CN117996218A - Multilayer all-solid-state battery and preparation method and application thereof - Google Patents
Multilayer all-solid-state battery and preparation method and application thereof Download PDFInfo
- Publication number
- CN117996218A CN117996218A CN202410261537.7A CN202410261537A CN117996218A CN 117996218 A CN117996218 A CN 117996218A CN 202410261537 A CN202410261537 A CN 202410261537A CN 117996218 A CN117996218 A CN 117996218A
- Authority
- CN
- China
- Prior art keywords
- electrode layer
- positive electrode
- negative electrode
- layer
- content
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000002360 preparation method Methods 0.000 title claims abstract description 11
- 239000003792 electrolyte Substances 0.000 claims abstract description 110
- 239000002001 electrolyte material Substances 0.000 claims abstract description 53
- 239000000203 mixture Substances 0.000 claims abstract description 11
- 238000000576 coating method Methods 0.000 claims description 26
- 239000011248 coating agent Substances 0.000 claims description 24
- 229910052744 lithium Inorganic materials 0.000 claims description 24
- 239000007774 positive electrode material Substances 0.000 claims description 23
- 239000000463 material Substances 0.000 claims description 22
- 239000011230 binding agent Substances 0.000 claims description 19
- 229910021383 artificial graphite Inorganic materials 0.000 claims description 14
- 239000006258 conductive agent Substances 0.000 claims description 14
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 13
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 claims description 8
- 238000000034 method Methods 0.000 claims description 8
- 239000007773 negative electrode material Substances 0.000 claims description 8
- -1 nickel-cobalt-manganese-aluminum Chemical compound 0.000 claims description 5
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 claims description 3
- 229910052748 manganese Inorganic materials 0.000 claims description 3
- 239000011572 manganese Substances 0.000 claims description 3
- HMDDXIMCDZRSNE-UHFFFAOYSA-N [C].[Si] Chemical compound [C].[Si] HMDDXIMCDZRSNE-UHFFFAOYSA-N 0.000 claims description 2
- OBNDGIHQAIXEAO-UHFFFAOYSA-N [O].[Si] Chemical compound [O].[Si] OBNDGIHQAIXEAO-UHFFFAOYSA-N 0.000 claims description 2
- 239000003575 carbonaceous material Substances 0.000 claims description 2
- 229910021385 hard carbon Inorganic materials 0.000 claims description 2
- 229910052738 indium Inorganic materials 0.000 claims description 2
- 229910052746 lanthanum Inorganic materials 0.000 claims description 2
- BVPMZCWLVVIHKO-UHFFFAOYSA-N lithium cobalt(2+) manganese(2+) oxygen(2-) Chemical compound [O-2].[Mn+2].[Co+2].[Li+] BVPMZCWLVVIHKO-UHFFFAOYSA-N 0.000 claims description 2
- 229910021382 natural graphite Inorganic materials 0.000 claims description 2
- 229910021384 soft carbon Inorganic materials 0.000 claims description 2
- 229910052727 yttrium Inorganic materials 0.000 claims description 2
- 229910052726 zirconium Inorganic materials 0.000 claims description 2
- FBDMTTNVIIVBKI-UHFFFAOYSA-N [O-2].[Mn+2].[Co+2].[Ni+2].[Li+] Chemical compound [O-2].[Mn+2].[Co+2].[Ni+2].[Li+] FBDMTTNVIIVBKI-UHFFFAOYSA-N 0.000 claims 1
- 230000005540 biological transmission Effects 0.000 abstract description 8
- 229920000459 Nitrile rubber Polymers 0.000 description 16
- 239000002033 PVDF binder Substances 0.000 description 13
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 13
- 239000002041 carbon nanotube Substances 0.000 description 11
- 229910021393 carbon nanotube Inorganic materials 0.000 description 11
- 230000000052 comparative effect Effects 0.000 description 11
- 150000002500 ions Chemical class 0.000 description 7
- URLKBWYHVLBVBO-UHFFFAOYSA-N Para-Xylene Chemical group CC1=CC=C(C)C=C1 URLKBWYHVLBVBO-UHFFFAOYSA-N 0.000 description 6
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 6
- 238000001035 drying Methods 0.000 description 6
- 238000004519 manufacturing process Methods 0.000 description 6
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 5
- 239000007784 solid electrolyte Substances 0.000 description 5
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 4
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 4
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 4
- 229910052782 aluminium Inorganic materials 0.000 description 4
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 4
- 239000011889 copper foil Substances 0.000 description 4
- 239000013078 crystal Substances 0.000 description 4
- 239000011888 foil Substances 0.000 description 4
- 229910001416 lithium ion Inorganic materials 0.000 description 4
- 239000002904 solvent Substances 0.000 description 4
- IMNFDUFMRHMDMM-UHFFFAOYSA-N N-Heptane Chemical compound CCCCCCC IMNFDUFMRHMDMM-UHFFFAOYSA-N 0.000 description 3
- 239000002131 composite material Substances 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- FYGHSUNMUKGBRK-UHFFFAOYSA-N 1,2,3-trimethylbenzene Chemical compound CC1=CC=CC(C)=C1C FYGHSUNMUKGBRK-UHFFFAOYSA-N 0.000 description 2
- 101001121408 Homo sapiens L-amino-acid oxidase Proteins 0.000 description 2
- 102100026388 L-amino-acid oxidase Human genes 0.000 description 2
- OFBQJSOFQDEBGM-UHFFFAOYSA-N Pentane Chemical compound CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 description 2
- 239000002134 carbon nanofiber Substances 0.000 description 2
- 210000004027 cell Anatomy 0.000 description 2
- 238000005056 compaction Methods 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 239000007772 electrode material Substances 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000008187 granular material Substances 0.000 description 2
- 150000004820 halides Chemical class 0.000 description 2
- 230000014759 maintenance of location Effects 0.000 description 2
- 239000012528 membrane Substances 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 238000000465 moulding Methods 0.000 description 2
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 2
- TVMXDCGIABBOFY-UHFFFAOYSA-N octane Chemical compound CCCCCCCC TVMXDCGIABBOFY-UHFFFAOYSA-N 0.000 description 2
- 239000003960 organic solvent Substances 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 2
- 229920002239 polyacrylonitrile Polymers 0.000 description 2
- 239000004926 polymethyl methacrylate Substances 0.000 description 2
- 239000011163 secondary particle Substances 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 229920002799 BoPET Polymers 0.000 description 1
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 1
- 239000011149 active material Substances 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910021525 ceramic electrolyte Inorganic materials 0.000 description 1
- CXULZQWIHKYPTP-UHFFFAOYSA-N cobalt(2+) manganese(2+) nickel(2+) oxygen(2-) Chemical compound [O--].[O--].[O--].[Mn++].[Co++].[Ni++] CXULZQWIHKYPTP-UHFFFAOYSA-N 0.000 description 1
- XEUFSQHGFWJHAP-UHFFFAOYSA-N cobalt(2+) manganese(2+) oxygen(2-) Chemical compound [O--].[O--].[Mn++].[Co++] XEUFSQHGFWJHAP-UHFFFAOYSA-N 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 210000001787 dendrite Anatomy 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 229910003480 inorganic solid Inorganic materials 0.000 description 1
- 230000037427 ion transport Effects 0.000 description 1
- 230000003446 memory effect Effects 0.000 description 1
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 1
- 238000011056 performance test Methods 0.000 description 1
- 239000004810 polytetrafluoroethylene Substances 0.000 description 1
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000002269 spontaneous effect Effects 0.000 description 1
- 229920003048 styrene butadiene rubber Polymers 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 239000008096 xylene Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/058—Construction or manufacture
- H01M10/0585—Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2300/00—Electrolytes
- H01M2300/0085—Immobilising or gelification of electrolyte
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Inorganic Chemistry (AREA)
- Secondary Cells (AREA)
Abstract
Description
技术领域Technical Field
本发明属于电池技术领域,涉及一种多层全固态电池及其制备方法与应用。The present invention belongs to the technical field of batteries and relates to a multi-layer all-solid-state battery and a preparation method and application thereof.
背景技术Background technique
锂离子电池由于具有高能量密度、长循环寿命和无记忆效应等优势而成为消费类电子电池与新能源汽车动力电池的首选。然而锂离子电池使用有机易燃的有机溶剂作为电解液,存在较大的安全风险,随着新能源汽车的规模普及,新能源汽车自燃事件数量也呈现快速增加的趋势。开发固态电解质替代现有的电解液,从根本上避免易燃有机溶剂的使用是提升锂离子电池安全性提升、实现锂离子电池本征安全的重要途径。Lithium-ion batteries have become the first choice for consumer electronic batteries and new energy vehicle power batteries due to their advantages such as high energy density, long cycle life and no memory effect. However, lithium-ion batteries use flammable organic solvents as electrolytes, which poses a great safety risk. With the popularization of new energy vehicles, the number of spontaneous combustion incidents of new energy vehicles is also showing a rapid increase. Developing solid electrolytes to replace existing electrolytes and fundamentally avoiding the use of flammable organic solvents is an important way to improve the safety of lithium-ion batteries and achieve the intrinsic safety of lithium-ion batteries.
如CN 114744199A公开了一种全固态电池及其制备方法,提供的全固态电池,依次包括复合锂负极层、电解质层、复合正极层。锂负极表面修饰有Li3N,既可提高金属锂负极与陶瓷电解质之间的界面稳定性,又可引导充放电过程中金属锂的均匀沉积和剥离,抑制锂枝晶的形成。For example, CN 114744199A discloses an all-solid-state battery and a preparation method thereof, wherein the all-solid-state battery comprises a composite lithium negative electrode layer, an electrolyte layer, and a composite positive electrode layer in sequence. The surface of the lithium negative electrode is modified with Li 3 N, which can not only improve the interface stability between the metal lithium negative electrode and the ceramic electrolyte, but also guide the uniform deposition and stripping of metal lithium during the charge and discharge process, and inhibit the formation of lithium dendrites.
但是,现有全固态电池制备工艺复杂、固态电解质正负极兼容性差、电极内部电子离子传输动力学差等问题仍然是限制全固态电池开发与应用的瓶颈。However, problems such as the complex preparation process of existing all-solid-state batteries, poor compatibility between positive and negative electrodes of solid electrolytes, and poor electron and ion transport kinetics within electrodes are still bottlenecks restricting the development and application of all-solid-state batteries.
基于以上研究,需要提供一种多层全固态电池,所述多层全固态电池的正负极兼容性好,改善了电极与电解质层的离子传输,提升了全固态电池的倍率性能。Based on the above research, there is a need to provide a multilayer all-solid-state battery, which has good compatibility between the positive and negative electrodes, improves the ion transmission between the electrode and the electrolyte layer, and enhances the rate performance of the all-solid-state battery.
发明内容Summary of the invention
本发明的目的在于提供一种多层全固态电池及其制备方法与应用,所述多层全固态电池通过设计多层结构差异化电极,提升了电极动力学以及正负极电解质的兼容性,改善了电极与电解质层的离子传输,提升了全固态电池的倍率性能。The purpose of the present invention is to provide a multi-layer all-solid-state battery and its preparation method and application. The multi-layer all-solid-state battery improves the electrode kinetics and the compatibility of positive and negative electrode electrolytes by designing multi-layer structure differentiated electrodes, improves the ion transmission between the electrode and the electrolyte layer, and improves the rate performance of the all-solid-state battery.
为达到此发明目的,本发明采用以下技术方案:In order to achieve the purpose of the invention, the present invention adopts the following technical solutions:
第一方面,本发明提供了一种多层全固态电池,所述多层全固态电池包括依次层叠设置的正极集流体、第一正极层、第二正极层、第一电解质层、第二电解质层、第二负极层、第一负极层和负极集流体;In a first aspect, the present invention provides a multilayer all-solid-state battery, the multilayer all-solid-state battery comprising a positive electrode current collector, a first positive electrode layer, a second positive electrode layer, a first electrolyte layer, a second electrolyte layer, a second negative electrode layer, a first negative electrode layer and a negative electrode current collector stacked in sequence;
所述第一正极层、第二正极层和第一电解质层中分别独立的包括正极侧电解质材料,所述第一负极层、第二负极层和第二电解质层中分别独立的包括负极侧电解质材料;The first positive electrode layer, the second positive electrode layer and the first electrolyte layer each independently include a positive electrode side electrolyte material, and the first negative electrode layer, the second negative electrode layer and the second electrolyte layer each independently include a negative electrode side electrolyte material;
所述第一正极层与第二正极层的组成不同,所述第一负极层与第二负极层的组成不同。The first positive electrode layer and the second positive electrode layer have different compositions, and the first negative electrode layer and the second negative electrode layer have different compositions.
本发明通过设计多层结构差异化电极,采用组成不同的多层正极层、负极层和电解质层,并且在正极层和负极层中均加入了固态电解质材料,但是在正极层和负极层加入的固态电解质材料不同,同时为了提升电池内部兼容性,正极层中加入的电解质材料与第一电解质层中的电解质材料相同,负极层中加入的电解质材料与第二电解质层中的电解质材料相同,解决了全固态电池兼容性的问题,改善了电极与电解质层的离子传输,提升了全固态电池的倍率性能。The present invention designs a multi-layer structure differentiated electrode, adopts multi-layer positive electrode layers, negative electrode layers and electrolyte layers with different compositions, and adds solid electrolyte materials to both the positive electrode layer and the negative electrode layer. However, the solid electrolyte materials added to the positive electrode layer and the negative electrode layer are different. At the same time, in order to improve the internal compatibility of the battery, the electrolyte material added to the positive electrode layer is the same as the electrolyte material in the first electrolyte layer, and the electrolyte material added to the negative electrode layer is the same as the electrolyte material in the second electrolyte layer. This solves the compatibility problem of all-solid-state batteries, improves the ion transmission between the electrode and the electrolyte layer, and improves the rate performance of the all-solid-state battery.
优选地,所述第一正极层与第二正极层的厚度比,以及第一负极层与第二负极层的厚度比分别独立地为(1-3):1,例如可以是1:1、2:1或3:1,但不限于所列举的数值,数值范围内其它未列举的数值同样适用。Preferably, the thickness ratio of the first positive electrode layer to the second positive electrode layer, and the thickness ratio of the first negative electrode layer to the second negative electrode layer are independently (1-3):1, for example, can be 1:1, 2:1 or 3:1, but are not limited to the listed values, and other unlisted values within the numerical range are also applicable.
由于本发明电极层发挥的作用不同,以提升电池的压实密度、容量、动力学性能以及循环性能等多方面的性能,因此,不同电极层的厚度优选采用上述比例。Since the electrode layers of the present invention play different roles in order to improve the compaction density, capacity, dynamic performance, cycle performance and other performances of the battery, the thicknesses of different electrode layers preferably adopt the above ratio.
优选地,所述第一电解质层与第二电解质层的厚度比为(0.5-2):1,例如可以是0.5:1、1:1、1.5:1或2:1,但不限于所列举的数值,数值范围内其它未列举的数值同样适用。Preferably, the thickness ratio of the first electrolyte layer to the second electrolyte layer is (0.5-2):1, for example, it can be 0.5:1, 1:1, 1.5:1 or 2:1, but is not limited to the listed values, and other unlisted values within the numerical range are also applicable.
本发明第一电解质层和第二电解质层起到提升兼容性的作用,二者优选在上述厚度比范围内。The first electrolyte layer and the second electrolyte layer of the present invention play a role in improving compatibility, and the thickness ratio of the first electrolyte layer and the second electrolyte layer is preferably within the above range.
优选地,所述第一电解质层的厚度为7-15μm,例如可以是7μm、9μm、12μm或15μm,所述第二电解质层的厚度为7-15μm,例如可以是7μm、9μm、12μm或15μm,但不限于所列举的数值,数值范围内其它未列举的数值同样适用。Preferably, the thickness of the first electrolyte layer is 7-15 μm, for example, 7 μm, 9 μm, 12 μm or 15 μm, and the thickness of the second electrolyte layer is 7-15 μm, for example, 7 μm, 9 μm, 12 μm or 15 μm, but is not limited to the listed values, and other unlisted values within the numerical range are also applicable.
优选地,所述第二正极层中的正极侧电解质材料含量高于第一正极层中的正极侧电解质材料含量。Preferably, the content of the positive electrode side electrolyte material in the second positive electrode layer is higher than the content of the positive electrode side electrolyte material in the first positive electrode layer.
本发明靠近第一电解质层的第二正极层中,电解质材料含量大于第一正极层,能够提升电极的离子传输能力,提升电极倍率性能;负极侧同理。In the second positive electrode layer of the present invention, which is close to the first electrolyte layer, the electrolyte material content is greater than that of the first positive electrode layer, which can improve the ion transmission capacity of the electrode and improve the electrode rate performance; the same is true for the negative electrode side.
优选地,所述第二正极层中的正极侧电解质材料含量为5-25wt%,例如可以是10wt%、15wt%、20wt%或25wt%,但不限于所列举的数值,数值范围内其它未列举的数值同样适用。Preferably, the positive electrode side electrolyte material content in the second positive electrode layer is 5-25wt%, for example, it can be 10wt%, 15wt%, 20wt% or 25wt%, but is not limited to the listed values, and other unlisted values within the numerical range are also applicable.
优选地,所述第一正极层中的正极侧电解质材料含量为1-12wt%,例如可以是3wt%、5wt%、7wt%、9wt%或11wt%,但不限于所列举的数值,数值范围内其它未列举的数值同样适用。Preferably, the positive electrode side electrolyte material content in the first positive electrode layer is 1-12wt%, for example, it can be 3wt%, 5wt%, 7wt%, 9wt% or 11wt%, but is not limited to the listed values, and other unlisted values within the numerical range are also applicable.
本发明采用的电解质材料均为无机固态电解质材料。The electrolyte materials used in the present invention are all inorganic solid electrolyte materials.
优选地,所述正极侧电解质材料包括卤化物电解质和/或硫化物电解质。Preferably, the cathode side electrolyte material includes a halide electrolyte and/or a sulfide electrolyte.
优选地,所述正极侧电解质材料采用的卤化物电解质优选Li3MB6,M为Y、Zr、In、Sc、Ta或La中的任意一种或至少两种的组合,B选自Cl、Br或I中的任意一种或至少两种的组合,所述正极侧电解质材料采用的硫化物电解质包括Li10GeP2S12及相同结构的元素掺杂材料。Preferably, the halide electrolyte used in the positive electrode side electrolyte material is preferably Li 3 MB 6 , M is any one of Y, Zr, In, Sc, Ta or La or a combination of at least two, B is selected from any one of Cl, Br or I or a combination of at least two, and the sulfide electrolyte used in the positive electrode side electrolyte material includes Li 10 GeP 2 S 12 and element doping materials with the same structure.
优选地,所述第二正极层中的正极活性材料含量小于第一正极层中的正极活性材料含量。Preferably, the content of the positive electrode active material in the second positive electrode layer is less than that in the first positive electrode layer.
本发明所述第二正极层中的正极活性材料含量小于第一正极层,保证其中的电解质材料含量;负极侧同理。The content of positive electrode active material in the second positive electrode layer of the present invention is less than that in the first positive electrode layer, so as to ensure the content of electrolyte material therein; the same is true for the negative electrode side.
优选地,所述第二正极层中的正极活性材料包括镍钴锰酸锂三元正极材料和/或镍钴锰铝四元正极材料的单晶材料或二次颗粒材料(长循环寿命电芯选取单晶材料,高功率电芯选取二次颗粒材料)。Preferably, the positive electrode active material in the second positive electrode layer includes single crystal material or secondary granular material of nickel cobalt manganese oxide ternary positive electrode material and/or nickel cobalt manganese aluminum quaternary positive electrode material (single crystal material is selected for long cycle life battery cells, and secondary granular material is selected for high power battery cells).
优选地,所述第二正极层中的正极活性材料含量为70-90wt%,例如可以是70wt%、80wt%或90wt%,但不限于所列举的数值,数值范围内其它未列举的数值同样适用。Preferably, the positive electrode active material content in the second positive electrode layer is 70-90wt%, for example, 70wt%, 80wt% or 90wt%, but is not limited to the listed values, and other unlisted values within the numerical range are also applicable.
优选地,所述第一正极层中的正极活性材料包括钴锰酸锂三元正极材料、镍钴锰铝四元正极材料或富锂锰基正极材料中的任意一种或至少两种的组合,含量为85-95wt%,例如可以是87wt%、90wt%、92wt%或95wt%,但不限于所列举的数值,数值范围内其它未列举的数值同样适用。Preferably, the positive electrode active material in the first positive electrode layer includes any one of a cobalt manganese oxide ternary positive electrode material, a nickel cobalt manganese aluminum quaternary positive electrode material or a lithium-rich manganese-based positive electrode material, or a combination of at least two thereof, with a content of 85-95wt%, for example, 87wt%, 90wt%, 92wt% or 95wt%, but is not limited to the listed values, and other unlisted values within the numerical range are also applicable.
优选地,所述所述第一正极层中的正极活性材料的形貌包括单晶颗粒与二次颗粒,为钴锰酸锂三元正极材料、镍钴锰铝四元正极材料或富锂锰基正极材料中的任意一种或至少两种的组合的单晶颗粒与二次颗粒的复配材料。Preferably, the morphology of the positive electrode active material in the first positive electrode layer includes single crystal particles and secondary particles, which is a composite material of single crystal particles and secondary particles of any one or a combination of at least two of a lithium cobalt manganese oxide ternary positive electrode material, a nickel cobalt manganese aluminum quaternary positive electrode material or a lithium-rich manganese-based positive electrode material.
本发明所述第一、第二电极层采用不同的活性材料与配方,靠近集流体侧第一电极层选用成本低廉、压实密度高、高容量的电极活性材料,靠近电解质层的第二电极层选用动力学好,循环寿命长的电极活性材料,以实现电池成本、寿命、功率各性能的兼容全面提升。The first and second electrode layers of the present invention use different active materials and formulations. The first electrode layer close to the current collector side uses an electrode active material with low cost, high compaction density and high capacity, and the second electrode layer close to the electrolyte layer uses an electrode active material with good kinetics and long cycle life, so as to achieve a comprehensive improvement in the compatibility of battery cost, life and power performance.
优选地,所述第二正极层中的粘结剂含量小于第一正极层中的粘结剂含量。Preferably, the binder content in the second positive electrode layer is less than the binder content in the first positive electrode layer.
优选地,所述第二正极层中的粘结剂含量为0.5-2wt%,例如可以是0.5wt%、1wt%、1.5wt%或2wt%,所述第一正极层中的粘结剂含量为1-3wt%,例如可以是1.5wt%、2wt%、2.5wt%或3wt%,但不限于所列举的数值,数值范围内其它未列举的数值同样适用。Preferably, the binder content in the second positive electrode layer is 0.5-2wt%, for example, 0.5wt%, 1wt%, 1.5wt% or 2wt%, and the binder content in the first positive electrode layer is 1-3wt%, for example, 1.5wt%, 2wt%, 2.5wt% or 3wt%, but is not limited to the listed values, and other unlisted values within the numerical range are also applicable.
优选地,所述第二正极层中的导电剂含量小于第一正极层中的导电剂含量。Preferably, the content of the conductive agent in the second positive electrode layer is less than that in the first positive electrode layer.
优选地,所述第二正极层中的导电剂含量为0-1wt%,例如可以是0wt%、0.1wt%、0.5wt%或1wt%,所述第一正极层中的导电剂含量为0.5-3wt%,例如可以是1wt%、2wt%或3wt%,但不限于所列举的数值,数值范围内其它未列举的数值同样适用。Preferably, the conductive agent content in the second positive electrode layer is 0-1wt%, for example, it can be 0wt%, 0.1wt%, 0.5wt% or 1wt%, and the conductive agent content in the first positive electrode layer is 0.5-3wt%, for example, it can be 1wt%, 2wt% or 3wt%, but is not limited to the listed values, and other unlisted values within the numerical range are also applicable.
优选地,所述第二负极层中的负极侧电解质材料含量高于第一负极层中的负极侧电解质材料含量。Preferably, the content of the negative electrode side electrolyte material in the second negative electrode layer is higher than the content of the negative electrode side electrolyte material in the first negative electrode layer.
优选地,所述第二负极层中的负极侧电解质材料含量为2-30wt%,例如可以是5wt%、10wt%、20wt%或30wt%,第一负极层中的负极侧电解质材料含量为0-25wt%,但不包括0wt%,例如可以是5wt%、10wt%、20wt%或25wt%,但不限于所列举的数值,数值范围内其它未列举的数值同样适用。Preferably, the negative electrode side electrolyte material content in the second negative electrode layer is 2-30wt%, for example, it can be 5wt%, 10wt%, 20wt% or 30wt%, and the negative electrode side electrolyte material content in the first negative electrode layer is 0-25wt%, but does not include 0wt%, for example, it can be 5wt%, 10wt%, 20wt% or 25wt%, but is not limited to the listed values, and other unlisted values within the numerical range are also applicable.
优选地,所述负极侧电解质材料包括硫化物电解质。Preferably, the negative electrode side electrolyte material includes a sulfide electrolyte.
本发明负极侧电解质材料选自还原动力学稳定的不含除Li外金属元素的Li(6-x)PS(5-x)X(1+x)(X=Cl、Br、I,0≤x≤0.6,例如可以是0、0.4或0.6)、xLi2S·(1-x)P2S5(0.2≤x≤0.8,例如可以是0.2、0.3或0.5)硫化物电解质或Li3PS4中的任意一种或至少两种的组合。The negative electrode electrolyte material of the present invention is selected from any one of Li (6-x) PS (5-x) X (1+x) (X = Cl, Br, I, 0≤x≤0.6, for example, it can be 0, 0.4 or 0.6), xLi 2 S·(1-x)P 2 S 5 (0.2≤x≤0.8, for example, it can be 0.2, 0.3 or 0.5) sulfide electrolyte or Li 3 PS 4, which has stable reduction kinetics and does not contain metal elements other than Li, or a combination of at least two of them.
优选地,所述第二负极层中的负极活性材料含量小于第一负极层中的负极活性材料含量。Preferably, the content of the negative electrode active material in the second negative electrode layer is less than the content of the negative electrode active material in the first negative electrode layer.
优选地,所述第二负极层中的负极活性材料包括高功率人造石墨、长循环寿命人造石墨、软碳或硬碳中的任意一种或至少两种的组合,含量为60-90wt%,例如可以是70wt%、80wt%或90wt%,但不限于所列举的数值,数值范围内其它未列举的数值同样适用。Preferably, the negative electrode active material in the second negative electrode layer includes any one of high-power artificial graphite, long cycle life artificial graphite, soft carbon or hard carbon, or a combination of at least two of them, with a content of 60-90wt%, for example, 70wt%, 80wt% or 90wt%, but is not limited to the listed values, and other unlisted values within the numerical range are also applicable.
优选地,所述第一负极层中的负极活性材料包括人造石墨、天然石墨、硅氧材料或硅碳材料中的任意一种或至少两种的组合,含量为70-95wt%,例如可以是80wt%、85wt%、90wt%或95wt%,但不限于所列举的数值,数值范围内其它未列举的数值同样适用。Preferably, the negative electrode active material in the first negative electrode layer includes any one of artificial graphite, natural graphite, silicon-oxygen material or silicon-carbon material, or a combination of at least two of them, with a content of 70-95wt%, for example, 80wt%, 85wt%, 90wt% or 95wt%, but is not limited to the listed values, and other unlisted values within the numerical range are also applicable.
优选地,所述第二负极层中的粘结剂含量为0.5-2wt%,例如可以是0.5wt%、1wt%、1.5wt%或2wt%,所述第一负极层中的粘结剂含量为1-3wt%,例如可以是1.5wt%、2wt%、2.5wt%或3wt%,且所述第二负极层中的粘结剂含量小于第一负极层中的粘结剂含量。Preferably, the binder content in the second negative electrode layer is 0.5-2wt%, for example, 0.5wt%, 1wt%, 1.5wt% or 2wt%, the binder content in the first negative electrode layer is 1-3wt%, for example, 1.5wt%, 2wt%, 2.5wt% or 3wt%, and the binder content in the second negative electrode layer is less than the binder content in the first negative electrode layer.
优选地,所述第二负极层中的导电剂含量为0-1wt%,例如可以是0wt%、0.1wt%、0.5wt%或1wt%,所述第一负极层中的导电剂含量为0.5-3wt%,例如可以是1wt%、2wt%或3wt%,且所述第二负极层中的导电剂含量小于第一负极层中的导电剂含量。Preferably, the conductive agent content in the second negative electrode layer is 0-1wt%, for example, 0wt%, 0.1wt%, 0.5wt% or 1wt%, the conductive agent content in the first negative electrode layer is 0.5-3wt%, for example, 1wt%, 2wt% or 3wt%, and the conductive agent content in the second negative electrode layer is less than that in the first negative electrode layer.
优选地,所述第一电解质层和第二电解质层中分别还独立地包括含量为0.5-5wt%的粘结剂,例如可以是1wt%、3wt%或5wt%,但不限于所列举的数值,数值范围内其它未列举的数值同样适用。Preferably, the first electrolyte layer and the second electrolyte layer each independently further comprise a binder in an amount of 0.5-5wt%, for example, 1wt%, 3wt% or 5wt%, but not limited to the listed values, and other unlisted values within the numerical range are also applicable.
优选地,所述第一电解质层中的正极侧电解质材料含量,以及所述第二电解质层中的负极侧电解质材料含量分别独立地为95-99.5wt%,例如可以是96wt%、98wt%、99wt%或99.5wt%,但不限于所列举的数值,数值范围内其它未列举的数值同样适用。Preferably, the content of the electrolyte material on the positive electrode side in the first electrolyte layer and the content of the electrolyte material on the negative electrode side in the second electrolyte layer are independently 95-99.5wt%, for example, they can be 96wt%, 98wt%, 99wt% or 99.5wt%, but are not limited to the listed values, and other unlisted values within the numerical range are also applicable.
本发明第一正极层、第二正极层、第一电解质层、第二电解质层、第一负极层和第二负极层采用的粘结剂分别独立地包括聚偏氟乙烯(PVDF)、聚丙烯腈(PAN)、聚甲基丙烯酸甲酯(PMMA)、丁苯橡胶(SBR)、丁腈橡胶(NBR)或氢化丁腈橡胶(HNBR)中的任意一种或至少两种的组合,导电剂分别独立地包括SP(导电炭黑)、CNT(碳纳米管)或VGCF(气相生长碳纤维)中的任意一种或至少两种的组合。The binders used in the first positive electrode layer, the second positive electrode layer, the first electrolyte layer, the second electrolyte layer, the first negative electrode layer and the second negative electrode layer of the present invention independently include any one of polyvinylidene fluoride (PVDF), polyacrylonitrile (PAN), polymethyl methacrylate (PMMA), styrene-butadiene rubber (SBR), nitrile rubber (NBR) or hydrogenated nitrile rubber (HNBR) or a combination of at least two thereof, and the conductive agents independently include any one of SP (conductive carbon black), CNT (carbon nanotube) or VGCF (vapor grown carbon fiber) or a combination of at least two thereof.
第二方面,本发明提供了一种如第一方面所述多层全固态电池的制备方法,所述制备方法包括如下步骤:In a second aspect, the present invention provides a method for preparing a multilayer all-solid-state battery as described in the first aspect, the preparation method comprising the following steps:
(1)将第一正极层混合材料、第二正极层混合材料和第一电解质层混合材料三层涂布在正极集流体表面,得到正极电极;(1) coating a first positive electrode layer mixed material, a second positive electrode layer mixed material and a first electrolyte layer mixed material on the surface of a positive electrode current collector to obtain a positive electrode;
(2)将第一负极层混合材料、第二负极层混合材料和第二电解质层混合材料三层涂布在负极集流体表面,得到负极电极;(2) coating a first negative electrode layer mixed material, a second negative electrode layer mixed material, and a second electrolyte layer mixed material on the surface of the negative electrode current collector to obtain a negative electrode;
(3)将步骤(1)所述正极电极和步骤(2)所述负极电极叠片组装,得到所述多层全固态电池;(3) assembling the positive electrode described in step (1) and the negative electrode stack described in step (2) to obtain the multilayer all-solid-state battery;
步骤(1)和步骤(2)不分先后顺序。Step (1) and step (2) are performed in no particular order.
本发明利用一体化三层涂布技术,实现了全固态电池多层结构的一体化成型制造,极大的简化了全固态电池生产工艺流程,助力了全固态电池的量产,利用电解质层与电极层涂布过程中的互扩散,改善了电极与电解质层的离子传输,提升全固态电池的倍率性能。The present invention utilizes integrated three-layer coating technology to achieve integrated molding and manufacturing of the multi-layer structure of all-solid-state batteries, greatly simplifies the production process of all-solid-state batteries, and facilitates the mass production of all-solid-state batteries. It utilizes the mutual diffusion of the electrolyte layer and the electrode layer during the coating process to improve the ion transmission between the electrode and the electrolyte layer, thereby enhancing the rate performance of the all-solid-state battery.
本发明所述制备方法制备混合材料时采用的溶剂选自NMP(N-甲基吡咯烷酮)、甲苯、二甲苯、三甲苯、正戊烷、正己烷、正庚烷或正辛烷中的任意一种或至少两种的组合。The solvent used in the preparation method of the present invention when preparing the mixed material is selected from any one of NMP (N-methylpyrrolidone), toluene, xylene, trimethylbenzene, n-pentane, n-hexane, n-heptane or n-octane, or a combination of at least two thereof.
第三方面,本发明提供了一种电子设备,所述电子设备包括如第一方面所述的多层全固态电池。In a third aspect, the present invention provides an electronic device comprising the multi-layer all-solid-state battery as described in the first aspect.
相对于现有技术,本发明具有以下有益效果:Compared with the prior art, the present invention has the following beneficial effects:
本发明通过设计多层结构差异化电极配方提升电极动力学,在电极层内使用与电解质层匹配的电解质材料,正极层中加入的电解质材料与第一电解质层中的电解质材料相同,负极层中加入的电解质材料与第二电解质层中的电解质材料相同,实现了电解质材料的兼容;同时,本发明利用一体化三层涂布技术,一方面,实现了全固态电池多层结构的一体化成型制造,极大地简化了全固态电池生产工艺流程,助力了全固态电池的量产,另一方面,利用电解质层与电极层涂布过程中的互扩散,改善了电极与电解质层的离子传输,提升了全固态电池的倍率性能。The present invention improves electrode kinetics by designing a differentiated electrode formula with a multi-layer structure, uses electrolyte materials matching the electrolyte layer in the electrode layer, the electrolyte material added to the positive electrode layer is the same as the electrolyte material in the first electrolyte layer, and the electrolyte material added to the negative electrode layer is the same as the electrolyte material in the second electrolyte layer, thereby achieving compatibility of the electrolyte materials; at the same time, the present invention utilizes an integrated three-layer coating technology, which, on the one hand, realizes the integrated molding and manufacturing of the multi-layer structure of the all-solid-state battery, greatly simplifies the production process of the all-solid-state battery, and facilitates the mass production of the all-solid-state battery; on the other hand, utilizes the mutual diffusion during the coating process of the electrolyte layer and the electrode layer to improve the ion transmission between the electrode and the electrolyte layer, thereby improving the rate performance of the all-solid-state battery.
附图说明BRIEF DESCRIPTION OF THE DRAWINGS
图1为本发明实施例1所述多层全固态电池的结构示意图;FIG1 is a schematic diagram of the structure of a multilayer all-solid-state battery according to Example 1 of the present invention;
1-正极集流体,2-第一正极层,3-第二正极层,4-第一电解质层,5-第二电解质层,6-第二负极层,7-第一负极层,8-负极集流体。1-positive electrode current collector, 2-first positive electrode layer, 3-second positive electrode layer, 4-first electrolyte layer, 5-second electrolyte layer, 6-second negative electrode layer, 7-first negative electrode layer, 8-negative electrode current collector.
具体实施方式Detailed ways
下面通过具体实施方式来进一步说明本发明的技术方案。本领域技术人员应该明了,所述实施例仅仅是帮助理解本发明,不应视为对本发明的具体限制。The technical solution of the present invention is further described below by specific implementation methods. It should be understood by those skilled in the art that the embodiments are only used to help understand the present invention and should not be regarded as specific limitations of the present invention.
实施例1Example 1
本实施例提供了一种如图1所示的多层全固态电池,所述多层全固态电池包括依次层叠设置的正极集流体1、第一正极层2、第二正极层3、第一电解质层4、第二电解质层5、第二负极层6、第一负极层7和负极集流体8,所述第一正极层2、第二正极层3和第一电解质层4中包括相同的正极侧电解质材料,所述第一负极层7、第二负极层6和第二电解质层5中包括负极侧电解质材料;The present embodiment provides a multilayer all-solid-state battery as shown in FIG1 , wherein the multilayer all-solid-state battery comprises a positive electrode current collector 1, a first positive electrode layer 2, a second positive electrode layer 3, a first electrolyte layer 4, a second electrolyte layer 5, a second negative electrode layer 6, a first negative electrode layer 7 and a negative electrode current collector 8 stacked in sequence, wherein the first positive electrode layer 2, the second positive electrode layer 3 and the first electrolyte layer 4 comprise the same positive electrode side electrolyte material, and the first negative electrode layer 7, the second negative electrode layer 6 and the second electrolyte layer 5 comprise a negative electrode side electrolyte material;
所述第一正极层2包括90wt%的NCM811、0.5wt%的SP、0.25wt%的CNT、7wt%的Li3YCl6和2.25wt%的PVDF,厚度为70μm;The first positive electrode layer 2 includes 90wt% NCM811, 0.5wt% SP, 0.25wt% CNT, 7wt% Li 3 YCl 6 and 2.25wt% PVDF, and has a thickness of 70μm;
所述第二正极层3包括86.5wt%的NCM811、0.2wt%的SP、0.1wt%的CNT、12wt%的Li3YCl6和1.2wt%的PVDF,厚度为30μm,所述第一正极层2与第二正极层3的厚度比为2.33:1;The second positive electrode layer 3 includes 86.5wt% NCM811, 0.2wt% SP, 0.1wt% CNT, 12wt% Li 3 YCl 6 and 1.2wt% PVDF, with a thickness of 30 μm, and a thickness ratio of the first positive electrode layer 2 to the second positive electrode layer 3 is 2.33:1;
所述第一电解质层4包括99wt%的Li3YCl6和1wt%的PVDF,厚度为10μm;The first electrolyte layer 4 includes 99 wt% Li 3 YCl 6 and 1 wt% PVDF, and has a thickness of 10 μm;
所述第一负极层7包括85wt%的人造石墨、1wt%的SP、12wt%的Li3PS4和2wt%的NBR,厚度为80μm;The first negative electrode layer 7 comprises 85 wt% of artificial graphite, 1 wt% of SP, 12 wt% of Li 3 PS 4 and 2 wt% of NBR, and has a thickness of 80 μm;
所述第二负极层6包括81.5wt%的人造石墨、0.5wt%的SP、17wt%的Li3PS4和1wt%的NBR,厚度为35μm,所述第一负极层7与第二负极层6的厚度比为2.29:1;The second negative electrode layer 6 comprises 81.5 wt% of artificial graphite, 0.5 wt% of SP, 17 wt% of Li 3 PS 4 and 1 wt% of NBR, has a thickness of 35 μm, and a thickness ratio of the first negative electrode layer 7 to the second negative electrode layer 6 is 2.29:1;
所述第二电解质层5包括99wt%的Li3PS4和1wt%的NBR,厚度为10μm,所述第一电解质层4和第二电解质层5的厚度为1:1;The second electrolyte layer 5 includes 99 wt% of Li 3 PS 4 and 1 wt% of NBR, and has a thickness of 10 μm. The thickness of the first electrolyte layer 4 and the second electrolyte layer 5 is 1:1;
所述多层全固态电池的制备方法包括如下步骤:The method for preparing the multilayer all-solid-state battery comprises the following steps:
(1)按配方量,分别将第一正极层2、第二正极层3和第一电解质层4的组份加入到NMP中分散,利用三层涂布模头在涂布机上按顺序依次涂布到铝箔集流体面并烘干,得到正极电极;(1) adding the components of the first positive electrode layer 2, the second positive electrode layer 3 and the first electrolyte layer 4 into NMP according to the formula amount and dispersing them, coating them sequentially on the surface of the aluminum foil current collector on a coating machine using a three-layer coating die head and drying them to obtain a positive electrode;
(2)按配方量,分别将第一负极层7、第二负极层6和第二电解质层5的组份依次加入到对二甲苯溶剂中分散均匀后,利用三层涂布模头在涂布机上按顺序依次涂布到铜箔集流体表面并烘干,得到负极电极;(2) adding the components of the first negative electrode layer 7, the second negative electrode layer 6 and the second electrolyte layer 5 in order according to the formula amount to be uniformly dispersed in a p-xylene solvent, and then sequentially coating them on the surface of the copper foil current collector in a coating machine using a three-layer coating die head and drying them to obtain a negative electrode;
(3)将步骤(1)所述正极电极和步骤(2)所述负极电极模切到设定大小依次堆叠后等静压形成1Ah软包电池。(3) The positive electrode described in step (1) and the negative electrode described in step (2) are die-cut to a set size, stacked in sequence, and then isostatically pressed to form a 1Ah soft-pack battery.
实施例2Example 2
本实施例提供了一种多层全固态电池,所述多层全固态电池包括依次层叠设置的正极集流体、第一正极层、第二正极层、第一电解质层、第二电解质层、第二负极层、第一负极层和负极集流体,所述第一正极层、第二正极层和第一电解质层中包括相同的正极侧电解质材料,所述第一负极层、第二负极层和第二电解质层中包括负极侧电解质材料;The present embodiment provides a multi-layer all-solid-state battery, the multi-layer all-solid-state battery comprising a positive electrode current collector, a first positive electrode layer, a second positive electrode layer, a first electrolyte layer, a second electrolyte layer, a second negative electrode layer, a first negative electrode layer and a negative electrode current collector stacked in sequence, the first positive electrode layer, the second positive electrode layer and the first electrolyte layer comprising the same positive electrode side electrolyte material, the first negative electrode layer, the second negative electrode layer and the second electrolyte layer comprising a negative electrode side electrolyte material;
所述第一正极层包括95wt%的NCM811、0.3wt%的SP、0.3wt%的CNT、1.4wt%的Li3YCl6和3wt%的PVDF,厚度为30μm;The first positive electrode layer includes 95wt% NCM811, 0.3wt% SP, 0.3wt% CNT, 1.4wt% Li 3 YCl 6 and 3wt% PVDF, and has a thickness of 30μm;
所述第二正极层包括92wt%的NCM811、0.25wt%的SP、0.25wt%的CNT、5.5wt%的Li3YCl6和2wt%的PVDF,厚度为30μm,所述第一正极层与第二正极层的厚度比为1:1;The second positive electrode layer includes 92wt% NCM811, 0.25wt% SP, 0.25wt% CNT, 5.5wt% Li 3 YCl 6 and 2wt% PVDF, has a thickness of 30 μm, and a thickness ratio of the first positive electrode layer to the second positive electrode layer is 1:1;
所述第一电解质层包括95wt%的Li3YCl6和5wt%的PVDF,厚度为10μm;The first electrolyte layer includes 95wt% Li 3 YCl 6 and 5wt% PVDF, and has a thickness of 10 μm;
所述第一负极层包括95wt%的人造石墨、0.5wt%的SP、1.5wt%的Li3PS4和3wt%的NBR,厚度为35μm;The first negative electrode layer comprises 95wt% artificial graphite, 0.5wt% SP, 1.5wt% Li 3 PS 4 and 3wt% NBR, and has a thickness of 35 μm;
所述第二负极层包括93wt%的人造石墨、0.25wt%的SP、4.75wt%的Li3PS4和2wt%的NBR,厚度为35μm,所述第一负极层与第二负极层的厚度比为1:1;The second negative electrode layer comprises 93wt% of artificial graphite, 0.25wt% of SP, 4.75wt% of Li 3 PS 4 and 2wt% of NBR, has a thickness of 35 μm, and a thickness ratio of the first negative electrode layer to the second negative electrode layer is 1:1;
所述第二电解质层包括95wt%的Li3PS4和5wt%的NBR,厚度为20μm,所述第一电解质层和第二电解质层的厚度为0.5:1;The second electrolyte layer comprises 95 wt% of Li 3 PS 4 and 5 wt% of NBR, has a thickness of 20 μm, and the thickness of the first electrolyte layer and the second electrolyte layer is 0.5:1;
所述多层全固态电池的制备方法包括如下步骤:The method for preparing the multilayer all-solid-state battery comprises the following steps:
(1)按配方量,分别将第一正极层、第二正极层和第一电解质层的组份加入到NMP中分散,利用三层涂布模头在涂布机上按顺序依次涂布到铝箔集流体面并烘干,得到正极电极;(1) adding the components of the first positive electrode layer, the second positive electrode layer and the first electrolyte layer into NMP according to the formula amount and dispersing them, coating them on the surface of the aluminum foil current collector in sequence on a coating machine using a three-layer coating die head and drying them to obtain a positive electrode;
(2)按配方量,分别将第一负极层、第二负极层和第二电解质层的组份依次加入到对二甲苯溶剂中分散均匀后,利用三层涂布模头在涂布机上按顺序依次涂布到铜箔集流体表面并烘干,得到负极电极;(2) adding the components of the first negative electrode layer, the second negative electrode layer and the second electrolyte layer into a p-xylene solvent in order according to the formula amount and dispersing them evenly, and then coating them on the surface of the copper foil current collector in order in a coating machine using a three-layer coating die head and drying them to obtain a negative electrode;
(3)将步骤(1)所述正极电极和步骤(2)所述负极电极模切到设定大小依次堆叠后等静压形成1Ah软包电池。(3) The positive electrode described in step (1) and the negative electrode described in step (2) are die-cut to a set size, stacked in sequence, and then isostatically pressed to form a 1Ah soft-pack battery.
实施例3Example 3
本实施例提供了一种多层全固态电池,所述多层全固态电池包括依次层叠设置的正极集流体、第一正极层、第二正极层、第一电解质层、第二电解质层、第二负极层、第一负极层和负极集流体,所述第一正极层、第二正极层和第一电解质层中包括相同的正极侧电解质材料,所述第一负极层、第二负极层和第二电解质层中包括所述负极侧电解质材料;The present embodiment provides a multi-layer all-solid-state battery, the multi-layer all-solid-state battery comprising a positive electrode current collector, a first positive electrode layer, a second positive electrode layer, a first electrolyte layer, a second electrolyte layer, a second negative electrode layer, a first negative electrode layer and a negative electrode current collector stacked in sequence, the first positive electrode layer, the second positive electrode layer and the first electrolyte layer comprising the same positive electrode side electrolyte material, the first negative electrode layer, the second negative electrode layer and the second electrolyte layer comprising the negative electrode side electrolyte material;
所述第一正极层包括85wt%的NCM811、1wt%的SP、1wt%的CNT、12wt%的Li3YCl6和1wt%的PVDF,厚度为90μm;The first positive electrode layer includes 85wt% NCM811, 1wt% SP, 1wt% CNT, 12wt% Li 3 YCl 6 and 1wt% PVDF, and has a thickness of 90 μm;
所述第二正极层包括74wt%的NCM811、0.25wt%的SP、0.25wt%的CNT、25wt%的Li3YCl6和0.5wt%的PVDF,厚度为30μm,所述第一正极层与第二正极层的厚度比为3:1;The second positive electrode layer includes 74wt% NCM811, 0.25wt% SP, 0.25wt% CNT, 25wt% Li 3 YC l6 and 0.5wt% PVDF, has a thickness of 30μm, and a thickness ratio of the first positive electrode layer to the second positive electrode layer is 3:1;
所述第一电解质层包括99wt%的Li3YCl6和1wt%的PVDF,厚度为20μm;The first electrolyte layer includes 99 wt% Li 3 YCl 6 and 1 wt% PVDF, and has a thickness of 20 μm;
所述第一负极层包括71wt%的人造石墨、3wt%的SP、25wt%的Li3PS4和1wt%的NBR,厚度为105μm;The first negative electrode layer includes 71wt% artificial graphite, 3wt% SP, 25wt% Li 3 PS 4 and 1wt% NBR, and has a thickness of 105 μm;
所述第二负极层包括68wt%的人造石墨、1wt%的SP、30wt%的Li3PS4和1wt%的NBR,厚度为35μm,所述第一负极层与第二负极层的厚度比为3:1;The second negative electrode layer comprises 68 wt% of artificial graphite, 1 wt% of SP, 30 wt% of Li 3 PS 4 and 1 wt% of NBR, has a thickness of 35 μm, and a thickness ratio of the first negative electrode layer to the second negative electrode layer is 3:1;
所述第二电解质层包括99wt%的Li3PS4和1wt%的NBR,厚度为10μm,所述第一电解质层和第二电解质层的厚度为2:1;The second electrolyte layer comprises 99 wt% of Li 3 PS 4 and 1 wt% of NBR, has a thickness of 10 μm, and the thickness of the first electrolyte layer and the second electrolyte layer is 2:1;
所述多层全固态电池的制备方法包括如下步骤:The method for preparing the multilayer all-solid-state battery comprises the following steps:
(1)按配方量,分别将第一正极层、第二正极层和第一电解质层的组份加入到NMP中分散,利用三层涂布模头在涂布机上按顺序依次涂布到铝箔集流体面并烘干,得到正极电极;(1) adding the components of the first positive electrode layer, the second positive electrode layer and the first electrolyte layer into NMP according to the formula amount and dispersing them, coating them on the surface of the aluminum foil current collector in sequence on a coating machine using a three-layer coating die head and drying them to obtain a positive electrode;
(2)按配方量,分别将第一负极层、第二负极层和第二电解质层的组份依次加入到对二甲苯溶剂中分散均匀后,利用三层涂布模头在涂布机上按顺序依次涂布到铜箔集流体表面并烘干,得到负极电极;(2) adding the components of the first negative electrode layer, the second negative electrode layer and the second electrolyte layer into a p-xylene solvent in order according to the formula amount and dispersing them evenly, and then coating them on the surface of the copper foil current collector in order in a coating machine using a three-layer coating die head and drying them to obtain a negative electrode;
(3)将步骤(1)所述正极电极和步骤(2)所述负极电极模切到设定大小依次堆叠后等静压形成1Ah软包电池。(3) The positive electrode described in step (1) and the negative electrode described in step (2) are die-cut to a set size, stacked in sequence, and then isostatically pressed to form a 1Ah soft-pack battery.
实施例4Example 4
本实施例提供了一种多层全固态电池,所述多层全固态电池除了所述第一正极层包括86.5wt%的NCM811、0.2wt%的SP、0.1wt%的CNT、12wt%的Li3YCl6和1.2wt%的PVDF,第二正极层包括90wt%的NCM811、0.5wt%的SP、0.25wt%的CNT、7wt%的Li3YCl6和2.25wt%的PVDF以外,其余均与实施例1相同。The present embodiment provides a multi-layer all-solid-state battery, which is the same as that in Embodiment 1, except that the first positive electrode layer includes 86.5wt% of NCM811, 0.2wt% of SP, 0.1wt% of CNT, 12wt% of Li 3 YCl 6 and 1.2wt% of PVDF, and the second positive electrode layer includes 90wt% of NCM811, 0.5wt% of SP, 0.25wt% of CNT, 7wt% of Li 3 YCl 6 and 2.25wt% of PVDF.
实施例5Example 5
本实施例提供了一种多层全固态电池,所述多层全固态电池除了所述第一负极层包括81.5wt%的人造石墨、0.5wt%的SP、17wt%的Li3PS4和1wt%的NBR,第二负极层包括85wt%的人造石墨、1wt%的SP、12wt%的Li3PS4和2wt%的NBR以外,其余均与实施例1相同。The present embodiment provides a multilayer all-solid-state battery, which is the same as that of Embodiment 1, except that the first negative electrode layer comprises 81.5wt% of artificial graphite, 0.5wt% of SP, 17wt% of Li 3 PS 4 and 1wt% of NBR, and the second negative electrode layer comprises 85wt% of artificial graphite, 1wt% of SP, 12wt% of Li 3 PS 4 and 2wt% of NBR.
对比例1Comparative Example 1
本对比例提供了一种多层全固态电池,所述多层全固态电池包括依次层叠设置的正极集流体、正极层、电解质层、负极层和负极集流体;This comparative example provides a multi-layer all-solid-state battery, the multi-layer all-solid-state battery comprising a positive electrode current collector, a positive electrode layer, an electrolyte layer, a negative electrode layer and a negative electrode current collector stacked in sequence;
所述正极层包括90wt%的NCM811、0.5wt%的SP、0.25wt%的CNT、7wt%的Li3YCl6和2.25wt%的NBR,厚度为95μm;The positive electrode layer includes 90wt% NCM811, 0.5wt% SP, 0.25wt% CNT, 7wt% Li 3 YCl 6 and 2.25wt% NBR, and has a thickness of 95μm;
所述负极层包括85wt%的人造石墨、1wt%的SP、12wt%的Li3PS4和2wt%的NBR,厚度为105μm;The negative electrode layer includes 85wt% artificial graphite, 1wt% SP, 12wt% Li 3 PS 4 and 2wt% NBR, and has a thickness of 105 μm;
所述电解质层包括99wt%的Li3PS4和1wt%的PTFE,厚度20μm;The electrolyte layer includes 99 wt% Li 3 PS 4 and 1 wt% PTFE, and has a thickness of 20 μm;
所述全固态电池的制备方法包括如下步骤:The preparation method of the all-solid-state battery comprises the following steps:
按配方量,分别将正极层、负极层和电解质层的组份均匀分散在甲苯溶液中形成均匀混合材料,依次涂布到铝箔、铜箔、PET膜表面和烘干后形成正极、负极、电解质膜;According to the formula, the components of the positive electrode layer, the negative electrode layer and the electrolyte layer are uniformly dispersed in a toluene solution to form a uniform mixed material, which is then coated on the surface of the aluminum foil, the copper foil and the PET film in turn and dried to form the positive electrode, the negative electrode and the electrolyte membrane;
将以上正极、电解质膜、负极裁切为设计大小,堆叠软包封装后等静压形成1Ah软包电池。The above positive electrode, electrolyte membrane and negative electrode are cut into designed size, stacked and soft-packed, and then isostatically pressed to form a 1Ah soft-pack battery.
对比例2Comparative Example 2
本对比例提供了一种全固态电池,所述全固态电池除了将第一正极层等厚度替换为第二正极层,第一负极层等厚度替换为第二负极层,第一电解质层等厚度替换为第二电解质层以外,其余均与实施例1相同。This comparative example provides an all-solid-state battery, which is the same as Example 1 except that the first positive electrode layer of equal thickness is replaced by the second positive electrode layer, the first negative electrode layer of equal thickness is replaced by the second negative electrode layer, and the first electrolyte layer of equal thickness is replaced by the second electrolyte layer.
对比例3Comparative Example 3
本对比例提供了一种全固态电池,所述全固态电池除了将第一电解质层中的Li3YCl6等质量替换为Li3PS4,将第二电解质层中的Li3PS4等质量替换为Li3YCl6以外,其余均与实施例1相同。This comparative example provides an all-solid-state battery, which is the same as Example 1 except that the mass of Li 3 YCl 6 in the first electrolyte layer is replaced by Li 3 PS 4 , and the mass of Li 3 PS 4 in the second electrolyte layer is replaced by Li 3 YCl 6 .
以上实施例和对比例提供的全固态电池进行电化学性能测试,测试首效:0.2C放电容量除0.05C首次充电容量;The all-solid-state batteries provided in the above embodiments and comparative examples were subjected to electrochemical performance tests, and the first efficiency of the test was: 0.2C discharge capacity divided by 0.05C first charge capacity;
1C容量保持率:1C倍率放电容量除以0.2C倍率放电容量;1C capacity retention rate: 1C rate discharge capacity divided by 0.2C rate discharge capacity;
室温循环寿命:0.5C充放电直至容量保持率达到80%的循环次数。Room temperature cycle life: The number of cycles at 0.5C charge and discharge until the capacity retention rate reaches 80%.
测试结果如表1所示:The test results are shown in Table 1:
表1Table 1
从表1可以看出:From Table 1 we can see that:
由实施例1与对比例1-2可知,本发明通过多层设计,能够提升电池性能,对比例1的正极层仅为第一正极层,负极层仅为第一负极层,电解质层仅为第二电解质层,对比例2的正极层仅为第二正极层,负极层仅为第二负极层,电解质层仅为第一电解质层,得到的全固态电池的性能均不及实施例1;由实施例1与对比例3可知,本发明第一电解质层和第二电解质层中的电解质材料选择要与正极侧和负极侧相匹配,否则将会降低电池内部兼容性,从而使全固态电池的性能下降;由实施例1与实施例4-5可知,本发明不同层所在位置不同,组成也不同,若第一正极层和第二正极层组成互换,或者第一负极层和第二负极层的组成互换,同样会影响电池的性能。It can be seen from Example 1 and Comparative Examples 1-2 that the present invention can improve battery performance through a multi-layer design. The positive electrode layer of Comparative Example 1 is only the first positive electrode layer, the negative electrode layer is only the first negative electrode layer, and the electrolyte layer is only the second electrolyte layer. The positive electrode layer of Comparative Example 2 is only the second positive electrode layer, the negative electrode layer is only the second negative electrode layer, and the electrolyte layer is only the first electrolyte layer. The performance of the obtained all-solid-state batteries is not as good as that of Example 1; It can be seen from Example 1 and Comparative Example 3 that the electrolyte materials in the first electrolyte layer and the second electrolyte layer of the present invention must be matched with the positive electrode side and the negative electrode side, otherwise the internal compatibility of the battery will be reduced, thereby reducing the performance of the all-solid-state battery; It can be seen from Example 1 and Examples 4-5 that different layers of the present invention are located in different positions and have different compositions. If the compositions of the first positive electrode layer and the second positive electrode layer are interchanged, or the compositions of the first negative electrode layer and the second negative electrode layer are interchanged, it will also affect the performance of the battery.
综上所述,本发明提供一种多层全固态电池及其制备方法与应用,所述多层全固态电池通过设计多层结构差异化电极,提升了电极动力学以及正负极电解质的兼容性,改善了电极与电解质层的离子传输,提升了全固态电池的倍率性能。In summary, the present invention provides a multilayer all-solid-state battery and its preparation method and application. The multilayer all-solid-state battery improves the electrode kinetics and the compatibility of positive and negative electrode electrolytes by designing multilayer structure differentiated electrodes, improves the ion transmission between the electrode and the electrolyte layer, and improves the rate performance of the all-solid-state battery.
以上所述仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,所属技术领域的技术人员应该明了,任何属于本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到的变化或替换,均落在本发明的保护范围和公开范围之内。The above description is only a specific implementation mode of the present invention, but the protection scope of the present invention is not limited thereto. Those skilled in the art should understand that any changes or substitutions that can be easily thought of by those skilled in the art within the technical scope disclosed by the present invention are within the protection scope and disclosure scope of the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202410261537.7A CN117996218A (en) | 2024-03-07 | 2024-03-07 | Multilayer all-solid-state battery and preparation method and application thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202410261537.7A CN117996218A (en) | 2024-03-07 | 2024-03-07 | Multilayer all-solid-state battery and preparation method and application thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
CN117996218A true CN117996218A (en) | 2024-05-07 |
Family
ID=90901326
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202410261537.7A Pending CN117996218A (en) | 2024-03-07 | 2024-03-07 | Multilayer all-solid-state battery and preparation method and application thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN117996218A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN118572027A (en) * | 2024-08-02 | 2024-08-30 | 远景动力技术(鄂尔多斯市)有限公司 | Multilayer all-solid-state composite positive electrode sheet and all-solid-state battery |
CN118588941A (en) * | 2024-08-07 | 2024-09-03 | 远景动力技术(鄂尔多斯市)有限公司 | All-solid-state dry-process negative electrode sheet and all-solid-state battery |
CN118588942A (en) * | 2024-08-07 | 2024-09-03 | 远景动力技术(鄂尔多斯市)有限公司 | All-solid-state dry-process positive electrode sheet and all-solid-state battery |
CN118676307A (en) * | 2024-06-24 | 2024-09-20 | 高能时代(深圳)新能源科技有限公司 | Composite negative electrode plate, preparation method thereof and all-solid-state lithium ion battery |
CN119419372A (en) * | 2025-01-06 | 2025-02-11 | 上海屹锂新能源科技有限公司 | A full-solid-state battery cell with a three-dimensional interlaced lithium ion conduction network and its preparation method and application |
Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105556731A (en) * | 2013-09-02 | 2016-05-04 | 三菱瓦斯化学株式会社 | Solid-state battery |
WO2017190367A1 (en) * | 2016-05-06 | 2017-11-09 | 深圳先进技术研究院 | Secondary battery and preparation method therefor |
CN108417883A (en) * | 2017-02-09 | 2018-08-17 | 松下知识产权经营株式会社 | All solid state battery and its manufacturing method |
JP2018195523A (en) * | 2017-05-22 | 2018-12-06 | アルプス電気株式会社 | All-solid-state secondary battery and method of manufacturing all-solid-state secondary battery |
CN110336085A (en) * | 2019-05-28 | 2019-10-15 | 浙江锋锂新能源科技有限公司 | A method of reduction sulfide electrolyte solid state battery internal resistance |
CN112164830A (en) * | 2020-09-21 | 2021-01-01 | 重庆市紫建电子股份有限公司 | Button lithium battery containing solid electrolyte and manufacturing method thereof |
WO2021025418A1 (en) * | 2019-08-05 | 2021-02-11 | 주식회사 티디엘 | Multi-stack monopolar all-solid-state battery |
CN112436103A (en) * | 2020-12-11 | 2021-03-02 | 湖北亿纬动力有限公司 | Double-layer structure pole piece and preparation method and application thereof |
CN112701347A (en) * | 2020-12-25 | 2021-04-23 | 珠海冠宇电池股份有限公司 | Electrochemical device and electronic equipment |
CN112993382A (en) * | 2021-02-07 | 2021-06-18 | 珠海冠宇电池股份有限公司 | Flexible solid-state battery |
CN114497752A (en) * | 2022-01-28 | 2022-05-13 | 蜂巢能源科技(无锡)有限公司 | All-solid-state battery cell and preparation method and application thereof |
CN114824457A (en) * | 2022-05-05 | 2022-07-29 | 上海屹锂新能源科技有限公司 | High-performance sulfide all-solid-state battery with double-layer electrolyte based on lithium-silicon alloy cathode |
CN115458801A (en) * | 2022-09-23 | 2022-12-09 | 浙江工业大学 | Composite solid electrolyte film and preparation method and application thereof |
-
2024
- 2024-03-07 CN CN202410261537.7A patent/CN117996218A/en active Pending
Patent Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105556731A (en) * | 2013-09-02 | 2016-05-04 | 三菱瓦斯化学株式会社 | Solid-state battery |
WO2017190367A1 (en) * | 2016-05-06 | 2017-11-09 | 深圳先进技术研究院 | Secondary battery and preparation method therefor |
CN108417883A (en) * | 2017-02-09 | 2018-08-17 | 松下知识产权经营株式会社 | All solid state battery and its manufacturing method |
JP2018195523A (en) * | 2017-05-22 | 2018-12-06 | アルプス電気株式会社 | All-solid-state secondary battery and method of manufacturing all-solid-state secondary battery |
CN110336085A (en) * | 2019-05-28 | 2019-10-15 | 浙江锋锂新能源科技有限公司 | A method of reduction sulfide electrolyte solid state battery internal resistance |
WO2021025418A1 (en) * | 2019-08-05 | 2021-02-11 | 주식회사 티디엘 | Multi-stack monopolar all-solid-state battery |
CN112164830A (en) * | 2020-09-21 | 2021-01-01 | 重庆市紫建电子股份有限公司 | Button lithium battery containing solid electrolyte and manufacturing method thereof |
CN112436103A (en) * | 2020-12-11 | 2021-03-02 | 湖北亿纬动力有限公司 | Double-layer structure pole piece and preparation method and application thereof |
CN112701347A (en) * | 2020-12-25 | 2021-04-23 | 珠海冠宇电池股份有限公司 | Electrochemical device and electronic equipment |
CN112993382A (en) * | 2021-02-07 | 2021-06-18 | 珠海冠宇电池股份有限公司 | Flexible solid-state battery |
CN114497752A (en) * | 2022-01-28 | 2022-05-13 | 蜂巢能源科技(无锡)有限公司 | All-solid-state battery cell and preparation method and application thereof |
CN114824457A (en) * | 2022-05-05 | 2022-07-29 | 上海屹锂新能源科技有限公司 | High-performance sulfide all-solid-state battery with double-layer electrolyte based on lithium-silicon alloy cathode |
CN115458801A (en) * | 2022-09-23 | 2022-12-09 | 浙江工业大学 | Composite solid electrolyte film and preparation method and application thereof |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN118676307A (en) * | 2024-06-24 | 2024-09-20 | 高能时代(深圳)新能源科技有限公司 | Composite negative electrode plate, preparation method thereof and all-solid-state lithium ion battery |
CN118676307B (en) * | 2024-06-24 | 2025-07-01 | 高能时代(深圳)新能源科技有限公司 | A composite negative electrode sheet and preparation method thereof and all-solid-state lithium-ion battery |
CN118572027A (en) * | 2024-08-02 | 2024-08-30 | 远景动力技术(鄂尔多斯市)有限公司 | Multilayer all-solid-state composite positive electrode sheet and all-solid-state battery |
CN118572027B (en) * | 2024-08-02 | 2024-12-31 | 远景动力技术(鄂尔多斯市)有限公司 | Multilayer all-solid-state composite positive electrode plate and all-solid-state battery |
CN118588941A (en) * | 2024-08-07 | 2024-09-03 | 远景动力技术(鄂尔多斯市)有限公司 | All-solid-state dry-process negative electrode sheet and all-solid-state battery |
CN118588942A (en) * | 2024-08-07 | 2024-09-03 | 远景动力技术(鄂尔多斯市)有限公司 | All-solid-state dry-process positive electrode sheet and all-solid-state battery |
CN119419372A (en) * | 2025-01-06 | 2025-02-11 | 上海屹锂新能源科技有限公司 | A full-solid-state battery cell with a three-dimensional interlaced lithium ion conduction network and its preparation method and application |
CN119419372B (en) * | 2025-01-06 | 2025-03-25 | 上海屹锂新能源科技有限公司 | A full-solid-state battery cell with a three-dimensional interlaced lithium ion conduction network and its preparation method and application |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN117996218A (en) | Multilayer all-solid-state battery and preparation method and application thereof | |
CN111435761B (en) | All-solid-state lithium ion battery and hot-pressing preparation method of multilayer electrolyte membrane thereof | |
CN111697230B (en) | High-safety composite positive plate, preparation method thereof and lithium ion battery using high-safety composite positive plate | |
CN107958993A (en) | Lithium ion battery positive plate coated with composite conductive agent in layered mode and preparation method of lithium ion battery positive plate | |
CN114864867B (en) | Positive pole piece of lithium ion battery and preparation method and application thereof | |
CN114665065A (en) | Positive pole piece and preparation method and application thereof | |
CN112331913A (en) | Composite solid electrolyte, preparation method and application | |
CN109037592A (en) | Lithium ion battery positive plate, preparation method thereof and lithium ion battery | |
CN112713266A (en) | Negative electrode slurry and application thereof | |
CN110224107A (en) | A kind of solid state battery electrode and preparation method thereof and a kind of solid state battery | |
CN115172712A (en) | Negative electrode material and application thereof | |
CN113363419B (en) | Negative pole piece and preparation method and application thereof | |
CN113725496B (en) | Ternary system start-stop lithium ion battery and preparation method thereof | |
WO2025139097A1 (en) | Electrode, secondary battery, and electric device | |
WO2025130004A1 (en) | Positive electrode sheet, preparation method for positive electrode sheet, and lithium-ion battery | |
CN118867128A (en) | Composite negative electrode sheet and lithium ion battery | |
CN118782893A (en) | All-solid-state battery containing conductive polymer composite 3D spherical graphene aluminum-doped lithium zirconium oxygen solid electrolyte membrane and preparation method thereof | |
CN117334836A (en) | A kind of positive electrode sheet and battery | |
CN114497440B (en) | A negative electrode sheet and a battery including the negative electrode sheet | |
WO2024192642A1 (en) | Composite separator, secondary battery, and electric apparatus | |
CN115020638B (en) | Lithium ion battery | |
CN115954433A (en) | Functional coating for electrode pole piece, positive pole piece and preparation method, lithium ion battery | |
CN115719812A (en) | Composite current collector, positive plate, preparation methods of composite current collector and positive plate, battery and electric equipment | |
CN114899498A (en) | All-solid-state battery and preparation method thereof | |
CN113948710A (en) | Positive current collector, positive plate and lithium ion battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |