current non-invasive respiratory status through interval comparison, and generate a parameter control signal of the corresponding level;
Sb-3:再进行无创呼吸综合评估指数的动态监测,对于无创呼吸的异常波动状态进行预警,并初步判定异常原因,生成相应的警报提示信号;Sb-3: Dynamic monitoring of the comprehensive evaluation index of non-invasive breathing is then performed to warn of abnormal fluctuations in non-invasive breathing, preliminarily determine the cause of the abnormality, and generate corresponding alarm prompt signals;
动态监测无创呼吸状态的具体过程为:The specific process of dynamic monitoring of non-invasive respiratory status is:
通过对无创呼吸综合评估指数WC进行动态监测,预设无创呼吸综合评估指数的波动区间,当无创呼吸综合评估指数WC超出预设波动区间时,则判定患者无创呼吸异常,对于无创呼吸的异常波动状态进行预警;By dynamically monitoring the non-invasive respiratory comprehensive evaluation index WC, the fluctuation range of the non-invasive respiratory comprehensive evaluation index is preset. When the non-invasive respiratory comprehensive evaluation index WC exceeds the preset fluctuation range, the patient's non-invasive breathing is judged to be abnormal, and an early warning is issued for the abnormal fluctuation state of non-invasive breathing;
再通过反馈分析身体状态评估系数Xst、呼吸意图评估系数Xyt和呼吸强度评估系数Xqd,从而初步判定异常原因,生成相应的警报提示信号进行可视化显示:Then, through feedback analysis of the body state evaluation coefficient Xst, the breathing intention evaluation coefficient Xyt and the breathing intensity evaluation coefficient Xqd, the cause of the abnormality can be preliminarily determined, and the corresponding alarm prompt signal can be generated for visual display:
当对比判定患者身体状态程度为较差时,则生成第一警报提示信号;当对比判定患者呼吸意图为微弱或强烈时,则生成第二警报提示信号;当对比判定患者的呼吸强度处于微弱或急促的状态时,则生成第三警报提示信号;When the comparison determines that the patient's physical condition is poor, a first alarm prompt signal is generated; when the comparison determines that the patient's breathing intention is weak or strong, a second alarm prompt signal is generated; when the comparison determines that the patient's breathing intensity is weak or rapid, a third alarm prompt signal is generated;
将第一警报提示信号、第二警报提示信号和第三警报提示信号整合为警报提示信号组,并输出到调控警报单元;Integrate the first alarm prompt signal, the second alarm prompt signal and the third alarm prompt signal into an alarm prompt signal group, and output the group to the control alarm unit;
S3:调控警报单元用于接收参数调控信号和警报提示信号,并进行相应的处理操作以及可视化显示;S3: The control alarm unit is used to receive the parameter control signal and the alarm prompt signal, and perform corresponding processing operations and visual displays;
通过接收参数调控信号,从而对呼吸机设备参数进行预设范围的调控,例如对供氧进行加压、吸气压力(IPAP)调整患者吸气时肺部扩张和空气流入程度,呼气压力(EPAP)维持呼气道通畅性,避免呼气末期塌陷,以及调节呼吸气中的温度和湿度,确保患者舒适度和气道保湿等调控方案;By receiving parameter control signals, the parameters of the ventilator equipment are controlled within a preset range, such as pressurizing the oxygen supply, adjusting the inspiratory pressure (IPAP) to adjust the lung expansion and air inflow when the patient inhales, and maintaining the patency of the expiratory airway with the expiratory pressure (EPAP) to avoid collapse at the end of exhalation, as well as adjusting the temperature and humidity in the respiratory gas to ensure patient comfort and airway moisturizing.
通过接收警报提示信号,进行对应异常原因文本的可视化呈现,以及警报声及时报警,其中,当接收到第一警报提示信号时,编辑“患者身体状态较差”文本进行显示;当接收到第二警报提示信号时,编辑“患者呼吸意图异常”文本进行显示;当接收到第三警报提示信号时,编辑“患者呼吸强度异常”文本进行显示;从而提示医护人员根据相应的初步异常原因启动相应的应急救助;By receiving the alarm prompt signal, the corresponding abnormal reason text is visualized and the alarm sound is timely alarmed, wherein, when the first alarm prompt signal is received, the text "the patient's physical condition is poor" is edited and displayed; when the second alarm prompt signal is received, the text "the patient's breathing intention is abnormal" is edited and displayed; when the third alarm prompt signal is received, the text "the patient's breathing intensity is abnormal" is edited and displayed; thereby prompting medical staff to initiate corresponding emergency rescue according to the corresponding preliminary abnormal reason;
需要说明的是,如遇到患者出现突发呼吸异常,除了上述处理操作外,在安全的前提下应立即停止无创呼吸治疗,并及时初步评估呼吸异常的原因,供医护人员参考诊断,同时,医护人员应采取相应的急救措施,必要时及时转为有创呼吸机,保证患者的呼吸通畅和充分供氧。It should be noted that if a patient experiences sudden respiratory abnormalities, in addition to the above-mentioned treatment operations, non-invasive respiratory treatment should be stopped immediately under the premise of safety, and a preliminary assessment of the cause of the respiratory abnormality should be conducted in a timely manner for medical staff to refer to for diagnosis. At the same time, medical staff should take appropriate first aid measures and switch to invasive ventilators in a timely manner when necessary to ensure that the patient's breathing is unobstructed and adequate oxygen supply.
综上所述,本发明通过参数监测单元采集无创呼吸参数,再通过模型设计单元建立参数分析模型进行分析处理,从而评估患者的身体状态、呼吸意图和呼吸强度,再综合判定患者当前的无创呼吸状态并进行动态监测,生成参数调控信号与警报提示信号,对呼吸异常波动状态进行预警,从而及时进行呼吸设备参数的调控管理,以及初步判定异常原因进行可视化显示,便于医护人员辅助诊断决策;In summary, the present invention collects non-invasive respiratory parameters through a parameter monitoring unit, and then establishes a parameter analysis model through a model design unit for analysis and processing, thereby evaluating the patient's physical state, respiratory intention and respiratory intensity, and then comprehensively determining the patient's current non-invasive respiratory state and performing dynamic monitoring, generating parameter control signals and alarm prompt signals, and giving early warnings for abnormal respiratory fluctuations, thereby timely regulating and managing respiratory equipment parameters, and preliminarily determining the cause of the abnormality for visual display, which is convenient for medical staff to assist in diagnosis and decision-making;
本发明实现了对患者无创呼吸护理的远程监测,根据患者的生理特征和临床表现,从身体状态、呼吸意图和呼吸强度多角度进行参数分析,保证数据全面性,以实现最佳的个性化呼吸监测效果,提高病人与呼吸机设备的适配性,并通过反馈分析初步判定呼吸异常原因并进行可视化显示,提高数据分析利用率,且辅助决策的针对性强。The present invention realizes remote monitoring of non-invasive respiratory care for patients. According to the physiological characteristics and clinical manifestations of patients, parameter analysis is performed from multiple angles such as physical state, respiratory intention and respiratory intensity to ensure the comprehensiveness of data, so as to achieve the best personalized respiratory monitoring effect and improve the compatibility of patients and ventilator equipment. The cause of abnormal breathing is preliminarily determined through feedback analysis and visualized, which improves the utilization rate of data analysis and has strong targeted auxiliary decision-making.
区间、阈值的大小的设定是为了便于比较,关于阈值的大小,取决于样本数据的多少及本领域技术人员对每一组样本数据设定基数数量;只要不影响参数与量化后数值的比例关系即可。The size of the interval and threshold is set to facilitate comparison. The size of the threshold depends on the amount of sample data and the number of bases set by technical personnel in this field for each group of sample data; as long as it does not affect the proportional relationship between the parameter and the quantized value.
上述公式均是去量纲取其数值计算,公式是由采集大量数据进行软件模拟得到最近真实情况的一个公式,公式中的预设参数由本领域的技术人员根据实际情况进行设置;The above formulas are all dimensionless and numerical calculations. The formula is a formula obtained by collecting a large amount of data and performing software simulation to obtain the most recent real situation. The preset parameters in the formula are set by technicians in this field according to actual conditions.
以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,根据本发明的技术方案及其发明构思加以等同替换或改变,都应涵盖在本发明的保护范围之内。The above description is only a preferred specific implementation manner of the present invention, but the protection scope of the present invention is not limited thereto. Any technician familiar with the technical field can make equivalent replacements or changes according to the technical scheme and inventive concept of the present invention within the technical scope disclosed by the present invention, which should be covered by the protection scope of the present invention.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202410273391.8A CN118001528A (en) | 2024-03-11 | 2024-03-11 | Remote noninvasive respiratory parameter analysis and management system based on Internet |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202410273391.8A CN118001528A (en) | 2024-03-11 | 2024-03-11 | Remote noninvasive respiratory parameter analysis and management system based on Internet |
Publications (1)
Publication Number | Publication Date |
---|---|
CN118001528A true CN118001528A (en) | 2024-05-10 |
Family
ID=90960147
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202410273391.8A Pending CN118001528A (en) | 2024-03-11 | 2024-03-11 | Remote noninvasive respiratory parameter analysis and management system based on Internet |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN118001528A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN118767279A (en) * | 2024-06-28 | 2024-10-15 | 江苏安胜达安全科技有限公司 | Adaptive air supply control system and method for respiratory linkage mask |
CN119055898A (en) * | 2024-08-29 | 2024-12-03 | 华中科技大学同济医学院附属同济医院 | Method and system for adjusting ventilator parameters based on end-tidal carbon dioxide monitoring |
-
2024
- 2024-03-11 CN CN202410273391.8A patent/CN118001528A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN118767279A (en) * | 2024-06-28 | 2024-10-15 | 江苏安胜达安全科技有限公司 | Adaptive air supply control system and method for respiratory linkage mask |
CN119055898A (en) * | 2024-08-29 | 2024-12-03 | 华中科技大学同济医学院附属同济医院 | Method and system for adjusting ventilator parameters based on end-tidal carbon dioxide monitoring |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20250025657A1 (en) | Assistive capnography device | |
US11707227B2 (en) | Devices and methods for monitoring physiologic parameters | |
CN118001528A (en) | Remote noninvasive respiratory parameter analysis and management system based on Internet | |
JP6200430B2 (en) | Method and apparatus for monitoring and controlling pressure assist devices | |
JP5181291B2 (en) | Respiratory function measuring device | |
US20230082966A1 (en) | Devices and methods for predicting, identifying and/or managing pneumonia or other health status | |
JP6294081B2 (en) | Real-time airway check status indicator | |
WO2001093761A1 (en) | Method and apparatus for anatomical deadspace measurement | |
US20140235959A1 (en) | Methods and algorithms for supervisory closed-loop determination of optimized scheduling of ventilator weaning trials | |
CN108366756B (en) | Apparatus, system and method for determining breathing characteristics of a subject based on breathing gas | |
CN115944820B (en) | Control method and device for accurately quantifying respirator parameters | |
WO2019152699A1 (en) | Devices and methods for monitoring physiologic parameters | |
CN115177829B (en) | Monitoring device and method for controlling respiratory persistence and respiratory sound | |
CN114849007B (en) | Method and system for solving over ventilation based on respirator device | |
CN115607123A (en) | An integrated device for cardiopulmonary function monitoring and ventilator closed-loop control | |
US20150151072A1 (en) | Ventilation analysis and monitoring | |
CN118925012A (en) | An oxygen production system capable of automatically adjusting blood oxygen saturation and oxygen inhalation volume of an oxygen inhaler | |
CN116942090A (en) | Anesthesia depth monitoring method and device | |
WO2022133942A1 (en) | Medical ventilation device and ventilation monitoring method | |
JP7290241B2 (en) | Breath sound detector and program | |
CN109316189B (en) | A kind of non-contact respiratory dynamic detection method and device | |
US20230191067A1 (en) | Expiratory filter with embedded detectors | |
US20230201516A1 (en) | Breath detection apparatus and method for breath detection | |
CN114558216B (en) | Be applied to intelligent tracheal cannula of tracheotomy | |
EP4079221A1 (en) | System for identifying a condition of a user |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication |