CN117977376A - Surface-emitting laser device and method for manufacturing the same - Google Patents
Surface-emitting laser device and method for manufacturing the same Download PDFInfo
- Publication number
- CN117977376A CN117977376A CN202211326894.4A CN202211326894A CN117977376A CN 117977376 A CN117977376 A CN 117977376A CN 202211326894 A CN202211326894 A CN 202211326894A CN 117977376 A CN117977376 A CN 117977376A
- Authority
- CN
- China
- Prior art keywords
- layer
- type doped
- laser device
- current
- emitting laser
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 22
- 238000000034 method Methods 0.000 title claims description 14
- 239000000463 material Substances 0.000 claims description 44
- 239000004065 semiconductor Substances 0.000 claims description 39
- 238000002347 injection Methods 0.000 claims description 17
- 239000007924 injection Substances 0.000 claims description 17
- 239000011148 porous material Substances 0.000 claims 1
- 239000010410 layer Substances 0.000 description 354
- 239000000758 substrate Substances 0.000 description 20
- 238000010586 diagram Methods 0.000 description 16
- 238000003892 spreading Methods 0.000 description 14
- 241000975394 Evechinus chloroticus Species 0.000 description 7
- 230000015556 catabolic process Effects 0.000 description 6
- 239000011241 protective layer Substances 0.000 description 6
- 230000004888 barrier function Effects 0.000 description 5
- 239000000243 solution Substances 0.000 description 5
- 239000010408 film Substances 0.000 description 4
- 238000005468 ion implantation Methods 0.000 description 4
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 4
- JBRZTFJDHDCESZ-UHFFFAOYSA-N AsGa Chemical compound [As]#[Ga] JBRZTFJDHDCESZ-UHFFFAOYSA-N 0.000 description 3
- JMASRVWKEDWRBT-UHFFFAOYSA-N Gallium nitride Chemical compound [Ga]#N JMASRVWKEDWRBT-UHFFFAOYSA-N 0.000 description 3
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 3
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 3
- FTWRSWRBSVXQPI-UHFFFAOYSA-N alumanylidynearsane;gallanylidynearsane Chemical compound [As]#[Al].[As]#[Ga] FTWRSWRBSVXQPI-UHFFFAOYSA-N 0.000 description 3
- 238000000137 annealing Methods 0.000 description 3
- 230000009286 beneficial effect Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000011810 insulating material Substances 0.000 description 3
- 230000003647 oxidation Effects 0.000 description 3
- 238000007254 oxidation reaction Methods 0.000 description 3
- 229910052710 silicon Inorganic materials 0.000 description 3
- 239000010703 silicon Substances 0.000 description 3
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 3
- 229910002601 GaN Inorganic materials 0.000 description 2
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 2
- GPXJNWSHGFTCBW-UHFFFAOYSA-N Indium phosphide Chemical compound [In]#P GPXJNWSHGFTCBW-UHFFFAOYSA-N 0.000 description 2
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 2
- 101100233916 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) KAR5 gene Proteins 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 description 2
- 229910052732 germanium Inorganic materials 0.000 description 2
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 2
- 229910052738 indium Inorganic materials 0.000 description 2
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 2
- 229910052814 silicon oxide Inorganic materials 0.000 description 2
- 229910000530 Gallium indium arsenide Inorganic materials 0.000 description 1
- 101100012902 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) FIG2 gene Proteins 0.000 description 1
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- KXNLCSXBJCPWGL-UHFFFAOYSA-N [Ga].[As].[In] Chemical compound [Ga].[As].[In] KXNLCSXBJCPWGL-UHFFFAOYSA-N 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- AUCDRFABNLOFRE-UHFFFAOYSA-N alumane;indium Chemical compound [AlH3].[In] AUCDRFABNLOFRE-UHFFFAOYSA-N 0.000 description 1
- MDPILPRLPQYEEN-UHFFFAOYSA-N aluminium arsenide Chemical compound [As]#[Al] MDPILPRLPQYEEN-UHFFFAOYSA-N 0.000 description 1
- RNQKDQAVIXDKAG-UHFFFAOYSA-N aluminum gallium Chemical compound [Al].[Ga] RNQKDQAVIXDKAG-UHFFFAOYSA-N 0.000 description 1
- 229910052785 arsenic Inorganic materials 0.000 description 1
- RQNWIZPPADIBDY-UHFFFAOYSA-N arsenic atom Chemical compound [As] RQNWIZPPADIBDY-UHFFFAOYSA-N 0.000 description 1
- NWAIGJYBQQYSPW-UHFFFAOYSA-N azanylidyneindigane Chemical compound [In]#N NWAIGJYBQQYSPW-UHFFFAOYSA-N 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 230000009545 invasion Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 229910052594 sapphire Inorganic materials 0.000 description 1
- 239000010980 sapphire Substances 0.000 description 1
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 1
- 229910010271 silicon carbide Inorganic materials 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 238000009279 wet oxidation reaction Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/10—Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
- H01S5/18—Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
- H01S5/183—Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
- H01S5/18308—Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL] having a special structure for lateral current or light confinement
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/10—Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
- H01S5/18—Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
- H01S5/183—Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
- H01S5/18308—Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL] having a special structure for lateral current or light confinement
- H01S5/18322—Position of the structure
- H01S5/18327—Structure being part of a DBR
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05F—STATIC ELECTRICITY; NATURALLY-OCCURRING ELECTRICITY
- H05F3/00—Carrying-off electrostatic charges
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S2304/00—Special growth methods for semiconductor lasers
Landscapes
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Optics & Photonics (AREA)
- Semiconductor Lasers (AREA)
Abstract
Description
技术领域Technical Field
本申请涉及一种面射型激光装置及其制造方法,特别是涉及一种垂直共振腔面射型激光装置及其制造方法。The present application relates to a surface-emitting laser device and a manufacturing method thereof, and in particular to a vertical resonant cavity surface-emitting laser device and a manufacturing method thereof.
背景技术Background technique
现有的垂直共腔面射型激光至少包括P-型电极、N-型电极、用以产生光子的活性层以及分别位于活性层两侧的上布拉格反射镜(Distributed Bragg Reflector,DBR)与下布拉格反射镜。通过对P-型电极以及N-型电极施加偏压,以对活性层注入电流来激发光子,并利用上、下两个布拉格反射镜(Distributed Bragg Reflector,DBR)来形成垂直共振腔,可产生由元件表面(即垂直活性层方向)出射的激光光束。The existing vertical common cavity surface emitting laser includes at least a P-type electrode, an N-type electrode, an active layer for generating photons, and an upper Bragg reflector (Distributed Bragg Reflector, DBR) and a lower Bragg reflector located on both sides of the active layer. By applying a bias voltage to the P-type electrode and the N-type electrode, current is injected into the active layer to excite photons, and the upper and lower Bragg reflectors (Distributed Bragg Reflectors, DBR) are used to form a vertical resonant cavity, which can generate a laser beam emitted from the surface of the component (i.e., in the direction perpendicular to the active layer).
在现有的垂直共腔面射型激光中,通常会利用离子布植或是湿氧化制程,以在上布拉格反射镜中形成具有高阻值的氧化层或是离子布植区,以局限电流通过的区域。然而,利用离子布植或是热氧化制程来形成局限电流的氧化层或离子布植区,成本较高且孔径尺寸不易控制。In existing vertical common cavity surface emitting lasers, ion implantation or wet oxidation processes are usually used to form an oxide layer or ion implantation area with a high resistance in the upper Bragg reflector to limit the area where the current passes. However, using ion implantation or thermal oxidation processes to form an oxide layer or ion implantation area that limits the current is costly and the aperture size is difficult to control.
此外,氧化层与构成上布拉格反射镜的半导体材料之间的晶格失配度以及热膨胀系数差异较大,而使垂直共腔面射型激光在进行退火后较容易因内应力而破裂,降低制程良率。元件内部的应力也会降低元件寿命、影响出光特性及降低可靠性。另一方面,现有的垂直共腔面射型激光很容易因静电放电(electrostatic discharge,ESD)或突波(Surge)的冲击,而导致其内部受损。In addition, the lattice mismatch and thermal expansion coefficient difference between the oxide layer and the semiconductor material constituting the upper Bragg reflector are large, which makes the vertical common cavity surface emitting laser more likely to break due to internal stress after annealing, reducing the process yield. The stress inside the component will also reduce the component life, affect the light emission characteristics and reduce reliability. On the other hand, the existing vertical common cavity surface emitting laser is easily damaged by electrostatic discharge (ESD) or surge.
发明内容Summary of the invention
本申请所要解决的技术问题在于,针对现有技术的不足提供一种面射型激光装置及其制造方法,以减少面射型激光装置的内应力,并提升面射型激光装置的抗静电能力。The technical problem to be solved by the present application is to provide a surface emitting laser device and a manufacturing method thereof to reduce the internal stress of the surface emitting laser device and improve the antistatic ability of the surface emitting laser device in view of the deficiencies of the prior art.
为了解决上述的技术问题,本申请所采用的其中一技术方案是提供一种面射型激光装置,其包括第一反射镜层、主动发光层、第二反射镜层以及电流局限结构。主动发光层位于第一反射镜层与第二反射镜层之间,以产生一激光光束。电流局限结构具有一PN接面或者一PIN接面。In order to solve the above technical problems, one of the technical solutions adopted by the present application is to provide a surface-emitting laser device, which includes a first reflector layer, an active light-emitting layer, a second reflector layer and a current confinement structure. The active light-emitting layer is located between the first reflector layer and the second reflector layer to generate a laser beam. The current confinement structure has a PN junction or a PIN junction.
为了解决上述的技术问题,本申请所采用的另外一技术方案是提供一种面射型激光装置,其包括第一反射镜层、主动发光层、第二反射镜层以及电流局限结构。主动发光层位于第一反射镜层与第二反射镜层之间,以产生一激光光束。电流局限结构具有基纳二极体(Zenor diode)。In order to solve the above technical problems, another technical solution adopted by the present application is to provide a surface-emitting laser device, which includes a first reflector layer, an active light-emitting layer, a second reflector layer and a current confinement structure. The active light-emitting layer is located between the first reflector layer and the second reflector layer to generate a laser beam. The current confinement structure has a Zenor diode.
为了解决上述的技术问题,本申请所采用的另外再一技术方案是提供一种面射型激光装置的制造方法,其包括:形成第一反射镜层;形成主动发光层于第一反射镜层上;形成电流局限结构,其中,电流局限结构定义出一局限孔,且具有一PN接面或者一PIN接面;以及形成一第二反射镜层。In order to solve the above-mentioned technical problems, another technical solution adopted in the present application is to provide a manufacturing method of a surface-emitting laser device, which includes: forming a first reflector layer; forming an active light-emitting layer on the first reflector layer; forming a current confinement structure, wherein the current confinement structure defines a confining hole and has a PN junction or a PIN junction; and forming a second reflector layer.
本申请的其中一有益效果在于,面射型激光装置及其制造方法,其能通过“电流局限结构具有一PN接面或者一PIN接面”或者“电流局限结构具有一基纳二极体”的技术方案,以使面射型激光装置具有较佳可靠性(reliability),并提升面射型激光装置本身的抗静电能力。One of the beneficial effects of the present application is that the surface emitting laser device and the manufacturing method thereof can make the surface emitting laser device have better reliability and enhance the anti-static ability of the surface emitting laser device itself through the technical solution of "the current confinement structure has a PN junction or a PIN junction" or "the current confinement structure has a Kiner diode".
为使能更进一步了解本申请的特征及技术内容,请参阅以下有关本申请的详细说明与图式,然而所提供的图式仅用于提供参考与说明,并非用来对本申请加以限制。To further understand the features and technical contents of the present application, please refer to the following detailed description and drawings of the present application. However, the drawings provided are only for reference and illustration and are not intended to limit the present application.
附图说明BRIEF DESCRIPTION OF THE DRAWINGS
图1为本申请第一实施例的面射型激光装置的剖面示意图。FIG. 1 is a schematic cross-sectional view of a surface emitting laser device according to a first embodiment of the present application.
图2为图1的II部分的放大示意图。FIG. 2 is an enlarged schematic diagram of part II of FIG. 1 .
图3为本申请另一实施例的面射型激光装置的局部放大示意图。FIG. 3 is a partially enlarged schematic diagram of a surface emitting laser device according to another embodiment of the present application.
图4为本申请第二实施例的面射型激光装置的剖面示意图。FIG. 4 is a schematic cross-sectional view of a surface emitting laser device according to a second embodiment of the present application.
图5为本申请第三实施例的面射型激光装置的剖面示意图。FIG. 5 is a schematic cross-sectional view of a surface emitting laser device according to a third embodiment of the present application.
图6为本申请第四实施例的面射型激光装置的剖面示意图。FIG. 6 is a schematic cross-sectional view of a surface emitting laser device according to a fourth embodiment of the present application.
图7为图6的VII部分的放大示意图。FIG. 7 is an enlarged schematic diagram of portion VII of FIG. 6 .
图8为本申请另一实施例的面射型激光装置的局部放大示意图。FIG. 8 is a partially enlarged schematic diagram of a surface emitting laser device according to another embodiment of the present application.
图9为本申请第五实施例的面射型激光装置的剖面示意图。FIG. 9 is a schematic cross-sectional view of a surface emitting laser device according to a fifth embodiment of the present application.
图10为本申请实施例的面射型激光装置的制造方法的流程图。FIG. 10 is a flow chart of a method for manufacturing a surface emitting laser device according to an embodiment of the present application.
图11为本申请实施例的面射型激光装置在步骤S10的示意图。FIG. 11 is a schematic diagram of the surface emitting laser device in step S10 according to an embodiment of the present application.
图12为本申请实施例的面射型激光装置在步骤S20的示意图。FIG. 12 is a schematic diagram of the surface emitting laser device in step S20 according to an embodiment of the present application.
图13与图14为本申请实施例的面射型激光装置在步骤S30的示意图。13 and 14 are schematic diagrams of the surface emitting laser device in step S30 according to an embodiment of the present application.
图15为本申请实施例的面射型激光装置在步骤S40的示意图。FIG. 15 is a schematic diagram of the surface emitting laser device in step S40 according to an embodiment of the present application.
图16为本申请实施例的面射型激光装置在步骤S50的示意图。FIG. 16 is a schematic diagram of the surface emitting laser device in step S50 according to an embodiment of the present application.
图17为本申请另一实施例的面射型激光装置在步骤S40的示意图。FIG. 17 is a schematic diagram of a surface emitting laser device in step S40 according to another embodiment of the present application.
图18为本申请另一实施例的面射型激光装置在步骤S50的示意图。FIG. 18 is a schematic diagram of a surface emitting laser device in step S50 according to another embodiment of the present application.
具体实施方式Detailed ways
以下是通过特定的具体实施例来说明本申请所公开有关“面射型激光装置及其制造方法”的实施方式,本领域技术人员可由本说明书所公开的内容了解本申请的优点与效果。本申请可通过其他不同的具体实施例加以施行或应用,本说明书中的各项细节也可基于不同观点与应用,在不背离本申请的构思下进行各种修改与变更。另外,本申请的附图仅为简单示意说明,并非依实际尺寸的描绘,事先声明。以下的实施方式将进一步详细说明本申请的相关技术内容,但所公开的内容并非用以限制本申请的保护范围。另外,本文中所使用的术语“或”,应视实际情况可能包括相关联的列出项目中的任一个或者多个的组合。The following is an explanation of the implementation methods of the "surface-emitting laser device and its manufacturing method" disclosed in the present application through specific embodiments. Those skilled in the art can understand the advantages and effects of the present application from the contents disclosed in this specification. The present application can be implemented or applied through other different specific embodiments, and the details in this specification can also be modified and changed in various ways based on different viewpoints and applications without departing from the concept of the present application. In addition, the drawings of the present application are only simple schematic illustrations and are not depicted according to actual dimensions. It is stated in advance. The following implementation methods will further explain the relevant technical content of the present application in detail, but the disclosed content is not intended to limit the scope of protection of the present application. In addition, the term "or" used in this article may include any one or more combinations of the associated listed items depending on the actual situation.
第一实施例参阅图1及图2所示,本申请实施例提供一种面射型激光装置Z1。在本申请实施例中,面射型激光装置Z1为垂直腔面射激光装置。面射型激光装置Z1包括第一反射镜层11、主动发光层12、第二反射镜层13以及电流局限结构14。详细而言,在本实施例中,面射型激光装置Z1还包括一基材10。第一反射镜层11、主动发光层12、第二反射镜层13以及电流局限结构14都设置在基材10上,且主动发光层12是位于第一反射镜层11与第二反射镜层13之间。The first embodiment is shown in Figures 1 and 2. The embodiment of the present application provides a surface-emitting laser device Z1. In the embodiment of the present application, the surface-emitting laser device Z1 is a vertical cavity surface-emitting laser device. The surface-emitting laser device Z1 includes a first reflector layer 11, an active light-emitting layer 12, a second reflector layer 13 and a current confinement structure 14. In detail, in the present embodiment, the surface-emitting laser device Z1 also includes a substrate 10. The first reflector layer 11, the active light-emitting layer 12, the second reflector layer 13 and the current confinement structure 14 are all arranged on the substrate 10, and the active light-emitting layer 12 is located between the first reflector layer 11 and the second reflector layer 13.
基材10可以是绝缘基材或是半导体基材。绝缘基材例如是蓝宝石,而半导体基材例如是硅、锗、碳化硅或III-V族半导体。III-V族半导体例如是砷化镓(GaAs)、磷化砷(InP)、氮化铝(Aluminum Nitride,AIN)、氮化铟(Indium Nitride,InN)或是氮化镓(GalliumNitride,GaN)。另外,基材10具有一磊晶面10a及和磊晶面10a相对的底面10b。The substrate 10 may be an insulating substrate or a semiconductor substrate. The insulating substrate is, for example, sapphire, and the semiconductor substrate is, for example, silicon, germanium, silicon carbide, or a III-V semiconductor. A III-V semiconductor is, for example, gallium arsenide (GaAs), arsenic phosphide (InP), aluminum nitride (AIN), indium nitride (InN), or gallium nitride (GaN). In addition, the substrate 10 has an epitaxial surface 10a and a bottom surface 10b opposite to the epitaxial surface 10a.
第一反射镜层11、主动发光层12以及第二反射镜层13是依序位于基材10的磊晶面10a上。在本实施例中,第一反射镜层11、主动发光层12以及第二反射镜层13与主动发光层12具有相同的截面宽度。The first reflector layer 11, the active light emitting layer 12 and the second reflector layer 13 are sequentially disposed on the epitaxial surface 10a of the substrate 10. In this embodiment, the first reflector layer 11, the active light emitting layer 12 and the second reflector layer 13 have the same cross-sectional width as the active light emitting layer 12.
第一反射镜层11以及第二反射镜层13可以是由具有不同折射系数的两种薄膜交替堆叠而形成的分布式布拉格反射镜(Distributed Bragg Reflector,DBR),以使具有预定波长反射共振。在本实施例中,构成第一反射镜层11与第二反射镜层13的材料可以是被掺杂的III-V族化合物半导体,且第一反射镜层11与第二反射镜层13分别具有不同导电型。The first reflector layer 11 and the second reflector layer 13 may be a distributed Bragg reflector (DBR) formed by alternately stacking two thin films with different refractive indexes to achieve reflection resonance at a predetermined wavelength. In this embodiment, the material constituting the first reflector layer 11 and the second reflector layer 13 may be a doped III-V compound semiconductor, and the first reflector layer 11 and the second reflector layer 13 have different conductivity types.
主动发光层12形成在第一反射镜层11上,用以产生激光光束L。详细而言,主动发光层12位于第一反射镜层11与第二反射镜层13之间,用以被电能激发而产生初始光束。主动发光层12所产生的初始光束通过在第一反射镜层11与第二反射镜层13之间来回反射共振而增益放大,最终由第二反射镜层13出射,而产生激光光束L。The active light-emitting layer 12 is formed on the first reflector layer 11 to generate a laser beam L. Specifically, the active light-emitting layer 12 is located between the first reflector layer 11 and the second reflector layer 13 to be excited by electrical energy to generate an initial light beam. The initial light beam generated by the active light-emitting layer 12 is amplified by reflection and resonance between the first reflector layer 11 and the second reflector layer 13, and is finally emitted from the second reflector layer 13 to generate a laser beam L.
主动发光层12包括多层用以形成多重量子井的膜层,例如是多层彼此交替堆叠且皆未经掺杂阱层与阻障层。阱层与阻障层的材料依据所要产生的激光光束L的波长而决定。举例而言,当所要产生的激光光束L为红光,阱层与阻障层可分别为砷化镓层以及砷化铝镓(AlxGa(1-x)As)层。当所要产生的激光光束L为蓝光时,阻障层与阱层可分别为氮化镓(GaN)层与氮化铟镓(InGaN)层。然而,本申请不以前述举例为限。The active light-emitting layer 12 includes multiple film layers for forming multiple quantum wells, for example, multiple layers are alternately stacked and are not doped with well layers and barrier layers. The materials of the well layers and barrier layers are determined according to the wavelength of the laser beam L to be generated. For example, when the laser beam L to be generated is red light, the well layer and the barrier layer can be a gallium arsenide layer and an aluminum gallium arsenide (AlxGa(1-x)As) layer, respectively. When the laser beam L to be generated is blue light, the barrier layer and the well layer can be a gallium nitride (GaN) layer and an indium gallium nitride (InGaN) layer, respectively. However, the present application is not limited to the aforementioned examples.
请参照图1与图2,面射型激光装置Z1还包括一电流局限结构14,且电流局限结构14是位于主动发光层12上方或下方。电流局限结构14具有一局限孔14H,以定义出电流通道。需说明的是,只要电流局限结构14可用于定义出电流通过的区域,电流局限结构14的位置在本申请中并不限制。在本实施例中,电流局限结构14是位于第二反射镜层13内,并连接于主动发光层12。如图2所示,详细而言,在本实施例中,第二反射镜层13的一部分会填入局限孔14H内,并连接主动发光层12。既然第二反射镜层13为经掺杂的半导体材料,而具有高导电性,因此第二反射镜层13被填入局限孔14H的部分可允许电流通过。Please refer to FIG. 1 and FIG. 2 , the surface emitting laser device Z1 further includes a current confinement structure 14, and the current confinement structure 14 is located above or below the active light emitting layer 12. The current confinement structure 14 has a confinement hole 14H to define a current channel. It should be noted that the position of the current confinement structure 14 is not limited in the present application as long as the current confinement structure 14 can be used to define the area through which the current passes. In the present embodiment, the current confinement structure 14 is located in the second reflector layer 13 and is connected to the active light emitting layer 12. As shown in FIG. 2 , in detail, in the present embodiment, a portion of the second reflector layer 13 is filled in the confinement hole 14H and is connected to the active light emitting layer 12. Since the second reflector layer 13 is a doped semiconductor material and has high conductivity, the portion of the second reflector layer 13 filled in the confinement hole 14H allows current to pass.
如图2所示,在本实施例中,电流局限结构14会具有至少一PN接面SA。详细而言,电流局限结构14包括第一导电型掺杂层141以及第二导电型掺杂层142,且第一导电型掺杂层141与第二导电型掺杂层142之间会形成PN接面SA。详细而言,第一导电型掺杂层141与第一反射镜层11具有相反的导电型,而第二导电型掺杂层142与第二反射镜层13也具有相反的导电型。举例而言,当第一反射镜层11为N型时,第二反射镜层13与第一导电型掺杂层141都是P型,且第二导电型掺杂层142为N型。当第一反射镜层11为P型时,第二反射镜层13与第一导电型掺杂层141都是N型,且第二导电型掺杂层142为P型。As shown in FIG. 2 , in the present embodiment, the current confinement structure 14 has at least one PN junction SA. In detail, the current confinement structure 14 includes a first conductive type doped layer 141 and a second conductive type doped layer 142, and a PN junction SA is formed between the first conductive type doped layer 141 and the second conductive type doped layer 142. In detail, the first conductive type doped layer 141 and the first reflector layer 11 have opposite conductive types, and the second conductive type doped layer 142 and the second reflector layer 13 also have opposite conductive types. For example, when the first reflector layer 11 is N-type, the second reflector layer 13 and the first conductive type doped layer 141 are both P-type, and the second conductive type doped layer 142 is N-type. When the first reflector layer 11 is P-type, the second reflector layer 13 and the first conductive type doped layer 141 are both N-type, and the second conductive type doped layer 142 is P-type.
如图2所示,电流局限结构14会以第一导电型掺杂层141面向第一反射镜层11而设置。既然第二反射镜层13与第二导电型掺杂层142具有相反的导电型,第二反射镜层13与第二导电型掺杂层142会在面射型激光装置Z1内形成另一个PN接面SB。据此,本实施例的电流局限结构14具有由第一导电型掺杂层141与第二导电型掺杂层142所共同形成的基纳二极体(Zenor diode)。As shown in FIG2 , the current confinement structure 14 is disposed with the first conductive type doped layer 141 facing the first reflector layer 11. Since the second reflector layer 13 and the second conductive type doped layer 142 have opposite conductive types, the second reflector layer 13 and the second conductive type doped layer 142 form another PN junction SB in the surface emitting laser device Z1. Accordingly, the current confinement structure 14 of the present embodiment has a Zenor diode formed by the first conductive type doped layer 141 and the second conductive type doped layer 142.
须说明的是,构成电流局限结构14的材料可选择不会吸收激光光束的半导体材料。换言之,构成电流局限结构14的材料可允许激光光束L穿透。假设激光光束L的波长为λ(单位为纳米),且构成电流局限结构14的半导体材料的能隙宽度为Eg,则能隙宽度Eg与激光光束L的波长λ可满足下列关系式:Eg>(1240/λ)。举例而言,当激光光束L的波长λ为850nm,构成电流局限结构14的半导体材料的能隙宽度Eg会大于1.46eV。如此,可避免电流局限结构14吸收激光光束L,而降低面射型激光装置Z1的发光效率。在一实施例中,构成电流局限结构14的半导体材料的能隙宽度(energybandgap)会大于构成主动发光层12(阱层)的半导体材料的能隙宽度。It should be noted that the material constituting the current confinement structure 14 can be selected from semiconductor materials that do not absorb the laser beam. In other words, the material constituting the current confinement structure 14 can allow the laser beam L to penetrate. Assuming that the wavelength of the laser beam L is λ (in nanometers), and the energy bandgap width of the semiconductor material constituting the current confinement structure 14 is Eg, the energy bandgap width Eg and the wavelength λ of the laser beam L can satisfy the following relationship: Eg>(1240/λ). For example, when the wavelength λ of the laser beam L is 850nm, the energy bandgap width Eg of the semiconductor material constituting the current confinement structure 14 will be greater than 1.46eV. In this way, the current confinement structure 14 can be prevented from absorbing the laser beam L and reducing the luminous efficiency of the surface emitting laser device Z1. In one embodiment, the energy bandgap width (energy bandgap) of the semiconductor material constituting the current confinement structure 14 is greater than the energy bandgap width of the semiconductor material constituting the active light emitting layer 12 (well layer).
除此之外,在本实施例中,构成电流局限结构14的材料的晶格常数与构成主动发光层12的材料之间的晶格常数可相互匹配,以减少介面缺陷。在一较佳实施例中,构成电流局限结构14的材料与构成主动发光层12的材料之间的晶格失配度(lattice mismatch)小于或等于0.1%。另外,由于本实施例的电流局限结构14会位于第二反射镜层13内,因此构成电流局限结构14的材料与构成第二反射镜层13的材料之间的晶格失配度(latticemismatch)小于或等于0.1%。In addition, in this embodiment, the lattice constant of the material constituting the current confinement structure 14 and the lattice constant of the material constituting the active light-emitting layer 12 can be matched with each other to reduce interface defects. In a preferred embodiment, the lattice mismatch between the material constituting the current confinement structure 14 and the material constituting the active light-emitting layer 12 is less than or equal to 0.1%. In addition, since the current confinement structure 14 of this embodiment is located in the second reflector layer 13, the lattice mismatch between the material constituting the current confinement structure 14 and the material constituting the second reflector layer 13 is less than or equal to 0.1%.
相较于现有的氧化层,本实施例的电流局限结构14与主动发光层12之间以及与第二反射镜层13之间的晶格失配度较小,可以减少面射型激光装置Z1的内应力,增加面射型激光装置Z1的可靠性。在本实施例中,电流局限结构14的总厚度范围是10nm至1000nm。由于构成电流局限结构14、主动发光层12以及第二反射镜层13都是半导体材料,因此热膨胀系数差异较小。如此,可避免面射型激光装置Z1在进行退火处理后因热膨胀系数差异而破裂,从而提高制程良率。Compared with the existing oxide layer, the lattice mismatch between the current confinement structure 14 of this embodiment and the active light-emitting layer 12 and the second reflector layer 13 is smaller, which can reduce the internal stress of the surface-emitting laser device Z1 and increase the reliability of the surface-emitting laser device Z1. In this embodiment, the total thickness of the current confinement structure 14 ranges from 10nm to 1000nm. Since the current confinement structure 14, the active light-emitting layer 12 and the second reflector layer 13 are all made of semiconductor materials, the difference in thermal expansion coefficient is small. In this way, the surface-emitting laser device Z1 can be prevented from being broken due to the difference in thermal expansion coefficient after annealing, thereby improving the process yield.
请参照图1,本申请实施例的面射型激光装置Z1还包括第一电极层15以及第二电极层16。第一电极层15电性连接于第一反射镜层11,而第二电极层16电性连接于第二反射镜层13。在图1的实施例中,第一电极层15与第二电极层16是分别位于基材10的不同侧,然而,在其他实施例中,第一电极层15与第二电极层16可以都位于基材10的相同侧。1 , the surface emitting laser device Z1 of the embodiment of the present application further includes a first electrode layer 15 and a second electrode layer 16. The first electrode layer 15 is electrically connected to the first reflector layer 11, and the second electrode layer 16 is electrically connected to the second reflector layer 13. In the embodiment of FIG. 1 , the first electrode layer 15 and the second electrode layer 16 are respectively located on different sides of the substrate 10, however, in other embodiments, the first electrode layer 15 and the second electrode layer 16 may be located on the same side of the substrate 10.
进一步而言,在本实施例中,第一电极层15是设置在基材10的底面10b。第二电极层16位于第二反射镜层13上,并电性连接第二反射镜层13。第一电极层15与第二电极层16之间定义出一经过主动发光层12的电流路径。第一电极层15与第二电极层16可以是单一金属层、合金层或者是由不同金属材料所构成的叠层。Further, in this embodiment, the first electrode layer 15 is disposed on the bottom surface 10b of the substrate 10. The second electrode layer 16 is located on the second reflector layer 13 and is electrically connected to the second reflector layer 13. A current path passing through the active light-emitting layer 12 is defined between the first electrode layer 15 and the second electrode layer 16. The first electrode layer 15 and the second electrode layer 16 can be a single metal layer, an alloy layer, or a stack of different metal materials.
在图1的实施例中,第二电极层16具有一用以定义出一发光区A1的开孔16H,且开孔16H会对应前述电流局限结构14的局限孔14H,以使主动发光层12所产生的激光光束L可由开孔16H射出。在一实施例中,第二电极层16具有环形部分,但本申请并不限制第二电极层16的俯视图案。第二电极层12的材料可以是金、钨、锗、钯、钛或其任意组合。In the embodiment of FIG. 1 , the second electrode layer 16 has an opening 16H for defining a light-emitting area A1, and the opening 16H corresponds to the confining hole 14H of the current confining structure 14, so that the laser beam L generated by the active light-emitting layer 12 can be emitted from the opening 16H. In one embodiment, the second electrode layer 16 has a ring-shaped portion, but the present application does not limit the top view pattern of the second electrode layer 16. The material of the second electrode layer 12 can be gold, tungsten, germanium, palladium, titanium or any combination thereof.
另外,本实施例的面射型激光装置Z1还进一步包括电流散布层17以及保护层18。电流散布层17位于第二反射镜层13上,并电性连接第二电极层16。在一实施例中,构成电流散布层17的材料为导电材料,使得由第二反射镜层13注入主动发光层12的电流均匀分布。此外,构成电流散布层17的材料是激光光束L可穿透的材料,以避免过于牺牲面射型激光装置Z1的发光效率。举例而言,当激光光束L的波长为850nm时,构成电流散布层17的材料可以是经掺杂的半导体材料,例如是重掺杂的砷化镓,但本申请不以此例为限。In addition, the surface emitting laser device Z1 of this embodiment further includes a current spreading layer 17 and a protective layer 18. The current spreading layer 17 is located on the second reflector layer 13 and is electrically connected to the second electrode layer 16. In one embodiment, the material constituting the current spreading layer 17 is a conductive material, so that the current injected from the second reflector layer 13 into the active light emitting layer 12 is evenly distributed. In addition, the material constituting the current spreading layer 17 is a material that the laser beam L can penetrate, so as to avoid excessively sacrificing the light emitting efficiency of the surface emitting laser device Z1. For example, when the wavelength of the laser beam L is 850nm, the material constituting the current spreading layer 17 can be a doped semiconductor material, such as heavily doped gallium arsenide, but the present application is not limited to this example.
保护层18会覆盖电流散布层17上,并覆盖发光区A1,以避免水气入侵到面射型激光装置Z1内部,而影响面射型激光装置Z1的出光特性或是寿命。在一实施例中,保护层18可选择抗水气的材料,如:氮化硅、氧化铝或其组合,本申请并不限制。本实施例中,第二电极层16设置在保护层18上,并且穿过保护层18与电流散布层17而连接到第二反射镜层13,但本申请不以此为限。在另一实施例中,电流散布层17也可以被省略。The protective layer 18 covers the current spreading layer 17 and the light-emitting area A1 to prevent moisture from invading the interior of the surface-emitting laser device Z1 and affecting the light-emitting characteristics or life of the surface-emitting laser device Z1. In one embodiment, the protective layer 18 may be made of a moisture-resistant material, such as silicon nitride, aluminum oxide, or a combination thereof, which is not limited in the present application. In this embodiment, the second electrode layer 16 is disposed on the protective layer 18 and is connected to the second reflector layer 13 through the protective layer 18 and the current spreading layer 17, but the present application is not limited thereto. In another embodiment, the current spreading layer 17 may also be omitted.
值得一提的是,电流局限结构14的基纳二极体的至少一部分会位于第一电极层15与第二电极层16所定义出的电流路径上,以阻挡电流通过。据此,当通过第一电极层15与第二电极层16对面射型激光装置Z1施加偏压时,电流局限结构14的基纳二极体被施加逆向偏压,但并未被击穿。据此,基纳二极体并不会被导通,从而驱使电流绕过电流局限结构14而仅由局限孔14H通过,可增加电流注入主动发光层12的电流密度。It is worth mentioning that at least a portion of the Kina diode of the current confinement structure 14 is located on the current path defined by the first electrode layer 15 and the second electrode layer 16 to block the current from passing through. Accordingly, when a bias is applied to the surface-emitting laser device Z1 through the first electrode layer 15 and the second electrode layer 16, the Kina diode of the current confinement structure 14 is reverse biased but is not broken down. Accordingly, the Kina diode is not turned on, thereby driving the current to bypass the current confinement structure 14 and pass only through the confinement hole 14H, which can increase the current density of the current injected into the active light-emitting layer 12.
然而,当产生静电放电时,无论静电电流是正电流或负电流,电流局限结构14的基纳二极体会被导通。由于基纳二极体被导通时的电阻会远低于位于局限孔14H内的第二反射镜层13的电阻,大部分的静电电流将由电流局限结构14通过,而不会由局限孔14H通过。需说明的是,电流局限结构14的俯视面积占比大于局限孔14H的俯视面积占比。当电流局限结构14的基纳二极体被导通时,流经主动发光层12的静电电流可被分散,而降低电流密度,可避免损坏主动发光层12。据此,电流局限结构14可对面射型激光装置Z1提供静电放电保护。However, when electrostatic discharge is generated, the Kina diode of the current confinement structure 14 will be turned on, regardless of whether the electrostatic current is a positive current or a negative current. Since the resistance of the Kina diode when it is turned on is much lower than the resistance of the second reflector layer 13 located in the confinement hole 14H, most of the electrostatic current will pass through the current confinement structure 14, and will not pass through the confinement hole 14H. It should be noted that the top-view area ratio of the current confinement structure 14 is greater than the top-view area ratio of the confinement hole 14H. When the Kina diode of the current confinement structure 14 is turned on, the electrostatic current flowing through the active light-emitting layer 12 can be dispersed, thereby reducing the current density and avoiding damage to the active light-emitting layer 12. Accordingly, the current confinement structure 14 can provide electrostatic discharge protection for the surface-emitting laser device Z1.
也就是说,本申请实施例的面射型激光装置Z1中,通过使电流局限结构14具有基纳二极体,不仅可定义出电流通道,还可对面射型激光装置Z1提供静电放电保护,提高可靠性。That is to say, in the surface emitting laser device Z1 of the embodiment of the present application, by making the current confinement structure 14 have a Zener diode, not only can a current channel be defined, but also electrostatic discharge protection can be provided to the surface emitting laser device Z1, thereby improving reliability.
请参照图3,显示本申请另一实施例的面射型激光装置的局部放大示意图。在本实施例中,电流局限结构14具有PIN接面,也可达到相同的功效。详细而言,本实施例的电流局限结构14可包括第一导电型掺杂层141、第二导电型掺杂层142以及本质半导体层143。Please refer to FIG. 3 , which shows a partial enlarged schematic diagram of a surface emitting laser device according to another embodiment of the present application. In this embodiment, the current confinement structure 14 has a PIN junction, which can also achieve the same effect. In detail, the current confinement structure 14 of this embodiment may include a first conductive type doped layer 141, a second conductive type doped layer 142, and an intrinsic semiconductor layer 143.
本质半导体层143会位于第一导电型掺杂层141与第二导电型掺杂层142之间。本质半导体层143即为未掺杂的半导体层,且构成本质半导体层143的半导体材料可以与构成第一导电型掺杂层141(或第二导电型掺杂层142)的半导体材料相同,但本申请并不限制。The intrinsic semiconductor layer 143 is located between the first conductivity type doped layer 141 and the second conductivity type doped layer 142. The intrinsic semiconductor layer 143 is an undoped semiconductor layer, and the semiconductor material constituting the intrinsic semiconductor layer 143 may be the same as the semiconductor material constituting the first conductivity type doped layer 141 (or the second conductivity type doped layer 142), but the present application is not limited thereto.
如此,当对面射型激光装置Z1施加偏压时,电流局限结构14的第二导电型掺杂层142与第一导电型掺杂层141等效于被施加小于崩溃电压的逆向偏压,而使电流局限结构14处于非导通状态。因此,电流只被允许由电流局限结构14的局限孔14H通过。Thus, when a bias is applied to the surface-emitting laser device Z1, the second conductive type doped layer 142 and the first conductive type doped layer 141 of the current confinement structure 14 are equivalent to being applied with a reverse bias voltage less than the breakdown voltage, so that the current confinement structure 14 is in a non-conducting state. Therefore, the current is only allowed to pass through the confinement hole 14H of the current confinement structure 14.
当产生静电放电而使施加于电流局限结构14的逆向偏压大于崩溃电压时,电流局限结构14可处于导通状态,而使大部分静电电流通过电流局限结构14。通过在第一导电型掺杂层141与第二导电型掺杂层142之间设置本质半导体层143,可以进一步提升电流局限结构14对面射型激光装置Z1的静电放电防护能力。When electrostatic discharge occurs and the reverse bias voltage applied to the current confinement structure 14 is greater than the breakdown voltage, the current confinement structure 14 can be in a conducting state, so that most of the electrostatic current passes through the current confinement structure 14. By providing an intrinsic semiconductor layer 143 between the first conductive type doped layer 141 and the second conductive type doped layer 142, the electrostatic discharge protection capability of the current confinement structure 14 to the surface-emitting laser device Z1 can be further improved.
第二实施例请参照图4,图4为本申请第二实施例的面射型激光装置的剖面示意图。本实施例的面射型激光装置Z2与第一实施例的面射型激光装置Z1相同的元件具有相同的标号,且相同的部分不再赘述。Second Embodiment Please refer to Figure 4, which is a cross-sectional view of a surface emitting laser device of the second embodiment of the present application. The same components of the surface emitting laser device Z2 of this embodiment and the surface emitting laser device Z1 of the first embodiment have the same reference numerals, and the same parts are not repeated here.
在本实施例的面射型激光装置Z2中,电流局限结构14设置在第二反射镜层13内,但并未连接于主动发光层12。需说明的是,在本实施例中,电流局限结构14的位置可较靠近于主动发光层12,而较远离第二电极层16。如此,通过局限孔14H而注入到主动发光层12的电流可较集中,而使面射型激光装置Z2具有较高的发光效率。电流局限结构14可以是图2或图3所示的结构。在本实施例中,电流局限结构14以第一导电型掺杂层141朝向第一反射镜层11设置,且连接于第二反射镜层13的下部分。另外,电流局限结构14的第二导电型掺杂层142会连接于第二反射镜层13的上部分,并且第二导电型掺杂层142与第二反射镜层13之间仍会形成PN接面SB。In the surface emitting laser device Z2 of the present embodiment, the current confinement structure 14 is disposed in the second reflector layer 13, but is not connected to the active light emitting layer 12. It should be noted that, in the present embodiment, the position of the current confinement structure 14 can be closer to the active light emitting layer 12 and farther from the second electrode layer 16. In this way, the current injected into the active light emitting layer 12 through the confining hole 14H can be more concentrated, so that the surface emitting laser device Z2 has a higher light emitting efficiency. The current confinement structure 14 can be a structure as shown in FIG. 2 or FIG. 3. In the present embodiment, the current confinement structure 14 is disposed with the first conductive type doped layer 141 facing the first reflector layer 11, and is connected to the lower part of the second reflector layer 13. In addition, the second conductive type doped layer 142 of the current confinement structure 14 is connected to the upper part of the second reflector layer 13, and a PN junction SB is still formed between the second conductive type doped layer 142 and the second reflector layer 13.
如此,当对面射型激光装置Z1施加偏压时,电流局限结构14的第二导电型掺杂层142与第一导电型掺杂层141会被施加小于崩溃电压的逆向偏压,而使电流局限结构14处于非导通状态。因此,电流只被允许由电流局限结构14的局限孔14H通过。据此,只要电流局限结构14可局限电流并可对面射型激光装置Z2提供静电放电防护,本申请并不限制电流局限结构14在第二反射镜层13内的位置。Thus, when a bias is applied to the surface-emitting laser device Z1, the second conductive type doped layer 142 and the first conductive type doped layer 141 of the current confinement structure 14 are reverse biased less than the breakdown voltage, so that the current confinement structure 14 is in a non-conducting state. Therefore, the current is only allowed to pass through the confinement hole 14H of the current confinement structure 14. Accordingly, as long as the current confinement structure 14 can confine the current and provide electrostatic discharge protection for the surface-emitting laser device Z2, the present application does not limit the position of the current confinement structure 14 in the second reflector layer 13.
第三实施例Third embodiment
请参照图5,图5为本申请第三实施例的面射型激光装置的剖面示意图。本实施例的面射型激光装置Z3与第一实施例的面射型激光装置Z1相同的元件具有相同的标号,且相同的部分不再赘述。Please refer to Figure 5, which is a cross-sectional view of a surface emitting laser device according to a third embodiment of the present application. The same components of the surface emitting laser device Z3 of this embodiment and the surface emitting laser device Z1 of the first embodiment have the same reference numerals, and the same parts are not repeated here.
在本实施例的面射型激光装置Z3中,电流局限结构14是位于主动发光层12与第二反射镜层13之间,但电流局限结构14并没有位于第二反射镜层13内。详细而言,本实施例的面射型激光装置Z3还进一步包括电流注入层19,且电流注入层19是位于电流局限结构14与第二电极层16之间。在本实施例中,电流注入层19的一部分填入电流局限结构14的局限孔14H内。In the surface emitting laser device Z3 of the present embodiment, the current confinement structure 14 is located between the active light emitting layer 12 and the second reflector layer 13, but the current confinement structure 14 is not located in the second reflector layer 13. In detail, the surface emitting laser device Z3 of the present embodiment further includes a current injection layer 19, and the current injection layer 19 is located between the current confinement structure 14 and the second electrode layer 16. In the present embodiment, a portion of the current injection layer 19 is filled into the confinement hole 14H of the current confinement structure 14.
另外,在本实施例中,构成电流注入层19的材料为经掺杂的半导体材料,且电流注入层19与第二导电型掺杂层142具有相反的导电型。据此,电流注入层19与第二导电型掺杂层142之间会形成另一PN接面(未标号)。在一实施例中,电流注入层19的半导体材料可以与电流局限结构14的第一导电型掺杂层141的半导体材料相同,但本申请不以此为限。在另一实施例中,电流局限层14也可以不连接主动发光层12,而内埋于电流注入层19内。In addition, in the present embodiment, the material constituting the current injection layer 19 is a doped semiconductor material, and the current injection layer 19 and the second conductive type doping layer 142 have opposite conductivity types. Accordingly, another PN junction (not numbered) is formed between the current injection layer 19 and the second conductive type doping layer 142. In one embodiment, the semiconductor material of the current injection layer 19 may be the same as the semiconductor material of the first conductive type doping layer 141 of the current confinement structure 14, but the present application is not limited thereto. In another embodiment, the current confinement layer 14 may also be not connected to the active light-emitting layer 12, but buried in the current injection layer 19.
第二电极层16可通过电流散布层17而电性连接电流注入层19。据此,当对面射型激光装置Z1施加偏压时,电流局限结构14的第二导电型掺杂层142与第一导电型掺杂层141会被施加小于崩溃电压的逆向偏压,而使电流局限结构14处于非导通状态。因此,电流只被允许由电流局限结构14的局限孔14H通过。The second electrode layer 16 can be electrically connected to the current injection layer 19 through the current spreading layer 17. Accordingly, when a bias is applied to the surface-emitting laser device Z1, a reverse bias voltage less than the breakdown voltage is applied to the second conductive type doped layer 142 and the first conductive type doped layer 141 of the current confinement structure 14, so that the current confinement structure 14 is in a non-conducting state. Therefore, the current is only allowed to pass through the confinement hole 14H of the current confinement structure 14.
另外,本实施例的第二反射镜层13是与第二电极层16共同设置在电流散布层17上。进一步而言,第二反射镜层13是位于第二电极层16所定义出的开孔16H内。换言之,本实施例的第二电极层16会围绕第二反射镜层13。值得一提的是,本实施例中,构成第二反射镜层13的材料可包括半导体材料、绝缘材料或其组合。半导体材料可以是本质半导体材料或是经掺杂的半导体材料,本申请并不限制。举例而言,半导体材料例如是硅、砷化铟镓铝(InGaAlAs)、磷砷化铟镓(InGaAsP)、磷化铟(InP)、砷化铝铟(InAlAs)、砷化铝镓(AlGaAs)或是氮化铝镓(AlGaN)等材料,其可根据激光光束L的波长而选择。绝缘材料可以是氧化物或氮化物,如:氧化硅、氧化钛、氧化铝等绝缘材料,本申请并不限制。In addition, the second reflector layer 13 of the present embodiment is disposed on the current spreading layer 17 together with the second electrode layer 16. Further, the second reflector layer 13 is located in the opening 16H defined by the second electrode layer 16. In other words, the second electrode layer 16 of the present embodiment surrounds the second reflector layer 13. It is worth mentioning that, in the present embodiment, the material constituting the second reflector layer 13 may include a semiconductor material, an insulating material or a combination thereof. The semiconductor material may be an intrinsic semiconductor material or a doped semiconductor material, which is not limited in the present application. For example, the semiconductor material may be silicon, indium gallium aluminum arsenide (InGaAlAs), indium gallium arsenide phosphide (InGaAsP), indium phosphide (InP), indium aluminum arsenide (InAlAs), aluminum gallium arsenide (AlGaAs) or aluminum gallium nitride (AlGaN), which may be selected according to the wavelength of the laser beam L. The insulating material may be an oxide or a nitride, such as an insulating material such as silicon oxide, titanium oxide, aluminum oxide, etc., which is not limited in the present application.
在一实施例中,第二反射镜层13可包括多对膜层,且构成每一对膜层的材料可以由上述的材料中选择。举例而言,每一对膜层可以是氧化钛层与氧化硅层、硅层与氧化铝层或是氧化钛层与氧化铝层,可依据所要产生的激光光束L的波长来决定,本申请并不限制。In one embodiment, the second reflector layer 13 may include multiple pairs of film layers, and the materials constituting each pair of film layers may be selected from the above-mentioned materials. For example, each pair of film layers may be a titanium oxide layer and a silicon oxide layer, a silicon layer and an aluminum oxide layer, or a titanium oxide layer and an aluminum oxide layer, which may be determined according to the wavelength of the laser beam L to be generated, and the present application is not limited thereto.
请参照图6与图7。图6为本申请第四实施例的面射型激光装置的剖面示意图,而图7为图6的VII部分的放大示意图。本实施例的面射型激光装置Z4与第一实施例的面射型激光装置Z1相同或相似的元件具有相同的标号,且不再赘述。在本实施例中,电流局限结构14可位于主动发光层12与第一反射镜层11之间。详细而言,电流局限结构14可内埋于第一反射镜层11内,并连接主动发光层12。Please refer to Figures 6 and 7. Figure 6 is a cross-sectional schematic diagram of the surface-emitting laser device of the fourth embodiment of the present application, and Figure 7 is an enlarged schematic diagram of part VII of Figure 6. The same or similar components of the surface-emitting laser device Z4 of this embodiment and the surface-emitting laser device Z1 of the first embodiment have the same reference numerals and are not described in detail. In this embodiment, the current confinement structure 14 may be located between the active light-emitting layer 12 and the first reflector layer 11. In detail, the current confinement structure 14 may be embedded in the first reflector layer 11 and connected to the active light-emitting layer 12.
如图7所示,电流局限结构14包括第一导电型掺杂层141与第二导电型掺杂层142,且第一导电型掺杂层141与第二导电型掺杂层142之间形成PN接面SA。另外,第一导电型掺杂层141面向第一电极层15设置,而第二导电型掺杂层142面向第二电极层16而设置。据此,在第一反射镜层11内,本实施例的电流局限结构14包括由第一导电型掺杂层141与第二导电型掺杂层142共同形成的基纳二极体(Zenordiode)。As shown in FIG7 , the current confinement structure 14 includes a first conductive type doping layer 141 and a second conductive type doping layer 142, and a PN junction SA is formed between the first conductive type doping layer 141 and the second conductive type doping layer 142. In addition, the first conductive type doping layer 141 is disposed facing the first electrode layer 15, and the second conductive type doping layer 142 is disposed facing the second electrode layer 16. Accordingly, in the first reflector layer 11, the current confinement structure 14 of the present embodiment includes a Zenordiode formed by the first conductive type doping layer 141 and the second conductive type doping layer 142.
在本实施例中,第二导电型掺杂层142位于第一导电型掺杂层141与主动发光层12之间。由于第一导电型掺杂层141与第一反射镜层11具有相反的导电型,第一导电型掺杂层141与第一反射镜层11之间会形成另一PN接面SC。举例而言,当第一反射镜层11为N型时,第一导电型掺杂层141为P型,且第二导电型掺杂层142为N型。另外,第二导电型掺杂层142与第一反射镜层11可以由相同或不同的材料所构成,本申请并不限制。In the present embodiment, the second conductive type doped layer 142 is located between the first conductive type doped layer 141 and the active light emitting layer 12. Since the first conductive type doped layer 141 and the first reflector layer 11 have opposite conductive types, another PN junction SC is formed between the first conductive type doped layer 141 and the first reflector layer 11. For example, when the first reflector layer 11 is N-type, the first conductive type doped layer 141 is P-type, and the second conductive type doped layer 142 is N-type. In addition, the second conductive type doped layer 142 and the first reflector layer 11 can be made of the same or different materials, which is not limited in the present application.
当对面射型激光装置Z4施加偏压时,电流局限结构14的基纳二极体被施加小于崩溃电压的逆向偏压,而使电流局限结构14处于非导通状态。因此,电流只被允许由电流局限结构14的局限孔14H通过。当产生静电放电时,无论静电电流是正电流或负电流,电流局限结构14的基纳二极体会被导通,而允许大部分的静电电流通过电流局限结构14,进而可对面射型激光装置Z4提供静电保护。When a bias is applied to the surface-emitting laser device Z4, a reverse bias voltage less than the breakdown voltage is applied to the Zinne diode of the current confinement structure 14, so that the current confinement structure 14 is in a non-conducting state. Therefore, the current is only allowed to pass through the confinement hole 14H of the current confinement structure 14. When electrostatic discharge is generated, whether the electrostatic current is positive or negative, the Zinne diode of the current confinement structure 14 will be turned on, and most of the electrostatic current is allowed to pass through the current confinement structure 14, thereby providing electrostatic protection for the surface-emitting laser device Z4.
请参照图8,其为本申请另一实施例的面射型激光装置的局部放大示意图。在本实施例中,电流局限结构14位于第一反射镜层11内,且具有PIN接面,也可达到相同的功效。详细而言,本实施例的电流局限结构14可包括第一导电型掺杂层141、第二导电型掺杂层142以及本质半导体层143。本质半导体层143位于第一导电型掺杂层141与第二导电型掺杂层142之间。本实施例的电流局限结构14的操作原理与图3的实施例的操作原理相似,而也可提供静电保护。Please refer to FIG8, which is a partially enlarged schematic diagram of a surface-emitting laser device according to another embodiment of the present application. In the present embodiment, the current confinement structure 14 is located in the first reflector layer 11 and has a PIN junction, which can also achieve the same effect. In detail, the current confinement structure 14 of the present embodiment may include a first conductive type doped layer 141, a second conductive type doped layer 142 and an intrinsic semiconductor layer 143. The intrinsic semiconductor layer 143 is located between the first conductive type doped layer 141 and the second conductive type doped layer 142. The operating principle of the current confinement structure 14 of the present embodiment is similar to the operating principle of the embodiment of FIG3, and electrostatic protection can also be provided.
请参照图9,其为本申请第五实施例的面射型激光装置的剖面示意图。本实施例的面射型激光装置Z5与第三实施例的面射型激光装置Z3相同或相似的元件具有相同的标号,且不再赘述。在本实施例中,电流局限结构14内埋于第一反射镜层11内,但并未连接主动发光层12。然而,电流局限结构14的位置可较靠近于主动发光层12而较远离基材10。电流局限结构14可以是图7或图8所示的结构。详细而言,只要第一导电型掺杂层141与第一反射镜层11具有相反的导电型,而形成PN接面,电流局限结构14即可用于限制电流通过路径,并对面射型激光装置Z5提供静电保护。Please refer to Figure 9, which is a cross-sectional schematic diagram of the surface-emitting laser device of the fifth embodiment of the present application. The same or similar elements as the surface-emitting laser device Z3 of the third embodiment of the surface-emitting laser device Z5 of this embodiment have the same reference numerals and are not repeated here. In this embodiment, the current confinement structure 14 is buried in the first reflector layer 11, but is not connected to the active light-emitting layer 12. However, the position of the current confinement structure 14 may be closer to the active light-emitting layer 12 and farther away from the substrate 10. The current confinement structure 14 may be the structure shown in Figure 7 or Figure 8. In detail, as long as the first conductive doping layer 141 and the first reflector layer 11 have opposite conductivity types to form a PN junction, the current confinement structure 14 can be used to limit the current passage path and provide electrostatic protection for the surface-emitting laser device Z5.
请参阅图10,其为本申请实施例的面射型激光装置的制造方法的流程图。在步骤S10中,形成第一反射镜层。在步骤S20中,形成主动发光层于第一反射镜层上。在步骤S30中,形成电流局限结构主动发光层,其中,电流局限结构定义出局限孔,且具有一PN接面或者一PIN接面。在步骤S40中,形成第二反射镜层。在步骤S50中,形成第一电极层及第二电极层。Please refer to FIG. 10, which is a flow chart of the manufacturing method of the surface-emitting laser device of the embodiment of the present application. In step S10, a first reflector layer is formed. In step S20, an active light-emitting layer is formed on the first reflector layer. In step S30, a current confinement structure active light-emitting layer is formed, wherein the current confinement structure defines a confined hole and has a PN junction or a PIN junction. In step S40, a second reflector layer is formed. In step S50, a first electrode layer and a second electrode layer are formed.
值得一提的是,本实施例所提供的面射型激光装置的制造方法,可用来制造第一至第五实施例的面射型激光装置Z1-Z5。请参照图11至图16,以制造第一实施例的面射型激光装置Z1为例来进行说明。It is worth mentioning that the manufacturing method of the surface emitting laser device provided in this embodiment can be used to manufacture the surface emitting laser devices Z1-Z5 of the first to fifth embodiments. Please refer to Figures 11 to 16 to illustrate the manufacturing method of the surface emitting laser device Z1 of the first embodiment.
如图11所示,形成第一反射镜层11在基材10上。详细而言,第一反射镜层11是形成在基材10的磊晶面10a上。基材10的材料已于前文中叙述,在此不再赘述。基材10可与第一反射镜层11具有相同的导电型。As shown in FIG11 , a first reflector layer 11 is formed on a substrate 10. Specifically, the first reflector layer 11 is formed on an epitaxial surface 10a of the substrate 10. The material of the substrate 10 has been described above and will not be repeated here. The substrate 10 and the first reflector layer 11 may have the same conductivity type.
如图12所示,形成主动发光层12在第一反射镜层11上。可通过交替地在第一反射镜层11上形成多个阱层与多个阻障层,以形成主动发光层12。在一实施例中,第一反射镜层11与主动发光层12都可通过化学气相沉积而形成在基材10的磊晶面10a上。As shown in FIG12 , an active light-emitting layer 12 is formed on the first reflector layer 11. The active light-emitting layer 12 can be formed by alternately forming a plurality of well layers and a plurality of barrier layers on the first reflector layer 11. In one embodiment, both the first reflector layer 11 and the active light-emitting layer 12 can be formed on the epitaxial surface 10a of the substrate 10 by chemical vapor deposition.
请参照图13以及图14,绘示主动发光层形成电流局限结构14的详细流程。请配合参照图2与图13,进一步而言,当需要形成图2所示的电流局限结构14时,可以依序形成第一导电型掺杂层141以及第二导电型掺杂层142于主动发光层12上。如图13所示,第一导电型掺杂层141与第二导电型掺杂层142可共同形成一叠层结构14A。13 and 14, which illustrate the detailed process of forming the current confinement structure 14 from the active light-emitting layer. Referring to FIG. 2 and FIG. 13, further, when the current confinement structure 14 shown in FIG. 2 needs to be formed, a first conductive type doped layer 141 and a second conductive type doped layer 142 can be sequentially formed on the active light-emitting layer 12. As shown in FIG. 13, the first conductive type doped layer 141 and the second conductive type doped layer 142 can form a stacked structure 14A together.
另外,当要形成如图3所示的电流局限结构14时,可以在形成第一导电型掺杂层141之后,先形成本质半导体层143,再形成第二导电型掺杂层142。在这个情况下,第一导电型掺杂层141、本质半导体层143与第二导电型掺杂层142会共同形成叠层结构14A。In addition, when forming the current confinement structure 14 as shown in FIG3 , after forming the first conductive type doped layer 141, the intrinsic semiconductor layer 143 may be formed first, and then the second conductive type doped layer 142 may be formed. In this case, the first conductive type doped layer 141, the intrinsic semiconductor layer 143 and the second conductive type doped layer 142 may form a stacked structure 14A together.
请参照图14,在本实施例中,可在叠层结构14A形成一局限孔14H,以裸露一部分主动发光层12。进一步而言,可以通过蚀刻制程,以在叠层结构14A形成局限孔14H。请参照图15,第二反射镜层13会再被形成于电流局限结构14以及主动发光层12上。详细而言,在形成第二反射镜层13时,第二反射镜层13的一部分会填入局限孔14H内,并与主动发光层12连接。Referring to FIG. 14 , in this embodiment, a confining hole 14H may be formed in the stacked structure 14A to expose a portion of the active light-emitting layer 12. Further, the confining hole 14H may be formed in the stacked structure 14A by an etching process. Referring to FIG. 15 , the second reflector layer 13 is further formed on the current confining structure 14 and the active light-emitting layer 12. In detail, when the second reflector layer 13 is formed, a portion of the second reflector layer 13 is filled into the confining hole 14H and connected to the active light-emitting layer 12.
请参照图16,在基材10的底面10b形成第一电极层15,以及在第二反射镜层13上形成第二电极层16,即可制作本申请第一实施例的面射型激光装置Z1。在本实施例中,在形成第二电极层16之前,可以先形成电流散布层17以及保护层18。16, the surface emitting laser device Z1 of the first embodiment of the present application can be manufactured by forming a first electrode layer 15 on the bottom surface 10b of the substrate 10 and a second electrode layer 16 on the second reflector layer 13. In this embodiment, before forming the second electrode layer 16, a current spreading layer 17 and a protective layer 18 can be formed first.
须说明的是,当要制作第二实施例的面射型激光装置Z2时,也可以先在主动发光层12上形成第二反射镜层13的一部分,再形成具有局限孔14H的电流局限层14。之后,于电流局限层14上,再成长(regrowth)第二反射镜层13的另一部分。It should be noted that when manufacturing the surface emitting laser device Z2 of the second embodiment, a portion of the second reflector layer 13 may be first formed on the active light emitting layer 12, and then the current confinement layer 14 having the confinement hole 14H may be formed. Afterwards, another portion of the second reflector layer 13 may be grown on the current confinement layer 14.
请参照图17,其步骤可接续图14的步骤。本申请实施例的制造方法还进一步包括:形成电流注入层19于电流局限结构14上。在本实施例中,形成电流注入层19的步骤是在形成第二反射镜层13的步骤之前执行。如图17所示,电流注入层19会形成在电流局限结构14的局限孔14H内,并连接主动发光层12。之后,在电流注入层19上形成电流散布层17与第二反射镜层13。Please refer to FIG. 17 , which is a step following the step of FIG. 14 . The manufacturing method of the embodiment of the present application further includes: forming a current injection layer 19 on the current confinement structure 14. In the present embodiment, the step of forming the current injection layer 19 is performed before the step of forming the second reflector layer 13. As shown in FIG. 17 , the current injection layer 19 is formed in the confinement hole 14H of the current confinement structure 14 and connected to the active light-emitting layer 12. Afterwards, a current spreading layer 17 and a second reflector layer 13 are formed on the current injection layer 19.
请参照图18,在基材10的底面10b形成第一电极层15以及在电流散布层17上形成第二电极层16,以使第二电极层16电性连接电流注入层19。另外,第二电极层16会具有对应于局限孔14H的开孔16H,并且第二电极层16围绕第二反射镜层13设置。换句话说,第二反射镜层13会位于第二电极层16所定义的开孔16H内。在一实施例中,在形成电流散布层17之后,可以先形成第二反射镜层13,再形成第二电极层16。在另一实施例中,形成第二反射镜层13与形成第二电极层16的步骤也可对调。通过执行上述步骤,可制作第三实施例的面射型激光装置Z3。Referring to FIG. 18 , a first electrode layer 15 is formed on the bottom surface 10b of the substrate 10 and a second electrode layer 16 is formed on the current spreading layer 17, so that the second electrode layer 16 is electrically connected to the current injection layer 19. In addition, the second electrode layer 16 has an opening 16H corresponding to the confining hole 14H, and the second electrode layer 16 is disposed around the second reflector layer 13. In other words, the second reflector layer 13 is located in the opening 16H defined by the second electrode layer 16. In one embodiment, after the current spreading layer 17 is formed, the second reflector layer 13 may be formed first, and then the second electrode layer 16 may be formed. In another embodiment, the steps of forming the second reflector layer 13 and forming the second electrode layer 16 may also be reversed. By performing the above steps, the surface emitting laser device Z3 of the third embodiment may be manufactured.
需说明的是,当要制作第四实施例的面射型激光装置Z4时,形成电流局限结构14的步骤(S30)也可以在形成主动发光层12的步骤(S20)之前执行。当要制作第五实施例的面射型激光装置Z5时,也可以先形成第一反射镜层11的一部分,再形成具有局限孔14H的电流局限层14。之后,于电流局限层14上,再成长(regrowth)第一反射镜层11的另一部分。It should be noted that when the surface emitting laser device Z4 of the fourth embodiment is to be manufactured, the step (S30) of forming the current confinement structure 14 can also be performed before the step (S20) of forming the active light emitting layer 12. When the surface emitting laser device Z5 of the fifth embodiment is to be manufactured, a portion of the first reflector layer 11 can also be formed first, and then the current confinement layer 14 having the confinement hole 14H can be formed. Afterwards, another portion of the first reflector layer 11 can be grown on the current confinement layer 14.
实施例的有益效果本申请的其中一有益效果在于,本申请所提供的面射型激光装置及其制造方法,其能通过“电流局限结构14具有PN接面或者PIN接面”或者“电流局限结构14具有一基纳二极体”的技术方案,以使面射型激光装置Z1-Z5具有较佳可靠性(reliability)。Beneficial effects of the embodiments One of the beneficial effects of the present application is that the surface emitting laser device and the manufacturing method thereof provided in the present application can make the surface emitting laser devices Z1-Z5 have better reliability through the technical solution of "the current confinement structure 14 has a PN junction or a PIN junction" or "the current confinement structure 14 has a Kina diode".
更进一步来说,电流局限结构14包括第一导电型掺杂层141与第二导电型掺杂层142。第二导电型掺杂层142与第二反射镜层13具有相反的导电型,且电流局限结构14以第一导电型掺杂层141面向第一反射镜层11。当对面射型激光装置Z1-Z5施加偏压时,电流局限结构14的第二导电型掺杂层142与第一导电型掺杂层141是被施加小于崩溃电压的逆向偏压,而使电流局限结构14处于非导通状态。因此,电流只被允许由电流局限结构14的局限孔14H通过。More specifically, the current confinement structure 14 includes a first conductive type doped layer 141 and a second conductive type doped layer 142. The second conductive type doped layer 142 and the second reflector layer 13 have opposite conductive types, and the current confinement structure 14 faces the first reflector layer 11 with the first conductive type doped layer 141. When a bias is applied to the surface-emitting laser devices Z1-Z5, the second conductive type doped layer 142 and the first conductive type doped layer 141 of the current confinement structure 14 are reverse biased less than the breakdown voltage, so that the current confinement structure 14 is in a non-conducting state. Therefore, current is only allowed to pass through the confinement hole 14H of the current confinement structure 14.
当产生静电放电时,电流局限结构14可处于导通状态,而使大部分静电电流通过电流局限结构14。据此,本申请实施例的电流局限结构14不仅可用来限制电流路径,也可对面射型激光装置Z1-Z5提供静电放电保护。When electrostatic discharge occurs, the current confinement structure 14 can be in a conducting state, so that most of the electrostatic current passes through the current confinement structure 14. Therefore, the current confinement structure 14 of the embodiment of the present application can not only be used to limit the current path, but also provide electrostatic discharge protection for the surface-emitting laser devices Z1-Z5.
相较于现有的面射型激光装置,本申请实施例的面射型激光装置Z1-Z5中,电流局限结构14本身就可作为静电防护结构,而不需要另外并联二极体来进行保护。如此,可以降低成本及节省电子产品电路布局的空间。Compared with the existing surface emitting laser devices, in the surface emitting laser devices Z1-Z5 of the present embodiment, the current confinement structure 14 itself can be used as an electrostatic protection structure, and no additional parallel diode is required for protection. In this way, the cost can be reduced and the space of the electronic product circuit layout can be saved.
除此之外,既然构成第一反射镜层11、电流局限结构14、主动发光层12以及第二反射镜层13都是半导体材料,因此热膨胀系数差异较小。如此,可避免面射型激光装置Z1-Z5在进行退火处理后因热膨胀系数差异而破裂,从而提高制程良率。既然在本申请实施例的面射型激光装置Z1-Z5,不需要使用氧化层,在制造本申请实施例的面射型激光装置Z1-Z5时,也可省略执行侧向氧化步骤,且本申请实施例的面射型激光装置Z1-Z5不需要形成侧向沟槽。可进一步简化面射型激光装置Z1-Z5的制造流程,以及降低制造成本。此外,还可以避免因执行侧向氧化时,面射型激光装置Z1-Z5内部因被水气入侵而影响其出光特性。因此,本申请实施例的面射型激光装置Z1-Z5可具有更高的可靠度。In addition, since the first reflector layer 11, the current confinement structure 14, the active light-emitting layer 12 and the second reflector layer 13 are all made of semiconductor materials, the difference in thermal expansion coefficient is small. In this way, the surface-emitting laser device Z1-Z5 can be prevented from breaking due to the difference in thermal expansion coefficient after annealing, thereby improving the process yield. Since the surface-emitting laser device Z1-Z5 of the embodiment of the present application does not need to use an oxide layer, the lateral oxidation step can be omitted when manufacturing the surface-emitting laser device Z1-Z5 of the embodiment of the present application, and the surface-emitting laser device Z1-Z5 of the embodiment of the present application does not need to form a lateral groove. The manufacturing process of the surface-emitting laser device Z1-Z5 can be further simplified, and the manufacturing cost can be reduced. In addition, it can also be avoided that the surface-emitting laser device Z1-Z5 is affected by the invasion of water vapor inside the surface-emitting laser device Z1-Z5 when performing lateral oxidation. Therefore, the surface-emitting laser device Z1-Z5 of the embodiment of the present application can have higher reliability.
以上所公开的内容仅为本申请的优选可行实施例,并非因此局限本申请的申请专利范围,所以凡是运用本申请说明书及图式内容所做的等效技术变化,均包含于本申请的申请专利范围内。The contents disclosed above are only preferred feasible embodiments of the present application, and are not intended to limit the scope of the present application. Therefore, all equivalent technical changes made using the description and drawings of the present application are included in the scope of the present application.
Claims (15)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211326894.4A CN117977376A (en) | 2022-10-25 | 2022-10-25 | Surface-emitting laser device and method for manufacturing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211326894.4A CN117977376A (en) | 2022-10-25 | 2022-10-25 | Surface-emitting laser device and method for manufacturing the same |
Publications (1)
Publication Number | Publication Date |
---|---|
CN117977376A true CN117977376A (en) | 2024-05-03 |
Family
ID=90846617
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202211326894.4A Pending CN117977376A (en) | 2022-10-25 | 2022-10-25 | Surface-emitting laser device and method for manufacturing the same |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN117977376A (en) |
-
2022
- 2022-10-25 CN CN202211326894.4A patent/CN117977376A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101641847B (en) | Photonic crystal laser and method for manufacturing photonic crystal laser | |
US20060193359A1 (en) | Semiconductor light-emitting device | |
US10381804B2 (en) | Vertical cavity light emitting element | |
TWI449212B (en) | Semiconductor wafer | |
US9214595B2 (en) | Semiconductor light emitting device | |
WO2004059751A2 (en) | Methods of forming semiconductor mesa structures including self-aligned contact layers and related devices | |
JP2003218454A (en) | Semiconductor laser structure | |
CA2477541A1 (en) | Hybrid vertical cavity laser with buried interface | |
JP2007066981A (en) | Semiconductor device | |
US20240405515A1 (en) | Vertical cavity light-emitting element | |
JP7665086B2 (en) | Vertical cavity light emitting device | |
US20080175293A1 (en) | Semiconductor laser device | |
TWI826049B (en) | Surface emitting laser apparatus and method of manufacturing the same | |
CN117977376A (en) | Surface-emitting laser device and method for manufacturing the same | |
JP7648224B2 (en) | Surface emitting laser device and its manufacturing method | |
JP2011205148A (en) | Semiconductor device | |
CN117977375A (en) | Surface emitting laser device and method for manufacturing the same | |
JP5326701B2 (en) | Semiconductor laser element | |
KR101014720B1 (en) | Semiconductor laser diode manufacturing method | |
US20230335972A1 (en) | Semiconductor laser and semiconductor laser device | |
KR102680827B1 (en) | Semiconductor laser comprising hole for heat dissipation and manufacturing method therefor | |
TWM662488U (en) | Back-emitting current-confined vertical cavity surface-emitting laser structure | |
CN120380670A (en) | Semiconductor laser element | |
JPH0284785A (en) | semiconductor light emitting device | |
JPWO2016157739A1 (en) | Semiconductor light emitting device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |