CN117921007B - Polycrystalline cubic boron nitride composite sheet and preparation method thereof - Google Patents
Polycrystalline cubic boron nitride composite sheet and preparation method thereof Download PDFInfo
- Publication number
- CN117921007B CN117921007B CN202311728817.6A CN202311728817A CN117921007B CN 117921007 B CN117921007 B CN 117921007B CN 202311728817 A CN202311728817 A CN 202311728817A CN 117921007 B CN117921007 B CN 117921007B
- Authority
- CN
- China
- Prior art keywords
- boron nitride
- sulfide
- cubic boron
- polycrystalline cubic
- composite sheet
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 229910052582 BN Inorganic materials 0.000 title claims abstract description 105
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 title claims abstract description 105
- 239000002131 composite material Substances 0.000 title claims abstract description 39
- 238000002360 preparation method Methods 0.000 title claims description 14
- 239000000463 material Substances 0.000 claims abstract description 80
- 229910052751 metal Inorganic materials 0.000 claims abstract description 39
- 239000002184 metal Substances 0.000 claims abstract description 39
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 claims abstract description 36
- 239000000843 powder Substances 0.000 claims abstract description 21
- 239000011230 binding agent Substances 0.000 claims abstract description 19
- 238000002156 mixing Methods 0.000 claims abstract description 15
- 239000011261 inert gas Substances 0.000 claims abstract description 14
- 239000000758 substrate Substances 0.000 claims abstract description 12
- 238000000034 method Methods 0.000 claims abstract description 10
- 238000005245 sintering Methods 0.000 claims abstract description 8
- 239000002245 particle Substances 0.000 claims description 17
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 7
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 7
- DBULDCSVZCUQIR-UHFFFAOYSA-N chromium(3+);trisulfide Chemical compound [S-2].[S-2].[S-2].[Cr+3].[Cr+3] DBULDCSVZCUQIR-UHFFFAOYSA-N 0.000 claims description 7
- RCYJPSGNXVLIBO-UHFFFAOYSA-N sulfanylidenetitanium Chemical compound [S].[Ti] RCYJPSGNXVLIBO-UHFFFAOYSA-N 0.000 claims description 7
- ITRNXVSDJBHYNJ-UHFFFAOYSA-N tungsten disulfide Chemical compound S=[W]=S ITRNXVSDJBHYNJ-UHFFFAOYSA-N 0.000 claims description 7
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 claims description 6
- 238000010438 heat treatment Methods 0.000 claims description 6
- 229910045601 alloy Inorganic materials 0.000 claims description 5
- 239000000956 alloy Substances 0.000 claims description 5
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 4
- 229910052782 aluminium Inorganic materials 0.000 claims description 4
- 238000001035 drying Methods 0.000 claims description 4
- 239000010936 titanium Substances 0.000 claims description 4
- 229910052719 titanium Inorganic materials 0.000 claims description 4
- WUPHOULIZUERAE-UHFFFAOYSA-N 3-(oxolan-2-yl)propanoic acid Chemical compound OC(=O)CCC1CCCO1 WUPHOULIZUERAE-UHFFFAOYSA-N 0.000 claims description 3
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 claims description 3
- 239000005083 Zinc sulfide Substances 0.000 claims description 3
- WVMYSOZCZHQCSG-UHFFFAOYSA-N bis(sulfanylidene)zirconium Chemical compound S=[Zr]=S WVMYSOZCZHQCSG-UHFFFAOYSA-N 0.000 claims description 3
- 229910052980 cadmium sulfide Inorganic materials 0.000 claims description 3
- 229910017052 cobalt Inorganic materials 0.000 claims description 3
- 239000010941 cobalt Substances 0.000 claims description 3
- INPLXZPZQSLHBR-UHFFFAOYSA-N cobalt(2+);sulfide Chemical compound [S-2].[Co+2] INPLXZPZQSLHBR-UHFFFAOYSA-N 0.000 claims description 3
- AQMRBJNRFUQADD-UHFFFAOYSA-N copper(I) sulfide Chemical compound [S-2].[Cu+].[Cu+] AQMRBJNRFUQADD-UHFFFAOYSA-N 0.000 claims description 3
- 229910052733 gallium Inorganic materials 0.000 claims description 3
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 claims description 3
- CWQXQMHSOZUFJS-UHFFFAOYSA-N molybdenum disulfide Chemical compound S=[Mo]=S CWQXQMHSOZUFJS-UHFFFAOYSA-N 0.000 claims description 3
- 229910052759 nickel Inorganic materials 0.000 claims description 3
- 229910052758 niobium Inorganic materials 0.000 claims description 3
- 239000010955 niobium Substances 0.000 claims description 3
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 claims description 3
- CADICXFYUNYKGD-UHFFFAOYSA-N sulfanylidenemanganese Chemical compound [Mn]=S CADICXFYUNYKGD-UHFFFAOYSA-N 0.000 claims description 3
- 229910052715 tantalum Inorganic materials 0.000 claims description 3
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 claims description 3
- FAWYJKSBSAKOFP-UHFFFAOYSA-N tantalum(iv) sulfide Chemical compound S=[Ta]=S FAWYJKSBSAKOFP-UHFFFAOYSA-N 0.000 claims description 3
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 claims description 3
- 229910052721 tungsten Inorganic materials 0.000 claims description 3
- 239000010937 tungsten Substances 0.000 claims description 3
- NVEKVESLPDZKSN-UHFFFAOYSA-N ytterbium(3+);trisulfide Chemical compound [S-2].[S-2].[S-2].[Yb+3].[Yb+3] NVEKVESLPDZKSN-UHFFFAOYSA-N 0.000 claims description 3
- 229910052984 zinc sulfide Inorganic materials 0.000 claims description 3
- DRDVZXDWVBGGMH-UHFFFAOYSA-N zinc;sulfide Chemical compound [S-2].[Zn+2] DRDVZXDWVBGGMH-UHFFFAOYSA-N 0.000 claims description 3
- 238000005520 cutting process Methods 0.000 abstract description 35
- 239000010410 layer Substances 0.000 abstract description 17
- 230000001050 lubricating effect Effects 0.000 abstract description 4
- 239000011241 protective layer Substances 0.000 abstract description 4
- 230000000052 comparative effect Effects 0.000 description 16
- 229910001018 Cast iron Inorganic materials 0.000 description 6
- 238000000498 ball milling Methods 0.000 description 6
- 229910001060 Gray iron Inorganic materials 0.000 description 5
- 238000011056 performance test Methods 0.000 description 5
- 230000007797 corrosion Effects 0.000 description 4
- 238000005260 corrosion Methods 0.000 description 4
- 229910000859 α-Fe Inorganic materials 0.000 description 4
- 229910001141 Ductile iron Inorganic materials 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 238000003786 synthesis reaction Methods 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- -1 ferrous metals Chemical class 0.000 description 2
- 238000011068 loading method Methods 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 150000004763 sulfides Chemical class 0.000 description 2
- 229910000760 Hardened steel Inorganic materials 0.000 description 1
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 239000003039 volatile agent Substances 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F7/00—Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
- B22F7/02—Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite layers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F5/00—Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F5/00—Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
- B22F2005/001—Cutting tools, earth boring or grinding tool other than table ware
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Mechanical Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Composite Materials (AREA)
- Materials Engineering (AREA)
- Cutting Tools, Boring Holders, And Turrets (AREA)
- Ceramic Products (AREA)
Abstract
本发明公开了一种聚晶立方氮化硼复合片的制备方法,包括:将立方氮化硼、粘结剂、金属粉、硫化物混匀,得到混合物料;将所述混合物料在惰性气体或真空气氛下进行热处理,得到处理后的混合物料;将所述处理后的混合物料与硬质合金基体进行烧结处理,得到所述聚晶立方氮化硼复合片。所述聚晶立方氮化硼复合片用于切削加工时,硫化物会吸附的在聚晶立方氮化硼表面形成保护层,避免聚晶立方氮化硼层与被切削材料的直接接触,延长聚晶立方氮化硼复合片的切削寿命;同时硫化物的六方结构在切削过程中还会产生润滑作用,减小聚晶立方氮化硼层与被切削材料的作用力,进一步延长聚晶立方氮化硼复合片的使用寿命。The present invention discloses a method for preparing a polycrystalline cubic boron nitride composite sheet, comprising: mixing cubic boron nitride, a binder, metal powder, and a sulfide to obtain a mixed material; heat treating the mixed material under an inert gas or vacuum atmosphere to obtain a treated mixed material; sintering the treated mixed material with a cemented carbide substrate to obtain the polycrystalline cubic boron nitride composite sheet. When the polycrystalline cubic boron nitride composite sheet is used for cutting, the sulfide will be adsorbed on the surface of the polycrystalline cubic boron nitride to form a protective layer, avoiding direct contact between the polycrystalline cubic boron nitride layer and the cut material, thereby extending the cutting life of the polycrystalline cubic boron nitride composite sheet; at the same time, the hexagonal structure of the sulfide will also produce a lubricating effect during the cutting process, reducing the force between the polycrystalline cubic boron nitride layer and the cut material, further extending the service life of the polycrystalline cubic boron nitride composite sheet.
Description
技术领域Technical Field
本发明涉及超硬材料切削刀具领域,尤其涉及的是一种聚晶立方氮化硼复合片及其制备方法。The invention relates to the field of superhard material cutting tools, and in particular to a polycrystalline cubic boron nitride composite sheet and a preparation method thereof.
背景技术Background Art
立方氮化硼(CBN)具有高硬度、优良的化学稳定性和耐高温性。由于聚晶立方氮化硼(PCBN)对黑色金属有较好的化学惰性,PCBN刀具广泛应用于黑色金属的加工。Cubic boron nitride (CBN) has high hardness, excellent chemical stability and high temperature resistance. Since polycrystalline cubic boron nitride (PCBN) has good chemical inertness to ferrous metals, PCBN tools are widely used in the processing of ferrous metals.
通常,低浓度PCBN的CBN含量一般低于75%,主要用于加工淬火钢,高浓度PCBN的CBN含量一般不低于80%,主要用于加工铸铁。用PCBN加工的铸铁有三大类,灰铸铁、蠕墨铸铁和球墨铸铁,这三大类铸铁的组织中通常都含有铁素体,且部分铁素体还是游离铁素体;虽然CBN对铁有较好的化学惰性,但在切削状态下刀头位置温度在800℃以上,此时游离铁素体对CBN颗粒会产生腐蚀,使刀头切削位置产生腐蚀坑和微裂纹,进而发生崩刃现象,严重影响PCBN刀具的使用寿命。Usually, the CBN content of low-concentration PCBN is generally less than 75%, and it is mainly used for processing hardened steel. The CBN content of high-concentration PCBN is generally not less than 80%, and it is mainly used for processing cast iron. There are three types of cast iron processed by PCBN, gray cast iron, vermicular cast iron and ductile cast iron. The structures of these three types of cast iron usually contain ferrite, and some of the ferrite is free ferrite; although CBN has good chemical inertness to iron, the temperature at the position of the cutter head is above 800℃ in the cutting state. At this time, the free ferrite will corrode the CBN particles, causing corrosion pits and microcracks at the cutting position of the cutter head, and then the chipping phenomenon will occur, which seriously affects the service life of the PCBN tool.
因此,现有技术还有待于改进和发展。Therefore, the prior art still needs to be improved and developed.
发明内容Summary of the invention
鉴于上述现有技术的不足,本发明的目的在于提供一种聚晶立方氮化硼复合片及其制备方法,旨在解决现有立方氮化硼切削铸铁寿命偏短的问题。In view of the above-mentioned deficiencies in the prior art, the object of the present invention is to provide a polycrystalline cubic boron nitride composite sheet and a preparation method thereof, aiming to solve the problem of the short life of the existing cubic boron nitride in cutting cast iron.
本发明的技术方案如下:The technical solution of the present invention is as follows:
本发明的第一方面,提供一种聚晶立方氮化硼复合片的制备方法,其中,包括:A first aspect of the present invention provides a method for preparing a polycrystalline cubic boron nitride composite sheet, comprising:
将立方氮化硼、粘结剂、金属粉、硫化物混匀,得到混合物料;Mixing cubic boron nitride, a binder, metal powder and sulfide to obtain a mixed material;
将所述混合物料在惰性气体或真空气氛下进行热处理,得到处理后的混合物料;heat-treating the mixed material under an inert gas or vacuum atmosphere to obtain a treated mixed material;
将所述处理后的混合物料与硬质合金基体进行烧结处理,得到所述聚晶立方氮化硼复合片。The treated mixed material and the hard alloy matrix are sintered to obtain the polycrystalline cubic boron nitride composite sheet.
可选的,所述立方氮化硼、粘结剂、金属粉、硫化物的体积比为80-98:1.8-15:0.1-15:0.1-15;优选的,所述立方氮化硼的体积比为85-90。Optionally, the volume ratio of the cubic boron nitride, the binder, the metal powder and the sulfide is 80-98:1.8-15:0.1-15:0.1-15; preferably, the volume ratio of the cubic boron nitride is 85-90.
可选的,所述硫化物为硫化锰、硫化钨、硫化钛、硫化亚铜、硫化钴、硫化镉、硫化锆、硫化镓、硫化镱、硫化钽、硫化铬、硫化钼、硫化锌中的一种或多种。Optionally, the sulfide is one or more of manganese sulfide, tungsten sulfide, titanium sulfide, cuprous sulfide, cobalt sulfide, cadmium sulfide, zirconium sulfide, gallium sulfide, ytterbium sulfide, tantalum sulfide, chromium sulfide, molybdenum sulfide, and zinc sulfide.
可选的,所述立方氮化硼的粒径为0.1-50微米;优选的,所述立方氮化硼的粒径为0.5-10微米;更优选的,所述立方氮化硼的粒径为1-5微米。Optionally, the particle size of the cubic boron nitride is 0.1-50 microns; preferably, the particle size of the cubic boron nitride is 0.5-10 microns; more preferably, the particle size of the cubic boron nitride is 1-5 microns.
可选的,所述粘结剂为铝、钛中的一种或两种。Optionally, the binder is one or both of aluminum and titanium.
可选的,所述金属粉为钴、镍、锰、钨、铌、钽中的一种或多种。Optionally, the metal powder is one or more of cobalt, nickel, manganese, tungsten, niobium and tantalum.
可选的,所述热处理的温度为500-1000℃,时间为1-6h,气氛为真空或惰性气体。Optionally, the heat treatment is performed at a temperature of 500-1000° C., for a time of 1-6 hours, and in a vacuum or inert gas atmosphere.
可选的,所述将立方氮化硼、粘结剂、金属粉、硫化物混匀,具体包括:Optionally, the mixing of cubic boron nitride, a binder, metal powder and sulfide specifically includes:
将立方氮化硼、粘结剂和金属粉混匀,烘干,得到预混合物料;Mixing cubic boron nitride, a binder and metal powder, and drying to obtain a premixed material;
将所述预混合物料装入金属杯中,压实,在惰性气体或真空气氛下进行热处理,破碎,加入硫化物混匀,得到所述混合物料。The premixed material is placed in a metal cup, compacted, heat treated under an inert gas or vacuum atmosphere, crushed, and sulfide is added and mixed to obtain the mixed material.
可选的,所述将所述处理后的混合物料与硬质合金基体进行烧结处理,具体包括:Optionally, the sintering of the treated mixed material and the cemented carbide substrate specifically includes:
将所述处理后的混合物料与硬质合金基体装入金属杯中,在温度为1200-1600℃,压力为5-8GPa的条件下合成。The treated mixed material and the hard alloy substrate are placed in a metal cup and synthesized under the conditions of a temperature of 1200-1600° C. and a pressure of 5-8 GPa.
本发明的第二方面,提供一种聚晶立方氮化硼复合片,其中,所述聚晶立方氮化硼复合片由上述的制备方法制备而得。A second aspect of the present invention provides a polycrystalline cubic boron nitride composite sheet, wherein the polycrystalline cubic boron nitride composite sheet is prepared by the above-mentioned preparation method.
有益效果:本发明所述的一种聚晶立方氮化硼复合片的制备方法,将硫化物均匀加入到用于制备聚晶立方氮化硼的物料中,得到含有硫化物的聚晶立方氮化硼复合片。将制备得到的聚晶立方氮化硼复合片用于切削加工,加工过程中硫化物会吸附的在聚晶立方氮化硼表面形成一层保护层,避免聚晶立方氮化硼层与被切削材料的直接接触,从而降低切削产生的高温环境下被切削材料对聚晶立方氮化硼层的腐蚀,延长聚晶立方氮化硼层的切削寿命;同时,硫化物通常为六方结构,在切削过程中还会产生润滑作用,减小聚晶立方氮化硼层与被切削材料的作用力,进一步延长聚晶立方氮化硼层的寿命。Beneficial effects: The method for preparing a polycrystalline cubic boron nitride composite sheet described in the present invention uniformly adds sulfide to the material used to prepare polycrystalline cubic boron nitride to obtain a polycrystalline cubic boron nitride composite sheet containing sulfide. The prepared polycrystalline cubic boron nitride composite sheet is used for cutting processing. During the processing, the sulfide will be adsorbed on the surface of the polycrystalline cubic boron nitride to form a protective layer to avoid direct contact between the polycrystalline cubic boron nitride layer and the cut material, thereby reducing the corrosion of the cut material to the polycrystalline cubic boron nitride layer under the high temperature environment generated by cutting, and extending the cutting life of the polycrystalline cubic boron nitride layer; at the same time, the sulfide is usually a hexagonal structure, which will also produce a lubricating effect during the cutting process, reducing the force between the polycrystalline cubic boron nitride layer and the cut material, and further extending the life of the polycrystalline cubic boron nitride layer.
具体实施方式DETAILED DESCRIPTION
本发明提供一种聚晶立方氮化硼复合片及其制备方法,为使本发明的目的、技术方案及效果更加清楚、明确,以下对本发明进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。另外,说明书中所描述的特点、操作或者特征可以以任意适当的方式结合形成各种实施方式。同时,方法描述中的各步骤或者动作也可以按照本领域技术人员所能显而易见的方式进行顺序调换或调整。因此,说明书中的各种顺序只是为了清楚描述某一个实施例,并不意味着是必须的顺序,除非另有说明其中某个顺序是必须遵循的。所用到的仪器以及试剂均为市售产品。The present invention provides a polycrystalline cubic boron nitride composite sheet and a preparation method thereof. In order to make the purpose, technical solution and effect of the present invention clearer and more specific, the present invention is further described in detail below. It should be understood that the specific embodiments described herein are only used to explain the present invention and are not used to limit the present invention. In addition, the characteristics, operations or features described in the specification can be combined in any appropriate manner to form various implementation methods. At the same time, the steps or actions in the method description can also be replaced or adjusted in order in a manner that is obvious to those skilled in the art. Therefore, the various sequences in the specification are only for the purpose of clearly describing a certain embodiment and do not mean that they are necessary sequences, unless otherwise specified that a certain sequence must be followed. The instruments and reagents used are all commercially available products.
本发明提供一种聚晶立方氮化硼复合片的制备方法,包括:The present invention provides a method for preparing a polycrystalline cubic boron nitride composite sheet, comprising:
将立方氮化硼、粘结剂、金属粉、硫化物混匀,得到混合物料;Mixing cubic boron nitride, a binder, metal powder and sulfide to obtain a mixed material;
将所述混合物料在惰性气体或真空气氛下进行热处理,得到处理后的混合物料;heat-treating the mixed material under an inert gas or vacuum atmosphere to obtain a treated mixed material;
将所述处理后的混合物料与硬质合金基体进行烧结处理,得到所述聚晶立方氮化硼复合片。The treated mixed material and the hard alloy matrix are sintered to obtain the polycrystalline cubic boron nitride composite sheet.
在一种实施方式中,所述将立方氮化硼、粘结剂、金属粉、硫化物混匀,具体包括:In one embodiment, the mixing of cubic boron nitride, a binder, metal powder, and sulfide specifically includes:
将立方氮化硼、粘结剂和金属粉混匀,烘干,得到预混合物料;Mixing cubic boron nitride, a binder and metal powder, and drying to obtain a premixed material;
将所述预混合物料装入金属杯中,压实,在惰性气体或真空气氛下进行热处理,破碎,加入硫化物混匀,得到所述混合物料。The premixed material is placed in a metal cup, compacted, heat treated under an inert gas or vacuum atmosphere, crushed, and sulfide is added and mixed to obtain the mixed material.
在一种实施方式中,所述将所述处理后的混合物料与硬质合金基体进行烧结处理,具体包括:In one embodiment, the sintering of the treated mixed material with a cemented carbide substrate specifically includes:
将所述处理后的混合物料与硬质合金基体装入金属杯中,在温度为1200-1600℃,压力为5-8GPa的条件下合成。The treated mixed material and the hard alloy substrate are placed in a metal cup and synthesized under the conditions of a temperature of 1200-1600° C. and a pressure of 5-8 GPa.
在本发明中,采用高温高压的烧结处理方法,能够有效地抑制立方氮化硼单晶的六方化转变,保持立方氮化硼的良好力学性能。本发明对所述高温高压条件的具体操作方式没有特殊的限定,采用本领域技术人员熟知的高温高压烧结处理方法即可。In the present invention, a high temperature and high pressure sintering treatment method is used, which can effectively inhibit the hexagonal transformation of the cubic boron nitride single crystal and maintain the good mechanical properties of the cubic boron nitride. The present invention has no special limitation on the specific operation mode of the high temperature and high pressure conditions, and a high temperature and high pressure sintering treatment method well known to those skilled in the art can be used.
在一些实施方式中,以体积份数计,所述聚晶立方氮化硼复合片的制备方法中,加入立方氮化硼80-98份,粘结剂1.8-15份,金属粉0.1-15份,硫化物0.1-15份;所述立方氮化硼优选为85-90份。In some embodiments, in the preparation method of the polycrystalline cubic boron nitride composite sheet, 80-98 parts of cubic boron nitride, 1.8-15 parts of binder, 0.1-15 parts of metal powder, and 0.1-15 parts of sulfide are added, measured by volume; the cubic boron nitride is preferably 85-90 parts.
在本发明中,所述聚晶立方氮化硼复合片,立方氮化硼的体积百分比为80-98%,粘结剂的体积百分比为1.8-15%,金属粉的体积百分比为0.1-15%,硫化物的体积百分比为0.1-15%;立方氮化硼的体积百分比优选为85-90%。立方氮化硼的含量对聚晶立方氮化硼复合片的硬度、导热性有较大的影响。立方氮化硼的含量越高,所制备得到的聚晶立方氮化硼复合片的硬度越高,导热性越好。硫化物的含量对聚晶立方氮化硼复合片的耐磨性能有较大的影响。当硫化物的体积百分比低于0.1%,对所述聚晶立方氮化硼复合片的耐磨性能改善不明显;当硫化物的体积百分比高于15%,会影响立方氮化硼颗粒之间的成键,且部分硫化物会产生挥发物,硫化物比例越大物料的蒸汽压越大,在高温高压下使用有危险。In the present invention, the volume percentage of cubic boron nitride in the polycrystalline cubic boron nitride composite sheet is 80-98%, the volume percentage of the binder is 1.8-15%, the volume percentage of the metal powder is 0.1-15%, and the volume percentage of the sulfide is 0.1-15%; the volume percentage of cubic boron nitride is preferably 85-90%. The content of cubic boron nitride has a great influence on the hardness and thermal conductivity of the polycrystalline cubic boron nitride composite sheet. The higher the content of cubic boron nitride, the higher the hardness of the prepared polycrystalline cubic boron nitride composite sheet and the better the thermal conductivity. The content of sulfide has a great influence on the wear resistance of the polycrystalline cubic boron nitride composite sheet. When the volume percentage of sulfide is lower than 0.1%, the wear resistance of the polycrystalline cubic boron nitride composite sheet is not significantly improved; when the volume percentage of sulfide is higher than 15%, it will affect the bonding between the cubic boron nitride particles, and some sulfides will produce volatiles. The larger the proportion of sulfide, the greater the vapor pressure of the material, which is dangerous to use under high temperature and high pressure.
在一些实施方式中,所述硫化物为硫化锰、硫化钨、硫化钛、硫化亚铜、硫化钴、硫化镉、硫化锆、硫化镓、硫化镱、硫化钽、硫化铬、硫化钼、硫化锌中的一种或多种。In some embodiments, the sulfide is one or more of manganese sulfide, tungsten sulfide, titanium sulfide, cuprous sulfide, cobalt sulfide, cadmium sulfide, zirconium sulfide, gallium sulfide, ytterbium sulfide, tantalum sulfide, chromium sulfide, molybdenum sulfide, and zinc sulfide.
在本发明中,硫化物会吸附的在聚晶立方氮化硼表面形成一层保护层,避免聚晶立方氮化硼层在切削加工过程中与被切削材料的直接接触,从而降低切削产生的高温环境下被切削材料对聚晶立方氮化硼层的腐蚀,延长聚晶立方氮化硼层的切削寿命。同时,硫化物通常为六方结构,在切削过程中还会产生润滑作用,减小聚晶立方氮化硼层与被切削材料的作用力,进一步延长聚晶立方氮化硼层的寿命。In the present invention, sulfide will be adsorbed on the surface of polycrystalline cubic boron nitride to form a protective layer, which prevents the polycrystalline cubic boron nitride layer from direct contact with the cut material during the cutting process, thereby reducing the corrosion of the cut material to the polycrystalline cubic boron nitride layer under the high temperature environment generated by cutting, and extending the cutting life of the polycrystalline cubic boron nitride layer. At the same time, sulfide is usually a hexagonal structure, which will also produce a lubricating effect during the cutting process, reducing the force between the polycrystalline cubic boron nitride layer and the cut material, and further extending the life of the polycrystalline cubic boron nitride layer.
在一些实施方式中,所述立方氮化硼的粒径为0.1-50微米;优选的,所述立方氮化硼的粒径为0.5-10微米;更优选的,所述立方氮化硼的粒径为1-5微米。In some embodiments, the particle size of the cubic boron nitride is 0.1-50 microns; preferably, the particle size of the cubic boron nitride is 0.5-10 microns; more preferably, the particle size of the cubic boron nitride is 1-5 microns.
在本发明中,所述立方氮化硼的粒径越分散,性能波动越大;当立方氮化硼的粒径低于0.5微米,物料的里面的孔隙多,收缩性大,会导致结合不良,难以形成完全密实的复合材料,需要更高的压力;当立方氮化硼的粒径高于10微米,会降低聚晶立方氮化硼的抗冲击性能,目前较少使用。因此,所述立方氮化硼的粒径优选为0.5-10微米,更优选为1-5微米。In the present invention, the more dispersed the particle size of the cubic boron nitride is, the greater the performance fluctuation is; when the particle size of the cubic boron nitride is less than 0.5 microns, the material has many pores and large shrinkage, which will lead to poor bonding and difficulty in forming a completely dense composite material, requiring higher pressure; when the particle size of the cubic boron nitride is higher than 10 microns, the impact resistance of the polycrystalline cubic boron nitride will be reduced, and it is currently less used. Therefore, the particle size of the cubic boron nitride is preferably 0.5-10 microns, and more preferably 1-5 microns.
在一些实施方式中,所述粘结剂为铝、钛中的一种或两种。In some embodiments, the binder is one or both of aluminum and titanium.
在本发明中,铝、钛在高温高压条件下可与立方氮化硼发生反应,使立方氮化硼颗粒粘结得更加牢固,提高聚晶立方氮化硼复合片的耐磨性。In the present invention, aluminum and titanium can react with cubic boron nitride under high temperature and high pressure conditions, so that the cubic boron nitride particles are more firmly bonded, thereby improving the wear resistance of the polycrystalline cubic boron nitride composite sheet.
在一些实施方式中,所述金属粉为钴、镍、锰、钨、铌、钽中的一种或多种。In some embodiments, the metal powder is one or more of cobalt, nickel, manganese, tungsten, niobium, and tantalum.
在本发明中,金属粉对立方氮化硼的粘结有一定的促进作用,同时还能改善聚晶立方氮化硼复合片的导电性。In the present invention, the metal powder has a certain promoting effect on the bonding of cubic boron nitride, and can also improve the conductivity of the polycrystalline cubic boron nitride composite sheet.
在一些实施方式中,所述热处理的温度为500-1000℃,时间为1-6h,气氛为真空或惰性气体。In some embodiments, the heat treatment is performed at a temperature of 500-1000° C., for a time of 1-6 h, and in a vacuum or inert gas atmosphere.
在本发明中,所述热处理的具体操作没有特殊的限定,采用本领域技术人员常规热处理操作即可。所述热处理是为了除去立方氮化硼、粘结剂、金属粉和硫化物中的吸附氧和水分等,确保粉料的纯度,同时避免杂质与硫化物发生反应,从而保证聚晶立方氮化硼复合片的性能。In the present invention, the specific operation of the heat treatment is not particularly limited, and conventional heat treatment operations by those skilled in the art can be used. The heat treatment is to remove adsorbed oxygen and moisture in cubic boron nitride, binder, metal powder and sulfide, ensure the purity of the powder, and avoid the reaction between impurities and sulfide, thereby ensuring the performance of the polycrystalline cubic boron nitride composite sheet.
本发明还提供了一种聚晶立方氮化硼复合片,其中,所述聚晶立方氮化硼复合片由上述的制备方法制备而得。The present invention also provides a polycrystalline cubic boron nitride composite sheet, wherein the polycrystalline cubic boron nitride composite sheet is prepared by the above-mentioned preparation method.
下面结合具体实施例对本发明的技术方案作进一步的说明。The technical solution of the present invention is further described below in conjunction with specific embodiments.
实施例1Example 1
物料以体积份数计,将90份立方氮化硼(粒径为5微米)、5份铝粉、4.9份钴粉采用球磨的方式混合均匀,混合后将物料烘干,将烘干后的物料装入金属杯中,在700℃真空条件下处理6h,而后将处理过的物料从金属杯中倒出,加入0.1份硫化钨,采用球磨的方式将物料混合均匀,将物料烘干,装入金属杯,在500℃下通惰性气体处理2h,而后与硬质合金基体外装合成,合成条件为压力5GPa,温度1500℃。The materials are measured by volume. 90 parts of cubic boron nitride (particle size is 5 microns), 5 parts of aluminum powder, and 4.9 parts of cobalt powder are mixed evenly by ball milling. After mixing, the materials are dried, and the dried materials are put into a metal cup and treated at 700°C in vacuum for 6 hours. Then the treated materials are poured out of the metal cup, 0.1 parts of tungsten sulfide are added, and the materials are mixed evenly by ball milling. The materials are dried, put into a metal cup, and treated at 500°C with inert gas for 2 hours. Then, they are assembled and synthesized with a cemented carbide substrate. The synthesis conditions are pressure 5 GPa and temperature 1500°C.
将本实施例制备得到的样品加工后制成刀具,进行切削性能测试,被切削材料为灰铸铁HT200,在切削行程为12570m的条件下,本实施例的刀具后刀面磨损为106μm。The sample prepared in this embodiment was processed into a tool for cutting performance test. The cut material was gray cast iron HT200. Under the condition of a cutting stroke of 12570 m, the flank wear of the tool in this embodiment was 106 μm.
实施例2Example 2
物料以体积份数计,将85份立方氮化硼(粒径为1微米)、10份铝粉、2份钴粉和1份锰粉采用球磨的方式混合均匀,混合后将物料烘干,将烘干后的物料装入金属杯中,在800℃通惰性气体下处理3h,而后将处理过的物料从金属杯中倒出,加入2份硫化铬,采用球磨的方式将物料混合均匀,将物料烘干,装入金属杯,在500℃下真空处理6h,而后与硬质合金基体外装合成,合成条件为压力7GPa,温度1500℃。The materials are measured by volume. 85 parts of cubic boron nitride (particle size is 1 micron), 10 parts of aluminum powder, 2 parts of cobalt powder and 1 part of manganese powder are mixed evenly by ball milling. After mixing, the materials are dried, and the dried materials are put into a metal cup and treated at 800°C under inert gas for 3 hours. Then the treated materials are poured out of the metal cup, and 2 parts of chromium sulfide are added. The materials are mixed evenly by ball milling, and the materials are dried and put into a metal cup. They are vacuum treated at 500°C for 6 hours, and then assembled with a cemented carbide substrate. The synthesis conditions are pressure 7 GPa and temperature 1500°C.
将本实施例制备得到的样品加工后制成刀具,进行切削性能测试,被切削材料为灰铸铁HT200,在切削行程为10740m的条件下,本实施例的刀具后刀面磨损为95μm。The sample prepared in this embodiment was processed into a tool for cutting performance test. The cut material was gray cast iron HT200. Under the condition of a cutting stroke of 10740 m, the flank wear of the tool in this embodiment was 95 μm.
实施例3Example 3
物料以体积份数计,将80份立方氮化硼(粒径为6微米)、7份铝粉、2份钴粉和2份镍粉采用球磨的方式混合均匀,混合后将物料烘干,将烘干后的物料装入金属杯中,在800℃下真空处理1h,而后将处理过的物料从金属杯中倒出,加入9份硫化钛,采用球磨的方式将物料混合均匀,将物料烘干,装入金属杯,在600℃下真空处理4h,而后与硬质合金基体外装合成,合成条件为压力5GPa,温度1200℃。The materials are measured by volume. 80 parts of cubic boron nitride (particle size is 6 microns), 7 parts of aluminum powder, 2 parts of cobalt powder and 2 parts of nickel powder are mixed evenly by ball milling. After mixing, the materials are dried, put into a metal cup, and vacuum treated at 800°C for 1 hour. Then the treated material is poured out of the metal cup, 9 parts of titanium sulfide are added, the materials are mixed evenly by ball milling, the materials are dried, put into a metal cup, and vacuum treated at 600°C for 4 hours. Then, they are assembled and synthesized with a cemented carbide substrate. The synthesis conditions are pressure 5 GPa and temperature 1200°C.
将本实施例制备得到的样品加工后制成刀具,进行切削性能测试,被切削材料为球墨铸铁QT600,在切削行程为10050m的条件下,本实施例的刀具后刀面磨损为84μm。The sample prepared in this embodiment was processed into a tool for cutting performance test. The cut material was ductile iron QT600. Under the condition of a cutting stroke of 10050 m, the flank wear of the tool in this embodiment was 84 μm.
对比例1Comparative Example 1
本对比例与实施例1的区别在于不加入硫化钨,其他物料及操作均相同。The difference between this comparative example and Example 1 is that tungsten sulfide is not added, and other materials and operations are the same.
将本对比例制备得到的样品加工后制成刀具,进行切削性能测试,被切削材料为灰铸铁HT200,在切削行程为12570m的条件下,本对比例的刀具后刀面磨损为145μm。The sample prepared in this comparative example was processed into a tool for cutting performance test. The cut material was gray cast iron HT200. Under the condition of a cutting stroke of 12570 m, the flank wear of the tool in this comparative example was 145 μm.
对比例2Comparative Example 2
本对比例与实施例2的区别在于不加入硫化铬,其他物料及操作均相同。The difference between this comparative example and Example 2 is that chromium sulfide is not added, and other materials and operations are the same.
将本对比例制备得到的样品加工后制成刀具,进行切削性能测试,被切削材料为灰铸铁HT200,在切削行程为10740m的条件下,本对比例的刀具后刀面磨损为148μm。The sample prepared in this comparative example was processed into a tool for cutting performance test. The cut material was gray cast iron HT200. Under the condition of a cutting stroke of 10740 m, the flank wear of the tool in this comparative example was 148 μm.
对比例3Comparative Example 3
本对比例与实施例3的区别在于不加入硫化钛,其他物料及操作均相同。The difference between this comparative example and Example 3 is that titanium sulfide is not added, and other materials and operations are the same.
将本对比例制备得到的样品加工后制成刀具,进行切削性能测试,被切削材料为球墨铸铁QT600,在切削行程为10050m的条件下,本对比例的刀具后刀面磨损为154μm。The samples prepared in this comparative example were processed into cutting tools for cutting performance testing. The cutting material was ductile iron QT600. Under the condition of a cutting stroke of 10050 m, the flank wear of the cutting tool in this comparative example was 154 μm.
对上述实施例和对比例的数据进行分析:结合实施例1与对比例1的实验结果分析可知,在其他条件相同的情况下,加硫化钨的刀具后刀面磨损是不加硫化钨刀具后刀面磨损的73%;结合实施例2与对比例2的实验结果分析可知,在其他条件相同的情况下,加硫化铬的刀具后刀面磨损是不加硫化铬刀具后刀面磨损的64%;结合实施例3与对比例3的实验结果分析可知,在其他条件相同的情况下,加硫化钛的刀具后刀面磨损是不加硫化钛刀具后刀面磨损的54%。The data of the above embodiments and comparative examples are analyzed: Combining the experimental results of embodiment 1 with comparative example 1, it can be seen that, under the same other conditions, the flank wear of the tool with tungsten sulfide is 73% of the flank wear of the tool without tungsten sulfide; Combining the experimental results of embodiment 2 with comparative example 2, it can be seen that, under the same other conditions, the flank wear of the tool with chromium sulfide is 64% of the flank wear of the tool without chromium sulfide; Combining the experimental results of embodiment 3 with comparative example 3, it can be seen that, under the same other conditions, the flank wear of the tool with titanium sulfide is 54% of the flank wear of the tool without titanium sulfide.
由上述实验数据分析可知,本发明提供的聚晶立方氮化硼复合片具有优异的耐磨特性,能够延长聚晶立方氮化硼复合片切削铸铁的寿命。It can be seen from the analysis of the above experimental data that the polycrystalline cubic boron nitride composite sheet provided by the present invention has excellent wear resistance and can extend the life of the polycrystalline cubic boron nitride composite sheet in cutting cast iron.
综上所述,本发明公开了一种聚晶立方氮化硼复合片的制备方法,包括:将立方氮化硼、粘结剂和金属粉混匀,烘干,得到预混合物料;将所述预混合物料装入金属杯中,压实,在惰性气体或真空气氛下进行热处理,破碎,加入硫化物混匀,得到所述混合物料;将所述混合物料在惰性气体或真空气氛下进行热处理,得到处理后的混合物料;将所述处理后的混合物料与硬质合金基体装入金属杯中,在高温高压条件下进行烧结处理,得到所述聚晶立方氮化硼复合片。In summary, the present invention discloses a method for preparing a polycrystalline cubic boron nitride composite sheet, comprising: mixing cubic boron nitride, a binder and metal powder, and drying to obtain a premixed material; loading the premixed material into a metal cup, compacting, heat-treating the premixed material under an inert gas or vacuum atmosphere, crushing, adding a sulfide and mixing to obtain the mixed material; heat-treating the mixed material under an inert gas or vacuum atmosphere to obtain a treated mixed material; loading the treated mixed material and a cemented carbide substrate into a metal cup, and sintering the premixed material under high temperature and high pressure conditions to obtain the polycrystalline cubic boron nitride composite sheet.
与现有技术相比,本发明制备方法制备得到的聚晶立方氮化硼复合片,用于切削加工时硫化物会吸附的在聚晶立方氮化硼表面形成一层保护层,避免聚晶立方氮化硼层与被切削材料的直接接触,从而降低切削产生的高温环境下被切削材料对聚晶立方氮化硼层的腐蚀,延长聚晶立方氮化硼层的切削寿命;同时,硫化物通常为六方结构,在切削过程中还会产生润滑作用,减小聚晶立方氮化硼层与被切削材料的作用力,进一步延长聚晶立方氮化硼层的寿命。Compared with the prior art, the polycrystalline cubic boron nitride composite sheet prepared by the preparation method of the present invention can form a protective layer on the surface of the polycrystalline cubic boron nitride by adsorbing sulfides when used in cutting processing, thereby avoiding direct contact between the polycrystalline cubic boron nitride layer and the cut material, thereby reducing the corrosion of the cut material to the polycrystalline cubic boron nitride layer under the high temperature environment generated by cutting, and extending the cutting life of the polycrystalline cubic boron nitride layer; at the same time, the sulfide is usually a hexagonal structure, which can also produce a lubricating effect during the cutting process, reducing the force between the polycrystalline cubic boron nitride layer and the cut material, and further extending the life of the polycrystalline cubic boron nitride layer.
应当理解的是,本发明的应用不限于上述的举例,对本领域普通技术人员来说,可以根据上述说明加以改进或变换,所有这些改进和变换都应属于本发明所附权利要求的保护范围。It should be understood that the application of the present invention is not limited to the above examples. For ordinary technicians in this field, improvements or changes can be made based on the above description. All these improvements and changes should fall within the scope of protection of the claims attached to the present invention.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202311728817.6A CN117921007B (en) | 2023-12-15 | 2023-12-15 | Polycrystalline cubic boron nitride composite sheet and preparation method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202311728817.6A CN117921007B (en) | 2023-12-15 | 2023-12-15 | Polycrystalline cubic boron nitride composite sheet and preparation method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN117921007A CN117921007A (en) | 2024-04-26 |
CN117921007B true CN117921007B (en) | 2024-09-13 |
Family
ID=90749812
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202311728817.6A Active CN117921007B (en) | 2023-12-15 | 2023-12-15 | Polycrystalline cubic boron nitride composite sheet and preparation method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN117921007B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN118437928B (en) * | 2024-07-08 | 2024-08-30 | 湘潭大学 | Hard alloy cutter surface coating and preparation method thereof |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0826338B2 (en) * | 1991-04-18 | 1996-03-13 | 新日本製鐵株式会社 | Self-lubricating material and manufacturing method thereof |
AT400543B (en) * | 1993-06-17 | 1996-01-25 | Swarovski Tyrolit Schleif | METAL BONDED ABRASIVE TOOL WITH FILLER |
CN103586459B (en) * | 2013-11-09 | 2016-03-16 | 马鞍山成宏机械制造有限公司 | A kind of high rigidity super abrasive Powder metallurgy tool and preparation method thereof |
GB201507110D0 (en) * | 2015-04-27 | 2015-06-10 | Element Six Ltd And Element Six Abrasives S A | Sintered polycrystalline body |
CN107098704A (en) * | 2017-05-08 | 2017-08-29 | 中原工学院 | A kind of preparation method of polycrystalline cubic boron nitride sintered material |
CN116082044A (en) * | 2023-01-05 | 2023-05-09 | 富耐克超硬材料股份有限公司 | Heat-wear-resistant polycrystalline cubic boron nitride composite sheet and preparation method thereof |
-
2023
- 2023-12-15 CN CN202311728817.6A patent/CN117921007B/en active Active
Also Published As
Publication number | Publication date |
---|---|
CN117921007A (en) | 2024-04-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110923498B (en) | Copper-based powder metallurgy friction material containing metal carbide and metal oxide composite ceramic friction component and preparation method thereof | |
JP5394475B2 (en) | Boron carbide composite material | |
KR100459518B1 (en) | High Pressure Phase Boron Nitride Sintered Body | |
CN101595075A (en) | Composite sintered body | |
CN103058667B (en) | Nano solid lubricant and nano ceramic grain composite modified cutter material and preparation method thereof | |
CN117921007B (en) | Polycrystalline cubic boron nitride composite sheet and preparation method thereof | |
KR20080034825A (en) | Composite sintered body | |
CN112723889B (en) | High-strength and high-toughness boron carbide-titanium boride-graphene composite ceramic and preparation method thereof | |
CN113106318B (en) | WC (Wolfram carbide) preform structure reinforced iron-based composite material and preparation method thereof | |
CN110387496B (en) | A WC-TiC-Co-based graded cemented carbide with no TiC phase on the surface and its preparation method | |
US4342595A (en) | Cubic boron nitride and metal carbide tool bit | |
CN111809073A (en) | Gradient hard alloy square block and preparation method thereof | |
Ratov et al. | Effect of vanadium nitride additive on the structure and strength characteristics of diamond-containing composites based on the Fe–Cu–Ni–SN matrix, formed by cold pressing followed by Vacuum Hot Pressing | |
Li et al. | Effect of CeSi2 addition on microstructures of brazed layers and interfacial characteristics of brazed diamonds with NiCr filler alloy | |
CN112725676B (en) | Preparation method of high-strength hard alloy with good red hardness | |
CN113106313B (en) | Rare earth doped WC particle reinforced steel-based composite material and preparation method thereof | |
CN103243252A (en) | Binder-phase wolfram-carbide (WC) hard alloy and preparation method thereof | |
JP4940239B2 (en) | Boron oxide composite material | |
CN101955357B (en) | Processable complex-phase ceramic material and preparation method thereof as well as secondary hardening heat treatment method | |
CN115259836B (en) | A B6O-diamond composite material with both fracture toughness and hardness and its preparation method | |
CN110512132B (en) | Gradient hard alloy with long rod-shaped crystal grains as surface layer WC and no cubic phase and preparation method thereof | |
CN119462095B (en) | Alumina-based ceramic cutting tool and preparation method thereof | |
US11788174B1 (en) | Rare earth hard alloy and preparation method and application thereof | |
US20120217436A1 (en) | Boron suboxide composite material | |
JPH055150A (en) | Boron Carbide-Reactive Metal Thermite |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |