压力容积测量系统、测量方法、存储介质及测量装置
技术领域
本申请涉及液压制动技术领域,尤其涉及一种压力容积测量系统、测量方法、存储介质及测量装置。
背景技术
汽车制动系统是为了让车辆在行驶过程中能够减速或停车。目前,乘用车大多采用电子液压制动系统,驾驶员踩制动踏板,推动主缸或电缸对制动液加压,经制动管路流向四个制动卡钳,推动四个卡钳活塞前进,从而使得摩擦片和制动盘紧密接触产生制动力,使得车辆减速或停车。
压力容积(Pressure Volume,简称PV)指的是在制动过程中,由于制动卡钳、摩擦片、制动硬管和制动软管等部件的变形以及制动液本身的压缩等原因,制动系统压力在建立的过程中,不同压力下需要给制动系统补充相应容积的制动液。这个压力和容积的关系,就反映整个制动液压系统的刚度和响应特性。因此,对制动系统压力容积的准确测量十分关键。
现有技术通常在压力容积测量前进行系统排气,直至制动液充满制动回路,然后进行PV测量,而在车辆出厂后,制动回路仍会进入空气,导致系统的PV特性和出厂时有所差别,使系统PV特性偏软。现有测量装置无法定量测量制动系统不同空气含量时的PV特性。
发明内容
本申请的目的在于提供一种压力容积测量系统、测量方法、存储介质及测量装置,以解决上述现有技术中测量装置无法定量测量制动系统不同空气含量时的PV特性的问题。
本申请的第一方面提供了一种压力容积测量系统,其中,包括:
活塞缸,所述活塞缸包括进液口和出液口,所述出液口用于与制动系统的进液口相连;
活塞,设置于所述活塞缸内;
驱动装置,与所述活塞相连,用于驱动所述活塞在所述活塞缸内移动;
制动液供给机构,所述制动液供给机构的第一端与所述活塞缸的进液口相连,用于为所述活塞缸供给制动液或回收所述活塞缸内的制动液;所述制动液供给机构的第二端用于与所述制动系统的排气口相连;
压力检测装置,设置于所述活塞缸,用于检测所述活塞缸内制动液的压力;
温度检测装置,设置于所述活塞缸,用于检测所述活塞缸内制动液的温度;
位移量检测装置,用于检测所述活塞的位移量;
流量检测装置,用于检测由所述活塞缸向所述制动液供给机构回流的制动液的流 量;
第一电磁阀,串接于所述制动液供给机构的第二端与所述制动系统的排气口之间;
控制器,分别与所述驱动装置、所述压力检测装置、所述位移量检测装置、所述流量检测装置和所述第一电磁阀连接。
本申请提供的压力容积测量系统,在需要测量制动系统在存在一定体积的空气的情况下的PV特性时,可以使活塞缸内的制动液通过其进液口经过流量检测装置回流至制动液供给机构,流量检测装置可以精确检测回流的制动液的体积。在制动液回流时,制动系统中的压强减小,此时空气可以补充至制动系统中,也就是说,制动液回流的体积与补充的空气的体积相等,从而通过流量检测装置检测制动液回流的体积,可以获得补充至制动系统中空气的体积,而通过控制制动液回流的体积的大小,可以精确控制补充至制动系统中的空气的体积的大小,从而实现了制动系统中具有设定体积的空气的情况下对PV特性的测量。当然,可以在一次具有定量空气情况下对制动系统的PV特性测量后,可以使活塞缸内的制动液继续回流至制动液供给机构中,并通过流量检测装置控制回流的体积,以对制动系统中进行下一次的空气补充,从而可以改变制动系统中具有的空气的体积,实现了制动系统在具有不同空气的体积的情况下连续进行PV特性测量,无需变更系统及回路结构,使操作更方便快捷,且通过流量检测装置的控制可以保证制动系统中补充空气的体积的精确度,保证了制动系统PV特性测量结果的精确性。
在每次测量PV特性时,均可以通过温度检测装置检测活塞缸内制动液的温度,并进一步获得制动系统的温度,以获得在当前制动系统温度条件下的PV特性,从而能够综合且准确地反映制动系统在不同条件状况下的PV特性。
此外,本申请提供的该压力容积测量系统,可以在活塞缸上连接多个相同的检测回路,如每个检测回路均包括连接于活塞缸及制动液供给机构的管路、第一电磁阀等部件,每个检测回路均可以连接一个制动卡钳,从而可以实现对多个制动卡钳PV特性的测量,操作简单快捷,测量效率高。
在一种可能的实现方式中,所述流量检测装置连接于所述活塞缸的进液口。活塞缸的进液口与制动液供给机构相连,在活塞缸的进液口与制动液供给机构之间始终充满制动液,不会存有空气,将流量检测装置连接于活塞缸的进液口,可以保证流量检测装置只能检测到回流的纯净制动液的流量,而不会受到空气的影响,保证了对制动液回流流量的检测精度。
在一种可能的实现方式中,所述制动液供给机构包括储液容器和促动装置,所述促动装置分别与所述储液容器和所述活塞缸的进液口相连,用于将所述储液容器中的制动液通过所述活塞缸的进液口泵入至所述活塞缸内。促动装置分别与储液容器和活塞缸的进液口相连,用于将储液容器中的制动液通过活塞缸的进液口泵入至活塞缸内。该储液容器用于存储制动液,促动装置可以提供动力,用于将储液容器内的制动液泵入至活塞缸中。该促动装置具体可以包括液压泵,液压泵可以提供将储液容器中的制动液泵入至活塞缸内的动力。
在一种可能的实现方式中,所述制动液供给机构还包括静置容器,所述静置容器的一端通过所述促动装置与所述储液容器相连,所述静置容器的另一端通过管路连接 于所述制动系统的排气口。该静置容器可以用于存储由活塞缸回流的部分制动液,也用于在排出制动系统内的空气时由制动系统的排气口流出的制动液。该静置容器中存储的制动液可以通过促动装置回流至储液容器中,以便于进入下一次的循环利用。此外,当静置容器回收混合有空气的制动液时,混合有空气的制动液可以在静置容器中静置以使空气和制动液分离,进而使纯净的制动液回流至储液容器中。
在一种可能的实现方式中,所述管路包括第一管和第二管;所述第一管的一端连接于所述第一电磁阀的第一端口,所述第一管的另一端用于连接所述制动系统的排气口;所述第二管为透明软管,所述第二管的一端连接于所述第一电磁阀的第二端口,所述第二管的另一端连接于所述静置容器。
其中,该第一管为硬管,不会膨胀变形,如金属材质的制动管,硬质塑料管等。第二管为透明软管,第二管的一端连接于第一电磁阀的第二端口,第二管的另一端插入静置容器,端口在液面之上,保证可以与大气连通。在对制动系统进行排气时,活塞缸内的制动液依次经过活塞缸的出液口和制动系统的进液口进入至制动系统中,当制动液充满制动系统时,制动液可以从制动系统的排气口流出,并能够依次经过第一管和第一电磁阀进入第二管,由于第二管为透明软管,操作者可以直观的观察到第二管内是否进入制动液,如果第二管内进入了纯净制动液(制动液中不混有气泡),则可以准确地判断出制动系统中的空气已经完全排出,此时可以通过控制器控制第一电磁阀关闭,在第一电磁阀、制动系统、活塞缸之间的回路中充满制动液,且无空气,从而可以开始测量无空气状态下的制动系统的PV特性。
在一种可能的实现方式中,还包括第二电磁阀,所述第二电磁阀串接于所述出液口和所述制动系统的进液口之间;所述第二电磁阀与所述控制器信号连接。该第二电磁阀可以通过控制器的控制实现打开或关闭,从而可以实现活塞缸的出液口和制动系统的进液口之间流路的自动化导通或断开。
在一种可能的实现方式中,还包括第三电磁阀,所述第三电磁阀串接于所述活塞缸的进液口和所述流量检测装置之间;所述第三电磁阀与所述控制器信号连接。该第三电磁阀可以通过控制器的控制实现打开或关闭,从而可以实现活塞缸的进液口和制动液供给机构之间流路的自动化导通或断开。
在一种可能的实现方式中,所述驱动装置包括电机和传动螺杆,所述传动螺杆与所述电机传动相连,且所述传动螺杆的一端与所述活塞相连。电机的正转和反转可以驱动传动螺杆向相反的方向运动,从而可以通过传动螺杆控制活塞向前或向后运动,便于操作控制。
在一种可能的实现方式中,所述位移量检测装置为位移传感器,所述位移传感器设置于所述传动螺杆;所述位移传感器发出位移量信号,所述控制器根据所述位移量信号获得所述活塞的位移量。位移传感器可以发出位移量信号,控制器根据该位移量信号获得活塞的位移量。在传动螺杆移动时,位移传感器可以检测出传动螺杆的轴向位移量,即活塞的位移量,控制器根据该位移量和存储的活塞截面积可以计算得到活塞移动所带来的体积的变化量,即为制动液容积的变化量。其中,活塞截面积为与活塞运动方向正交的截面积。
在一种可能的实现方式中,所述位移量检测装置为转速位置传感器,所述转速位 置传感器设置于所述电机;所述转速位置传感器发出旋转位置信号,所述控制器根据所述旋转位置信号和电机与所述传动螺杆之间的传动比计算得到所述活塞的位移量。该转速位置传感器可以获得电机的旋转角度,控制器根据该旋转角度和存储的电机与传动螺杆之间的传动比能够计算得到传动螺杆的位移量,即为活塞的位移量,控制器根据该位移量和存储的活塞截面积可以计算得到活塞移动所带来的体积的变化量,即为制动液容积的变化量。其中,活塞截面积为与活塞运动方向正交的截面积。
在一种可能的实现方式中,所述活塞缸上设置有通孔,所述活塞上设置有限位件,所述传动螺杆穿过所述通孔连接于所述限位件,所述限位件用于调节所述活塞在所述传动螺杆上的位置。该限位件能够带动活塞在传动螺杆上移动及固定,在传动螺杆处于初始位置时,活塞可以通过限位件的调节处于与待测制动系统匹配的位置,从而可以使该压力容积测量系统具有对不同主缸或电缸容积制动系统的适用性,拓宽了该压力容积测量系统的应用范围。
在一种可能的实现方式中,所述传动螺杆上设置有螺纹段,所述限位件上设置有螺纹孔,所述限位件通过所述螺纹孔和所述螺纹段的配合套接于所述传动螺杆;所述限位件上设置有用于标定所述活塞缸内容积的刻度。在需要调节活塞在传动螺杆上的位置时,可以转动限位件,限位件可以通过与传动螺杆的螺纹配合发生轻微的轴向位移,从而可以带动活塞实现位置调节,而限位件上的刻度可以为操作者提供直观的参照,保证调节的精确性。
本申请的第二方面还提供了一种压力容积测量方法,其中,采用本申请第一方面提供的压力容积测量系统,所述方法包括:
向待测制动系统加注制动液,排出所述待测制动系统中的空气;
测量所述待测制动系统在第一状态下的压力容积曲线;
从所述待测制动系统中回收设定体积的制动液,以使所述待测制动系统中加注所述设定体积的空气;
获取所述待测制动系统的温度;
测量所述待测制动系统在第二状态下及不同温度条件下的压力容积曲线。
在一种可能的实现方式中,在从所述待测制动系统中回收设定体积的制动液,以使所述待测制动系统中加注所述设定体积的空气之后,所述方法还包括:
使所述待测制动系统中的空气和制动液充分混合。
在一种可能的实现方式中,所述向所述待测制动系统加注制动液,排出所述待测制动系统中的空气,具体包括:
控制第一电磁阀、第二电磁阀和第三电磁阀打开,启动促动装置,以使储液容器中的制动液注入活塞缸和所述待测制动系统中;
判断从第二管中是否流出纯净制动液;
如果流出纯净制动液,停止促动装置,控制第一电磁阀和第三电磁阀关闭。
在一种可能的实现方式中,所述测量待测制动系统在无空气状态下的压力容积曲线,具体包括;
启动驱动装置,以控制活塞推动制动液;
获取活塞运动至不同位置处所对应的位移量、活塞缸内制动液的压力值及活塞缸 内制动液的温度值;
根据所述位移量和活塞的截面面积获得活塞缸内制动液体积的变化量,并根据所述制动液体积的变化量和所述压力值获得压力容积曲线,根据所述活塞缸内的温度值获得所述待测制动系统的温度。
在一种可能的实现方式中,从所述待测制动系统中回收设定体积的制动液,以使所述待测制动系统中加注所述设定体积的空气,具体包括:
控制第一电磁阀、第二电磁阀和第三电磁阀打开,启动促动装置,以使活塞缸内的部分制动液抽回至静置容器中;
通过流量检测装置获得被抽回的制动液的体积,并发出流量信号;
控制器根据所述流量信号判断被抽回的制动液的体积是否达到预设体积;
如果是,控制第一电磁阀和第三电磁阀关闭,并保持第二电磁阀打开。
本申请的第三方面还提供了一种存储介质,其中,所述存储介质包括存储的应用程序,所述应用程序执行本申请第二方面提供的压力容积测量方法。
本申请的第四方面还提供了一种测量装置,其中,所述测量装置包括:
第一控制模块,用于发出第一信号,所述第一信号为向所述待测制动系统加注制动液,排出所述待测制动系统中的空气;
第二控制模块,用于发出第二信号,所述第二信号为从所述待测制动系统中回收设定体积的制动液,以使所述待测制动系统中加注所述设定体积的空气;
第一测量模块,用于测量所述待测制动系统在无空气状态下的压力容积曲线;所述测量模块还用于测量所述待测制动系统在具有所述设定体积空气状态下的压力容积曲线;
第二测量模块,用于测量所述待测制动系统的温度。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性的,并不能限制本申请。
附图说明
图1为本申请一种实施例提供的压力容积测量系统的结构示意图;
图2为本申请另一种实施例提供的压力容积测量系统的结构示意图;
图3为本申请又一种实施例提供的压力容积测量系统的结构示意图;
图4为不同空气含量PV曲线示意图;
图5为限位件在应用中的状态图;
图6为本申请实施例提供的压力容积测量方法的流程图(一);
图7为本申请实施例提供的压力容积测量方法的流程图(二);
图8为本申请实施例提供的压力容积测量方法的流程图(三);
图9为本申请实施例提供的压力容积测量方法的流程图(四)。
附图标记:
100-车轮;200-制动系统;210-进液口;220-排气口;230-放气螺栓;1-活塞缸;1a-进液口;1b-出液口;11-活塞;111-限位件;111a-刻度;12-第二电磁;13-第三电磁阀;2-驱动装置;21-电机;22-传动螺杆;221-螺纹段;3-制动液供给机构;31-第一电磁阀; 32-管路;321-第一管;322-第二管;33-促动装置;34-储液容器;35-静置容器;36-阀;4-压力检测装置;5-温度检测装置;6-位移量检测装置;7-流量检测装置;8-控制器。
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本申请的实施例,并与说明书一起用于解释本申请的原理。
具体实施方式
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。
在本申请的描述中,除非另有明确的规定和限定,术语“第一”、“第二”仅用于描述的目的,而不能理解为指示或暗示相对重要性;除非另有规定或说明,术语“多个”是指两个或两个以上;术语“连接”、“固定”等均应做广义理解,例如,“连接”可以是固定连接,也可以是可拆卸连接,或一体地连接,或电连接;可以是直接相连,也可以通过中间媒介间接相连。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
本说明书的描述中,需要理解的是,本申请实施例所描述的“上”、“下”等方位词是以附图所示的角度来进行描述的,不应理解为对本申请实施例的限定。此外,在上下文中,还需要理解的是,当提到一个元件连接在另一个元件“上”或者“下”时,其不仅能够直接连接在另一个元件“上”或者“下”,也可以通过中间元件间接连接在另一个元件“上”或者“下”。
汽车制动系统的主要功用是使行驶中的汽车减速甚至停车、使下坡行驶的汽车速度保持稳定、使已停驶的汽车保持不动。目前,乘用车大多采用电子液压制动系统,驾驶员踩制动踏板,推动主缸或电缸对制动液加压,经制动管路流向四个制动卡钳,推动四个卡钳活塞前进,从而使得摩擦片和制动盘紧密接触产生制动力,使得车辆减速或停车。
但是,在制动过程中,由于制动卡钳、摩擦片、制动硬管和制动软管等部件的变形以及制动液本身的压缩等原因,制动系统压力在建立的过程中,不同压力下需要给制动系统补充不同容积的制动液。如果制动液压系统的刚度较低,建压需要补充更多的制动液,那么车辆的制动系统响应就更慢。上述压力和容积的关系,就反映整个制动液压系统的刚度和响应特性。因此,对车辆制动系统的压力容积(Pressure Volume,简称PV)特性的检测十分必要。
现有技术通常在PV测量前进行系统排气,直至制动液充满制动回路,然后进行PV测量,而在车辆出厂后,制动回路仍会进入空气,导致系统的PV特性和出厂时有所差别,使系统PV特性偏软。同时,现有测量装置体积质量较大,操作比较复杂,只能测量制动系统在无空气状态下的PV特性,而无法测量制动系统中存在不同空气含量时的PV特性。
本申请提供了一种压力容积测量系统,该测量系统可以在车辆出厂前或出厂后对制动系统的PV特性进行测试,既可以测量制动系统在无空气状态下的PV特性,也可以测量制动系统在具有设定体积的空气的状态下的PV特性,且该测量系统整体体积较 小,便于操作,也便于携带和车载使用。
具体地,如图1所示,该压力容积测量系统包括活塞缸1、活塞11、驱动装置2和制动液供给机构3。其中,活塞11设置于活塞缸1内,可以通过驱动装置2的驱动在活塞缸1中运动,以改变活塞缸1中用于存储制动液的空间的体积。活塞缸1包括进液口1a和出液口1b,出液口1b用于与制动系统200的进液口210相连,活塞11的运动可以将制动液通过制动系统200的进液口210推入车轮100上制动系统200的卡钳总成(制动卡钳)中。制动液供给机构3的第一端与活塞缸1的进液口1a相连,用于为活塞缸1供给制动液或回收活塞缸1内的制动液,制动液供给机构3的第二端用于与制动系统200的排气口220相连,制动系统200排出的气体可以被制动液供给机构3回收,且从排气口220流出的制动液也可以被制动液供给机构3回收。由此,在需要测量车辆的制动系统200的PV特性时,将制动系统200的进液口210连接至活塞缸1的出液口1b,将制动系统200的排气口220连接至制动液供给机构3的第二端即可,操作简单。
其中,如图1所示,活塞缸1上连接有压力检测装置4和温度检测装置5,压力检测装置4用于检测活塞缸1内制动液的压力,制动系统200连接至该压力容积测量系统后,该压力容积测量系统与制动系统200之间形成一种制动液闭合回路,活塞缸1内制动液的压力可以直接反映出制动系统200的压力。因此,通过压力检测装置4检测活塞缸1内制动液的压力可以简单有效地获得制动系统200的压力。
此外,温度检测装置5用于检测活塞缸1内制动液的温度。在车辆实际制动工作中,制动系统200的温度并非恒定不变,易受行驶工况及环境温度的影响而改变,制动系统200的温度也影响着制动系统200的PV特性。在制动系统200进行PV特性测量时,制动系统200的温度也是需要考虑的重要因素。本申请中,可以通过温度检测装置5来检测活塞缸1内制动液的温度,在获取到该活塞缸1内制动液的温度后,可以通过软件中的温度估算模型来估算制动系统200的温度,作为当前温度条件输入,并进一步在该温度条件下进行PV特性测量。上述软件可以配置于整车的行车电脑中。
其中,该压力检测装置4和温度检测装置5分别可以为压力传感器和温度传感器。
如图1所示,该压力容积测量系统还包括用于检测活塞11的位移量的位移量检测装置6。该位移量检测装置6可以设置于驱动装置2,也可以设置于能够检测活塞11的位移量的其它位置处。活塞11可以通过驱动装置2的驱动在活塞缸1内位移,该位移量检测装置6可以获得活塞11的位移值,从而能够通过该位移值以及活塞11在活塞缸1径向上的截面面积获得活塞11运动所带来的空间体积的变化量,即制动液容积的变化量。
如图1所示,该压力容积测量系统还包括流量检测装置7,流量检测装置7用于检测由活塞缸1向制动液供给机构3回流的制动液的流量。在测量制动系统200的PV特性时,可以先使制动液充满整个回路,排出回路中的空气,以测量制动系统200在无空气状态下的PV特性。当需要测量制动系统200在存在一定体积的空气的情况下的PV特性时,可以使活塞缸1内的制动液通过其进液口1a经过流量检测装置7回流至制动液供给机构3,流量检测装置7可以精确检测回流的制动液的体积。在制动液回流时,制动系统200中的压强减小,此时空气可以补充至制动系统200中,也就是说, 制动液回流的体积与补充的空气的体积相等,从而通过流量检测装置7检测制动液回流的体积,可以获得补充至制动系统200中空气的体积,而通过控制制动液回流的体积的大小,可以精确控制补充至制动系统200中的空气的体积的大小,从而实现了制动系统200中具有设定体积的空气的情况下对PV特性的测量。当然,可以在一次具有定量空气情况下对制动系统200的PV特性测量后,可以使活塞缸1内的制动液继续回流至制动液供给机构3中,并通过流量检测装置7控制回流的体积,以对制动系统200中进行下一次的空气补充,从而可以改变制动系统200中具有的空气的体积,实现了制动系统200在具有不同空气的体积的情况下连续进行PV特性测量,无需变更系统及回路结构,使操作更方便快捷,且通过流量检测装置7的控制可以保证制动系统200中补充空气的体积的精确度,保证了制动系统200PV特性测量结果的精确性。
需要说明的是,在每次测量PV特性时,均可以通过温度检测装置5检测检测活塞缸1内制动液的温度,并进一步获得制动系统200的温度,以获得在当前制动系统200温度条件下的PV特性,从而能够综合且准确地反映制动系统200在不同条件状况下的PV特性。
此外,现有的制动卡钳上的排气口220具有放气螺栓230,可以手动拧紧或拧松放气螺栓230来实现排气口220的关闭或打开。在一种实施例中,如图2所示,可以采用上述手动的方式实现排气口220的排气,手动操作的方式可以减少制动卡钳与该压力容积测量系统之间的零部件的使用,减小体积。但是,频繁拧紧或拧松放气螺栓230会加剧放气螺栓230的磨损,甚至出现滑丝问题,减小放气螺栓230的使用寿命。本申请的一种优选的实施例中,如图1所示,在制动液供给机构3的第二端与制动系统200的排气口220之间还串接有第一电磁阀31,该第一电磁阀31通过控制器8的控制可以实现对制动液供给机构3的第二端与制动系统200的排气口220之间流路的自动导通或断开。当需要使回路充满制动液以排出制动系统200中的空气时,控制器8控制第一电磁阀31开启,使制动液供给机构3的第二端与制动系统200的排气口220之间的流路导通,从而实现了该测量系统的快速自动化排气。在进行PV测试时,控制器8控制第一电磁阀31关闭,以使制动液供给机构3的第二端与制动系统200的排气口220之间的流路断开,避免制动液从排气口220流出。
该控制器8还分别与驱动装置2、压力检测装置4、位移量检测装置6和流量检测装置7连接。驱动装置2可以受控制器8的控制驱动活塞11运动,控制器8还可以控制压力检测装置4测量压力,控制位移量检测装置6检测活塞11的位移量,控制流量检测装置7检测回流的制动液的体积。
需要说明的是,现有普通的乘用车一般具有四个车轮,液压回路布置可能是H型或者X型,四个车轮中可以是位于车头处的两个车轮具有制动卡钳,也可以是位于车尾处的两个车轮具有制动卡钳,还可以是位于车辆对角的两个车轮具有制动卡钳。但是,上述每一种情况中,现有对多个车轮的制动卡钳进行PV特性测量时,需要多套独立的测量装置,或者只能采用一个测量装置依次对各个车轮的制动卡钳进行测量,测量时间长,效率低。
如图3所示,本申请提供的该压力容积测量系统,可以在活塞缸1上连接多个相同的检测回路,如每个检测回路均包括连接于活塞缸1及制动液供给机构3的管路、 第一电磁阀31等部件,每个检测回路均可以连接一个制动卡钳,从而可以实现对多个制动卡钳PV特性的测量,操作简单快捷,测量效率高。
具体地,如图1所示,流量检测装置7可以连接于活塞缸1的进液口1a。活塞缸1的进液口1a与制动液供给机构3相连,在活塞缸1的进液口1a与制动液供给机构3之间始终充满制动液,不会存有空气,将流量检测装置7连接于活塞缸1的进液口1a,可以保证流量检测装置7只能检测到回流的纯净制动液的流量,而不会受到空气的影响,保证了对制动液回流流量的检测精度。
当然,流量检测装置7也可以设置于其它能够检测到制动液回流流量的位置,对此本实施例不做限定。
具体地,如图1所示,制动液供给机构3包括储液容器34和促动装置33,促动装置33分别与储液容器34和活塞缸1的进液口1a相连,用于将储液容器34中的制动液通过活塞缸1的进液口1a泵入至活塞缸1内。该储液容器34用于存储制动液,促动装置33可以提供动力,用于将储液容器34内的制动液泵入至活塞缸1中。该促动装置33具体可以包括液压泵,液压泵可以提供将储液容器34中的制动液泵入至活塞缸1内的动力。
具体地,如图1所示,制动液供给机构3还包括静置容器35,静置容器35的一端通过促动装置33与储液容器34相连,静置容器35的另一端通过管路32连接于制动系统200的排气口220。该静置容器35可以用于存储由活塞缸1回流的部分制动液,也用于在排出制动系统200内的空气时由制动系统200的排气口220流出的制动液。该静置容器35中存储的制动液可以通过促动装置33回流至储液容器34中,以便于进入下一次的循环利用。此外,当静置容器35回收混合有空气的制动液时,混合有空气的制动液可以在静置容器35中静置以使空气和制动液分离,进而使纯净的制动液回流至储液容器34中。其中,在静置容器35中可以设置有主动分离装置,该主动分离装置可以加快制动液与空气的分离,提升分离和测试效率。
该促动装置33在一种具体的实施例中还可以包括泵,泵可以提供动力将静置容器35中的制动液抽回至储液容器34中。如图1所示,该促动装置33在另一种具体的实施例中还可以包括阀36,该阀36可以串接在静置容器35和储液容器34之间,静置容器35的高度可以高于储液容器34的高度,从而可以使静置容器35中的制动液通过自身重力的作用具有回流至储液容器34中的趋势,阀36可以通过控制器8的控制实现自动打开或关闭,以实现静置容器35和储液容器34之间流路的导通或断开,在阀36打开时,即可实现静置容器35内的制动液通过重力作用回流至储液容器34中。
其中,静置容器35上设置有用于与大气连通的通气口,该静置容器35中的制动液始终处于非充满的状态,即在静置容器35内制动液的上方具有一定的空间用于容纳空气,该空间通过通气口与大气连通,在活塞缸1内的部分制动液向制动液供给机构3中回流时,静置容器35中的空气可以通过管路32和制动系统200的排气口220补充至制动系统200中。
具体地,如图1所示,位于制动系统200排气口220和静置容器35之间的管路32可以包括第一管321和第二管322,第一管321的一端连接于第一电磁阀31的第一端口,第一管321的另一端用于连接制动系统200的排气口220。该第一管321为硬管,如金属材质的制动管,硬质塑料管等。第二管322为透明软管,第二管322的一端连 接于第一电磁阀31的第二端口,第二管322的另一端连接于静置容器35。在对制动系统200进行排气时,活塞缸1内的制动液依次经过活塞缸1的出液口1b和制动系统200的进液口210进入至制动系统200中,当制动液充满制动系统200时,制动液可以从制动系统200的排气口220流出,并能够依次经过第一管321和第一电磁阀31进入第二管322,由于第二管322为透明软管,操作者可以直观的观察到第二管322内是否进入制动液,如果第二管322内排出纯净制动液,则可以准确地判断出制动系统200中的空气已经完全排出,此时可以通过控制器8控制第一电磁阀31关闭,在第一电磁阀31、制动系统200、活塞缸1之间的回路中充满制动液,且无空气,从而可以开始测量无空气状态下的制动系统200的PV特性。而进入第二管322中的制动液可以流入至静置容器35中回收,测量结束后,可以进一步通过促动装置33将流回至储液容器34。其中,需要说明的是,对制动系统200中的空气是否已经完全排出的判断,可以通过直接观察第二管322内制动液的状态来判断,在第二管322内开始进入制动液时,制动液中混有空气,即为气液混合体,制动液中可以观察到明显的气泡,当进入第二管322中进入的制动液不混有气泡时,则说明进入第二管322中的制动液为纯净制动液,此时制动系统200内的空气已经被完全排出。
作为一种具体的实现方式,如图1所示,该压力容积测量系统还包括第二电磁阀12,第二电磁阀12串接于出液口1b和制动系统200的进液口210之间,第二电磁阀12与控制器8信号连接。该第二电磁阀12可以通过控制器8的控制实现打开或关闭,从而可以实现活塞缸1的出液口1b和制动系统200的进液口210之间流路的自动化导通或断开。在对制动系统200排气前,可以通过控制器8使第一电磁阀31和第二电磁阀12均打开,通过制动液供给机构3向活塞缸1内泵入制动液,活塞缸1内的制动液可以依次经过出液口1b、第二电磁阀12、制动系统200的进液口210后进入制动系统200中,直到第二管322中可以观察到制动液时,可以通过控制器8使第一电磁阀31关闭,同时使制动液供给机构3停止工作,然后可以进行无空气情况下的PV测量。
作为一种具体的实现方式,如图1所示,该压力容积测量系统还包括第三电磁阀13,第三电磁阀13串接于活塞缸1的进液口1a和流量检测装置7之间,第三电磁阀13与控制器8信号连接。该第三电磁阀13可以通过控制器8的控制实现打开或关闭,从而可以实现活塞缸1的进液口1a和制动液供给机构3之间流路的自动化导通或断开。在对制动系统200排气前,可以通过控制器8使第一电磁阀31、第二电磁阀12和第三电磁阀13均打开,通过制动液供给机构3向活塞缸1内泵入制动液,以排出空气。在制动系统200中的空气排完后,可以将第一电磁阀31和第三电磁阀13关闭,保持第二电磁阀12开启,此时可以通过驱动活塞11的运动实现对制动系统200PV测量。具体地,当驱动装置2推动活塞11向前运动时,活塞11挤压制动液,使制动系统200压力增大,通过压力检测装置4可以获取实时的压力值,而活塞11运动所带来的体积变化可以通过位移检测装置所测量的活塞11的位移量通过计算间接获得,从而可以根据活塞11运动的不同位置对应的PV值,获得制动系统200在无空气情况下的PV特性曲线,如图4所示。在图4中,横轴表示制动系统200的压力P,纵轴表示制动系统200中需要的制动液的体积V,曲线1至曲线3由下至上分布,曲线1至曲线3分别代表的制动系统200中混入的空气的体积依次增多。由图4可知,随着混入空气的体积 的增多,在建立相同压力P0的情况下,制动系统200需要的制动液的体积会越大,即V1>V2>V3。
而在需要测量具有定量空气情况下的PV特性曲线时,可以先通过驱动装置2控制活塞11回位至初始位置,通过控制器8使第一电磁阀31、第二电磁阀12和第三电磁阀13均打开,启动促动装置33,促动装置33可以将活塞缸1内的部分制动液抽回至静置容器35中,在抽回的过程中可以通过流量检测装置7控制抽回的体积,进而控制向制动系统200中补充的空气的体积。在空气补充完成时,使第一电磁阀31和第三电磁阀13关闭,保持第二电磁阀12开启,启动驱动装置2,通过驱动装置2控制活塞11以一定的高频率快速往复运动一定的时间,以使制动液和空气充分混合,变成气液混合态。然后可以通过驱动装置2控制活塞11缓慢前进,推压制动液,并记录活塞11运动的不同位置对应的PV值,获得制动系统200在具有定量空气情况下的PV特性曲线。
如果需要进一步增加制动系统200中的空气的体积,可以重复上述补充空气的操作,在此不再赘述。
由此,通过第一电磁阀31、第二电磁阀12和第三电磁阀13的配合,可以实现该压力容积测量系统的自动化控制,方便了操作,缩短了测量时间,提升了操作的精确性。
作为一种具体的实现方式,对于驱动装置2而言,驱动装置2可以包括电机21和传动螺杆22,传动螺杆22与电机21传动相连,且传动螺杆22的一端与活塞11相连。电机21的正转和反转可以驱动传动螺杆22向相反的方向运动,从而可以通过传动螺杆22控制活塞11向前或向后运动,便于操作控制。
其中,在一种具体的实施例中,位移量检测装置6可以为位移传感器,位移传感器设置于传动螺杆22。位移传感器可以发出位移量信号,控制器8根据该位移量信号获得活塞11的位移量。在传动螺杆22移动时,位移传感器可以检测出传动螺杆22的轴向位移量,即活塞11的位移量,控制器8根据该位移量和存储的活塞11截面积可以计算得到活塞11移动所带来的体积的变化量,即为制动液容积的变化量。其中,活塞11截面积为与活塞11运动方向正交的截面积。
在另一种具体的实施例中,位移量检测装置6可以为转速位置传感器,转速位置传感器设置于电机21。该转速位置传感器可以获得电机21的旋转角度,控制器8根据该旋转角度和存储的电机21与传动螺杆22之间的传动比能够计算得到传动螺杆22的位移量,即为活塞11的位移量,控制器8根据该位移量和存储的活塞11截面积可以计算得到活塞11移动所带来的体积的变化量,即为制动液容积的变化量。其中,活塞11截面积为与活塞11运动方向正交的截面积。
作为一种具体的实现方式,如图1和图5所示,活塞缸1上设置有通孔,活塞11上设置有限位件111,传动螺杆22穿过通孔连接于限位件111,限位件111用于调节活塞11在传动螺杆22上的位置。需要说明的是,不同的制动系统200对活塞缸1内存储的制动液的体积的要求不同,因此,在该压力容积测量系统使用前,需要根据待测的制动系统200对活塞缸1内用于存储制动液的空间进行匹配标定。本实施例中,该限位件111可以固定于活塞11,并能够带动活塞11在传动螺杆22上移动及固定,在传动螺杆22处于初始位置时,活塞11可以通过限位件111的调节处于与待测制动系统200匹配的位置,从 而可以使该压力容积测量系统具有对不同制动系统200的适用性,拓宽了该压力容积测量系统的应用范围。
具体地,如图5所示,传动螺杆22上设置有螺纹段221,限位件111上设置有螺纹孔,限位件111通过螺纹孔和螺纹段221的配合套接于传动螺杆22,限位件111上设置有用于标定活塞缸1内容积的刻度111a。在需要调节活塞11在传动螺杆22上的位置时,可以转动限位件111,限位件111可以通过与传动螺杆22的螺纹配合发生轻微的轴向位移,从而可以带动活塞11实现位置调节,而限位件111上的刻度111a可以为操作者提供直观的参照,保证调节的精确性。
本申请实施例还提供了一种压力容积测量方法,如图6所示,该方法采用本申请任意实施例提供的压力容积测量系统,该方法包括:
步骤S1,向待测制动系统200加注制动液,排出待测制动系统200中的空气。
具体地,在需要对制动系统进行压力容积测量时,可以先将待测制动系统200连接于该压力容积测量系统。然后,可以通过制动液供给机构3向活塞缸1内补充制动液,活塞缸1内的制动液可以流入至待测制动系统200中,当制动液充满待测制动系统200中时,待测制动系统200中的空气被完全排出。
步骤S2,测量待测制动系统200在第一状态下的压力容积曲线。
具体地,本实施例中,该第一状态为无空气状态,驱动装置2可以控制活塞11缓慢前进,活塞11推压制动液时,活塞缸1内制动液的压力发生变化,同时活塞11的移动可以带来制动液体积的变化,根据活塞11不同位置处的活塞缸1内制动液的压力值和体积变化量,可以得到无空气状态下的制动系统200的PV曲线。
步骤S3,从待测制动系统200中回收设定体积的制动液,以使待测制动系统200中加注设定体积的空气。
在测量无空气状态下的制动系统200的PV曲线后,可以继续进一步测量具有定量空气情况下的PV特性。具体地,可以将活塞缸1内的部分制动液抽回至制动液供给机构3中,被抽回的制动液的体积可以通过流量检测装置7控制,在活塞缸1内的制动液被抽出时,制动液压力减小,此时空气可以通过制动系统200的排气口220补充至制动系统200中,而补充的空气的体积与被抽出的制动液的体积相等,从而通过控制制动液抽出的体积可以精确控制补充的空气的体积,实现对制动系统200定量补充空气。
步骤S4,获取待测制动系统200的温度。
在车辆实际制动工作中,制动系统200的温度并非恒定不变,制动系统200的温度也影响着制动系统200的PV特性。在制动系统200进行PV特性测量时,制动系统200的温度也是需要考虑的重要因素。本申请中,可以通过温度检测装置5来检测活塞缸1内制动液的温度,在获取到该活塞缸1内制动液的温度后,可以通过软件中的温度估算模型来估算制动系统200的温度,作为当前温度条件输入,并进一步在该温度条件下进行PV特性测量。上述软件可以配置于整车的行车电脑中。
步骤S5,测量待测制动系统200在第二状态下及不同温度条件下的压力容积曲线。本实施例中,该第二状态为具有设定体积空气的状态。
本申请提供的压力容积测量方法,实现了制动系统200在无空气情况下和具有不同 空气的体积的情况下连续进行PV特性测量,无需变更系统及回路结构,使操作更方便快捷,且通过流量检测装置7的控制可以保证制动系统200中补充空气的体积的精确度,保证了制动系统200PV特性测量结果的精确性。通过对制动系统200温度的检测,可以获得在当前制动系统200温度条件下的PV特性,从而能够综合且准确地反映制动系统200在不同条件状况下的PV特性。
需要说明的是,在步骤S6完成一次具有设定体积空气状态下的压力容积曲线的测量后,可以继续进一步重复步骤S4至步骤S6,从而可以在制动系统200具有不同空气的体积的情况下的PV特性。由此,该方法可以实现制动系统200在具有不同空气的体积及不同制动系统200温度的情况下连续进行PV特性测量,
具体地,在步骤S3之后,该方法还包括:
步骤S31,使待测制动系统200中的空气和制动液混合。
在空气补充完成时,可以启动驱动装置2,通过驱动装置2控制活塞11以一定的高频率快速往复运动一定的时间,以使制动液和空气充分混合,变成气液混合态。然后可以通过驱动装置2控制活塞11缓慢前进,推压制动液,并记录活塞11运动的不同位置对应的PV值,获得制动系统200在具有定量空气情况下的PV特性曲线。
具体地,如图7所示,步骤S1具体包括:
步骤S11,控制第一电磁阀31、第二电磁阀12和第三电磁阀13打开,启动促动装置33,以使储液容器34中的制动液注入活塞缸1和待测制动系统200中。
步骤S12,判断从第二管322中是否流出纯净制动液;如果是,进入步骤S13。
步骤S13,停止促动装置33,控制第一电磁阀31和第三电磁阀13关闭。
其中,在对制动系统200进行排气时,活塞缸1内的制动液依次经过活塞缸1的出液口1b和制动系统200的进液口210进入至制动系统200中,当制动液充满制动系统200时,制动液可以从制动系统200的排气口220流出,并能够依次经过第一管321和第一电磁阀31进入第二管322,由于第二管322为透明软管,操作者可以直观的观察到第二管322内是否进入制动液,如果第二管322内进入了制动液,则可以准确地判断出制动系统200中的空气已经完全排出,此时可以通过控制器8控制第一电磁阀31和第三电磁阀13关闭,在第一电磁阀31、制动系统200、活塞缸1之间的回路中充满制动液,且无空气,从而可以开始测量无空气状态下的制动系统200的PV特性。而进入第二管322中的制动液可以流入至静置容器35中回收,并可以进一步通过促动装置33将流回至储液容器34。
具体地,如图8所示,步骤S2具体包括:
步骤S21,启动驱动装置2,以控制活塞11移动以推压制动液。
步骤S22,获取活塞11运动至不同位置处所对应的位移量、活塞缸1内制动液的压力值及活塞缸1内制动液的温度值。
其中,可以通过位移检测装置获取活塞11的位移量,通过压力检测装置4获得活塞缸1内制动液的压力,通过温度检测装置5获得活塞缸1内制动液的温度。
步骤S23,根据位移量和活塞11的截面面积获得活塞缸1内制动液体积的变化量,并根据制动液体积的变化量和压力值获得压力容积曲线,根据活塞缸1内的温度值获得待测制动系统200的温度。其中,活塞11截面积为与活塞11运动方向正交的截面 积。
具体地,如图9所示,步骤S3具体包括:
步骤S3a,控制第一电磁阀31、第二电磁阀12和第三电磁阀13打开,启动促动装置33,以使活塞缸1内的部分制动液抽回至静置容器35中。
步骤S3b,通过流量检测装置7获得被抽回的制动液的体积,并发出流量信号。
步骤S3c,控制器8根据流量信号判断被抽回的制动液的体积是否达到预设体积。
步骤S3d,如果是,控制第一电磁阀31和第三电磁阀13关闭,并保持第二电磁阀12打开。
在制动液抽回的过程中,该流量检测装置7可以实时测量制动液回流的体积,并发出流量信号,控制器8可以对该流量信号进行分析,判断是否达到预设值,如果是,则控制第一电磁阀31和第三电磁阀13关闭,此时,完成向制动系统200补充空气的操作。
本申请实施例还提供了一种存储介质,该存储介质包括存储的应用程序,该应用程序执行本申请任意实施例提供的压力容积测量方法。
本申请实施例还提供了一种测量装置,该测量装置包括第一控制模块、第二控制模块、第一测量模块和第二测量模块。
其中,第一控制模块用于发出第一信号,第一信号为向待测制动系统加注制动液,排出待测制动系统中的空气。
第二控制模块用于发出第二信号,第二信号为从待测制动系统中回收设定体积的制动液,以使待测制动系统中加注设定体积的空气。
第一测量模块用于测量待测制动系统在无空气状态下的压力容积曲线;测量模块还用于测量待测制动系统在具有设定体积空气状态下的压力容积曲线。
第二测量模块用于测量待测制动系统的温度。
以上所述仅为本申请的优选实施例而已,并不用于限制本申请,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。