CN117926293A - Alkaline membrane electrode electrolyzer for producing hydrogen by alkaline water electrolysis and preparation method thereof - Google Patents
Alkaline membrane electrode electrolyzer for producing hydrogen by alkaline water electrolysis and preparation method thereof Download PDFInfo
- Publication number
- CN117926293A CN117926293A CN202310280017.6A CN202310280017A CN117926293A CN 117926293 A CN117926293 A CN 117926293A CN 202310280017 A CN202310280017 A CN 202310280017A CN 117926293 A CN117926293 A CN 117926293A
- Authority
- CN
- China
- Prior art keywords
- membrane electrode
- cathode
- alkaline
- anode
- diffusion layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000012528 membrane Substances 0.000 title claims abstract description 96
- 238000005868 electrolysis reaction Methods 0.000 title claims abstract description 85
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 title claims abstract description 49
- 239000001257 hydrogen Substances 0.000 title claims abstract description 42
- 229910052739 hydrogen Inorganic materials 0.000 title claims abstract description 42
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 title claims abstract description 38
- 238000002360 preparation method Methods 0.000 title claims abstract description 10
- 239000003054 catalyst Substances 0.000 claims abstract description 184
- 238000009792 diffusion process Methods 0.000 claims abstract description 91
- 239000003011 anion exchange membrane Substances 0.000 claims abstract description 20
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 69
- 239000002002 slurry Substances 0.000 claims description 34
- 229910052759 nickel Inorganic materials 0.000 claims description 30
- 239000002904 solvent Substances 0.000 claims description 23
- 238000012546 transfer Methods 0.000 claims description 21
- 238000000576 coating method Methods 0.000 claims description 20
- 238000007789 sealing Methods 0.000 claims description 20
- 239000011230 binding agent Substances 0.000 claims description 19
- 238000000034 method Methods 0.000 claims description 15
- 229910000831 Steel Inorganic materials 0.000 claims description 14
- 238000011068 loading method Methods 0.000 claims description 14
- 239000010959 steel Substances 0.000 claims description 14
- 239000004695 Polyether sulfone Substances 0.000 claims description 12
- 239000011248 coating agent Substances 0.000 claims description 12
- 229920002492 poly(sulfone) Polymers 0.000 claims description 12
- 229920006393 polyether sulfone Polymers 0.000 claims description 12
- 238000001035 drying Methods 0.000 claims description 11
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 10
- 238000007731 hot pressing Methods 0.000 claims description 8
- 239000000463 material Substances 0.000 claims description 8
- 229910052751 metal Inorganic materials 0.000 claims description 8
- 239000010936 titanium Substances 0.000 claims description 8
- 239000004734 Polyphenylene sulfide Substances 0.000 claims description 7
- 229920000069 polyphenylene sulfide Polymers 0.000 claims description 7
- 229910052719 titanium Inorganic materials 0.000 claims description 7
- UQSQSQZYBQSBJZ-UHFFFAOYSA-N fluorosulfonic acid Chemical compound OS(F)(=O)=O UQSQSQZYBQSBJZ-UHFFFAOYSA-N 0.000 claims description 5
- 150000002576 ketones Chemical class 0.000 claims description 5
- 239000002184 metal Substances 0.000 claims description 5
- -1 polytetrafluoroethylene Polymers 0.000 claims description 5
- 229920001343 polytetrafluoroethylene Polymers 0.000 claims description 5
- 239000004810 polytetrafluoroethylene Substances 0.000 claims description 5
- 239000011347 resin Substances 0.000 claims description 5
- 229920005989 resin Polymers 0.000 claims description 5
- 238000005240 physical vapour deposition Methods 0.000 claims description 4
- 239000002033 PVDF binder Substances 0.000 claims description 3
- 150000001298 alcohols Chemical class 0.000 claims description 3
- 150000001408 amides Chemical class 0.000 claims description 3
- 150000002148 esters Chemical class 0.000 claims description 3
- 229910044991 metal oxide Inorganic materials 0.000 claims description 3
- 150000004706 metal oxides Chemical class 0.000 claims description 3
- 150000002739 metals Chemical class 0.000 claims description 3
- 229910000480 nickel oxide Inorganic materials 0.000 claims description 3
- 229920001955 polyphenylene ether Polymers 0.000 claims description 3
- 229920000915 polyvinyl chloride Polymers 0.000 claims description 3
- 239000004800 polyvinyl chloride Substances 0.000 claims description 3
- 229920002981 polyvinylidene fluoride Polymers 0.000 claims description 3
- 150000003242 quaternary ammonium salts Chemical group 0.000 claims description 3
- 238000004519 manufacturing process Methods 0.000 description 17
- 230000000052 comparative effect Effects 0.000 description 14
- 230000009286 beneficial effect Effects 0.000 description 9
- 239000002131 composite material Substances 0.000 description 8
- 229920000642 polymer Polymers 0.000 description 8
- 238000010586 diagram Methods 0.000 description 7
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 6
- YEJRWHAVMIAJKC-UHFFFAOYSA-N 4-Butyrolactone Chemical compound O=C1CCCO1 YEJRWHAVMIAJKC-UHFFFAOYSA-N 0.000 description 6
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 6
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 6
- JHIVVAPYMSGYDF-UHFFFAOYSA-N cyclohexanone Chemical compound O=C1CCCCC1 JHIVVAPYMSGYDF-UHFFFAOYSA-N 0.000 description 6
- 239000000243 solution Substances 0.000 description 6
- 229910000564 Raney nickel Inorganic materials 0.000 description 5
- NPXOKRUENSOPAO-UHFFFAOYSA-N Raney nickel Chemical compound [Al].[Ni] NPXOKRUENSOPAO-UHFFFAOYSA-N 0.000 description 5
- 239000007864 aqueous solution Substances 0.000 description 5
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 5
- 239000001301 oxygen Substances 0.000 description 5
- 229910052760 oxygen Inorganic materials 0.000 description 5
- 238000005192 partition Methods 0.000 description 5
- 238000003756 stirring Methods 0.000 description 5
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 4
- 229910052786 argon Inorganic materials 0.000 description 4
- 238000005265 energy consumption Methods 0.000 description 4
- 150000002431 hydrogen Chemical class 0.000 description 4
- 239000013077 target material Substances 0.000 description 4
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 3
- 229910001030 Iron–nickel alloy Inorganic materials 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 3
- KGWWEXORQXHJJQ-UHFFFAOYSA-N [Fe].[Co].[Ni] Chemical compound [Fe].[Co].[Ni] KGWWEXORQXHJJQ-UHFFFAOYSA-N 0.000 description 3
- 229930188620 butyrolactone Natural products 0.000 description 3
- 239000003792 electrolyte Substances 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 238000001755 magnetron sputter deposition Methods 0.000 description 3
- 238000007747 plating Methods 0.000 description 3
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 description 3
- OZJPLYNZGCXSJM-UHFFFAOYSA-N 5-valerolactone Chemical compound O=C1CCCCO1 OZJPLYNZGCXSJM-UHFFFAOYSA-N 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- 101001121408 Homo sapiens L-amino-acid oxidase Proteins 0.000 description 2
- 102100026388 L-amino-acid oxidase Human genes 0.000 description 2
- 229910000990 Ni alloy Inorganic materials 0.000 description 2
- 229910003310 Ni-Al Inorganic materials 0.000 description 2
- 229910003266 NiCo Inorganic materials 0.000 description 2
- 101100233916 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) KAR5 gene Proteins 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 230000003197 catalytic effect Effects 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 239000008367 deionised water Substances 0.000 description 2
- 229910021641 deionized water Inorganic materials 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- UGKDIUIOSMUOAW-UHFFFAOYSA-N iron nickel Chemical compound [Fe].[Ni] UGKDIUIOSMUOAW-UHFFFAOYSA-N 0.000 description 2
- 239000011259 mixed solution Substances 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 229910052750 molybdenum Inorganic materials 0.000 description 2
- 230000007935 neutral effect Effects 0.000 description 2
- 239000004745 nonwoven fabric Substances 0.000 description 2
- 238000010248 power generation Methods 0.000 description 2
- 229910052761 rare earth metal Inorganic materials 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 229910052721 tungsten Inorganic materials 0.000 description 2
- 241001479434 Agfa Species 0.000 description 1
- 229910052684 Cerium Inorganic materials 0.000 description 1
- 101000827703 Homo sapiens Polyphosphoinositide phosphatase Proteins 0.000 description 1
- FXHOOIRPVKKKFG-UHFFFAOYSA-N N,N-Dimethylacetamide Chemical compound CN(C)C(C)=O FXHOOIRPVKKKFG-UHFFFAOYSA-N 0.000 description 1
- 102100023591 Polyphosphoinositide phosphatase Human genes 0.000 description 1
- 101100012902 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) FIG2 gene Proteins 0.000 description 1
- 238000003723 Smelting Methods 0.000 description 1
- QXZUUHYBWMWJHK-UHFFFAOYSA-N [Co].[Ni] Chemical compound [Co].[Ni] QXZUUHYBWMWJHK-UHFFFAOYSA-N 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 230000002860 competitive effect Effects 0.000 description 1
- 238000005262 decarbonization Methods 0.000 description 1
- GDVKFRBCXAPAQJ-UHFFFAOYSA-A dialuminum;hexamagnesium;carbonate;hexadecahydroxide Chemical compound [OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Al+3].[Al+3].[O-]C([O-])=O GDVKFRBCXAPAQJ-UHFFFAOYSA-A 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 229910021472 group 8 element Inorganic materials 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000005984 hydrogenation reaction Methods 0.000 description 1
- 229910001701 hydrotalcite Inorganic materials 0.000 description 1
- 229960001545 hydrotalcite Drugs 0.000 description 1
- 238000007733 ion plating Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 229910052746 lanthanum Inorganic materials 0.000 description 1
- 238000011031 large-scale manufacturing process Methods 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 238000001451 molecular beam epitaxy Methods 0.000 description 1
- DDTIGTPWGISMKL-UHFFFAOYSA-N molybdenum nickel Chemical compound [Ni].[Mo] DDTIGTPWGISMKL-UHFFFAOYSA-N 0.000 description 1
- 238000011056 performance test Methods 0.000 description 1
- 238000011112 process operation Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 239000012429 reaction media Substances 0.000 description 1
- DCKVNWZUADLDEH-UHFFFAOYSA-N sec-butyl acetate Chemical compound CCC(C)OC(C)=O DCKVNWZUADLDEH-UHFFFAOYSA-N 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 229910052596 spinel Inorganic materials 0.000 description 1
- 239000011029 spinel Substances 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 238000001132 ultrasonic dispersion Methods 0.000 description 1
- 238000001291 vacuum drying Methods 0.000 description 1
- 238000007738 vacuum evaporation Methods 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B9/00—Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
- C25B9/17—Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof
- C25B9/19—Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof with diaphragms
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B1/00—Electrolytic production of inorganic compounds or non-metals
- C25B1/01—Products
- C25B1/02—Hydrogen or oxygen
- C25B1/04—Hydrogen or oxygen by electrolysis of water
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B11/00—Electrodes; Manufacture thereof not otherwise provided for
- C25B11/02—Electrodes; Manufacture thereof not otherwise provided for characterised by shape or form
- C25B11/03—Electrodes; Manufacture thereof not otherwise provided for characterised by shape or form perforated or foraminous
- C25B11/031—Porous electrodes
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B11/00—Electrodes; Manufacture thereof not otherwise provided for
- C25B11/04—Electrodes; Manufacture thereof not otherwise provided for characterised by the material
- C25B11/051—Electrodes formed of electrocatalysts on a substrate or carrier
- C25B11/052—Electrodes comprising one or more electrocatalytic coatings on a substrate
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B9/00—Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
- C25B9/17—Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof
- C25B9/19—Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof with diaphragms
- C25B9/23—Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof with diaphragms comprising ion-exchange membranes in or on which electrode material is embedded
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/36—Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Electrodes For Compound Or Non-Metal Manufacture (AREA)
Abstract
Description
技术领域Technical Field
本发明涉及碱性电解水制氢技术领域,特别涉及一种碱性电解水制氢用的碱性膜电极式电解槽及其制备方法。The invention relates to the technical field of hydrogen production by alkaline water electrolysis, and in particular to an alkaline membrane electrode electrolyzer for hydrogen production by alkaline water electrolysis and a preparation method thereof.
背景技术Background Art
随着全球对环保脱碳的日益关注以及可再生能源发电技术的进步,利用风电、光电和水电等可再生能源制氢是实现绿色氢能经济的重要途径。氢能可广泛应用于甲醇生产、油品加氢、合成氨、金属冶炼、供热及车用运输等。可再生能源总量增速显著,将成为主要能源之一,其发电成本随着技术的成熟和规模的扩大在不断下降,可再生能源制氢有望具备市场竞争力。另外,可再生能源制氢可消纳弃风、弃光和弃水电力,获得低成本氢气。With the increasing global attention to environmental protection and decarbonization and the advancement of renewable energy power generation technology, the use of renewable energy such as wind power, photovoltaic and hydropower to produce hydrogen is an important way to achieve a green hydrogen economy. Hydrogen energy can be widely used in methanol production, oil hydrogenation, synthetic ammonia, metal smelting, heating and vehicle transportation. The total amount of renewable energy is growing significantly and will become one of the main energy sources. Its power generation cost is declining with the maturity of technology and the expansion of scale. Renewable energy hydrogen production is expected to be competitive in the market. In addition, renewable energy hydrogen production can absorb abandoned wind, photovoltaic and hydropower electricity to obtain low-cost hydrogen.
电解水制氢技术包括碱性电解水制氢、质子交换膜电解水制氢、阴离子交换膜电解水制氢和固体氧化物电解水制氢。其中,碱性电解水制氢技术最为成熟,已广泛应用于火电厂和精密电子产品生产等领域。传统的碱性电解槽的电解小室结构示意图参见图4,其包括依次堆叠的双极板、阳极镍网电极、隔膜、阴极镍网电极、双极板,其中所用的镍网电极如图5所示。碱性电解水制氢技术具有设备成本低、寿命长和稳健的优点,适于大规模制取绿色氢气,但现有的碱性电解水制氢用电解槽仍存在电流密度低和电解能耗高的缺点。降低碱性电解水的小室电压是提高电解能效和电流密度的关键。Water electrolysis hydrogen production technology includes alkaline water electrolysis hydrogen production, proton exchange membrane water electrolysis hydrogen production, anion exchange membrane water electrolysis hydrogen production and solid oxide water electrolysis hydrogen production. Among them, alkaline water electrolysis hydrogen production technology is the most mature and has been widely used in thermal power plants and precision electronic product production. The schematic diagram of the electrolysis chamber structure of the traditional alkaline electrolyzer is shown in Figure 4, which includes bipolar plates, anode nickel mesh electrodes, diaphragms, cathode nickel mesh electrodes, and bipolar plates stacked in sequence, and the nickel mesh electrodes used are shown in Figure 5. Alkaline water electrolysis hydrogen production technology has the advantages of low equipment cost, long life and robustness, and is suitable for large-scale production of green hydrogen, but the existing alkaline water electrolysis hydrogen production electrolyzer still has the disadvantages of low current density and high electrolysis energy consumption. Reducing the chamber voltage of alkaline water electrolysis is the key to improving electrolysis energy efficiency and current density.
专利申请CN104364425A公开了一种双极式碱性水电解单元和电解槽,其提供的双极式碱性水电解单元组装在用于对由碱性水构成的电解液进行电解而得到氧和氢的电解槽中,该双极式碱性水电解单元具备析氧用的阳极、析氢用的阴极、分隔阳极和阴极的导电性隔壁、包围导电性隔壁的环状的外框,在导电性隔壁和或外框的上部设置有气体和电解液的通过部,在导电性隔壁和或外框的下部设置有电解液的通过部。该方案通过设置包围双极式碱性水电解单元的隔壁的外框,即使以3kA/m2以上的高电流密度进行电解,也不会使离子透过性隔膜或电极(阳极和阴极)破损,能够简便地安装,还能够抑制设备费用。该方案的主要改进目的在于如何提供设备费用低、能够进行稳定的电解的双极式碱性电解水单元及电解槽。Patent application CN104364425A discloses a bipolar alkaline water electrolysis unit and an electrolyzer, wherein the bipolar alkaline water electrolysis unit provided is assembled in an electrolyzer for electrolyzing an electrolyte consisting of alkaline water to obtain oxygen and hydrogen, wherein the bipolar alkaline water electrolysis unit is provided with an anode for oxygen evolution, a cathode for hydrogen evolution, a conductive partition separating the anode and the cathode, and an annular outer frame surrounding the conductive partition, wherein a gas and electrolyte passage portion is provided at the upper portion of the conductive partition and/or the outer frame, and an electrolyte passage portion is provided at the lower portion of the conductive partition and/or the outer frame. This scheme, by providing an outer frame surrounding the partition of the bipolar alkaline water electrolysis unit, will not damage the ion permeable diaphragm or electrodes (anode and cathode) even if electrolysis is performed at a high current density of more than 3kA/ m2 , can be easily installed, and can also suppress equipment costs. The main improvement purpose of this scheme is to provide a bipolar alkaline water electrolysis unit and electrolyzer with low equipment cost and capable of stable electrolysis.
发明内容Summary of the invention
本发明提供一种碱性电解水制氢用的碱性膜电极式电解槽及其制备方法,该碱性膜电极式电解槽在碱性电解水制氢中具有较低的小室电压,有利于降低碱性电解水的能耗。The invention provides an alkaline membrane electrode electrolyzer for producing hydrogen by alkaline water electrolysis and a preparation method thereof. The alkaline membrane electrode electrolyzer has a lower cell voltage in producing hydrogen by alkaline water electrolysis, which is beneficial to reducing the energy consumption of alkaline water electrolysis.
本发明为达到其目的,提供如下技术方案:To achieve the purpose, the present invention provides the following technical solutions:
本发明一方面提供一种碱性电解水制氢用的碱性膜电极式电解槽,所述碱性膜电极式电解槽包括电解单元和设于所述电解单元两侧的端板,所述电解单元包括电解小室,所述电解小室包括依次堆叠设置的双极板、阳极扩散层、膜电极、阴极扩散层和双极板;In one aspect, the present invention provides an alkaline membrane electrode electrolyzer for producing hydrogen by alkaline water electrolysis, the alkaline membrane electrode electrolyzer comprising an electrolysis unit and end plates arranged on both sides of the electrolysis unit, the electrolysis unit comprising an electrolysis chamber, the electrolysis chamber comprising a bipolar plate, an anode diffusion layer, a membrane electrode, a cathode diffusion layer and a bipolar plate stacked in sequence;
其中,所述膜电极包括隔膜和分别负载于所述隔膜的两侧表面的阳极催化剂层、阴极催化剂层;所述隔膜为多孔隔膜或碱性阴离子交换膜;The membrane electrode comprises a diaphragm and an anode catalyst layer and a cathode catalyst layer respectively loaded on the two side surfaces of the diaphragm; the diaphragm is a porous diaphragm or an alkaline anion exchange membrane;
所述双极板的厚度为1-3mm,所述阳极扩散层和所述阴极扩散层的厚度分别为0.02-4mm,且所述阳极扩散层和所述阴极扩散层的目数分别为50-500目。The thickness of the bipolar plate is 1-3 mm, the thickness of the anode diffusion layer and the cathode diffusion layer are 0.02-4 mm respectively, and the mesh numbers of the anode diffusion layer and the cathode diffusion layer are 50-500 meshes respectively.
优选地,所述阳极催化剂层、所述阴极催化剂层的厚度分别为2-50μm,优选≥2μm且小于10μm;进一步优选地,所述阳极催化剂层和所述阴极催化剂层的厚度之比为1-3。Preferably, the thickness of the anode catalyst layer and the cathode catalyst layer is 2-50 μm, respectively, preferably ≥2 μm and less than 10 μm; further preferably, the ratio of the thickness of the anode catalyst layer to the cathode catalyst layer is 1-3.
一些实施方式中,所述多孔隔膜的材质选自聚醚砜、聚砜、聚苯硫醚、聚四氟乙烯、聚偏氟乙烯、聚氯乙烯中的一种或多种。In some embodiments, the material of the porous membrane is selected from one or more of polyethersulfone, polysulfone, polyphenylene sulfide, polytetrafluoroethylene, polyvinylidene fluoride, and polyvinyl chloride.
一些实施方式中,所述碱性阴离子交换膜的材质选自季铵盐型阴离子交换膜、聚醚砜类阴离子交换膜或聚苯醚类阴离子交换膜。In some embodiments, the material of the alkaline anion exchange membrane is selected from quaternary ammonium salt anion exchange membrane, polyethersulfone anion exchange membrane or polyphenylene ether anion exchange membrane.
一些实施方式中,所述隔膜的孔隙率为30-80%,厚度为0.05-0.7mm。In some embodiments, the membrane has a porosity of 30-80% and a thickness of 0.05-0.7 mm.
优选地,所述双极板为镀镍的钢板或钛板;优选地,所述双极板具有1-200μm厚的镀镍层。Preferably, the bipolar plate is a nickel-plated steel plate or a titanium plate; preferably, the bipolar plate has a nickel-plated layer with a thickness of 1-200 μm.
优选地,所述阳极扩散层和所述阴极扩散层分别选自镍网、镍毡、有孔镍板、有孔镍箔、镀镍的钢网、镀镍的有孔钢板、镀镍的钛网或镀镍的有孔钛板。Preferably, the anode diffusion layer and the cathode diffusion layer are respectively selected from nickel mesh, nickel felt, porous nickel plate, porous nickel foil, nickel-plated steel mesh, nickel-plated porous steel plate, nickel-plated titanium mesh or nickel-plated porous titanium plate.
优选地,所述阳极催化剂层和所述阴极催化剂层中的催化剂分别选自包括镍元素的金属、包括镍元素的金属氧化物中的一种或多种;优选地,所述阳极催化剂层和所述阴极催化剂层中的催化剂负载量分别为0.5-20mg/cm2。Preferably, the catalysts in the anode catalyst layer and the cathode catalyst layer are selected from one or more of metals including nickel and metal oxides including nickel. Preferably, the catalyst loadings in the anode catalyst layer and the cathode catalyst layer are 0.5-20 mg/cm 2 , respectively.
优选地,所述电解单元包括两个以上所述电解小室。Preferably, the electrolysis unit comprises two or more electrolysis chambers.
优选地,在所述电解小室中,依次堆叠的所述双极板、阳极扩散层、膜电极、阴极扩散层和双极板之中,相邻的两个组件之间分别设有密封垫。Preferably, in the electrolysis chamber, among the bipolar plates, anode diffusion layers, membrane electrodes, cathode diffusion layers and bipolar plates stacked in sequence, sealing gaskets are provided between two adjacent components.
优选地,所述双极板的厚度分别为2-3mm,所述阳极扩散层和所述阴极扩散层的厚度分别为0.1-0.2mm,且所述阳极扩散层和所述阴极扩散层的目数分别为150-250目。Preferably, the thickness of the bipolar plate is 2-3 mm, the thickness of the anode diffusion layer and the cathode diffusion layer is 0.1-0.2 mm, and the mesh size of the anode diffusion layer and the cathode diffusion layer is 150-250 meshes.
本发明还提供上文所述的碱性膜电极式电解槽的制备方法,在所述电解单元的两侧分别设置所述端板并进行组装得到所述碱性膜电极式电解槽。The present invention also provides a method for preparing the alkaline membrane electrode type electrolyzer described above, wherein the end plates are respectively arranged on both sides of the electrolysis unit and assembled to obtain the alkaline membrane electrode type electrolyzer.
一些实施方式中,所述电解单元中的所述膜电极的制备步骤包括:通过物理气相沉积法、转印法或直接涂布法在所述隔膜的两侧表面分别负载形成阳极催化剂层、阴极催化剂层,得到所述膜电极。In some embodiments, the preparation steps of the membrane electrode in the electrolysis unit include: respectively loading an anode catalyst layer and a cathode catalyst layer on both side surfaces of the diaphragm by physical vapor deposition, transfer or direct coating to obtain the membrane electrode.
一些实施方式中,所述转印法包括如下操作:将分散有催化剂的催化剂浆料涂布于转印膜上,然后干燥;再将其放置于所述隔膜的两侧,经转印获得所述膜电极。In some embodiments, the transfer method includes the following operations: coating a catalyst slurry in which a catalyst is dispersed on a transfer membrane, and then drying it; and then placing it on both sides of the diaphragm to obtain the membrane electrode by transfer.
一些实施方式中,所述直接涂布法包括如下操作:将分散有催化剂的催化剂浆料涂布在所述隔膜的两侧表面,经干燥、热压,得到所述膜电极;优选地,所述干燥在80-150℃下进行,所述热压在130-210℃、0.5MPa-10MPa条件下进行。In some embodiments, the direct coating method includes the following operations: coating a catalyst slurry dispersed with a catalyst on both sides of the diaphragm, and obtaining the membrane electrode by drying and hot pressing; preferably, the drying is carried out at 80-150°C, and the hot pressing is carried out at 130-210°C and 0.5MPa-10MPa.
一些实施方式中,所述催化剂浆料中,所用粘结剂选自聚砜、聚醚砜、聚苯硫醚和全氟磺酸树脂中的一种或多种;In some embodiments, in the catalyst slurry, the binder used is selected from one or more of polysulfone, polyethersulfone, polyphenylene sulfide and perfluorosulfonic acid resin;
优选地,所述催化剂浆料中,所用溶剂选自酯类、酮类、酰胺类、醇类和水溶剂中的一种或多种;Preferably, in the catalyst slurry, the solvent used is selected from one or more of esters, ketones, amides, alcohols and water solvents;
进一步优选地,所述催化剂浆料中的催化剂:粘结剂:溶剂的质量比为1:0.01-5:0.4-50。Further preferably, the mass ratio of catalyst:binder:solvent in the catalyst slurry is 1:0.01-5:0.4-50.
本发明提供的技术方案具有如下有益效果:The technical solution provided by the present invention has the following beneficial effects:
本发明基于在多孔隔膜或碱性阴离子交换膜的两侧表面负载阴极、阳极催化剂层的膜电极,开发了一种用于碱性电解水制氢的电解槽,该电解槽配合特定厚度的双极板以及特定厚度和目数的阴极、阳极扩散层组装而成,应用于碱性电解水制氢中具有较低的小室电压,能够显著降低碱性电解水的能耗。The present invention is based on a membrane electrode with cathode and anode catalyst layers loaded on both sides of a porous diaphragm or an alkaline anion exchange membrane, and develops an electrolyzer for producing hydrogen by alkaline electrolysis of water. The electrolyzer is assembled with bipolar plates of a specific thickness and cathode and anode diffusion layers of a specific thickness and mesh size. It has a lower cell voltage when used in alkaline electrolysis of water to produce hydrogen, and can significantly reduce the energy consumption of alkaline electrolysis of water.
附图说明BRIEF DESCRIPTION OF THE DRAWINGS
图1为本发明一种实施方式中提供的碱性电解水制氢用的碱性膜电极式电解槽的结构示意图;FIG1 is a schematic structural diagram of an alkaline membrane electrode electrolyzer for producing hydrogen by alkaline water electrolysis provided in one embodiment of the present invention;
图2为本发明一种实施方式中膜电极的外观照片;FIG2 is a photograph of the appearance of a membrane electrode in one embodiment of the present invention;
图3为本发明一种实施方式中膜电极的局部结构示意图;FIG3 is a schematic diagram of a partial structure of a membrane electrode in one embodiment of the present invention;
图4为传统碱性电解槽的电解小室结构示意图;FIG4 is a schematic diagram of the electrolysis chamber structure of a conventional alkaline electrolytic cell;
图5为传统碱性电解槽所用镍网电极的示意图。FIG. 5 is a schematic diagram of a nickel mesh electrode used in a conventional alkaline electrolytic cell.
具体实施方式DETAILED DESCRIPTION
为了便于理解本发明,下面将结合实施例对本发明作进一步的说明。应当理解,下述实施例仅是为了更好的理解本发明,并不意味着本发明仅局限于以下实施例。In order to facilitate the understanding of the present invention, the present invention will be further described below in conjunction with examples. It should be understood that the following examples are only for a better understanding of the present invention and do not mean that the present invention is limited to the following examples.
除非另有定义,本文所使用的所有的技术和科学术语与本发明所属技术领域的技术人员通常理解的含义相同。本文可能使用的术语“和/或”包括一个或多个相关的所列项目的任意的和所有的组合。Unless otherwise defined, all technical and scientific terms used herein have the same meaning as those commonly understood by those skilled in the art to which the invention belongs. The term "and/or" as may be used herein includes any and all combinations of one or more of the associated listed items.
实施例中未注明具体实验步骤或条件之处,可按照本技术领域中相应的常规实验步骤的操作或条件进行即可。所用试剂或仪器未注明生产厂商者,均为可以通过市购获得的常规产品。Where specific experimental steps or conditions are not specified in the examples, the corresponding conventional experimental steps or conditions in the art can be used. The reagents or instruments used without specifying the manufacturer are all conventional products that can be purchased commercially.
本发明提供一种碱性电解水制氢用的碱性膜电极式电解槽,其结构构成和现有的电解槽基本相同,不同主要在于对电解小室进行了改进。本发明的电解槽的局部结构示意图参见图1所示。具体地,碱性膜电极式电解槽包括电解单元和设于电解单元两侧的端板,电解单元包括电解小室,电解小室包括依次堆叠设置的双极板、阳极扩散层、膜电极、阴极扩散层和双极板。其中,膜电极包括隔膜和分别负载于隔膜的两侧表面的阳极催化剂层、阴极催化剂层,可参见图2、图3;所述隔膜为多孔隔膜或碱性阴离子交换膜;该膜电极为“阳极催化剂层-隔膜-阴极催化剂层”一体式结构。其中,双极板的厚度分别为1-3mm,阳极扩散层和所述阴极扩散层的厚度分别为0.02-4mm,且阳极扩散层和所述阴极扩散层的目数分别为50-500目。The present invention provides an alkaline membrane electrode electrolyzer for producing hydrogen by alkaline water electrolysis, and its structure is basically the same as that of the existing electrolyzer, and the difference mainly lies in the improvement of the electrolysis chamber. The partial structural schematic diagram of the electrolyzer of the present invention is shown in Figure 1. Specifically, the alkaline membrane electrode electrolyzer includes an electrolysis unit and end plates arranged on both sides of the electrolysis unit, and the electrolysis unit includes an electrolysis chamber, and the electrolysis chamber includes a bipolar plate, an anode diffusion layer, a membrane electrode, a cathode diffusion layer and a bipolar plate stacked in sequence. Among them, the membrane electrode includes a diaphragm and an anode catalyst layer and a cathode catalyst layer respectively loaded on the surfaces of both sides of the diaphragm, as shown in Figures 2 and 3; the diaphragm is a porous diaphragm or an alkaline anion exchange membrane; the membrane electrode is an integrated structure of "anode catalyst layer-diaphragm-cathode catalyst layer". Among them, the thickness of the bipolar plate is 1-3mm, the thickness of the anode diffusion layer and the cathode diffusion layer is 0.02-4mm, and the mesh number of the anode diffusion layer and the cathode diffusion layer is 50-500 mesh respectively.
本发明开发了一种基于特定膜电极的碱性电解水制氢用的碱性膜电极式电解槽,该特定膜电极以多孔隔膜或碱性阴离子交换膜为隔膜,并在该隔膜两侧表面分别负载有阳极催化剂层、阴极催化剂层;基于该特定膜电极,与双极板、阳极扩散层、阴极扩散层组装成电解小室,进而组装成电解槽,并将双极板的厚度分别控制为1-3mm,阳极扩散层和阴极扩散层的厚度分别控制为0.02-4mm,且阳极扩散层和阴极扩散层的目数分别控制为50-500目,所得到的电解槽在碱性电解水制氢中应用表现出较低的小室电压。The present invention develops an alkaline membrane electrode type electrolyzer for producing hydrogen by alkaline water electrolysis based on a specific membrane electrode. The specific membrane electrode uses a porous diaphragm or an alkaline anion exchange membrane as a diaphragm, and an anode catalyst layer and a cathode catalyst layer are respectively loaded on the surfaces of both sides of the diaphragm. Based on the specific membrane electrode, an electrolysis chamber is assembled with a bipolar plate, an anode diffusion layer and a cathode diffusion layer, and then an electrolyzer is assembled. The thickness of the bipolar plate is controlled to be 1-3 mm, the thickness of the anode diffusion layer and the cathode diffusion layer are controlled to be 0.02-4 mm, and the mesh numbers of the anode diffusion layer and the cathode diffusion layer are controlled to be 50-500 meshes. The obtained electrolyzer exhibits a lower chamber voltage when used in producing hydrogen by alkaline water electrolysis.
一些优选实施方式中,阳极催化剂层、阴极催化剂层的厚度分别为2-50μm,采用该厚度范围的催化剂层,利于改善电解槽在碱性电解水制氢中的应用性能;更优选的,阳极催化剂层、所述阴极催化剂层的厚度分别≥2μm且小于10μm,本发明人发现,在本发明的电解槽中,采用该优选厚度范围的催化剂层,可以提供充足数量的催化活性位点,同时减小阳极和阴极间距,利于进一步降低电解小室电压;进一步更佳地,将阳极催化剂层和所述阴极催化剂层的厚度之比为1-3,利于进一步改善电解槽在碱性电解水中的性能。In some preferred embodiments, the thickness of the anode catalyst layer and the cathode catalyst layer is 2-50 μm, respectively. The use of catalyst layers in this thickness range is beneficial to improving the application performance of the electrolyzer in alkaline water electrolysis to produce hydrogen; more preferably, the thickness of the anode catalyst layer and the cathode catalyst layer are ≥2 μm and less than 10 μm, respectively. The inventors have found that in the electrolyzer of the present invention, the use of catalyst layers in this preferred thickness range can provide a sufficient number of catalytic active sites, while reducing the distance between the anode and the cathode, which is beneficial to further reduce the voltage of the electrolysis chamber; further preferably, the ratio of the thickness of the anode catalyst layer to the cathode catalyst layer is 1-3, which is beneficial to further improve the performance of the electrolyzer in alkaline water electrolysis.
本发明中提供的碱性膜电极式电解槽中,所用的膜电极中的隔膜为多孔隔膜或碱性阴离子交换膜,较佳地,多孔隔膜的材质选自聚醚砜、聚砜、聚苯硫醚、聚四氟乙烯、聚偏氟乙烯、聚氯乙烯中的一种或多种;较佳地,碱性阴离子交换膜的材质选自季铵盐型阴离子交换膜、聚醚砜类阴离子交换膜或聚苯醚类阴离子交换膜。In the alkaline membrane electrode electrolyzer provided in the present invention, the diaphragm in the membrane electrode used is a porous diaphragm or an alkaline anion exchange membrane. Preferably, the material of the porous diaphragm is selected from one or more of polyethersulfone, polysulfone, polyphenylene sulfide, polytetrafluoroethylene, polyvinylidene fluoride, and polyvinyl chloride; preferably, the material of the alkaline anion exchange membrane is selected from quaternary ammonium salt anion exchange membrane, polyethersulfone anion exchange membrane or polyphenylene ether anion exchange membrane.
一些优选实施方式中,本发明提供的碱性膜电极式电解槽中,所用的膜电极中的隔膜的孔隙率为30-80%,厚度为0.05-0.7mm,本发明的电解槽中,无需太厚的隔膜厚度,且所得电解槽在碱性电解水制氢中应用具有较佳的性能,利于降低小室电压。In some preferred embodiments, in the alkaline membrane electrode electrolyzer provided by the present invention, the porosity of the diaphragm in the membrane electrode used is 30-80%, and the thickness is 0.05-0.7 mm. In the electrolyzer of the present invention, there is no need for the diaphragm to be too thick, and the obtained electrolyzer has better performance in the alkaline electrolysis of water to produce hydrogen, which is beneficial to reducing the chamber voltage.
一些较佳的实施方式中,双极板为镀镍的钢板或钛板;优选地,双极板具有1-200μm厚的镀镍层;采用优选的镀镍的双极板,有利于改善电解槽在碱性电解水制氢中的应用稳定性。In some preferred embodiments, the bipolar plate is a nickel-plated steel plate or titanium plate; preferably, the bipolar plate has a nickel-plated layer with a thickness of 1-200 μm; the use of the preferred nickel-plated bipolar plate is beneficial to improving the application stability of the electrolyzer in alkaline water electrolysis to produce hydrogen.
一些较佳的实施方式中,阳极扩散层和阴极扩散层分别选自镍网、镍毡、有孔镍板、有孔镍箔、镀镍的钢网、镀镍的有孔钢板、镀镍的钛网或镀镍的有孔钛板。采用优选的阳极扩散层和阴极扩散层,有利于改善电解槽在电解水制氢中的应用稳定性。对于阳极扩散层、阴极扩散层的孔形状没有特别限制,例如可为圆形、菱形、正方形、长方形或不规则形等任意形状。In some preferred embodiments, the anode diffusion layer and the cathode diffusion layer are respectively selected from nickel mesh, nickel felt, perforated nickel plate, perforated nickel foil, nickel-plated steel mesh, nickel-plated perforated steel plate, nickel-plated titanium mesh or nickel-plated perforated titanium plate. The preferred anode diffusion layer and cathode diffusion layer are used to improve the application stability of the electrolyzer in the electrolysis of water to produce hydrogen. There is no particular restriction on the hole shape of the anode diffusion layer and the cathode diffusion layer, for example, it can be any shape such as circular, rhombus, square, rectangular or irregular.
本发明中,膜电极的阳极催化剂层和阴极催化剂层中所用的催化剂可以采用本领域常规适用的催化剂类型,例如阳极催化剂层可以采用常规使用的具有析氧活性的析氧催化剂,阴极催化剂层可以采用常规使用的具有析氢活性的析氢催化剂,对此没有特别限制。较佳地,阳极催化剂层和阴极催化剂层中的催化剂分别选自包括镍元素的金属和/或包括镍元素的金属氧化物,采用镍基催化剂,可以在碱性环境中具有较高的析氢或析氧性能,并且具有很好的稳定性;根据需要,催化剂中还可以含有其他金属元素,其他金属元素例如选自IIB族、ⅣB族、VB族、ⅥB族、ⅦB族、Ⅷ族、ⅣA族和稀土元素中的一种或多种,示例的,所述IIB族元素例如选自Zn,和/或,所述ⅣB族元素例如选自Ti和/或Zr,和/或,所述VB族元素例如选自V,和/或,所述ⅥB族元素例如选自Cr、Mo和W中的一种或多种,和/或,所述ⅦB族元素例如选自Mn,和/或,所述Ⅷ族元素例如选自Fe和/或Co,和/或,所述ⅣA族例如选自Sn,和/或,所述稀土元素例如选自Ce和/或La。一些实施方式中,所述其它金属元素为Mo、W、Mn、Fe、Co、Zn、Ce和La中的一种或多种。一些实施方式中,阳极催化剂层和阴极催化剂层中所用的镍基催化剂中,其它金属元素与镍元素的质量比分别独立地为0-20:1。一些具体实施方式中,作为示例,镍基催化剂例如但不限于镍铁尖晶石、镍铁水滑石、镍钴催化剂、镍钼催化剂、铁钴镍催化剂、雷尼镍催化剂等。In the present invention, the catalysts used in the anode catalyst layer and the cathode catalyst layer of the membrane electrode can be catalyst types conventionally applicable in the art. For example, the anode catalyst layer can use a conventionally used oxygen evolution catalyst with oxygen evolution activity, and the cathode catalyst layer can use a conventionally used hydrogen evolution catalyst with hydrogen evolution activity. There is no particular limitation on this. Preferably, the catalysts in the anode catalyst layer and the cathode catalyst layer are respectively selected from metals including nickel and/or metal oxides including nickel. The nickel-based catalyst can have higher hydrogen evolution or oxygen evolution performance in an alkaline environment and has good stability. As needed, the catalyst may also contain other metal elements, which are selected from one or more of Group IIB, Group IVB, Group VB, Group VIB, Group VIIB, Group VIII, Group IVA and rare earth elements. For example, the Group IIB element is selected from Zn, and/or the Group IVB element is selected from Ti and/or Zr, and/or the Group VB element is selected from V, and/or the Group VIB element is selected from one or more of Cr, Mo and W, and/or the Group VIIB element is selected from Mn, and/or the Group VIII element is selected from Fe and/or Co, and/or the Group IVA is selected from Sn, and/or the rare earth element is selected from Ce and/or La. In some embodiments, the other metal elements are one or more of Mo, W, Mn, Fe, Co, Zn, Ce and La. In some embodiments, in the nickel-based catalyst used in the anode catalyst layer and the cathode catalyst layer, the mass ratio of the other metal elements to the nickel element is independently 0-20:1. In some specific embodiments, as an example, the nickel-based catalyst is, for example, but not limited to, nickel-iron spinel, nickel-iron hydrotalcite, nickel-cobalt catalyst, nickel-molybdenum catalyst, iron-cobalt-nickel catalyst, Raney nickel catalyst, etc.
优选地,阳极催化剂层和阴极催化剂层中的催化剂负载量分别为0.5-20mg/cm2,采用优选的催化剂负载量,利于提供充足数量的催化活性位点,且具有相对较小的催化剂层厚度较小,有利于降低阳极和阴极间距,降低电解小室电压。Preferably, the catalyst loading in the anode catalyst layer and the cathode catalyst layer is 0.5-20 mg/cm 2 respectively. The preferred catalyst loading is conducive to providing a sufficient number of catalytic active sites, and the relatively small catalyst layer thickness is conducive to reducing the distance between the anode and the cathode and reducing the voltage of the electrolysis chamber.
一些实施方式中,电解槽的电解单元包括两个以上所述电解小室,例如两个或更多个,多个电解小室重复堆叠设置,相邻的两个电解小室之间的双极板可共用。In some embodiments, the electrolysis unit of the electrolytic cell includes more than two electrolysis chambers, for example, two or more electrolysis chambers are repeatedly stacked, and the bipolar plates between two adjacent electrolysis chambers can be shared.
具体实施方式中,每个电解小室中,双极板、阳极扩散层、膜电极、阴极扩散层和双极板之中相邻的两个组件之间分别设有密封垫。In a specific embodiment, in each electrolysis chamber, a sealing gasket is provided between two adjacent components among the bipolar plate, the anode diffusion layer, the membrane electrode, the cathode diffusion layer and the bipolar plate.
一些更佳的实施方式中,本发明的碱性膜电极式电解槽中,双极板的厚度分别为2-3mm,阳极扩散层和所述阴极扩散层的厚度分别为0.1-0.2mm,且阳极扩散层和所述阴极扩散层的目数分别为150-250目;本发明人发现,采用该优选方案,利于进一步显著降低本发明所提供电解槽在碱性电解水制氢中的小室电压。In some more preferred embodiments, in the alkaline membrane electrode electrolyzer of the present invention, the thickness of the bipolar plate is 2-3 mm, the thickness of the anode diffusion layer and the cathode diffusion layer is 0.1-0.2 mm, and the mesh size of the anode diffusion layer and the cathode diffusion layer is 150-250 mesh respectively; the inventors found that the adoption of this preferred embodiment is conducive to further significantly reducing the cell voltage of the electrolyzer provided by the present invention in alkaline water electrolysis to produce hydrogen.
本发明还提供上文所述的碱性膜电极式电解槽的制备方法,具体包括:在电解单元的两侧分别设置端板,用端板进行固定,组装得到所述碱性膜电极式电解槽;对于具体的组装操作为本领域常规的,本领域技术人员可以采用本领域常规的组装操作进行本发明电解槽的组装,对此不作赘述。The present invention also provides a method for preparing the alkaline membrane electrode electrolyzer described above, which specifically includes: providing end plates on both sides of the electrolysis unit, fixing them with the end plates, and assembling to obtain the alkaline membrane electrode electrolyzer; the specific assembly operations are conventional in the art, and those skilled in the art can use conventional assembly operations in the art to assemble the electrolyzer of the present invention, which will not be described in detail.
一些实施方式中,电解单元中的膜电极的制备步骤包括:通过物理气相沉积法、转印法或直接涂布法在所述隔膜的两侧表面分别负载形成阳极催化剂层、阴极催化剂层,得到所述膜电极。In some embodiments, the preparation steps of the membrane electrode in the electrolysis unit include: forming an anode catalyst layer and a cathode catalyst layer on both side surfaces of the diaphragm by physical vapor deposition, transfer or direct coating to obtain the membrane electrode.
关于物理气相沉积法,其具体操作可参照本领域相应的常规工艺操作,例如可具体采用真空蒸镀、溅射镀膜、电弧等离子体镀、离子镀膜和分子束外延或磁控溅射法将相应的催化剂分别负载于隔膜的两侧表面。较佳地,采用磁控溅射法,例如可包括如下步骤:将催化剂制备成靶材,在真空条件下充入氩气,并在高压下使氩气进行辉光放电形成氩离子,氩离子在电场力的作用下加速轰击靶材使靶材溅射出来,按照负载比例将靶材沉积到多孔隔膜上。通过磁控溅射法形成的催化剂层中催化剂分散度高,利于进一步降低电解水的过电位,并形成牢固且不易脱落的催化剂层,最终有助于改善电解槽在碱性电解水制氢中的应用稳定性。Regarding the physical vapor deposition method, its specific operation can refer to the corresponding conventional process operation in the art, for example, vacuum evaporation, sputtering coating, arc plasma plating, ion plating and molecular beam epitaxy or magnetron sputtering can be specifically used to load the corresponding catalyst on the two side surfaces of the diaphragm. Preferably, the magnetron sputtering method is used, for example, the following steps may be included: the catalyst is prepared into a target material, argon gas is filled under vacuum conditions, and the argon gas is glow discharged under high pressure to form argon ions, and the argon ions are accelerated to bombard the target material under the action of the electric field force to sputter the target material, and the target material is deposited on the porous diaphragm according to the load ratio. The catalyst layer formed by the magnetron sputtering method has a high catalyst dispersion, which is conducive to further reducing the overpotential of the electrolysis of water, and forming a strong and non-detachable catalyst layer, which ultimately helps to improve the application stability of the electrolyzer in the production of hydrogen by alkaline electrolysis of water.
一些实施方式中,转印法包括如下操作:将分散有催化剂的催化剂浆料涂布于转印膜上,然后干燥;再将其放置于所述隔膜的两侧,经转印获得膜电极。转印膜例如但不限于为PET、PTFE或PI中的一种。其中,干燥例如采用真空干燥,干燥温度例如为80-150℃。转印条件例如包括:转印温度为110-230℃,压力为0.5MPa-10MPa。In some embodiments, the transfer method includes the following operations: coating a catalyst slurry in which a catalyst is dispersed on a transfer film, and then drying; placing it on both sides of the diaphragm, and obtaining a membrane electrode by transfer. The transfer film is, for example, but not limited to, one of PET, PTFE or PI. Drying is, for example, vacuum drying, and the drying temperature is, for example, 80-150°C. Transfer conditions include, for example, a transfer temperature of 110-230°C and a pressure of 0.5MPa-10MPa.
一些实施方式中,直接涂布法包括如下操作:将分散有催化剂的催化剂浆料涂布在隔膜的两侧表面,经干燥、热压,得到所述膜电极;优选地,所述干燥在80-150℃下进行,所述热压在130-210℃、0.5MPa-10MPa条件下进行。In some embodiments, the direct coating method includes the following operations: coating a catalyst slurry dispersed with a catalyst on both sides of the diaphragm, drying, and hot pressing to obtain the membrane electrode; preferably, the drying is carried out at 80-150°C, and the hot pressing is carried out at 130-210°C and 0.5MPa-10MPa.
上述转印法和直接涂布法中,所涉及的催化剂浆料中,所用粘结剂优选选自聚砜、聚醚砜、聚苯硫醚和全氟磺酸树脂中的一种或多种。催化剂浆料中,所用溶剂优选选自酯类、酮类、酰胺类、醇类和水溶剂中的一种或多种;一些优选实施方式中,溶剂为丁酯、丁内酯、戊内酯、丙酮、丁酮、环己酮、二甲基甲酰胺、二甲基乙酰胺、丙醇、异丙醇、乙醇和水中的一种或多种。一些优选的实施方式中,催化剂浆料中的催化剂:粘结剂:溶剂的质量比为1:0.01-5:0.4-50,优选1:0.02-3:1-5。催化剂浆料的制备具体可包括如下操作:将催化剂、粘结剂和溶剂通过搅拌或超声分散等方式制成浆料。In the above transfer method and direct coating method, in the catalyst slurry involved, the binder used is preferably selected from one or more of polysulfone, polyethersulfone, polyphenylene sulfide and perfluorosulfonic acid resin. In the catalyst slurry, the solvent used is preferably selected from one or more of esters, ketones, amides, alcohols and water solvents; in some preferred embodiments, the solvent is one or more of butyl ester, butyrolactone, valerolactone, acetone, butanone, cyclohexanone, dimethylformamide, dimethylacetamide, propanol, isopropanol, ethanol and water. In some preferred embodiments, the mass ratio of catalyst: binder: solvent in the catalyst slurry is 1: 0.01-5: 0.4-50, preferably 1: 0.02-3: 1-5. The preparation of the catalyst slurry may specifically include the following operations: the catalyst, binder and solvent are made into a slurry by stirring or ultrasonic dispersion.
上述转印法和直接涂布法中,涉及的涂布方式没有特别限制,可以采用本领域常规的涂布方式进行,例如采用喷涂法或刮涂法或卷对卷法或狭缝涂布法将均匀的浆料涂布于转印膜或直接涂布于隔膜。In the above transfer method and direct coating method, there is no particular limitation on the coating method involved, and conventional coating methods in the art can be used, such as spraying, blade coating, roll-to-roll coating, or slit coating to uniformly coat the slurry on the transfer film or directly on the diaphragm.
以下实施例的电解槽中的电解小室的结构示意图参见图1所示(其中未示意出密封垫),所用膜电极的结构参见图3所示,关于电解槽、膜电极的结构在下文中未做特别说明之处,均可参照前文描述,不再逐一赘述。The schematic diagram of the structure of the electrolytic chamber in the electrolytic cell of the following embodiments is shown in FIG1 (where the sealing gasket is not shown), and the structure of the membrane electrode used is shown in FIG3. The structures of the electrolytic cell and the membrane electrode not specifically explained below can be referred to the previous description and will not be described one by one.
下面对以下实施例或对比例中所用部分原料进行说明:The following describes some of the raw materials used in the following examples or comparative examples:
NiFe2O4:北京德科岛金科技有限公司;NiFe 2 O 4 : Beijing Dekedaojin Technology Co., Ltd.;
NiZnFe2O4:北京德科岛金科技有限公司;NiZnFe 2 O 4 : Beijing Dekedaojin Technology Co., Ltd.;
NiCo2O4:北京德科岛金科技有限公司;NiCo 2 O 4 : Beijing Dekedaojin Technology Co., Ltd.;
雷尼镍催化剂:江苏雷尼金属科技有限公司;Raney nickel catalyst: Jiangsu Raney Metal Technology Co., Ltd.;
铁钴镍合金:北京德科岛金科技有限公司;Iron-cobalt-nickel alloy: Beijing Dekedaojin Technology Co., Ltd.;
聚砜复合高分子多孔隔膜:Agfa zirfon 220;Polysulfone composite polymer porous membrane: Agfa zirfon 220;
聚醚砜复合高分子多孔隔膜:北京迈博瑞生物膜技术有限公司。Polyethersulfone composite polymer porous membrane: Beijing Maiborui Biomembrane Technology Co., Ltd.
电解槽性能测试:将以下各实施例或对比例的电解槽安装到电解水测试平台上,测试条件包括:反应介质为30wt%KOH水溶液;反应温度为80℃,反应压力为常压,在0.4A/cm2和0.8A/cm2电流密度下测试电解槽的小室电压。Electrolytic cell performance test: The electrolytic cells of the following embodiments or comparative examples are installed on the water electrolysis test platform. The test conditions include: the reaction medium is 30wt% KOH aqueous solution; the reaction temperature is 80°C, the reaction pressure is normal pressure, and the cell voltage of the electrolytic cell is tested at current densities of 0.4A/ cm2 and 0.8A/ cm2 .
实施例1:Embodiment 1:
本实施例电解槽的电解单元中,按双极板-密封垫-阳极扩散层-密封垫-膜电极-密封垫-阴极扩散层-密封垫-双极板的次序组装成电解小室,电解单元中包括多个该电解小室组成;在电解单元两侧放置端板并固定,组装成电解槽。In the electrolytic unit of the electrolytic cell of this embodiment, an electrolytic chamber is assembled in the order of bipolar plate-sealing gasket-anode diffusion layer-sealing gasket-membrane electrode-sealing gasket-cathode diffusion layer-sealing gasket-bipolar plate, and the electrolytic unit includes a plurality of such electrolytic chambers; end plates are placed and fixed on both sides of the electrolytic unit to assemble into an electrolytic cell.
其中,双极板的厚度为2mm,双极板采用具有80μm厚的镀镍层的钢板;阳极扩散层和阴极扩散层均采用镍网扩散层,厚度分别为0.3mm,且目数分别为100目。Among them, the thickness of the bipolar plate is 2mm, and the bipolar plate adopts a steel plate with a nickel-plated layer of 80μm thickness; the anode diffusion layer and the cathode diffusion layer both adopt nickel mesh diffusion layers with a thickness of 0.3mm and a mesh number of 100 respectively.
膜电极的阳极催化剂层中的催化剂为NiFe2O4,阳极催化剂层的厚度为50μm,阳极催化剂层的催化剂负载量为2.5mg/cm2。膜电极的阴极催化剂层中的催化剂为雷尼镍催化剂,阴极催化剂层的厚度为25μm,阴极催化剂层的催化剂负载量为2.5mg/cm2。膜电极的隔膜采用聚砜复合高分子多孔隔膜,该隔膜的厚度为0.22mm,孔隙率60%。The catalyst in the anode catalyst layer of the membrane electrode is NiFe 2 O 4 , the thickness of the anode catalyst layer is 50 μm, and the catalyst loading of the anode catalyst layer is 2.5 mg/cm 2 . The catalyst in the cathode catalyst layer of the membrane electrode is Raney nickel catalyst, the thickness of the cathode catalyst layer is 25 μm, and the catalyst loading of the cathode catalyst layer is 2.5 mg/cm 2 . The membrane electrode diaphragm adopts a polysulfone composite polymer porous diaphragm, the thickness of the diaphragm is 0.22 mm, and the porosity is 60%.
本实施例中,膜电极的制备步骤包括:In this embodiment, the steps of preparing the membrane electrode include:
1)将阳极催化剂、粘结剂和溶剂按照质量比1:0.12:4搅拌均匀,得到阳极催化剂浆料;将阴极催化剂、粘结剂、溶剂按照质量比1:0.03:1搅拌均匀,得到阴极催化剂浆料;其中粘结剂采用聚砜,溶剂采用酮溶液(为50wt%环己酮、40wt%丁酮、10wt%丁内酯的混合溶液);1) stirring the anode catalyst, the binder and the solvent in a mass ratio of 1:0.12:4 to obtain an anode catalyst slurry; stirring the cathode catalyst, the binder and the solvent in a mass ratio of 1:0.03:1 to obtain a cathode catalyst slurry; wherein the binder is polysulfone and the solvent is a ketone solution (a mixed solution of 50wt% cyclohexanone, 40wt% butanone and 10wt% butyrolactone);
将阳极催化剂浆料、阴极催化剂浆料分别涂布在隔膜的两侧表面,然后在120℃下干燥2h,再放入热压机中在温度150℃、压力5MPa下进行热压5min,在隔膜两侧表面分别形成阳极催化剂层、阴极催化剂层,获得膜电极。The anode catalyst slurry and cathode catalyst slurry were respectively coated on the surfaces of both sides of the diaphragm, then dried at 120°C for 2 hours, and then placed in a hot press for hot pressing at a temperature of 150°C and a pressure of 5 MPa for 5 minutes to form an anode catalyst layer and a cathode catalyst layer on the surfaces of both sides of the diaphragm to obtain a membrane electrode.
将本实施例的电解槽在0.4A/cm2和0.8A/cm2电流密度下测试其小室电压,结果参见表1。The cell voltage of the electrolytic cell of this embodiment was tested at current densities of 0.4 A/cm 2 and 0.8 A/cm 2. The results are shown in Table 1.
实施例2:Embodiment 2:
本实施例电解槽的电解单元中,按双极板-密封垫-阳极扩散层-密封垫-膜电极-密封垫-阴极扩散层-密封垫-双极板的次序组装成电解小室,电解单元中包括多个该电解小室组成;在电解单元两侧放置端板并固定,组装成电解槽。In the electrolytic unit of the electrolytic cell of this embodiment, an electrolytic chamber is assembled in the order of bipolar plate-sealing gasket-anode diffusion layer-sealing gasket-membrane electrode-sealing gasket-cathode diffusion layer-sealing gasket-bipolar plate, and the electrolytic unit includes a plurality of such electrolytic chambers; end plates are placed and fixed on both sides of the electrolytic unit to assemble into an electrolytic cell.
其中,双极板的厚度为3mm,双极板采用具有50μm厚的镀镍层的钛板;阳极扩散层和阴极扩散层均采用镍网扩散层,厚度分别为0.15mm,且目数分别为200目。Among them, the thickness of the bipolar plate is 3mm, and the bipolar plate adopts a titanium plate with a 50μm thick nickel-plated layer; the anode diffusion layer and the cathode diffusion layer both adopt nickel mesh diffusion layers with a thickness of 0.15mm and a mesh number of 200 respectively.
膜电极的阳极催化剂层中的催化剂为NiZnFe2O4,阳极催化剂层的厚度为30μm,阳极催化剂层的催化剂负载量为1.5mg/cm2。膜电极的阴极催化剂层中的催化剂为铁钴镍合金,阴极催化剂层的厚度为10μm,阴极催化剂层的催化剂负载量为1mg/cm2。膜电极的隔膜采用聚醚砜复合高分子多孔隔膜,该隔膜的厚度为0.25mm,孔隙率70%。The catalyst in the anode catalyst layer of the membrane electrode is NiZnFe 2 O 4 , the thickness of the anode catalyst layer is 30 μm, and the catalyst loading of the anode catalyst layer is 1.5 mg/cm 2 . The catalyst in the cathode catalyst layer of the membrane electrode is an iron-cobalt-nickel alloy, the thickness of the cathode catalyst layer is 10 μm, and the catalyst loading of the cathode catalyst layer is 1 mg/cm 2 . The membrane electrode diaphragm adopts a polyethersulfone composite polymer porous diaphragm, the thickness of the diaphragm is 0.25 mm, and the porosity is 70%.
本实施例中,膜电极的制备步骤包括:In this embodiment, the steps of preparing the membrane electrode include:
1)将阳极催化剂、粘结剂和溶剂按照质量比1:0.2:2搅拌均匀,得到阳极催化剂浆料;将阴极催化剂、粘结剂、溶剂按照质量比1:0.2:1.5搅拌均匀,得到阴极催化剂浆料;其中粘结剂采用全氟磺酸树脂,溶剂采用浓度为25wt%的异丙醇醇水溶液;1) stirring the anode catalyst, the binder and the solvent in a mass ratio of 1:0.2:2 to obtain an anode catalyst slurry; stirring the cathode catalyst, the binder and the solvent in a mass ratio of 1:0.2:1.5 to obtain a cathode catalyst slurry; wherein the binder is a perfluorosulfonic acid resin and the solvent is an isopropanol aqueous solution with a concentration of 25wt%;
将阳极催化剂浆料、阴极催化剂浆料分别涂布在隔膜的两侧表面,然后在80℃下干燥12h,再放入热压机中在温度130℃、压力3MPa下进行热压10min,在隔膜两侧表面分别形成阳极催化剂层、阴极催化剂层,获得膜电极。The anode catalyst slurry and cathode catalyst slurry were respectively coated on the surfaces of both sides of the diaphragm, and then dried at 80°C for 12 hours. Then, they were placed in a hot press and hot-pressed at a temperature of 130°C and a pressure of 3 MPa for 10 minutes to form an anode catalyst layer and a cathode catalyst layer on the surfaces of both sides of the diaphragm to obtain a membrane electrode.
将本实施例的电解槽在0.4A/cm2和0.8A/cm2电流密度下测试其小室电压,结果参见表1。The cell voltage of the electrolytic cell of this embodiment was tested at current densities of 0.4 A/cm 2 and 0.8 A/cm 2. The results are shown in Table 1.
实施例3:Embodiment 3:
本实施例电解槽的电解单元中,按双极板-密封垫-阳极扩散层-密封垫-膜电极-密封垫-阴极扩散层-密封垫-双极板的次序组装成电解小室,电解单元中包括多个该电解小室组成;在电解单元两侧放置端板并固定,组装成电解槽。In the electrolytic unit of the electrolytic cell of this embodiment, an electrolytic chamber is assembled in the order of bipolar plate-sealing gasket-anode diffusion layer-sealing gasket-membrane electrode-sealing gasket-cathode diffusion layer-sealing gasket-bipolar plate, and the electrolytic unit includes a plurality of such electrolytic chambers; end plates are placed and fixed on both sides of the electrolytic unit to assemble into an electrolytic cell.
其中,双极板的厚度为2mm,双极板采用具有120μm厚的镀镍层的钢板;阳极扩散层和阴极扩散层均采用镍网扩散层,厚度分别为0.09mm,且目数分别为300目。Among them, the thickness of the bipolar plate is 2mm, and the bipolar plate adopts a steel plate with a 120μm thick nickel-plated layer; the anode diffusion layer and the cathode diffusion layer both adopt nickel mesh diffusion layers with a thickness of 0.09mm and a mesh number of 300 respectively.
膜电极的阳极催化剂层中的催化剂为NiFe2O4,阳极催化剂层的厚度为20μm,阳极催化剂层的催化剂负载量为1mg/cm2。膜电极的阴极催化剂层中的催化剂为雷尼镍催化剂,阴极催化剂层的厚度为10μm,阴极催化剂层的催化剂负载量为1mg/cm2。膜电极的隔膜采用聚砜复合高分子多孔隔膜,该隔膜的厚度为0.22mm,孔隙率60%。The catalyst in the anode catalyst layer of the membrane electrode is NiFe 2 O 4 , the thickness of the anode catalyst layer is 20 μm, and the catalyst loading of the anode catalyst layer is 1 mg/cm 2 . The catalyst in the cathode catalyst layer of the membrane electrode is Raney nickel catalyst, the thickness of the cathode catalyst layer is 10 μm, and the catalyst loading of the cathode catalyst layer is 1 mg/cm 2 . The membrane electrode diaphragm adopts a polysulfone composite polymer porous diaphragm, the thickness of the diaphragm is 0.22 mm, and the porosity is 60%.
本实施例中,膜电极的制备步骤包括:In this embodiment, the steps of preparing the membrane electrode include:
1)将阳极催化剂、粘结剂和溶剂按照质量比1:0.075:1.5搅拌均匀,得到阳极催化剂浆料;将阴极催化剂、粘结剂、溶剂按照质量比1:0.09:1.8搅拌均匀,得到阴极催化剂浆料;其中粘结剂采用聚醚砜,溶剂采用酮溶液(为50wt%环己酮、20wt%丁酮、30wt%丁内酯的混合溶液);1) The anode catalyst, the binder and the solvent are stirred evenly in a mass ratio of 1:0.075:1.5 to obtain an anode catalyst slurry; the cathode catalyst, the binder and the solvent are stirred evenly in a mass ratio of 1:0.09:1.8 to obtain a cathode catalyst slurry; wherein the binder is polyethersulfone, and the solvent is a ketone solution (a mixed solution of 50wt% cyclohexanone, 20wt% butanone, and 30wt% butyrolactone);
将阳极催化剂浆料、阴极催化剂浆料分别涂布于转印膜(PTFE)上,然后在100℃下干燥,再将载有催化剂的转印膜放置在隔膜的两侧,在热压机装置上进行热压转印获得膜电极,其中转印温度为180℃,压力为10MPa。The anode catalyst slurry and cathode catalyst slurry were respectively coated on the transfer film (PTFE), and then dried at 100°C. The transfer film loaded with the catalyst was then placed on both sides of the diaphragm and hot-pressed on a hot press device to obtain a membrane electrode, wherein the transfer temperature was 180°C and the pressure was 10MPa.
将本实施例的电解槽在0.4A/cm2和0.8A/cm2电流密度下测试其小室电压,结果参见表1。The cell voltage of the electrolytic cell of this embodiment was tested at current densities of 0.4 A/cm 2 and 0.8 A/cm 2. The results are shown in Table 1.
实施例4:Embodiment 4:
本实施例电解槽的电解单元中,按双极板-密封垫-阳极扩散层-密封垫-膜电极-密封垫-阴极扩散层-密封垫-双极板的次序组装成电解小室,电解单元中包括多个该电解小室组成;在电解单元两侧放置端板并固定,组装成电解槽。In the electrolytic unit of the electrolytic cell of this embodiment, an electrolytic chamber is assembled in the order of bipolar plate-sealing gasket-anode diffusion layer-sealing gasket-membrane electrode-sealing gasket-cathode diffusion layer-sealing gasket-bipolar plate, and the electrolytic unit includes a plurality of such electrolytic chambers; end plates are placed and fixed on both sides of the electrolytic unit to assemble into an electrolytic cell.
其中,双极板的厚度为1mm,双极板采用具有20μm厚的镀镍层的钢板;阳极扩散层和阴极扩散层均采用镍网扩散层,厚度分别为0.05mm,且目数分别为400目。Among them, the thickness of the bipolar plate is 1mm, and the bipolar plate adopts a steel plate with a 20μm thick nickel-plated layer; the anode diffusion layer and the cathode diffusion layer both adopt nickel mesh diffusion layers, with a thickness of 0.05mm and a mesh number of 400 respectively.
膜电极的阳极催化剂层中的催化剂为NiCo2O4,阳极催化剂层的厚度为25μm,阳极催化剂层的催化剂负载量为1.3mg/cm2。膜电极的阴极催化剂层中的催化剂为雷尼镍催化剂,阴极催化剂层的厚度为15μm,阴极催化剂层的催化剂负载量为1.5mg/cm2。膜电极的隔膜采用聚砜复合高分子多孔隔膜,该隔膜的厚度为0.22mm,孔隙率60%。The catalyst in the anode catalyst layer of the membrane electrode is NiCo 2 O 4 , the thickness of the anode catalyst layer is 25 μm, and the catalyst loading of the anode catalyst layer is 1.3 mg/cm 2 . The catalyst in the cathode catalyst layer of the membrane electrode is Raney nickel catalyst, the thickness of the cathode catalyst layer is 15 μm, and the catalyst loading of the cathode catalyst layer is 1.5 mg/cm 2 . The membrane electrode diaphragm adopts a polysulfone composite polymer porous diaphragm, the thickness of the diaphragm is 0.22 mm, and the porosity is 60%.
本实施例中,膜电极的制备步骤包括:In this embodiment, the steps of preparing the membrane electrode include:
1)将阳极催化剂、粘结剂和溶剂按照质量比1:0.27:1.8搅拌均匀,得到阳极催化剂浆料;将阴极催化剂、粘结剂、溶剂按照质量比1:0.3:2搅拌均匀,得到阴极催化剂浆料;其中粘结剂采用全氟磺酸树脂,溶剂采用浓度40wt%的正丙醇水溶液;1) The anode catalyst, the binder and the solvent are stirred evenly in a mass ratio of 1:0.27:1.8 to obtain an anode catalyst slurry; the cathode catalyst, the binder and the solvent are stirred evenly in a mass ratio of 1:0.3:2 to obtain a cathode catalyst slurry; wherein the binder is a perfluorosulfonic acid resin and the solvent is a 40wt% n-propanol aqueous solution;
将阳极催化剂浆料、阴极催化剂浆料分别涂布在隔膜的两侧表面,然后在150℃下干燥0.5h,再放入热压机中在温度160℃、压力2MPa下进行热压3min,在隔膜两侧表面分别形成阳极催化剂层、阴极催化剂层,获得膜电极。The anode catalyst slurry and cathode catalyst slurry were respectively coated on the surfaces of both sides of the diaphragm, and then dried at 150°C for 0.5h, and then placed in a hot press for hot pressing at a temperature of 160°C and a pressure of 2MPa for 3min to form an anode catalyst layer and a cathode catalyst layer on the surfaces of both sides of the diaphragm to obtain a membrane electrode.
将本实施例的电解槽在0.4A/cm2和0.8A/cm2电流密度下测试其小室电压,结果参见表1。The cell voltage of the electrolytic cell of this embodiment was tested at current densities of 0.4 A/cm 2 and 0.8 A/cm 2. The results are shown in Table 1.
实施例5Example 5
本实施例参照实施例1进行,不同在于,阳极扩散层和阴极扩散层的厚度为3mm,目数分别为80目。This embodiment is carried out with reference to the embodiment 1, except that the thickness of the anode diffusion layer and the cathode diffusion layer is 3 mm, and the mesh size is 80 mesh respectively.
将本实施例的电解槽在0.4A/cm2和0.8A/cm2电流密度下测试其小室电压,结果参见表1。The cell voltage of the electrolytic cell of this embodiment was tested at current densities of 0.4 A/cm 2 and 0.8 A/cm 2. The results are shown in Table 1.
实施例6Example 6
参照实施例2进行,不同在于:阳极催化剂层、阴极催化剂层厚度均低于10μm,且阳极催化剂层的厚度为5μm,阴极催化剂层的厚度为2μm。The method is carried out with reference to Example 2, except that the thickness of the anode catalyst layer and the cathode catalyst layer are both less than 10 μm, and the thickness of the anode catalyst layer is 5 μm, and the thickness of the cathode catalyst layer is 2 μm.
将本实施例的电解槽在0.4A/cm2和0.8A/cm2电流密度下测试其小室电压,结果参见表1The cell voltage of the electrolytic cell of this embodiment was tested at current densities of 0.4A/ cm2 and 0.8A/ cm2 . The results are shown in Table 1.
实施例7Example 7
参照实施例2进行,不同在于:阳极催化剂层、阴极催化剂层厚度均低于10μm,且阳极催化剂层的厚度为9μm,阴极催化剂层的厚度为5μm。The method is carried out with reference to Example 2, except that the thickness of the anode catalyst layer and the cathode catalyst layer are both less than 10 μm, and the thickness of the anode catalyst layer is 9 μm, and the thickness of the cathode catalyst layer is 5 μm.
将本实施例的电解槽在0.4A/cm2和0.8A/cm2电流密度下测试其小室电压,结果参见表1。The cell voltage of the electrolytic cell of this embodiment was tested at current densities of 0.4 A/cm 2 and 0.8 A/cm 2. The results are shown in Table 1.
对比例1:Comparative Example 1:
本对比例和实施例1中电解槽的区别在于电解小室的结构不同,其中的电解小室包括依次堆叠设置的双极板、阳极电极、隔膜、阴极电极和双极板。其中双极板的厚度为2mm,双极板的材质为具有80μm厚的镀镍层的钢板。阳极电极和阴极电极为商业碱性电解槽常用的电极,厚度分别为0.5mm,且阳极电极为镍网,阴极电极为喷涂Ni-Al合金的镍网,阴极电极使用前用10wt%NaOH水溶液进行浸泡处理24h,并用去离子水清洗至溶液呈中性。隔膜为商业碱性电解槽常用的聚苯硫醚无纺布(厚度1mm),将双极板、无纺布、阳极电极和阴极电极组装成电解槽,测试其在0.4A/cm2和0.8A/cm2电流密度下的小室电压。The difference between the electrolytic cell in this comparative example and Example 1 is that the structure of the electrolytic chamber is different, and the electrolytic chamber includes a bipolar plate, an anode electrode, a diaphragm, a cathode electrode and a bipolar plate stacked in sequence. The thickness of the bipolar plate is 2 mm, and the material of the bipolar plate is a steel plate with a nickel plating layer of 80 μm thick. The anode electrode and the cathode electrode are electrodes commonly used in commercial alkaline electrolytic cells, with a thickness of 0.5 mm, respectively, and the anode electrode is a nickel mesh, and the cathode electrode is a nickel mesh sprayed with Ni-Al alloy. The cathode electrode is soaked in a 10wt% NaOH aqueous solution for 24 hours before use, and washed with deionized water until the solution is neutral. The diaphragm is a polyphenylene sulfide non-woven fabric (thickness 1 mm) commonly used in commercial alkaline electrolytic cells. The bipolar plate, non-woven fabric, anode electrode and cathode electrode are assembled into an electrolytic cell, and the cell voltage at current densities of 0.4A/ cm2 and 0.8A/ cm2 is tested.
对比例2:Comparative Example 2:
本对比例和实施例1中电解槽的区别在于电解小室的结构不同,其电解小室包括依次堆叠设置的双极板、阳极电极、隔膜、阴极电极和双极板。双极板的厚度为2mm,双极板的材质为具有80μm厚的镀镍层的钢板。阳极电极和阴极电极为商业碱性电解槽常用的电极,厚度分别为0.5mm,且阳极电极为镍网,阴极电极为喷涂Ni-Al合金的镍网,阴极电极使用前用10wt%NaOH水溶液进行浸泡处理24h,并用去离子水清洗至溶液呈中性。隔膜为聚砜复合高分子多孔隔膜(厚度为0.22mm),将双极板、复合高分子多孔隔膜、阳极电极和阴极电极组装成电解槽,测试其在0.4A/cm2和0.8A/cm2电流密度下的小室电压。The difference between the electrolytic cell in this comparative example and Example 1 is that the structure of the electrolytic cell is different, and the electrolytic cell includes a bipolar plate, an anode electrode, a diaphragm, a cathode electrode and a bipolar plate stacked in sequence. The thickness of the bipolar plate is 2 mm, and the material of the bipolar plate is a steel plate with a nickel plating layer of 80 μm thick. The anode electrode and the cathode electrode are electrodes commonly used in commercial alkaline electrolytic cells, with a thickness of 0.5 mm, respectively, and the anode electrode is a nickel mesh, and the cathode electrode is a nickel mesh sprayed with Ni-Al alloy. The cathode electrode is soaked in a 10wt% NaOH aqueous solution for 24 hours before use, and washed with deionized water until the solution is neutral. The diaphragm is a polysulfone composite polymer porous diaphragm (thickness 0.22 mm), and the bipolar plate, the composite polymer porous diaphragm, the anode electrode and the cathode electrode are assembled into an electrolytic cell, and the cell voltage at current densities of 0.4A/ cm2 and 0.8A/ cm2 is tested.
对比例3Comparative Example 3
本对比例参照实施例1进行,不同在于:双极板的厚度为10mm,阳极扩散层、阴极扩散层的厚度分别为5mm,且目数分别为40目。This comparative example was carried out with reference to Example 1, except that the thickness of the bipolar plate was 10 mm, the thickness of the anode diffusion layer and the cathode diffusion layer were 5 mm, and the mesh size was 40 meshes.
将本实施例的电解槽在0.4A/cm2和0.8A/cm2电流密度下测试其小室电压,结果参见表1。The cell voltage of the electrolytic cell of this embodiment was tested at current densities of 0.4 A/cm 2 and 0.8 A/cm 2. The results are shown in Table 1.
对比例4Comparative Example 4
本对比例参照实施例1进行,不同在于:双极板的厚度为0.8mm,阳极扩散层、阴极扩散层的厚度分别为0.015mm,且目数分别为600目。This comparative example was carried out with reference to Example 1, except that the thickness of the bipolar plate was 0.8 mm, the thickness of the anode diffusion layer and the cathode diffusion layer were 0.015 mm, and the mesh size was 600 meshes.
将本实施例的电解槽在0.4A/cm2和0.8A/cm2电流密度下测试其小室电压,结果参见表1。The cell voltage of the electrolytic cell of this embodiment was tested at current densities of 0.4 A/cm 2 and 0.8 A/cm 2. The results are shown in Table 1.
对比例5Comparative Example 5
本对比例参照实施例1进行,不同在于:双极板的厚度为0.8mm,阳极扩散层、阴极扩散层的厚度分别为0.015mm,且目数分别为40目。This comparative example is carried out with reference to Example 1, except that the thickness of the bipolar plate is 0.8 mm, the thickness of the anode diffusion layer and the cathode diffusion layer are 0.015 mm, and the mesh size is 40 meshes.
将本实施例的电解槽在0.4A/cm2和0.8A/cm2电流密度下测试其小室电压,结果参见表1。The cell voltage of the electrolytic cell of this embodiment was tested at current densities of 0.4 A/cm 2 and 0.8 A/cm 2. The results are shown in Table 1.
表1Table 1
表2Table 2
从表1、表2的实验结果可见,本发明实施例的电解槽相比于对比例1、2中的现有碱性电解水制氢用电解槽能够获得更低的小室电解,利于降低碱性电解水的能耗。从本发明实施例的电解槽和对比例3-5的实验结果对比可见,本发明的电解槽中,同时满足“双极板的厚度为1-3mm,阳极扩散层和所述阴极扩散层的厚度分别为0.02-4mm,阳极扩散层和所述阴极扩散层的目数分别为50-500目”,所提供的电解槽具有更佳的性能,能显著降低碱性电解水制氢中的小室电压。进一步地,通过将实施例2和实施例6、7进行对比可见,优选将阳极催化剂层、阴极催化剂层的厚度控制为≥2μm且小于10μm,利于进一步降低小室电压。As can be seen from the experimental results of Table 1 and Table 2, the electrolyzer of the embodiment of the present invention can obtain lower cell electrolysis than the existing alkaline water electrolysis hydrogen production electrolyzer in Comparative Examples 1 and 2, which is beneficial to reduce the energy consumption of alkaline water electrolysis. From the comparison of the experimental results of the electrolyzer of the embodiment of the present invention and Comparative Examples 3-5, it can be seen that in the electrolyzer of the present invention, while satisfying "the thickness of the bipolar plate is 1-3mm, the thickness of the anode diffusion layer and the cathode diffusion layer is 0.02-4mm respectively, and the mesh number of the anode diffusion layer and the cathode diffusion layer is 50-500 mesh respectively", the provided electrolyzer has better performance and can significantly reduce the cell voltage in alkaline water electrolysis hydrogen production. Further, by comparing Example 2 with Examples 6 and 7, it can be seen that the thickness of the anode catalyst layer and the cathode catalyst layer is preferably controlled to be ≥2μm and less than 10μm, which is beneficial to further reduce the cell voltage.
容易理解的,上述实施例仅仅是为清楚地说明所作的举例,并不意味着本发明仅局限于此。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。而由此所引伸出的显而易见的变化或变动仍处于本发明创造的保护范围之中。It is easy to understand that the above embodiments are only examples for clear explanation and do not mean that the present invention is limited thereto. For ordinary technicians in the relevant field, other different forms of changes or modifications can be made based on the above description. It is not necessary and impossible to list all the implementation methods here. The obvious changes or modifications derived from this are still within the protection scope of the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202310280017.6A CN117926293A (en) | 2023-03-21 | 2023-03-21 | Alkaline membrane electrode electrolyzer for producing hydrogen by alkaline water electrolysis and preparation method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202310280017.6A CN117926293A (en) | 2023-03-21 | 2023-03-21 | Alkaline membrane electrode electrolyzer for producing hydrogen by alkaline water electrolysis and preparation method thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
CN117926293A true CN117926293A (en) | 2024-04-26 |
Family
ID=90767288
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202310280017.6A Pending CN117926293A (en) | 2023-03-21 | 2023-03-21 | Alkaline membrane electrode electrolyzer for producing hydrogen by alkaline water electrolysis and preparation method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN117926293A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN118979265A (en) * | 2024-08-29 | 2024-11-19 | 山东赛克赛斯氢能源有限公司 | AEM membrane electrode, AEM electrolyzer and electrolytic hydrogen production method |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20190127863A1 (en) * | 2014-10-21 | 2019-05-02 | Dioxide Materials, Inc. | Water Electrolyzers Employing Anion Exchange Membranes |
CN110023542A (en) * | 2017-01-26 | 2019-07-16 | 旭化成株式会社 | Bipolar electrolyzer, buck electrolysis bipolar electrolyzer and hydrogen manufacturing method |
CN110791773A (en) * | 2018-08-02 | 2020-02-14 | 国家能源投资集团有限责任公司 | Method and device for producing hydrogen by electrolyzing water |
CN111433391A (en) * | 2017-12-05 | 2020-07-17 | 株式会社德山 | Membrane-electrode-gasket composite for alkaline water electrolysis |
CN113549942A (en) * | 2021-07-15 | 2021-10-26 | 杭州兴态环保科技有限公司 | Method and device for improving hydrogen production efficiency by electrolyzing water |
CN115074775A (en) * | 2022-07-22 | 2022-09-20 | 北京化工大学 | An integrated composite membrane, its preparation method and its application in hydrogen production by alkaline hydrolysis |
WO2022244644A1 (en) * | 2021-05-19 | 2022-11-24 | パナソニックIpマネジメント株式会社 | Anode gas diffusion layer for water electrolysis cells, water electrolysis cell, and water electrolysis device |
-
2023
- 2023-03-21 CN CN202310280017.6A patent/CN117926293A/en active Pending
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20190127863A1 (en) * | 2014-10-21 | 2019-05-02 | Dioxide Materials, Inc. | Water Electrolyzers Employing Anion Exchange Membranes |
CN110023542A (en) * | 2017-01-26 | 2019-07-16 | 旭化成株式会社 | Bipolar electrolyzer, buck electrolysis bipolar electrolyzer and hydrogen manufacturing method |
CN111433391A (en) * | 2017-12-05 | 2020-07-17 | 株式会社德山 | Membrane-electrode-gasket composite for alkaline water electrolysis |
CN110791773A (en) * | 2018-08-02 | 2020-02-14 | 国家能源投资集团有限责任公司 | Method and device for producing hydrogen by electrolyzing water |
WO2022244644A1 (en) * | 2021-05-19 | 2022-11-24 | パナソニックIpマネジメント株式会社 | Anode gas diffusion layer for water electrolysis cells, water electrolysis cell, and water electrolysis device |
CN113549942A (en) * | 2021-07-15 | 2021-10-26 | 杭州兴态环保科技有限公司 | Method and device for improving hydrogen production efficiency by electrolyzing water |
CN115074775A (en) * | 2022-07-22 | 2022-09-20 | 北京化工大学 | An integrated composite membrane, its preparation method and its application in hydrogen production by alkaline hydrolysis |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN118979265A (en) * | 2024-08-29 | 2024-11-19 | 山东赛克赛斯氢能源有限公司 | AEM membrane electrode, AEM electrolyzer and electrolytic hydrogen production method |
CN118979265B (en) * | 2024-08-29 | 2025-02-28 | 山东赛克赛斯氢能源有限公司 | AEM membrane electrode, AEM electrolyzer and electrolytic hydrogen production method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10619255B2 (en) | Anode for alkaline water electrolysis and method for producing anode for alkaline water electrolysis | |
CN101463487B (en) | Preparation of proton exchange membrane electrode for electrolyzing water | |
JP6282113B2 (en) | catalyst | |
US20170321331A1 (en) | Oxygen-generating anode | |
WO2024098919A1 (en) | Nickel/nickel-containing nitride composite electrode, and preparation method therefor and use thereof | |
CN201530867U (en) | An electrolyzer for hydrogen production by electrolysis of water | |
CN105655610A (en) | Ultrathin catalytic layer attached to anion exchange membrane, preparation and application thereof | |
CN112481656B (en) | Bifunctional catalyst for high-selectivity electrocatalysis of glycerin oxidation conversion to produce formic acid and high-efficiency electrolysis of water to produce hydrogen, preparation method and application thereof | |
CN109921034B (en) | Preparation method and application of graded ordered catalytic layer for anion exchange membrane fuel cell | |
CN112853370B (en) | Ni/C core-shell structure nano material electrocatalyst and preparation method thereof | |
CN117926293A (en) | Alkaline membrane electrode electrolyzer for producing hydrogen by alkaline water electrolysis and preparation method thereof | |
CN111139497B (en) | Membrane electrode assembly for solid polymer electrolyte electrolyzer and preparation method thereof | |
CN110373689A (en) | A kind of electrochemical process preparation Ni-Fe-P-MnFeO3The method of elctro-catalyst | |
CN114134536B (en) | Sea urchin-shaped Ni@Ni 2 P@NiCoP electrode material and preparation method and application thereof | |
CN112928271B (en) | In-situ delamination method of hydrotalcite nanosheet array for electrocatalytic small molecule oxidation coupling hydrogen production | |
CN116262977A (en) | Porous membrane electrode for hydrogen production by alkaline water electrolysis and preparation method thereof | |
CN114774977A (en) | A kind of sulfur-doped nickel hydroxide-ceria composite nanorod array electrocatalyst, preparation method and application thereof | |
CN116254557A (en) | Diffusion layer of water electrolysis cell and preparation method and application thereof | |
CN112251765B (en) | A lead net-based water splitting hydrogen production device and its preparation method and use method | |
CN111250130A (en) | Nitride catalyst and method of forming the same | |
TW202414870A (en) | Electrocatalytic electrode, preparation method, and application for overall water splitting in an alkaline electrolyte solution thereof | |
CN116334656A (en) | Membrane electrode for producing hydrogen by alkaline water electrolysis and preparation method thereof | |
CN119372709A (en) | A method for preparing an oxygen evolution electrode | |
CN119663317A (en) | A method for constructing a double-anode layer low-contact impedance PEM water electrolysis membrane electrode | |
CN117107260A (en) | Pretreatment method and application of membrane electrode |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
TA01 | Transfer of patent application right |
Effective date of registration: 20250102 Address after: 102211 Shenhua Low Carbon 001 Mailbox, Naukograd, Changping District, Beijing Applicant after: Beijing low carbon clean energy Research Institute Country or region after: China Address before: 100011 Beijing Dongcheng District, West Binhe Road, No. 22 Applicant before: CHINA ENERGY INVESTMENT Corp.,Ltd. Country or region before: China Applicant before: Beijing low carbon clean energy Research Institute |
|
TA01 | Transfer of patent application right | ||
TA01 | Transfer of patent application right |
Effective date of registration: 20250127 Address after: No. 9 Binhe Avenue, Future Science City, Changping District, Beijing 102211 Applicant after: Guoneng Technology Achievement Transformation (Beijing) Co.,Ltd. Country or region after: China Address before: 102211 Shenhua Low Carbon 001 Mailbox, Naukograd, Changping District, Beijing Applicant before: Beijing low carbon clean energy Research Institute Country or region before: China |
|
TA01 | Transfer of patent application right |