CN117932561B - Coupling torque data analysis method and system - Google Patents
Coupling torque data analysis method and system Download PDFInfo
- Publication number
- CN117932561B CN117932561B CN202410334435.3A CN202410334435A CN117932561B CN 117932561 B CN117932561 B CN 117932561B CN 202410334435 A CN202410334435 A CN 202410334435A CN 117932561 B CN117932561 B CN 117932561B
- Authority
- CN
- China
- Prior art keywords
- data
- torque
- features
- torque data
- description content
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/27—Regression, e.g. linear or logistic regression
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/21—Design or setup of recognition systems or techniques; Extraction of features in feature space; Blind source separation
- G06F18/213—Feature extraction, e.g. by transforming the feature space; Summarisation; Mappings, e.g. subspace methods
Landscapes
- Engineering & Computer Science (AREA)
- Data Mining & Analysis (AREA)
- Theoretical Computer Science (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Bioinformatics & Computational Biology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Artificial Intelligence (AREA)
- Evolutionary Biology (AREA)
- Evolutionary Computation (AREA)
- Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Information Retrieval, Db Structures And Fs Structures Therefor (AREA)
Abstract
Description
技术领域Technical Field
本申请涉及数据分析技术领域,具体而言,涉及一种联轴器扭矩数据分析方法及系统。The present application relates to the technical field of data analysis, and in particular to a coupling torque data analysis method and system.
背景技术Background technique
现目前,针对联轴器扭矩进行确定时,由于存在误差可能会导致联轴器扭矩数据异常的问题,从而可能会导致后续操作错误的问题,因此亟需一种联轴器扭矩数据分析方法以解决上述技术问题。At present, when determining the coupling torque, errors may cause the coupling torque data to be abnormal, which may lead to subsequent operational errors. Therefore, a coupling torque data analysis method is urgently needed to solve the above technical problems.
发明内容Summary of the invention
为改善相关技术中存在的技术问题,本申请提供了一种联轴器扭矩数据分析方法及系统。In order to improve the technical problems existing in the related technology, the present application provides a coupling torque data analysis method and system.
第一方面,提供一种联轴器扭矩数据分析方法,包括:In a first aspect, a coupling torque data analysis method is provided, comprising:
获得待关联扭矩数据以及待关联主题信息,所述待关联扭矩数据包括一种或多种维度数据;Obtaining torque data to be associated and subject information to be associated, wherein the torque data to be associated includes one or more dimensional data;
获得与所述待关联主题信息对应的待关联主题信息特征,并获得与所述待关联扭矩数据对应的待关联扭矩数据特征;Obtaining a feature of the subject information to be associated corresponding to the subject information to be associated, and obtaining a feature of the torque data to be associated corresponding to the torque data to be associated;
结合所述待关联扭矩数据特征与所述待关联主题信息特征,通过信息关联网络获得关联结果,所述关联结果用于表征所述待关联扭矩数据与所述待关联主题信息之间的关联程度,所述信息关联网络是基于各扭矩数据配置示例以及与各所述扭矩数据配置示例关联的主题信息配置示例,对预配置得到的原始信息关联网络进行调试后得到的,所述扭矩数据配置示例包括一种或多种维度数据,所述主题信息配置示例是结合所述扭矩数据配置示例进行智能分析得到;Combining the characteristics of the torque data to be associated with the characteristics of the subject information to be associated, obtaining an association result through an information association network, wherein the association result is used to characterize the degree of association between the torque data to be associated and the subject information to be associated, wherein the information association network is obtained by debugging a pre-configured original information association network based on each torque data configuration example and a subject information configuration example associated with each torque data configuration example, wherein the torque data configuration example includes one or more dimensional data, and the subject information configuration example is obtained by performing intelligent analysis in combination with the torque data configuration example;
在一种独立实施的实施例中,所述获得与所述待关联主题信息对应的待关联主题信息特征,包括:In an independently implemented embodiment, the obtaining a feature of the subject information to be associated corresponding to the subject information to be associated includes:
结合所述待关联主题信息,通过所述信息关联网络获得所述待关联主题信息特征;In combination with the subject information to be associated, obtaining features of the subject information to be associated through the information association network;
所述获得与所述待关联扭矩数据对应的待关联扭矩数据特征,包括:The obtaining of the to-be-associated torque data feature corresponding to the to-be-associated torque data includes:
通过所述信息关联网络获得所述待关联扭矩数据特征中的待关联事件特征,并从预置的长短期记忆单元中获得所述待关联扭矩数据特征,所述待关联扭矩数据特征包括待关联关键特征和待关联潜在特征中至少一种。The event features to be associated in the torque data features to be associated are obtained through the information association network, and the torque data features to be associated are obtained from preset long short-term memory units, wherein the torque data features to be associated include at least one of key features to be associated and potential features to be associated.
在一种独立实施的实施例中,所述获得与所述待关联扭矩数据对应的待关联扭矩数据特征,包括:In an independently implemented embodiment, the obtaining a feature of the torque data to be associated corresponding to the torque data to be associated includes:
若所述待关联扭矩数据为事件扭矩数据,结合所述待关联扭矩数据,通过所述信息关联网络获得所述待关联扭矩数据特征,所述待关联扭矩数据特征为所述待关联事件特征。If the torque data to be associated is event torque data, the characteristics of the torque data to be associated are obtained through the information association network in combination with the torque data to be associated, and the characteristics of the torque data to be associated are the characteristics of the event to be associated.
在一种独立实施的实施例中,所述获得与所述待关联扭矩数据对应的待关联扭矩数据特征,包括:In an independently implemented embodiment, the obtaining a feature of the torque data to be associated corresponding to the torque data to be associated includes:
若所述待关联扭矩数据为第一扭矩数据,结合所述待关联扭矩数据,通过所述信息关联网络获得所述待关联事件特征;If the torque data to be associated is the first torque data, combining the torque data to be associated, obtaining the event feature to be associated through the information association network;
结合所述待关联扭矩数据,从长短期记忆单元中获得所述待关联关键特征以及所述待关联潜在特征;In combination with the to-be-associated torque data, the to-be-associated key features and the to-be-associated potential features are obtained from the long short-term memory unit;
其中,所述待关联扭矩数据特征包括所述待关联事件特征、所述待关联关键特征以及所述待关联潜在特征;Wherein, the torque data features to be associated include the event features to be associated, the key features to be associated and the potential features to be associated;
其中,所述长短期记忆单元中包括:通过关键特征抽取网络对第一扭矩数据库中各第一扭矩数据进行关键特征抽取后得到的关键特征,以及通过潜在特征抽取网络各所述第一扭矩数据进行潜在特征抽取后得到的潜在特征。Among them, the long short-term memory unit includes: key features obtained by extracting key features from each first torque data in the first torque database through a key feature extraction network, and potential features obtained by extracting potential features from each first torque data through a potential feature extraction network.
在一种独立实施的实施例中,所述获得与所述待关联扭矩数据对应的待关联扭矩数据特征,包括:In an independently implemented embodiment, the obtaining a feature of the torque data to be associated corresponding to the torque data to be associated includes:
若所述待关联扭矩数据为属性扭矩数据,结合所述待关联扭矩数据,通过所述信息关联网络获得所述待关联事件特征;If the torque data to be associated is attribute torque data, combining the torque data to be associated, and obtaining the event feature to be associated through the information association network;
结合所述待关联扭矩数据,从长短期记忆单元中获得所述待关联关键特征;In combination with the to-be-associated torque data, obtaining the to-be-associated key features from the long short-term memory unit;
其中,所述待关联扭矩数据特征包括所述待关联事件特征以及所述待关联关键特征;Wherein, the torque data features to be associated include the event features to be associated and the key features to be associated;
其中,所述长短期记忆单元中包括:通过关键特征抽取网络对属性扭矩数据库中各属性扭矩数据进行关键特征抽取后得到的关键特征。Wherein, the long short-term memory unit includes: key features obtained by extracting key features of each attribute torque data in the attribute torque database through a key feature extraction network.
在一种独立实施的实施例中,所述获得多维度示例集合,包括:In an independently implemented embodiment, obtaining a multi-dimensional example set includes:
获得所述扭矩描述内容、第一数据描述内容以及第二数据描述内容,所述扭矩描述内容与所述第一数据描述内容之间的关联程度大于关联度目标值,所述扭矩描述内容与所述第二数据描述内容之间的关联程度小于所述关联度目标值;Obtaining the torque description content, the first data description content and the second data description content, wherein the correlation degree between the torque description content and the first data description content is greater than a correlation degree target value, and the correlation degree between the torque description content and the second data description content is less than the correlation degree target value;
对所述扭矩描述内容进行隐藏处理,得到隐藏处理后的扭矩描述内容;Performing a hiding process on the torque description content to obtain the torque description content after the hiding process;
对所述第一数据描述内容进行隐藏处理,得到隐藏处理后的第一数据描述内容;Performing a hiding process on the first data description content to obtain the first data description content after the hiding process;
其中,所述多维度示例集合至少包括:包括所述扭矩描述内容与所述第一数据描述内容的第一多维度示例二元组、包括所述扭矩描述内容与所述第二数据描述内容的第二多维度示例二元组、包括所述隐藏处理后的扭矩描述内容与所述第一数据描述内容的第三多维度示例二元组、以及包括所述扭矩描述内容与所述隐藏处理后的第一数据描述内容的第四多维度示例二元组。Among them, the multidimensional example set includes at least: a first multidimensional example binary group including the torque description content and the first data description content, a second multidimensional example binary group including the torque description content and the second data description content, a third multidimensional example binary group including the torque description content after hidden processing and the first data description content, and a fourth multidimensional example binary group including the torque description content and the first data description content after hidden processing.
在一种独立实施的实施例中,所述获得各多维度示例二元组中的扭矩描述内容对应的多维度数据特征,以及各多维度示例二元组中所述数据描述内容对应的主题数据特征,包括:In an independently implemented embodiment, the obtaining of multi-dimensional data features corresponding to the torque description content in each multi-dimensional example binary group, and the subject data features corresponding to the data description content in each multi-dimensional example binary group, includes:
获得所述第一多维度示例二元组中所述扭矩描述内容对应的第一多维度数据特征,以及所述第一数据描述内容对应的第一主题数据特征;Obtaining a first multi-dimensional data feature corresponding to the torque description content in the first multi-dimensional example binary group, and a first subject data feature corresponding to the first data description content;
获得所述第二多维度示例二元组中所述扭矩描述内容对应的第一多维度数据特征,以及所述第二数据描述内容对应的第二主题数据特征;Obtaining a first multi-dimensional data feature corresponding to the torque description content in the second multi-dimensional example binary group, and a second subject data feature corresponding to the second data description content;
获得所述第三多维度示例二元组中所述隐藏处理后的扭矩描述内容对应的第二多维度数据特征,以及所述第一数据描述内容对应的第一主题数据特征;Obtaining a second multi-dimensional data feature corresponding to the torque description content after the hidden processing in the third multi-dimensional example binary group, and a first theme data feature corresponding to the first data description content;
获得所述第四多维度示例二元组中所述扭矩描述内容对应的第一多维度数据特征,以及所述隐藏处理后的第一数据描述内容对应的第三主题数据特征。The first multi-dimensional data feature corresponding to the torque description content in the fourth multi-dimensional example binary group and the third theme data feature corresponding to the first data description content after the hidden processing are obtained.
在一种独立实施的实施例中,所述基于各多维度示例二元组中的多维度数据特征以及主题数据特征,对原始预配置网络进行配置,包括:In an independently implemented embodiment, configuring the original preconfigured network based on the multi-dimensional data features and the subject data features in each multi-dimensional example binary group includes:
在所述原始预配置网络的配置过程中:During configuration of the original pre-configured network:
结合所述第一多维度数据特征以及所述第一主题数据特征,获得所述第一多维度示例二元组的关联结果,所述关联结果用于表征所述扭矩描述内容与所述第一数据描述内容之间的关联程度;Combining the first multi-dimensional data feature and the first subject data feature, obtaining an association result of the first multi-dimensional example binary group, wherein the association result is used to characterize the degree of association between the torque description content and the first data description content;
结合所述第一多维度示例二元组的关联结果,优化所述原始预配置网络的网络系数。The network coefficients of the original preconfigured network are optimized in combination with the association results of the first multi-dimensional example bigrams.
在一种独立实施的实施例中,所述多维度示例二元组具体包括第一内容信息以及第一描述内容,所述第一内容信息包括主题数据、扭转数据以及关键数据;所述多维度数据特征具体包括事件特征、关键特征以及潜在特征。In an independently implemented embodiment, the multi-dimensional example binary group specifically includes first content information and first description content, the first content information includes subject data, twist data and key data; the multi-dimensional data features specifically include event features, key features and potential features.
在一种独立实施的实施例中,所述原始预配置网络是已完成配置的事件维度网络,所述事件维度网络是基于事件内容信息以及描述内容进行配置后得到的,且所述事件维度网络用于计算所述事件内容信息以及描述内容属于同一事件扭矩数据的可能性。In an independently implemented embodiment, the original preconfigured network is a configured event dimension network, which is obtained after configuration based on event content information and description content, and the event dimension network is used to calculate the possibility that the event content information and description content belong to the same event torque data.
在一种独立实施的实施例中,所述信息关联网络的获得方式包括:In an independently implemented embodiment, the information association network is obtained in the following manner:
获得各扭矩数据配置示例,以及与各所述扭矩数据配置示例关联的主题信息配置示例;Obtaining each torque data configuration example and a subject information configuration example associated with each torque data configuration example;
基于各所述扭矩数据配置示例,得到各所述扭矩数据配置示例对应的扭矩数据特征,并基于各所述主题信息配置示例,得到各所述主题信息配置示例对应的主题信息特征;Based on each of the torque data configuration examples, a torque data feature corresponding to each of the torque data configuration examples is obtained, and based on each of the subject information configuration examples, a subject information feature corresponding to each of the subject information configuration examples is obtained;
基于各所述扭矩数据特征以及各所述主题信息特征,获得各所述扭矩数据特征与各所述主题信息特征之间的回归分析关联程度,并基于各所述实际关联程度与各所述回归分析关联程度对所述原始信息关联网络进行调试,获得所述信息关联网络。Based on each of the torque data features and each of the subject information features, the regression analysis correlation degree between each of the torque data features and each of the subject information features is obtained, and based on each of the actual correlation degrees and each of the regression analysis correlation degrees, the original information correlation network is debugged to obtain the information correlation network.
在一种独立实施的实施例中,所述扭矩数据配置示例为第一扭矩数据配置示例,所述第一扭矩数据配置示例由主题数据、扭转数据以及关键数据组成,所述扭转数据由若干个数据节点组成;In an independently implemented embodiment, the torque data configuration example is a first torque data configuration example, the first torque data configuration example is composed of subject data, torsion data and key data, and the torsion data is composed of a plurality of data nodes;
所述基于各所述扭矩数据配置示例,得到各所述扭矩数据配置示例对应的扭矩数据特征,包括:The step of obtaining torque data features corresponding to each of the torque data configuration examples based on each of the torque data configuration examples includes:
对各所述第一扭矩数据配置示例中的主题数据进行事件划分,得到各所述第一扭矩数据配置示例中的主题数据对应的事件队列,并基于各所述事件队列生成:各所述第一扭矩数据配置示例中的主题数据对应的事件特征,所述事件队列中包括若干个事件分析属性;Performing event division on the subject data in each of the first torque data configuration examples to obtain an event queue corresponding to the subject data in each of the first torque data configuration examples, and generating, based on each of the event queues: event features corresponding to the subject data in each of the first torque data configuration examples, wherein the event queue includes a plurality of event analysis attributes;
对各所述第一扭矩数据配置示例中的扭转数据进行解析处理,得到各所述第一扭矩数据配置示例中的扭转数据对应的关键特征;Analyzing and processing the torsion data in each of the first torque data configuration examples to obtain key features corresponding to the torsion data in each of the first torque data configuration examples;
对各所述第一扭矩数据配置示例中的关键数据进行解析处理,得到各所述第一扭矩数据配置示例中的关键数据对应的潜在特征;其中,所述扭矩数据特征包括所述事件特征、所述关键特征以及所述潜在特征。The key data in each of the first torque data configuration examples are parsed and processed to obtain potential features corresponding to the key data in each of the first torque data configuration examples; wherein the torque data features include the event features, the key features and the potential features.
在一种独立实施的实施例中,所述原始信息关联网络的获得方式包括:In an independently implemented embodiment, the original information association network is obtained in the following manner:
获得多维度示例集合,所述多维度示例集合包括若干个多维度示例二元组,所述多维度示例二元组包括扭矩描述内容以及数据描述内容,所述扭矩描述内容包括多种维度数据;Obtaining a multi-dimensional example set, wherein the multi-dimensional example set includes a plurality of multi-dimensional example 2-tuples, wherein the multi-dimensional example 2-tuples include torque description content and data description content, wherein the torque description content includes data of multiple dimensions;
获得各所述多维度示例二元组中的所述扭矩描述内容对应的多维度数据特征,以及各多维度示例二元组中所述数据描述内容对应的主题数据特征,所述多维度数据特征包括多种维度特征;Obtaining multi-dimensional data features corresponding to the torque description content in each of the multi-dimensional example binary groups, and subject data features corresponding to the data description content in each of the multi-dimensional example binary groups, wherein the multi-dimensional data features include multiple dimensional features;
基于各所述多维度示例二元组中的所述多维度数据特征以及所述主题数据特征,对原始预配置网络进行配置,得到目标预配置网络,并将所述目标预配置网络确定为所述原始信息关联网络。Based on the multi-dimensional data features and the subject data features in each of the multi-dimensional example dyads, the original pre-configured network is configured to obtain a target pre-configured network, and the target pre-configured network is determined as the original information association network.
第二方面,提供一种联轴器扭矩数据分析系统,包括互相之间通信的处理器和存储器,所述处理器用于从所述存储器中读取计算机程序并执行,以实现上述的方法。In a second aspect, a coupling torque data analysis system is provided, comprising a processor and a memory communicating with each other, wherein the processor is used to read a computer program from the memory and execute the computer program to implement the above method.
本申请实施例所提供的一种联轴器扭矩数据分析方法及系统,获得待关联扭矩数据以及待关联主题信息,待关联扭矩数据包括一种或多种维度数据,再获得与待关联主题信息对应的待关联主题信息特征,并获得与待关联扭矩数据对应的待关联扭矩数据特征,基于待关联扭矩数据特征与待关联主题信息特征,通过信息关联网络获得关联结果,关联结果用于表征待关联扭矩数据与待关联主题信息之间的关联程度,且信息关联网络是基于各扭矩数据配置示例以及与各扭矩数据配置示例关联的主题信息配置示例,对预配置得到的原始信息关联网络进行调试后得到的,扭矩数据配置示例包括一种或多种维度数据,主题信息配置示例是基于扭矩数据配置示例进行智能分析得到。由此,获得多维度示例集合,多维度示例集合包括若干个多维度示例二元组,多维度示例二元组包括扭矩描述内容以及数据描述内容,扭矩描述内容包括多种维度数据,并获得各多维度示例二元组中的扭矩描述内容对应的多维度数据特征,以及各多维度示例二元组中数据描述内容对应的主题数据特征,多维度数据特征包括多种维度特征,再基于各多维度示例二元组中的多维度数据特征以及主题数据特征,对原始预配置网络进行配置,得到目标预配置网络,并将目标预配置网络确定为原始信息关联网络。通过多维度示例,设计包括多种维度数据的扭矩描述内容与数据描述内容关联的指示进行网络预配置,再使用通过智能分析的扭矩数据配置示例与主题信息配置示例,是对预配置得到的原始信息关联网络进行调试,由此所得到的信息关联网络能够兼容单维度扭矩数据与多维度扭矩数据,以因此在扭矩数据与时间信息的关联过程中,能够更为准确且高效地获得扭矩数据中多维度的数据以及事件细节,从而提升关联结果的准确度,即保证主题信息与扭矩数据之间进行关联的准确度。A coupling torque data analysis method and system provided in an embodiment of the present application obtains torque data to be associated and subject information to be associated, wherein the torque data to be associated includes one or more dimensional data, and then obtains subject information features to be associated corresponding to the subject information to be associated, and obtains torque data features to be associated corresponding to the torque data to be associated, and obtains association results through an information association network based on the torque data features to be associated and the subject information features to be associated, and the association results are used to characterize the degree of association between the torque data to be associated and the subject information to be associated, and the information association network is obtained after debugging the pre-configured original information association network based on each torque data configuration example and the subject information configuration example associated with each torque data configuration example, the torque data configuration example includes one or more dimensional data, and the subject information configuration example is obtained based on intelligent analysis of the torque data configuration example. Thus, a multidimensional example set is obtained, the multidimensional example set includes several multidimensional example tuples, the multidimensional example tuples include torque description content and data description content, the torque description content includes multi-dimensional data, and the multidimensional data features corresponding to the torque description content in each multidimensional example tuple, and the subject data features corresponding to the data description content in each multidimensional example tuple are obtained, the multidimensional data features include multi-dimensional features, and then based on the multidimensional data features and the subject data features in each multidimensional example tuple, the original preconfigured network is configured to obtain the target preconfigured network, and the target preconfigured network is determined as the original information association network. Through multi-dimensional examples, the torque description content including multi-dimensional data and the indication of associating the data description content are designed for network pre-configuration, and then the torque data configuration example and the subject information configuration example through intelligent analysis are used to debug the original information association network obtained by pre-configuration. The information association network thus obtained can be compatible with single-dimensional torque data and multi-dimensional torque data, so that in the process of associating torque data with time information, multi-dimensional data and event details in the torque data can be obtained more accurately and efficiently, thereby improving the accuracy of the association results, that is, ensuring the accuracy of the association between the subject information and the torque data.
附图说明BRIEF DESCRIPTION OF THE DRAWINGS
为了更清楚地说明本申请实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,应当理解,以下附图仅示出了本申请的某些实施例,因此不应被看作是对范围的限定,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他相关的附图。In order to more clearly illustrate the technical solutions of the embodiments of the present application, the drawings required for use in the embodiments will be briefly introduced below. It should be understood that the following drawings only show certain embodiments of the present application and therefore should not be regarded as limiting the scope. For ordinary technicians in this field, other related drawings can be obtained based on these drawings without paying creative work.
图1为本申请实施例所提供的一种联轴器扭矩数据分析方法的流程图。FIG1 is a flow chart of a coupling torque data analysis method provided in an embodiment of the present application.
具体实施方式Detailed ways
为了更好的理解上述技术方案,下面通过附图以及具体实施例对本申请技术方案做详细的说明,应当理解本申请实施例以及实施例中的具体特征是对本申请技术方案的详细的说明,而不是对本申请技术方案的限定,在不冲突的情况下,本申请实施例以及实施例中的技术特征可以相互组合。In order to better understand the above technical scheme, the technical scheme of the present application is described in detail below through the accompanying drawings and specific embodiments. It should be understood that the embodiments of the present application and the specific features in the embodiments are detailed descriptions of the technical scheme of the present application, rather than limitations on the technical scheme of the present application. In the absence of conflict, the embodiments of the present application and the technical features in the embodiments can be combined with each other.
请参阅图1,示出了一种联轴器扭矩数据分析方法,该方法可以包括以下步骤302-步骤306所描述的技术方案。Please refer to FIG. 1 , which shows a coupling torque data analysis method, which may include the technical solutions described in the following steps 302 to 306 .
步骤302,获得待关联扭矩数据以及待关联主题信息,待关联扭矩数据包括一种或多种维度数据。Step 302: Obtain torque data to be associated and subject information to be associated, where the torque data to be associated includes one or more dimensional data.
其中,扭矩数据包括一种或多种维度数据,即扭矩数据可以但不限于为事件扭矩数据、第一扭矩数据以及属性扭矩数据,若扭矩数据为事件扭矩数据,即扭矩数据包括主题数据,同理,若扭矩数据为第一扭矩数据,即扭矩数据包括主题数据、扭转数据以及关键数据。以及若扭矩数据为属性扭矩数据,即扭矩数据包括主题数据以及扭转数据。The torque data includes one or more dimensional data, that is, the torque data can be, but is not limited to, event torque data, first torque data, and attribute torque data. If the torque data is event torque data, the torque data includes subject data. Similarly, if the torque data is first torque data, the torque data includes subject data, torsion data, and key data. And if the torque data is attribute torque data, the torque data includes subject data and torsion data.
步骤304,获得与待关联主题信息对应的待关联主题信息特征,并获得与待关联扭矩数据对应的待关联扭矩数据特征。Step 304 , obtaining the to-be-associated subject information feature corresponding to the to-be-associated subject information, and obtaining the to-be-associated torque data feature corresponding to the to-be-associated torque data.
具体地,终端对待关联主题信息中的待关联要素信息进行事件特征抽取处理,以得到各待关联主题信息对应的待关联主题信息特征。并获得与待关联扭矩数据对应的待关联扭矩数据特征。Specifically, the terminal performs event feature extraction processing on the to-be-associated element information in the to-be-associated subject information to obtain to-be-associated subject information features corresponding to each to-be-associated subject information, and obtains to-be-associated torque data features corresponding to the to-be-associated torque data.
其中,由于待关联要素信息具体为事件描述信息,因此所对应的待关联主题信息特征具体为事件特征。其次,由于扭矩数据可以为事件扭矩数据、第一扭矩数据以及属性扭矩数据任一项,或者为包括主题数据、第一数据以及关键数据等多种展现形式的多维度扭矩数据,因此待关联扭矩数据对应的待关联扭矩数据特征也可以为事件特征、关键特征、潜在特征,或者为包括事件特征、关键特征、潜在特征的多维度特征,待关联扭矩数据特征需要根据待关联扭矩数据确定,因此此处不做限定。Among them, since the element information to be associated is specifically event description information, the corresponding subject information characteristics to be associated are specifically event characteristics. Secondly, since the torque data can be any one of event torque data, first torque data and attribute torque data, or multi-dimensional torque data including subject data, first data and key data and other presentation forms, the torque data characteristics to be associated corresponding to the torque data to be associated can also be event characteristics, key characteristics, potential characteristics, or multi-dimensional characteristics including event characteristics, key characteristics and potential characteristics. The characteristics of the torque data to be associated need to be determined based on the torque data to be associated, so it is not limited here.
步骤306,基于待关联扭矩数据特征与待关联主题信息特征,通过信息关联网络获得关联结果,关联结果用于表征待关联扭矩数据与待关联主题信息之间的关联程度,信息关联网络是基于各扭矩数据配置示例以及与各扭矩数据配置示例关联的主题信息配置示例,对预配置得到的原始信息关联网络进行调试后得到的,扭矩数据配置示例包括一种或多种维度数据,主题信息配置示例是基于扭矩数据配置示例进行智能分析得到。Step 306, based on the characteristics of the torque data to be associated and the characteristics of the subject information to be associated, an association result is obtained through an information association network, and the association result is used to characterize the degree of association between the torque data to be associated and the subject information to be associated. The information association network is based on each torque data configuration example and the subject information configuration example associated with each torque data configuration example, and is obtained after debugging the pre-configured original information association network. The torque data configuration example includes one or more dimensional data, and the subject information configuration example is obtained based on intelligent analysis of the torque data configuration example.
其中,前述关联程度具体为待关联扭矩数据与待关联主题信息之间的相关性。关联结果用于表征待关联扭矩数据与待关联主题信息之间的关联程度,即关联结果可以直接描述待关联扭矩数据与待关联主题信息关联,或不关联。The above-mentioned correlation degree is specifically the correlation between the torque data to be correlated and the subject information to be correlated. The correlation result is used to characterize the correlation degree between the torque data to be correlated and the subject information to be correlated, that is, the correlation result can directly describe whether the torque data to be correlated is correlated with the subject information to be correlated, or not.
其次,信息关联网络是基于各扭矩数据配置示例以及与各扭矩数据配置示例关联的主题信息配置示例,对预配置得到的原始信息关联网络进行调试后得到的,扭矩数据配置示例包括一种或多种维度数据,主题信息配置示例是基于扭矩数据配置示例进行智能分析得到。且信息关联网络用于计算扭矩数据与所述主题信息之间的关联程度。Secondly, the information association network is obtained by debugging the original information association network obtained by pre-configuration based on each torque data configuration example and the subject information configuration example associated with each torque data configuration example. The torque data configuration example includes one or more dimensional data, and the subject information configuration example is obtained by intelligent analysis based on the torque data configuration example. And the information association network is used to calculate the degree of association between the torque data and the subject information.
为了使得所得到的信息关联网络能够兼容多维度扭矩数据,并且用尽可能少的智能分析数据达到较好的配置效果,在配置得到信息关联网络之前,进行基于多维度扭矩数据的网络预配置过程,并且将预配置得到的网络确定为原始信息关联网络,因此,基于各扭矩数据配置示例以及与各扭矩数据配置示例关联的主题信息配置示例,对预配置得到的原始信息关联网络进行调试后即可得到信息关联网络。In order to make the obtained information association network compatible with multi-dimensional torque data and achieve a better configuration effect with as little intelligent analysis data as possible, before configuring the information association network, a network pre-configuration process based on multi-dimensional torque data is performed, and the pre-configured network is determined as the original information association network. Therefore, based on each torque data configuration example and the subject information configuration example associated with each torque data configuration example, the information association network can be obtained after debugging the pre-configured original information association network.
其中,原始信息关联网络的获得方式包括:获得多维度示例集合,多维度示例集合包括若干个多维度示例二元组,多维度示例二元组包括扭矩描述内容以及数据描述内容,扭矩描述内容包括多种维度数据。Among them, the method of obtaining the original information association network includes: obtaining a multi-dimensional example set, the multi-dimensional example set includes a number of multi-dimensional example tuples, the multi-dimensional example tuples include torque description content and data description content, and the torque description content includes multiple dimensional data.
基于此,进一步地获得各多维度示例二元组中的扭矩描述内容对应的多维度数据特征,以及各多维度示例二元组中数据描述内容对应的主题数据特征,多维度数据特征包括多种维度特征。具体地,在扭矩描述内容为第一内容信息时,多维度数据特征包括事件特征、关键特征以及潜在特征。同理,在扭矩描述内容为属性内容信息时,多维度数据特征包括事件特征以及关键特征。然后,基于各多维度示例二元组中的多维度数据特征以及主题数据特征,对原始预配置网络进行配置,得到目标预配置网络,并将目标预配置网络确定为原始信息关联网络。其中,原始信息关联网络用于计算扭矩描述内容以及数据描述内容来自同一扭矩数据的可能性。Based on this, the multidimensional data features corresponding to the torque description content in each multidimensional example binary group and the subject data features corresponding to the data description content in each multidimensional example binary group are further obtained, and the multidimensional data features include multiple dimensional features. Specifically, when the torque description content is the first content information, the multidimensional data features include event features, key features and potential features. Similarly, when the torque description content is attribute content information, the multidimensional data features include event features and key features. Then, based on the multidimensional data features and subject data features in each multidimensional example binary group, the original preconfigured network is configured to obtain the target preconfigured network, and the target preconfigured network is determined as the original information association network. Among them, the original information association network is used to calculate the possibility that the torque description content and the data description content come from the same torque data.
具体地,终端通过信息关联网络获得关联结果,基于待关联扭矩数据特征与待关联主题信息特征回归分析得到关联结果,再基于关联结果确定描述待关联扭矩数据与待关联主题信息之间的关联程度。基于此,通过待关联扭矩数据与待关联主题信息之间的关联程度能够确定待关联扭矩数据与待关联主题信息之间是否关联,从而在实际应用中,对扭矩数据库中所有扭矩数据,与待关联主题信息均进行一一关联,从而可以得到不同的关联结果,然后基于具体场景需求进行响应操作。Specifically, the terminal obtains the association result through the information association network, obtains the association result based on the regression analysis of the characteristics of the torque data to be associated and the characteristics of the subject information to be associated, and then determines the degree of association between the torque data to be associated and the subject information to be associated based on the association result. Based on this, the degree of association between the torque data to be associated and the subject information to be associated can determine whether the torque data to be associated and the subject information to be associated are associated, so that in actual applications, all torque data in the torque database are associated with the subject information to be associated one by one, so that different association results can be obtained, and then response operations are performed based on specific scenario requirements.
上述联轴器扭矩数据分析方法中,通过多维度示例,设计包括多种维度数据的扭矩描述内容与数据描述内容关联的指示进行网络预配置,再使用通过智能分析的扭矩数据配置示例与主题信息配置示例,是对预配置得到的原始信息关联网络进行调试,由此所得到的信息关联网络能够兼容单维度扭矩数据与多维度扭矩数据,以因此在扭矩数据与时间信息的关联过程中,能够更为准确且高效地获得扭矩数据中多维度的数据以及事件细节,从而提升关联结果的准确度,即保证主题信息与扭矩数据之间进行关联的准确度。In the above-mentioned coupling torque data analysis method, through multi-dimensional examples, torque description contents including multi-dimensional data and instructions for associating data description contents are designed for network pre-configuration, and then the torque data configuration examples and subject information configuration examples obtained through intelligent analysis are used to debug the original information association network obtained by pre-configuration. The information association network thus obtained is compatible with single-dimensional torque data and multi-dimensional torque data, so that in the process of associating torque data with time information, multi-dimensional data and event details in the torque data can be obtained more accurately and efficiently, thereby improving the accuracy of the association results, that is, ensuring the accuracy of the association between subject information and torque data.
在一个实施例中,获得与待关联主题信息对应的待关联主题信息特征,包括:In one embodiment, obtaining the to-be-associated subject information feature corresponding to the to-be-associated subject information includes:
步骤502,基于待关联主题信息,通过信息关联网络获得待关联主题信息特征。Step 502: Based on the subject information to be associated, characteristics of the subject information to be associated are obtained through the information association network.
具体地,终端将待关联主题信息确定为信息关联网络的输入,信息关联网络中的衍生层对待关联主题信息中的待关联要素信息进行事件特征抽取,以获得待关联主题信息特征。其次,由于待关联主题信息具体为事件描述信息,因此信息关联网络中的衍生层具体对待关联主题信息进行事件划分,得到若干个事件分析(属性),然后基于若干个属性得到待关联主题信息对应的事件队列,并基于各事件队列生成待关联主题信息对应的待关联主题信息特征,且待关联主题信息特征具体为事件特征。Specifically, the terminal determines the subject information to be associated as the input of the information association network, and the derivative layer in the information association network extracts event features from the element information to be associated in the subject information to be associated to obtain the features of the subject information to be associated. Secondly, since the subject information to be associated is specifically event description information, the derivative layer in the information association network specifically divides the subject information to be associated into events to obtain a number of event analyses (attributes), and then obtains the event queue corresponding to the subject information to be associated based on the several attributes, and generates the features of the subject information to be associated corresponding to the subject information to be associated based on each event queue, and the features of the subject information to be associated are specifically event features.
获得与待关联扭矩数据对应的待关联扭矩数据特征,包括:Obtaining a to-be-associated torque data feature corresponding to the to-be-associated torque data, including:
步骤504,通过信息关联网络获得待关联扭矩数据特征中的待关联事件特征,并从预置的长短期记忆单元中获得待关联扭矩数据特征,待关联扭矩数据特征包括待关联关键特征和待关联潜在特征中至少一种。Step 504, obtaining the event features to be associated in the torque data features to be associated through the information association network, and obtaining the torque data features to be associated from the preset long short-term memory unit, wherein the torque data features to be associated include at least one of the key features to be associated and the potential features to be associated.
其中,待关联扭矩数据包括多种维度数据。具体地,终端将待关联扭矩数据确定为信息关联网络的输入,信息关联网络中的衍生层对待关联扭矩数据进行事件特征抽取,以获得待关联事件特征。其次,由于在实际应用中,可能会涉及同一扭矩数据与不同的主题信息之间的相关性计算(即关联度计算),因此重复对同一扭矩数据的扭矩数据特征进行抽取会增加关联耗时以及资源占用,由此是扭矩数据为第一扭矩数据或者属性扭矩数据时,涉及下载第一扭矩数据以及属性扭矩数据,且对扭转数据以及关键数据的处理均需耗费更多的特征抽取时间。Among them, the torque data to be associated includes data of multiple dimensions. Specifically, the terminal determines the torque data to be associated as the input of the information association network, and the derivative layer in the information association network extracts event features from the torque data to be associated to obtain the event features to be associated. Secondly, since in actual applications, the correlation calculation (i.e., correlation degree calculation) between the same torque data and different subject information may be involved, repeatedly extracting the torque data features of the same torque data will increase the association time and resource usage. Therefore, when the torque data is the first torque data or the attribute torque data, it involves downloading the first torque data and the attribute torque data, and the processing of the torsion data and the key data requires more feature extraction time.
基于此,在进行扭矩数据与主题信息关联之前,提前获得各第一扭矩数据,使用关键特征抽取网络得到第一扭矩数据的关键特征,以及使用潜在特征抽取网络得到第一扭矩数据的潜在特征,并且将各第一扭矩数据的关键特征与潜在特征写入预置的长短期记忆单元中进行缓存。同理,在进行扭矩数据与主题信息关联之前,还能够提前获得各属性扭矩数据,使用关键特征抽取网络得到属性扭矩数据的关键特征,并且将各属性扭矩数据的关键特征写入预置的长短期记忆单元中进行缓存。Based on this, before associating the torque data with the subject information, each first torque data is obtained in advance, the key features of the first torque data are obtained using the key feature extraction network, and the potential features of the first torque data are obtained using the potential feature extraction network, and the key features and potential features of each first torque data are written into a preset long short-term memory unit for caching. Similarly, before associating the torque data with the subject information, each attribute torque data can also be obtained in advance, the key features of the attribute torque data are obtained using the key feature extraction network, and the key features of each attribute torque data are written into a preset long short-term memory unit for caching.
进一步地,在用户需要进行信息关联时发起信息关联请求,该信息关联请求指示对待关联主题信息进行扭矩数据的关联。由此终端获得待关联扭矩数据以及待关联主题信息之后,需要进一步地判断待关联扭矩数据的具体数据类型,若为第一扭矩数据或属性扭矩数据,即从预置的长短期记忆单元获得待关联关键特征,或者待关联关键特征以及待关联潜在特征,并通过信息关联网络获得待关联扭矩数据特征中的待关联事件特征,由此完成扭矩数据特征的获得。Furthermore, when the user needs to associate information, an information association request is initiated, and the information association request indicates that the torque data is associated with the subject information to be associated. After the terminal obtains the torque data to be associated and the subject information to be associated, it is necessary to further determine the specific data type of the torque data to be associated. If it is the first torque data or the attribute torque data, the key features to be associated, or the key features to be associated and the potential features to be associated are obtained from the preset long-term and short-term memory units, and the event features to be associated in the torque data features to be associated are obtained through the information association network, thereby completing the acquisition of the torque data features.
以及在实际应用中,为了方便基于扭矩数据查找对应的扭矩数据特征,本实施例中各扭矩数据携带有扭矩数据标识,因此该扭矩数据对应的关键特征、或者关键特征以及潜在特征写入长短期记忆单元中存储时,关键特征、或者关键特征以及潜在特征均会携带扭矩数据对应的扭矩数据标识。In actual applications, in order to facilitate the search for corresponding torque data features based on torque data, each torque data in this embodiment carries a torque data identifier. Therefore, when the key features, or key features and potential features corresponding to the torque data are written into the long-term and short-term memory unit for storage, the key features, or key features and potential features will all carry the torque data identifier corresponding to the torque data.
本实施例中,由于对同一扭矩数据的扭矩数据特征而言,所对应的扭矩数据特征通常是不会变更的,将事件特征的抽取,与待关联关键特征以及待关联潜在特征的获得进行解耦,能够在待关联扭矩数据包括多种维度数据的场景下,通过信息关联网络获得待关联事件特征,但无需通过信息关联网络获得待关联关键特征以及待关联潜在特征,而是直接从预置的长短期记忆单元中获得待关联关键特征以及待关联潜在特征中至少一项,在保证待关联关键特征以及待关联潜在特征准确度的情况下,减少对扭转数据以及关键数据处理得到关键特征与潜在特征的耗时,即降低对待关联关键特征以及待关联潜在特征进行特征抽取的耗时,从而在保证扭矩数据与主题信息的关联可靠性的基础上,提升扭矩数据与主题信息的关联效率。In the present embodiment, since the torque data features corresponding to the same torque data are usually unchanged, the extraction of event features is decoupled from the acquisition of key features to be associated and potential features to be associated. In a scenario where the torque data to be associated includes data of multiple dimensions, event features to be associated can be obtained through an information association network. However, there is no need to obtain key features to be associated and potential features to be associated through the information association network. Instead, at least one of the key features to be associated and potential features to be associated is obtained directly from preset long and short-term memory units. While ensuring the accuracy of the key features to be associated and the potential features to be associated, the time spent on processing the torsion data and key data to obtain key features and potential features is reduced, that is, the time spent on feature extraction of the key features to be associated and the potential features to be associated is reduced, thereby improving the efficiency of associating the torque data with the subject information while ensuring the reliability of the association between the torque data and the subject information.
在一个实施例中,获得与待关联扭矩数据对应的待关联扭矩数据特征,包括:In one embodiment, obtaining a to-be-associated torque data feature corresponding to the to-be-associated torque data includes:
步骤902,若待关联扭矩数据为事件扭矩数据,基于待关联扭矩数据,通过信息关联网络获得待关联扭矩数据特征,待关联扭矩数据特征为待关联事件特征。Step 902 : If the torque data to be associated is event torque data, based on the torque data to be associated, a feature of the torque data to be associated is obtained through an information association network, and the feature of the torque data to be associated is a feature of the event to be associated.
前述实施例中介绍,待关联扭矩数据可以为事件扭矩数据、第一扭矩数据或属性扭矩数据。本实施例中先介绍待关联扭矩数据为事件扭矩数据时,如何获得与待关联扭矩数据对应的待关联扭矩数据特征。In the above embodiments, the torque data to be associated may be event torque data, first torque data or attribute torque data. In this embodiment, when the torque data to be associated is event torque data, how to obtain the torque data features to be associated corresponding to the torque data to be associated is first described.
具体地,在终端获得待关联扭矩数据之后,需进一步地判断待关联扭矩数据的数据类型,若待关联扭矩数据为事件扭矩数据,将待关联扭矩数据确定为信息关联网络的输入,信息关联网络的衍生层对待关联扭矩数据进行处理,以得到待关联扭矩数据特征,且前述待关联扭矩数据特征为待关联事件特征。Specifically, after the terminal obtains the torque data to be associated, it is necessary to further determine the data type of the torque data to be associated. If the torque data to be associated is event torque data, the torque data to be associated is determined as the input of the information association network, and the derivative layer of the information association network processes the torque data to be associated to obtain the characteristics of the torque data to be associated, and the aforementioned characteristics of the torque data to be associated are the characteristics of the event to be associated.
其次,信息关联网络中的衍生层具体对待关联扭矩数据进行事件划分,得到若干个事件分析(属性),然后基于若干个属性得到待关联扭矩数据对应的事件队列,并基于各事件队列生成待关联扭矩数据对应的待关联扭矩数据特征。Secondly, the derivative layer in the information association network specifically divides the torque data to be associated into events to obtain a number of event analyses (attributes), and then obtains the event queues corresponding to the torque data to be associated based on the several attributes, and generates the torque data features corresponding to the torque data to be associated based on each event queue.
本实施例中,通过信息关联网络中的衍生层具体对待关联扭矩数据进行事件划分,以得到待关联扭矩数据对应的事件队列,由此所得到的待关联扭矩数据特征能够准确反映每个属性在待关联扭矩数据中的位置,以及每个属性本身对应的事件特征,从而提升所得到的待关联扭矩数据特征的可靠性以及特征完整性,以提升信息皮关联的可靠性以及准确度。In this embodiment, the torque data to be associated is specifically divided into events through the derivative layer in the information association network to obtain an event queue corresponding to the torque data to be associated. The characteristics of the torque data to be associated thus obtained can accurately reflect the position of each attribute in the torque data to be associated, and the event characteristics corresponding to each attribute itself, thereby improving the reliability and characteristic integrity of the obtained characteristics of the torque data to be associated, so as to improve the reliability and accuracy of information skin association.
在一个实施例中,获得与待关联扭矩数据对应的待关联扭矩数据特征,包括:In one embodiment, obtaining a to-be-associated torque data feature corresponding to the to-be-associated torque data includes:
步骤1102,若待关联扭矩数据为第一扭矩数据,基于待关联扭矩数据,通过信息关联网络获得待关联事件特征。Step 1102: If the torque data to be associated is the first torque data, based on the torque data to be associated, a feature of the event to be associated is obtained through an information association network.
其中,若待关联扭矩数据为第一扭矩数据,所获得的待关联扭矩数据特征包括待关联事件特征、待关联关键特征以及待关联潜在特征。If the torque data to be associated is the first torque data, the obtained features of the torque data to be associated include event features to be associated, key features to be associated, and potential features to be associated.
具体地,在终端获得待关联扭矩数据之后,需进一步地判断待关联扭矩数据的数据类型,若待关联扭矩数据为第一扭矩数据,将待关联扭矩数据确定为信息关联网络的输入,信息关联网络的衍生层对待关联扭矩数据进行处理,以得到待关联扭矩数据特征,且前述待关联扭矩数据特征为待关联事件特征。其次,信息关联网络中的衍生层具体对待关联扭矩数据进行事件划分,得到若干个属性,然后基于若干个属性得到待关联扭矩数据对应的事件队列,并基于各事件队列生成待关联扭矩数据对应的待关联事件特征。具体实施方式与前述实施例类似,此处不再赘述。Specifically, after the terminal obtains the torque data to be associated, it is necessary to further determine the data type of the torque data to be associated. If the torque data to be associated is the first torque data, the torque data to be associated is determined as the input of the information association network, and the derivative layer of the information association network processes the torque data to be associated to obtain the characteristics of the torque data to be associated, and the aforementioned characteristics of the torque data to be associated are the characteristics of the events to be associated. Secondly, the derivative layer in the information association network specifically divides the torque data to be associated into events to obtain a number of attributes, and then obtains the event queues corresponding to the torque data to be associated based on the several attributes, and generates the event characteristics to be associated corresponding to the torque data to be associated based on each event queue. The specific implementation method is similar to the aforementioned embodiment and will not be repeated here.
步骤1104,基于待关联扭矩数据,从长短期记忆单元中获得待关联关键特征以及待关联潜在特征。Step 1104 , based on the torque data to be associated, obtain the key features to be associated and the potential features to be associated from the long short-term memory unit.
长短期记忆单元中包括:通过关键特征抽取网络对第一扭矩数据库中各第一扭矩数据进行关键特征抽取后得到的关键特征,以及通过潜在特征抽取网络各第一扭矩数据进行潜在特征抽取后得到的潜在特征。The long short-term memory unit includes: key features obtained by extracting key features from each first torque data in the first torque database through a key feature extraction network, and potential features obtained by extracting potential features from each first torque data through a potential feature extraction network.
其次,为了方便基于扭矩数据查找对应的扭矩数据特征,本实施例中各第一扭矩数据携带有扭矩数据标识,因此该第一扭矩数据对应的关键特征以及潜在特征写入长短期记忆单元中存储时,关键特征以及潜在特征会携带第一扭矩数据对应的扭矩数据标识。Secondly, in order to facilitate the search for corresponding torque data features based on torque data, each first torque data in this embodiment carries a torque data identifier. Therefore, when the key features and potential features corresponding to the first torque data are written into the long short-term memory unit for storage, the key features and potential features will carry the torque data identifier corresponding to the first torque data.
具体地,在终端确定待关联扭矩数据为第一扭矩数据后,并将待关联扭矩数据确定为信息关联网络的输入时,进一步地基于待关联扭矩数据对应的扭矩数据标识,从长短期记忆单元中获得该扭矩数据标识对应的关键特征以及潜在特征,并将该扭矩数据标识对应的关键特征以及潜在特征确定为待关联关键特征以及待关联潜在特征。Specifically, after the terminal determines that the torque data to be associated is the first torque data, and determines the torque data to be associated as the input of the information association network, it further obtains the key features and potential features corresponding to the torque data identifier from the long short-term memory unit based on the torque data identifier corresponding to the torque data to be associated, and determines the key features and potential features corresponding to the torque data identifier as the key features to be associated and the potential features to be associated.
由此,通过步骤1102以及1104可以得到包括待关联事件特征、待关联关键特征以及待关联潜在特征的待关联扭矩数据特征。Therefore, through steps 1102 and 1104 , the torque data features to be associated including the event features to be associated, the key features to be associated and the potential features to be associated can be obtained.
本实施例中,将事件特征的抽取,与关键特征以及潜在特征的获得进行解耦,在保证扭矩数据特征准确度的情况下,能够在实际应用中,降低对待关联关键特征以及待关联潜在特征进行特征抽取的耗时,从而在保证扭矩数据与主题信息的关联可靠性的基础上,提升扭矩数据与主题信息的关联效率。In this embodiment, the extraction of event features is decoupled from the acquisition of key features and potential features. While ensuring the accuracy of torque data features, it can reduce the time spent on feature extraction of associated key features and associated potential features in actual applications, thereby improving the efficiency of the association between torque data and subject information while ensuring the reliability of the association between torque data and subject information.
在一个实施例中,获得与待关联扭矩数据对应的待关联扭矩数据特征,包括:In one embodiment, obtaining a to-be-associated torque data feature corresponding to the to-be-associated torque data includes:
步骤1202,若待关联扭矩数据为属性扭矩数据,基于待关联扭矩数据,通过信息关联网络获得待关联事件特征。Step 1202: If the torque data to be associated is attribute torque data, based on the torque data to be associated, the feature of the event to be associated is obtained through the information association network.
其中,若待关联扭矩数据为属性扭矩数据,所获得待关联扭矩数据特征包括待关联事件特征以及待关联关键特征。If the torque data to be associated is attribute torque data, the obtained features of the torque data to be associated include event features to be associated and key features to be associated.
具体地,将待关联扭矩数据确定为信息关联网络的输入,信息关联网络的衍生层对待关联扭矩数据进行处理,以得到待关联扭矩数据特征,且前述待关联扭矩数据特征为待关联事件特征。其次,信息关联网络中的衍生层具体对待关联扭矩数据进行事件划分,得到若干个属性,然后基于若干个属性得到待关联扭矩数据对应的事件队列,并基于各事件队列生成待关联扭矩数据对应的待关联事件特征。Specifically, the torque data to be associated is determined as the input of the information association network, and the derivative layer of the information association network processes the torque data to be associated to obtain the characteristics of the torque data to be associated, and the aforementioned characteristics of the torque data to be associated are the characteristics of the events to be associated. Secondly, the derivative layer in the information association network specifically divides the torque data to be associated into events to obtain a number of attributes, and then obtains the event queues corresponding to the torque data to be associated based on the several attributes, and generates the event characteristics to be associated corresponding to the torque data to be associated based on each event queue.
步骤1204,基于待关联扭矩数据,从长短期记忆单元中获得待关联关键特征。Step 1204 , based on the torque data to be associated, obtain the key features to be associated from the long short-term memory unit.
长短期记忆单元中包括:通过关键特征抽取网络对属性扭矩数据库中各属性扭矩数据进行关键特征抽取后得到的关键特征。The long short-term memory unit includes: key features obtained by extracting key features of each attribute torque data in the attribute torque database through a key feature extraction network.
其次,为了方便基于扭矩数据查找对应的扭矩数据特征,本实施例中各属性扭矩数据携带有扭矩数据标识,因此该属性扭矩数据对应的关键特征写入长短期记忆单元中存储时,关键特征会携带扭矩数据对应的扭矩数据标识。Secondly, in order to facilitate the search for corresponding torque data features based on torque data, each attribute torque data in this embodiment carries a torque data identifier. Therefore, when the key features corresponding to the attribute torque data are written into the long short-term memory unit for storage, the key features will carry the torque data identifier corresponding to the torque data.
具体地,在终端确定待关联扭矩数据为属性扭矩数据后,并将待关联扭矩数据确定为信息关联网络的输入时,进一步地基于待关联扭矩数据对应的扭矩数据标识,从长短期记忆单元中获得该扭矩数据标识对应的关键特征,并将该扭矩数据标识对应的关键特征确定为待关联关键特征。Specifically, after the terminal determines that the torque data to be associated is attribute torque data, and determines the torque data to be associated as the input of the information association network, it further obtains the key features corresponding to the torque data identifier from the long short-term memory unit based on the torque data identifier corresponding to the torque data to be associated, and determines the key features corresponding to the torque data identifier as the key features to be associated.
由此,通过步骤1202以及1204可以得到包括待关联事件特征以及待关联关键特征的待关联扭矩数据特征。Therefore, through steps 1202 and 1204 , the torque data features to be associated including the event features to be associated and the key features to be associated can be obtained.
本实施例中,将事件特征的抽取,与关键特征的获得进行解耦,在保证扭矩数据特征准确度的情况下,能够在实际应用中,降低对待关联关键特征进行特征抽取的耗时,从而在保证扭矩数据与主题信息的关联可靠性的基础上,进一笔地提升扭矩数据与主题信息的关联效率。In this embodiment, the extraction of event features is decoupled from the acquisition of key features. While ensuring the accuracy of torque data features, it is possible to reduce the time spent on feature extraction of associated key features in actual applications, thereby further improving the efficiency of the association between torque data and subject information while ensuring the reliability of the association between torque data and subject information.
在一个实施例中,在获得原始信息关联网络的过程中,每个多维度示例二元组的获得方式如下:获得多维度示例集合,包括:In one embodiment, in the process of obtaining the original information association network, each multi-dimensional example binary is obtained as follows: obtaining a multi-dimensional example set includes:
步骤1302,获得扭矩描述内容、第一数据描述内容以及第二数据描述内容,扭矩描述内容与第一数据描述内容之间的关联程度大于关联度目标值,扭矩描述内容与第二数据描述内容之间的关联程度小于关联度目标值。Step 1302, obtaining torque description content, first data description content and second data description content, the correlation degree between the torque description content and the first data description content is greater than the correlation target value, and the correlation degree between the torque description content and the second data description content is less than the correlation target value.
由于大部分数据内容与数据标题具有较强的相关性,基于此,在获得多维度示例集合时,先获得扭矩描述内容,以及与扭矩描述内容相关性较强的第一数据描述内容,以及与扭矩描述内容相关性较弱的第一数据描述内容。前述主题数据具体为扭矩描述内容对应的数据标题。Since most of the data content has a strong correlation with the data title, based on this, when obtaining the multi-dimensional example set, the torque description content, the first data description content with a strong correlation with the torque description content, and the first data description content with a weak correlation with the torque description content are first obtained. The aforementioned subject data is specifically the data title corresponding to the torque description content.
步骤1304,对扭矩描述内容进行隐藏处理,得到隐藏处理后的扭矩描述内容。Step 1304: hide the torque description content to obtain the torque description content after hiding.
步骤1306,对第一数据描述内容进行隐藏处理,得到隐藏处理后的第一数据描述内容。Step 1306: perform hiding processing on the first data description content to obtain the first data description content after hiding processing.
由此可知,多维度示例集合至少包括:包括扭矩描述内容与第一数据描述内容的第一多维度示例二元组、包括扭矩描述内容与第二数据描述内容的第二多维度示例二元组、包括隐藏处理后的扭矩描述内容与第一数据描述内容的第三多维度示例二元组、以及包括扭矩描述内容与隐藏处理后的第一数据描述内容的第四多维度示例二元组。It can be seen that the multidimensional example set includes at least: a first multidimensional example tuple including torque description content and first data description content, a second multidimensional example tuple including torque description content and second data description content, a third multidimensional example tuple including torque description content and first data description content after hidden processing, and a fourth multidimensional example tuple including torque description content and first data description content after hidden processing.
基于此,多维度示例集合中具体包括若干个正负多维度示例,并在完成多维度示例的构建后,设计扭矩描述内容与数据描述内容关联的指示进行网络预配置,网络预配置指示是输入扭矩描述内容与数据描述内容,使用网络判断该扭矩描述内容与数据描述内容是否来自于同一个扭矩数据,并进行反向梯度传播修正原始预配置网络的网络系数。Based on this, the multidimensional example set specifically includes several positive and negative multidimensional examples. After completing the construction of the multidimensional examples, an indication of the association between the torque description content and the data description content is designed to perform network preconfiguration. The network preconfiguration indication is to input the torque description content and the data description content, use the network to determine whether the torque description content and the data description content come from the same torque data, and perform reverse gradient propagation to correct the network coefficients of the original preconfigured network.
本实施例中,通过设计扭矩描述内容与数据描述内容关联的指示进行网络预配置,由此使得信息关联网络在关联过程中能够学习到预配置的扭矩描述内容中多维度的多维度特征信息,进一步提升对多维度的数据以及事件等多维度细节的抽取,进一步地提升关联结果的准确度。In this embodiment, the network is pre-configured by designing an indication of the association between the torque description content and the data description content, so that the information association network can learn the multi-dimensional feature information of the pre-configured torque description content during the association process, further improve the extraction of multi-dimensional details such as multi-dimensional data and events, and further improve the accuracy of the association results.
在一个实施例中,在获得原始信息关联网络的过程中,多维度数据特征以及主题数据特征的获得方式如下:获得各多维度示例二元组中的扭矩描述内容对应的多维度数据特征,以及各多维度示例二元组中数据描述内容对应的主题数据特征,包括:In one embodiment, in the process of obtaining the original information association network, the multi-dimensional data features and the subject data features are obtained as follows: the multi-dimensional data features corresponding to the torque description content in each multi-dimensional example binary group and the subject data features corresponding to the data description content in each multi-dimensional example binary group are obtained, including:
步骤1402,获得第一多维度示例二元组中扭矩描述内容对应的第一多维度数据特征,以及第一数据描述内容对应的第一主题数据特征。Step 1402: Obtain a first multi-dimensional data feature corresponding to the torque description content in the first multi-dimensional example binary group, and a first theme data feature corresponding to the first data description content.
扭矩描述内容中包括多种维度数据,且扭矩描述内容具体为第一内容信息时所涉及的数据维度最多,即扭矩描述内容为第一内容信息时,具体包括包括主题数据、扭转数据以及关键数据,且扭转数据由若干个数据节点组成。基于此,在获得各多维度示例二元组中的多维度数据特征以及主题数据特征时,将第一多维度示例二元组中扭矩描述内容输入至原始预配置网络中的衍生层,通过衍生层对主题数据、扭转数据以及关键数据进行衍生处理,以得到扭矩描述内容对应的第一多维度数据特征。The torque description content includes multiple dimensional data, and when the torque description content is specifically the first content information, the data dimensions involved are the most, that is, when the torque description content is the first content information, it specifically includes subject data, torsion data and key data, and the torsion data is composed of several data nodes. Based on this, when obtaining the multi-dimensional data features and subject data features in each multi-dimensional example binary, the torque description content in the first multi-dimensional example binary is input into the derivative layer in the original pre-configured network, and the subject data, torsion data and key data are derived through the derivative layer to obtain the first multi-dimensional data features corresponding to the torque description content.
应理解,在实际应用中,若隐藏处理后的扭矩描述内容中不包括主题数据、扭转数据以及关键数据中任一项时,原始预配置网络中的衍生层可以将该数据对应的特征部分置为占位特殊符。并且若实际应用中还包含其他类型的扭矩数据维度时,可直接在当前的特征输入后面补充扭矩数据维度,并设置相应的特征处理流程以及特征部分位置。It should be understood that in actual applications, if the torque description content after hidden processing does not include any of the subject data, torsion data and key data, the derivative layer in the original pre-configured network can set the feature part corresponding to the data as a placeholder special symbol. And if the actual application also includes other types of torque data dimensions, the torque data dimension can be directly added after the current feature input, and the corresponding feature processing flow and feature part position can be set.
其次,将第一多维度示例二元组中的第一数据描述内容确定为原始信息关联网络的输入,原始信息关联网络中的衍生层对第一数据描述内容进行进行事件划分,得到第一数据描述内容的若干个属性,然后基于第一数据描述内容的若干个属性得到第一数据描述内容对应的事件队列,并基于第一数据描述内容对应的事件队列,生成第一数据描述内容对应的第一主题数据特征。Secondly, the first data description content in the first multi-dimensional example tuple is determined as the input of the original information association network, and the derivative layer in the original information association network performs event division on the first data description content to obtain a number of attributes of the first data description content, and then an event queue corresponding to the first data description content is obtained based on the several attributes of the first data description content, and based on the event queue corresponding to the first data description content, a first topic data feature corresponding to the first data description content is generated.
基于此,即可获得第一多维度示例二元组中扭矩描述内容对应的第一多维度数据特征,以及第一数据描述内容对应的第一主题数据特征。Based on this, the first multi-dimensional data features corresponding to the torque description content in the first multi-dimensional example binary group and the first theme data features corresponding to the first data description content can be obtained.
步骤1404,获得第二多维度示例二元组中扭矩描述内容对应的第一多维度数据特征,以及第二数据描述内容对应的第二主题数据特征。Step 1404: Obtain the first multi-dimensional data features corresponding to the torque description content in the second multi-dimensional example binary group and the second subject data features corresponding to the second data description content.
与步骤1402类似,扭矩描述内容为第一内容信息时,具体包括包括主题数据、扭转数据以及关键数据,且扭转数据由若干个数据节点组成。基于此,将第二多维度示例二元组中扭矩描述内容(即第一内容信息)输入至原始预配置网络中的衍生层,通过衍生层对主题数据、扭转数据以及关键数据进行衍生处理,以得到扭矩描述内容对应的第一多维度数据特征。其次,将第二多维度示例二元组中的第二数据描述内容确定为原始信息关联网络的输入,原始信息关联网络中的衍生层对第二数据描述内容进行进行事件划分,得到第二数据描述内容的若干个属性,然后基于第二数据描述内容的若干个属性得到第二数据描述内容对应的事件队列,并基于第二数据描述内容对应的事件队列,生成第二数据描述内容对应的第二主题数据特征。Similar to step 1402, when the torque description content is the first content information, it specifically includes subject data, torsion data and key data, and the torsion data is composed of several data nodes. Based on this, the torque description content (i.e., the first content information) in the second multi-dimensional example binary is input into the derivative layer in the original pre-configured network, and the subject data, torsion data and key data are derived through the derivative layer to obtain the first multi-dimensional data feature corresponding to the torque description content. Secondly, the second data description content in the second multi-dimensional example binary is determined as the input of the original information association network, and the derivative layer in the original information association network performs event division on the second data description content to obtain several attributes of the second data description content, and then obtains the event queue corresponding to the second data description content based on the several attributes of the second data description content, and based on the event queue corresponding to the second data description content, generates the second subject data feature corresponding to the second data description content.
基于此,即可获得第二多维度示例二元组中扭矩描述内容对应的第一多维度数据特征,以及第二数据描述内容对应的第二主题数据特征。Based on this, the first multi-dimensional data features corresponding to the torque description content in the second multi-dimensional example binary group and the second subject data features corresponding to the second data description content can be obtained.
步骤1406,获得第三多维度示例二元组中隐藏处理后的隐藏处理后的扭矩描述内容对应的第二多维度数据特征,以及第一数据描述内容对应的第一主题数据特征。Step 1406, obtaining the second multi-dimensional data features corresponding to the torque description content after the hidden processing in the third multi-dimensional example binary group, and the first theme data features corresponding to the first data description content.
与步骤1402类似,扭矩描述内容为第一内容信息时,具体包括包括主题数据、扭转数据以及关键数据,且扭转数据由若干个数据节点组成。基于此,将第三多维度示例二元组中隐藏处理后的扭矩描述内容(即第一内容信息)输入至原始预配置网络中的衍生层,通过衍生层对主题数据、扭转数据以及关键数据进行衍生处理,以得到隐藏处理后的扭矩描述内容对应的第二多维度数据特征。应理解,由于在隐藏处理过程中,可能将主题数据、扭转数据以及关键数据中任一项进行了隐藏,因此第二多维度数据特征包括的是事件特征、关键特征及潜在特征中至少一项。Similar to step 1402, when the torque description content is the first content information, it specifically includes subject data, torsion data and key data, and the torsion data is composed of several data nodes. Based on this, the torque description content (i.e., the first content information) after hidden processing in the third multi-dimensional example binary is input into the derivative layer in the original pre-configured network, and the subject data, torsion data and key data are derived through the derivative layer to obtain the second multi-dimensional data features corresponding to the torque description content after hidden processing. It should be understood that since any one of the subject data, torsion data and key data may be hidden during the hidden processing process, the second multi-dimensional data features include at least one of the event features, key features and potential features.
其次,将第三多维度示例二元组中的第一数据描述内容确定为原始信息关联网络的输入,原始信息关联网络中的衍生层对第一数据描述内容进行进行事件划分,得到第一数据描述内容的若干个属性,然后基于第一数据描述内容的若干个属性得到第一数据描述内容对应的事件队列,并基于第一数据描述内容对应的事件队列,生成第一数据描述内容对应的第一主题数据特征。Secondly, the first data description content in the third multi-dimensional example tuple is determined as the input of the original information association network, and the derivative layer in the original information association network performs event division on the first data description content to obtain several attributes of the first data description content, and then obtains the event queue corresponding to the first data description content based on the several attributes of the first data description content, and based on the event queue corresponding to the first data description content, generates a first topic data feature corresponding to the first data description content.
基于此,即可获得第三多维度示例二元组中隐藏处理后的隐藏处理后的扭矩描述内容对应的第二多维度数据特征,以及第一数据描述内容对应的第一主题数据特征。Based on this, the second multi-dimensional data features corresponding to the torque description content after hidden processing in the third multi-dimensional example binary group and the first theme data features corresponding to the first data description content can be obtained.
步骤1408,获得第四多维度示例二元组中扭矩描述内容对应的第一多维度数据特征,以及隐藏处理后的第一数据描述内容对应的第三主题数据特征。Step 1408: Obtain the first multi-dimensional data features corresponding to the torque description content in the fourth multi-dimensional example binary group, and the third theme data features corresponding to the first data description content after the hidden processing.
与步骤1402类似,扭矩描述内容为第一内容信息时,具体包括包括主题数据、扭转数据以及关键数据,且扭转数据由若干个数据节点组成。基于此,将第四多维度示例二元组中扭矩描述内容(即第一内容信息)输入至原始预配置网络中的衍生层,通过衍生层对主题数据、扭转数据以及关键数据进行衍生处理,以得到扭矩描述内容对应的第一多维度数据特征。其次,将第四多维度示例二元组中的隐藏处理后的第一数据描述内容确定为原始信息关联网络的输入,原始信息关联网络中的衍生层对隐藏处理后的第一数据描述内容进行进行事件划分,得到隐藏处理后的第一数据描述内容信息的若干个属性,然后基于隐藏处理后的第一数据描述内容的若干个属性得到隐藏处理后的第一数据描述内容对应的事件队列,并基于隐藏处理后的第一数据描述内容对应的事件队列,生成隐藏处理后的第一数据描述内容对应的第三主题数据特征。Similar to step 1402, when the torque description content is the first content information, it specifically includes subject data, torsion data and key data, and the torsion data is composed of several data nodes. Based on this, the torque description content (i.e., the first content information) in the fourth multi-dimensional example binary is input into the derivative layer in the original pre-configured network, and the subject data, torsion data and key data are derived through the derivative layer to obtain the first multi-dimensional data feature corresponding to the torque description content. Secondly, the first data description content after hidden processing in the fourth multi-dimensional example binary is determined as the input of the original information association network, and the derivative layer in the original information association network performs event division on the first data description content after hidden processing to obtain several attributes of the first data description content information after hidden processing, and then obtains the event queue corresponding to the first data description content after hidden processing based on the several attributes of the first data description content after hidden processing, and generates the third subject data feature corresponding to the first data description content after hidden processing based on the event queue corresponding to the first data description content after hidden processing.
基于此,即可获得第四多维度示例二元组中扭矩描述内容对应的第一多维度数据特征,以及隐藏处理后的第一数据描述内容对应的第三主题数据特征。Based on this, the first multi-dimensional data features corresponding to the torque description content in the fourth multi-dimensional example binary group and the third theme data features corresponding to the first data description content after hidden processing can be obtained.
本实施例中,通过对扭矩描述内容以及隐藏处理后的扭矩描述内容的多维度数据特征进行获得,提升预配置过程中对正反示例的特征抽取能力,从而保证在后续网络配置中,能够更为准确的获得各种维度的特征。其次,对本文特征的抽取也能进一步地在实际应用中保证特征解耦处理过程中,对事件特征的获得,由此提升本方案的可行性以及信息关联的可靠性。In this embodiment, by obtaining the multi-dimensional data features of the torque description content and the torque description content after the hidden processing, the feature extraction capability of the positive and negative examples in the pre-configuration process is improved, thereby ensuring that the features of various dimensions can be obtained more accurately in the subsequent network configuration. Secondly, the extraction of the features of this article can also further ensure the acquisition of event features in the feature decoupling process in practical applications, thereby improving the feasibility of this solution and the reliability of information association.
在一个实施例中,基于各多维度示例二元组中的多维度数据特征以及主题数据特征,对原始预配置网络进行配置,包括:In one embodiment, the original pre-configured network is configured based on the multi-dimensional data features and the subject data features in each multi-dimensional example binary, including:
在原始预配置网络的配置过程中:During configuration of the original pre-configured network:
步骤1602,基于第一多维度数据特征以及第一主题数据特征,获得第一多维度示例二元组的关联结果,关联结果用于表征扭矩描述内容与第一数据描述内容之间的关联程度。Step 1602: Based on the first multi-dimensional data feature and the first subject data feature, obtain the association result of the first multi-dimensional example binary group, where the association result is used to characterize the degree of association between the torque description content and the first data description content.
具体地,输入第一多维度数据特征以及第一主题数据特征至原始预配置网络,原始预配置网络输出第一多维度示例二元组的关联结果,第一多维度示例二元组的关联结果用于表征扭矩描述内容与第一数据描述内容之间的关联程度,即通过第一多维度示例二元组的关联结果能够判断扭矩描述内容与第一数据描述内容是否来自于同一个第一。若第一多维度示例二元组的关联结果趋于真实关联结果,即第一多维度示例二元组的关联结果应描述扭矩描述内容与第一数据描述内容之间的关联程度较高。Specifically, the first multi-dimensional data feature and the first subject data feature are input to the original pre-configured network, and the original pre-configured network outputs the association result of the first multi-dimensional example binary group, and the association result of the first multi-dimensional example binary group is used to characterize the degree of association between the torque description content and the first data description content, that is, the association result of the first multi-dimensional example binary group can be used to determine whether the torque description content and the first data description content come from the same first. If the association result of the first multi-dimensional example binary group tends to the real association result, that is, the association result of the first multi-dimensional example binary group should describe that the degree of association between the torque description content and the first data description content is high.
步骤1604,基于第一多维度示例二元组的关联结果,优化原始预配置网络的网络系数。Step 1604 : Optimize the network coefficients of the original pre-configured network based on the association result of the first multi-dimensional example binary group.
具体地,将第一多维度示例二元组的关联结果,与第一扭矩数据与第一数据描述内容之间的真实关联程度进行对比,从而进行反向梯度传播修正原始预配置网络的网络系数。Specifically, the association result of the first multi-dimensional example binary group is compared with the actual association degree between the first torque data and the first data description content, so as to perform reverse gradient propagation to correct the network coefficients of the original pre-configured network.
应理解,步骤1602以及步骤1604仅描述原始预配置网络的配置过程中,调整一次原始预配置网络的网络系数的过程,在实际应用中,原始预配置网络的配置过程中,至少还包括:输入第二多维度示例二元组中第一多维度数据特征以及第二主题数据特征至原始预配置网络,原始预配置网络输出第二多维度示例二元组的关联结果,第二多维度示例二元组的关联结果用于表征扭矩描述内容与第二数据描述内容之间的关联程度,然后再基于第二多维度示例二元组的关联结果,与第一扭矩数据与第二数据描述内容之间的真实关联程度进行对比,从而进行反向梯度传播修正原始预配置网络的网络系数。It should be understood that step 1602 and step 1604 only describe the process of adjusting the network coefficient of the original preconfigured network once during the configuration process of the original preconfigured network. In actual applications, the configuration process of the original preconfigured network at least includes: inputting the first multidimensional data features and the second subject data features in the second multidimensional example binary group into the original preconfigured network, and the original preconfigured network outputs the association result of the second multidimensional example binary group, and the association result of the second multidimensional example binary group is used to characterize the degree of association between the torque description content and the second data description content, and then based on the association result of the second multidimensional example binary group, it is compared with the actual degree of association between the first torque data and the second data description content, so as to perform reverse gradient propagation to correct the network coefficient of the original preconfigured network.
同理,原始预配置网络的配置过程中,还可以包括:输入第三多维度示例二元组中第二多维度数据特征以及第一主题数据特征至原始预配置网络,原始预配置网络输出第三多维度示例二元组的关联结果,第三多维度示例二元组的关联结果用于表征隐藏处理后的扭矩描述内容与第一数据描述内容之间的关联程度,然后再基于第三多维度示例二元组的关联结果,与隐藏处理后的扭矩描述内容与第一数据描述内容之间的真实关联程度进行对比,从而进行反向梯度传播修正原始预配置网络的网络系数。Similarly, the configuration process of the original preconfigured network may also include: inputting the second multidimensional data features and the first subject data features in the third multidimensional example binary group into the original preconfigured network, the original preconfigured network outputting the association results of the third multidimensional example binary group, the association results of the third multidimensional example binary group are used to characterize the degree of association between the torque description content after the hidden processing and the first data description content, and then based on the association results of the third multidimensional example binary group, the actual degree of association between the torque description content after the hidden processing and the first data description content is compared, so as to perform reverse gradient propagation to correct the network coefficients of the original preconfigured network.
以及,原始预配置网络的配置过程中,还可以包括:输入第四多维度示例二元组中第一多维度数据特征以及第三主题数据特征至原始预配置网络,原始预配置网络输出第四多维度示例二元组的关联结果,第四多维度示例二元组的关联结果用于表征扭矩描述内容与隐藏处理后的第一数据描述内容之间的关联程度,然后再基于第四多维度示例二元组的关联结果,与扭矩描述内容与隐藏处理后的第一数据描述内容之间的真实关联程度进行对比,从而进行反向梯度传播修正原始预配置网络的网络系数。Furthermore, the configuration process of the original preconfigured network may also include: inputting the first multidimensional data feature and the third subject data feature in the fourth multidimensional example binary group into the original preconfigured network, the original preconfigured network outputting the association result of the fourth multidimensional example binary group, the association result of the fourth multidimensional example binary group is used to characterize the degree of association between the torque description content and the first data description content after the hidden processing, and then based on the association result of the fourth multidimensional example binary group, it is compared with the actual degree of association between the torque description content and the first data description content after the hidden processing, so as to perform reverse gradient propagation to correct the network coefficients of the original preconfigured network.
本实施例中,通过网络判断该第一扭矩数据与事件扭矩数据是否来自于同一个第一,以及与真实结果进行对比,由此进行反向梯度传播修正原始预配置网络的网络系数,以保证预配置的可靠性。In this embodiment, the network is used to determine whether the first torque data and the event torque data come from the same first source, and compared with the actual result, thereby performing reverse gradient propagation to correct the network coefficients of the original pre-configured network to ensure the reliability of the pre-configuration.
在一个实施例中,为降低扭矩数据对扭矩数据配置示例以及与各扭矩数据配置示例关联的主题信息配置示例进行数据标注的成本,原始预配置网络采用已完成配置的事件维度网络,该事件维度网络是基于事件内容信息以及描述内容进行配置后得到的,且事件维度网络用于计算事件内容信息以及描述内容属于同一事件扭矩数据的可能性。基于此,在预配置过程中加载已完成配置的事件维度网络确定为原始预配置网络,并进一步地基于多维度示例集合对该原始预配置网络进行预配置,因此对已完成配置的事件维度网络进行预配置的过程中,能够更为快速的学习到事件特征,以使得在信息关联网络可以采用少量的扭矩数据配置示例以及主题信息配置示例,学习到事件、数据等多维度细节,在保证信息关联网络配置效果的基础上,也能够提升信息关联网络配置效率。In one embodiment, in order to reduce the cost of data annotation of torque data configuration examples and subject information configuration examples associated with each torque data configuration example, the original pre-configuration network adopts a configured event dimension network, which is obtained after configuration based on event content information and description content, and the event dimension network is used to calculate the possibility that the event content information and description content belong to the same event torque data. Based on this, the configured event dimension network is loaded as the original pre-configuration network during the pre-configuration process, and the original pre-configuration network is further pre-configured based on a multi-dimensional example set. Therefore, in the process of pre-configuring the configured event dimension network, event features can be learned more quickly, so that a small number of torque data configuration examples and subject information configuration examples can be used in the information association network to learn multi-dimensional details such as events and data. On the basis of ensuring the configuration effect of the information association network, the configuration efficiency of the information association network can also be improved.
在一个实施例中,信息关联网络的获得方式包括:In one embodiment, the information association network is obtained by:
步骤1702,获得各扭矩数据配置示例,以及与各扭矩数据配置示例关联的主题信息配置示例。Step 1702: Obtain each torque data configuration example and a subject information configuration example associated with each torque data configuration example.
为了让信息关联网络能够同时兼容事件扭矩数据、属性扭矩数据、第一扭矩数据三种不同类型扭矩数据的输入,并保证信息关联网络效果,在进行网络配置得到信息关联网络的过程中,扭矩数据配置示例包括事件扭矩数据配置示例、属性扭矩数据配置示例以及第一扭矩数据配置示例。In order to make the information association network compatible with the input of three different types of torque data, namely event torque data, attribute torque data and first torque data, and to ensure the effect of the information association network, in the process of configuring the network to obtain the information association network, the torque data configuration examples include event torque data configuration examples, attribute torque data configuration examples and first torque data configuration examples.
基于此,获得包括多种扭矩数据类型的扭矩数据配置示例,以及与各扭矩数据配置示例关联的主题信息配置示例,扭矩数据配置示例与主题信息配置示例之间的实际关联程度可以大于关联度目标值,且扭矩数据配置示例与主题信息配置示例之间的实际关联程度也可以小于关联度目标值,即存在正负示例。Based on this, torque data configuration examples including multiple torque data types and subject information configuration examples associated with each torque data configuration example are obtained. The actual degree of association between the torque data configuration example and the subject information configuration example can be greater than the association target value, and the actual degree of association between the torque data configuration example and the subject information configuration example can also be less than the association target value, that is, there are positive and negative examples.
步骤1704,基于各扭矩数据配置示例,得到各扭矩数据配置示例对应的扭矩数据特征,并基于各主题信息配置示例,得到各主题信息配置示例对应的主题信息特征。Step 1704: based on each torque data configuration example, obtain the torque data feature corresponding to each torque data configuration example, and based on each topic information configuration example, obtain the topic information feature corresponding to each topic information configuration example.
具体地,采用前述实施例所描述的方法基于各扭矩数据配置示例,得到各扭矩数据配置示例对应的扭矩数据特征,并基于各主题信息配置示例,得到各主题信息配置示例对应的主题信息特征。此处不再赘述。Specifically, the method described in the above embodiment is used to obtain the torque data features corresponding to each torque data configuration example based on each torque data configuration example, and to obtain the theme information features corresponding to each theme information configuration example based on each theme information configuration example.
步骤1706,基于各扭矩数据特征以及各主题信息特征,获得各扭矩数据特征与各主题信息特征之间的回归分析关联程度,并基于各实际关联程度与各回归分析关联程度对原始信息关联网络进行调试,获得信息关联网络。Step 1706, based on each torque data feature and each subject information feature, obtain the regression analysis correlation degree between each torque data feature and each subject information feature, and debug the original information correlation network based on each actual correlation degree and each regression analysis correlation degree to obtain the information correlation network.
具体地,将扭矩数据特征与主题信息特征确定为原始信息关联网络的输入,然后原始信息关联网络输出扭矩数据特征与主题信息特征之间的回归分析关联程度,再基于各实际关联程度与各回归分析关联程度对原始信息关联网络的系数进行调整,以获得信息关联网络。Specifically, the torque data features and the subject information features are determined as the input of the original information association network, and then the original information association network outputs the regression analysis correlation degree between the torque data features and the subject information features. The coefficients of the original information association network are adjusted based on the actual correlation degrees and the regression analysis correlation degrees to obtain the information association network.
在一个实施例中,扭矩数据配置示例为第一扭矩数据配置示例,第一扭矩数据配置示例由主题数据、扭转数据以及关键数据组成,扭转数据由若干个数据节点组成。基于此,基于各扭矩数据配置示例,得到各扭矩数据配置示例对应的扭矩数据特征,包括:In one embodiment, the torque data configuration example is a first torque data configuration example, and the first torque data configuration example is composed of subject data, torsion data, and key data, and the torsion data is composed of a plurality of data nodes. Based on this, based on each torque data configuration example, the torque data features corresponding to each torque data configuration example are obtained, including:
步骤2102,对各第一扭矩数据配置示例中的主题数据进行事件划分,得到各第一扭矩数据配置示例中的主题数据对应的事件队列,并基于各事件队列生成:各第一扭矩数据配置示例中的主题数据对应的事件特征,事件队列中包括若干个事件分析属性。Step 2102, perform event division on the subject data in each first torque data configuration example, obtain the event queue corresponding to the subject data in each first torque data configuration example, and generate based on each event queue: event features corresponding to the subject data in each first torque data configuration example, the event queue includes several event analysis attributes.
其中,事件特征包括:第一位置嵌入特征、第一专家嵌入特征以及事件分析特征,第一位置嵌入特征用于表征各属性在事件队列中的位置,第一专家嵌入特征用于表征事件特征的类型,事件分析特征包括各属性对应的事件特征。Among them, the event features include: first position embedding features, first expert embedding features and event analysis features. The first position embedding features are used to characterize the positions of each attribute in the event queue, the first expert embedding features are used to characterize the types of event features, and the event analysis features include event features corresponding to each attribute.
步骤2104,对各第一扭矩数据配置示例中的扭转数据进行解析处理,得到各第一扭矩数据配置示例中的扭转数据对应的关键特征。Step 2104: parse and process the torsion data in each first torque data configuration example to obtain key features corresponding to the torsion data in each first torque data configuration example.
步骤2106,对各第一扭矩数据配置示例中的关键数据进行解析处理,得到各第一扭矩数据配置示例中的关键数据对应的潜在特征。Step 2106: parse and process the key data in each first torque data configuration example to obtain potential features corresponding to the key data in each first torque data configuration example.
以及,最后所得到的扭矩数据特征包括事件特征、关键特征以及潜在特征。And, the torque data features finally obtained include event features, key features and potential features.
本实施例中,在进行网络配置得到信息关联网络的过程中,通过事件扭矩数据配置示例、属性扭矩数据配置示例以及第一扭矩数据配置示例进行配置,在保证网络关联可靠性的基础上,还能够让信息关联网络能够兼容多维度扭矩数据。In this embodiment, in the process of performing network configuration to obtain the information association network, configuration is performed through the event torque data configuration example, the attribute torque data configuration example and the first torque data configuration example. On the basis of ensuring the reliability of network association, the information association network can also be made compatible with multi-dimensional torque data.
基于前述实施例,下面将介绍扭矩数据与主题信息的关联的完整流程。本实施例中,该方法包括以下步骤:Based on the above embodiment, the complete process of associating torque data with subject information is described below. In this embodiment, the method includes the following steps:
步骤2301,获得多维度示例集合。Step 2301, obtain a multi-dimensional example set.
基于此,获得扭矩描述内容,以及与扭矩描述内容之间的关联程度大于关联度目标值的第一数据描述内容,与扭矩描述内容之间的关联程度小于关联度目标值的第二数据描述内容。Based on this, the torque description content, the first data description content whose correlation with the torque description content is greater than the correlation target value, and the second data description content whose correlation with the torque description content is less than the correlation target value are obtained.
由此可知,多维度示例集合至少包括:包括扭矩描述内容与第一数据描述内容的第一多维度示例二元组、包括扭矩描述内容与第二数据描述内容的第二多维度示例二元组、包括隐藏处理后的扭矩描述内容与第一数据描述内容的第三多维度示例二元组、以及包括扭矩描述内容与隐藏处理后的第一数据描述内容的第四多维度示例二元组。It can be seen that the multidimensional example set includes at least: a first multidimensional example tuple including torque description content and first data description content, a second multidimensional example tuple including torque description content and second data description content, a third multidimensional example tuple including torque description content and first data description content after hidden processing, and a fourth multidimensional example tuple including torque description content and first data description content after hidden processing.
基于此,多维度示例集合中具体包括若干个正负多维度示例,并在完成多维度示例的构建后,设计扭矩描述内容与数据描述内容关联的指示进行网络预配置,网络预配置指示是输入扭矩描述内容与数据描述内容,使用网络判断该扭矩描述内容与数据描述内容是否来自于同一个扭矩数据,并进行反向梯度传播修正原始预配置网络的网络系数。Based on this, the multidimensional example set specifically includes several positive and negative multidimensional examples. After completing the construction of the multidimensional examples, an indication of the association between the torque description content and the data description content is designed to perform network preconfiguration. The network preconfiguration indication is to input the torque description content and the data description content, use the network to determine whether the torque description content and the data description content come from the same torque data, and perform reverse gradient propagation to correct the network coefficients of the original preconfigured network.
步骤2302,获得各多维度示例二元组中的扭矩描述内容对应的多维度数据特征,以及各多维度示例二元组中数据描述内容对应的主题数据特征。Step 2302: Obtain multi-dimensional data features corresponding to the torque description content in each multi-dimensional example binary group, and subject data features corresponding to the data description content in each multi-dimensional example binary group.
扭矩描述内容中包括多种维度数据,且扭矩描述内容具体为第一内容信息时所涉及的数据维度最多,即扭矩描述内容为第一内容信息时,具体包括包括主题数据、扭转数据以及关键数据,且扭转数据由若干个数据节点组成。基于此,在获得各多维度示例二元组中的多维度数据特征以及主题数据特征时,将第一多维度示例二元组中扭矩描述内容输入至原始预配置网络中的衍生层,通过衍生层对主题数据、扭转数据以及关键数据进行衍生处理,以得到扭矩描述内容对应的第一多维度数据特征。The torque description content includes multiple dimensional data, and when the torque description content is specifically the first content information, the data dimensions involved are the most, that is, when the torque description content is the first content information, it specifically includes subject data, torsion data and key data, and the torsion data is composed of several data nodes. Based on this, when obtaining the multi-dimensional data features and subject data features in each multi-dimensional example binary, the torque description content in the first multi-dimensional example binary is input into the derivative layer in the original pre-configured network, and the subject data, torsion data and key data are derived through the derivative layer to obtain the first multi-dimensional data features corresponding to the torque description content.
其次,将第一多维度示例二元组中的第一数据描述内容确定为原始信息关联网络的输入,原始信息关联网络中的衍生层对第一数据描述内容进行进行事件划分,得到第一数据描述内容的若干个属性,然后基于第一数据描述内容的若干个属性得到第一数据描述内容对应的事件队列,并基于第一数据描述内容对应的事件队列,生成第一数据描述内容对应的第一主题数据特征。基于此,即可获得第一多维度示例二元组中扭矩描述内容对应的第一多维度数据特征,以及第一数据描述内容对应的第一主题数据特征。Secondly, the first data description content in the first multi-dimensional example binary is determined as the input of the original information association network, and the derivative layer in the original information association network divides the first data description content into events to obtain several attributes of the first data description content, and then obtains the event queue corresponding to the first data description content based on the several attributes of the first data description content, and generates the first subject data feature corresponding to the first data description content based on the event queue corresponding to the first data description content. Based on this, the first multi-dimensional data feature corresponding to the torque description content in the first multi-dimensional example binary and the first subject data feature corresponding to the first data description content can be obtained.
同理,基于前述类似方式还可以获得第二多维度示例二元组中扭矩描述内容对应的第一多维度数据特征,以及第二数据描述内容对应的第二主题数据特征。获得第三多维度示例二元组中隐藏处理后的隐藏处理后的扭矩描述内容对应的第二多维度数据特征,以及第一数据描述内容对应的第一主题数据特征。以及获得第四多维度示例二元组中扭矩描述内容对应的第一多维度数据特征,以及隐藏处理后的第一数据描述内容对应的第三主题数据特征。Similarly, based on the aforementioned similar method, the first multidimensional data feature corresponding to the torque description content in the second multidimensional example binary group and the second theme data feature corresponding to the second data description content can also be obtained. The second multidimensional data feature corresponding to the torque description content after hidden processing and the first theme data feature corresponding to the first data description content in the third multidimensional example binary group are obtained. And the first multidimensional data feature corresponding to the torque description content in the fourth multidimensional example binary group and the third theme data feature corresponding to the first data description content after hidden processing are obtained.
步骤2303,基于各多维度示例二元组中的多维度数据特征以及主题数据特征,对原始预配置网络进行配置。Step 2303: Based on the multi-dimensional data features and the subject data features in each multi-dimensional example binary, the original pre-configured network is configured.
具体地,在原始预配置网络的配置过程中:输入第一多维度数据特征以及第一主题数据特征至原始预配置网络,原始预配置网络输出第一多维度示例二元组的关联结果,第一多维度示例二元组的关联结果用于表征扭矩描述内容与第一数据描述内容之间的关联程度。基于此,将第一多维度示例二元组的关联结果,与第一扭矩数据与第一数据描述内容之间的真实关联程度进行对比,从而进行反向梯度传播修正原始预配置网络的网络系数。Specifically, during the configuration process of the original preconfigured network: the first multi-dimensional data feature and the first subject data feature are input to the original preconfigured network, and the original preconfigured network outputs the association result of the first multi-dimensional example binary group, and the association result of the first multi-dimensional example binary group is used to characterize the degree of association between the torque description content and the first data description content. Based on this, the association result of the first multi-dimensional example binary group is compared with the actual degree of association between the first torque data and the first data description content, so as to perform reverse gradient propagation to correct the network coefficients of the original preconfigured network.
可选地,为降低扭矩数据对扭矩数据配置示例以及与各扭矩数据配置示例关联的主题信息配置示例进行数据标注的成本,原始预配置网络采用已完成配置的事件维度网络,该事件维度网络是基于事件内容信息以及描述内容进行配置后得到的,且事件维度网络用于计算事件内容信息以及描述内容属于同一事件扭矩数据的可能性。基于此,在预配置过程中加载已完成配置的事件维度网络确定为原始预配置网络,并进一步地基于多维度示例集合对该原始预配置网络进行预配置,因此对已完成配置的事件维度网络进行预配置的过程中,能够更为快速的学习到事件特征,以使得在信息关联网络可以采用少量的扭矩数据配置示例以及主题信息配置示例,学习到事件、数据等多维度细节,在保证信息关联网络配置效果的基础上,也能够提升信息关联网络配置效率。Optionally, in order to reduce the cost of data annotation of torque data configuration examples and subject information configuration examples associated with each torque data configuration example, the original pre-configuration network adopts a configured event dimension network, which is obtained after configuration based on event content information and description content, and the event dimension network is used to calculate the possibility that the event content information and description content belong to the same event torque data. Based on this, the configured event dimension network is loaded as the original pre-configuration network during the pre-configuration process, and the original pre-configuration network is further pre-configured based on a multi-dimensional example set. Therefore, in the process of pre-configuration of the configured event dimension network, event features can be learned more quickly, so that a small number of torque data configuration examples and subject information configuration examples can be used in the information association network to learn multi-dimensional details such as events and data. On the basis of ensuring the configuration effect of the information association network, the configuration efficiency of the information association network can also be improved.
步骤2304,获得各扭矩数据配置示例,以及与各扭矩数据配置示例关联的主题信息配置示例。Step 2304: Obtain each torque data configuration example and a subject information configuration example associated with each torque data configuration example.
为了让信息关联网络能够同时兼容事件扭矩数据、属性扭矩数据、第一扭矩数据三种不同类型扭矩数据的输入,并保证信息关联网络效果,在进行网络配置得到信息关联网络的过程中,扭矩数据配置示例包括事件扭矩数据配置示例、属性扭矩数据配置示例以及第一扭矩数据配置示例。In order to make the information association network compatible with the input of three different types of torque data, namely event torque data, attribute torque data and first torque data, and to ensure the effect of the information association network, in the process of configuring the network to obtain the information association network, the torque data configuration examples include event torque data configuration examples, attribute torque data configuration examples and first torque data configuration examples.
基于此,获得包括多种扭矩数据类型的扭矩数据配置示例,以及与各扭矩数据配置示例关联的主题信息配置示例,该扭矩数据配置示例与主题信息配置示例之间的实际关联程度大于关联度目标值。Based on this, torque data configuration examples including multiple torque data types and subject information configuration examples associated with each torque data configuration example are obtained, and the actual degree of association between the torque data configuration example and the subject information configuration example is greater than the target value of the association degree.
步骤2305,基于各扭矩数据配置示例,得到各扭矩数据配置示例对应的扭矩数据特征,并基于各主题信息配置示例,得到各主题信息配置示例对应的主题信息特征。Step 2305: Based on each torque data configuration example, obtain the torque data feature corresponding to each torque data configuration example, and based on each topic information configuration example, obtain the topic information feature corresponding to each topic information configuration example.
具体地,采用前述实施例所描述的方法基于各扭矩数据配置示例,得到各扭矩数据配置示例对应的扭矩数据特征,并基于各主题信息配置示例,得到各主题信息配置示例对应的主题信息特征。此处不再赘述。Specifically, the method described in the above embodiment is used to obtain the torque data features corresponding to each torque data configuration example based on each torque data configuration example, and to obtain the theme information features corresponding to each theme information configuration example based on each theme information configuration example.
步骤2306,基于各扭矩数据特征以及各主题信息特征,获得各扭矩数据特征与各主题信息特征之间的回归分析关联程度,并基于各实际关联程度与各回归分析关联程度对原始信息关联网络进行调试,获得信息关联网络。Step 2306, based on each torque data feature and each subject information feature, obtain the regression analysis correlation degree between each torque data feature and each subject information feature, and debug the original information correlation network based on each actual correlation degree and each regression analysis correlation degree to obtain the information correlation network.
具体地,将扭矩数据特征与主题信息特征确定为原始信息关联网络的输入,然后原始信息关联网络输出扭矩数据特征与主题信息特征之间的回归分析关联程度,再基于各实际关联程度与各回归分析关联程度对原始信息关联网络进行调试,以获得信息关联网络。Specifically, the torque data features and the subject information features are determined as the input of the original information association network, and then the original information association network outputs the regression analysis correlation degree between the torque data features and the subject information features. The original information association network is then debugged based on the actual correlation degrees and the regression analysis correlation degrees to obtain the information association network.
步骤2307,获得待关联扭矩数据以及待关联主题信息,待关联扭矩数据包括一种或多种维度数据。Step 2307, obtaining the torque data to be associated and the subject information to be associated, wherein the torque data to be associated includes one or more dimensional data.
其中,扭矩数据包括一种或多种维度数据,即扭矩数据可以但不限于为事件扭矩数据、第一扭矩数据以及属性扭矩数据,若扭矩数据为事件扭矩数据,即扭矩数据包括主题数据,同理,若扭矩数据为第一扭矩数据,即扭矩数据包括主题数据、扭转数据以及关键数据。Among them, the torque data includes one or more dimensional data, that is, the torque data can be but is not limited to event torque data, first torque data and attribute torque data. If the torque data is event torque data, the torque data includes subject data. Similarly, if the torque data is first torque data, the torque data includes subject data, torsion data and key data.
步骤2308,基于待关联主题信息,通过信息关联网络获得待关联主题信息特征。Step 2308, based on the subject information to be associated, obtain the characteristics of the subject information to be associated through the information association network.
具体地,终端将待关联主题信息确定为信息关联网络的输入,信息关联网络中的衍生层对待关联主题信息中的待关联要素信息进行事件特征抽取,以获得待关联主题信息特征。其次,由于待关联主题信息具体为事件描述信息,因此信息关联网络中的衍生层具体对待关联主题信息进行事件划分,得到若干个事件分析(属性),然后基于若干个属性得到待关联主题信息对应的事件队列,并基于各事件队列生成待关联主题信息对应的待关联主题信息特征,且待关联主题信息特征具体为事件特征。Specifically, the terminal determines the subject information to be associated as the input of the information association network, and the derivative layer in the information association network extracts event features from the element information to be associated in the subject information to be associated to obtain the features of the subject information to be associated. Secondly, since the subject information to be associated is specifically event description information, the derivative layer in the information association network specifically divides the subject information to be associated into events to obtain a number of event analyses (attributes), and then obtains the event queue corresponding to the subject information to be associated based on the several attributes, and generates the features of the subject information to be associated corresponding to the subject information to be associated based on each event queue, and the features of the subject information to be associated are specifically event features.
步骤2309,通过信息关联网络获得待关联扭矩数据特征中的待关联事件特征,并从预置的长短期记忆单元中获得待关联扭矩数据特征。Step 2309, obtaining the event features to be associated in the torque data features to be associated through the information association network, and obtaining the torque data features to be associated from the preset long short-term memory unit.
其中,待关联扭矩数据包括多种维度数据。具体地,终端将待关联扭矩数据确定为信息关联网络的输入,信息关联网络中的衍生层对待关联扭矩数据进行事件特征抽取,以获得待关联事件特征。The torque data to be associated includes data of multiple dimensions. Specifically, the terminal determines the torque data to be associated as the input of the information association network, and the derivative layer in the information association network extracts event features from the torque data to be associated to obtain event features to be associated.
其次,信息关联网络是基于各扭矩数据配置示例以及与各扭矩数据配置示例关联的主题信息配置示例,对预配置得到的原始信息关联网络进行调试后得到的,扭矩数据配置示例包括一种或多种维度数据,主题信息配置示例是基于扭矩数据配置示例进行智能分析得到。且信息关联网络用于计算扭矩数据与所述主题信息之间的关联程度。Secondly, the information association network is obtained by debugging the original information association network obtained by pre-configuration based on each torque data configuration example and the subject information configuration example associated with each torque data configuration example. The torque data configuration example includes one or more dimensional data, and the subject information configuration example is obtained by intelligent analysis based on the torque data configuration example. And the information association network is used to calculate the degree of association between the torque data and the subject information.
基于此,在进行扭矩数据与主题信息关联之前,提前获得各第一扭矩数据,使用关键特征抽取网络得到第一扭矩数据的关键特征,以及使用潜在特征抽取网络得到第一扭矩数据的潜在特征,并且将各第一扭矩数据的关键特征与潜在特征写入预置的长短期记忆单元中进行缓存。同理,在进行扭矩数据与主题信息关联之前,还能够提前获得各属性扭矩数据,使用关键特征抽取网络得到属性扭矩数据的关键特征,并且将各属性扭矩数据的关键特征写入预置的长短期记忆单元中进行缓存。Based on this, before associating the torque data with the subject information, each first torque data is obtained in advance, the key features of the first torque data are obtained using the key feature extraction network, and the potential features of the first torque data are obtained using the potential feature extraction network, and the key features and potential features of each first torque data are written into a preset long short-term memory unit for caching. Similarly, before associating the torque data with the subject information, each attribute torque data can also be obtained in advance, the key features of the attribute torque data are obtained using the key feature extraction network, and the key features of each attribute torque data are written into a preset long short-term memory unit for caching.
进一步地,在用户需要进行信息关联时发起信息关联请求,该信息关联请求指示对待关联主题信息进行扭矩数据的关联。由此终端获得待关联扭矩数据以及待关联主题信息之后,需要进一步地判断待关联扭矩数据的具体数据类型,若为第一扭矩数据或属性扭矩数据,即从预置的长短期记忆单元获得待关联关键特征,或者待关联关键特征以及待关联潜在特征,并通过信息关联网络获得待关联扭矩数据特征中的待关联事件特征,由此完成扭矩数据特征的获得。Furthermore, when the user needs to associate information, an information association request is initiated, and the information association request indicates that the torque data is associated with the subject information to be associated. After the terminal obtains the torque data to be associated and the subject information to be associated, it is necessary to further determine the specific data type of the torque data to be associated. If it is the first torque data or the attribute torque data, the key features to be associated, or the key features to be associated and the potential features to be associated are obtained from the preset long-term and short-term memory units, and the event features to be associated in the torque data features to be associated are obtained through the information association network, thereby completing the acquisition of the torque data features.
步骤2310,基于待关联扭矩数据特征与待关联主题信息特征,通过信息关联网络获得关联结果。Step 2310, based on the characteristics of the torque data to be associated and the characteristics of the subject information to be associated, obtain the association result through the information association network.
具体地,终端通过信息关联网络获得关联结果,基于待关联扭矩数据特征与待关联主题信息特征回归分析得到关联结果,再基于关联结果确定描述待关联扭矩数据与待关联主题信息之间的关联程度。基于此,通过待关联扭矩数据与待关联主题信息之间的关联程度能够确定待关联扭矩数据与待关联主题信息之间是否关联,从而在实际应用中,对扭矩数据库中所有扭矩数据,与待关联主题信息均进行一一关联,从而可以得到不同的关联结果,然后基于具体场景需求进行响应操作。Specifically, the terminal obtains the association result through the information association network, obtains the association result based on the regression analysis of the characteristics of the torque data to be associated and the characteristics of the subject information to be associated, and then determines the degree of association between the torque data to be associated and the subject information to be associated based on the association result. Based on this, the degree of association between the torque data to be associated and the subject information to be associated can determine whether the torque data to be associated and the subject information to be associated are associated, so that in actual applications, all torque data in the torque database are associated with the subject information to be associated one by one, so that different association results can be obtained, and then response operations are performed based on specific scenario requirements.
在上述基础上,示出了一种联轴器扭矩数据分析系统,包括互相之间通信的处理器和存储器,所述处理器用于从所述存储器中读取计算机程序并执行,以实现上述的方法。On the basis of the above, a coupling torque data analysis system is shown, which includes a processor and a memory that communicate with each other, and the processor is used to read a computer program from the memory and execute it to implement the above method.
在上述基础上,还提供了一种计算机可读存储介质,其上存储的计算机程序在运行时实现上述的方法。Based on the above, a computer-readable storage medium is also provided, on which a computer program stored implements the above method when running.
综上,基于上述方案,获得待关联扭矩数据以及待关联主题信息,待关联扭矩数据包括一种或多种维度数据,再获得与待关联主题信息对应的待关联主题信息特征,并获得与待关联扭矩数据对应的待关联扭矩数据特征,基于待关联扭矩数据特征与待关联主题信息特征,通过信息关联网络获得关联结果,关联结果用于表征待关联扭矩数据与待关联主题信息之间的关联程度,且信息关联网络是基于各扭矩数据配置示例以及与各扭矩数据配置示例关联的主题信息配置示例,对预配置得到的原始信息关联网络进行调试后得到的,扭矩数据配置示例包括一种或多种维度数据,主题信息配置示例是基于扭矩数据配置示例进行智能分析得到。由此,获得多维度示例集合,多维度示例集合包括若干个多维度示例二元组,多维度示例二元组包括扭矩描述内容以及数据描述内容,扭矩描述内容包括多种维度数据,并获得各多维度示例二元组中的扭矩描述内容对应的多维度数据特征,以及各多维度示例二元组中数据描述内容对应的主题数据特征,多维度数据特征包括多种维度特征,再基于各多维度示例二元组中的多维度数据特征以及主题数据特征,对原始预配置网络进行配置,得到目标预配置网络,并将目标预配置网络确定为原始信息关联网络。通过多维度示例,设计包括多种维度数据的扭矩描述内容与数据描述内容关联的指示进行网络预配置,再使用通过智能分析的扭矩数据配置示例与主题信息配置示例,是对预配置得到的原始信息关联网络进行调试,由此所得到的信息关联网络能够兼容单维度扭矩数据与多维度扭矩数据,以因此在扭矩数据与时间信息的关联过程中,能够更为准确且高效地获得扭矩数据中多维度的数据以及事件细节,从而提升关联结果的准确度,即保证主题信息与扭矩数据之间进行关联的准确度。In summary, based on the above scheme, the torque data to be associated and the subject information to be associated are obtained, the torque data to be associated includes one or more dimensional data, and then the subject information features to be associated corresponding to the subject information to be associated are obtained, and the torque data features to be associated corresponding to the torque data to be associated are obtained, and based on the torque data features to be associated and the subject information features to be associated, an association result is obtained through an information association network, and the association result is used to characterize the degree of association between the torque data to be associated and the subject information to be associated, and the information association network is based on each torque data configuration example and the subject information configuration example associated with each torque data configuration example, and is obtained after debugging the pre-configured original information association network, the torque data configuration example includes one or more dimensional data, and the subject information configuration example is obtained based on intelligent analysis of the torque data configuration example. Thus, a multidimensional example set is obtained, the multidimensional example set includes several multidimensional example tuples, the multidimensional example tuples include torque description content and data description content, the torque description content includes multi-dimensional data, and the multidimensional data features corresponding to the torque description content in each multidimensional example tuple, and the subject data features corresponding to the data description content in each multidimensional example tuple are obtained, the multidimensional data features include multi-dimensional features, and then based on the multidimensional data features and the subject data features in each multidimensional example tuple, the original preconfigured network is configured to obtain the target preconfigured network, and the target preconfigured network is determined as the original information association network. Through multi-dimensional examples, the torque description content including multi-dimensional data and the indication of associating the data description content are designed for network pre-configuration, and then the torque data configuration example and the subject information configuration example through intelligent analysis are used to debug the original information association network obtained by pre-configuration. The information association network thus obtained can be compatible with single-dimensional torque data and multi-dimensional torque data, so that in the process of associating torque data with time information, multi-dimensional data and event details in the torque data can be obtained more accurately and efficiently, thereby improving the accuracy of the association results, that is, ensuring the accuracy of the association between the subject information and the torque data.
应当理解,上述所示的系统及其模块可以利用各种方式来实现。例如,在一些实施例中,系统及其模块可以通过硬件、软件或者软件和硬件的结合来实现。其中,硬件部分可以利用专用逻辑来实现;软件部分则可以存储在存储器中,由适当的指令执行系统,例如微处理器或者专用设计硬件来执行。本领域技术人员可以理解上述的方法和系统可以使用计算机可执行指令和/或包含在处理器控制代码中来实现,例如在诸如磁盘、CD或DVD-ROM的载体介质、诸如只读存储器(固件)的可编程的存储器或者诸如光学或电子信号载体的数据载体上提供了这样的代码。本申请的系统及其模块不仅可以有诸如超大规模集成电路或门阵列、诸如逻辑芯片、晶体管等的半导体、或者诸如现场可编程门阵列、可编程逻辑设备等的可编程硬件设备的硬件电路实现,也可以用例如由各种类型的处理器所执行的软件实现,还可以由上述硬件电路和软件的结合(例如,固件)来实现。It should be understood that the system and its modules shown above can be implemented in various ways. For example, in some embodiments, the system and its modules can be implemented by hardware, software, or a combination of software and hardware. Among them, the hardware part can be implemented using dedicated logic; the software part can be stored in a memory and executed by an appropriate instruction execution system, such as a microprocessor or a dedicated design hardware. Those skilled in the art will understand that the above methods and systems can be implemented using computer executable instructions and/or included in a processor control code, such as a carrier medium such as a disk, CD or DVD-ROM, a programmable memory such as a read-only memory (firmware), or a data carrier such as an optical or electronic signal carrier. Such code is provided on the carrier medium such as a disk, CD or DVD-ROM, a programmable memory such as a read-only memory (firmware), or a data carrier such as an optical or electronic signal carrier. The system and its modules of the present application can not only be implemented by hardware circuits such as ultra-large-scale integrated circuits or gate arrays, semiconductors such as logic chips, transistors, or programmable hardware devices such as field programmable gate arrays, programmable logic devices, etc., but can also be implemented by software such as executed by various types of processors, and can also be implemented by a combination of the above hardware circuits and software (e.g., firmware).
需要说明的是,不同实施例可能产生的有益效果不同,在不同的实施例里,可能产生的有益效果可以是以上任意一种或几种的组合,也可以是其他任何可能获得的有益效果。It should be noted that different embodiments may produce different beneficial effects. In different embodiments, the beneficial effects that may be produced may be any one or a combination of the above, or may be any other possible beneficial effects.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202410334435.3A CN117932561B (en) | 2024-03-22 | 2024-03-22 | Coupling torque data analysis method and system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202410334435.3A CN117932561B (en) | 2024-03-22 | 2024-03-22 | Coupling torque data analysis method and system |
Publications (2)
Publication Number | Publication Date |
---|---|
CN117932561A CN117932561A (en) | 2024-04-26 |
CN117932561B true CN117932561B (en) | 2024-06-11 |
Family
ID=90766987
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202410334435.3A Active CN117932561B (en) | 2024-03-22 | 2024-03-22 | Coupling torque data analysis method and system |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN117932561B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN118503765B (en) * | 2024-07-05 | 2024-11-05 | 绵阳师范学院 | Equipment friction influence assessment method and system based on coupler |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008059147A1 (en) * | 2006-11-15 | 2008-05-22 | Renault S.A.S. | Method and device for controlling the sliding of driving wheels upon asymmetric adhesion for an automotive vehicle |
CN101726377A (en) * | 2009-12-17 | 2010-06-09 | 东方电气集团东方汽轮机有限公司 | Wind driven generator coupler test-bed and test method |
CN103114963A (en) * | 2013-01-04 | 2013-05-22 | 湖州师范学院 | Low-speed and high-torque hydraulic motor |
CN111275007A (en) * | 2020-02-24 | 2020-06-12 | 山东大学 | Bearing fault diagnosis method and system based on multi-scale information fusion |
CN111929062A (en) * | 2020-08-21 | 2020-11-13 | 重庆理工大学 | Load frequency determination method for torsional impact fatigue test of electric automobile differential |
CN112057077A (en) * | 2019-06-11 | 2020-12-11 | 本田技研工业株式会社 | Information processing apparatus, information processing method, and storage medium |
CN113415373A (en) * | 2021-07-09 | 2021-09-21 | 广东高标电子科技有限公司 | Power-assisted vehicle energy recovery method and device, electronic equipment and storage medium |
CN113510651A (en) * | 2021-04-28 | 2021-10-19 | 中国铁路郑州局集团有限公司科学技术研究所 | Method for controlling output torque of electric impact wrench |
CN115489336A (en) * | 2022-09-28 | 2022-12-20 | 同济大学 | Motor torque output optimization method and device based on big data |
WO2023076911A1 (en) * | 2021-10-29 | 2023-05-04 | Atieva, Inc. | Vibrational order attenuation in an electric motor |
CN116973745A (en) * | 2023-06-28 | 2023-10-31 | 东风商用车有限公司 | Motor torque calibration method and system based on neural network |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10589406B2 (en) * | 2016-08-26 | 2020-03-17 | Cumulus Digital Systems, Inc. | Guidance device and method for installing flanges |
CN115244565A (en) * | 2020-03-05 | 2022-10-25 | 株式会社日立制作所 | Augmented reality-based mechanical fastening method |
-
2024
- 2024-03-22 CN CN202410334435.3A patent/CN117932561B/en active Active
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008059147A1 (en) * | 2006-11-15 | 2008-05-22 | Renault S.A.S. | Method and device for controlling the sliding of driving wheels upon asymmetric adhesion for an automotive vehicle |
CN101726377A (en) * | 2009-12-17 | 2010-06-09 | 东方电气集团东方汽轮机有限公司 | Wind driven generator coupler test-bed and test method |
CN103114963A (en) * | 2013-01-04 | 2013-05-22 | 湖州师范学院 | Low-speed and high-torque hydraulic motor |
CN112057077A (en) * | 2019-06-11 | 2020-12-11 | 本田技研工业株式会社 | Information processing apparatus, information processing method, and storage medium |
CN111275007A (en) * | 2020-02-24 | 2020-06-12 | 山东大学 | Bearing fault diagnosis method and system based on multi-scale information fusion |
CN111929062A (en) * | 2020-08-21 | 2020-11-13 | 重庆理工大学 | Load frequency determination method for torsional impact fatigue test of electric automobile differential |
CN113510651A (en) * | 2021-04-28 | 2021-10-19 | 中国铁路郑州局集团有限公司科学技术研究所 | Method for controlling output torque of electric impact wrench |
CN113415373A (en) * | 2021-07-09 | 2021-09-21 | 广东高标电子科技有限公司 | Power-assisted vehicle energy recovery method and device, electronic equipment and storage medium |
WO2023076911A1 (en) * | 2021-10-29 | 2023-05-04 | Atieva, Inc. | Vibrational order attenuation in an electric motor |
CN115489336A (en) * | 2022-09-28 | 2022-12-20 | 同济大学 | Motor torque output optimization method and device based on big data |
CN116973745A (en) * | 2023-06-28 | 2023-10-31 | 东风商用车有限公司 | Motor torque calibration method and system based on neural network |
Also Published As
Publication number | Publication date |
---|---|
CN117932561A (en) | 2024-04-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10810056B2 (en) | Adding descriptive metadata to application programming interfaces for consumption by an intelligent agent | |
US20200225921A1 (en) | Lookup table optimization for programming languages that target synchronous digital circuits | |
CN109635256B (en) | Method and device for verifying data | |
TWI844091B (en) | Feature matching rule construction, feature matching method, device, equipment and medium | |
CN109815141B (en) | A test method and device | |
US20220156050A1 (en) | Generating a synchronous digital circuit from a source code construct defining a function call | |
CN117932561B (en) | Coupling torque data analysis method and system | |
WO2024152665A1 (en) | Code construction method and apparatus, and computer device and storage medium | |
CN110688111A (en) | Configuration method, device, server and storage medium for business process | |
CN114579716A (en) | Knowledge graph query method and device | |
CN111597020B (en) | Application programming interface API debugging method and debugging terminal | |
CN111444208A (en) | Data updating method and related equipment | |
CN112883088A (en) | Data processing method, device, equipment and storage medium | |
CA3203549A1 (en) | Unified verification method, device, equipment and storage medium | |
CN113220237B (en) | Distributed storage method, device, equipment and storage medium | |
CN114968725A (en) | Task dependency relationship correction method and device, computer equipment and storage medium | |
WO2022105494A1 (en) | Automatic data backfilling method and apparatus, electronic device, and computer storage medium | |
CN112783954A (en) | Data access method and device and server | |
US20250086212A1 (en) | Integration flow generation using large language models | |
US20240118878A1 (en) | Method and system for determining optimization applicability on intermediate representation from program | |
CN114661439B (en) | A method, device, equipment and storage medium for system application configuration migration | |
US20240281737A1 (en) | Data compilation and execution device and data compilation and execution method | |
WO2024067303A1 (en) | Simulation method, and electronic device and computer-readable medium | |
CN111913737B (en) | A method, device, equipment and storage medium for constructing a data service interface | |
US20250045148A1 (en) | Detecting and repairing reliability issues in operating systems and applications using a generative artificial intelligence system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |