CN117992992B - A scalable satellite intelligence data cloud platform secure storage method and system - Google Patents
A scalable satellite intelligence data cloud platform secure storage method and system Download PDFInfo
- Publication number
- CN117992992B CN117992992B CN202410404739.2A CN202410404739A CN117992992B CN 117992992 B CN117992992 B CN 117992992B CN 202410404739 A CN202410404739 A CN 202410404739A CN 117992992 B CN117992992 B CN 117992992B
- Authority
- CN
- China
- Prior art keywords
- remote sensing
- satellite remote
- sensing image
- image blocks
- pixel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims abstract description 28
- 230000006870 function Effects 0.000 claims description 35
- 238000012545 processing Methods 0.000 claims description 35
- 238000013507 mapping Methods 0.000 abstract description 4
- 238000013527 convolutional neural network Methods 0.000 description 3
- 230000008878 coupling Effects 0.000 description 3
- 238000010168 coupling process Methods 0.000 description 3
- 238000005859 coupling reaction Methods 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 101001121408 Homo sapiens L-amino-acid oxidase Proteins 0.000 description 2
- 102100026388 L-amino-acid oxidase Human genes 0.000 description 2
- 238000004891 communication Methods 0.000 description 2
- 238000013135 deep learning Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 238000010295 mobile communication Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F21/00—Security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
- G06F21/60—Protecting data
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/10—Image acquisition
- G06V10/16—Image acquisition using multiple overlapping images; Image stitching
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/20—Image preprocessing
- G06V10/26—Segmentation of patterns in the image field; Cutting or merging of image elements to establish the pattern region, e.g. clustering-based techniques; Detection of occlusion
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/40—Extraction of image or video features
- G06V10/56—Extraction of image or video features relating to colour
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/70—Arrangements for image or video recognition or understanding using pattern recognition or machine learning
- G06V10/764—Arrangements for image or video recognition or understanding using pattern recognition or machine learning using classification, e.g. of video objects
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V20/00—Scenes; Scene-specific elements
- G06V20/10—Terrestrial scenes
- G06V20/13—Satellite images
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Multimedia (AREA)
- Health & Medical Sciences (AREA)
- Software Systems (AREA)
- General Health & Medical Sciences (AREA)
- Evolutionary Computation (AREA)
- Remote Sensing (AREA)
- Computing Systems (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Medical Informatics (AREA)
- Artificial Intelligence (AREA)
- Astronomy & Astrophysics (AREA)
- Databases & Information Systems (AREA)
- Bioethics (AREA)
- Computer Hardware Design (AREA)
- Computer Security & Cryptography (AREA)
- General Engineering & Computer Science (AREA)
- Image Analysis (AREA)
- Image Processing (AREA)
Abstract
Description
技术领域Technical Field
本发明属于卫星情报安全存储技术领域,更具体地,涉及一种可扩展的卫星情报数据云平台安全存储方法及系统。The present invention belongs to the technical field of satellite intelligence security storage, and more specifically, relates to an expandable satellite intelligence data cloud platform security storage method and system.
背景技术Background technique
图像拼接是将多幅图像合并成一幅更大的图像的过程。这个过程在计算机视觉、摄影、地理信息系统(GIS)等领域中都有广泛的应用。以下是图像拼接技术的一些现状和常见方法:Image stitching is the process of combining multiple images into a larger image. This process has a wide range of applications in computer vision, photography, geographic information systems (GIS), and other fields. The following are some of the current status and common methods of image stitching technology:
基于全景图的方法:全景图拼接:这种方法通常使用全景相机或通过拍摄多张图像,然后使用全景拼接软件(如Adobe Photoshop中的Photomerge功能)将它们拼接成一个全景图。Panorama-based methods: Panorama stitching: This method usually uses a panoramic camera or by taking multiple images and then stitching them into a panorama using panoramic stitching software (such as the Photomerge function in Adobe Photoshop).
深度学习方法:卷积神经网络(CNN):深度学习方法在图像拼接中也取得了一些成功。CNN可以学习图像中的特征,并在图像拼接任务中提供令人满意的结果。Deep learning methods: Convolutional neural network (CNN): Deep learning methods have also achieved some success in image stitching. CNN can learn the features in the image and provide satisfactory results in the image stitching task.
生成对抗网络(GAN):GAN可以生成逼真的图像,因此可以用于生成缺失的部分,从而实现图像拼接。Generative Adversarial Networks (GANs): GANs can generate realistic images and thus can be used to generate missing parts, thus achieving image stitching.
但是现有技术中的图像拼接技术并不考虑数据安全的问题,且拼接的精度也不理想。However, the image stitching technology in the prior art does not consider the issue of data security, and the stitching accuracy is not ideal.
发明内容Summary of the invention
为解决以上技术问题,本发明提出一种可扩展的卫星情报数据云平台安全存储方法,包括:In order to solve the above technical problems, the present invention proposes a scalable satellite intelligence data cloud platform security storage method, comprising:
提取所述卫星情报数据中的卫星遥感图像,将所述卫星遥感图像进行切割,生成多个卫星遥感图像块,并分别存储在云平台的多个区域中,并根据卫星遥感图像块对云平台进行拓展;Extracting satellite remote sensing images from the satellite intelligence data, cutting the satellite remote sensing images to generate multiple satellite remote sensing image blocks, storing them in multiple areas of the cloud platform respectively, and expanding the cloud platform according to the satellite remote sensing image blocks;
获取卫星遥感图像块中每个位置所属的特征分类,设置基于特征分类的卫星遥感图像拼接模型,将多个卫星遥感图像块中属于相同特征分类的图像进行拼接,同时,设置基于颜色的卫星遥感图像拼接模型,将多个卫星遥感图像块按照像素的颜色值进行拼接,并映射到已完成特征拼接的卫星遥感图像上;Obtain the feature classification of each position in the satellite remote sensing image block, set a satellite remote sensing image stitching model based on feature classification, and stitch images belonging to the same feature classification in multiple satellite remote sensing image blocks. At the same time, set a satellite remote sensing image stitching model based on color, stitch multiple satellite remote sensing image blocks according to the color value of the pixel, and map them to the satellite remote sensing image that has completed feature stitching;
设置用户密级,并根据用户密级,为用户分配能够进行拼接的卫星遥感图像块的块数,用户密级越高,能够拼接的卫星遥感图像块的块数越多。The user security level is set, and according to the user security level, the number of satellite remote sensing image blocks that can be stitched is allocated to the user. The higher the user security level, the more satellite remote sensing image blocks that can be stitched.
进一步的,所述基于特征分类的卫星遥感图像拼接模型包括:Furthermore, the satellite remote sensing image stitching model based on feature classification includes:
, ,
其中,为在坐标处属于第个特征分类的图像完成特征拼接后的像素值,为卫星遥感图像块中在坐标处属于第个特征分类的像素值梯度,为卫星遥感图像块中在坐标处属于第个特征分类的像素值梯度,为用于控制梯度相似性的梯度调整因子,为卫星遥感图像块在坐标处属于第个特征分类图像的像素值,为卫星遥感图像块在坐标处属于第个特征分类图像的像素值。in, For the coordinates Belongs to The pixel value of the image classified by each feature after feature splicing is completed. Satellite remote sensing image blocks Central coordinates Belongs to The pixel value gradient of feature classification, Satellite remote sensing image blocks Central coordinates Belongs to The pixel value gradient of feature classification, is the gradient adjustment factor used to control the gradient similarity, Satellite remote sensing image blocks In coordinates Belongs to The pixel values of the feature classification image, Satellite remote sensing image blocks In coordinates Belongs to The pixel values of the feature classification image.
进一步的,所述基于颜色的卫星遥感图像拼接模型包括:Furthermore, the color-based satellite remote sensing image stitching model includes:
, ,
其中,为在坐标处完成颜色拼接后像素的颜色值,为调节权重,为卫星遥感图像块在坐标处像素的颜色值的处理函数,为卫星遥感图像块在坐标处像素的颜色值的处理函数。in, For the coordinates The color value of the pixel after color splicing is completed. To adjust the weight, Satellite remote sensing image blocks In coordinates The color value of the pixel at The processing function, Satellite remote sensing image blocks In coordinates The color value of the pixel at The processing function.
进一步的,卫星遥感图像块在坐标处像素的颜色值的处理函数包括:Furthermore, satellite remote sensing image blocks In coordinates The color value of the pixel at The processing function include:
, ,
其中,为颜色梯度的方向,为卫星遥感图像块在坐标处像素的颜色值的梯度,为卫星遥感图像块颜色梯度的调整因子。in, is the direction of the color gradient, Satellite remote sensing image blocks In coordinates The color value of the pixel at The gradient of Satellite remote sensing image blocks Adjustment factor for the color gradient.
进一步的,卫星遥感图像块在坐标处像素的颜色值的处理函数包括:Furthermore, satellite remote sensing image blocks In coordinates The color value of the pixel at The processing function include:
, ,
其中,为卫星遥感图像块在坐标处像素的颜色值的梯度,为卫星遥感图像块颜色值的平均值,为卫星遥感图像块颜色梯度的调整因子,为正常数。in, Satellite remote sensing image blocks In coordinates The color value of the pixel at The gradient of Satellite remote sensing image blocks The average color value, Satellite remote sensing image blocks The adjustment factor for the color gradient, Is a normal number.
本发明还提出一种可扩展的卫星情报数据云平台安全存储系统,包括:The present invention also proposes an expandable satellite intelligence data cloud platform security storage system, comprising:
切割模块,用于提取所述卫星情报数据中的卫星遥感图像,将所述卫星遥感图像进行切割,生成多个卫星遥感图像块,并分别存储在云平台的多个区域中,并根据卫星遥感图像块对云平台进行拓展;A cutting module is used to extract satellite remote sensing images from the satellite intelligence data, cut the satellite remote sensing images, generate multiple satellite remote sensing image blocks, store them in multiple areas of the cloud platform respectively, and expand the cloud platform according to the satellite remote sensing image blocks;
拼接模块,用于获取卫星遥感图像块中每个位置所属的特征分类,设置基于特征分类的卫星遥感图像拼接模型,将多个卫星遥感图像块中属于相同特征分类的图像进行拼接,同时,设置基于颜色的卫星遥感图像拼接模型,将多个卫星遥感图像块按照像素的颜色值进行拼接,并映射到已完成特征拼接的卫星遥感图像上;A stitching module is used to obtain the feature classification of each position in the satellite remote sensing image block, set a satellite remote sensing image stitching model based on feature classification, and stitch images belonging to the same feature classification in multiple satellite remote sensing image blocks. At the same time, a satellite remote sensing image stitching model based on color is set to stitch multiple satellite remote sensing image blocks according to the color value of the pixel, and map them to the satellite remote sensing image that has completed feature stitching;
安全模块,用于设置用户密级,并根据用户密级,为用户分配能够进行拼接的卫星遥感图像块的块数,用户密级越高,能够拼接的卫星遥感图像块的块数越多。The security module is used to set the user security level and allocate the number of satellite remote sensing image blocks that can be spliced to the user according to the user security level. The higher the user security level, the more satellite remote sensing image blocks that can be spliced.
进一步的,所述基于特征分类的卫星遥感图像拼接模型包括:Furthermore, the satellite remote sensing image stitching model based on feature classification includes:
, ,
其中,为在坐标处属于第个特征分类的图像完成特征拼接后的像素值,为卫星遥感图像块中在坐标处属于第个特征分类的像素值梯度,为卫星遥感图像块中在坐标处属于第个特征分类的像素值梯度,为用于控制梯度相似性的梯度调整因子,为卫星遥感图像块在坐标处属于第个特征分类图像的像素值,为卫星遥感图像块在坐标处属于第个特征分类图像的像素值。in, For the coordinates Belongs to The pixel value of the image classified by each feature after feature splicing is completed. Satellite remote sensing image blocks Central coordinates Belongs to The pixel value gradient of feature classification, Satellite remote sensing image blocks Central coordinates Belongs to The pixel value gradient of feature classification, is the gradient adjustment factor used to control the gradient similarity, Satellite remote sensing image blocks In coordinates Belongs to The pixel values of the feature classification image, Satellite remote sensing image blocks In coordinates Belongs to The pixel values of the feature classification image.
进一步的,所述基于颜色的卫星遥感图像拼接模型包括:Furthermore, the color-based satellite remote sensing image stitching model includes:
, ,
其中,为在坐标处完成颜色拼接后像素的颜色值,为调节权重,为卫星遥感图像块在坐标处像素的颜色值的处理函数,为卫星遥感图像块在坐标处像素的颜色值的处理函数。in, For the coordinates The color value of the pixel after color splicing is completed. To adjust the weight, Satellite remote sensing image blocks In coordinates The color value of the pixel at The processing function, Satellite remote sensing image blocks In coordinates The color value of the pixel at The processing function.
进一步的,卫星遥感图像块在坐标处像素的颜色值的处理函数包括:Furthermore, satellite remote sensing image blocks In coordinates The color value of the pixel at The processing function include:
, ,
其中,为颜色梯度的方向,为卫星遥感图像块在坐标处像素的颜色值的梯度,为卫星遥感图像块颜色梯度的调整因子。in, is the direction of the color gradient, Satellite remote sensing image blocks In coordinates The color value of the pixel at The gradient of Satellite remote sensing image blocks Adjustment factor for the color gradient.
进一步的,卫星遥感图像块在坐标处像素的颜色值的处理函数包括:Furthermore, satellite remote sensing image blocks In coordinates The color value of the pixel at The processing function include:
, ,
其中,为卫星遥感图像块在坐标处像素的颜色值的梯度,为卫星遥感图像块颜色值的平均值,为卫星遥感图像块颜色梯度的调整因子,为正常数。in, Satellite remote sensing image blocks In coordinates The color value of the pixel at The gradient of Satellite remote sensing image blocks The average color value, Satellite remote sensing image blocks The adjustment factor for the color gradient, Is a normal number.
通过本发明所构思的以上技术方案与现有技术相比,具有以下有益效果:Compared with the prior art, the above technical solution conceived by the present invention has the following beneficial effects:
本发明提取所述卫星情报数据中的卫星遥感图像,将所述卫星遥感图像进行切割,生成多个卫星遥感图像块,并分别存储在云平台的多个区域中;获取卫星遥感图像块中每个位置所属的特征分类,设置基于特征分类的卫星遥感图像拼接模型,将多个卫星遥感图像块中属于相同特征分类的图像进行拼接,同时,设置基于颜色的卫星遥感图像拼接模型,将多个卫星遥感图像块按照像素的颜色值进行拼接,并映射到已完成特征拼接的卫星遥感图像上;设置用户密级,并根据用户密级,为用户分配能够进行拼接的卫星遥感图像块的块数,用户密级越高,能够拼接的卫星遥感图像块的块数越多。本发明通过以上技术方案,能够对卫星情报数据进行拼接,并且设置用户密级,为不同密级的用户分配可以拼接的数量,从而达到了数据安全的目的。The present invention extracts satellite remote sensing images from the satellite intelligence data, cuts the satellite remote sensing images, generates multiple satellite remote sensing image blocks, and stores them in multiple areas of the cloud platform respectively; obtains the feature classification to which each position in the satellite remote sensing image block belongs, sets a satellite remote sensing image splicing model based on feature classification, splices images belonging to the same feature classification in multiple satellite remote sensing image blocks, and at the same time, sets a satellite remote sensing image splicing model based on color, splices multiple satellite remote sensing image blocks according to the color value of the pixel, and maps them to the satellite remote sensing image that has completed feature splicing; sets the user security level, and according to the user security level, allocates the number of satellite remote sensing image blocks that can be spliced to the user, the higher the user security level, the more satellite remote sensing image blocks that can be spliced. Through the above technical scheme, the present invention can splice satellite intelligence data, and set the user security level, and allocate the number of splicing blocks to users of different security levels, thereby achieving the purpose of data security.
附图说明BRIEF DESCRIPTION OF THE DRAWINGS
图1是本发明实施例1的方法流程图;FIG1 is a flow chart of a method according to Embodiment 1 of the present invention;
图2是本发明实施例2的系统结构图。FIG. 2 is a system structure diagram of Embodiment 2 of the present invention.
具体实施方式Detailed ways
为了更好的理解上述技术方案,下面将结合说明书附图以及具体的实施方式对上述技术方案做详细的说明。In order to better understand the above technical solution, the above technical solution will be described in detail below in conjunction with the accompanying drawings and specific implementation methods.
本发明提供的方法可以在如下的终端环境中实施,所述终端可以包括一个或多个如下部件:处理器、存储介质和显示屏。其中,存储介质中存储有至少一条指令,所述指令由处理器加载并执行以实现下述实施例所述的方法。The method provided by the present invention can be implemented in the following terminal environment, and the terminal may include one or more of the following components: a processor, a storage medium, and a display screen. The storage medium stores at least one instruction, and the instruction is loaded and executed by the processor to implement the method described in the following embodiment.
处理器可以包括一个或者多个处理核心。处理器利用各种接口和线路连接整个终端内的各个部分,通过运行或执行存储在存储介质内的指令、程序、代码集或指令集,以及调用存储在存储介质内的数据,执行终端的各种功能和处理数据。The processor may include one or more processing cores. The processor uses various interfaces and lines to connect various parts of the entire terminal, and executes various functions of the terminal and processes data by running or executing instructions, programs, code sets or instruction sets stored in the storage medium, and calling data stored in the storage medium.
存储介质可以包括随机存储介质(Random Access Memory,RAM),也可以包括只读存储介质(Read-Only Memory,ROM)。存储介质可用于存储指令、程序、代码、代码集或指令。The storage medium may include a random access memory (RAM) or a read-only memory (ROM). The storage medium may be used to store instructions, programs, codes, code sets or instructions.
显示屏用于显示各个应用程序的用户界面。The display screen is used to display the user interface of each application.
本发明公式中所有下角标只为了区分参数,并没有实际含义。All subscripts in the formulas of the present invention are only used to distinguish parameters and have no actual meaning.
除此之外,本领域技术人员可以理解,上述终端的结构并不构成对终端的限定,终端可以包括更多或更少的部件,或者组合某些部件,或者不同的部件布置。比如,终端中还包括射频电路、输入单元、传感器、音频电路、电源等部件,在此不再赘述。In addition, those skilled in the art will appreciate that the structure of the above terminal does not constitute a limitation on the terminal, and the terminal may include more or fewer components, or combine certain components, or arrange the components differently. For example, the terminal also includes components such as a radio frequency circuit, an input unit, a sensor, an audio circuit, and a power supply, which will not be described in detail here.
实施例1Example 1
如图1所示,本发明实施例提供一种可扩展的卫星情报数据云平台安全存储方法,包括:As shown in FIG1 , an embodiment of the present invention provides a scalable satellite intelligence data cloud platform secure storage method, including:
步骤101,提取所述卫星情报数据中的卫星遥感图像,将所述卫星遥感图像进行切割,生成多个卫星遥感图像块,并分别存储在云平台的多个区域中,并根据卫星遥感图像块对云平台进行拓展;Step 101, extracting satellite remote sensing images from the satellite intelligence data, cutting the satellite remote sensing images to generate multiple satellite remote sensing image blocks, storing them in multiple areas of the cloud platform respectively, and expanding the cloud platform according to the satellite remote sensing image blocks;
步骤102,获取卫星遥感图像块中每个位置所属的特征分类,设置基于特征分类的卫星遥感图像拼接模型,将多个卫星遥感图像块中属于相同特征分类的图像进行拼接,同时,设置基于颜色的卫星遥感图像拼接模型,将多个卫星遥感图像块按照像素的颜色值进行拼接,并映射到已完成特征拼接的卫星遥感图像上;Step 102, obtaining the feature classification of each position in the satellite remote sensing image block, setting a satellite remote sensing image stitching model based on the feature classification, stitching images belonging to the same feature classification in multiple satellite remote sensing image blocks, and at the same time, setting a satellite remote sensing image stitching model based on color, stitching multiple satellite remote sensing image blocks according to the color values of pixels, and mapping them to the satellite remote sensing image that has completed feature stitching;
具体的,所述基于特征分类的卫星遥感图像拼接模型包括:Specifically, the satellite remote sensing image stitching model based on feature classification includes:
, ,
其中,为在坐标处属于第个特征分类的图像完成特征拼接后的像素值,为卫星遥感图像块中在坐标处属于第个特征分类的像素值梯度,为卫星遥感图像块中在坐标处属于第个特征分类的像素值梯度,为用于控制梯度相似性的梯度调整因子,为卫星遥感图像块在坐标处属于第个特征分类图像的像素值,为卫星遥感图像块在坐标处属于第个特征分类图像的像素值。in, For the coordinates Belongs to The pixel value of the image classified by each feature after feature splicing is completed. Satellite remote sensing image blocks Central coordinates Belongs to The pixel value gradient of feature classification, Satellite remote sensing image blocks Central coordinates Belongs to The pixel value gradient of feature classification, is the gradient adjustment factor used to control the gradient similarity, Satellite remote sensing image blocks In coordinates Belongs to The pixel values of the feature classification image, Satellite remote sensing image blocks In coordinates Belongs to The pixel values of the feature classification image.
具体的,所述基于颜色的卫星遥感图像拼接模型包括:Specifically, the color-based satellite remote sensing image stitching model includes:
其中,为在坐标处完成颜色拼接后像素的颜色值,为调节权重,为卫星遥感图像块在坐标处像素的颜色值的处理函数,为卫星遥感图像块在坐标处像素的颜色值的处理函数。in, For the coordinates The color value of the pixel after color splicing is completed. To adjust the weight, Satellite remote sensing image blocks In coordinates The color value of the pixel at The processing function, Satellite remote sensing image blocks In coordinates The color value of the pixel at The processing function.
具体的,卫星遥感图像块在坐标处像素的颜色值的处理函数包括:Specifically, satellite remote sensing image blocks In coordinates The color value of the pixel at The processing function include:
, ,
其中,为颜色梯度的方向,为卫星遥感图像块在坐标处像素的颜色值的梯度,为卫星遥感图像块颜色梯度的调整因子。in, is the direction of the color gradient, Satellite remote sensing image blocks In coordinates The color value of the pixel at The gradient of Satellite remote sensing image blocks Adjustment factor for the color gradient.
具体的,卫星遥感图像块在坐标处像素的颜色值的处理函数包括:Specifically, satellite remote sensing image blocks In coordinates The color value of the pixel at The processing function include:
, ,
其中,为卫星遥感图像块在坐标处像素的颜色值的梯度,为卫星遥感图像块颜色值的平均值,为卫星遥感图像块颜色梯度的调整因子,为正常数。in, Satellite remote sensing image blocks In coordinates The color value of the pixel at The gradient of Satellite remote sensing image blocks The average color value, Satellite remote sensing image blocks The adjustment factor for the color gradient, Is a normal number.
步骤103,设置用户密级,并根据用户密级,为用户分配能够进行拼接的卫星遥感图像块的块数,用户密级越高,能够拼接的卫星遥感图像块的块数越多。Step 103, setting the user security level, and allocating the number of satellite remote sensing image blocks that can be spliced to the user according to the user security level. The higher the user security level, the more satellite remote sensing image blocks that can be spliced.
实施例2Example 2
如图2所示,本发明实施例还提出一种可扩展的卫星情报数据云平台安全存储系统,包括:As shown in FIG. 2 , the embodiment of the present invention further proposes an expandable satellite intelligence data cloud platform security storage system, including:
切割模块,用于提取所述卫星情报数据中的卫星遥感图像,将所述卫星遥感图像进行切割,生成多个卫星遥感图像块,并分别存储在云平台的多个区域中,并根据卫星遥感图像块对云平台进行拓展;A cutting module is used to extract satellite remote sensing images from the satellite intelligence data, cut the satellite remote sensing images, generate multiple satellite remote sensing image blocks, store them in multiple areas of the cloud platform respectively, and expand the cloud platform according to the satellite remote sensing image blocks;
拼接模块,用于获取卫星遥感图像块中每个位置所属的特征分类,设置基于特征分类的卫星遥感图像拼接模型,将多个卫星遥感图像块中属于相同特征分类的图像进行拼接,同时,设置基于颜色的卫星遥感图像拼接模型,将多个卫星遥感图像块按照像素的颜色值进行拼接,并映射到已完成特征拼接的卫星遥感图像上;A stitching module is used to obtain the feature classification of each position in the satellite remote sensing image block, set a satellite remote sensing image stitching model based on feature classification, and stitch images belonging to the same feature classification in multiple satellite remote sensing image blocks. At the same time, a satellite remote sensing image stitching model based on color is set to stitch multiple satellite remote sensing image blocks according to the color value of the pixel, and map them to the satellite remote sensing image that has completed feature stitching;
具体的,所述基于特征分类的卫星遥感图像拼接模型包括:Specifically, the satellite remote sensing image stitching model based on feature classification includes:
, ,
其中,为在坐标处属于第个特征分类的图像完成特征拼接后的像素值,为卫星遥感图像块中在坐标处属于第个特征分类的像素值梯度,为卫星遥感图像块中在坐标处属于第个特征分类的像素值梯度,为用于控制梯度相似性的梯度调整因子,为卫星遥感图像块在坐标处属于第个特征分类图像的像素值,为卫星遥感图像块在坐标处属于第个特征分类图像的像素值。in, For the coordinates Belongs to The pixel value of the image classified by each feature after feature splicing is completed. Satellite remote sensing image blocks Central coordinates Belongs to The pixel value gradient of feature classification, Satellite remote sensing image blocks Central coordinates Belongs to The pixel value gradient of feature classification, is the gradient adjustment factor used to control the gradient similarity, Satellite remote sensing image blocks In coordinates Belongs to The pixel values of the feature classification image, Satellite remote sensing image blocks In coordinates Belongs to The pixel values of the feature classification image.
具体的,所述基于颜色的卫星遥感图像拼接模型包括:Specifically, the color-based satellite remote sensing image stitching model includes:
其中,为在坐标处完成颜色拼接后像素的颜色值,为调节权重,为卫星遥感图像块在坐标处像素的颜色值的处理函数,为卫星遥感图像块在坐标处像素的颜色值的处理函数。in, For the coordinates The color value of the pixel after color splicing is completed. To adjust the weight, Satellite remote sensing image blocks In coordinates The color value of the pixel at The processing function, Satellite remote sensing image blocks In coordinates The color value of the pixel at The processing function.
具体的,卫星遥感图像块在坐标处像素的颜色值的处理函数包括:Specifically, satellite remote sensing image blocks In coordinates The color value of the pixel at The processing function include:
, ,
其中,为颜色梯度的方向,为卫星遥感图像块在坐标处像素的颜色值的梯度,为卫星遥感图像块颜色梯度的调整因子。in, is the direction of the color gradient, Satellite remote sensing image blocks In coordinates The color value of the pixel at The gradient of Satellite remote sensing image blocks Adjustment factor for the color gradient.
具体的,卫星遥感图像块在坐标处像素的颜色值的处理函数包括:Specifically, satellite remote sensing image blocks In coordinates The color value of the pixel at The processing function include:
, ,
其中,为卫星遥感图像块在坐标处像素的颜色值的梯度,为卫星遥感图像块颜色值的平均值,为卫星遥感图像块颜色梯度的调整因子,为正常数。in, Satellite remote sensing image blocks In coordinates The color value of the pixel at The gradient of Satellite remote sensing image blocks The average color value, Satellite remote sensing image blocks The adjustment factor for the color gradient, Is a normal number.
安全模块,用于设置用户密级,并根据用户密级,为用户分配能够进行拼接的卫星遥感图像块的块数,用户密级越高,能够拼接的卫星遥感图像块的块数越多。The security module is used to set the user security level and allocate the number of satellite remote sensing image blocks that can be spliced to the user according to the user security level. The higher the user security level, the more satellite remote sensing image blocks that can be spliced.
实施例3Example 3
本发明实施例还提出一种存储介质,存储有多条指令,所述指令用于实现所述的一种可扩展的卫星情报数据云平台安全存储方法。An embodiment of the present invention also proposes a storage medium storing a plurality of instructions, wherein the instructions are used to implement the scalable satellite intelligence data cloud platform secure storage method.
可选地,在本实施例中,上述存储介质可以位于计算机网络中计算机终端群中的任意一个计算机终端中,或者位于移动终端群中的任意一个移动终端中。Optionally, in this embodiment, the above storage medium may be located in any computer terminal in a computer terminal group in a computer network, or in any mobile terminal in a mobile terminal group.
可选地,在本实施例中,存储介质被设置为存储用于执行以下步骤的程序代码:步骤101,提取所述卫星情报数据中的卫星遥感图像,将所述卫星遥感图像进行切割,生成多个卫星遥感图像块,并分别存储在云平台的多个区域中;Optionally, in this embodiment, the storage medium is configured to store program codes for executing the following steps: Step 101, extracting a satellite remote sensing image from the satellite intelligence data, cutting the satellite remote sensing image to generate a plurality of satellite remote sensing image blocks, and storing the blocks in a plurality of areas of the cloud platform respectively;
步骤102,获取卫星遥感图像块中每个位置所属的特征分类,设置基于特征分类的卫星遥感图像拼接模型,将多个卫星遥感图像块中属于相同特征分类的图像进行拼接,同时,设置基于颜色的卫星遥感图像拼接模型,将多个卫星遥感图像块按照像素的颜色值进行拼接,并映射到已完成特征拼接的卫星遥感图像上;Step 102, obtaining the feature classification of each position in the satellite remote sensing image block, setting a satellite remote sensing image stitching model based on the feature classification, stitching images belonging to the same feature classification in multiple satellite remote sensing image blocks, and at the same time, setting a satellite remote sensing image stitching model based on color, stitching multiple satellite remote sensing image blocks according to the color values of pixels, and mapping them to the satellite remote sensing image that has completed feature stitching;
具体的,所述基于特征分类的卫星遥感图像拼接模型包括:Specifically, the satellite remote sensing image stitching model based on feature classification includes:
其中,为在坐标处属于第个特征分类的图像完成特征拼接后的像素值,为卫星遥感图像块中在坐标处属于第个特征分类的像素值梯度,为卫星遥感图像块中在坐标处属于第个特征分类的像素值梯度,为用于控制梯度相似性的梯度调整因子,为卫星遥感图像块在坐标处属于第个特征分类图像的像素值,为卫星遥感图像块在坐标处属于第个特征分类图像的像素值。in, For the coordinates Belongs to The pixel value of the image classified by each feature after feature splicing is completed. Satellite remote sensing image blocks Central coordinates Belongs to The pixel value gradient of feature classification, Satellite remote sensing image blocks Central coordinates Belongs to The pixel value gradient of feature classification, is the gradient adjustment factor used to control the gradient similarity, Satellite remote sensing image blocks In coordinates Belongs to The pixel values of the feature classification image, Satellite remote sensing image blocks In coordinates Belongs to The pixel values of the feature classification image.
具体的,所述基于颜色的卫星遥感图像拼接模型包括:Specifically, the color-based satellite remote sensing image stitching model includes:
其中,为在坐标处完成颜色拼接后像素的颜色值,为调节权重,为卫星遥感图像块在坐标处像素的颜色值的处理函数,为卫星遥感图像块在坐标处像素的颜色值的处理函数。in, For the coordinates The color value of the pixel after color splicing is completed. To adjust the weight, Satellite remote sensing image blocks In coordinates The color value of the pixel at The processing function, Satellite remote sensing image blocks In coordinates The color value of the pixel at The processing function.
具体的,卫星遥感图像块在坐标处像素的颜色值的处理函数包括:Specifically, satellite remote sensing image blocks In coordinates The color value of the pixel at The processing function include:
, ,
其中,为颜色梯度的方向,为卫星遥感图像块在坐标处像素的颜色值的梯度,为卫星遥感图像块颜色梯度的调整因子。in, is the direction of the color gradient, Satellite remote sensing image blocks In coordinates The color value of the pixel at The gradient of Satellite remote sensing image blocks Adjustment factor for the color gradient.
具体的,卫星遥感图像块在坐标处像素的颜色值的处理函数包括:Specifically, satellite remote sensing image blocks In coordinates The color value of the pixel at The processing function include:
, ,
其中,为卫星遥感图像块在坐标处像素的颜色值的梯度,为卫星遥感图像块颜色值的平均值,为卫星遥感图像块颜色梯度的调整因子,为正常数。in, Satellite remote sensing image blocks In coordinates The color value of the pixel at The gradient of Satellite remote sensing image blocks The average color value, Satellite remote sensing image blocks The adjustment factor for the color gradient, Is a normal number.
步骤103,设置用户密级,并根据用户密级,为用户分配能够进行拼接的卫星遥感图像块的块数,用户密级越高,能够拼接的卫星遥感图像块的块数越多。Step 103, setting the user security level, and allocating the number of satellite remote sensing image blocks that can be spliced to the user according to the user security level. The higher the user security level, the more satellite remote sensing image blocks that can be spliced.
实施例4Example 4
本发明实施例还提出一种电子设备,包括处理器和与所述处理器连接的存储介质,所述存储介质存储有多条指令,所述指令可被所述处理器加载并执行,以使所述处理器能够执行一种可扩展的卫星情报数据云平台安全存储方法。An embodiment of the present invention also proposes an electronic device, including a processor and a storage medium connected to the processor, wherein the storage medium stores a plurality of instructions, and the instructions can be loaded and executed by the processor so that the processor can execute a scalable satellite intelligence data cloud platform security storage method.
具体的,本实施例的电子设备可以是计算机终端,所述计算机终端可以包括:一个或多个处理器、以及存储介质。Specifically, the electronic device of this embodiment may be a computer terminal, and the computer terminal may include: one or more processors, and a storage medium.
其中,存储介质可用于存储软件程序以及模块,如本发明实施例中的一种可扩展的卫星情报数据云平台安全存储方法,对应的程序指令/模块,处理器通过运行存储在存储介质内的软件程序以及模块,从而执行各种功能应用以及数据处理,即实现上述的一种可扩展的卫星情报数据云平台安全存储方法。存储介质可包括高速随机存储介质,还可以包括非易失性存储介质,如一个或者多个磁性存储系统、闪存、或者其他非易失性固态存储介质。在一些实例中,存储介质可进一步包括相对于处理器远程设置的存储介质,这些远程存储介质可以通过网络连接至终端。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。Among them, the storage medium can be used to store software programs and modules, such as an expandable satellite intelligence data cloud platform security storage method in an embodiment of the present invention, corresponding program instructions/modules, and the processor executes various functional applications and data processing by running the software programs and modules stored in the storage medium, that is, realizing the above-mentioned expandable satellite intelligence data cloud platform security storage method. The storage medium may include high-speed random storage media, and may also include non-volatile storage media, such as one or more magnetic storage systems, flash memory, or other non-volatile solid-state storage media. In some instances, the storage medium may further include storage media remotely arranged relative to the processor, and these remote storage media may be connected to the terminal via a network. Examples of the above-mentioned network include, but are not limited to, the Internet, corporate intranets, local area networks, mobile communication networks, and combinations thereof.
处理器可以通过传输系统调用存储介质存储的信息及应用程序,以执行步骤:步骤101,提取所述卫星情报数据中的卫星遥感图像,将所述卫星遥感图像进行切割,生成多个卫星遥感图像块,并分别存储在云平台的多个区域中;The processor may call the information and application program stored in the storage medium through the transmission system to execute the steps: Step 101, extracting the satellite remote sensing image in the satellite intelligence data, cutting the satellite remote sensing image to generate a plurality of satellite remote sensing image blocks, and storing them in a plurality of areas of the cloud platform respectively;
步骤102,获取卫星遥感图像块中每个位置所属的特征分类,设置基于特征分类的卫星遥感图像拼接模型,将多个卫星遥感图像块中属于相同特征分类的图像进行拼接,同时,设置基于颜色的卫星遥感图像拼接模型,将多个卫星遥感图像块按照像素的颜色值进行拼接,并映射到已完成特征拼接的卫星遥感图像上;Step 102, obtaining the feature classification of each position in the satellite remote sensing image block, setting a satellite remote sensing image stitching model based on the feature classification, stitching images belonging to the same feature classification in multiple satellite remote sensing image blocks, and at the same time, setting a satellite remote sensing image stitching model based on color, stitching multiple satellite remote sensing image blocks according to the color values of pixels, and mapping them to the satellite remote sensing image that has completed feature stitching;
具体的,所述基于特征分类的卫星遥感图像拼接模型包括:Specifically, the satellite remote sensing image stitching model based on feature classification includes:
, ,
其中,为在坐标处属于第个特征分类的图像完成特征拼接后的像素值,为卫星遥感图像块中在坐标处属于第个特征分类的像素值梯度,为卫星遥感图像块中在坐标处属于第个特征分类的像素值梯度,为用于控制梯度相似性的梯度调整因子,为卫星遥感图像块在坐标处属于第个特征分类图像的像素值,为卫星遥感图像块在坐标处属于第个特征分类图像的像素值。in, For the coordinates Belongs to The pixel value of the image classified by each feature after feature splicing is completed. Satellite remote sensing image blocks Central coordinates Belongs to The pixel value gradient of feature classification, Satellite remote sensing image blocks Central coordinates Belongs to The pixel value gradient of feature classification, is the gradient adjustment factor used to control the gradient similarity, Satellite remote sensing image blocks In coordinates Belongs to The pixel values of the feature classification image, Satellite remote sensing image blocks In coordinates Belongs to The pixel values of the feature classification image.
具体的,所述基于颜色的卫星遥感图像拼接模型包括:Specifically, the color-based satellite remote sensing image stitching model includes:
, ,
其中,为在坐标处完成颜色拼接后像素的颜色值,为调节权重,为卫星遥感图像块在坐标处像素的颜色值的处理函数,为卫星遥感图像块在坐标处像素的颜色值的处理函数。in, For the coordinates The color value of the pixel after color splicing is completed. To adjust the weight, Satellite remote sensing image blocks In coordinates The color value of the pixel at The processing function, Satellite remote sensing image blocks In coordinates The color value of the pixel at The processing function.
具体的,卫星遥感图像块在坐标处像素的颜色值的处理函数包括:Specifically, satellite remote sensing image blocks In coordinates The color value of the pixel at The processing function include:
, ,
其中,为颜色梯度的方向,为卫星遥感图像块在坐标处像素的颜色值的梯度,为卫星遥感图像块颜色梯度的调整因子。in, is the direction of the color gradient, Satellite remote sensing image blocks In coordinates The color value of the pixel at The gradient of Satellite remote sensing image blocks Adjustment factor for the color gradient.
具体的,卫星遥感图像块在坐标处像素的颜色值的处理函数包括:Specifically, satellite remote sensing image blocks In coordinates The color value of the pixel at The processing function include:
, ,
其中,为卫星遥感图像块在坐标处像素的颜色值的梯度,为卫星遥感图像块颜色值的平均值,为卫星遥感图像块颜色梯度的调整因子,为正常数。in, Satellite remote sensing image blocks In coordinates The color value of the pixel at The gradient of Satellite remote sensing image blocks The average color value, Satellite remote sensing image blocks The adjustment factor for the color gradient, Is a normal number.
步骤103,设置用户密级,并根据用户密级,为用户分配能够进行拼接的卫星遥感图像块的块数,用户密级越高,能够拼接的卫星遥感图像块的块数越多。Step 103, setting the user security level, and allocating the number of satellite remote sensing image blocks that can be spliced to the user according to the user security level. The higher the user security level, the more satellite remote sensing image blocks that can be spliced.
上述本发明实施例序号仅仅为了描述,不代表实施例的优劣。The serial numbers of the above embodiments of the present invention are only for description and do not represent the advantages or disadvantages of the embodiments.
在本发明的上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述的部分,可以参见其他实施例的相关描述。In the above embodiments of the present invention, the description of each embodiment has its own emphasis. For parts that are not described in detail in a certain embodiment, reference can be made to the relevant descriptions of other embodiments.
在本发明所提供的几个实施例中,应所述理解到,所揭露的技术内容,可通过其它的方式实现。其中,以上所描述的系统实施例仅仅是示意性的,例如所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,单元或模块的间接耦合或通信连接,可以是电性或其它的形式。In the several embodiments provided by the present invention, it should be understood that the disclosed technical content can be implemented in other ways. Among them, the system embodiments described above are only schematic. For example, the division of the units is only a logical function division. There may be other division methods in actual implementation. For example, multiple units or components can be combined or integrated into another system, or some features can be ignored or not executed. Another point is that the mutual coupling or direct coupling or communication connection shown or discussed can be through some interfaces, indirect coupling or communication connection of units or modules, which can be electrical or other forms.
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。The units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place or distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of this embodiment.
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。In addition, each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit. The above-mentioned integrated unit may be implemented in the form of hardware or in the form of software functional units.
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分或者所述技术方案的全部或部分可以以软件产品的形式体现出来,所述计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可为个人计算机、服务器或者网络设备等)执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、只读存储介质(ROM,Read-Only Memory)、随机存取存储介质(RAM,Random Access Memory)、移动硬盘、磁碟或者光盘等各种可以存储程序代码的介质。If the integrated unit is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer-readable storage medium. Based on this understanding, the technical solution of the present invention, in essence, or the part that contributes to the prior art, or all or part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including a number of instructions for a computer device (which can be a personal computer, a server or a network device, etc.) to perform all or part of the steps of the method described in each embodiment of the present invention. The aforementioned storage medium includes: U disk, read-only storage medium (ROM, Read-Only Memory), random access storage medium (RAM, Random Access Memory), mobile hard disk, magnetic disk or optical disk and other media that can store program codes.
显然,上述实施例仅仅是为清楚地说明所作的举例,而并非对实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。而由此所引伸出的显而易见的变化或变动仍处于本发明创造的保护范围之中。Obviously, the above embodiments are merely examples for the purpose of clear explanation, and are not intended to limit the implementation methods. For those skilled in the art, other different forms of changes or modifications can be made based on the above description. It is not necessary and impossible to list all the implementation methods here. The obvious changes or modifications derived therefrom are still within the protection scope of the invention.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202410404739.2A CN117992992B (en) | 2024-04-07 | 2024-04-07 | A scalable satellite intelligence data cloud platform secure storage method and system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202410404739.2A CN117992992B (en) | 2024-04-07 | 2024-04-07 | A scalable satellite intelligence data cloud platform secure storage method and system |
Publications (2)
Publication Number | Publication Date |
---|---|
CN117992992A CN117992992A (en) | 2024-05-07 |
CN117992992B true CN117992992B (en) | 2024-07-05 |
Family
ID=90890859
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202410404739.2A Active CN117992992B (en) | 2024-04-07 | 2024-04-07 | A scalable satellite intelligence data cloud platform secure storage method and system |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN117992992B (en) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109657081A (en) * | 2018-09-29 | 2019-04-19 | 中国科学院上海高等研究院 | Distributed approach, system and the medium of EO-1 hyperion satellite remote sensing date |
CN114723637A (en) * | 2022-04-27 | 2022-07-08 | 上海复瞰科技有限公司 | Color difference adjusting method and system |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7259784B2 (en) * | 2002-06-21 | 2007-08-21 | Microsoft Corporation | System and method for camera color calibration and image stitching |
WO2017003557A1 (en) * | 2015-06-30 | 2017-01-05 | Gopro, Inc. | Image stitching in a multi-camera array |
CN109886010B (en) * | 2019-01-28 | 2023-10-17 | 平安科技(深圳)有限公司 | Verification picture sending method, verification picture synthesizing method and device, storage medium and terminal |
CN111967454B (en) * | 2020-10-23 | 2021-01-08 | 自然资源部第二海洋研究所 | Mixed pixel-based green tide coverage proportion extraction model determination method and equipment |
KR102409104B1 (en) * | 2020-11-17 | 2022-06-15 | 한국항공우주연구원 | Method and system for storing satellite images based on coordinate |
US12292306B2 (en) * | 2021-07-30 | 2025-05-06 | Soilserdem Llc | Optimized soil sampling for digital soil fertility mapping using machine learning and remotely-sensed information |
CN115761222B (en) * | 2022-09-27 | 2023-11-03 | 阿里巴巴(中国)有限公司 | Image segmentation method, remote sensing image segmentation method and device |
-
2024
- 2024-04-07 CN CN202410404739.2A patent/CN117992992B/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109657081A (en) * | 2018-09-29 | 2019-04-19 | 中国科学院上海高等研究院 | Distributed approach, system and the medium of EO-1 hyperion satellite remote sensing date |
CN114723637A (en) * | 2022-04-27 | 2022-07-08 | 上海复瞰科技有限公司 | Color difference adjusting method and system |
Also Published As
Publication number | Publication date |
---|---|
CN117992992A (en) | 2024-05-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3167446B1 (en) | Apparatus and method for supplying content aware photo filters | |
US10679426B2 (en) | Method and apparatus for processing display data | |
US9996959B2 (en) | Systems and methods to display rendered images | |
CN108898171B (en) | Image recognition processing method, system and computer readable storage medium | |
CN111833234B (en) | Image display method, image processing apparatus, and computer-readable storage medium | |
CN111353956A (en) | Image restoration method, device, computer equipment and storage medium | |
CN106095075A (en) | A kind of information processing method and augmented reality equipment | |
CN111800569B (en) | Photographing processing method and device, storage medium and electronic equipment | |
CN110928397A (en) | User interface refreshing method and device, storage medium and electronic device | |
CN114155177B (en) | Image augmentation method and device, electronic equipment and storage medium | |
CN107203646A (en) | A kind of intelligent social sharing method and device | |
CN117992992B (en) | A scalable satellite intelligence data cloud platform secure storage method and system | |
CN114429484A (en) | Image processing method and device, intelligent equipment and storage medium | |
CN108876782A (en) | Memory video creating method and related device | |
CN103488380A (en) | Method and device for displaying information | |
CN111340914A (en) | Map generation method and device, storage medium and delivery vehicle | |
CN113793252B (en) | Image processing method, device, chip and module equipment thereof | |
EP4002289A1 (en) | Picture processing method and device, storage medium, and electronic apparatus | |
CN114816619A (en) | An information processing method and electronic device | |
CN110941413B (en) | Display screen generation method and related device | |
CN114745516A (en) | Method, device, storage medium and electronic device for generating panoramic video | |
CN112950641A (en) | Image processing method and device, computer readable storage medium and electronic device | |
CN116543105B (en) | Processing method and system of three-dimensional object, electronic equipment and storage medium | |
CN111212269A (en) | Unmanned aerial vehicle image display method and device, electronic equipment and storage medium | |
TWI828575B (en) | Scenery generation system and control method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |