CN117878925B - A method and system for controlling power transmission data of a smart grid - Google Patents
A method and system for controlling power transmission data of a smart grid Download PDFInfo
- Publication number
- CN117878925B CN117878925B CN202410268510.0A CN202410268510A CN117878925B CN 117878925 B CN117878925 B CN 117878925B CN 202410268510 A CN202410268510 A CN 202410268510A CN 117878925 B CN117878925 B CN 117878925B
- Authority
- CN
- China
- Prior art keywords
- data
- power
- generate
- grid
- transmission
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 230000005540 biological transmission Effects 0.000 title claims abstract description 317
- 238000000034 method Methods 0.000 title claims abstract description 53
- 238000012549 training Methods 0.000 claims abstract description 34
- 238000006243 chemical reaction Methods 0.000 claims abstract description 25
- 238000012216 screening Methods 0.000 claims abstract description 15
- 238000013079 data visualisation Methods 0.000 claims abstract description 8
- 230000004927 fusion Effects 0.000 claims abstract description 6
- 238000009826 distribution Methods 0.000 claims description 91
- 238000004458 analytical method Methods 0.000 claims description 72
- 230000002159 abnormal effect Effects 0.000 claims description 43
- 238000004422 calculation algorithm Methods 0.000 claims description 35
- 238000004891 communication Methods 0.000 claims description 32
- 238000012544 monitoring process Methods 0.000 claims description 29
- 230000004044 response Effects 0.000 claims description 24
- 230000033228 biological regulation Effects 0.000 claims description 22
- 238000005516 engineering process Methods 0.000 claims description 16
- 238000010586 diagram Methods 0.000 claims description 15
- 238000012360 testing method Methods 0.000 claims description 15
- 238000013461 design Methods 0.000 claims description 12
- 238000000411 transmission spectrum Methods 0.000 claims description 12
- 238000004140 cleaning Methods 0.000 claims description 8
- 238000001514 detection method Methods 0.000 claims description 8
- 230000006399 behavior Effects 0.000 claims description 7
- 206010033799 Paralysis Diseases 0.000 claims description 6
- 238000001914 filtration Methods 0.000 claims description 5
- 230000002787 reinforcement Effects 0.000 claims description 5
- 230000006403 short-term memory Effects 0.000 claims description 5
- 230000003044 adaptive effect Effects 0.000 claims description 4
- 238000004364 calculation method Methods 0.000 claims description 4
- 230000009467 reduction Effects 0.000 claims description 4
- 238000011049 filling Methods 0.000 claims description 3
- 238000012847 principal component analysis method Methods 0.000 claims description 3
- 238000012545 processing Methods 0.000 abstract description 19
- 238000013075 data extraction Methods 0.000 abstract description 6
- 230000007613 environmental effect Effects 0.000 description 20
- 238000007726 management method Methods 0.000 description 17
- 230000008569 process Effects 0.000 description 13
- 238000005457 optimization Methods 0.000 description 11
- 239000002699 waste material Substances 0.000 description 8
- 238000011217 control strategy Methods 0.000 description 7
- 230000001276 controlling effect Effects 0.000 description 7
- 238000004519 manufacturing process Methods 0.000 description 6
- 238000012800 visualization Methods 0.000 description 6
- 230000005611 electricity Effects 0.000 description 5
- 238000012423 maintenance Methods 0.000 description 5
- 238000007405 data analysis Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 230000006870 function Effects 0.000 description 4
- 238000001228 spectrum Methods 0.000 description 4
- 230000008901 benefit Effects 0.000 description 3
- 238000011161 development Methods 0.000 description 3
- 238000000605 extraction Methods 0.000 description 3
- 230000010354 integration Effects 0.000 description 3
- 238000010801 machine learning Methods 0.000 description 3
- 101001121408 Homo sapiens L-amino-acid oxidase Proteins 0.000 description 2
- 102100026388 L-amino-acid oxidase Human genes 0.000 description 2
- 101100012902 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) FIG2 gene Proteins 0.000 description 2
- 101100233916 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) KAR5 gene Proteins 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 238000013480 data collection Methods 0.000 description 2
- 238000013136 deep learning model Methods 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 238000000513 principal component analysis Methods 0.000 description 2
- 230000001932 seasonal effect Effects 0.000 description 2
- 238000004088 simulation Methods 0.000 description 2
- 101000827703 Homo sapiens Polyphosphoinositide phosphatase Proteins 0.000 description 1
- 102100023591 Polyphosphoinositide phosphatase Human genes 0.000 description 1
- 230000005856 abnormality Effects 0.000 description 1
- 238000013528 artificial neural network Methods 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000007621 cluster analysis Methods 0.000 description 1
- 238000002790 cross-validation Methods 0.000 description 1
- 238000013144 data compression Methods 0.000 description 1
- 238000013499 data model Methods 0.000 description 1
- 238000013500 data storage Methods 0.000 description 1
- 238000003066 decision tree Methods 0.000 description 1
- 230000001934 delay Effects 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 238000004146 energy storage Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 230000008713 feedback mechanism Effects 0.000 description 1
- 230000002068 genetic effect Effects 0.000 description 1
- 235000019580 granularity Nutrition 0.000 description 1
- 238000009499 grossing Methods 0.000 description 1
- 238000010921 in-depth analysis Methods 0.000 description 1
- 238000009776 industrial production Methods 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- YHXISWVBGDMDLQ-UHFFFAOYSA-N moclobemide Chemical compound C1=CC(Cl)=CC=C1C(=O)NCCN1CCOCC1 YHXISWVBGDMDLQ-UHFFFAOYSA-N 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000003345 natural gas Substances 0.000 description 1
- 238000010606 normalization Methods 0.000 description 1
- 238000013486 operation strategy Methods 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 230000002085 persistent effect Effects 0.000 description 1
- 238000007781 pre-processing Methods 0.000 description 1
- 238000011158 quantitative evaluation Methods 0.000 description 1
- 230000000306 recurrent effect Effects 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 230000008844 regulatory mechanism Effects 0.000 description 1
- 230000004043 responsiveness Effects 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 238000002922 simulated annealing Methods 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 238000007619 statistical method Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
- 238000012731 temporal analysis Methods 0.000 description 1
- 230000002123 temporal effect Effects 0.000 description 1
- 238000000700 time series analysis Methods 0.000 description 1
- 238000010200 validation analysis Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J3/00—Circuit arrangements for AC mains or AC distribution networks
- H02J3/003—Load forecast, e.g. methods or systems for forecasting future load demand
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/25—Fusion techniques
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q50/00—Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
- G06Q50/06—Energy or water supply
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y04—INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
- Y04S—SYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
- Y04S10/00—Systems supporting electrical power generation, transmission or distribution
- Y04S10/50—Systems or methods supporting the power network operation or management, involving a certain degree of interaction with the load-side end user applications
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Business, Economics & Management (AREA)
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Economics (AREA)
- Data Mining & Analysis (AREA)
- General Physics & Mathematics (AREA)
- General Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Strategic Management (AREA)
- Tourism & Hospitality (AREA)
- Marketing (AREA)
- General Business, Economics & Management (AREA)
- Human Resources & Organizations (AREA)
- Water Supply & Treatment (AREA)
- Public Health (AREA)
- Primary Health Care (AREA)
- Artificial Intelligence (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Bioinformatics & Computational Biology (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Evolutionary Biology (AREA)
- Evolutionary Computation (AREA)
- General Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Supply And Distribution Of Alternating Current (AREA)
Abstract
Description
技术领域Technical Field
本发明涉及电力数据控制技术领域,尤其涉及一种智能电网的输电数据控制方法及系统。The present invention relates to the technical field of power data control, and in particular to a power transmission data control method and system for a smart grid.
背景技术Background technique
传统电力系统是智能电网技术发展的起点。这些系统依赖于中央化的发电厂向消费者输送电力,数据控制方法有限,主要依靠人工操作和简单的自动化技术,这种系统存在着能源浪费和响应速度慢的问题。随着信息技术和通信技术的进步,智能电网开始崭露头角,通过大数据分析和机器学习,电网管理者可以更好地预测负荷需求,优化供应链路,降低运行成本,并提高电网的可靠性和稳定性。同时SCADA系统(监控和数据采集系统)的广泛应用,使得电网管理者可以实时监测整个电网的状态,快速识别和响应故障。然而目前传统的输电数据控制方法在设备信息采集和电网调节方面可能较为被动,缺乏智能化和实时性,并且在电网控制的复杂性和数据呈现方式上存在局限,导致控制的精准性和实时性较低。Traditional power systems are the starting point for the development of smart grid technology. These systems rely on centralized power plants to deliver electricity to consumers, have limited data control methods, and rely mainly on manual operations and simple automation technologies. Such systems have problems such as energy waste and slow response. With the advancement of information technology and communication technology, smart grids have begun to emerge. Through big data analysis and machine learning, grid managers can better predict load demand, optimize supply chains, reduce operating costs, and improve the reliability and stability of the grid. At the same time, the widespread application of SCADA systems (supervisory control and data acquisition systems) enables grid managers to monitor the status of the entire grid in real time and quickly identify and respond to faults. However, the current traditional transmission data control methods may be relatively passive in terms of equipment information collection and grid regulation, lack intelligence and real-time performance, and have limitations in the complexity of grid control and data presentation methods, resulting in low control accuracy and real-time performance.
发明内容Summary of the invention
基于此,有必要提供一种智能电网的输电数据控制方法及系统,以解决至少一个上述技术问题。Based on this, it is necessary to provide a method and system for controlling power transmission data of a smart grid to solve at least one of the above technical problems.
为实现上述目的,一种智能电网的输电数据控制方法,所述方法包括以下步骤:To achieve the above object, a method for controlling power transmission data of a smart grid is provided, the method comprising the following steps:
步骤S1:获取实时电力数据和智能电网环境数据;对实时电力数据和智能电网环境数据进行数据融合,生成综合电力环境数据集;对综合电力环境数据集进行动态负荷曲线转换,从而生成实时综合能源负荷曲线;Step S1: acquiring real-time power data and smart grid environment data; fusing the real-time power data and the smart grid environment data to generate a comprehensive power environment data set; performing dynamic load curve conversion on the comprehensive power environment data set to generate a real-time comprehensive energy load curve;
步骤S2:基于预设的峰值筛选数量对实时综合能源负荷曲线进行负荷峰值数据提取,得到动态电力负荷峰值数据;对动态电力负荷峰值数据进行模型训练,生成电力需求预测模型;通过电力需求预测模型对动态电力负荷峰值数据进行动态电力分配,从而生成最优电力分配方案;Step S2: extracting load peak data from the real-time integrated energy load curve based on a preset peak screening number to obtain dynamic power load peak data; performing model training on the dynamic power load peak data to generate a power demand forecasting model; dynamically allocating power to the dynamic power load peak data through the power demand forecasting model to generate an optimal power allocation plan;
步骤S3:基于最优电力分配方案进行设备信息采集,得到边缘设备部署信息数据;根据边缘设备部署信息数据对智能电网进行实时电网调节,生成电网边缘计算控制数据;对电网边缘计算控制数据进行电力控制稳定性调控,生成电力传输稳定数据;Step S3: Collect device information based on the optimal power distribution plan to obtain edge device deployment information data; perform real-time grid adjustment on the smart grid according to the edge device deployment information data to generate grid edge computing control data; perform power control stability regulation on the grid edge computing control data to generate power transmission stability data;
步骤S4:对电力传输稳定数据进行三维点云转换,生成电力传输三维模型;基于电力传输三维模型进行电网非线性控制,生成电网输电智能控制数据;对电网输电智能控制数据进行数据可视化,从而生成智能电网输电数据控制报告。Step S4: convert the power transmission stability data into a three-dimensional point cloud to generate a three-dimensional power transmission model; perform nonlinear power grid control based on the three-dimensional power transmission model to generate power grid transmission intelligent control data; visualize the power grid transmission intelligent control data to generate a smart grid transmission data control report.
本发明通过实时综合能源负荷曲线,智能电网可以更准确地预测和管理能源需求,从而优化能源调度和分配,提高能源利用效率。综合考虑电力数据和智能电网环境数据可以帮助智能电网系统更好地应对变化的环境因素,提高供电系统的可靠性和稳定性。通过动态负荷曲线转换,智能电网可以更精确地预测负荷需求,有针对性地调整能源供应策略,从而降低能源生产和分配的成本。实时综合能源负荷曲线为决策者提供了准确的数据基础,可用于制定能源政策、规划能源设施建设、优化能源市场运行等决策。通过对电力数据和环境数据的综合分析,智能电网可以更好地支持可再生能源的集成和利用,促进能源系统的可持续发展。通过动态电力分配,系统能够实时响应变化的负荷需求,提高电力分配的灵活性。通过精准的电力需求预测,可以避免过度分配电力,减少能源浪费,提高能源利用效率。采用最优电力分配方案可以有效平衡供需关系,提高电力系统的稳定性和鲁棒性。通过减少过度分配和提高系统效率,可以降低电力系统运行成本,提升整体经济效益。通过实时电网调节和边缘计算控制,系统可以更快速地响应电力需求变化,提升了电力系统的实时响应能力。通过电力控制稳定性调控,生成稳定的电力传输数据,有助于提高电力传输的稳定性和可靠性。根据最优电力分配方案进行设备调节,有助于优化设备利用率,延长设备寿命,降低设备运行成本。通过电网非线性控制,实现了对电网运行的精细化管理,提高了电网的运行效率和稳定性。优化的电网控制策略有助于减少输电线路的损耗,提高了输电效率,降低了能源浪费。实施智能控制策略能够及时发现和处理电网故障,提高了电网的安全性和可靠性。智能化的电网管理减少了人工干预的需求,降低了运维成本,提高了运维效率。因此,本发明通过综合数据处理、动态负荷曲线转换、负荷峰值数据提取与预测模型、设备信息采集与电网调节、电网非线性控制和数据可视化,提高了智能电网的精准性、稳定性和可靠性。The present invention uses a real-time integrated energy load curve, and the smart grid can more accurately predict and manage energy demand, thereby optimizing energy scheduling and distribution and improving energy utilization efficiency. Comprehensive consideration of power data and smart grid environmental data can help the smart grid system better cope with changing environmental factors and improve the reliability and stability of the power supply system. Through dynamic load curve conversion, the smart grid can more accurately predict load demand and adjust the energy supply strategy in a targeted manner, thereby reducing the cost of energy production and distribution. The real-time integrated energy load curve provides decision makers with an accurate data basis, which can be used for making energy policies, planning energy facility construction, optimizing energy market operations and other decisions. Through comprehensive analysis of power data and environmental data, the smart grid can better support the integration and utilization of renewable energy and promote the sustainable development of the energy system. Through dynamic power distribution, the system can respond to changing load demands in real time and improve the flexibility of power distribution. Through accurate power demand prediction, over-distribution of power can be avoided, energy waste can be reduced, and energy utilization efficiency can be improved. The use of the optimal power distribution plan can effectively balance the supply and demand relationship and improve the stability and robustness of the power system. By reducing over-distribution and improving system efficiency, the operating cost of the power system can be reduced and the overall economic benefits can be improved. Through real-time grid regulation and edge computing control, the system can respond to changes in power demand more quickly, improving the real-time response capability of the power system. Through power control stability regulation, stable power transmission data is generated, which helps to improve the stability and reliability of power transmission. Equipment adjustment according to the optimal power distribution plan helps to optimize equipment utilization, extend equipment life, and reduce equipment operating costs. Through grid nonlinear control, refined management of grid operation is achieved, and the operating efficiency and stability of the grid are improved. The optimized grid control strategy helps to reduce the loss of transmission lines, improve transmission efficiency, and reduce energy waste. The implementation of intelligent control strategies can timely discover and handle grid faults, improve the safety and reliability of the grid. Intelligent grid management reduces the need for manual intervention, reduces operation and maintenance costs, and improves operation and maintenance efficiency. Therefore, the present invention improves the accuracy, stability and reliability of the smart grid through comprehensive data processing, dynamic load curve conversion, load peak data extraction and prediction model, equipment information collection and grid regulation, grid nonlinear control and data visualization.
在本说明书中,提供了一种智能电网的输电数据控制系统,用于执行上述所述的智能电网的输电数据控制方法,该智能电网的输电数据控制系统包括:In this specification, a power transmission data control system of a smart grid is provided, which is used to execute the power transmission data control method of the smart grid described above, and the power transmission data control system of the smart grid includes:
负荷分析模块,用于获取实时电力数据和智能电网环境数据;对实时电力数据和智能电网环境数据进行数据融合,生成综合电力环境数据集;对综合电力环境数据集进行动态负荷曲线转换,从而生成实时综合能源负荷曲线;The load analysis module is used to obtain real-time power data and smart grid environment data; perform data fusion on the real-time power data and smart grid environment data to generate a comprehensive power environment data set; perform dynamic load curve conversion on the comprehensive power environment data set to generate a real-time comprehensive energy load curve;
电力分配模块,用于基于预设的峰值筛选数量对实时综合能源负荷曲线进行负荷峰值数据提取,得到动态电力负荷峰值数据;对动态电力负荷峰值数据进行模型训练,生成电力需求预测模型;通过电力需求预测模型对动态电力负荷峰值数据进行动态电力分配,从而生成最优电力分配方案;The power distribution module is used to extract load peak data from the real-time comprehensive energy load curve based on a preset peak screening number to obtain dynamic power load peak data; perform model training on the dynamic power load peak data to generate a power demand prediction model; perform dynamic power distribution on the dynamic power load peak data through the power demand prediction model to generate an optimal power distribution plan;
稳定调控模块,用于基于最优电力分配方案进行设备信息采集,得到边缘设备部署信息数据;根据边缘设备部署信息数据对智能电网进行实时电网调节,生成电网边缘计算控制数据;对电网边缘计算控制数据进行电力控制稳定性调控,生成电力传输稳定数据;The stability control module is used to collect device information based on the optimal power distribution plan to obtain edge device deployment information data; perform real-time grid adjustment on the smart grid based on the edge device deployment information data to generate grid edge computing control data; perform power control stability control on the grid edge computing control data to generate power transmission stability data;
线性控制模块,用于对电力传输稳定数据进行三维点云转换,生成电力传输三维模型;基于电力传输三维模型进行电网非线性控制,生成电网输电智能控制数据;对电网输电智能控制数据进行数据可视化,从而生成智能电网输电数据控制报告。The linear control module is used to convert the power transmission stability data into three-dimensional point cloud to generate a three-dimensional power transmission model; perform nonlinear control of the power grid based on the three-dimensional power transmission model to generate intelligent control data for power grid transmission; and visualize the intelligent control data for power grid transmission to generate a smart grid transmission data control report.
本发明的有益效果在于通过融合实时电力数据和智能电网环境数据,生成综合电力环境数据集,有助于提高数据的完整性和准确性。通过动态负荷曲线转换,实时生成综合能源负荷曲线,为后续电力需求预测和优化提供基础。通过模型训练,生成电力需求预测模型,可以帮助预测未来的电力需求,为电力分配提供依据。基于电力需求预测模型,实现动态电力分配,生成最优的电力分配方案,有助于提高能源利用效率,降低供需不平衡带来的成本。根据最优电力分配方案,进行实时电网调节,通过边缘设备部署信息数据实现智能电网的优化管理。通过电网边缘计算控制数据的生成和调控,提升电网的稳定性和可靠性,减少能源浪费和损失。通过三维点云转换,生成电力传输三维模型,为电网非线性控制提供可视化基础。基于电力传输三维模型,实现电网的非线性控制和智能化管理,提高电网运行效率和安全性。通过对电网输电智能控制数据的可视化,生成智能电网输电数据控制报告,为电力管理部门提供决策支持和管理参考。因此,本发明通过综合数据处理、动态负荷曲线转换、负荷峰值数据提取与预测模型、设备信息采集与电网调节、电网非线性控制和数据可视化,提高了智能电网的精准性、稳定性和可靠性。The beneficial effect of the present invention is that by integrating real-time power data and smart grid environment data, a comprehensive power environment data set is generated, which helps to improve the integrity and accuracy of the data. Through dynamic load curve conversion, a comprehensive energy load curve is generated in real time, providing a basis for subsequent power demand prediction and optimization. Through model training, a power demand prediction model is generated, which can help predict future power demand and provide a basis for power distribution. Based on the power demand prediction model, dynamic power distribution is realized, and the optimal power distribution plan is generated, which helps to improve energy utilization efficiency and reduce the cost caused by supply and demand imbalance. According to the optimal power distribution plan, real-time power grid adjustment is carried out, and the optimal management of the smart grid is realized by deploying information data of edge devices. Through the generation and regulation of power grid edge computing control data, the stability and reliability of the power grid are improved, and energy waste and loss are reduced. Through three-dimensional point cloud conversion, a three-dimensional model of power transmission is generated, providing a visualization basis for nonlinear control of the power grid. Based on the three-dimensional model of power transmission, nonlinear control and intelligent management of the power grid are realized, and the operation efficiency and safety of the power grid are improved. Through the visualization of the intelligent control data of power grid transmission, a smart grid transmission data control report is generated to provide decision support and management reference for the power management department. Therefore, the present invention improves the accuracy, stability and reliability of the smart grid through comprehensive data processing, dynamic load curve conversion, load peak data extraction and prediction model, equipment information collection and grid regulation, grid nonlinear control and data visualization.
附图说明BRIEF DESCRIPTION OF THE DRAWINGS
图1为一种智能电网的输电数据控制方法的步骤流程示意图;FIG1 is a schematic diagram of a process flow of a method for controlling power transmission data of a smart grid;
图2为图1中步骤S2的详细实施步骤流程示意图;FIG2 is a schematic diagram of a detailed implementation process of step S2 in FIG1 ;
图3为图2中步骤S24的详细实施步骤流程示意图;FIG3 is a schematic diagram of a detailed implementation process of step S24 in FIG2 ;
图4为图3中步骤S243的详细实施步骤流程示意图;FIG4 is a schematic diagram of a detailed implementation process of step S243 in FIG3 ;
本发明目的的实现、功能特点及优点将结合实施例,参照附图做进一步说明。The realization of the purpose, functional features and advantages of the present invention will be further explained in conjunction with embodiments and with reference to the accompanying drawings.
具体实施方式Detailed ways
下面结合附图对本发明专利的技术方法进行清楚、完整的描述,显然,所描述的实施例是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域所属的技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。The following is a clear and complete description of the technical method of the present invention in conjunction with the accompanying drawings. Obviously, the described embodiments are part of the embodiments of the present invention, not all of the embodiments. Based on the embodiments of the present invention, all other embodiments obtained by technicians in this field without creative work are within the scope of protection of the present invention.
此外,附图仅为本发明的示意性图解,并非一定是按比例绘制。图中相同的附图标记表示相同或类似的部分,因而将省略对它们的重复描述。附图中所示的一些方框图是功能实体,不一定必须与物理或逻辑上独立的实体相对应。可以采用软件形式来实现功能实体,或在一个或多个硬件模块或集成电路中实现这些功能实体,或在不同网络和/或处理器方法和/或微控制器方法中实现这些功能实体。In addition, the accompanying drawings are only schematic illustrations of the present invention and are not necessarily drawn to scale. The same reference numerals in the figures represent the same or similar parts, and their repeated description will be omitted. Some of the block diagrams shown in the accompanying drawings are functional entities and do not necessarily correspond to physically or logically independent entities. The functional entities can be implemented in software form, or implemented in one or more hardware modules or integrated circuits, or implemented in different networks and/or processor methods and/or microcontroller methods.
应当理解的是,虽然在这里可能使用了术语“第一”、“第二”等等来描述各个单元,但是这些单元不应当受这些术语限制。使用这些术语仅仅是为了将一个单元与另一个单元进行区分。举例来说,在不背离示例性实施例的范围的情况下,第一单元可以被称为第二单元,并且类似地第二单元可以被称为第一单元。这里所使用的术语“和/或”包括其中一个或更多所列出的相关联项目的任意和所有组合。It should be understood that, although the terms "first", "second", etc. may be used herein to describe various units, these units should not be limited by these terms. These terms are used only to distinguish one unit from another unit. For example, without departing from the scope of the exemplary embodiments, the first unit may be referred to as the second unit, and similarly the second unit may be referred to as the first unit. The term "and/or" used herein includes any and all combinations of one or more of the listed associated items.
为实现上述目的,请参阅图1至图4,一种智能电网的输电数据控制方法,所述方法包括以下步骤:To achieve the above object, please refer to FIG. 1 to FIG. 4 , a method for controlling power transmission data of a smart grid, the method comprising the following steps:
步骤S1:获取实时电力数据和智能电网环境数据;对实时电力数据和智能电网环境数据进行数据融合,生成综合电力环境数据集;对综合电力环境数据集进行动态负荷曲线转换,从而生成实时综合能源负荷曲线;Step S1: acquiring real-time power data and smart grid environment data; fusing the real-time power data and the smart grid environment data to generate a comprehensive power environment data set; performing dynamic load curve conversion on the comprehensive power environment data set to generate a real-time comprehensive energy load curve;
步骤S2:基于预设的峰值筛选数量对实时综合能源负荷曲线进行负荷峰值数据提取,得到动态电力负荷峰值数据;对动态电力负荷峰值数据进行模型训练,生成电力需求预测模型;通过电力需求预测模型对动态电力负荷峰值数据进行动态电力分配,从而生成最优电力分配方案;Step S2: extracting load peak data from the real-time integrated energy load curve based on a preset peak screening number to obtain dynamic power load peak data; performing model training on the dynamic power load peak data to generate a power demand forecasting model; dynamically allocating power to the dynamic power load peak data through the power demand forecasting model to generate an optimal power allocation plan;
步骤S3:基于最优电力分配方案进行设备信息采集,得到边缘设备部署信息数据;根据边缘设备部署信息数据对智能电网进行实时电网调节,生成电网边缘计算控制数据;对电网边缘计算控制数据进行电力控制稳定性调控,生成电力传输稳定数据;Step S3: Collect device information based on the optimal power distribution plan to obtain edge device deployment information data; perform real-time grid adjustment on the smart grid according to the edge device deployment information data to generate grid edge computing control data; perform power control stability regulation on the grid edge computing control data to generate power transmission stability data;
步骤S4:对电力传输稳定数据进行三维点云转换,生成电力传输三维模型;基于电力传输三维模型进行电网非线性控制,生成电网输电智能控制数据;对电网输电智能控制数据进行数据可视化,从而生成智能电网输电数据控制报告。Step S4: convert the power transmission stability data into a three-dimensional point cloud to generate a three-dimensional power transmission model; perform nonlinear power grid control based on the three-dimensional power transmission model to generate power grid transmission intelligent control data; visualize the power grid transmission intelligent control data to generate a smart grid transmission data control report.
本发明通过实时综合能源负荷曲线,智能电网可以更准确地预测和管理能源需求,从而优化能源调度和分配,提高能源利用效率。综合考虑电力数据和智能电网环境数据可以帮助智能电网系统更好地应对变化的环境因素,提高供电系统的可靠性和稳定性。通过动态负荷曲线转换,智能电网可以更精确地预测负荷需求,有针对性地调整能源供应策略,从而降低能源生产和分配的成本。实时综合能源负荷曲线为决策者提供了准确的数据基础,可用于制定能源政策、规划能源设施建设、优化能源市场运行等决策。通过对电力数据和环境数据的综合分析,智能电网可以更好地支持可再生能源的集成和利用,促进能源系统的可持续发展。通过动态电力分配,系统能够实时响应变化的负荷需求,提高电力分配的灵活性。通过精准的电力需求预测,可以避免过度分配电力,减少能源浪费,提高能源利用效率。采用最优电力分配方案可以有效平衡供需关系,提高电力系统的稳定性和鲁棒性。通过减少过度分配和提高系统效率,可以降低电力系统运行成本,提升整体经济效益。通过实时电网调节和边缘计算控制,系统可以更快速地响应电力需求变化,提升了电力系统的实时响应能力。通过电力控制稳定性调控,生成稳定的电力传输数据,有助于提高电力传输的稳定性和可靠性。根据最优电力分配方案进行设备调节,有助于优化设备利用率,延长设备寿命,降低设备运行成本。通过电网非线性控制,实现了对电网运行的精细化管理,提高了电网的运行效率和稳定性。优化的电网控制策略有助于减少输电线路的损耗,提高了输电效率,降低了能源浪费。实施智能控制策略能够及时发现和处理电网故障,提高了电网的安全性和可靠性。智能化的电网管理减少了人工干预的需求,降低了运维成本,提高了运维效率。因此,本发明通过综合数据处理、动态负荷曲线转换、负荷峰值数据提取与预测模型、设备信息采集与电网调节、电网非线性控制和数据可视化,提高了智能电网的精准性、稳定性和可靠性。The present invention uses a real-time integrated energy load curve, and the smart grid can more accurately predict and manage energy demand, thereby optimizing energy scheduling and distribution and improving energy utilization efficiency. Comprehensive consideration of power data and smart grid environmental data can help the smart grid system better cope with changing environmental factors and improve the reliability and stability of the power supply system. Through dynamic load curve conversion, the smart grid can more accurately predict load demand and adjust the energy supply strategy in a targeted manner, thereby reducing the cost of energy production and distribution. The real-time integrated energy load curve provides decision makers with an accurate data basis, which can be used for making energy policies, planning energy facility construction, optimizing energy market operations and other decisions. Through comprehensive analysis of power data and environmental data, the smart grid can better support the integration and utilization of renewable energy and promote the sustainable development of the energy system. Through dynamic power distribution, the system can respond to changing load demands in real time and improve the flexibility of power distribution. Through accurate power demand prediction, over-distribution of power can be avoided, energy waste can be reduced, and energy utilization efficiency can be improved. The use of the optimal power distribution plan can effectively balance the supply and demand relationship and improve the stability and robustness of the power system. By reducing over-distribution and improving system efficiency, the operating cost of the power system can be reduced and the overall economic benefits can be improved. Through real-time grid regulation and edge computing control, the system can respond to changes in power demand more quickly, improving the real-time response capability of the power system. Through power control stability regulation, stable power transmission data is generated, which helps to improve the stability and reliability of power transmission. Equipment adjustment according to the optimal power distribution plan helps to optimize equipment utilization, extend equipment life, and reduce equipment operating costs. Through grid nonlinear control, refined management of grid operation is achieved, and the operating efficiency and stability of the grid are improved. The optimized grid control strategy helps to reduce the loss of transmission lines, improve transmission efficiency, and reduce energy waste. The implementation of intelligent control strategies can timely discover and handle grid faults, improve the safety and reliability of the grid. Intelligent grid management reduces the need for manual intervention, reduces operation and maintenance costs, and improves operation and maintenance efficiency. Therefore, the present invention improves the accuracy, stability and reliability of the smart grid through comprehensive data processing, dynamic load curve conversion, load peak data extraction and prediction model, equipment information collection and grid regulation, grid nonlinear control and data visualization.
本发明实施例中,参考图1所述,为本发明一种智能电网的输电数据控制方法的步骤流程示意图,在本实例中,所述一种智能电网的输电数据控制方法包括以下步骤:In the embodiment of the present invention, referring to FIG. 1 , it is a schematic flow chart of the steps of a method for controlling power transmission data of a smart grid of the present invention. In this example, the method for controlling power transmission data of a smart grid includes the following steps:
步骤S1:获取实时电力数据和智能电网环境数据;对实时电力数据和智能电网环境数据进行数据融合,生成综合电力环境数据集;对综合电力环境数据集进行动态负荷曲线转换,从而生成实时综合能源负荷曲线;Step S1: acquiring real-time power data and smart grid environment data; fusing the real-time power data and the smart grid environment data to generate a comprehensive power environment data set; performing dynamic load curve conversion on the comprehensive power environment data set to generate a real-time comprehensive energy load curve;
本发明实施例中,通过使用传感器、智能电表等设备实时采集电力数据。通过电力公司提供的实时数据接口获取电网运行状态、电力负荷等信息。利用环境传感器、气象站等设备收集气象数据,如温度、湿度、风速等,影响电力需求的环境因素。从智能电网设备中获取环境信息,例如设备运行状态、故障信息等。对实时电力数据和智能电网环境数据进行清洗,处理缺失值、异常值等。对数据进行时间同步,确保数据的时序一致性。将清洗后的实时电力数据和智能电网环境数据进行融合。可以根据时间戳或其他关键信息进行关联。使用数据融合算法,如数据库关联查询、时间序列合并等。将融合后的数据整合为一个综合的电力环境数据集,包含电力数据和环境数据。对综合电力环境数据集进行数据处理,提取关键特征,如电力负荷、环境温度、湿度等。使用滤波技术平滑曲线,降低噪声干扰。利用时间序列分析方法,例如移动平均、指数平滑等,生成动态负荷曲线。考虑电力数据和环境数据之间的关联,确保生成的负荷曲线反映了电力系统在不同环境条件下的变化。将生成的动态负荷曲线整合,得到实时综合能源负荷曲线。考虑不同时间尺度的变化,以满足对实时能源需求的不同粒度的分析。In the embodiment of the present invention, power data is collected in real time by using sensors, smart meters and other devices. The real-time data interface provided by the power company is used to obtain information such as the power grid operation status and power load. Environmental sensors, weather stations and other devices are used to collect meteorological data, such as temperature, humidity, wind speed, and other environmental factors that affect power demand. Environmental information, such as equipment operation status, fault information, etc., is obtained from smart grid equipment. Real-time power data and smart grid environmental data are cleaned, and missing values, abnormal values, etc. are processed. Time synchronization is performed on the data to ensure the temporal consistency of the data. The cleaned real-time power data and smart grid environmental data are fused. The association can be performed based on timestamps or other key information. Data fusion algorithms are used, such as database association query, time series merging, etc. The fused data is integrated into a comprehensive power environment data set, including power data and environmental data. Data processing is performed on the comprehensive power environment data set to extract key features, such as power load, ambient temperature, humidity, etc. Filtering technology is used to smooth the curve and reduce noise interference. Time series analysis methods, such as moving average, exponential smoothing, etc., are used to generate dynamic load curves. Consider the association between power data and environmental data to ensure that the generated load curve reflects the changes of the power system under different environmental conditions. The generated dynamic load curves are integrated to obtain the real-time comprehensive energy load curve, taking into account the changes in different time scales to meet the analysis of different granularities of real-time energy demand.
步骤S2:基于预设的峰值筛选数量对实时综合能源负荷曲线进行负荷峰值数据提取,得到动态电力负荷峰值数据;对动态电力负荷峰值数据进行模型训练,生成电力需求预测模型;通过电力需求预测模型对动态电力负荷峰值数据进行动态电力分配,从而生成最优电力分配方案;Step S2: extracting load peak data from the real-time integrated energy load curve based on a preset peak screening number to obtain dynamic power load peak data; performing model training on the dynamic power load peak data to generate a power demand forecasting model; dynamically allocating power to the dynamic power load peak data through the power demand forecasting model to generate an optimal power allocation plan;
本发明实施例中,通过制定预设的峰值筛选数量,根据实时综合能源负荷曲线,识别并提取负荷峰值数据。可以使用滑动窗口、峰值检测算法等技术。选择合适的电力需求预测模型,如时间序列模型(ARIMA、Prophet)、机器学习模型(回归模型、决策树)或深度学习模型(LSTM、GRU、Transformer)。使用历史动态电力负荷峰值数据作为训练集,将数据分为训练集和验证集,进行模型的训练和调优。利用训练好的模型对未来一段时间内的动态电力负荷峰值数据进行预测。确保模型能够捕捉负荷曲线的趋势、周期性等特征。将电力需求预测模型得到的预测结果用于动态电力分配。制定最优电力分配算法,考虑电力供应能力、成本、可再生能源利用等因素,生成最优的电力分配方案。实施最优电力分配方案,将电力资源分配到不同的部分,以满足系统的实际需求。监控实时电力数据,根据需要对分配方案进行调整。In an embodiment of the present invention, by formulating a preset peak screening number, load peak data is identified and extracted according to the real-time integrated energy load curve. Technologies such as sliding windows and peak detection algorithms can be used. Select a suitable power demand forecasting model, such as a time series model (ARIMA, Prophet), a machine learning model (regression model, decision tree) or a deep learning model (LSTM, GRU, Transformer). Use historical dynamic power load peak data as a training set, divide the data into a training set and a validation set, and train and tune the model. Use the trained model to predict the dynamic power load peak data for a period of time in the future. Ensure that the model can capture the trend, periodicity and other characteristics of the load curve. The prediction results obtained by the power demand forecasting model are used for dynamic power distribution. Formulate an optimal power distribution algorithm, consider factors such as power supply capacity, cost, and renewable energy utilization, and generate an optimal power distribution plan. Implement the optimal power distribution plan to allocate power resources to different parts to meet the actual needs of the system. Monitor real-time power data and adjust the distribution plan as needed.
步骤S3:基于最优电力分配方案进行设备信息采集,得到边缘设备部署信息数据;根据边缘设备部署信息数据对智能电网进行实时电网调节,生成电网边缘计算控制数据;对电网边缘计算控制数据进行电力控制稳定性调控,生成电力传输稳定数据;Step S3: Collect device information based on the optimal power distribution plan to obtain edge device deployment information data; perform real-time grid adjustment on the smart grid according to the edge device deployment information data to generate grid edge computing control data; perform power control stability regulation on the grid edge computing control data to generate power transmission stability data;
本发明实施例中,通过部署传感器和监控设备,用于采集边缘设备的状态信息、电网参数、能源消耗等数据。设计数据采集协议和通信方式,确保设备能够实时传输数据到中央控制系统。对采集到的设备信息进行清洗、处理和整合,以得到准确可用的边缘设备部署信息数据。利用边缘设备部署信息数据对智能电网进行实时调节,涉及到控制分布式能源、储能系统、调频设备等。制定电网调节算法,考虑设备的最大容量、能源供需平衡、电压和频率控制等因素,生成实时的电网调节策略。根据实时电网调节的结果,生成电网边缘计算控制数据,数据包括电网状态信息、设备运行参数、负荷分布等,用于指导下一步的电力控制。利用电网边缘计算控制数据进行电力控制稳定性调控。使用先进的控制算法,确保电力系统在不同负荷情况下能够维持稳定的电压和频率。针对可能出现的突发负荷变化或设备故障,实施相应的应对策略,保障电网的稳定性。根据电力控制的结果,生成电力传输稳定数据,反映了电力系统在调节后的稳定状态,包括电压、频率、负荷平衡等信息。In the embodiment of the present invention, sensors and monitoring equipment are deployed to collect data such as status information, grid parameters, and energy consumption of edge devices. Data collection protocols and communication methods are designed to ensure that the equipment can transmit data to the central control system in real time. The collected equipment information is cleaned, processed, and integrated to obtain accurate and available edge device deployment information data. Using edge device deployment information data to adjust the smart grid in real time involves controlling distributed energy, energy storage systems, frequency modulation equipment, etc. Formulate a grid adjustment algorithm, consider factors such as the maximum capacity of the equipment, energy supply and demand balance, voltage and frequency control, and generate a real-time grid adjustment strategy. According to the results of real-time grid adjustment, grid edge computing control data is generated, and the data includes grid status information, equipment operating parameters, load distribution, etc., which are used to guide the next step of power control. Grid edge computing control data is used to control power control stability. Advanced control algorithms are used to ensure that the power system can maintain stable voltage and frequency under different load conditions. In response to possible sudden load changes or equipment failures, corresponding response strategies are implemented to ensure the stability of the power grid. According to the results of power control, power transmission stability data is generated, which reflects the stable state of the power system after adjustment, including information such as voltage, frequency, and load balance.
步骤S4:对电力传输稳定数据进行三维点云转换,生成电力传输三维模型;基于电力传输三维模型进行电网非线性控制,生成电网输电智能控制数据;对电网输电智能控制数据进行数据可视化,从而生成智能电网输电数据控制报告。Step S4: convert the power transmission stability data into a three-dimensional point cloud to generate a three-dimensional power transmission model; perform nonlinear power grid control based on the three-dimensional power transmission model to generate power grid transmission intelligent control data; visualize the power grid transmission intelligent control data to generate a smart grid transmission data control report.
本发明实施例中,通过使用激光扫描仪或其他三维扫描技术对电力传输线路和设备进行扫描,获取点云数据。对点云数据进行处理和分析,生成电力传输三维模型。确保三维模型准确反映了电力传输线路的几何形状、设备布局和环境特征。基于电力传输三维模型,开发电网非线性控制算法。考虑电力系统的非线性特性,包括负荷变化、线路阻抗、设备限制等因素,设计控制策略以优化电力传输效率和稳定性。生成电网输电智能控制数据,包括设备调节参数、功率流动分配等信息。使用三维可视化软件或库,将电力传输三维模型和电网输电智能控制数据进行可视化。可视化展示电力传输线路、设备的状态和控制策略,以便用户直观理解电网运行情况和控制效果。根据可视化结果,生成智能电网输电数据控制报告。报告包括电力传输线路的几何结构、设备布局、控制参数、实时运行状态等信息,以及对电网运行效率和稳定性的评估和建议。In an embodiment of the present invention, a laser scanner or other three-dimensional scanning technology is used to scan the power transmission line and equipment to obtain point cloud data. The point cloud data is processed and analyzed to generate a three-dimensional model of power transmission. It is ensured that the three-dimensional model accurately reflects the geometry, equipment layout and environmental characteristics of the power transmission line. Based on the three-dimensional model of power transmission, a nonlinear control algorithm for the power grid is developed. Considering the nonlinear characteristics of the power system, including factors such as load changes, line impedance, and equipment limitations, a control strategy is designed to optimize the efficiency and stability of power transmission. Intelligent control data for power grid transmission is generated, including information such as equipment adjustment parameters and power flow distribution. The three-dimensional model of power transmission and the intelligent control data for power grid transmission are visualized using three-dimensional visualization software or library. The status and control strategy of power transmission lines and equipment are visualized so that users can intuitively understand the operation of the power grid and the control effect. Based on the visualization results, a smart grid transmission data control report is generated. The report includes information such as the geometry of the power transmission line, equipment layout, control parameters, real-time operation status, and evaluation and suggestions on the efficiency and stability of the power grid operation.
优选的,步骤S1包括以下步骤:Preferably, step S1 comprises the following steps:
步骤S11:利用传感器获取实时电力数据和智能电网环境数据;Step S11: using sensors to obtain real-time power data and smart grid environment data;
步骤S12:对实时电力数据和智能电网环境数据进行数据格式标准化,生成实时电力标准数据和智能电网标准环境数据;对实时电力标准数据和智能电网标准环境数据进行数据缺失值填充,生成实时电力完整数据和智能电网完整环境数据;Step S12: standardizing the data formats of the real-time power data and the smart grid environment data to generate real-time power standard data and smart grid standard environment data; filling missing values of the real-time power standard data and the smart grid standard environment data to generate real-time power complete data and smart grid complete environment data;
步骤S13:将实时电力完整数据和智能电网完整环境数据进行数据融合,生成综合电力环境数据集;对综合电力环境数据集进行电网运行动态负荷数据筛选,生成综合电力动态负荷数据集;Step S13: fusing the real-time power complete data and the smart grid complete environment data to generate a comprehensive power environment data set; filtering the power grid operation dynamic load data for the comprehensive power environment data set to generate a comprehensive power dynamic load data set;
步骤S14:通过主成分分析方法对综合电力动态负荷数据集进行数据降维,生成综合电力动态负荷降维数据集;对综合电力动态负荷降维数据集进行曲线转换,从而生成实时综合能源负荷曲线。Step S14: Performing data dimensionality reduction on the comprehensive power dynamic load data set by principal component analysis method to generate a comprehensive power dynamic load reduced dimensionality data set; performing curve conversion on the comprehensive power dynamic load reduced dimensionality data set to generate a real-time comprehensive energy load curve.
本发明通过步骤S11和S12,系统能够实时获取电力数据和智能电网环境数据,并将其标准化处理,填充缺失值,确保数据的准确性和完整性。通过步骤S13,系统将电力数据和环境数据进行融合,生成综合的电力环境数据集,为电网运行提供全面的数据支持,并通过筛选生成综合电力动态负荷数据集,为后续分析提供基础。通过步骤S14,系统利用主成分分析方法对综合电力动态负荷数据集进行降维处理,简化数据结构,提高处理效率,并将其转换为实时综合能源负荷曲线,使数据更直观、易于理解。整个过程的自动化处理可以提高能源数据的处理速度和准确性,为电力系统运行和能源管理提供更可靠的支持,从而提高能源管理的效率和准确性。Through steps S11 and S12, the system of the present invention can obtain power data and smart grid environmental data in real time, standardize them, fill in missing values, and ensure the accuracy and completeness of the data. Through step S13, the system merges the power data and environmental data to generate a comprehensive power environment data set, providing comprehensive data support for power grid operation, and generates a comprehensive power dynamic load data set by screening to provide a basis for subsequent analysis. Through step S14, the system uses the principal component analysis method to reduce the dimension of the comprehensive power dynamic load data set, simplify the data structure, improve the processing efficiency, and convert it into a real-time comprehensive energy load curve to make the data more intuitive and easy to understand. The automated processing of the entire process can improve the processing speed and accuracy of energy data, provide more reliable support for power system operation and energy management, and thus improve the efficiency and accuracy of energy management.
本发明实施例中,通过部署传感器网络以获取实时电力数据和智能电网环境数据,传感器可以包括电力计量装置、温度传感器、湿度传感器、风速传感器等,用于收集各种与电力生产和分配相关的数据以及环境数据。开发数据格式标准化的算法和程序,对传感器采集的实时数据进行标准化处理,确保数据格式的一致性和兼容性。实现数据缺失值填充算法,根据数据特征和历史数据进行填充,确保实时电力数据和智能电网环境数据的完整性。设计数据融合算法,将实时电力数据和智能电网环境数据进行融合,生成综合电力环境数据集。开发电网运行动态负荷数据筛选算法,根据电网运行状态和需求,对综合电力环境数据集进行筛选,生成综合电力动态负荷数据集。实现主成分分析(PCA)方法,对综合电力动态负荷数据集进行降维处理,提取数据的主要特征,减少数据维度。开发曲线转换算法,将综合电力动态负荷降维数据集转换为实时综合能源负荷曲线,以便更直观地展示电力系统的负荷情况。In an embodiment of the present invention, a sensor network is deployed to obtain real-time power data and smart grid environment data. The sensors may include power metering devices, temperature sensors, humidity sensors, wind speed sensors, etc., which are used to collect various data related to power production and distribution and environmental data. Develop algorithms and programs for data format standardization, standardize the real-time data collected by sensors, and ensure the consistency and compatibility of data formats. Implement a data missing value filling algorithm, fill in data according to data characteristics and historical data, and ensure the integrity of real-time power data and smart grid environment data. Design a data fusion algorithm to fuse real-time power data and smart grid environment data to generate a comprehensive power environment data set. Develop a grid operation dynamic load data screening algorithm, screen the comprehensive power environment data set according to the grid operation status and demand, and generate a comprehensive power dynamic load data set. Implement the principal component analysis (PCA) method to reduce the dimension of the comprehensive power dynamic load data set, extract the main features of the data, and reduce the data dimension. Develop a curve conversion algorithm to convert the comprehensive power dynamic load dimension reduction data set into a real-time comprehensive energy load curve to more intuitively display the load situation of the power system.
优选的,步骤S2包括以下步骤:Preferably, step S2 comprises the following steps:
步骤S21:基于预设的峰值筛选数量对实时综合能源负荷曲线进行负荷峰值数据提取,得到动态电力负荷峰值数据;对动态电力负荷峰值数据进行历史数据收集,生成历史动态电力负荷峰值数据;Step S21: extracting load peak data from the real-time integrated energy load curve based on a preset peak screening number to obtain dynamic power load peak data; collecting historical data of the dynamic power load peak data to generate historical dynamic power load peak data;
步骤S22:将历史动态电力负荷峰值数据进行数据集划分,生成模型训练集和模型测试集;根据长短期记忆网络算法对模型训练集进行模型训练,生成电力需求训练模型;利用模型测试集对电力需求训练模型进行模型优化迭代,从而生成电力需求预测模型;Step S22: dividing the historical dynamic power load peak data into data sets to generate a model training set and a model test set; training the model training set according to the long short-term memory network algorithm to generate a power demand training model; optimizing and iterating the power demand training model using the model test set to generate a power demand prediction model;
步骤S23:将动态电力负荷峰值数据导入至电力需求预测模型中进行电力需求预测,生成电力需求预测数据;Step S23: importing the dynamic power load peak data into the power demand forecasting model to perform power demand forecasting and generate power demand forecasting data;
步骤S24:利用电力供需分析公式对电力需求预测数据进行电力供需量化,得到电力供需值;根据电力供需值对电力需求预测数据进行动态电力分配,从而生成最优电力分配方案。Step S24: quantify the power supply and demand of the power demand forecast data using the power supply and demand analysis formula to obtain the power supply and demand value; dynamically allocate power to the power demand forecast data according to the power supply and demand value, thereby generating an optimal power allocation plan.
本发明通过从实时综合能源负荷曲线中提取动态电力负荷峰值数据,并通过历史数据收集生成历史动态电力负荷峰值数据,有助于系统更好地了解电力负荷的波动性和周期性。系统使用长短期记忆网络(LSTM)算法进行模型训练,生成电力需求训练模型。通过模型测试集的迭代优化,生成更准确的电力需求预测模型,提高了对电力需求的准确预测能力。将动态电力负荷峰值数据导入电力需求预测模型,生成电力需求预测数据,有助于实时了解未来电力需求的趋势和变化,为电力供应做出准备。系统利用电力供需分析公式对电力需求预测数据进行量化,得到电力供需值,提供了对电力需求的实时量化评估,使系统能够根据电力供需值进行动态电力分配,生成最优的电力分配方案。通过动态电力分配,系统能够根据实时电力需求情况调整电力分配,以最大程度地满足需求并避免资源浪费,有助于提高电力系统的效率和可持续性,最大程度地利用可用资源。The present invention helps the system to better understand the volatility and periodicity of power load by extracting dynamic power load peak data from the real-time comprehensive energy load curve and generating historical dynamic power load peak data through historical data collection. The system uses the long short-term memory network (LSTM) algorithm for model training to generate a power demand training model. Through iterative optimization of the model test set, a more accurate power demand forecasting model is generated, which improves the ability to accurately predict power demand. Importing dynamic power load peak data into the power demand forecasting model to generate power demand forecasting data helps to understand the trend and changes of future power demand in real time and prepare for power supply. The system uses the power supply and demand analysis formula to quantify the power demand forecasting data to obtain the power supply and demand value, provides a real-time quantitative evaluation of power demand, enables the system to dynamically allocate power according to the power supply and demand value, and generates the optimal power allocation plan. Through dynamic power allocation, the system can adjust power allocation according to the real-time power demand situation to meet the demand to the greatest extent and avoid resource waste, which helps to improve the efficiency and sustainability of the power system and maximize the use of available resources.
作为本发明的一个实例,参考图2所示,在本实例中所述步骤S2包括:As an example of the present invention, referring to FIG. 2 , in this example, step S2 includes:
步骤S21:基于预设的峰值筛选数量对实时综合能源负荷曲线进行负荷峰值数据提取,得到动态电力负荷峰值数据;对动态电力负荷峰值数据进行历史数据收集,生成历史动态电力负荷峰值数据;Step S21: extracting load peak data from the real-time integrated energy load curve based on a preset peak screening number to obtain dynamic power load peak data; collecting historical data of the dynamic power load peak data to generate historical dynamic power load peak data;
本发明实施例中,通过获取实时综合能源负荷曲线的数据,涉及到监控系统、传感器或者其他数据采集设备,以实时获取各种能源(如电力、天然气、太阳能等)的负荷情况。基于预设的峰值筛选数量,对实时综合能源负荷曲线进行分析和处理,以提取负荷峰值数据,可以通过算法或者数据处理技术实现,例如滑动窗口法、峰值检测算法等。从提取的负荷峰值数据中筛选出动态电力负荷峰值数据,涉及到对不同能源的负荷数据进行分类和处理,以确保提取的数据符合电力负荷的特征。将动态电力负荷峰值数据保存并进行历史数据收集,可以通过数据库、数据仓库或者其他数据存储系统来实现,确保对历史数据的持久化存储和管理。根据收集到的历史数据,生成历史动态电力负荷峰值数据,涉及到数据清洗、数据预处理和数据分析等步骤,以确保生成的历史数据质量和准确性。In an embodiment of the present invention, by obtaining the data of the real-time comprehensive energy load curve, a monitoring system, a sensor or other data acquisition device is involved to obtain the load conditions of various energy sources (such as electricity, natural gas, solar energy, etc.) in real time. Based on the preset peak screening number, the real-time comprehensive energy load curve is analyzed and processed to extract the load peak data, which can be achieved through algorithms or data processing techniques, such as sliding window method, peak detection algorithm, etc. Filtering out dynamic power load peak data from the extracted load peak data involves classifying and processing the load data of different energy sources to ensure that the extracted data meets the characteristics of the power load. Saving the dynamic power load peak data and collecting historical data can be achieved through a database, a data warehouse or other data storage system to ensure the persistent storage and management of historical data. Based on the collected historical data, historical dynamic power load peak data is generated, which involves steps such as data cleaning, data preprocessing and data analysis to ensure the quality and accuracy of the generated historical data.
步骤S22:将历史动态电力负荷峰值数据进行数据集划分,生成模型训练集和模型测试集;根据长短期记忆网络算法对模型训练集进行模型训练,生成电力需求训练模型;利用模型测试集对电力需求训练模型进行模型优化迭代,从而生成电力需求预测模型;Step S22: dividing the historical dynamic power load peak data into data sets to generate a model training set and a model test set; training the model training set according to the long short-term memory network algorithm to generate a power demand training model; optimizing and iterating the power demand training model using the model test set to generate a power demand prediction model;
本发明实施例中,通过将历史动态电力负荷峰值数据划分为模型训练集和模型测试集。通常情况下,可以采用时间序列数据中的滑动窗口方法或者随机抽样方法进行划分,确保训练集和测试集的数据具有代表性和一定的随机性。使用长短期记忆网络(LSTM)算法对模型训练集进行模型训练。LSTM是一种适用于处理和预测时间序列数据的循环神经网络(RNN)变体,它能够有效地捕捉时间序列数据中的长期依赖关系。在模型训练过程中,需要确定网络结构、超参数(如学习率、隐藏层节点数等)以及损失函数等。可以使用反向传播算法及优化器(如Adam、SGD等)对模型参数进行更新,以最小化损失函数。利用模型测试集对电力需求训练模型进行评估和优化迭代。通过在测试集上进行验证,可以评估模型的性能和泛化能力,并据此调整模型的结构和参数,以提高模型的预测准确性和稳定性。可以采用交叉验证、超参数搜索等技术来进一步优化模型,以找到最佳的模型配置。经过多轮迭代优化后,生成最终的电力需求预测模型。该模型能够根据历史动态电力负荷峰值数据,对未来一定时间段内的电力需求进行准确预测。In an embodiment of the present invention, the historical dynamic power load peak data is divided into a model training set and a model test set. Generally, the sliding window method or random sampling method in the time series data can be used for division to ensure that the data of the training set and the test set are representative and have a certain degree of randomness. The model training set is trained using the long short-term memory network (LSTM) algorithm. LSTM is a recurrent neural network (RNN) variant suitable for processing and predicting time series data, which can effectively capture long-term dependencies in time series data. During the model training process, it is necessary to determine the network structure, hyperparameters (such as learning rate, number of hidden layer nodes, etc.) and loss function, etc. The model parameters can be updated using the back propagation algorithm and optimizer (such as Adam, SGD, etc.) to minimize the loss function. The power demand training model is evaluated and optimized iteratively using the model test set. By verifying on the test set, the performance and generalization ability of the model can be evaluated, and the structure and parameters of the model can be adjusted accordingly to improve the prediction accuracy and stability of the model. The model can be further optimized by cross-validation, hyperparameter search and other techniques to find the best model configuration. After multiple rounds of iterative optimization, the final power demand forecasting model is generated. The model can accurately predict the electricity demand within a certain period of time in the future based on the historical dynamic power load peak data.
步骤S23:将动态电力负荷峰值数据导入至电力需求预测模型中进行电力需求预测,生成电力需求预测数据;Step S23: importing the dynamic power load peak data into the power demand forecasting model to perform power demand forecasting and generate power demand forecasting data;
本发明实施例中,通过确保动态电力负荷峰值数据的格式和结构与模型输入的数据格式相匹配,需要对数据进行预处理,确保数据的质量和完整性。将准备好的动态电力负荷峰值数据输入到电力需求预测模型中进行预测,通常涉及将数据输入到已经训练好的模型中,并获取模型输出的预测结果。使用电力需求预测模型对动态电力负荷峰值数据进行预测,生成电力需求预测数据。预测数据可以包括未来一段时间内每个时间点的电力需求值,通常以时间序列的形式呈现。将生成的电力需求预测数据用于实际应用,包括调整电力生产计划、优化电力供应链、制定电力市场策略等,以满足未来的电力需求。In an embodiment of the present invention, by ensuring that the format and structure of the dynamic power load peak data match the data format of the model input, the data needs to be preprocessed to ensure the quality and integrity of the data. The prepared dynamic power load peak data is input into the power demand forecasting model for prediction, which usually involves inputting the data into a trained model and obtaining the prediction results of the model output. The dynamic power load peak data is predicted using the power demand forecasting model to generate power demand forecasting data. The forecast data may include the power demand value at each time point in the future, usually presented in the form of a time series. The generated power demand forecasting data is used for practical applications, including adjusting power production plans, optimizing power supply chains, formulating power market strategies, etc., to meet future power demand.
步骤S24:利用电力供需分析公式对电力需求预测数据进行电力供需量化,得到电力供需值;根据电力供需值对电力需求预测数据进行动态电力分配,从而生成最优电力分配方案。Step S24: quantify the power supply and demand of the power demand forecast data using the power supply and demand analysis formula to obtain the power supply and demand value; dynamically allocate power to the power demand forecast data according to the power supply and demand value, thereby generating an optimal power allocation plan.
本发明实施例中,通过确定用于电力供需分析的公式,涉及考虑多个因素,如电力供应能力、预测的电力需求、系统可靠性要求等,常见的公式包括供需平衡方程、负荷曲线等。将电力需求预测数据按照所选的电力供需分析公式进行量化,涉及将预测数据转换为适当的单位(如功率、能量)以匹配公式的要求。使用电力供需分析公式,将量化后的电力需求预测数据与现有的电力供应情况相结合,计算得出电力供需值,这个值反映了当前时段内电力的供需关系。根据计算得到的电力供需值,制定动态电力分配方案,涉及调整电力生产设施的产能、优化输电网络的配置、调整电力负载的分配等措施,以确保电力供需平衡,并尽可能满足系统中各个部分的电力需求。通过对电力供需值进行动态分析和优化,生成最优的电力分配方案,需要考虑多个因素,包括成本、系统可靠性、环境影响等,以及各种约束条件,如设备容量、供电区域需求等。In the embodiment of the present invention, by determining the formula for power supply and demand analysis, multiple factors are considered, such as power supply capacity, predicted power demand, system reliability requirements, etc. Common formulas include supply and demand balance equations, load curves, etc. Quantifying the power demand forecast data according to the selected power supply and demand analysis formula involves converting the forecast data into appropriate units (such as power, energy) to match the requirements of the formula. Using the power supply and demand analysis formula, the quantified power demand forecast data is combined with the existing power supply situation to calculate the power supply and demand value, which reflects the supply and demand relationship of power in the current period. According to the calculated power supply and demand value, a dynamic power distribution plan is formulated, which involves adjusting the production capacity of power production facilities, optimizing the configuration of the transmission network, adjusting the distribution of power loads, and other measures to ensure the balance of power supply and demand and meet the power demand of each part of the system as much as possible. By dynamically analyzing and optimizing the power supply and demand value, the optimal power distribution plan is generated, which needs to consider multiple factors, including cost, system reliability, environmental impact, etc., as well as various constraints, such as equipment capacity, power supply area requirements, etc.
优选的,步骤S24包括以下步骤:Preferably, step S24 includes the following steps:
步骤S241:利用电力供需分析公式对电力需求预测数据进行电力供需量化,得到电力供需值;根据电力供需值对电力需求预测数据进行模拟电力传输,生成模拟电力传输数据;对模拟电力传输数据进行传输电网节点提取,生成电力传输电网节点数据,其中电力传输电网节点数据包括中心电力节点数据和边缘电力节点数据;Step S241: quantifying the power supply and demand of the power demand forecast data using the power supply and demand analysis formula to obtain the power supply and demand value; simulating power transmission of the power demand forecast data according to the power supply and demand value to generate simulated power transmission data; extracting transmission grid nodes from the simulated power transmission data to generate power transmission grid node data, wherein the power transmission grid node data includes central power node data and edge power node data;
步骤S242:对边缘电力节点数据进行分布式计算,生成分布式智能电力传输路径数据;基于分布式智能电力传输路径数据对电力传输电网节点数据进行局部电力分配调整,生成局部电力调整数据;通过预设的通信协议将局部电力调整数据传输至中心电力节点数据中进行电力全局调度,生成全局电路调整数据;Step S242: Perform distributed calculation on edge power node data to generate distributed intelligent power transmission path data; perform local power distribution adjustment on power transmission grid node data based on the distributed intelligent power transmission path data to generate local power adjustment data; transmit the local power adjustment data to the central power node data through a preset communication protocol for global power scheduling to generate global circuit adjustment data;
步骤S243:对全局电路调整数据进行电力约束条件分析,生成全局电力约束条件数据;Step S243: performing power constraint condition analysis on the global circuit adjustment data to generate global power constraint condition data;
步骤S244:根据全局电力约束条件数据和局部电力调整数据对对电力需求预测数据进行动态电力分配,从而生成最优电力分配方案。Step S244: Dynamically allocate power to the power demand forecast data according to the global power constraint data and the local power adjustment data, thereby generating an optimal power allocation plan.
本发明通过对电力需求预测数据进行量化和模拟传输数据生成,可以更准确地了解电力供需情况,为后续的电力调配提供可靠的数据基础。提取传输电网节点数据并生成分布式智能电力传输路径数据可以优化电力传输效率,提高电力传输的可靠性和稳定性。通过对边缘电力节点数据进行分布式计算,生成分布式智能电力传输路径数据,并进行局部电力分配调整,可以使电力传输更加灵活和高效。通过在中心电力节点进行电力全局调度,生成全局电路调整数据,可以在整个电力网络范围内优化电力分配。对全局电路调整数据进行电力约束条件分析有助于识别和处理潜在的电力约束问题,确保电力分配方案的可行性和安全性。根据全局电力约束条件数据和局部电力调整数据,可以生成最优的电力分配方案,以满足电力需求并最大程度地提高电力系统的效率和可靠性。The present invention can more accurately understand the power supply and demand situation by quantifying the power demand forecast data and simulating the transmission data generation, and provide a reliable data basis for subsequent power allocation. Extracting the transmission grid node data and generating distributed intelligent power transmission path data can optimize the power transmission efficiency and improve the reliability and stability of power transmission. By performing distributed calculations on the edge power node data, generating distributed intelligent power transmission path data, and performing local power distribution adjustments, power transmission can be made more flexible and efficient. By performing global power scheduling at the central power node and generating global circuit adjustment data, power distribution can be optimized throughout the power network. Power constraint analysis of global circuit adjustment data helps to identify and deal with potential power constraint problems and ensure the feasibility and safety of the power distribution plan. Based on the global power constraint data and local power adjustment data, the optimal power distribution plan can be generated to meet power demand and maximize the efficiency and reliability of the power system.
作为本发明的一个实例,参考图3所示,在本实例中所述步骤S24包括:As an example of the present invention, referring to FIG. 3 , in this example, step S24 includes:
步骤S241:利用电力供需分析公式对电力需求预测数据进行电力供需量化,得到电力供需值;根据电力供需值对电力需求预测数据进行模拟电力传输,生成模拟电力传输数据;对模拟电力传输数据进行传输电网节点提取,生成电力传输电网节点数据,其中电力传输电网节点数据包括中心电力节点数据和边缘电力节点数据;Step S241: quantifying the power supply and demand of the power demand forecast data using the power supply and demand analysis formula to obtain the power supply and demand value; simulating power transmission of the power demand forecast data according to the power supply and demand value to generate simulated power transmission data; extracting transmission grid nodes from the simulated power transmission data to generate power transmission grid node data, wherein the power transmission grid node data includes central power node data and edge power node data;
本发明实施例中,通过统计历史电力需求数据,并结合当前的经济、社会和环境因素,可以建立电力供需分析公式,公式包括各种因素,如季节性变化、天气条件、工业生产活动等,以量化电力需求。利用仿真软件或自行开发的模拟工具,根据电力供需值对电力需求预测数据进行模拟电力传输,工具考虑电力传输的物理特性,如电压损耗、线路容量、负荷平衡等,以生成模拟的电力传输数据。通过模拟电力传输数据,可以识别和提取传输电网中的节点,节点可以是发电厂、变电站、配电站或其他重要的电力设施。提取的节点可以分为中心节点和边缘节点,中心节点通常是电网的核心,边缘节点则位于电网的外围或边缘。利用数据处理和分析技术,对模拟电力传输数据进行处理和提取节点信息,涉及到数据清洗、特征提取、聚类分析等方法,以有效地提取电力传输电网节点数据。In an embodiment of the present invention, by statistically analyzing historical power demand data and combining current economic, social and environmental factors, a power supply and demand analysis formula can be established, which includes various factors such as seasonal changes, weather conditions, industrial production activities, etc., to quantify power demand. Using simulation software or self-developed simulation tools, the power demand forecast data is simulated for power transmission according to the power supply and demand value. The tool considers the physical characteristics of power transmission, such as voltage loss, line capacity, load balance, etc., to generate simulated power transmission data. By simulating power transmission data, nodes in the transmission grid can be identified and extracted. The nodes can be power plants, substations, distribution stations or other important power facilities. The extracted nodes can be divided into central nodes and edge nodes. The central nodes are usually the core of the power grid, and the edge nodes are located at the periphery or edge of the power grid. Using data processing and analysis technology, the simulated power transmission data is processed and node information is extracted, involving data cleaning, feature extraction, cluster analysis and other methods to effectively extract power transmission grid node data.
步骤S242:对边缘电力节点数据进行分布式计算,生成分布式智能电力传输路径数据;基于分布式智能电力传输路径数据对电力传输电网节点数据进行局部电力分配调整,生成局部电力调整数据;通过预设的通信协议将局部电力调整数据传输至中心电力节点数据中进行电力全局调度,生成全局电路调整数据;Step S242: Perform distributed calculation on edge power node data to generate distributed intelligent power transmission path data; perform local power distribution adjustment on power transmission grid node data based on the distributed intelligent power transmission path data to generate local power adjustment data; transmit the local power adjustment data to the central power node data through a preset communication protocol for global power scheduling to generate global circuit adjustment data;
本发明实施例中,通过对边缘电力节点数据进行分布式计算,涉及到使用分布式计算框架,如Apache Hadoop或Spark等,以处理大规模的数据并进行并行计算。在这个过程中,可以利用智能算法,如遗传算法、模拟退火算法或者深度学习模型,来确定最佳的电力传输路径,以最大程度地减少能量损耗和提高电网的效率。基于生成的分布式智能电力传输路径数据,对电力传输电网节点数据进行局部电力分配调整,涉及到在每个节点上进行局部的电力分配决策,以确保电力的均衡分配和电网的稳定运行,需要考虑节点之间的负载情况、线路容量、电压稳定等因素。通过预设的通信协议,将局部电力调整数据传输至中心电力节点,涉及到使用网络通信技术,如消息队列、Socket通信或者HTTP协议等,以确保数据的安全和可靠传输。在中心电力节点中进行电力全局调度,即将接收到的局部电力调整数据进行整合和优化,生成全局电路调整数据,涉及到使用优化算法,如线性规划、整数规划或者基于启发式算法的优化方法,以最大化电网的整体效率和稳定性。In an embodiment of the present invention, distributed computing is performed on edge power node data, involving the use of a distributed computing framework, such as Apache Hadoop or Spark, to process large-scale data and perform parallel computing. In this process, intelligent algorithms, such as genetic algorithms, simulated annealing algorithms, or deep learning models, can be used to determine the optimal power transmission path to minimize energy loss and improve the efficiency of the power grid. Based on the generated distributed intelligent power transmission path data, local power distribution adjustment is performed on the power transmission grid node data, involving making local power distribution decisions at each node to ensure balanced power distribution and stable operation of the power grid, and factors such as load conditions, line capacity, and voltage stability between nodes need to be considered. Transmitting local power adjustment data to the central power node through a preset communication protocol involves the use of network communication technologies, such as message queues, Socket communications, or HTTP protocols, to ensure secure and reliable data transmission. Global power scheduling is performed in the central power node, that is, the received local power adjustment data is integrated and optimized to generate global circuit adjustment data, involving the use of optimization algorithms, such as linear programming, integer programming, or optimization methods based on heuristic algorithms, to maximize the overall efficiency and stability of the power grid.
步骤S243:对全局电路调整数据进行电力约束条件分析,生成全局电力约束条件数据;Step S243: performing power constraint condition analysis on the global circuit adjustment data to generate global power constraint condition data;
本发明实施例中,通过从步骤S242中获得的全局电路调整数据开始,包括电力传输路径、节点负载情况、线路容量等信息,用于电力约束条件的分析。对全局电路调整数据进行电力约束条件的分析,涉及到对电力系统的各种约束条件进行检查和评估,以确保调整后的电力分配满足系统的安全、稳定和可靠性要求,约束条件包括:节点电压限制:确保各个节点的电压在安全范围内;线路容量限制:确保各个电力线路的电流不超过其额定容量;系统稳定性:通过考虑节点间的功率平衡、潮流方向等因素,确保系统在各种操作条件下保持稳定;节点负载平衡:确保各个节点的负载在合理范围内,避免出现过载或负载不均衡的情况。根据电力约束条件分析的结果,生成全局电力约束条件数据,全局电力约束条件数据描述了系统在不同操作条件下的各种约束条件,以及各个约束条件的具体限制,需要将这些数据以结构化的格式进行整理和记录,以便后续的电力调度和运行管理。In the embodiment of the present invention, starting from the global circuit adjustment data obtained in step S242, including information such as power transmission path, node load condition, line capacity, etc., for the analysis of power constraints. The analysis of power constraints on the global circuit adjustment data involves checking and evaluating various constraints of the power system to ensure that the adjusted power distribution meets the safety, stability and reliability requirements of the system. The constraints include: node voltage limit: ensure that the voltage of each node is within a safe range; line capacity limit: ensure that the current of each power line does not exceed its rated capacity; system stability: by considering factors such as power balance and flow direction between nodes, ensure that the system remains stable under various operating conditions; node load balance: ensure that the load of each node is within a reasonable range to avoid overload or load imbalance. According to the results of the power constraint analysis, global power constraint data is generated. The global power constraint data describes various constraints of the system under different operating conditions, as well as the specific limitations of each constraint. These data need to be organized and recorded in a structured format for subsequent power dispatching and operation management.
步骤S244:根据全局电力约束条件数据和局部电力调整数据对对电力需求预测数据进行动态电力分配,从而生成最优电力分配方案。Step S244: Dynamically allocate power to the power demand forecast data according to the global power constraint data and the local power adjustment data, thereby generating an optimal power allocation plan.
本发明实施例中,通过在进行动态电力分配之前,需要准备电力需求的预测数据,基于历史用电量、季节性变化、天气条件等因素进行预测,以确定未来一段时间内各个区域或节点的电力需求情况。从步骤S243中获得的全局电力约束条件数据和局部电力调整数据中获取所需信息,全局电力约束条件数据描述了系统的各种约束条件,而局部电力调整数据则提供了针对特定区域或节点的电力调整信息。设计适用于动态环境的电力分配算法,算法需要考虑到电力需求的不断变化、系统约束条件的动态调整以及局部电力调整的影响,常见的算法包括基于负载预测的动态功率分配、基于优化算法的最优调度等。根据电力需求预测数据、全局电力约束条件数据和局部电力调整数据,利用设计好的动态电力分配算法生成最优的电力分配方案,过程涉及到在满足系统约束条件的前提下,合理地分配电力资源以满足各个区域或节点的需求。In the embodiment of the present invention, before performing dynamic power distribution, it is necessary to prepare the forecast data of power demand, and to make forecasts based on historical power consumption, seasonal changes, weather conditions and other factors to determine the power demand of each region or node in the future. The required information is obtained from the global power constraint data and the local power adjustment data obtained in step S243. The global power constraint data describes various constraints of the system, while the local power adjustment data provides power adjustment information for specific regions or nodes. Design a power distribution algorithm suitable for a dynamic environment. The algorithm needs to take into account the continuous changes in power demand, the dynamic adjustment of system constraints and the impact of local power adjustment. Common algorithms include dynamic power distribution based on load prediction, optimal scheduling based on optimization algorithms, etc. According to the power demand forecast data, the global power constraint data and the local power adjustment data, the optimal power distribution plan is generated using the designed dynamic power distribution algorithm. The process involves reasonably allocating power resources to meet the needs of each region or node under the premise of meeting the system constraints.
优选的,步骤S241中的电力供需分析公式具体如下:Preferably, the power supply and demand analysis formula in step S241 is as follows:
式中,表示为在时间/>的电力供需值,/>表示为时间/>的电力需求量,/>表示为时间/>的可再生能源供应量,/>表示为时间/>的电压,/>表示为时间/>的电流,/>表示为电力系统的响应速度,/>表示为电力供需分析时间范围。In the formula, Expressed as time/> The power supply and demand value, /> Expressed as time/> The power demand, Expressed as time/> of renewable energy supply,/> Expressed as time/> The voltage, /> Expressed as time/> The current, Expressed as the response speed of the power system, /> Represents the time range for power supply and demand analysis.
本发明分析并整合了一种电力供需分析公式,公式中的时间的电力需求量和时间/>的可再生能源供应量,当/>增加时,意味着电力需求增加,此时系统需要更多的电力供应来满足需求,因此/>也会相应增加。同时,当/>增加时,系统中可用的可再生能源增加,可以部分满足电力需求,从而减少了/>对/>的贡献,使得/>减小。电压和电流的变化会直接影响到系统的能源传输和供应能力,从而影响到电力供需的平衡。公式中的可以理解为系统的电力传输效率,当这个值趋于负无穷时,系统对电力需求的响应会变得非常快,当这个值趋于正无穷时,系统对电力需求的响应会变得非常慢。/>越小,表示系统的响应速度越快,系统能够更快地调整和平衡电力供需关系。反之,/>越大,表示系统的响应速度越慢,系统对电力需求的调节会相对缓慢。在使用本领域常规的电力供需分析公式时,可以得到在时间/>的电力供需值,通过应用本发明提供的电力供需分析公式,可以更加精确的计算出在时间/>的电力供需值。公式综合考虑了电力需求、可再生能源供应、电压和电流等多个因素,能够更全面地分析电力供需情况。通过公式中的积分项,能够动态地调节电力供应和需求之间的平衡,使系统更加灵活和响应快速。公式中的/>表示在时间/>的电力供需值,通过对其进行预测和分析,能够优化电力分配方案,提高系统的效率和稳定性。公式中参数之间的作用使得系统能够实时地调节电力供应,满足电力需求的同时最大限度地利用可再生能源,有助于降低能源成本和减少对传统能源的依赖。The present invention analyzes and integrates a power supply and demand analysis formula, in which the time The amount and time of electricity demand/> of renewable energy supply, when/> When it increases, it means that the power demand increases, and the system needs more power supply to meet the demand, so /> will also increase accordingly. At the same time, when/> When it increases, the renewable energy available in the system increases and can partially meet the electricity demand, thus reducing/> Yes/> The contribution of The changes in voltage and current will directly affect the energy transmission and supply capacity of the system, thus affecting the balance of power supply and demand. It can be understood as the power transmission efficiency of the system. When this value tends to negative infinity, the system's response to power demand will become very fast. When this value tends to positive infinity, the system's response to power demand will become very slow. /> The smaller it is, the faster the system responds, and the faster the system can adjust and balance the power supply and demand. The larger the value is, the slower the system response speed is, and the system will adjust the power demand relatively slowly. When using the conventional power supply and demand analysis formula in the field, it can be obtained that in time/> The power supply and demand value can be calculated more accurately at time / > by applying the power supply and demand analysis formula provided by the present invention. The formula takes into account multiple factors such as power demand, renewable energy supply, voltage and current, and can more comprehensively analyze the power supply and demand situation. Through the integral term in the formula, the balance between power supply and demand can be dynamically adjusted to make the system more flexible and responsive. Indicates the time/> The power supply and demand values can be predicted and analyzed to optimize the power distribution plan and improve the efficiency and stability of the system. The interaction between the parameters in the formula enables the system to adjust the power supply in real time, meet the power demand and maximize the use of renewable energy, which helps to reduce energy costs and reduce dependence on traditional energy.
优选的,步骤S243包括以下步骤:Preferably, step S243 includes the following steps:
步骤S2431:利用快速傅里叶变换方法对全局电路调整数据进行输电频谱转换,生成全局电路输电频谱图;对全局电路输电频谱图进行频率周期分析,生成输电传输频率曲线;对输电传输频率曲线进行传输时间间隔提取,得到传输时间间隔数据;Step S2431: using the fast Fourier transform method to perform power transmission spectrum conversion on the global circuit adjustment data to generate a global circuit power transmission spectrum diagram; performing frequency period analysis on the global circuit power transmission spectrum diagram to generate a power transmission frequency curve; performing transmission time interval extraction on the power transmission frequency curve to obtain transmission time interval data;
步骤S2432:根据传输时间间隔数据对全局电路调整数据进行传输数据包序号检测,生成电力传输数据包序列数据;根据电力传输数据包序列数据进行网络延迟异常测试,从而生成电力传输延迟异常数据;Step S2432: performing transmission data packet sequence number detection on the global circuit adjustment data according to the transmission time interval data to generate power transmission data packet sequence data; performing network delay anomaly test according to the power transmission data packet sequence data to generate power transmission delay anomaly data;
步骤S2433:将电力传输延迟异常数据和预设的延迟异常阈值进行对比,当电力传输延迟异常数据大于或等于预设的延迟异常阈值时,则将电力传输延迟异常数据标记为网络通信故障数据;当电力传输延迟异常数据小于预设的延迟异常阈值时,则将电力传输延迟异常数据标记为网络通信延迟数据;Step S2433: comparing the power transmission delay abnormal data with the preset delay abnormal threshold, when the power transmission delay abnormal data is greater than or equal to the preset delay abnormal threshold, marking the power transmission delay abnormal data as network communication failure data; when the power transmission delay abnormal data is less than the preset delay abnormal threshold, marking the power transmission delay abnormal data as network communication delay data;
步骤S2434:将网络通信故障数据和网络通信延迟数据进行数据整合,生成全局电力约束条件数据。Step S2434: Integrate the network communication failure data and the network communication delay data to generate global power constraint condition data.
本发明通过利用快速傅里叶变换方法对全局电路调整数据进行输电频谱转换,能够更有效地分析电路的频谱特征,从而为电力系统的频率周期分析提供准确的输电频率曲线数据。通过对输电频率曲线进行传输时间间隔提取,得到的传输时间间隔数据可以更好地反映电力传输过程中的时间间隔特征,为后续的数据分析提供基础。根据传输时间间隔数据生成的电力传输数据包序列数据,进行网络延迟异常测试,能够有效地检测出电力传输中的延迟异常情况,有助于及时发现潜在的通信故障或延迟问题。将电力传输延迟异常数据与预设的延迟异常阈值进行对比,并根据结果将数据标记为网络通信故障数据或网络通信延迟数据,有助于进一步分析和处理异常情况。将网络通信故障数据和网络通信延迟数据进行整合,生成全局电力约束条件数据,为后续的电力系统调整和优化提供基础数据支持。The present invention uses the fast Fourier transform method to convert the global circuit adjustment data into a transmission spectrum, which can more effectively analyze the spectrum characteristics of the circuit, thereby providing accurate transmission frequency curve data for the frequency cycle analysis of the power system. By extracting the transmission time interval of the transmission frequency curve, the transmission time interval data obtained can better reflect the time interval characteristics in the power transmission process, providing a basis for subsequent data analysis. According to the power transmission data packet sequence data generated by the transmission time interval data, a network delay anomaly test is performed, which can effectively detect the delay anomaly in the power transmission, and help to timely discover potential communication failures or delay problems. The power transmission delay anomaly data is compared with the preset delay anomaly threshold, and the data is marked as network communication failure data or network communication delay data according to the result, which helps to further analyze and process the abnormal situation. The network communication failure data and the network communication delay data are integrated to generate global power constraint condition data, providing basic data support for subsequent power system adjustment and optimization.
作为本发明的一个实例,参考图4所示,在本实例中所述步骤S243包括:As an example of the present invention, referring to FIG. 4 , in this example, step S243 includes:
步骤S2431:利用快速傅里叶变换方法对全局电路调整数据进行输电频谱转换,生成全局电路输电频谱图;对全局电路输电频谱图进行频率周期分析,生成输电传输频率曲线;对输电传输频率曲线进行传输时间间隔提取,得到传输时间间隔数据;Step S2431: using the fast Fourier transform method to perform power transmission spectrum conversion on the global circuit adjustment data to generate a global circuit power transmission spectrum diagram; performing frequency period analysis on the global circuit power transmission spectrum diagram to generate a power transmission frequency curve; performing transmission time interval extraction on the power transmission frequency curve to obtain transmission time interval data;
本发明实施例中,通过将全局电路调整数据输入到快速傅里叶变换(FFT)算法中。使用FFT算法将时域信号转换为频域信号,得到全局电路的输电频谱图。在频谱图中,频率轴表示不同频率成分的强度,幅度轴表示对应频率成分的振幅。对全局电路的输电频谱图进行频率周期分析,可以通过寻找频谱图中的主要频率成分来确定电路的传输频率曲线。主要频率成分通常是频率谱中的峰值或显著的能量集中点。根据生成的输电传输频率曲线,可以计算出相邻频率成分之间的时间间隔,时间间隔代表了数据在电力系统中传输的时间间隔,可以反映出数据传输的频率和速率。In an embodiment of the present invention, the global circuit adjustment data is input into the fast Fourier transform (FFT) algorithm. The FFT algorithm is used to convert the time domain signal into a frequency domain signal to obtain a power transmission spectrum diagram of the global circuit. In the spectrum diagram, the frequency axis represents the intensity of different frequency components, and the amplitude axis represents the amplitude of the corresponding frequency components. The power transmission spectrum diagram of the global circuit is subjected to frequency periodic analysis, and the transmission frequency curve of the circuit can be determined by finding the main frequency components in the spectrum diagram. The main frequency components are usually peaks or significant energy concentration points in the frequency spectrum. Based on the generated power transmission frequency curve, the time interval between adjacent frequency components can be calculated. The time interval represents the time interval for data transmission in the power system, which can reflect the frequency and rate of data transmission.
步骤S2432:根据传输时间间隔数据对全局电路调整数据进行传输数据包序号检测,生成电力传输数据包序列数据;根据电力传输数据包序列数据进行网络延迟异常测试,从而生成电力传输延迟异常数据;Step S2432: performing transmission data packet sequence number detection on the global circuit adjustment data according to the transmission time interval data to generate power transmission data packet sequence data; performing network delay anomaly test according to the power transmission data packet sequence data to generate power transmission delay anomaly data;
本发明实施例中,通过根据传输时间间隔数据,可以推断出数据包之间的传输时间间隔。通过分析传输时间间隔数据的变化模式,可以确定数据包的传输时间点。根据传输时间点,为每个数据包分配一个序号,从而生成电力传输数据包序列数据。使用生成的电力传输数据包序列数据,模拟电力系统的数据传输过程。监测每个数据包的传输时间,以及数据包到达目的地的时间。分析实际传输时间与预期传输时间之间的差异,以检测是否存在网络延迟异常。异常的检测可以基于阈值设定、统计方法、机器学习等技术进行。In an embodiment of the present invention, the transmission time interval between data packets can be inferred based on the transmission time interval data. The transmission time point of the data packet can be determined by analyzing the change pattern of the transmission time interval data. According to the transmission time point, a sequence number is assigned to each data packet, thereby generating power transmission data packet sequence data. The generated power transmission data packet sequence data is used to simulate the data transmission process of the power system. The transmission time of each data packet and the time when the data packet arrives at the destination are monitored. The difference between the actual transmission time and the expected transmission time is analyzed to detect whether there is a network delay anomaly. The detection of anomalies can be based on threshold setting, statistical methods, machine learning and other technologies.
步骤S2433:将电力传输延迟异常数据和预设的延迟异常阈值进行对比,当电力传输延迟异常数据大于或等于预设的延迟异常阈值时,则将电力传输延迟异常数据标记为网络通信故障数据;当电力传输延迟异常数据小于预设的延迟异常阈值时,则将电力传输延迟异常数据标记为网络通信延迟数据;Step S2433: comparing the power transmission delay abnormal data with the preset delay abnormal threshold, when the power transmission delay abnormal data is greater than or equal to the preset delay abnormal threshold, marking the power transmission delay abnormal data as network communication failure data; when the power transmission delay abnormal data is less than the preset delay abnormal threshold, marking the power transmission delay abnormal data as network communication delay data;
本发明实施例中,通过在系统设计阶段,根据电力系统的特性和要求,设定合适的延迟异常阈值,阈值根据系统的性能要求、实时性需求等因素来确定。对于每个生成的电力传输延迟异常数据,与预设的延迟异常阈值进行比较。判断延迟异常数据是大于或等于阈值,还是小于阈值。如果电力传输延迟异常数据大于或等于预设的延迟异常阈值:将该数据标记为网络通信故障数据。如果电力传输延迟异常数据小于预设的延迟异常阈值:将该数据标记为网络通信延迟数据。In an embodiment of the present invention, during the system design phase, according to the characteristics and requirements of the power system, a suitable delay anomaly threshold is set, and the threshold is determined according to factors such as the system performance requirements and real-time requirements. For each generated power transmission delay anomaly data, it is compared with the preset delay anomaly threshold. It is determined whether the delay anomaly data is greater than or equal to the threshold, or less than the threshold. If the power transmission delay anomaly data is greater than or equal to the preset delay anomaly threshold: the data is marked as network communication fault data. If the power transmission delay anomaly data is less than the preset delay anomaly threshold: the data is marked as network communication delay data.
步骤S2434:将网络通信故障数据和网络通信延迟数据进行数据整合,生成全局电力约束条件数据。Step S2434: Integrate the network communication failure data and the network communication delay data to generate global power constraint condition data.
本发明实施例中,通过收集网络通信故障数据和网络通信延迟数据。将两类数据整合到一个统一的数据结构中,确保数据格式一致性。为了清晰地标识和区分网络通信故障数据和网络通信延迟数据,可以在数据结构中添加标识字段或分类字段。例如,可以使用标志位或特定的数值表示故障和延迟。根据系统的电力约束条件和要求,将整合后的数据进行进一步处理,生成全局电力约束条件数据,包括对不同类型数据的加权、归一化或其他数学处理,以获得综合的电力约束条件。In an embodiment of the present invention, network communication fault data and network communication delay data are collected. The two types of data are integrated into a unified data structure to ensure data format consistency. In order to clearly identify and distinguish network communication fault data and network communication delay data, an identification field or a classification field may be added to the data structure. For example, a flag bit or a specific numerical value may be used to represent faults and delays. According to the power constraints and requirements of the system, the integrated data is further processed to generate global power constraint data, including weighting, normalization or other mathematical processing of different types of data to obtain comprehensive power constraints.
优选的,步骤S3包括以下步骤:Preferably, step S3 comprises the following steps:
步骤S31:基于最优电力分配方案进行电网边缘服务器部署,并根据电网边缘服务器进行设备信息采集,得到边缘设备部署信息数据;Step S31: deploying a power grid edge server based on the optimal power distribution solution, and collecting device information according to the power grid edge server to obtain edge device deployment information data;
步骤S32:根据边缘设备部署信息数据对智能电网进行实际电力分配数据监控,生成实时电力分配监控数据;对实时电力分配监控数据进行数据清洗,生成实时电力分配监控清洗数据;Step S32: monitoring the actual power distribution data of the smart grid according to the edge device deployment information data to generate real-time power distribution monitoring data; performing data cleaning on the real-time power distribution monitoring data to generate real-time power distribution monitoring cleansing data;
步骤S33:通过边缘计算技术对实时电力分配监控清洗数据进行电力设备控制,生成电力设备控制数据;基于反馈控制理论对电力设备控制数据进行实时电网调节,生成电网边缘计算控制数据;Step S33: Use edge computing technology to control power equipment on real-time power distribution monitoring and cleaning data to generate power equipment control data; perform real-time grid adjustment on power equipment control data based on feedback control theory to generate grid edge computing control data;
步骤S34:对电网边缘计算控制数据进行电网传输安全性分析,生成电网传输安全性分析数据;根据电网传输安全性分析数据对实时电力分配监控数据进行电力控制稳定性调控,生成电力传输稳定数据。Step S34: Perform a grid transmission security analysis on the grid edge computing control data to generate grid transmission security analysis data; perform power control stability regulation on the real-time power distribution monitoring data based on the grid transmission security analysis data to generate power transmission stability data.
本发明通过基于最优电力分配方案进行电网边缘服务器部署,可以实现对电力资源的优化配置,提高电网的整体效率和性能。通过对实时电力分配监控数据的生成和清洗,以及步骤S33中对电力设备的实时控制和调节,实现了对智能电网的实时监控和调控能力,有助于保障电网的稳定运行。利用边缘计算技术进行电力设备控制(步骤S33),可以降低数据传输延迟,提高响应速度,同时减轻中心服务器的负担,提升系统的整体性能和效率。对电网边缘计算控制数据进行安全性分析,有助于及时发现潜在的安全隐患,并采取相应措施加以应对。根据分析数据进行电力控制稳定性调控(步骤S34),有助于确保电网运行的安全稳定。通过步骤S31至S34的有机组合,实现了对电力资源的智能管理和调控,可以提升电力资源的利用效率,降低系统运行成本,从而达到节能减排的目的。采用了实时监控和调控机制,系统可以更加灵活地应对外部环境的变化和内部设备的状态变化,提高了系统的响应速度和灵活性。The present invention can achieve optimal configuration of power resources and improve the overall efficiency and performance of the power grid by deploying edge servers of the power grid based on the optimal power distribution scheme. By generating and cleaning real-time power distribution monitoring data and real-time control and adjustment of power equipment in step S33, the real-time monitoring and regulation capabilities of the smart grid are realized, which helps to ensure the stable operation of the power grid. Using edge computing technology to control power equipment (step S33) can reduce data transmission delay, improve response speed, reduce the burden on the central server, and improve the overall performance and efficiency of the system. Security analysis of power grid edge computing control data helps to timely discover potential safety hazards and take corresponding measures to deal with them. Power control stability regulation (step S34) based on analysis data helps to ensure the safe and stable operation of the power grid. Through the organic combination of steps S31 to S34, intelligent management and regulation of power resources are realized, the utilization efficiency of power resources can be improved, and the system operation cost can be reduced, thereby achieving the purpose of energy saving and emission reduction. By adopting a real-time monitoring and regulation mechanism, the system can more flexibly respond to changes in the external environment and changes in the state of internal equipment, thereby improving the response speed and flexibility of the system.
本发明实施例中,通过电网规划和数据分析确定最优的电力分配方案,根据该方案在电网边缘部署服务器,涉及到服务器硬件的选购和布置,以确保覆盖范围和性能满足需求。在边缘服务器部署完成后,需要在服务器上安装并配置采集设备信息的软件或传感器,设备包括智能电表、传感器等,用于采集与电网运行相关的数据,如电流、电压、负载等信息。通过安装在边缘服务器上的软件或应用程序,对采集到的设备信息数据进行实时监控,涉及到数据传输和处理,以确保数据的及时性和准确性。监控得到的数据可能存在噪声、异常值等问题,需要进行清洗和处理,以保证数据质量。清洗数据涉及到异常检测、数据滤波等技术。利用边缘计算技术对实时监控数据进行处理和分析,以减少数据传输延迟和网络负载,包括数据压缩、本地数据处理等操作。基于处理后的数据,对电力设备进行控制和调节,以实现电力分配的优化和稳定,涉及到控制算法的设计和实现,以及与电力设备的通讯和交互。对边缘计算控制数据进行安全性分析,以识别潜在的安全威胁和漏洞,包括数据加密、访问控制等技术。根据安全性分析结果对实时电力分配监控数据进行电力控制稳定性调控,以确保电力传输的稳定性和可靠性,涉及到电力系统的模型和仿真,以及控制参数的优化和调整。In the embodiment of the present invention, the optimal power distribution scheme is determined through power grid planning and data analysis, and servers are deployed at the edge of the power grid according to the scheme, which involves the purchase and layout of server hardware to ensure that the coverage and performance meet the requirements. After the edge server is deployed, it is necessary to install and configure software or sensors for collecting device information on the server. The devices include smart meters, sensors, etc., which are used to collect data related to power grid operation, such as current, voltage, load and other information. The collected device information data is monitored in real time through software or applications installed on the edge server, which involves data transmission and processing to ensure the timeliness and accuracy of the data. The monitored data may have problems such as noise and outliers, and need to be cleaned and processed to ensure data quality. Cleaning data involves technologies such as anomaly detection and data filtering. The real-time monitoring data is processed and analyzed using edge computing technology to reduce data transmission delay and network load, including operations such as data compression and local data processing. Based on the processed data, the power equipment is controlled and adjusted to achieve optimization and stabilization of power distribution, which involves the design and implementation of control algorithms, as well as communication and interaction with power equipment. Security analysis is performed on edge computing control data to identify potential security threats and vulnerabilities, including technologies such as data encryption and access control. Based on the safety analysis results, the real-time power distribution monitoring data is used to regulate the power control stability to ensure the stability and reliability of power transmission. This involves the model and simulation of the power system, as well as the optimization and adjustment of control parameters.
优选的,步骤S34包括以下步骤:Preferably, step S34 includes the following steps:
步骤S341:对电网边缘计算控制数据进行响应时间提取,得到电力传输响应时间数据;根据电力传输响应时间数据对电网边缘服务器进行异常日志捕获,生成电力传输系统瘫痪分析数据;Step S341: extracting the response time of the power grid edge computing control data to obtain power transmission response time data; capturing abnormal logs of the power grid edge server according to the power transmission response time data to generate power transmission system paralysis analysis data;
步骤S342:对电网边缘计算控制数据进行数据访问日志提取,得到电力传输数据访问行为数据;根据电力传输访问行为数据对电网边缘服务器进行异常流量捕获,生成电力传输信息泄露分析数据;Step S342: extracting data access logs of power grid edge computing control data to obtain power transmission data access behavior data; capturing abnormal traffic of the power grid edge server according to the power transmission access behavior data to generate power transmission information leakage analysis data;
步骤S343:对电网边缘计算控制数据机型电力系统参数提取,得到电力传输系统数据,其中电力传输系统数据包括电力传输电流数据和电力传输电压数据;根据电力传输电流数据和电力传输电压数据对电网边缘服务器进行设备异常负荷捕获,生成电力传输稳定性分析数据;Step S343: extracting power system parameters of the power grid edge computing control data model to obtain power transmission system data, wherein the power transmission system data includes power transmission current data and power transmission voltage data; capturing abnormal loads of equipment on the power grid edge server according to the power transmission current data and the power transmission voltage data, and generating power transmission stability analysis data;
步骤S344:将电力传输系统瘫痪分析数据、电力传输信息泄露分析数据和电力传输稳定性分析数据进行数据时序合并,生成电网传输安全性分析数据;根据电网传输安全性分析数据对实时电力分配监控数据进行电力控制稳定性调控,生成电力传输稳定数据。Step S344: Merge the power transmission system paralysis analysis data, the power transmission information leakage analysis data and the power transmission stability analysis data in data time series to generate power grid transmission safety analysis data; perform power control stability regulation on the real-time power distribution monitoring data according to the power grid transmission safety analysis data to generate power transmission stability data.
本发明通过监测电力传输的响应时间,系统可以及时察觉到潜在的问题,如响应时间延迟或异常,从而更迅速地进行故障诊断和处理,有助于提高电力传输系统的稳定性和可用性,减少系统瘫痪的风险。异常日志的捕获有助于分析和追踪系统瘫痪的原因,提前预防潜在的问题。监测电力传输数据的访问行为可以帮助检测异常的数据流量,包括不寻常的访问模式或大量的访问请求。通过捕获异常流量,系统能够快速识别潜在的安全威胁,如恶意攻击或未经授权的数据访问,有助于提高电力传输系统的安全性。提取电力传输系统的参数,如电流和电压数据,可以用于监测设备的工作状态和性能。通过捕获设备的异常负荷,系统可以在设备出现问题时及时做出反应,防止设备过载或失效,提高电力传输系统的稳定性。将不同类型的分析数据进行时序合并可以提供更全面的电网传输安全性分析。综合分析结果有助于系统更全面地理解电力传输的安全性状况,从而采取相应的措施来优化电力控制稳定性。通过对实时电力分配监控数据进行电力控制稳定性调控,系统可以实现对电力传输的动态调整,提高系统的响应能力。生成稳定数据有助于确保电力传输系统在不同负载和条件下的稳定性,提供更可靠的电力服务。By monitoring the response time of power transmission, the system can detect potential problems in time, such as response time delay or abnormality, so as to diagnose and handle faults more quickly, which is helpful to improve the stability and availability of the power transmission system and reduce the risk of system paralysis. The capture of abnormal logs is helpful to analyze and track the causes of system paralysis and prevent potential problems in advance. Monitoring the access behavior of power transmission data can help detect abnormal data traffic, including unusual access patterns or a large number of access requests. By capturing abnormal traffic, the system can quickly identify potential security threats, such as malicious attacks or unauthorized data access, which helps to improve the security of the power transmission system. Extracting parameters of the power transmission system, such as current and voltage data, can be used to monitor the working status and performance of the equipment. By capturing the abnormal load of the equipment, the system can respond in time when problems occur in the equipment, prevent the equipment from being overloaded or failing, and improve the stability of the power transmission system. Time-sequential merging of different types of analysis data can provide a more comprehensive analysis of power grid transmission security. The comprehensive analysis results help the system to understand the security status of power transmission more comprehensively, so as to take corresponding measures to optimize power control stability. By regulating the power control stability of real-time power distribution monitoring data, the system can achieve dynamic adjustment of power transmission and improve the responsiveness of the system. Generating stability data helps ensure the stability of the power transmission system under different loads and conditions, providing more reliable power service.
本发明实施例中,通过使用专门的监控工具或软件来实时监测电网边缘计算控制数据的响应时间。配置日志记录系统,以捕获电网边缘服务器的异常日志,并建立自动化程序来分析这些日志数据。设计数据处理流程,确保从提取响应时间数据到异常日志捕获的过程自动化和高效。使用网络监控工具来监视电网边缘服务器的数据访问行为,并记录访问日志。部署流量分析系统,用于检测异常流量模式和不寻常的数据访问行为。建立实时监控系统,以便及时发现异常流量,并实施相应的响应措施,如阻止恶意流量或警告相关人员。配置传感器和监测设备,用于实时监测电网边缘服务器的电流和电压等参数。搭建数据采集与处理系统,用于提取和分析电力系统参数数据,并实时监测设备的工作状态。开发或采用异常负荷检测算法,用于识别设备的异常负荷情况,例如过载或异常电压。部署数据整合与分析平台,用于将不同来源的分析数据进行时序合并和综合分析。设计电力控制系统,并制定相应的调控策略,以确保电力传输系统的稳定性和安全性。建立实时监控与反馈机制,使得系统能够快速响应电力传输系统的变化,并进行相应的调控。In an embodiment of the present invention, the response time of the grid edge computing control data is monitored in real time by using a special monitoring tool or software. A logging system is configured to capture abnormal logs of the grid edge server, and an automated program is established to analyze these log data. A data processing flow is designed to ensure that the process from extracting response time data to capturing abnormal logs is automated and efficient. A network monitoring tool is used to monitor the data access behavior of the grid edge server and record the access log. A traffic analysis system is deployed to detect abnormal traffic patterns and unusual data access behaviors. A real-time monitoring system is established to detect abnormal traffic in a timely manner and implement corresponding response measures, such as blocking malicious traffic or alerting relevant personnel. Sensors and monitoring equipment are configured to monitor parameters such as current and voltage of the grid edge server in real time. A data acquisition and processing system is built to extract and analyze power system parameter data and monitor the working status of the equipment in real time. An abnormal load detection algorithm is developed or adopted to identify abnormal load conditions of the equipment, such as overload or abnormal voltage. A data integration and analysis platform is deployed to perform time series merging and comprehensive analysis of analysis data from different sources. A power control system is designed and corresponding regulation strategies are formulated to ensure the stability and safety of the power transmission system. Establish a real-time monitoring and feedback mechanism so that the system can quickly respond to changes in the power transmission system and make corresponding adjustments.
优选的,步骤S4包括以下步骤:Preferably, step S4 comprises the following steps:
步骤S41:对电力传输稳定数据进行三维点云转换,生成电力传输三维模型;基于电力传输三维模型进行自适应控制系统设计,生成电网输电控制设计数据;Step S41: converting the power transmission stability data into a three-dimensional point cloud to generate a three-dimensional power transmission model; designing an adaptive control system based on the three-dimensional power transmission model to generate power grid transmission control design data;
步骤S42:通过模糊控制理论对电网输电控制设计数据进行电网非线性控制,生成电网模糊控制器数据;对电网模糊控制器数据进行强化学习,生成电网输电智能控制数据;对电网输电智能控制数据进行数据可视化,从而生成智能电网输电数据控制报告。Step S42: Perform nonlinear control on the power grid transmission control design data through fuzzy control theory to generate power grid fuzzy controller data; perform reinforcement learning on the power grid fuzzy controller data to generate power grid transmission intelligent control data; perform data visualization on the power grid transmission intelligent control data to generate an intelligent power grid transmission data control report.
本发明通过对电力传输稳定数据进行三维点云转换,可以生成电力传输系统的三维模型,模型能够提供更直观、更全面的电网结构信息,有助于更好地理解电力传输系统的拓扑结构和布局特点。基于电力传输三维模型进行自适应控制系统设计,有助于根据电网实际情况设计出更具灵活性和适应性的控制系统,可以提高电力传输系统的稳定性和安全性,同时优化能源利用效率。通过模糊控制理论对电网输电控制设计数据进行非线性控制,可以应对电力传输系统中存在的复杂、模糊的环境和不确定性因素,控制方法能够更好地适应电网运行过程中的变化和波动,提高了系统的稳定性和鲁棒性。对电网模糊控制器数据进行强化学习,可以通过不断的试错和学习,优化控制策略,使得系统在面对不同情况时能够做出更加智能和有效的决策,有助于提高电网输电过程中的能源利用效率和系统响应速度。对电网输电智能控制数据进行数据可视化,并生成智能电网输电数据控制报告,可以帮助运维人员和决策者更直观地了解电力传输系统的运行状态和控制效果,有助于及时发现问题、优化运行策略,并为决策提供科学依据。The present invention can generate a three-dimensional model of the power transmission system by converting the power transmission stability data into a three-dimensional point cloud. The model can provide more intuitive and comprehensive grid structure information, which helps to better understand the topological structure and layout characteristics of the power transmission system. Designing an adaptive control system based on the three-dimensional model of power transmission helps to design a more flexible and adaptable control system according to the actual situation of the power grid, which can improve the stability and safety of the power transmission system and optimize the energy utilization efficiency. Nonlinear control of the power transmission control design data of the power grid through fuzzy control theory can cope with the complex, fuzzy environment and uncertainty factors in the power transmission system. The control method can better adapt to the changes and fluctuations in the operation process of the power grid, and improve the stability and robustness of the system. Strengthening learning of the power grid fuzzy controller data can optimize the control strategy through continuous trial and error and learning, so that the system can make more intelligent and effective decisions when facing different situations, which helps to improve the energy utilization efficiency and system response speed in the power grid transmission process. Data visualization of the power grid transmission intelligent control data and generation of the intelligent power grid transmission data control report can help operation and maintenance personnel and decision makers to more intuitively understand the operation status and control effect of the power transmission system, help to timely discover problems, optimize operation strategies, and provide a scientific basis for decision-making.
本发明实施例中,通过使用合适的传感器(如激光雷达)对电力传输稳定数据进行采集。利用点云处理算法将采集到的数据进行三维点云转换,确保点云的准确性和完整性,以生成可靠的电力传输三维模型。基于生成的电力传输三维模型,设计自适应控制系统,涉及到控制理论、系统动力学等领域的知识。确定控制系统的输入、输出和反馈环路,考虑电力传输系统的特性,包括负载、线损、电压稳定性等,生成电网输电控制设计数据,包括控制器参数、反馈策略等信息。使用模糊控制理论处理电网输电控制设计数据,考虑到电力系统中存在的非线性和模糊性,确定模糊规则和隶属函数,建立电网模糊控制器,需要对电力系统的运行特性进行深入分析。使用强化学习算法,如深度强化学习(Deep ReinforcementLearning),对电网模糊控制器数据进行优化,定义奖励函数,训练智能控制器以适应电力系统的动态环境,进行反复的学习和优化,以提高系统在不同场景下的性能,将强化学习优化后的电网输电智能控制数据进行数据可视化。使用合适的可视化工具展示电力传输系统的运行状态、控制效果等信息,生成智能电网输电数据控制报告,包括关键指标、优化结果等,以便后续分析和决策。In an embodiment of the present invention, the power transmission stability data is collected by using a suitable sensor (such as a laser radar). The collected data is converted into a three-dimensional point cloud using a point cloud processing algorithm to ensure the accuracy and integrity of the point cloud, so as to generate a reliable three-dimensional model of power transmission. Based on the generated three-dimensional model of power transmission, an adaptive control system is designed, which involves knowledge in the fields of control theory and system dynamics. The input, output and feedback loop of the control system are determined, and the characteristics of the power transmission system, including load, line loss, voltage stability, etc., are considered to generate power grid transmission control design data, including controller parameters, feedback strategy and other information. Fuzzy control theory is used to process the power grid transmission control design data, and considering the nonlinearity and fuzziness in the power system, fuzzy rules and membership functions are determined to establish a power grid fuzzy controller, which requires an in-depth analysis of the operating characteristics of the power system. Reinforcement learning algorithms, such as deep reinforcement learning, are used to optimize the power grid fuzzy controller data, define reward functions, train intelligent controllers to adapt to the dynamic environment of the power system, and repeatedly learn and optimize to improve the performance of the system in different scenarios. The power grid transmission intelligent control data optimized by reinforcement learning is visualized. Use appropriate visualization tools to display the operating status, control effects and other information of the power transmission system, and generate smart grid transmission data control reports, including key indicators, optimization results, etc., for subsequent analysis and decision-making.
在本说明书中,提供了一种智能电网的输电数据控制系统,用于执行上述所述的智能电网的输电数据控制方法,该智能电网的输电数据控制系统包括:In this specification, a power transmission data control system of a smart grid is provided, which is used to execute the power transmission data control method of the smart grid described above, and the power transmission data control system of the smart grid includes:
负荷分析模块,用于获取实时电力数据和智能电网环境数据;对实时电力数据和智能电网环境数据进行数据融合,生成综合电力环境数据集;对综合电力环境数据集进行动态负荷曲线转换,从而生成实时综合能源负荷曲线;The load analysis module is used to obtain real-time power data and smart grid environment data; perform data fusion on the real-time power data and smart grid environment data to generate a comprehensive power environment data set; perform dynamic load curve conversion on the comprehensive power environment data set to generate a real-time comprehensive energy load curve;
电力分配模块,用于基于预设的峰值筛选数量对实时综合能源负荷曲线进行负荷峰值数据提取,得到动态电力负荷峰值数据;对动态电力负荷峰值数据进行模型训练,生成电力需求预测模型;通过电力需求预测模型对动态电力负荷峰值数据进行动态电力分配,从而生成最优电力分配方案;The power distribution module is used to extract load peak data from the real-time comprehensive energy load curve based on a preset peak screening number to obtain dynamic power load peak data; perform model training on the dynamic power load peak data to generate a power demand prediction model; perform dynamic power distribution on the dynamic power load peak data through the power demand prediction model to generate an optimal power distribution plan;
稳定调控模块,用于基于最优电力分配方案进行设备信息采集,得到边缘设备部署信息数据;根据边缘设备部署信息数据对智能电网进行实时电网调节,生成电网边缘计算控制数据;对电网边缘计算控制数据进行电力控制稳定性调控,生成电力传输稳定数据;The stability control module is used to collect device information based on the optimal power distribution plan to obtain edge device deployment information data; perform real-time grid adjustment on the smart grid based on the edge device deployment information data to generate grid edge computing control data; perform power control stability control on the grid edge computing control data to generate power transmission stability data;
线性控制模块,用于对电力传输稳定数据进行三维点云转换,生成电力传输三维模型;基于电力传输三维模型进行电网非线性控制,生成电网输电智能控制数据;对电网输电智能控制数据进行数据可视化,从而生成智能电网输电数据控制报告。The linear control module is used to convert the power transmission stability data into three-dimensional point cloud to generate a three-dimensional power transmission model; perform nonlinear control of the power grid based on the three-dimensional power transmission model to generate intelligent control data for power grid transmission; and visualize the intelligent control data for power grid transmission to generate a smart grid transmission data control report.
本发明的有益效果在于通过融合实时电力数据和智能电网环境数据,生成综合电力环境数据集,有助于提高数据的完整性和准确性。通过动态负荷曲线转换,实时生成综合能源负荷曲线,为后续电力需求预测和优化提供基础。通过模型训练,生成电力需求预测模型,可以帮助预测未来的电力需求,为电力分配提供依据。基于电力需求预测模型,实现动态电力分配,生成最优的电力分配方案,有助于提高能源利用效率,降低供需不平衡带来的成本。根据最优电力分配方案,进行实时电网调节,通过边缘设备部署信息数据实现智能电网的优化管理。通过电网边缘计算控制数据的生成和调控,提升电网的稳定性和可靠性,减少能源浪费和损失。通过三维点云转换,生成电力传输三维模型,为电网非线性控制提供可视化基础。基于电力传输三维模型,实现电网的非线性控制和智能化管理,提高电网运行效率和安全性。通过对电网输电智能控制数据的可视化,生成智能电网输电数据控制报告,为电力管理部门提供决策支持和管理参考。因此,本发明通过综合数据处理、动态负荷曲线转换、负荷峰值数据提取与预测模型、设备信息采集与电网调节、电网非线性控制和数据可视化,提高了智能电网的精准性、稳定性和可靠性。The beneficial effect of the present invention is that by integrating real-time power data and smart grid environment data, a comprehensive power environment data set is generated, which helps to improve the integrity and accuracy of the data. Through dynamic load curve conversion, a comprehensive energy load curve is generated in real time, providing a basis for subsequent power demand prediction and optimization. Through model training, a power demand prediction model is generated, which can help predict future power demand and provide a basis for power distribution. Based on the power demand prediction model, dynamic power distribution is realized, and the optimal power distribution plan is generated, which helps to improve energy utilization efficiency and reduce the cost caused by supply and demand imbalance. According to the optimal power distribution plan, real-time power grid adjustment is carried out, and the optimal management of the smart grid is realized by deploying information data of edge devices. Through the generation and regulation of power grid edge computing control data, the stability and reliability of the power grid are improved, and energy waste and loss are reduced. Through three-dimensional point cloud conversion, a three-dimensional model of power transmission is generated, providing a visualization basis for nonlinear control of the power grid. Based on the three-dimensional model of power transmission, nonlinear control and intelligent management of the power grid are realized, and the operation efficiency and safety of the power grid are improved. Through the visualization of the intelligent control data of power grid transmission, a smart grid transmission data control report is generated to provide decision support and management reference for the power management department. Therefore, the present invention improves the accuracy, stability and reliability of the smart grid through comprehensive data processing, dynamic load curve conversion, load peak data extraction and prediction model, equipment information collection and grid regulation, grid nonlinear control and data visualization.
因此,无论从哪一点来看,均应将实施例看作是示范性的,而且是非限制性的,本发明的范围由所附权利要求而不是上述说明限定,因此旨在将落在申请文件的等同要件的含义和范围内的所有变化涵括在本发明内。Therefore, the embodiments should be regarded as illustrative and non-restrictive from all points, and the scope of the present invention is limited by the appended claims rather than the above description, and it is intended that all changes falling within the meaning and range of equivalent elements of the application documents are included in the present invention.
以上所述仅是本发明的具体实施方式,使本领域技术人员能够理解或实现本发明。对这些实施例的多种修改对本领域的技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所发明的原理和新颖特点相一致的最宽的范围。The above description is only a specific embodiment of the present invention, so that those skilled in the art can understand or implement the present invention. Various modifications to these embodiments will be apparent to those skilled in the art, and the general principles defined herein may be implemented in other embodiments without departing from the spirit or scope of the present invention. Therefore, the present invention will not be limited to the embodiments shown herein, but should conform to the widest scope consistent with the principles and novel features invented herein.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202410268510.0A CN117878925B (en) | 2024-03-11 | 2024-03-11 | A method and system for controlling power transmission data of a smart grid |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202410268510.0A CN117878925B (en) | 2024-03-11 | 2024-03-11 | A method and system for controlling power transmission data of a smart grid |
Publications (2)
Publication Number | Publication Date |
---|---|
CN117878925A CN117878925A (en) | 2024-04-12 |
CN117878925B true CN117878925B (en) | 2024-05-17 |
Family
ID=90593301
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202410268510.0A Active CN117878925B (en) | 2024-03-11 | 2024-03-11 | A method and system for controlling power transmission data of a smart grid |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN117878925B (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN118171783B (en) * | 2024-05-13 | 2024-08-16 | 杭州经纬信息技术股份有限公司 | Energy consumption prediction model training method, prediction method, device, medium and equipment |
CN118259114B (en) * | 2024-05-29 | 2024-08-06 | 国网山东省电力公司宁津县供电公司 | State diagnosis method based on power transmission of power grid |
CN118396778B (en) * | 2024-06-26 | 2024-09-06 | 佛山职业技术学院 | Management method and system of electric power infrastructure equipment based on data analysis |
CN119134354A (en) * | 2024-09-12 | 2024-12-13 | 北京德辉睿源咨询有限公司 | An intelligent dispatching system for power grid in substation area |
CN118970958B (en) * | 2024-10-17 | 2025-04-01 | 国网山西省电力公司太原供电公司 | Distributed processing system for power grid accidents combined with edge energy storage |
CN119482554A (en) * | 2025-01-09 | 2025-02-18 | 陕西君创智盈能源科技有限公司 | Frequency modulation control method and system for thermal power generating unit |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012147575A (en) * | 2011-01-12 | 2012-08-02 | Chugoku Electric Power Co Inc:The | Power distribution system calculation device, and power distribution system calculation method |
EP2823546A1 (en) * | 2012-02-16 | 2015-01-14 | Lazaris, Spyros | System and method for managing the generation, transmission and distribution of power |
CN112688347A (en) * | 2021-01-12 | 2021-04-20 | 国网上海市电力公司 | System and method for smoothing load fluctuation of power grid |
JP2022084328A (en) * | 2020-11-26 | 2022-06-07 | 日鉄エンジニアリング株式会社 | Power demand forecasting system and power demand forecasting method |
CN115271161A (en) * | 2022-06-15 | 2022-11-01 | 华南理工大学 | Short-term prediction method for multi-energy load |
CN116646933A (en) * | 2023-07-24 | 2023-08-25 | 北京中能亿信软件有限公司 | Big data-based power load scheduling method and system |
CN117131984A (en) * | 2023-08-29 | 2023-11-28 | 湖南大学 | Source-grid-load-storage smart control urban integrated energy system and method |
CN117578706A (en) * | 2023-11-01 | 2024-02-20 | 国网安徽省电力有限公司合肥供电公司 | Multi-level load management system and method based on power grid |
-
2024
- 2024-03-11 CN CN202410268510.0A patent/CN117878925B/en active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012147575A (en) * | 2011-01-12 | 2012-08-02 | Chugoku Electric Power Co Inc:The | Power distribution system calculation device, and power distribution system calculation method |
EP2823546A1 (en) * | 2012-02-16 | 2015-01-14 | Lazaris, Spyros | System and method for managing the generation, transmission and distribution of power |
JP2022084328A (en) * | 2020-11-26 | 2022-06-07 | 日鉄エンジニアリング株式会社 | Power demand forecasting system and power demand forecasting method |
CN112688347A (en) * | 2021-01-12 | 2021-04-20 | 国网上海市电力公司 | System and method for smoothing load fluctuation of power grid |
CN115271161A (en) * | 2022-06-15 | 2022-11-01 | 华南理工大学 | Short-term prediction method for multi-energy load |
CN116646933A (en) * | 2023-07-24 | 2023-08-25 | 北京中能亿信软件有限公司 | Big data-based power load scheduling method and system |
CN117131984A (en) * | 2023-08-29 | 2023-11-28 | 湖南大学 | Source-grid-load-storage smart control urban integrated energy system and method |
CN117578706A (en) * | 2023-11-01 | 2024-02-20 | 国网安徽省电力有限公司合肥供电公司 | Multi-level load management system and method based on power grid |
Also Published As
Publication number | Publication date |
---|---|
CN117878925A (en) | 2024-04-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN117878925B (en) | A method and system for controlling power transmission data of a smart grid | |
Ahsan et al. | Data-driven next-generation smart grid towards sustainable energy evolution: techniques and technology review | |
CN117494032B (en) | Building energy consumption real-time monitoring control system and method | |
CN116865258B (en) | A hierarchical structure distributed power smart grid construction method | |
CN118172040A (en) | Intelligent operation and maintenance system and method for digital twin transformer substation | |
JP2022531953A (en) | Power system control using a dynamic power flow model | |
CN117595391A (en) | A coordinated control method for power grid systems | |
CN118915566A (en) | Heating ventilation equipment abnormity on-line monitoring system based on Internet of things | |
CN118505437B (en) | Distributed micro measurement and control system based on comprehensive energy system | |
CN118783396A (en) | A method for predicting low-voltage distributed photovoltaic power in local balancing scenarios | |
CN118797966B (en) | Cloud-edge-collaboration-based power grid digital twin modeling method and platform | |
Zahraoui et al. | AI applications to enhance resilience in power systems and microgrids—A review | |
Meng et al. | Digital twin for intelligent probabilistic short term load forecasting in solar based smart grids using shark algorithm | |
Rani et al. | Artificial Intelligence-enabled smart grids: enhancing efficiency and sustainability | |
Marques et al. | Artificial intelligence technologies applied to smart grids and management | |
CN118472947B (en) | A load control method, system, device and storage medium for electric power equipment | |
Urbano et al. | Energy infrastructure of the factory as a virtual power plant: Smart energy management | |
CN118690916A (en) | Power consumption prediction model optimization method and system | |
Luo | Quantitative Risk Measurement in Power System Risk Management Methods and Applications | |
CN118508871A (en) | Photovoltaic power station autonomous regulation system based on GIS data analysis | |
Jia et al. | Design of an integrated network order system for main distribution network considering power dispatch efficiency | |
CN114414938B (en) | Dynamic response method and system for power distribution network faults | |
Haque et al. | Smart grid concept and technologies for smart cities | |
CN118378826B (en) | Power grid management operation and maintenance method and system applied to industrial and commercial light Fu Chu | |
CN118037016B (en) | Power resource response control method and system based on deep learning |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |