[go: up one dir, main page]

CN117887688B - A high-activity, high-stability lipase mutant and its encoding gene and application - Google Patents

A high-activity, high-stability lipase mutant and its encoding gene and application Download PDF

Info

Publication number
CN117887688B
CN117887688B CN202410258819.1A CN202410258819A CN117887688B CN 117887688 B CN117887688 B CN 117887688B CN 202410258819 A CN202410258819 A CN 202410258819A CN 117887688 B CN117887688 B CN 117887688B
Authority
CN
China
Prior art keywords
lipase
amino acid
mutant
activity
seq
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202410258819.1A
Other languages
Chinese (zh)
Other versions
CN117887688A (en
Inventor
常俊璋
张洪斌
杨静文
胡雪芹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hefei University of Technology
Original Assignee
Hefei University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hefei University of Technology filed Critical Hefei University of Technology
Priority to CN202410258819.1A priority Critical patent/CN117887688B/en
Publication of CN117887688A publication Critical patent/CN117887688A/en
Application granted granted Critical
Publication of CN117887688B publication Critical patent/CN117887688B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/16Hydrolases (3) acting on ester bonds (3.1)
    • C12N9/18Carboxylic ester hydrolases (3.1.1)
    • C12N9/20Triglyceride splitting, e.g. by means of lipase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/80Vectors or expression systems specially adapted for eukaryotic hosts for fungi
    • C12N15/81Vectors or expression systems specially adapted for eukaryotic hosts for fungi for yeasts
    • C12N15/815Vectors or expression systems specially adapted for eukaryotic hosts for fungi for yeasts for yeasts other than Saccharomyces
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y301/00Hydrolases acting on ester bonds (3.1)
    • C12Y301/01Carboxylic ester hydrolases (3.1.1)
    • C12Y301/01003Triacylglycerol lipase (3.1.1.3)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/645Fungi ; Processes using fungi
    • C12R2001/84Pichia

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Biomedical Technology (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Mycology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Plant Pathology (AREA)
  • Medicinal Chemistry (AREA)
  • Enzymes And Modification Thereof (AREA)

Abstract

The invention relates to the field of novel lipase mutants, in particular to a lipase mutant with high activity and high stability, and a coding gene and application thereof, wherein the lipase of thermomyces lanuginosus is taken as a template, and the 113 th amino acid Ala is mutated into Gly, so that the activity of the lipase mutant is improved; then mutating the 74 th amino acid Leu into Asn to form a specific sequence of Asn74-Tyr75-Ser76, and introducing glycosylation to obtain a lipase mutant TLL291/A113G/L74N with enhanced heat stability and organic solvent tolerance. The lipase mutant prepared by the invention can be widely applied to the production process in the fields of paper making, food or medicine, and has high activity, high thermal stability and high methanol/tertiary butanol tolerance.

Description

一种高活力、高稳定性的脂肪酶突变体及其编码基因和应用A high-activity, high-stability lipase mutant and its encoding gene and application

技术领域Technical Field

本发明涉及生物工程与能源技术领域,还涉及新型脂肪酶突变体领域,尤其涉及一种高活力、高稳定性的脂肪酶突变体及其编码基因和应用。The present invention relates to the field of bioengineering and energy technology, and also to the field of novel lipase mutants, in particular to a lipase mutant with high activity and high stability, a coding gene thereof and an application thereof.

背景技术Background technique

脂肪酶即三酰基甘油酰基水解酶,隶属于羧基酯水解酶类,可作用于甘油三酯的酯键,催化天然底物油脂水解,生成脂肪酸、甘油和甘油单酯或二酯。脂肪酶来源广泛,安全无毒,应用范围广,在食品、药品、造纸和能源等领域展现出了重要的应用潜力。但是,很多食品、洗涤剂以及生物柴油的制备或者使用过程都需要在较高温度下进行,而脂肪酶的低活性、热敏感性以及醇类对脂肪酶的变性作用是限制脂肪酶广泛应用的关键问题。因此,设计一种具有高活性、热稳定性和有机溶剂耐受性的脂肪酶具有重要意义。Lipase is a triacylglycerol acyl hydrolase, which belongs to the class of carboxyl ester hydrolases. It can act on the ester bonds of triglycerides, catalyze the hydrolysis of natural substrate oils and fats, and generate fatty acids, glycerol, and mono- or di-glycerides. Lipase is widely available, safe and non-toxic, and has a wide range of applications. It has shown important application potential in the fields of food, medicine, papermaking, and energy. However, the preparation or use of many foods, detergents, and biodiesel requires high temperatures, and the low activity, thermal sensitivity, and denaturation of lipase by alcohols are key issues that limit the widespread application of lipase. Therefore, it is of great significance to design a lipase with high activity, thermal stability, and tolerance to organic solvents.

目前,固定化技术、蛋白质工程和异源表达等是提高脂肪酶活性、热稳定性和有机溶剂耐受性的常用方法。其中,蛋白质工程改善酶学性质的方法包括非理性设计(定向进化)、半理性设计和理性设计三种方法;半理性设计主要借助生物信息学方法,基于同源蛋白序列比对、三维结构或已有知识,理性选取多个氨基酸残基作为改造靶点,结合有效密码子的理性选用,通过构建高质量突变体文库,有针对性地对蛋白质进行改造;异源表达指在一种生物体中使用另一种生物体的DNA或RNA作为外源基因或表达者,使基因或其产品能够产生特定的功能或性状。在生物催化领域中,半理性设计策略占据了主导地位,在该技术的帮助下,许多酶获得了性能强化的突变体。At present, immobilization technology, protein engineering and heterologous expression are common methods to improve the activity, thermal stability and organic solvent tolerance of lipase. Among them, protein engineering methods to improve enzymatic properties include irrational design (directed evolution), semi-rational design and rational design. Semi-rational design mainly uses bioinformatics methods to rationally select multiple amino acid residues as transformation targets based on homologous protein sequence alignment, three-dimensional structure or existing knowledge, and combines the rational selection of effective codons to construct a high-quality mutant library to transform proteins in a targeted manner. Heterologous expression refers to the use of DNA or RNA of another organism as an exogenous gene or expressor in one organism, so that the gene or its product can produce specific functions or traits. In the field of biocatalysis, semi-rational design strategies have occupied a dominant position. With the help of this technology, many enzymes have obtained mutants with enhanced performance.

研究表明,巴斯德毕赤酵母中的两种N-乙酰葡萄糖胺连接甘露糖和天冬酰胺可以形成糖蛋白,糖蛋白在N-糖基化过程中,预先合成的低聚糖可以通过天冬酰胺(N)残基的N-糖苷键连接到识别序列Asn-Xaa-Ser/Thr(其中Xaa是脯氨酸以外的氨基酸)上。该反应通过影响蛋白质的折叠、胞内定位和结构,提高了蛋白质的耐甲醇抗性和热稳定性。Studies have shown that two N-acetylglucosamines in Pichia pastoris can link mannose and asparagine to form glycoproteins. During the N-glycosylation process of glycoproteins, pre-synthesized oligosaccharides can be linked to the recognition sequence Asn-Xaa-Ser/Thr (where Xaa is an amino acid other than proline) through the N-glycosidic bond of the asparagine (N) residue. This reaction improves the methanol resistance and thermal stability of proteins by affecting their folding, intracellular localization and structure.

又例如,公告号为CN104762277B的发明专利,公开糖基化改造提高脂肪酶表达的方法、突变酶及其应用,将米根霉脂肪酶的前导肽序列进行N-糖基化突变,将SAS和/或NT氨基酸分别改造为N-糖基化位点NGT和/或NLT,得到的突变体酶proROLA、proROLB、proROLAB的胞外蛋白浓度分别比未进行糖基化的proROL提高了211%、188%、233%,发酵罐培养时酶活分别达到8210U·mL-1、8457U·mL-1和9366U·mL-1,而未突变的proROL的胞外酶活几乎为零。如公告号为CN115369099B的发明专利,公开一种米黑根毛霉脂肪酶突变体及提高米黑根毛霉脂肪酶活性和/或甲醇耐受性的方法,在米黑根毛霉脂肪酶成熟肽的β-sheet二级结构中引入糖基化修饰,获得了高活性高甲醇耐受性的脂肪酶突变体;与改造前相比,本发明产生的突变酶P167N,L242N,R267N和P300N酶活分别提高了33.90,17.90,14.07和12.26倍,当在60%的甲醇溶液中孵育1h后,突变酶残余活力由改造前的19.10%提高到60%以上。For another example, the invention patent with announcement number CN104762277B discloses a method for improving lipase expression by glycosylation modification, a mutant enzyme and its application. The leading peptide sequence of Rhizopus oryzae lipase is subjected to N-glycosylation mutation, and the SAS and/or NT amino acids are respectively transformed into N-glycosylation sites NGT and/or NLT. The extracellular protein concentrations of the obtained mutant enzymes proROLA, proROLB and proROLAB are increased by 211%, 188% and 233% respectively compared with the non-glycosylated proROL. The enzyme activities during fermentation tank culture reach 8210U·mL -1 , 8457U·mL -1 and 9366U·mL -1 respectively, while the extracellular enzyme activity of the non-mutated proROL is almost zero. For example, the invention patent with announcement number CN115369099B discloses a mutant of Rhizomucor miehei lipase and a method for improving the activity and/or methanol tolerance of Rhizomucor miehei lipase. Glycosylation modification is introduced into the β-sheet secondary structure of the mature peptide of Rhizomucor miehei lipase to obtain a lipase mutant with high activity and high methanol tolerance. Compared with before the modification, the enzyme activities of the mutant enzymes P167N, L242N, R267N and P300N produced by the present invention are increased by 33.90, 17.90, 14.07 and 12.26 times, respectively. After incubation in 60% methanol solution for 1 hour, the residual activity of the mutant enzyme is increased from 19.10% before the modification to more than 60%.

综上所述,如何通过蛋白质工程改造获制能新型改进的高性能耐受性脂肪酶突变体是亟待解决的技术问题。In summary, how to obtain new and improved high-performance tolerant lipase mutants through protein engineering is a technical problem that needs to be solved urgently.

发明内容Summary of the invention

有鉴于此,本发明的目的在于提出一种新型的脂肪酶突变体及其编码基因和应用,通过定点突变和引入糖基化的方法,获得高活力、高热稳定性、醇类耐受性增强的脂肪酶突变体。In view of this, the purpose of the present invention is to propose a novel lipase mutant and its encoding gene and application, and to obtain a lipase mutant with high activity, high thermal stability and enhanced alcohol tolerance through site-directed mutagenesis and introduction of glycosylation.

基于上述目的,本发明提供了一种高活力、高稳定性的脂肪酶突变体,所述的脂肪酶突变体由氨基酸序列为SEQ ID NO:1的脂肪酶113位氨基酸Ala突变为Gly,并且74位氨基酸Leu突变为Asn,形成Asn74-Tyr75-Ser76的特定序列得到,其氨基酸序列为SEQ ID NO:4。Based on the above purpose, the present invention provides a high-activity and high-stability lipase mutant, which is obtained by mutating the amino acid Ala at position 113 of the lipase with an amino acid sequence of SEQ ID NO:1 to Gly, and mutating the amino acid Leu at position 74 to Asn, forming a specific sequence of Asn74-Tyr75-Ser76, and its amino acid sequence is SEQ ID NO:4.

优选的是,由梳棉状嗜热丝孢菌脂肪酶的氨基酸序列为SEQ ID NO:1中的第113位氨基酸Ala突变为Gly所形成的中间突变体的氨基酸序列如SEQ ID NO:2所示。Preferably, the amino acid sequence of the Thermomyces lanuginosus lipase is as shown in SEQ ID NO:2, wherein the amino acid sequence of the intermediate mutant formed by the mutation of the 113th amino acid Ala to Gly in SEQ ID NO:1.

优选的是,编码所述中间突变体的核苷酸序列如SEQ ID NO:3所示。Preferably, the nucleotide sequence encoding the intermediate mutant is shown in SEQ ID NO:3.

本发明还提供所述的高活力、高稳定性的脂肪酶突变体的编码基因。The present invention also provides a coding gene for the lipase mutant with high activity and high stability.

优选的是,所述编码基因的核苷酸序列如SEQ ID NO:5所示。Preferably, the nucleotide sequence of the encoding gene is as shown in SEQ ID NO:5.

本发明还提供插入所述的脂肪酶突变体的编码基因的重组质粒。The invention also provides a recombinant plasmid into which the coding gene of the lipase mutant is inserted.

本发明还进一步提供一种重组毕赤酵母基因工程菌:该基因工程菌包含所述的重组质粒,保藏于中国微生物菌种保藏管理委员会普通微生物中心,分类命名为毕赤酵母Pichia sp.,保藏日期为2023.12.21,保藏编号为CGMCC No.29367。The present invention further provides a recombinant Pichia pastoris genetically engineered bacterium: the genetically engineered bacterium comprises the recombinant plasmid, is deposited in the General Microbiological Center of the China Microbiological Culture Collection Administration, is classified and named Pichia sp ., has a deposit date of 2023.12.21, and a deposit number of CGMCC No.29367.

本发明还进一步提供所述的脂肪酶突变体在食品加工、药品合成、皮革生产或造纸工业中的应用。The present invention further provides the application of the lipase mutant in food processing, drug synthesis, leather production or papermaking industry.

本发明还进一步提供一种脂肪酶突变体的制备方法,包括以下步骤:The present invention further provides a method for preparing a lipase mutant, comprising the following steps:

(1)以来源于梳棉状嗜热丝孢菌的脂肪酶基因为模板合成野生型脂肪酶,将该酶命名为TLL291,其氨基酸序列如SEQ ID NO:1所示;(1) A wild-type lipase was synthesized using the lipase gene from Thermomyces lanuginosus as a template, and the enzyme was named TLL291. The amino acid sequence of the enzyme is shown in SEQ ID NO: 1;

(2)获取脂肪酶的晶体结构,在NCBI数据库中查找同源性高的脂肪酶基因,通过分析序列一致性,确定脂肪酶的“盖子”结构氨基酸序列;以TLL291为模版,选择“盖子”结构上与同源序列不一致的氨基酸残基Ala113突变为Gly,突变体氨基酸序列如SEQ ID NO:2所示,核苷酸序列如SEQ ID NO:3所示;(2) Obtain the crystal structure of lipase, search for lipase genes with high homology in the NCBI database, and determine the amino acid sequence of the "lid" structure of lipase by analyzing the sequence consistency; using TLL291 as a template, select the amino acid residue Ala113 in the "lid" structure that is inconsistent with the homologous sequence and mutate it to Gly. The amino acid sequence of the mutant is shown in SEQ ID NO:2, and the nucleotide sequence is shown in SEQ ID NO:3;

所述Ala113Gly突变引物为:The Ala113Gly mutation primer is:

A113G For:A113G For:

5’-GTTGAAAATTGGATTGGCAATTTGGCTGCTGAT-3’5’-GTTGAAAATTGGATTGGCAATTTGGCTGCTGAT-3’

A113G Rev:A113G Rev:

5’-GCCAATCCAATTTTCAACAGATCTTGAACCTCT-3’;5′-GCCAATCCAATTTTCAACAGATCTTGAACCTCT-3′;

(3)分析脂肪酶的全长氨基酸序列,在步骤(2)的基础上,将氨基酸残基Leu74突变为Asn,使之形成Asn74-Tyr75-Ser76的糖基化序列,突变体氨基酸序列如SEQ ID NO:4所示,核苷酸序列如SEQ ID NO:5所示;(3) analyzing the full-length amino acid sequence of the lipase, and based on step (2), mutating the amino acid residue Leu74 to Asn to form a glycosylation sequence of Asn74-Tyr75-Ser76. The amino acid sequence of the mutant is shown in SEQ ID NO:4, and the nucleotide sequence is shown in SEQ ID NO:5;

所述Leu74Asn突变引物为:The Leu74Asn mutation primer is:

L74N For:L74N For:

5’-GCTGATGCTACTTTTAACTATTCTTTTGAAGATTCT-3’5’-GCTGATGCTACTTTTAACTATTCTTTTGAAGATTCT-3’

L74N Rev:L74N Rev:

5’-GTTAAAAGTAGCATCAGCAGCATCAACTTCAGGACA-3’;5′-GTTAAAAGTAGCATCAGCAGCATCAACTTCAGGACA-3′;

(4)用于表达上述步骤中所述野生型脂肪酶及其突变体的质粒载体为pPICZαA;(4) The plasmid vector used to express the wild-type lipase and its mutants in the above step is pPICZαA;

(5)步骤(4)中所述重组表达质粒的宿主细胞为毕赤酵母GS115(5) The host cell of the recombinant expression plasmid in step (4) is Pichia pastoris GS115 ;

在以上步骤中,所述原始脂肪酶及其突变体均以KpnI-XbaI为克隆位点将其插入到pPICZαA载体中,采用内切酶KpnⅠ或者XbaⅠ进行线性化。In the above steps, the original lipase and its mutants were inserted into the pPICZαA vector using Kpn I- Xba I as cloning sites, and linearized using endonuclease Kpn Ⅰ or Xba Ⅰ.

本发明的有益效果:Beneficial effects of the present invention:

本发明通过“盖子”结构上氨基酸的定点突变,首先提高了脂肪酶的活力;通过分析氨基酸序列引入了糖基化位点突变,经糖基化之后的脂肪酶突变体热稳定性显著提高、甲醇及叔丁醇耐受性显著增强,可应用于能源、化工、药品等领域,更具工业化应用价值。The present invention firstly improves the activity of lipase by site-directed mutation of amino acids on the "lid" structure; and introduces glycosylation site mutation by analyzing the amino acid sequence. After glycosylation, the thermal stability of the lipase mutant is significantly improved, and the tolerance to methanol and tert-butanol is significantly enhanced. It can be applied to the fields of energy, chemical industry, and pharmaceuticals, and has greater industrial application value.

相比于未改造的野生型脂肪酶,本发明构建出的脂肪酶突变体在1.5mM底物浓度下,突变体脂肪酶活力提高了98.1%,在50℃水浴保温24h后,仍有72%的剩余活力;发明人还发现,该脂肪酶突变体TLL291/A113G/L74N在60%(v/v)甲醇中保温24h后还有33.6%的剩余活力,尤其在60%(v/v)叔丁醇中更易维持高活力,在叔丁醇中孵育12h后检测仍有85.8%的活力,孵育24h后剩余38.6%的活力,表现出优异的有机溶剂耐受性。Compared with the unmodified wild-type lipase, the lipase mutant constructed by the present invention has an activity increased by 98.1% at a substrate concentration of 1.5 mM, and still has 72% of residual activity after being incubated in a 50°C water bath for 24 hours. The inventors also found that the lipase mutant TLL291/A113G/L74N still has 33.6% of residual activity after being incubated in 60% (v/v) methanol for 24 hours, and is particularly easy to maintain high activity in 60% (v/v) tert-butanol. After incubation in tert-butanol for 12 hours, the activity is still 85.8%, and after incubation for 24 hours, the activity remains 38.6%, showing excellent organic solvent tolerance.

附图说明BRIEF DESCRIPTION OF THE DRAWINGS

为了更清楚地说明本发明或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。In order to more clearly illustrate the technical solutions in the present invention or the prior art, the drawings required for use in the embodiments or the description of the prior art will be briefly introduced below. Obviously, the drawings in the following description are only for the present invention. For ordinary technicians in this field, other drawings can be obtained based on these drawings without paying creative work.

图1为本发明实施例2中脂肪酶水解pNPP的显色反应图;FIG1 is a color reaction diagram of lipase hydrolysis of pNPP in Example 2 of the present invention;

图2为本发明实施例2中pNPP法测脂肪酶活力的标准曲线图;FIG2 is a standard curve diagram of lipase activity measured by the pNPP method in Example 2 of the present invention;

图3为本发明实施例2中野生型脂肪酶与其突变体TLL291/A113G在不同pNPP底物浓度下的活力检测对比图;其中,WT表示野生型脂肪酶的活力曲线,A113G表示脂肪酶突变体TLL291/A113G的活力曲线;FIG3 is a comparison diagram of the activity detection of the wild-type lipase and its mutant TLL291/A113G at different pNPP substrate concentrations in Example 2 of the present invention; wherein WT represents the activity curve of the wild-type lipase, and A113G represents the activity curve of the lipase mutant TLL291/A113G;

图4为本发明实施例3中野生型脂肪酶与其突变体TLL291/A113G/L74N的半衰期对比图;FIG4 is a comparison diagram of the half-lives of the wild-type lipase and its mutant TLL291/A113G/L74N in Example 3 of the present invention;

图5为本发明实施例4中野生型脂肪酶与其突变体TLL291/A113G/L74N在甲醇环境中保温时剩余活力对比图;FIG5 is a comparison of the residual activities of the wild-type lipase and its mutant TLL291/A113G/L74N in Example 4 of the present invention when incubated in a methanol environment;

图6为本发明实施例4中野生型脂肪酶与其突变体TLL291/A113G/L74N在叔丁醇环境中保温时剩余活力对比图。FIG6 is a comparison of the residual activities of the wild-type lipase and its mutant TLL291/A113G/L74N in Example 4 of the present invention when incubated in a tert-butanol environment.

具体实施方式Detailed ways

为使本发明的目的、技术方案和优点更加清楚明白,以下结合具体实施例,对本发明进一步详细说明。In order to make the objectives, technical solutions and advantages of the present invention more clearly understood, the present invention is further described in detail below in conjunction with specific embodiments.

实施例1 脂肪酶及其突变体的构建与获取Example 1 Construction and acquisition of lipase and its mutants

(1)以来源于梳棉状嗜热丝孢菌的脂肪酶基因为模板合成人工基因,将该酶命名为TLL291,其氨基酸序列如SEQ ID NO:1所示,以KpnI-XbaI为克隆位点将其插入到pPICZαA载体中,通过 PCR 扩增技术,得到野生重组表达质粒pPICZαA-TLL291;(1) An artificial gene was synthesized using the lipase gene from Thermomyces lanuginosus as a template. The enzyme was named TLL291, and its amino acid sequence is shown in SEQ ID NO: 1. The enzyme was inserted into the pPICZαA vector using Kpn I- Xba I as the cloning site, and the wild recombinant expression plasmid pPICZαA-TLL291 was obtained by PCR amplification technology;

TLL291脂肪酶的氨基酸序列(SEQ ID NO:1):Amino acid sequence of TLL291 lipase (SEQ ID NO: 1):

MRSSLVLFFLSAWTALARPVRRAVPQDLLDQFELFSQYSAAAYCAANNHAPVGSDVTCSENVCPEVDAADATFLYSFEDSGLGDVTGLLALDNTNKLIVLSFRGSRSVENWIANLAADLTEISDICSGCEGHVGFVTSWRSVADTIREQVQNAVNEHPDYRVVFTGHSLGGALATIAAAALRGNGYNIDVFSYGAPRVGNRAFAEFLTAQTGGTLYRITHTNDIVPRLPPRDWGYSHSSPEYWVTSGNDVPVTANDITVVEGIDSTDGNNQGNIPDIPSHLWYFGPISECD;MRSSLVLFFLSAWTALARPVRRAVPQDLLDQFELFSQYSAAAYCAANNHAPVGSDVTCSENVCPEVDAADATFLYSFEDSGLGDVTGLLALDNTNKLIVLSFRGSRSVENWIANLAADLTEISDICSGCEGHVGFVTSWRSVADTIREQVQNAVNEHPDYRVVFTGHSLGGALATIAAAALRGNGYNIDVFSYGAPRVGNRAFAEFLTAQTGGTLYRITHTNDIVPRLPPRDWGYSHSSPEYWVTSGNDVPVTANDITVVEGIDSTDGNNQGNIPDIPSHLWYFGPISECD;

(2)获取脂肪酶的晶体结构,在NCBI数据库中查找同源性高的脂肪序列,通过分析序列一致性,确定TLL291的“盖子”结构为Ser105-Asp118区域,以步骤(1)所述野生重组表达质粒为模板,设计引物,通过全质粒PCR将Ala113位氨基酸残基突变为Gly,得到脂肪酶突变体TLL291/A113G,其氨基酸序列如SEQ ID NO:2所示,核苷酸序列如SEQ ID NO:3所示;(2) Obtaining the crystal structure of lipase, searching for highly homologous fat sequences in the NCBI database, and determining that the "lid" structure of TLL291 is the Ser105-Asp118 region by analyzing the sequence consistency, using the wild recombinant expression plasmid described in step (1) as a template, designing primers, and mutating the amino acid residue at position Ala113 to Gly by whole plasmid PCR to obtain the lipase mutant TLL291/A113G, whose amino acid sequence is shown in SEQ ID NO:2, and whose nucleotide sequence is shown in SEQ ID NO:3;

所述Ala113Gly突变引物为:The Ala113Gly mutation primer is:

A113G For:A113G For:

5’-GTTGAAAATTGGATTGGCAATTTGGCTGCTGAT-3’5’-GTTGAAAATTGGATTGGCAATTTGGCTGCTGAT-3’

A113G Rev:A113G Rev:

5’-GCCAATCCAATTTTCAACAGATCTTGAACCTCT-3’;5′-GCCAATCCAATTTTCAACAGATCTTGAACCTCT-3′;

脂肪酶突变体TLL291/A113G的氨基酸序列(SEQ ID NO:2):Amino acid sequence of lipase mutant TLL291/A113G (SEQ ID NO: 2):

MRSSLVLFFLSAWTALARPVRRAVPQDLLDQFELFSQYSAAAYCAANNHAPVGSDVTCSENVCPEVDAADATFLYSFEDSGLGDVTGLLALDNTNKLIVLSFRGSRSVENWIGNLAADLTEISDICSGCEGHVGFVTSWRSVADTIREQVQNAVNEHPDYRVVFTGHSLGGALATIAAAALRGNGYNIDVFSYGAPRVGNRAFAEFLTAQTGGTLYRITHTNDIVPRLPPRDWGYSHSSPEYWVTSGNDVPVTANDITVVEGIDSTDGNNQGNIPDIPSHLWYFGPISECD;MRSSLVLFFLSAWTALARPVRRAVPQDLLDQFELFSQYSAAAYCAANNHAPVGSDVTCSENVCPEVDAADATFLYSFEDSGLGDVTGLLALDNTNKLIVLSFRGSRSVENWIGNLAADLTEISDICSGCEGHVGFVTSWRSVADTIREQVQNAVNEHPDYRVVFTGHSLGGALATIAAAALRGNGYNIDVFSYGAPRVGNRAFAEFLTAQTGGTLYRITHTNDIVPRLPPRDWGYSHSSPEYWVTSGNDVPVTANDITVVEGIDSTDGNNQGNIPDIPSHLWYFGPISECD;

脂肪酶突变体TLL291/A113G的核苷酸序列(SEQ ID NO:3):Nucleotide sequence of lipase mutant TLL291/A113G (SEQ ID NO: 3):

ATGAGATCTTCTTTGGTTTTGTTTTTTTTGTCTGCTTGGACTGCTTTGGCTAGACCTGTTAGAAGAGCTGTTCCACAAGATTTGTTGGATCAATTTGAATTGTTTTCTCAATATTCTGCTGCAGCTTATTGTGCTGCTAATAATCATGCTCCTGTTGGTTCTGATGTTACTTGTTCTGAAAATGTTTGTCCTGAAGTTGATGCTGCTGATGCTACTTTTTTGTATTCTTTTGAAGATTCTGGTTTGGGAGATGTTACTGGTTTGTTAGCATTAGATAACACTAATAAATTGATTGTTTTGTCTTTTAGAGGTTCAAGATCTGTTGAAAATTGGATTGGCAATTTGGCTGCTGATTTGACTGAAATTTCTGATATTTGTTCTGGTTGTGAAGGTCATGTTGGTTTTGTTACTTCTTGGAGATCTGTTGCTGATACTATTAGAGAACAAGTTCAAAATGCTGTTAATGAACATCCTGATTATAGAGTTGTTTTTACTGGTCATTCTTTGGGTGGTGCTTTGGCTACTATTGCTGCAGCTGCATTAAGGGGTAATGGTTATAATATTGATGTTTTTTCTTATGGTGCTCCAAGAGTTGGTAATAGAGCTTTTGCTGAATTTTTGACTGCTCAAACTGGTGGTACTTTGTATAGAATTACTCATACTAATGATATTGTTCCAAGATTGCCACCAAGAGATTGGGGTTATTCTCATTCTTCTCCTGAATATTGGGTTACTTCTGGTAATGATGTTCCTGTTACTGCTAATGATATTACTGTTGTTGAAGGTATTGATTCTACTGATGGTAATAATCAAGGTAATATTCCTGATATTCCATCTCATTTGTGGTATTTTGGTCCAATTTCTGAATGTGAT;ATGAGATCTTCTTTGGTTTTGTTTTTTTTGTCTGCTTGGACTGCTTTGGCTAGACCTGTTAGAAGAGCTGTTCCACAAGATTTGTTGGATCAATTTGAATTGTTTTCTCAATATTCTGCTGCAGCTTATTGTGCTGCTAATAATCATGCTCCTGTTGGTTCTGATGTTACTTGTTCTGAAAATGTTTGTCCTGAAGTTGATGCTGCTGATGCTACTTTTTTGTATTCTTTTGAAGATTCTGGTTTGGGAGATGTTACTGGTTTGTTAGCATTAGATAACACTAATAAATTGATTGTTTTGTCTTTTAGAGGTTCAAGATCTGTTGAAAATTGGATTGGCAATTTGGCTGCTGATTTGACTGAAATTTCTGATATTTGTTCTGGTTGTGAAGGTCATGTTGGTTTTGTTACTTCTTGGAGATCTGTTGCTGATACTAT TAGAGAACAAGTTCAAAATGCTGTTAATGAACATCCTGATTATAGAGTTGTTTTTACTGGTCATTCTTTGGGTGGTGCTTTGGCTACTATTGCTGCAGCTGCATTAAGGGGTAATGGTTATAATATTGATGTTTTTTCTTATGGTGCTCCAAGAGTTGGTAATAGAGCTTTTGCTGAATTTTTGACTGCTCAAACTGGTGGTACTTTGTATAGAATTACTCATACTAATGATATTGTTCCAAGATTGCCACCAAGAGATTGGGGTTATTCTCATTCTTCTCCTGAATATTGGGTTACTTCTGGTAATGATGTTCCTGTTACTGCTAATGATATTACTGTTGTTGAAGGTATTGATTCTACTGATGGTAATAATCAAGGTAATATTCCTGATATTCCATCTCATTTGTGGTATTTTGGTCCAATTTCTGAATGTGAT;

(3)分析脂肪酶的全长氨基酸序列,在步骤(2)的基础上,设计引物,通过全质粒PCR将氨基酸残基Leu74突变为Asn,使之形成Asn74-Tyr75-Ser76的糖基化序列,得到脂肪酶突变体TLL291/A113G/L74N,其氨基酸序列如SEQ ID NO:4所示,核苷酸序列如SEQ IDNO:5所示;(3) Analyze the full-length amino acid sequence of the lipase. Based on step (2), design primers and mutate the amino acid residue Leu74 to Asn by whole-plasmid PCR to form a glycosylation sequence of Asn74-Tyr75-Ser76, thereby obtaining the lipase mutant TLL291/A113G/L74N, whose amino acid sequence is shown in SEQ ID NO:4 and nucleotide sequence is shown in SEQ ID NO:5;

所述Leu74Asn突变引物为:The Leu74Asn mutation primer is:

L74N For:L74N For:

5’-GCTGATGCTACTTTTAACTATTCTTTTGAAGATTCT-3’5’-GCTGATGCTACTTTTAACTATTCTTTTGAAGATTCT-3’

L74N Rev:L74N Rev:

5’-GTTAAAAGTAGCATCAGCAGCATCAACTTCAGGACA-3’;5′-GTTAAAAGTAGCATCAGCAGCATCAACTTCAGGACA-3′;

脂肪酶突变体TLL291/A113G/L74N的氨基酸序列(SEQ ID NO:4):Amino acid sequence of lipase mutant TLL291/A113G/L74N (SEQ ID NO: 4):

MRSSLVLFFLSAWTALARPVRRAVPQDLLDQFELFSQYSAAAYCAANNHAPVGSDVTCSENVCPEVDAADATFNYSFEDSGLGDVTGLLALDNTNKLIVLSFRGSRSVENWIGNLAADLTEISDICSGCEGHVGFVTSWRSVADTIREQVQNAVNEHPDYRVVFTGHSLGGALATIAAAALRGNGYNIDVFSYGAPRVGNRAFAEFLTAQTGGTLYRITHTNDIVPRLPPRDWGYSHSSPEYWVTSGNDVPVTANDITVVEGIDSTDGNNQGNIPDIPSHLWYFGPISECD;MRSSLVLFFLSAWTALARPVRRAVPQDLLDQFELFSQYSAAAYCAANNHAPVGSDVTCSENVCPEVDAADATFNYSFEDSGLGDVTGLLALDNTNKLIVLSFRGSRSVENWIGNLAADLTEISDICSGCEGHVGFVTSWRSVADTIREQVQNAVNEHPDYRVVFTGHSLGGALATIAAAALRGNGYNIDVFSYGAPRVGNRAFAEFLTAQTGGTLYRITHTNDIVPRLPPRDWGYSHSSPEYWVTSGNDVPVTANDITVVEGIDSTDGNNQGNIPDIPSHLWYFGPISECD;

脂肪酶突变体TLL291/A113G/L74N的核苷酸序列(SEQ ID NO:5):Nucleotide sequence of lipase mutant TLL291/A113G/L74N (SEQ ID NO: 5):

ATGAGATCTTCTTTGGTTTTGTTTTTTTTGTCTGCTTGGACTGCTTTGGCTAGACCTGTTAGAAGAGCTGTTCCACAAGATTTGTTGGATCAATTTGAATTGTTTTCTCAATATTCTGCTGCAGCTTATTGTGCTGCTAATAATCATGCTCCTGTTGGTTCTGATGTTACTTGTTCTGAAAATGTTTGTCCTGAAGTTGATGCTGCTGATGCTACTTTTAACTATTCTTTTGAAGATTCTGGTTTGGGAGATGTTACTGGTTTGTTAGCATTAGATAACACTAATAAATTGATTGTTTTGTCTTTTAGAGGTTCAAGATCTGTTGAAAATTGGATTGGCAATTTGGCTGCTGATTTGACTGAAATTTCTGATATTTGTTCTGGTTGTGAAGGTCATGTTGGTTTTGTTACTTCTTGGAGATCTGTTGCTGATACTATTAGAGAACAAGTTCAAAATGCTGTTAATGAACATCCTGATTATAGAGTTGTTTTTACTGGTCATTCTTTGGGTGGTGCTTTGGCTACTATTGCTGCAGCTGCATTAAGGGGTAATGGTTATAATATTGATGTTTTTTCTTATGGTGCTCCAAGAGTTGGTAATAGAGCTTTTGCTGAATTTTTGACTGCTCAAACTGGTGGTACTTTGTATAGAATTACTCATACTAATGATATTGTTCCAAGATTGCCACCAAGAGATTGGGGTTATTCTCATTCTTCTCCTGAATATTGGGTTACTTCTGGTAATGATGTTCCTGTTACTGCTAATGATATTACTGTTGTTGAAGGTATTGATTCTACTGATGGTAATAATCAAGGTAATATTCCTGATATTCCATCTCATTTGTGGTATTTTGGTCCAATTTCTGAATGTGAT;ATGAGATCTTCTTTGGTTTTGTTTTTTTTGTCTGCTTGGACTGCTTTGGCTAGACCTGTTAGAAGAGCTGTTCCACAAGATTTGTTGGATCAATTTGAATTGTTTTCTCAATATTCTGCTGCAGCTTATTGTGCTGCTAATAATCATGCTCCTGTTGGTTCTGATGTTACTTGTTCTGAAAATGTTTGTCCTGAAGTTGATGCTGCTGATGCTACTTTTAACTATTCTTTTGAAGATTCTGGTTTGGGAGATGTTACTGGTTTGTTAGCATTAGATAACACTAATAAATTGATTGTTTTGTCTTTTAGAGGTTCAAGATCTGTTGAAAATTGGATTGGCAATTTGGCTGCTGATTTGACTGAAATTTCTGATATTTGTTCTGGTTGTGAAGGTCATGTTGGTTTTGTTACTTCTTGGAGATCTGTTGCTGATACTAT TAGAGAACAAGTTCAAAATGCTGTTAATGAACATCCTGATTATAGAGTTGTTTTTACTGGTCATTCTTTGGGTGGTGCTTTGGCTACTATTGCTGCAGCTGCATTAAGGGGTAATGGTTATAATATTGATGTTTTTTCTTATGGTGCTCCAAGAGTTGGTAATAGAGCTTTTGCTGAATTTTTGACTGCTCAAACTGGTGGTACTTTGTATAGAATTACTCATACTAATGATATTGTTCCAAGATTGCCACCAAGAGATTGGGGTTATTCTCATTCTTCTCCTGAATATTGGGTTACTTCTGGTAATGATGTTCCTGTTACTGCTAATGATATTACTGTTGTTGAAGGTATTGATTCTACTGATGGTAATAATCAAGGTAATATTCCTGATATTCCATCTCATTTGTGGTATTTTGGTCCAATTTCTGAATGTGAT;

采用内切酶KpnⅠ或者XbaⅠ对以上步骤所述重组表达质粒进行线性化,通过电转仪将线性化质粒转化到毕赤酵母GS115感受态细胞中表达,经过博来霉素抗性筛选、酶切、电转化和SDS-PAGE验证后获得能够稳定表达的基因工程菌;其中,毕赤酵母GS115/TLL291/A113G/L74N脂肪酶基因工程菌现保藏于中国微生物菌种保藏管理委员会普通微生物中心(北京市朝阳区北辰西路1号院3号),分类命名为毕赤酵母Pichia sp.,保藏日期为2023.12.21,保藏编号为CGMCC No.29367;The recombinant expression plasmid described in the above steps is linearized by endonuclease Kpn Ⅰ or Xba Ⅰ, and the linearized plasmid is transformed into Pichia pastoris GS115 competent cells by electroporation, and a genetically engineered bacterium capable of stable expression is obtained after bleomycin resistance screening, enzyme digestion, electroporation and SDS-PAGE verification; wherein, the Pichia pastoris GS115 /TLL291/A113G/L74N lipase genetically engineered bacterium is currently deposited in the General Microbiological Center of China National Microbiological Culture Collection Administration (No. 3, Yard No. 1, Beichen West Road, Chaoyang District, Beijing), and is classified and named Pichia sp ., with a deposit date of 2023.12.21 and a deposit number of CGMCC No.29367;

(4)将上述基因工程菌接种在含有100 μg/mL博来霉素的YPD液体培养基中,于温度为28℃、转速为220r/min的条件下进行摇瓶培养24h;其中,YPD液体培养基配方为:1 wt%酵母粉+2 wt%胰蛋白胨+2 wt%葡萄糖;(4) The genetically engineered bacteria were inoculated into a YPD liquid medium containing 100 μg/mL bleomycin, and cultured in a shake flask at 28°C and 220 r/min for 24 h; wherein the YPD liquid medium formula is: 1 wt% yeast powder + 2 wt% tryptone + 2 wt% glucose;

然后按照1%体积接种量转接入BMGY培养基中,于温度为28℃、转速为220r/min的条件下进行摇瓶培养24h;其中,BMGY培养基配方为:100mM磷酸钠缓冲液(pH 6.0)+1 wt%酵母粉+2 wt%胰蛋白胨+0.34 wt%无氨基酸酵母氮源(YNB)+4×10-5 wt%生物素+1 wt%甘油+100 μg/mL博来霉素;Then, the cells were transferred to BMGY medium at a volume inoculation rate of 1%, and cultured in a shaking flask at 28°C and 220 r/min for 24 h; the BMGY medium formula was: 100 mM sodium phosphate buffer (pH 6.0) + 1 wt% yeast powder + 2 wt% tryptone + 0.34 wt% amino acid-free yeast nitrogen source (YNB) + 4×10 -5 wt% biotin + 1 wt% glycerol + 100 μg/mL bleomycin;

再收集菌体重新分散于BMMY培养基中,每24h添加1%(v/v)的甲醇进行诱导培养,诱导培养温度为28℃、转速为180r/min;其中,BMMY培养基配方为:100mM磷酸钠缓冲液(pH6.0)+1 wt%酵母粉+2 wt%蛋白胨+0.34 wt%无氨基酸酵母氮源(YNB)+4×10-5 wt%生物素、1%(v/v)甲醇+100 μg/mL博来霉素;The cells were collected and redispersed in BMMY medium, and 1% (v/v) methanol was added every 24 h for induction culture. The induction culture temperature was 28 °C and the rotation speed was 180 r/min. The BMMY medium formula was: 100 mM sodium phosphate buffer (pH 6.0) + 1 wt% yeast powder + 2 wt% peptone + 0.34 wt% amino acid-free yeast nitrogen source (YNB) + 4×10 -5 wt% biotin, 1% (v/v) methanol + 100 μg/mL bleomycin.

在诱导培养120h后,离心除去菌体保留上清液,即可得到脂肪酶突变体粗酶液,将酶液离心超滤浓缩备用。After 120 hours of induction culture, the supernatant was removed by centrifugation to obtain the crude enzyme solution of the lipase mutant, and the enzyme solution was concentrated by centrifugation and ultrafiltration for later use.

野生型脂肪酶粗酶液的制备方法同上,不同之处在于:以野生重组表达质粒pPICZαA-TLL291替代上述重组表达质粒,进行线性化并直接转化到毕赤酵母GS115感受态细胞中表达。The method for preparing the crude enzyme solution of wild-type lipase is the same as above, except that the wild recombinant expression plasmid pPICZαA-TLL291 is used to replace the above recombinant expression plasmid, which is linearized and directly transformed into Pichia pastoris GS115 competent cells for expression.

实施例2 测定脂肪酶的活力Example 2 Determination of lipase activity

在50℃水浴加热条件下,使用10mL异丙醇溶解30mg对硝基苯酚棕榈酸酯pNPP,再加入90mL的0.01M、 pH=8的磷酸二氢钠-磷酸氢二钠缓冲溶液,配置成底物溶液,取1mL底物溶液加入1mL实施例1所得脂肪酶突变体粗酶液或野生型脂肪酶粗酶液,取1mL底物溶液加入1mL空白培养基作为对照,50℃水浴保温反应10min,加入1mL丙酮终止反应。Under heating conditions at 50° C. in a water bath, 10 mL of isopropanol was used to dissolve 30 mg of p-nitrophenol palmitate pNPP, and then 90 mL of 0.01 M sodium dihydrogen phosphate-disodium hydrogen phosphate buffer solution at pH = 8 was added to prepare a substrate solution. 1 mL of the substrate solution was added to 1 mL of the crude enzyme solution of the lipase mutant or the crude enzyme solution of the wild-type lipase obtained in Example 1, and 1 mL of the substrate solution was added to 1 mL of blank culture medium as a control. The reaction was kept in a water bath at 50° C. for 10 min, and 1 mL of acetone was added to terminate the reaction.

脂肪酶水解pNPP会释放出对硝基苯酚pNP,对硝基苯酚在碱性条件下溶液呈黄绿色,如图1所示。使用0.01M、pH=8的PBS磷酸二氢钠-磷酸氢二钠缓冲溶液溶解对硝基苯酚pNP,配置成不同浓度的溶液,测试吸光度绘制标准曲线,根据标准曲线计算酶活力,标准曲线如图2所示。酶活力定义为:每1mg脂肪酶1min内水解对硝基苯酚棕榈酸酯释放出1μmol对硝基苯酚为1个酶活单位U,μmol/mg·min。Lipase hydrolyzes pNPP to release p-nitrophenol pNP, and the p-nitrophenol solution is yellow-green under alkaline conditions, as shown in Figure 1. Use 0.01M, pH=8 PBS sodium dihydrogen phosphate-disodium hydrogen phosphate buffer solution to dissolve p-nitrophenol pNP, prepare solutions of different concentrations, test the absorbance to draw a standard curve, and calculate the enzyme activity based on the standard curve, as shown in Figure 2. Enzyme activity is defined as: 1 μmol of p-nitrophenol is released by hydrolyzing p-nitrophenol palmitate for every 1 mg of lipase in 1 minute, which is 1 enzyme activity unit U, μmol/mg·min.

结果如图3所示,TLL291/A113G脂肪酶突变体活力相较原始野生型脂肪酶活力在不同底物浓度下均有较大提高,在1.5mM底物浓度下,突变体脂肪酶活力提高了98.1%。The results are shown in Figure 3. The activity of the TLL291/A113G lipase mutant was significantly improved compared to the original wild-type lipase at different substrate concentrations. At a substrate concentration of 1.5 mM, the activity of the mutant lipase was increased by 98.1%.

实施例3 测定脂肪酶的热稳定性Example 3 Determination of thermal stability of lipase

将酶液在50℃水浴锅中孵育,测定脂肪酶失去50%活力时的时间t50 1/2。具体测定方法如下:在50℃下分别孵育野生型脂肪酶和实施例1所得突变体脂肪酶,在不同处理时间取样,以保温0h的活力为100%,用实施例2中的pNPP法测定计算脂肪酶剩余活力。The enzyme solution was incubated in a 50°C water bath, and the time t 50 1/2 when the lipase lost 50% of its activity was determined. The specific determination method is as follows: the wild-type lipase and the mutant lipase obtained in Example 1 were incubated at 50°C, and samples were taken at different treatment times. The activity at 0 h of incubation was taken as 100%, and the pNPP method in Example 2 was used to determine and calculate the residual activity of the lipase.

结果如图4所示,野生型脂肪酶的半衰期t50 1/2不到0.5h,而脂肪酶突变体TLL291/A113G/L74N在保温24h后,仍有72%的剩余活力。The results are shown in FIG4 . The half-life t 50 1/2 of the wild-type lipase is less than 0.5 h, while the lipase mutant TLL291/A113G/L74N still has 72% residual activity after 24 h of incubation.

实施例4 测定脂肪酶的甲醇及叔丁醇耐受性Example 4 Determination of methanol and tert-butanol tolerance of lipase

需要说明的是,脂肪酶在催化油脂制备生物柴油时,通常以甲醇作为酰基供体,反应中甲醇与油脂的摩尔比往往超过4:1。碳酸二甲酯也可以作为酰基供体与油脂进行酯交换反应,这时有些脂肪酶就需要加入其他的有机溶剂作为反应介质,才会发挥更好的催化效果,同时有机溶剂也起到助溶的效果,叔丁醇就是一种常用的有机助溶剂。It should be noted that when lipase catalyzes the preparation of biodiesel from oil, methanol is usually used as an acyl donor, and the molar ratio of methanol to oil in the reaction is often more than 4:1. Dimethyl carbonate can also be used as an acyl donor to undergo an ester exchange reaction with oil. At this time, some lipases need to add other organic solvents as reaction media to play a better catalytic effect. At the same time, organic solvents also play a solubilizing effect. Tert-butyl alcohol is a commonly used organic solubilizing agent.

按照该体积比在粗酶液中加入60%甲醇或60%叔丁醇(即每40mL粗酶液对应60mL甲醇或叔丁醇),然后在50℃水浴锅中保温,在不同处理时间取样,以处理0h的活力为100%,用实施例2中的pNPP法测定脂肪酶剩余活力。60% methanol or 60% tert-butanol was added to the crude enzyme solution according to the volume ratio (i.e., 60 mL of methanol or tert-butanol was used for every 40 mL of crude enzyme solution), and then the solution was kept warm in a 50°C water bath. Samples were taken at different treatment times, and the activity at treatment time 0 h was taken as 100%. The residual activity of the lipase was determined by the pNPP method in Example 2.

结果如图5和图6所示,野生型脂肪酶在甲醇或叔丁醇中保温1h后,活力就完全丧失;而脂肪酶突变体TLL291/A113G/L74N在甲醇中保温24h后还有33.6%的剩余活力,在叔丁醇中更容易维持活力的稳定,孵育12h后检测仍有85.8%的活力,24h后剩余38.6%的活力。The results are shown in Figures 5 and 6. The wild-type lipase completely lost its activity after being incubated in methanol or tert-butanol for 1 hour; while the lipase mutant TLL291/A113G/L74N still had 33.6% residual activity after being incubated in methanol for 24 hours, and was more likely to maintain stable activity in tert-butanol, with 85.8% of activity still detected after 12 hours of incubation and 38.6% remaining activity after 24 hours.

经上述测定实验可知,实施例1构建成的脂肪酶突变体具有更高的活力以及更优越的热稳定性和有机溶剂耐受性,可广泛应用于食品加工、药品合成、皮革生产或造纸工业等领域,商用价值高。The above-mentioned determination experiments show that the lipase mutant constructed in Example 1 has higher activity and more superior thermal stability and organic solvent tolerance, and can be widely used in food processing, drug synthesis, leather production or papermaking industry, and has high commercial value.

所属领域的普通技术人员应当理解:以上任何实施例的讨论仅为示例性的,并非旨在暗示本发明的范围(包括权利要求)被限于这些例子;在本发明的思路下,以上实施例或者不同实施例中的技术特征之间也可以进行组合,步骤可以以任意顺序实现,并存在如上所述的本发明的不同方面的许多其它变化,为了简明它们没有在细节中提供。It should be understood by those skilled in the art that the discussion of any of the above embodiments is merely illustrative and is not intended to imply that the scope of the present invention (including the claims) is limited to these examples. Under the concept of the present invention, the technical features in the above embodiments or different embodiments may be combined, the steps may be implemented in any order, and there are many other variations of the different aspects of the present invention as described above, which are not provided in detail for the sake of simplicity.

本发明旨在涵盖落入所附权利要求的宽泛范围之内的所有这样的替换、修改和变型。因此,凡在本发明的精神和原则之内,所做的任何省略、修改、等同替换、改进等,均应包含在本发明的保护范围之内。The present invention is intended to cover all such substitutions, modifications and variations that fall within the broad scope of the appended claims. Therefore, any omissions, modifications, equivalent substitutions, improvements, etc. made within the spirit and principles of the present invention should be included in the scope of protection of the present invention.

Claims (5)

1. A lipase mutant with high activity and high stability is characterized in that: the lipase mutant is obtained by mutating 113 th amino acid Ala in an amino acid sequence of thermomyces lanuginosus lipase into Gly and mutating 74 th amino acid Leu into Asn to form a specific sequence of Asn74-Tyr75-Ser76, and the amino acid sequence is SEQ ID NO. 4.
2. A lipase mutant with high activity and high stability is characterized in that: the amino acid sequence of the intermediate mutant formed by mutating the 113 rd amino acid Ala in the amino acid sequence of the thermomyces lanuginosus lipase into Gly is shown as SEQ ID NO. 2.
3. A nucleic acid molecule characterized in that: the sequence of which is shown in SEQ ID NO. 3, and which encodes an intermediate mutant according to claim 2.
4. A recombinant plasmid, characterized in that: comprising the nucleotide sequence shown as SEQ ID NO. 5.
5. A recombinant pichia pastoris genetic engineering bacterium is characterized in that: the genetically engineered bacterium comprises the recombinant plasmid disclosed in claim 4, and is preserved in China general microbiological culture Collection center (CGMCC) with the preservation number of 29367.
CN202410258819.1A 2024-03-07 2024-03-07 A high-activity, high-stability lipase mutant and its encoding gene and application Active CN117887688B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202410258819.1A CN117887688B (en) 2024-03-07 2024-03-07 A high-activity, high-stability lipase mutant and its encoding gene and application

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202410258819.1A CN117887688B (en) 2024-03-07 2024-03-07 A high-activity, high-stability lipase mutant and its encoding gene and application

Publications (2)

Publication Number Publication Date
CN117887688A CN117887688A (en) 2024-04-16
CN117887688B true CN117887688B (en) 2024-06-25

Family

ID=90647523

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202410258819.1A Active CN117887688B (en) 2024-03-07 2024-03-07 A high-activity, high-stability lipase mutant and its encoding gene and application

Country Status (1)

Country Link
CN (1) CN117887688B (en)

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1491278A (en) * 2001-02-07 2004-04-21 ŵά�Ź�˾ lipase variant
CN101307296A (en) * 2008-06-05 2008-11-19 山东农业大学 Engineering strain of Pichia pastoris expressing Thermomyces lanuginosus gene 1n
CN103045559B (en) * 2012-10-23 2014-05-14 浙江工业大学 Thermomyces lanuginosus lipase mutant, coding gene and application of mutant
KR20160042254A (en) * 2014-10-07 2016-04-19 한국화학연구원 Process for preparing lipase derived from Candida antarctica using Pichia pastoris
GB201421092D0 (en) * 2014-11-27 2015-01-14 Koninklijke Nederlandse Akademie Van Wetenschappen Culture medium
CN104762277B (en) * 2015-04-22 2017-07-14 江南大学 Glycosylation engineered method, mutant enzyme and its application for improving fatty expression of enzymes
US20200087672A1 (en) * 2017-03-13 2020-03-19 Lallemand Hungary Liquidity Management Llc Cell-associated heterologous food and/or feed enzymes
CN110637085A (en) * 2017-03-13 2019-12-31 拉勒曼德匈牙利流动性管理有限责任公司 Recombinant yeast host cells expressing cell-linked heterologous proteins
CN108841805B (en) * 2018-06-29 2021-07-06 深圳市夏盟生物科技有限公司 Lipase mutant with improved heat stability
CN112608912B (en) * 2019-06-17 2022-04-15 云南师范大学 Lipase mutant D170A with improved catalytic activity and application thereof
CN115261326B (en) * 2022-07-29 2024-06-28 复旦大学附属中山医院青浦分院(上海市青浦区中心医院) Culture medium and culture method for establishing breast cancer and paracancestral organ model
CN115418352A (en) * 2022-08-15 2022-12-02 郑维越 Serum-free special culture medium for melanoma organoid
CN115992095A (en) * 2023-01-10 2023-04-21 复旦大学附属中山医院 Method for constructing digestive tract tumor patient-derived organoids based on endoscopic biopsy tumor tissue samples
CN117070495B (en) * 2023-03-31 2024-08-20 南京林业大学 Thermomyces lanuginosus lipase mutants E129Y and E134W and their application

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
基于多重计算设计策略提高奇异变形杆菌脂肪酶的热稳定性;许菲 等;《生物工程学报》;20220425;参见全文 *
定点突变对低温脂肪酶活性和热稳定性的影响;陈海清;于凡;王红静;张先舟;亢春雨;马雯;檀建新;;河北农业大学学报;20200315(第02期);参见全文 *

Also Published As

Publication number Publication date
CN117887688A (en) 2024-04-16

Similar Documents

Publication Publication Date Title
EP1097196B1 (en) Glucoamylase variants
JP4199422B2 (en) Polypeptide
US8222006B2 (en) Glucoamylase variants
CN107739734A (en) The glutamine transaminage mutant that a kind of enzyme activity improves
CN113846074B (en) Thermomyces lanuginosus lipase mutant G91C and application thereof
JP5704609B2 (en) Mannan hydrolase group or cellulose hydrolase group transcriptional regulatory factor and transcriptional regulatory factor gene
CN108018275B (en) Mutant XYNR of extreme heat-resistant xylanase 1VBR and application thereof
CN103687947A (en) Mutant beta-glucosidase, enzyme composition for decomposing biomass, and method for producing sugar solution
CN117070495B (en) Thermomyces lanuginosus lipase mutants E129Y and E134W and their application
CN111676210B (en) Method for improving cellulase activity, cellulase mutant 5I77-M and application
CN115838704B (en) Lipase mutant and its application
CN113684198B (en) Method for improving cellulase catalytic efficiency and mutant 5I77-M2
CN102653742B (en) High-temperature resistant rhizopuschinensis lipase mutant
CN110423737A (en) From the heat resistant type alpha-amylase of Geobacillus stearothermophilus and its application
CN117887688B (en) A high-activity, high-stability lipase mutant and its encoding gene and application
CN107916257B (en) T1 lipase mutant and application
CN107746836A (en) A kind of glutamine transaminage mutant expressed in an active
CN101691576A (en) Thermostable high-temperature acidic alpha-amylase gene, engineering bacteria thereof, alpha-amylase recombinase and use of alpha-amylase recombinase
CA2352046A1 (en) Glucoamylases with n-terminal extensions
CN114317500A (en) Xylanase Scxyn5, and coding gene and application thereof
CN109486689B (en) A method for enhancing acid resistance of L-asparaginase
CN112301014A (en) Esterase mutant with improved thermal stability and application thereof
CN108165540B (en) Rhizomucor miehei alpha-amylase and coding gene and application thereof
CN103509720B (en) Method for preparing alpha-amylase and dedicated strain thereof and related protein
KR20200050438A (en) Mutant lipases of Rhizomucor miehei having enhanced transesterification activity and a method of producing the lipase

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant