CN117976522A - Method for manufacturing nano line width metal pattern - Google Patents
Method for manufacturing nano line width metal pattern Download PDFInfo
- Publication number
- CN117976522A CN117976522A CN202410133740.6A CN202410133740A CN117976522A CN 117976522 A CN117976522 A CN 117976522A CN 202410133740 A CN202410133740 A CN 202410133740A CN 117976522 A CN117976522 A CN 117976522A
- Authority
- CN
- China
- Prior art keywords
- electron beam
- resist layer
- beam resist
- metal
- layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229910052751 metal Inorganic materials 0.000 title claims abstract description 109
- 239000002184 metal Substances 0.000 title claims abstract description 109
- 238000000034 method Methods 0.000 title claims abstract description 59
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 21
- 238000010894 electron beam technology Methods 0.000 claims abstract description 112
- 239000000758 substrate Substances 0.000 claims abstract description 28
- 238000000059 patterning Methods 0.000 claims abstract description 7
- 239000000243 solution Substances 0.000 claims description 17
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 claims description 16
- 238000013461 design Methods 0.000 claims description 7
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 claims description 6
- 239000002070 nanowire Substances 0.000 claims description 5
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 claims description 4
- 238000005566 electron beam evaporation Methods 0.000 claims description 4
- 229910052737 gold Inorganic materials 0.000 claims description 4
- 229910052782 aluminium Inorganic materials 0.000 claims description 3
- 229940072049 amyl acetate Drugs 0.000 claims description 3
- PGMYKACGEOXYJE-UHFFFAOYSA-N anhydrous amyl acetate Natural products CCCCCOC(C)=O PGMYKACGEOXYJE-UHFFFAOYSA-N 0.000 claims description 3
- 239000008367 deionised water Substances 0.000 claims description 3
- 229910021641 deionized water Inorganic materials 0.000 claims description 3
- 238000010438 heat treatment Methods 0.000 claims description 3
- MNWFXJYAOYHMED-UHFFFAOYSA-M heptanoate Chemical compound CCCCCCC([O-])=O MNWFXJYAOYHMED-UHFFFAOYSA-M 0.000 claims description 3
- 238000001755 magnetron sputter deposition Methods 0.000 claims description 3
- 239000000463 material Substances 0.000 claims description 3
- 239000011259 mixed solution Substances 0.000 claims description 3
- 238000002207 thermal evaporation Methods 0.000 claims description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 3
- 238000004506 ultrasonic cleaning Methods 0.000 claims description 2
- URVVFIAUKSGYOG-UHFFFAOYSA-N 4-methylpentan-2-one;propan-2-ol Chemical compound CC(C)O.CC(C)CC(C)=O URVVFIAUKSGYOG-UHFFFAOYSA-N 0.000 claims 1
- 238000001465 metallisation Methods 0.000 abstract description 6
- 230000000149 penetrating effect Effects 0.000 abstract 1
- 239000010410 layer Substances 0.000 description 99
- 238000012546 transfer Methods 0.000 description 6
- 238000011161 development Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 238000001312 dry etching Methods 0.000 description 4
- 238000001000 micrograph Methods 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 238000005530 etching Methods 0.000 description 3
- 238000010884 ion-beam technique Methods 0.000 description 3
- 229910052763 palladium Inorganic materials 0.000 description 3
- 229910052697 platinum Inorganic materials 0.000 description 3
- 238000009987 spinning Methods 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- 229910052804 chromium Inorganic materials 0.000 description 2
- 238000004140 cleaning Methods 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 238000000151 deposition Methods 0.000 description 2
- 230000008021 deposition Effects 0.000 description 2
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 2
- -1 methyl isobutyl Chemical group 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 239000012790 adhesive layer Substances 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000004925 denaturation Methods 0.000 description 1
- 230000036425 denaturation Effects 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000000609 electron-beam lithography Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 1
- 239000000395 magnesium oxide Substances 0.000 description 1
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000002086 nanomaterial Substances 0.000 description 1
- 239000002105 nanoparticle Substances 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000010970 precious metal Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 229910052594 sapphire Inorganic materials 0.000 description 1
- 239000010980 sapphire Substances 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/027—Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
- H01L21/0271—Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers
- H01L21/0273—Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers characterised by the treatment of photoresist layers
- H01L21/0277—Electrolithographic processes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/31—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
- H01L21/3205—Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
- H01L21/32051—Deposition of metallic or metal-silicide layers
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Photosensitive Polymer And Photoresist Processing (AREA)
Abstract
Description
技术领域Technical Field
本发明属于电子束光刻技术领域,涉及一种纳米线宽金属图形的制作方法。The invention belongs to the technical field of electron beam lithography and relates to a method for manufacturing a nanometer line width metal pattern.
背景技术Background technique
对于特征尺寸为纳米量级的金属图形,通常可采用具有高分辨率的电子束曝光形成掩模图形,然后利用干法刻蚀或剥离工艺进行掩膜图形转移形成所需金属图形。对于采用干法刻蚀进行纳米尺寸金属图形转移时面临的主要困难是当金属薄膜具有一定厚度时,干法刻蚀时间较长,例如对于Au、Pd、Pt等贵金属,一般采用离子束刻蚀,刻蚀速率慢,从而刻蚀时间变长,而长时间的离子束轰击会造成抗蚀剂掩膜层的变形和变性,不但引起图形转移的精度下降,而且导致去除残余抗蚀剂掩膜层的难度也加大;若采用硬掩膜层来降低离子束轰击对电子束抗蚀剂的影响,又会增加工艺复杂度,相比于干法刻蚀图形转移,剥离工艺通过化学手段快速溶解未曝光的电子束抗蚀剂层,时间、设备和工艺成本可大幅度降低,因此,剥离工艺是当前微纳加工技术研究的热点之一,常用于电极、光栅等各类器件结构制备。For metal patterns with nanometer-scale feature sizes, high-resolution electron beam exposure is usually used to form a mask pattern, and then dry etching or stripping processes are used to transfer the mask pattern to form the desired metal pattern. The main difficulty faced when using dry etching to transfer nano-sized metal patterns is that when the metal film has a certain thickness, the dry etching time is long. For example, for precious metals such as Au, Pd, and Pt, ion beam etching is generally used, and the etching rate is slow, so the etching time becomes longer. Long-term ion beam bombardment will cause deformation and denaturation of the resist mask layer, which not only causes the accuracy of pattern transfer to decrease, but also increases the difficulty of removing the residual resist mask layer; if a hard mask layer is used to reduce the impact of ion beam bombardment on the electron beam resist, the process complexity will increase. Compared with dry etching pattern transfer, the stripping process quickly dissolves the unexposed electron beam resist layer by chemical means, and the time, equipment and process costs can be greatly reduced. Therefore, the stripping process is one of the hot spots in the current research of micro-nano processing technology, and is often used in the preparation of various device structures such as electrodes and gratings.
采用剥离工艺进行纳米量级金属图形转移的具体过程是通过电子束曝光形成掩膜图形后沉积金属薄膜,然后将未曝光的电子束抗蚀剂连同其上面的金属薄膜(上层金属)在溶液中进行剥离,最终在衬底上形成目标图形。为了让电子束抗蚀剂在剥离液中溶解时上层金属和衬底上沉积的金属薄膜彻底断开,实现上层金属完全剥离,一般要求电子束抗蚀剂的厚度是被剥离的上层金属厚度的三倍以上,但是,电子束抗蚀剂层的厚度增加又会影响电子束曝光的分辨率。虽然利用剥离工艺实现电子束曝光图形转移已成为当前微纳结构制备的重要手段,但随着器件尺寸向纳米量级推进,能否成功实现高质量的剥离,与电子束抗蚀剂侧壁轮廓形态控制密切相关,一般而言,对于特征宽度为纳米量级的图形,电子束抗蚀剂在经过曝光显影后的侧壁轮廓形态为垂直(或近似垂直)、底切(掩膜图形横截面为倒梯形)和顶切(掩模图形横截面为正梯形)三种情况,对于掩模图形的侧壁轮廓为垂直和底切形态时,沉积金属时易在掩模图形台阶边缘处粘连堆积,逐渐将图形开口封闭,无法继续在目标区域沉积金属,最终无法获得目标厚度的金属图形结构;对于掩模图形的侧壁轮廓为顶切形态时,沉积金属时侧壁斜坡上也会部分金属沉积,导致剥离后在目标图形侧面形成毛刺。The specific process of using the stripping process to transfer nano-scale metal patterns is to form a mask pattern through electron beam exposure, deposit a metal film, and then strip the unexposed electron beam resist together with the metal film (upper metal) thereon in a solution, and finally form a target pattern on the substrate. In order to completely disconnect the upper metal and the metal film deposited on the substrate when the electron beam resist is dissolved in the stripping solution, and to achieve complete stripping of the upper metal, the thickness of the electron beam resist is generally required to be more than three times the thickness of the upper metal to be stripped. However, the increase in the thickness of the electron beam resist layer will affect the resolution of the electron beam exposure. Although the use of stripping technology to achieve electron beam exposure pattern transfer has become an important means of preparing micro-nano structures, as the device size advances to the nanometer level, whether high-quality stripping can be successfully achieved is closely related to the control of the side wall profile morphology of the electron beam resist. Generally speaking, for patterns with a feature width of the nanometer level, the side wall profile morphology of the electron beam resist after exposure and development is vertical (or approximately vertical), undercut (the cross section of the mask pattern is an inverted trapezoid) and top cut (the cross section of the mask pattern is a regular trapezoid). When the side wall profile of the mask pattern is vertical and undercut, it is easy to adhere and accumulate at the edge of the step of the mask pattern during metal deposition, gradually closing the pattern opening, and it is impossible to continue to deposit metal in the target area, and ultimately it is impossible to obtain a metal pattern structure of the target thickness; when the side wall profile of the mask pattern is a top cut, part of the metal will also be deposited on the side wall slope during metal deposition, resulting in burrs on the side of the target pattern after stripping.
因此,如何解决剥离后金属图形厚度偏差大、边缘毛刺等问题,是当前纳米量级金属图形制作工艺中亟待解决的技术难点。Therefore, how to solve problems such as large thickness deviation and edge burrs of metal patterns after peeling is a technical difficulty that needs to be urgently solved in the current nano-scale metal pattern production process.
发明内容Summary of the invention
鉴于以上所述现有技术的缺点,本发明的目的在于提供一种纳米线宽金属图形的制作方法,用于解决现有技术中剥离后金属图形厚度偏差大、边缘毛刺的问题。In view of the above-mentioned shortcomings of the prior art, the purpose of the present invention is to provide a method for manufacturing a nanowire-width metal pattern, which is used to solve the problems of large thickness deviation and edge burrs of the metal pattern after peeling in the prior art.
为实现上述目的及其他相关目的,本发明提供一种纳米线宽金属图形的制作方法,包括以下步骤:To achieve the above-mentioned and other related purposes, the present invention provides a method for manufacturing a nanowire-width metal pattern, comprising the following steps:
提供衬底,于所述衬底上形成电子束抗蚀剂层;providing a substrate, and forming an electron beam resist layer on the substrate;
图形化所述电子束抗蚀剂层形成开口,所述开口贯穿所述电子束抗蚀剂层,所述开口呈漏斗状,所述开口包括底垂直部及位于所述底垂直部上方的顶倾斜部;Patterning the electron beam resist layer to form an opening, wherein the opening penetrates the electron beam resist layer, the opening is funnel-shaped, and the opening includes a bottom vertical portion and a top inclined portion located above the bottom vertical portion;
于所述电子束抗蚀剂层上形成金属层,所述金属层并形成于所述开口中,其中,所述金属层的厚度小于所述底垂直部的高度;forming a metal layer on the electron beam resist layer, wherein the metal layer is formed in the opening, wherein the thickness of the metal layer is less than the height of the bottom vertical portion;
采用剥离法去除所述电子束抗蚀剂层以及位于所述电子束抗蚀剂层上方的所述金属层。The electron beam resist layer and the metal layer located above the electron beam resist layer are removed by a lift-off method.
可选地,图形化所述电子束抗蚀剂层形成开口的步骤包括:Optionally, the step of patterning the electron beam resist layer to form an opening comprises:
采用版图设计工具绘制版图图形,所述版图图形包括目标图形和位于所述目标图形外围的灰度图形;Using a layout design tool to draw a layout graphic, the layout graphic including a target graphic and a grayscale graphic located outside the target graphic;
将所述版图图形转换为电子束曝光设备所对应的版图格式,然后于所述电子束曝光设备中对所述电子束抗蚀剂层进行曝光,其中,所述目标图形区域的曝光剂量大于所述灰度图形区域的曝光剂量;Converting the layout pattern into a layout format corresponding to an electron beam exposure device, and then exposing the electron beam resist layer in the electron beam exposure device, wherein the exposure dose of the target pattern area is greater than the exposure dose of the grayscale pattern area;
于显影液中对所述电子束抗蚀剂层进行显影,形成所述开口。The electron beam resist layer is developed in a developer to form the opening.
可选地,所述电子束抗蚀剂层采用正性电子束抗蚀剂,所述电子束抗蚀剂层的厚度范围为100~500nm,所述目标图形的曝光剂量范围为300~1200μC/cm2,所述灰度图形的曝光剂量范围为100~600μC/cm2。Optionally, the electron beam resist layer is a positive electron beam resist, the thickness of the electron beam resist layer is in the range of 100-500 nm, the exposure dose of the target pattern is in the range of 300-1200 μC/cm 2 , and the exposure dose of the grayscale pattern is in the range of 100-600 μC/cm 2 .
可选地,于显影液中对所述电子束抗蚀剂层进行显影后,还包括于定影液中对所述电子束抗蚀剂层进行定影的步骤。Optionally, after developing the electron beam resist layer in a developer, the method further includes fixing the electron beam resist layer in a fixer.
可选地,所述显影液包括乙酸戊酯溶液、甲基异丁基酮-异丙醇混合溶液,所述定影液包括异丙醇溶液。Optionally, the developer includes amyl acetate solution and methyl isobutyl ketone-isopropyl alcohol mixed solution, and the fixer includes isopropyl alcohol solution.
可选地,所述版图设计工具包括L-edit或GDSⅡ,所述电子束曝光设备所对应的版图格式包括V30文件、SCON文件或GPF文件。Optionally, the layout design tool includes L-edit or GDSⅡ, and the layout format corresponding to the electron beam exposure equipment includes V30 file, SCON file or GPF file.
可选地,所述底垂直部的宽度范围为20~100nm。Optionally, the width of the bottom vertical portion ranges from 20 to 100 nm.
可选地,所述金属层的材质包括Au、Pt、Pd、Ti、Cr、Cu和Al中的一种或多种。Optionally, the material of the metal layer includes one or more of Au, Pt, Pd, Ti, Cr, Cu and Al.
可选地,采用磁控溅射法、电子束蒸镀法或热蒸镀法形成所述金属层。Optionally, the metal layer is formed by magnetron sputtering, electron beam evaporation or thermal evaporation.
可选地,采用剥离法去除所述电子束抗蚀剂层以及位于所述电子束抗蚀剂层上方的所述金属层的步骤包括:Optionally, the step of removing the electron beam resist layer and the metal layer located above the electron beam resist layer by a stripping method comprises:
将形成所述金属层后的样品放入预设温度的N-甲基吡咯烷酮溶液中加热,然后再将所述样品依次放入去离子水、丙酮、异丙醇中超声清洗。The sample after the metal layer is formed is placed in an N-methylpyrrolidone solution at a preset temperature for heating, and then the sample is placed in deionized water, acetone, and isopropanol in sequence for ultrasonic cleaning.
如上所述,本发明的纳米线宽金属图形的制作方法中,采用电子束灰度曝光形成漏斗状的图形开口,一方面防止图形开口在沉积金属过程中过早封闭,减小金属图形的厚度偏差,另一方面避免电子束抗蚀剂层剥离后金属图形两侧残留毛刺,形成高质量的金属图形。As described above, in the method for making nanowire-width metal patterns of the present invention, electron beam grayscale exposure is used to form a funnel-shaped pattern opening. On the one hand, this prevents the pattern opening from being closed prematurely during the metal deposition process, thereby reducing the thickness deviation of the metal pattern. On the other hand, it avoids residual burrs on both sides of the metal pattern after the electron beam resist layer is stripped, thereby forming a high-quality metal pattern.
附图说明BRIEF DESCRIPTION OF THE DRAWINGS
图1显示为本发明的纳米线宽金属图形的制作方法工艺流程图。FIG. 1 is a process flow chart showing a method for fabricating a nanowire-width metal pattern according to the present invention.
图2显示为本发明的纳米线宽金属图形的制作方法中于衬底上形成电子束抗蚀剂层的示意图。FIG. 2 is a schematic diagram showing the formation of an electron beam resist layer on a substrate in the method for fabricating a nanowire-width metal pattern of the present invention.
图3显示为本发明的纳米线宽金属图形的制作方法中于电子束抗蚀剂层中形成开口的示意图。FIG. 3 is a schematic diagram showing the formation of openings in an electron beam resist layer in the method for fabricating a nanowire-width metal pattern of the present invention.
图4显示为本发明的纳米线宽金属图形的制作方法中于电子束抗蚀剂层中形成开口的电镜图片。FIG. 4 is an electron microscope image showing an opening formed in an electron beam resist layer in the method for fabricating a nanowire-width metal pattern of the present invention.
图5显示为本发明的纳米线宽金属图形的制作方法中于电子束抗蚀剂层上形成金属层的示意图。FIG. 5 is a schematic diagram showing the formation of a metal layer on an electron beam resist layer in the method for fabricating a nanowire-width metal pattern of the present invention.
图6显示为本发明的纳米线宽金属图形的制作方法中剥离去除电子束抗蚀剂层以及位于电子束抗蚀剂层上方金属层的示意图。FIG. 6 is a schematic diagram showing the stripping and removal of the electron beam resist layer and the metal layer located above the electron beam resist layer in the method for manufacturing nanowire-width metal patterns of the present invention.
图7显示为本发明的纳米线宽金属图形的制作方法中形成的纳米线宽金属图形的电镜图片。FIG. 7 shows an electron microscope image of a nanowire-width metal pattern formed in the method for manufacturing a nanowire-width metal pattern of the present invention.
元件标号说明Component number description
1 衬底1 Substrate
2 电子束抗蚀剂层2 Electron beam resist layer
3 开口3 Opening
4 金属层4 Metal Layer
S1~S4 步骤Steps S1 to S4
具体实施方式Detailed ways
以下通过特定的具体实例说明本发明的实施方式,本领域技术人员可由本说明书所揭露的内容轻易地了解本发明的其他优点与功效。本发明还可以通过另外不同的具体实施方式加以实施或应用,本说明书中的各项细节也可以基于不同观点与应用,在没有背离本发明的精神下进行各种修饰或改变。The following describes the embodiments of the present invention through specific examples, and those skilled in the art can easily understand other advantages and effects of the present invention from the contents disclosed in this specification. The present invention can also be implemented or applied through other different specific embodiments, and the details in this specification can also be modified or changed in various ways based on different viewpoints and applications without departing from the spirit of the present invention.
请参阅图1至图7。需要说明的是,本实施例中所提供的图示仅以示意方式说明本发明的基本构想,遂图式中仅显示与本发明中有关的组件而非按照实际实施时的组件数目、形状及尺寸绘制,其实际实施时各组件的型态、数量及比例可为一种随意的改变,且其组件布局型态也可能更为复杂。Please refer to Figures 1 to 7. It should be noted that the illustrations provided in this embodiment are only schematic illustrations of the basic concept of the present invention, and the drawings only show components related to the present invention rather than the number, shape and size of components in actual implementation. In actual implementation, the type, quantity and proportion of each component may be changed arbitrarily, and the component layout may also be more complicated.
本实施例提供一种纳米线宽金属图形的制作方法,请参阅图1,显示为该制作方法工艺流程图,包括以下步骤:This embodiment provides a method for manufacturing a nanowire-width metal pattern. Please refer to FIG. 1 , which shows a process flow chart of the manufacturing method, including the following steps:
S1:提供衬底,于所述衬底上形成电子束抗蚀剂层;S1: providing a substrate, and forming an electron beam resist layer on the substrate;
S2:图形化所述电子束抗蚀剂层形成开口,所述开口贯穿所述电子束抗蚀剂层,所述开口呈漏斗状,所述开口包括底垂直部及位于所述底垂直部上方的顶倾斜部;S2: patterning the electron beam resist layer to form an opening, wherein the opening penetrates the electron beam resist layer, the opening is funnel-shaped, and the opening includes a bottom vertical portion and a top inclined portion located above the bottom vertical portion;
S3:于所述电子束抗蚀剂层上形成金属层,所述金属层并形成于所述开口中,其中,所述金属层的厚度小于所述底垂直部的高度;S3: forming a metal layer on the electron beam resist layer, wherein the metal layer is formed in the opening, wherein a thickness of the metal layer is less than a height of the bottom vertical portion;
S4:采用剥离法去除所述电子束抗蚀剂层以及位于所述电子束抗蚀剂层上方的所述金属层。S4: removing the electron beam resist layer and the metal layer above the electron beam resist layer by using a stripping method.
首先,请参阅图2,执行步骤S1:提供衬底1,于所述衬底1上形成电子束抗蚀剂层2。First, referring to FIG. 2 , step S1 is performed: providing a substrate 1 , and forming an electron beam resist layer 2 on the substrate 1 .
作为示例,所述衬底1包括但不限于硅衬底、氮化硅衬底、氧化镁衬底或蓝宝石衬底,具体地,本实施例中所述衬底1采用硅衬底。As an example, the substrate 1 includes but is not limited to a silicon substrate, a silicon nitride substrate, a magnesium oxide substrate or a sapphire substrate. Specifically, in this embodiment, the substrate 1 is a silicon substrate.
作为示例,所述电子束抗蚀剂层2采用正性电子抗蚀剂,包括但不限于ZEP520A、ARP6200或PMMA950A4等,具体地,本实施例中采用ZEP520A。As an example, the electron beam resist layer 2 uses a positive electron resist, including but not limited to ZEP520A, ARP6200 or PMMA950A4, etc. Specifically, ZEP520A is used in this embodiment.
作为示例,采用甩胶工艺于所述衬底1上涂敷所述电子束抗蚀剂层2,甩胶转速为3500rpm,甩胶时间45秒,形成的所述电子束抗蚀剂层2的厚度范围为100~500nm,具体地,本实施例中形成200nm厚度的电子束抗蚀剂层2。As an example, the electron beam resist layer 2 is coated on the substrate 1 by a spinning process, the spinning speed is 3500 rpm, the spinning time is 45 seconds, and the thickness of the formed electron beam resist layer 2 is in the range of 100 to 500 nm. Specifically, in this embodiment, a 200 nm thick electron beam resist layer 2 is formed.
作为示例,涂敷所述电子束抗蚀剂层2后,将样品放入烤台进行烘干,烘干温度为180℃,烘干时间为5min。As an example, after coating the electron beam resist layer 2, the sample is placed in a baking oven for drying at a temperature of 180°C for 5 minutes.
需要说明的是,在其它示例中,若所述衬底1采用绝缘衬底,形成所述电子束抗蚀剂层2后,还包括于所述电子束抗蚀剂层2上形成导电胶层的步骤。It should be noted that, in other examples, if the substrate 1 is an insulating substrate, after forming the electron beam resist layer 2 , the method further includes forming a conductive adhesive layer on the electron beam resist layer 2 .
接着,请参阅图3,执行步骤S2:图形化所述电子束抗蚀剂层2形成开口3,所述开口3贯穿所述电子束抗蚀剂层2,所述开口3呈漏斗状,所述开口3包括底垂直部及位于所述底垂直部上方的顶倾斜部。Next, please refer to FIG. 3 , and perform step S2 : patterning the electron beam resist layer 2 to form an opening 3 , wherein the opening 3 penetrates the electron beam resist layer 2 , and is funnel-shaped, and includes a bottom vertical portion and a top inclined portion located above the bottom vertical portion.
作为示例,所述底垂直部呈矩形状,所述顶倾斜部呈倒梯形状,所述底垂直部的顶端与所述顶倾斜部的底端连通,其中,所述底垂直部的宽度为纳米量级,例如20~100nm,所述底垂直部的宽度决定后续形成的金属图形的线宽;具体地,本实施例中,所述底垂直部的宽度为50nm。As an example, the bottom vertical portion is rectangular, the top inclined portion is in an inverted trapezoidal shape, the top end of the bottom vertical portion is connected to the bottom end of the top inclined portion, wherein the width of the bottom vertical portion is in the nanometer range, for example, 20 to 100 nm, and the width of the bottom vertical portion determines the line width of the subsequently formed metal pattern; specifically, in this embodiment, the width of the bottom vertical portion is 50 nm.
作为示例,形成所述开口3的步骤包括:As an example, the steps of forming the opening 3 include:
(一)采用版图设计工具绘制版图图形,所述版图图形包括目标图形和位于所述目标图形外围的灰度图形,其中,设定目标图形的宽度为50nm;(i) using a layout design tool to draw a layout pattern, wherein the layout pattern includes a target pattern and a grayscale pattern located outside the target pattern, wherein the width of the target pattern is set to 50 nm;
(二)将所述版图图形转换为电子束曝光设备所对应的版图格式,然后于所述电子束曝光设备中对所述电子束抗蚀剂层2进行曝光,所述目标图形的曝光剂量大于所述灰度图形的曝光剂量;(ii) converting the layout pattern into a layout format corresponding to an electron beam exposure device, and then exposing the electron beam resist layer 2 in the electron beam exposure device, wherein the exposure dose of the target pattern is greater than the exposure dose of the grayscale pattern;
(三)于显影液中对所述电子束抗蚀剂层2进行显影,形成所述开口3。(iii) developing the electron beam resist layer 2 in a developer to form the opening 3.
作为示例,版图设计工具包括L-edit软件或GDSⅡ软件,版图设计通常为GDS文件,不同的电子束曝光设备会有相应的专用图形文件格式,例如,曝光时版图在JEOL的曝光设备中需要转换为V30文件,在Elionix的曝光设备中需要转换为SCON文件,在Raith的曝光设备中需要转换为GPF文件,根据需求进行转换,具体地,本实施例中,采用JEOL JBX-6300FS电子束曝光机。As an example, layout design tools include L-edit software or GDSⅡ software. The layout design is usually a GDS file. Different electron beam exposure equipment will have corresponding dedicated graphic file formats. For example, during exposure, the layout needs to be converted into a V30 file in JEOL's exposure equipment, into a SCON file in Elionix's exposure equipment, and into a GPF file in Raith's exposure equipment. The conversion is performed according to demand. Specifically, in this embodiment, a JEOL JBX-6300FS electron beam exposure machine is used.
作为示例,曝光剂量梯度的设定根据电子抗蚀剂类型、厚度以及选定曝光显影条件下的电子束抗蚀剂对比度曲线等条件综合考虑。本申请中,曝光时使用的电子束加速电压为100kV,束流为100pA,所述目标图形的曝光剂量为300~1200μC/cm2,所述灰度图形的曝光剂量为100~600μC/cm2,由于所述目标图形的曝光剂量大于所述灰度图形的曝光剂量,所述目标图形区域的电子束抗蚀剂层2被曝光透,所述灰度图形区域的电子束抗蚀剂层2未被曝光透,经显影后形成漏斗状的所述开口3,具体地,本实施例中,所述目标图形区域的曝光剂量为400μC/cm2,所述灰度图形区域的曝光剂量为120μC/cm2。As an example, the exposure dose gradient is set based on the type and thickness of the electron resist and the contrast curve of the electron beam resist under the selected exposure and development conditions. In the present application, the electron beam acceleration voltage used during exposure is 100 kV, the beam current is 100 pA, the exposure dose of the target pattern is 300-1200 μC/cm 2 , and the exposure dose of the grayscale pattern is 100-600 μC/cm 2 . Since the exposure dose of the target pattern is greater than the exposure dose of the grayscale pattern, the electron beam resist layer 2 in the target pattern area is exposed through, and the electron beam resist layer 2 in the grayscale pattern area is not exposed through, and the funnel-shaped opening 3 is formed after development. Specifically, in the present embodiment, the exposure dose of the target pattern area is 400 μC/cm 2 , and the exposure dose of the grayscale pattern area is 120 μC/cm 2 .
作为示例,将完成电子束曝光后的样品放入乙酸戊酯溶液、甲基异丁基酮-异丙醇混合溶液或AR600-546溶液中显影60s,在异丙醇中定影60s,并用氮气枪吹干。As an example, the sample after electron beam exposure is placed in amyl acetate solution, methyl isobutyl ketone-isopropyl alcohol mixed solution or AR600-546 solution for development for 60 seconds, fixed in isopropyl alcohol for 60 seconds, and blown dry with a nitrogen gun.
作为示例,请参阅图4,显示为于电子束抗蚀剂层中形成开口的电镜图片,开口呈漏斗状,与所设计的开口形状一致。As an example, please refer to FIG. 4 , which shows an electron microscope image of an opening formed in an electron beam resist layer. The opening is funnel-shaped, which is consistent with the designed opening shape.
接着,请参阅图5,执行步骤S3:于所述电子束抗蚀剂层2上形成金属层4,所述金属层4并形成于所述开口3中,其中,所述金属层4的厚度小于所述底垂直部的高度。Next, referring to FIG. 5 , step S3 is performed: a metal layer 4 is formed on the electron beam resist layer 2 , and the metal layer 4 is formed in the opening 3 , wherein the thickness of the metal layer 4 is smaller than the height of the bottom vertical portion.
作为示例,采用磁控溅射法、电子束蒸镀法或热蒸镀法于所述电子束抗蚀剂层2上形成金属层4,所述金属层4的材质包括Au、Pt、Pd、Ti、Cr、Cu和Al中的一种或多种;具体地,本实施例中,采用电子束蒸镀法形成Ti金属层,蒸发速率为0.1nm/s,沉积厚度为70nm。As an example, a metal layer 4 is formed on the electron beam resist layer 2 by magnetron sputtering, electron beam evaporation or thermal evaporation, and the material of the metal layer 4 includes one or more of Au, Pt, Pd, Ti, Cr, Cu and Al; specifically, in this embodiment, an electron beam evaporation method is used to form a Ti metal layer, the evaporation rate is 0.1nm/s, and the deposition thickness is 70nm.
作为示例,沉积所述金属层4的过程中,所述金属层4沉积到所述开口3中的速率小于所述金属层4沉积到所述电子束抗蚀剂层2上的速率,于所述电子束抗蚀剂层2上沉积70nm厚度的金属层4,沉积到所述开口3中显露的所述衬底1上的厚度约为30nm。As an example, during the deposition of the metal layer 4, the rate at which the metal layer 4 is deposited into the opening 3 is lower than the rate at which the metal layer 4 is deposited onto the electron beam resist layer 2. The metal layer 4 with a thickness of 70 nm is deposited on the electron beam resist layer 2, and the thickness deposited onto the substrate 1 exposed in the opening 3 is approximately 30 nm.
作为示例,沉积到所述开口3中的金属层的厚度小于所述底垂直部的高度,使得位于所述衬底1上的金属层4和位于所述电子束抗蚀剂层2上的金属层4之间断开,利于后续剥离工艺去除所述电子束抗蚀剂层2以及位于所述电子束抗蚀剂层2上方的所述金属层4。As an example, the thickness of the metal layer deposited into the opening 3 is less than the height of the bottom vertical portion, so that the metal layer 4 located on the substrate 1 and the metal layer 4 located on the electron beam resist layer 2 are disconnected, which facilitates the subsequent stripping process to remove the electron beam resist layer 2 and the metal layer 4 located above the electron beam resist layer 2.
接着,请参阅图6,执行步骤S4:采用剥离法去除所述电子束抗蚀剂层2以及位于所述电子束抗蚀剂层2上方的所述金属层4。Next, referring to FIG. 6 , step S4 is performed: the electron beam resist layer 2 and the metal layer 4 located above the electron beam resist layer 2 are removed by a lift-off method.
作为示例,采用剥离法去除所述电子束抗蚀剂层2以及位于所述电子束抗蚀剂层2上方的所述金属层4的步骤包括:As an example, the step of removing the electron beam resist layer 2 and the metal layer 4 located above the electron beam resist layer 2 by using a lift-off method includes:
(一)将沉积所述金属层4后的样品放入温度为90℃的N-甲基吡咯烷酮溶液中加热30min后超声清洗5min,其中,N-甲基吡咯烷酮溶液作为所述电子束抗蚀剂层2的去胶剂;(i) placing the sample after the metal layer 4 is deposited in an N-methylpyrrolidone solution at a temperature of 90° C., heating it for 30 minutes, and then ultrasonically cleaning it for 5 minutes, wherein the N-methylpyrrolidone solution is used as a debonding agent for the electron beam resist layer 2;
(二)再将样品依次放入去离子水、丙酮、异丙醇中分别超声清洗5min,将所述电子束抗蚀剂层2连同其上的所述金属层4去除,保留的位于所述衬底1上的所述金属层4构成纳米线宽金属图形。(ii) placing the sample in deionized water, acetone, and isopropanol in turn and ultrasonically cleaning them for 5 minutes respectively, removing the electron beam resist layer 2 together with the metal layer 4 thereon, and the metal layer 4 retained on the substrate 1 constitutes a nanowire width metal pattern.
作为示例,所述开口3的顶倾斜部呈倒梯形状,有效抑制了台阶处沉积金属的堆积效应,防止图形开口在沉积金属过程中过早封闭,减小金属图形的厚度偏差,并且,所述开口3的底垂直部呈矩形状,避免了所述电子束抗蚀剂层2剥离后金属图形两侧残留毛刺,形成高质量的金属图形,为电子束曝光技术在纳米光栅、波带片、超导纳米线、超导约瑟夫森结等器件加工中的应用奠定基础。As an example, the top inclined portion of the opening 3 is in an inverted trapezoidal shape, which effectively suppresses the accumulation effect of the deposited metal at the step, prevents the pattern opening from being closed prematurely during the metal deposition process, and reduces the thickness deviation of the metal pattern. In addition, the bottom vertical portion of the opening 3 is rectangular, which avoids residual burrs on both sides of the metal pattern after the electron beam resist layer 2 is peeled off, forming a high-quality metal pattern, laying the foundation for the application of electron beam exposure technology in the processing of devices such as nanogratings, wave zone plates, superconducting nanowires, and superconducting Josephson junctions.
作为示例,完成所述电子束抗蚀剂层2的剥离后,在扫描电子显微镜下观察金属图形的质量,如图7所示,显示为纳米线宽金属图形的电镜图片,最终在Si衬底上形成线宽约为50nm,厚度约30nm的金属纳米线阵列。As an example, after the electron beam resist layer 2 is stripped, the quality of the metal pattern is observed under a scanning electron microscope, as shown in FIG7 , which shows an electron microscope image of a nanowire width metal pattern, and ultimately a metal nanowire array with a line width of about 50 nm and a thickness of about 30 nm is formed on the Si substrate.
综上所述,本发明的纳米线宽金属图形的制作方法中,采用电子束灰度曝光形成漏斗状的图形开口,一方面防止图形开口在沉积金属过程中过早封闭,减小金属图形的厚度偏差,另一方面避免电子束抗蚀剂层剥离后金属图形两侧残留毛刺,形成高质量的金属图形。所以,本发明有效克服了现有技术中的种种缺点而具高度产业利用价值。In summary, in the method for making nanowire-width metal patterns of the present invention, electron beam grayscale exposure is used to form a funnel-shaped pattern opening, which, on the one hand, prevents the pattern opening from being closed prematurely during the metal deposition process, reduces the thickness deviation of the metal pattern, and on the other hand, avoids residual burrs on both sides of the metal pattern after the electron beam resist layer is stripped, thereby forming a high-quality metal pattern. Therefore, the present invention effectively overcomes various shortcomings in the prior art and has a high industrial utilization value.
上述实施例仅例示性说明本发明的原理及其功效,而非用于限制本发明。任何熟悉此技术的人士皆可在不违背本发明的精神及范畴下,对上述实施例进行修饰或改变。因此,举凡所属技术领域中具有通常知识者在未脱离本发明所揭示的精神与技术思想下所完成的一切等效修饰或改变,仍应由本发明的权利要求所涵盖。The above embodiments are merely illustrative of the principles and effects of the present invention, and are not intended to limit the present invention. Anyone familiar with the art may modify or alter the above embodiments without departing from the spirit and scope of the present invention. Therefore, all equivalent modifications or alterations made by a person of ordinary skill in the art without departing from the spirit and technical concept disclosed by the present invention shall still be covered by the claims of the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202410133740.6A CN117976522A (en) | 2024-01-31 | 2024-01-31 | Method for manufacturing nano line width metal pattern |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202410133740.6A CN117976522A (en) | 2024-01-31 | 2024-01-31 | Method for manufacturing nano line width metal pattern |
Publications (1)
Publication Number | Publication Date |
---|---|
CN117976522A true CN117976522A (en) | 2024-05-03 |
Family
ID=90856968
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202410133740.6A Pending CN117976522A (en) | 2024-01-31 | 2024-01-31 | Method for manufacturing nano line width metal pattern |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN117976522A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN118244570A (en) * | 2024-05-29 | 2024-06-25 | 中国科学院上海微系统与信息技术研究所 | A method for making metal graphics |
-
2024
- 2024-01-31 CN CN202410133740.6A patent/CN117976522A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN118244570A (en) * | 2024-05-29 | 2024-06-25 | 中国科学院上海微系统与信息技术研究所 | A method for making metal graphics |
CN118244570B (en) * | 2024-05-29 | 2024-10-22 | 中国科学院上海微系统与信息技术研究所 | A method for making metal graphics |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN100594434C (en) | Method for fabricating metallic structures with large areas covered by metallic films on the nanometer scale | |
CN101295131B (en) | Method for producing nano-structure on insulated underlay | |
CN101677231B (en) | Method for manufacturing surface acoustic wave device by adopting X-ray exposure | |
CN112650026B (en) | Multilayer adhesive film based on single photoresist, patterning method and stripping method thereof | |
CN117976522A (en) | Method for manufacturing nano line width metal pattern | |
CN101090134A (en) | Silicon-based plane side-gate single-electron transistor and manufacturing method thereof | |
CN112320752A (en) | Preparation method of negative photoresist patterned film layer | |
CN101813884B (en) | A method for preparing nanostructure matrix on non-flat substrate surface | |
CN100435285C (en) | A kind of method for preparing nanometer electrode with negative electronic resist | |
JP3818188B2 (en) | Mask pattern forming method, patterning method using the mask pattern, and thin film magnetic head manufacturing method | |
CN107104078A (en) | Graphene electrodes and its patterning preparation method, array base palte | |
CN110246762A (en) | The preparation method and device architecture of metal sidewall | |
CN101676797A (en) | Method for Fabricating Surface Acoustic Wave Devices Using Electron Beam Direct Write Exposure | |
CN101246817A (en) | A method for preparing silicon quantum wires on an insulating layer | |
CN100495647C (en) | Method for preparing metal nanoelectrode by adopting positive electron resist | |
CN101383285B (en) | A method for preparing a single-electron transistor | |
CN101067719A (en) | A method for constructing sub-10 nanometer gaps and arrays thereof | |
US7141275B2 (en) | Imprinting lithography using the liquid/solid transition of metals and their alloys | |
CN113946006A (en) | Large-area micro-nano grating and preparation method and application thereof | |
CN111453692A (en) | Nano-pillar array and preparation method thereof | |
CN116322283B (en) | Preparation method of Josephson junction | |
CN118244570B (en) | A method for making metal graphics | |
CN115472712B (en) | Terminal contact method, phototransistor preparation method and phototransistor | |
CN114597287B (en) | A kind of patterning method of room temperature infrared sensitive thin film | |
WO2023056701A1 (en) | Quantum bit assembly, quantum bit assembly preparation method, chip, and device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |