CN117832208A - A trench capacitor and a method for forming the same - Google Patents
A trench capacitor and a method for forming the same Download PDFInfo
- Publication number
- CN117832208A CN117832208A CN202410111455.4A CN202410111455A CN117832208A CN 117832208 A CN117832208 A CN 117832208A CN 202410111455 A CN202410111455 A CN 202410111455A CN 117832208 A CN117832208 A CN 117832208A
- Authority
- CN
- China
- Prior art keywords
- trench
- layer
- semiconductor substrate
- forming
- conductive
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 67
- 239000003990 capacitor Substances 0.000 title claims abstract description 36
- 239000004065 semiconductor Substances 0.000 claims abstract description 31
- 239000000758 substrate Substances 0.000 claims abstract description 30
- 239000010410 layer Substances 0.000 claims description 248
- 230000004888 barrier function Effects 0.000 claims description 51
- 238000000059 patterning Methods 0.000 claims description 17
- 238000005498 polishing Methods 0.000 claims description 15
- 229910052751 metal Inorganic materials 0.000 claims description 13
- 239000002184 metal Substances 0.000 claims description 13
- 238000002955 isolation Methods 0.000 claims description 11
- 239000000126 substance Substances 0.000 claims description 11
- 239000011229 interlayer Substances 0.000 claims description 8
- 229910021420 polycrystalline silicon Inorganic materials 0.000 claims description 8
- 229920005591 polysilicon Polymers 0.000 claims description 8
- 238000007517 polishing process Methods 0.000 claims description 7
- 229910021332 silicide Inorganic materials 0.000 claims description 5
- FVBUAEGBCNSCDD-UHFFFAOYSA-N silicide(4-) Chemical compound [Si-4] FVBUAEGBCNSCDD-UHFFFAOYSA-N 0.000 claims description 5
- 238000005530 etching Methods 0.000 description 30
- 229920002120 photoresistant polymer Polymers 0.000 description 23
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 17
- 229910052814 silicon oxide Inorganic materials 0.000 description 15
- 239000000463 material Substances 0.000 description 14
- 229910052581 Si3N4 Inorganic materials 0.000 description 12
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 12
- 238000004518 low pressure chemical vapour deposition Methods 0.000 description 11
- 238000000137 annealing Methods 0.000 description 10
- 238000010586 diagram Methods 0.000 description 9
- 238000005240 physical vapour deposition Methods 0.000 description 8
- 238000000206 photolithography Methods 0.000 description 7
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 6
- 238000000231 atomic layer deposition Methods 0.000 description 6
- 239000010408 film Substances 0.000 description 6
- 239000007789 gas Substances 0.000 description 6
- 229910052710 silicon Inorganic materials 0.000 description 6
- 239000010703 silicon Substances 0.000 description 6
- 238000005229 chemical vapour deposition Methods 0.000 description 5
- 150000004767 nitrides Chemical class 0.000 description 5
- 238000001039 wet etching Methods 0.000 description 5
- XYFCBTPGUUZFHI-UHFFFAOYSA-N Phosphine Chemical compound P XYFCBTPGUUZFHI-UHFFFAOYSA-N 0.000 description 4
- 238000004380 ashing Methods 0.000 description 4
- 238000004090 dissolution Methods 0.000 description 4
- 239000002904 solvent Substances 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 3
- 238000002161 passivation Methods 0.000 description 3
- 238000000623 plasma-assisted chemical vapour deposition Methods 0.000 description 3
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 3
- 229910052721 tungsten Inorganic materials 0.000 description 3
- 239000010937 tungsten Substances 0.000 description 3
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 2
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 2
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 2
- NRTOMJZYCJJWKI-UHFFFAOYSA-N Titanium nitride Chemical compound [Ti]#N NRTOMJZYCJJWKI-UHFFFAOYSA-N 0.000 description 2
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 239000003989 dielectric material Substances 0.000 description 2
- 238000001312 dry etching Methods 0.000 description 2
- 238000011049 filling Methods 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 229910052698 phosphorus Inorganic materials 0.000 description 2
- 239000011574 phosphorus Substances 0.000 description 2
- 229910000073 phosphorus hydride Inorganic materials 0.000 description 2
- 229910000077 silane Inorganic materials 0.000 description 2
- 239000002356 single layer Substances 0.000 description 2
- 238000009751 slip forming Methods 0.000 description 2
- 125000006850 spacer group Chemical group 0.000 description 2
- 239000010409 thin film Substances 0.000 description 2
- JBRZTFJDHDCESZ-UHFFFAOYSA-N AsGa Chemical compound [As]#[Ga] JBRZTFJDHDCESZ-UHFFFAOYSA-N 0.000 description 1
- 229910018999 CoSi2 Inorganic materials 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- JMASRVWKEDWRBT-UHFFFAOYSA-N Gallium nitride Chemical compound [Ga]#N JMASRVWKEDWRBT-UHFFFAOYSA-N 0.000 description 1
- GPXJNWSHGFTCBW-UHFFFAOYSA-N Indium phosphide Chemical compound [In]#P GPXJNWSHGFTCBW-UHFFFAOYSA-N 0.000 description 1
- 229910000577 Silicon-germanium Inorganic materials 0.000 description 1
- BOTDANWDWHJENH-UHFFFAOYSA-N Tetraethyl orthosilicate Chemical compound CCO[Si](OCC)(OCC)OCC BOTDANWDWHJENH-UHFFFAOYSA-N 0.000 description 1
- 229910008479 TiSi2 Inorganic materials 0.000 description 1
- LEVVHYCKPQWKOP-UHFFFAOYSA-N [Si].[Ge] Chemical compound [Si].[Ge] LEVVHYCKPQWKOP-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 229910021417 amorphous silicon Inorganic materials 0.000 description 1
- 238000001505 atmospheric-pressure chemical vapour deposition Methods 0.000 description 1
- DFJQEGUNXWZVAH-UHFFFAOYSA-N bis($l^{2}-silanylidene)titanium Chemical compound [Si]=[Ti]=[Si] DFJQEGUNXWZVAH-UHFFFAOYSA-N 0.000 description 1
- 239000003985 ceramic capacitor Substances 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 229910052681 coesite Inorganic materials 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 229910052593 corundum Inorganic materials 0.000 description 1
- 229910052906 cristobalite Inorganic materials 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000009713 electroplating Methods 0.000 description 1
- 238000009459 flexible packaging Methods 0.000 description 1
- 229910052732 germanium Inorganic materials 0.000 description 1
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- CJNBYAVZURUTKZ-UHFFFAOYSA-N hafnium(IV) oxide Inorganic materials O=[Hf]=O CJNBYAVZURUTKZ-UHFFFAOYSA-N 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- MRELNEQAGSRDBK-UHFFFAOYSA-N lanthanum oxide Inorganic materials [O-2].[O-2].[O-2].[La+3].[La+3] MRELNEQAGSRDBK-UHFFFAOYSA-N 0.000 description 1
- KTUFCUMIWABKDW-UHFFFAOYSA-N oxo(oxolanthaniooxy)lanthanum Chemical compound O=[La]O[La]=O KTUFCUMIWABKDW-UHFFFAOYSA-N 0.000 description 1
- 238000001020 plasma etching Methods 0.000 description 1
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 229910052682 stishovite Inorganic materials 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 229910052905 tridymite Inorganic materials 0.000 description 1
- 229910001845 yogo sapphire Inorganic materials 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D1/00—Resistors, capacitors or inductors
- H10D1/60—Capacitors
- H10D1/68—Capacitors having no potential barriers
- H10D1/692—Electrodes
- H10D1/696—Electrodes comprising multiple layers, e.g. comprising a barrier layer and a metal layer
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D1/00—Resistors, capacitors or inductors
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D1/00—Resistors, capacitors or inductors
- H10D1/01—Manufacture or treatment
- H10D1/041—Manufacture or treatment of capacitors having no potential barriers
- H10D1/042—Manufacture or treatment of capacitors having no potential barriers using deposition processes to form electrode extensions
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D1/00—Resistors, capacitors or inductors
- H10D1/60—Capacitors
- H10D1/68—Capacitors having no potential barriers
- H10D1/692—Electrodes
- H10D1/711—Electrodes having non-planar surfaces, e.g. formed by texturisation
- H10D1/716—Electrodes having non-planar surfaces, e.g. formed by texturisation having vertical extensions
Landscapes
- Semiconductor Integrated Circuits (AREA)
Abstract
Description
技术领域Technical Field
本发明涉及半导体制造领域,且具体涉及一种沟槽电容器及其形成方法。The present invention relates to the field of semiconductor manufacturing, and in particular to a trench capacitor and a method for forming the same.
背景技术Background technique
终端产品朝向高效能、低成本、低功耗、小面积的方向发展,单系统中电容元件的用量不断增加,反向推动电容器朝小型化、超薄化、大容量等方向发展,同时应用端对电容器的稳定性、高频率性等提出了更高要求。相比多层陶瓷电容MLCC存在高频性能损耗、恶劣工况可靠性差等问题。硅基电容器具有更高稳定性,更高可靠性,更高的自谐振频率,更低的ESR和ESL,更低的插损和更灵活的封装方式等特点,是未来高端电容器件的首选。为了减小电容器的尺寸,可以通过增加电容器的电容密度的方法实现,所述电容密度是指电容器在单位投影面积上的电容。Terminal products are developing in the direction of high efficiency, low cost, low power consumption and small area. The usage of capacitor components in a single system is increasing, which in turn pushes capacitors towards miniaturization, ultra-thinness and large capacity. At the same time, the application end has higher requirements for the stability and high frequency of capacitors. Compared with multilayer ceramic capacitors, MLCC has problems such as high-frequency performance loss and poor reliability in harsh working conditions. Silicon-based capacitors have higher stability, higher reliability, higher self-resonant frequency, lower ESR and ESL, lower insertion loss and more flexible packaging methods. They are the first choice for high-end capacitor devices in the future. In order to reduce the size of the capacitor, it can be achieved by increasing the capacitance density of the capacitor. The capacitance density refers to the capacitance of the capacitor per unit projected area.
硅基电容通常采用深沟槽(Deep Trench)结构、或者采用高K介电材料、或者采用更薄的介电层来实现高的电容密度。然而,材料K值的持续提升受物理极限约束,介电层的厚度则需要在电容密度和耐压之间权衡。因此,在缩小芯片面积,降低芯片厚度的背景下,进一步提升电容器有效面积是未来电容器发展的方向。Silicon-based capacitors usually use deep trench structures, high-K dielectric materials, or thinner dielectric layers to achieve high capacitance density. However, the continuous improvement of the material K value is constrained by physical limits, and the thickness of the dielectric layer needs to balance capacitance density and withstand voltage. Therefore, in the context of reducing chip area and chip thickness, further increasing the effective area of capacitors is the direction of future capacitor development.
在深沟槽电容结构中,沟槽侧壁可用来附着导电层或介电层,从而增大电容器的有效面积。然而,当沟槽被完全填充后,沟槽侧壁仅作为电容器的支撑体,而对电容容值并无贡献,因此,若将沟槽侧壁区域改为电容结构,可进一步增大电容密度。In a deep trench capacitor structure, the trench sidewalls can be used to attach a conductive layer or a dielectric layer, thereby increasing the effective area of the capacitor. However, when the trench is completely filled, the trench sidewalls only serve as a support for the capacitor and do not contribute to the capacitance value. Therefore, if the trench sidewall area is converted into a capacitor structure, the capacitance density can be further increased.
发明内容Summary of the invention
本发明提出了一种沟槽电容器及其形成方法。The invention provides a trench capacitor and a method for forming the same.
一种沟槽电容器,所述沟槽电容器为双沟槽电容器,其具有半导体衬底、形成在半导体衬底表面的第一沟槽、形成在半导体衬底表面的第二沟槽、交替堆叠在第一沟槽内的导电层和介电层、交替堆叠在第二沟槽内的介电层和导电层;所述第一沟槽与第二沟槽交错,所述第二沟槽以相邻第一沟槽内的第一层结构为侧壁,所述第一沟槽内导电层和介电层与第二沟槽内的导电层和介电层交替连续。A trench capacitor, which is a double trench capacitor, comprises a semiconductor substrate, a first trench formed on the surface of the semiconductor substrate, a second trench formed on the surface of the semiconductor substrate, a conductive layer and a dielectric layer alternately stacked in the first trench, and a dielectric layer and a conductive layer alternately stacked in the second trench; the first trench is staggered with the second trench, the second trench uses the first layer structure in the adjacent first trench as a side wall, and the conductive layer and the dielectric layer in the first trench are alternately continuous with the conductive layer and the dielectric layer in the second trench.
所述第一沟槽与第二沟槽深度相同。The first trench and the second trench have the same depth.
一种沟槽电容器的形成方法,所述方法包括:A method for forming a trench capacitor, the method comprising:
1)提供半导体衬底;1) Providing a semiconductor substrate;
2)在半导体衬底表面形成阻挡层;2) forming a barrier layer on the surface of the semiconductor substrate;
3)在半导体衬底表面形成第一沟槽,所述第一沟槽位于阻挡层两侧;3) forming a first trench on the surface of the semiconductor substrate, wherein the first trench is located on both sides of the barrier layer;
4)在第一沟槽内、阻挡层上和半导体衬底表面形成第一阻挡层,并在第一阻挡层上交替堆叠导电层和介电层n次,形成第一堆叠结构;在此过程中,控制半导体衬底表面上一层结构高于阻挡层、上二层结构低于阻挡层;4) forming a first barrier layer in the first trench, on the barrier layer and on the surface of the semiconductor substrate, and alternately stacking a conductive layer and a dielectric layer on the first barrier layer n times to form a first stacking structure; in this process, controlling the first layer structure on the surface of the semiconductor substrate to be higher than the barrier layer and the second layer structure to be lower than the barrier layer;
5)在第一堆叠结构上形成研磨缓冲层,执行化学机械研磨工艺,并停止在阻挡层;5) forming a polishing buffer layer on the first stacked structure, performing a chemical mechanical polishing process, and stopping at the barrier layer;
6)执行多晶硅回蚀工艺,并在第一堆叠结构和阻挡层上形成隔绝层;6) performing a polysilicon etch-back process and forming an isolation layer on the first stacked structure and the barrier layer;
7)去除第二沟槽区域的隔绝层和阻挡层,在半导衬底表面形成第二沟槽;7) removing the insulating layer and the barrier layer in the second trench region to form a second trench on the surface of the semiconductor substrate;
8)在第二沟槽底部和隔绝层上交替堆叠介电层和导电层m次,形成第二堆叠结构;在此过程中,控制第二沟槽内的导电层和介电层与第一沟槽内的导电层和介电层连续交替;8) alternately stacking dielectric layers and conductive layers m times on the bottom of the second trench and the insulating layer to form a second stacking structure; in this process, the conductive layers and dielectric layers in the second trench are controlled to alternate continuously with the conductive layers and dielectric layers in the first trench;
9)图案化导电层,暴露出导电接触区域;9) patterning the conductive layer to expose the conductive contact area;
10)形成侧墙和金属硅化物;10) Forming sidewalls and metal silicide;
11)形成层间介质层和接触插塞。11) Forming an interlayer dielectric layer and contact plugs.
所述第一堆叠结构关闭第一沟槽;所述第二堆叠结构关闭第二沟槽。The first stacking structure closes the first groove; and the second stacking structure closes the second groove.
本发明的技术优势:设计第一深沟槽内和第二深沟槽内的导电层和介电层交替连续,极大提升了空间利用率,电容密度可以增大至原来的2至3倍,适配了电容器大容量的发展方向。The technical advantages of the present invention are as follows: the conductive layer and the dielectric layer in the first deep trench and the second deep trench are designed to be alternating and continuous, which greatly improves the space utilization rate, and the capacitance density can be increased to 2 to 3 times of the original, which adapts to the development direction of large-capacity capacitors.
附图说明BRIEF DESCRIPTION OF THE DRAWINGS
附图示出的仅为优选实施例,图中各种特征未按比例绘制,各个特征尺寸均可任意变化,这些均不认为是对本发明的限制。The drawings show only preferred embodiments. Various features in the drawings are not drawn to scale and the sizes of various features may be changed arbitrarily. These are not considered to be limitations of the present invention.
图1是本申请一实施例的形成阻挡层的示意图。FIG. 1 is a schematic diagram of forming a barrier layer according to an embodiment of the present application.
图2是本申请一实施例的形成第一深沟槽的示意图。FIG. 2 is a schematic diagram of forming a first deep trench according to an embodiment of the present application.
图3是本申请一实施例的第一深沟槽填充后的示意图。FIG. 3 is a schematic diagram of a first deep trench after filling according to an embodiment of the present application.
图4是本申请一实施例的经过化学机械研磨之后的示意图。FIG. 4 is a schematic diagram of an embodiment of the present application after chemical mechanical polishing.
图5是本申请一实施例的经过回蚀工艺之后的示意图。FIG. 5 is a schematic diagram of an embodiment of the present application after an etch-back process.
图6是本申请一实施例的形成第二深沟槽的示意图。FIG. 6 is a schematic diagram of forming a second deep trench according to an embodiment of the present application.
图7是本申请一实施例的第二深沟槽填充后的示意图。FIG. 7 is a schematic diagram of a second deep trench after filling according to an embodiment of the present application.
图8是本申请一实施例的导电层图案化之后的示意图。FIG. 8 is a schematic diagram of a conductive layer after patterning according to an embodiment of the present application.
图9是本申请一实施例的形成接触插塞之后的示意图。FIG. 9 is a schematic diagram after forming a contact plug according to an embodiment of the present application.
具体实施方式Detailed ways
为使本发明的内容以及技术优势更加清楚易懂,下面将结合实施例中的附图,对本发明的内容进行更加清楚、更加完整的描述,应当理解,本发明并不局限于一些具体实施例,也就是说,所述的一些具体实施例仅仅是本发明的一部分实施例,而非全部的实施例。基于本发明中的实施例,本领域内的技术人员所熟知的一般替换也包含在本发明的保护范围内。In order to make the content and technical advantages of the present invention more clear and understandable, the content of the present invention will be described more clearly and completely in conjunction with the drawings in the embodiments. It should be understood that the present invention is not limited to some specific embodiments, that is, some of the specific embodiments described are only part of the embodiments of the present invention, not all of the embodiments. Based on the embodiments of the present invention, general replacements known to those skilled in the art are also included in the protection scope of the present invention.
图1至图9所示为本发明的一优选实施例的一种沟槽电容器制造流程剖面图。如图所示,本发明的制造方法包括有下列步骤:Figures 1 to 9 are cross-sectional views of a trench capacitor manufacturing process according to a preferred embodiment of the present invention. As shown in the figure, the manufacturing method of the present invention includes the following steps:
参照图1,提供一半导体衬底100,所述半导体衬底100诸如是硅(Si)、锗(Ge)、硅锗(GeSi)、砷化镓(GaAs)、磷化铟(InP)、氮化镓(GaN)、碳化硅(SiC)等半导体相关材料。所述半导体衬底100的结构可以是单晶、多晶、非晶中的一种,所述半导体衬底100的结构可以有或没有外延层。1 , a semiconductor substrate 100 is provided, and the semiconductor substrate 100 is made of semiconductor-related materials such as silicon (Si), germanium (Ge), silicon germanium (GeSi), gallium arsenide (GaAs), indium phosphide (InP), gallium nitride (GaN), silicon carbide (SiC), etc. The structure of the semiconductor substrate 100 can be one of single crystal, polycrystalline, and amorphous, and the structure of the semiconductor substrate 100 can have or not have an epitaxial layer.
优选地,在本申请的一个具体实施例中,所述半导体衬底100为硅衬底。Preferably, in a specific embodiment of the present application, the semiconductor substrate 100 is a silicon substrate.
在一些实施例中,在所述半导体衬底100上沉积阻挡层101,所述阻挡层101的材料例如是氮化硅,所述阻挡层101的厚度介于200nm至400nm,所述阻挡层101的形成方法例如是等离子体增强化学气相沉积法(Plasma Enhanced Chemical Vapor Deposition,PECVD)等。接着,图案化所述阻挡层101,包括但不限于光刻、蚀刻工艺等,用以去除第二沟槽区域之外的所述阻挡层101。In some embodiments, a barrier layer 101 is deposited on the semiconductor substrate 100. The material of the barrier layer 101 is, for example, silicon nitride. The thickness of the barrier layer 101 is between 200 nm and 400 nm. The barrier layer 101 is formed by, for example, plasma enhanced chemical vapor deposition (PECVD). Next, the barrier layer 101 is patterned, including but not limited to photolithography and etching processes, to remove the barrier layer 101 outside the second groove region.
参照图2,在一些实施例中,继续形成第一深沟槽102。具体而言,形成光阻层,所述光阻层厚度介于2μm至6μm,所述光阻层的厚度可依据沟槽的深度需求进行调整,一般来说,随沟槽深度变浅,所述光阻层的厚度可以变薄,反之亦然。接着,执行光刻工艺,将沟槽光罩的图形转移至所述光阻层上,执行蚀刻工艺,在所述半导体衬底100上形成具有高深宽比的第一深沟槽102,最后,采用灰化或溶剂溶解来去除残留的光阻层。2 , in some embodiments, the first deep trench 102 is continuously formed. Specifically, a photoresist layer is formed, and the thickness of the photoresist layer is between 2 μm and 6 μm. The thickness of the photoresist layer can be adjusted according to the depth requirement of the trench. Generally speaking, as the trench depth becomes shallower, the thickness of the photoresist layer can become thinner, and vice versa. Next, a photolithography process is performed to transfer the pattern of the trench mask to the photoresist layer, and an etching process is performed to form the first deep trench 102 with a high aspect ratio on the semiconductor substrate 100. Finally, ashing or solvent dissolution is used to remove the remaining photoresist layer.
在本申请的一个具体实施例中,所述蚀刻工艺优选地采用BOSCH蚀刻工艺进行深硅蚀刻,BOSCH蚀刻工艺通过交替转换蚀刻气体与钝化气体实现蚀刻与边壁钝化,其中蚀刻气体为SF6,钝化气体为C4F8,独特的蚀刻工艺特性使得BOSCH蚀刻工艺的蚀刻深宽比高达50:1。所述第一深沟槽102深度介于100nm至50μm,具体深度依据电容耐压和电容密度需求来设定。In a specific embodiment of the present application, the etching process preferably uses a BOSCH etching process for deep silicon etching. The BOSCH etching process achieves etching and sidewall passivation by alternately switching etching gas and passivation gas, wherein the etching gas is SF6 and the passivation gas is C4F8. The unique etching process characteristics make the etching depth-to-width ratio of the BOSCH etching process as high as 50: 1. The depth of the first deep trench 102 is between 100nm and 50μm, and the specific depth is set according to the capacitor withstand voltage and capacitance density requirements.
参照图3,在一些实施例中,在所述第一深沟槽102内壁和所述半导体衬底100表面依次沉积第一阻挡层104、第一导电层105、第一介电层106、第二导电层107和缓冲层108。所述第一导电层105、所述第一介电层106和所述第二导电层107导电层组成电容结构,称为极板-绝缘体-极板结构(PIP,Plate-Insulator-Plate)。本发明中电容的组合结构不限定于此,可以依据电容密度的具体需求进行调整,例如PIPIP、PIPIPIP等。3, in some embodiments, a first barrier layer 104, a first conductive layer 105, a first dielectric layer 106, a second conductive layer 107 and a buffer layer 108 are sequentially deposited on the inner wall of the first deep trench 102 and the surface of the semiconductor substrate 100. The first conductive layer 105, the first dielectric layer 106 and the second conductive layer 107 conductive layer form a capacitor structure, called a plate-insulator-plate structure (PIP, Plate-Insulator-Plate). The combined structure of the capacitor in the present invention is not limited to this, and can be adjusted according to the specific requirements of the capacitance density, such as PIPIP, PIPIPIP, etc.
在一些实施例中,所述第一阻挡层104的材料例如是氮化硅或氧化硅,所述第一阻挡层104形成方法例如是原子层沉积法(Atomic Layer Deposition,ALD)或低压化学气相沉积法(Low Pressure Chemical Vapor Deposition,LPCVD)。优选地,所述第一阻挡层104为低压化学气相沉积法形成的氮化硅,所述第一阻挡层104的厚度介于20nm至50nm。In some embodiments, the material of the first barrier layer 104 is, for example, silicon nitride or silicon oxide, and the first barrier layer 104 is formed by, for example, atomic layer deposition (ALD) or low pressure chemical vapor deposition (LPCVD). Preferably, the first barrier layer 104 is silicon nitride formed by low pressure chemical vapor deposition, and the thickness of the first barrier layer 104 is between 20 nm and 50 nm.
在一些实施例中,所述第一导电层105和所述第二导电层107的材料例如是掺杂多晶硅等导电材料,其形成方法例如是低压化学气相沉积法或物理气相沉积法(PhysicalVapor Deposition,PVD)。优选地,所述第一导电层105和所述第二导电层107为低压化学气相沉积法形成的n型磷掺杂多晶硅薄膜,反应气体为硅烷和磷烷,生长温度介于580至630摄氏度,磷掺杂浓度介于1.5E20至3E20cm-3。In some embodiments, the material of the first conductive layer 105 and the second conductive layer 107 is, for example, a conductive material such as doped polysilicon, and the formation method thereof is, for example, low-pressure chemical vapor deposition or physical vapor deposition (PVD). Preferably, the first conductive layer 105 and the second conductive layer 107 are n-type phosphorus-doped polysilicon thin films formed by low-pressure chemical vapor deposition, the reaction gases are silane and phosphine, the growth temperature is between 580 and 630 degrees Celsius, and the phosphorus doping concentration is between 1.5E20 and 3E20cm-3.
为了进一步提升导电层的电导率,所述第一导电层105和所述第二导电层107均需要搭配高温退火工艺,用以激活杂质原子,并提高薄膜的结晶率。优选地,采用快速退火工艺,退火温度介于1000至1150摄氏度,退火时间介于10s至30s。In order to further improve the conductivity of the conductive layer, the first conductive layer 105 and the second conductive layer 107 need to be combined with a high temperature annealing process to activate the impurity atoms and improve the crystallinity of the film. Preferably, a rapid annealing process is used, the annealing temperature is between 1000 and 1150 degrees Celsius, and the annealing time is between 10s and 30s.
在另一些实施例中,所述第一导电层105和所述第二导电层107亦可采用较低生长温度,例如是500至530摄氏度,用以获得非晶态硅薄膜,并搭配快速退火工艺以获得高掺杂浓度的多晶硅薄膜。In some other embodiments, the first conductive layer 105 and the second conductive layer 107 may also be grown at a lower temperature, such as 500 to 530 degrees Celsius, to obtain an amorphous silicon film, and combined with a rapid annealing process to obtain a polysilicon film with a high doping concentration.
所述第一导电层105和所述第二导电层107的厚度基于沟槽的特征宽度和堆叠层组合来调整,以确保可以关闭所述第一深沟槽102,避免后续工艺中的液体流入到所述沟槽102中,从而避免导电层或介电层发生损伤。此外,所述第二导电层107的厚度是所述第一导电层105厚度的1.2至1.5倍,以确保后续研磨工艺具有足够的工艺窗口。The thickness of the first conductive layer 105 and the second conductive layer 107 is adjusted based on the characteristic width of the groove and the stacked layer combination to ensure that the first deep groove 102 can be closed to prevent the liquid in the subsequent process from flowing into the groove 102, thereby preventing the conductive layer or the dielectric layer from being damaged. In addition, the thickness of the second conductive layer 107 is 1.2 to 1.5 times the thickness of the first conductive layer 105 to ensure that the subsequent grinding process has a sufficient process window.
在一些实施例中,所述第一介电层106的材料例如是氮化物、氧化物以及氮氧化合物等介电材料,比如:SiO2、Si3N4、HfO2、Al2O3、ZrO2、La2O3等,所述第一介电层106的结构例如是氮化物或氧化物单层结构、氮化物和氧化物的复合结构、氮化物和氧化物的叠层结构,所述第一介电层106的形成方法例如是原子层沉积法、低压化学气相沉积法以及物理气相沉积法等。In some embodiments, the material of the first dielectric layer 106 is, for example, a dielectric material such as a nitride, an oxide, and a nitride oxide, such as SiO2, Si3N4, HfO2, Al2O3, ZrO2, La2O3, etc. The structure of the first dielectric layer 106 is, for example, a nitride or oxide single-layer structure, a composite structure of a nitride and an oxide, or a stacked structure of a nitride and an oxide. The formation method of the first dielectric layer 106 is, for example, atomic layer deposition, low-pressure chemical vapor deposition, and physical vapor deposition.
优选地,所述第一介电层106为低压化学气相沉积法形成的氧化硅/氮化硅/氧化硅的(Oxide-Nitride-Oxide,ONO)的多层堆叠结构。所述氧化硅/氮化硅/氧化硅的叠层结构兼具了氧化硅的稳定性和氮化硅的高介电特性,用此叠层结构制备的电容器具有低漏电、高密度的特性,所述叠层结构中各层的厚度依据电容密度和耐压需求调整,厚度比例例如是1:1:1、1:2:1、1:3:1等。Preferably, the first dielectric layer 106 is a multilayer stacked structure of silicon oxide/silicon nitride/silicon oxide (Oxide-Nitride-Oxide, ONO) formed by low-pressure chemical vapor deposition. The stacked structure of silicon oxide/silicon nitride/silicon oxide combines the stability of silicon oxide and the high dielectric properties of silicon nitride. The capacitor prepared with this stacked structure has the characteristics of low leakage and high density. The thickness of each layer in the stacked structure is adjusted according to the capacitance density and withstand voltage requirements, and the thickness ratio is, for example, 1:1:1, 1:2:1, 1:3:1, etc.
在一些实施例中,所述缓冲层108的材料例如是氧化硅,所述缓冲层108的形成方法可以是等离子体增强化学气相沉积法等,所述缓冲层108的厚度介于100nm至200nm,所述缓冲层108作为研磨缓冲层用以获得平整的表面。In some embodiments, the material of the buffer layer 108 is, for example, silicon oxide. The buffer layer 108 may be formed by plasma enhanced chemical vapor deposition, etc. The thickness of the buffer layer 108 is between 100 nm and 200 nm. The buffer layer 108 is used as a polishing buffer layer to obtain a smooth surface.
参照图4,执行化学机械研磨(CMP)工艺,所述化学机械研磨工艺包括第一阶段和第二阶段,通过调配化学机械研磨的选择比,并检测研磨液中相关物质的信号,可使研磨停止在不同的材料上。4 , a chemical mechanical polishing (CMP) process is performed, which includes a first stage and a second stage. By adjusting the selectivity of the chemical mechanical polishing and detecting signals of related substances in the polishing liquid, the polishing can be stopped on different materials.
所述化学机械研磨工艺的第一阶段用以研磨凸起的所述缓冲层108,使研磨停止在凸起区域的所述第二导电层107的上方,该阶段对所述第二导电层107的研磨速率与对所述缓冲层108的研磨速率的比值应控制在1.5:1至3:1。The first stage of the chemical mechanical polishing process is used to polish the raised buffer layer 108 so that the polishing stops above the second conductive layer 107 in the raised area. In this stage, the ratio of the polishing rate of the second conductive layer 107 to the polishing rate of the buffer layer 108 should be controlled at 1.5:1 to 3:1.
所述化学机械研磨工艺的第二阶段用以研磨所述缓冲层108和所述第二导电层107,并停止在所述阻挡层101的上方,该阶段对所述第二导电层107的研磨速率与对所述缓冲层108的研磨速率的比值应控制在1.2:1至1:1,对所述第二导电层107的研磨速率与对所述阻挡层101的研磨速率的比值应大于3:1。The second stage of the chemical mechanical polishing process is used to polish the buffer layer 108 and the second conductive layer 107, and stops above the barrier layer 101. In this stage, the ratio of the polishing rate of the second conductive layer 107 to the polishing rate of the buffer layer 108 should be controlled at 1.2:1 to 1:1, and the ratio of the polishing rate of the second conductive layer 107 to the polishing rate of the barrier layer 101 should be greater than 3:1.
需要指出的是,执行完化学机械研磨工艺后,所述缓冲层108应被完全去除,水平方向的第二导电层107的厚度不应小于所述第一导电层105的厚度。It should be noted that after the chemical mechanical polishing process is performed, the buffer layer 108 should be completely removed, and the thickness of the second conductive layer 107 in the horizontal direction should not be less than the thickness of the first conductive layer 105 .
参照图5,执行多晶硅回蚀工艺,所述回蚀工艺采用多晶硅对氧化硅和氮化硅蚀刻选择比高的湿法或干法蚀刻工艺,所述回蚀工艺采用无掩膜刻蚀(Blanket Etch),执行完回蚀工艺后,所述第一导电层105和所述第二导电层107的高度较所述第一介电层106的高度低2nm至10nm,高度差ΔH可基于介电层的厚度进行调整,以避免出现所述第一介电层106剥落的问题。5 , a polysilicon etch-back process is performed, wherein the etch-back process adopts a wet or dry etching process with a high polysilicon etching selectivity to silicon oxide and silicon nitride, and the etch-back process adopts a blanket etch. After the etch-back process is performed, the height of the first conductive layer 105 and the second conductive layer 107 is 2 nm to 10 nm lower than the height of the first dielectric layer 106, and the height difference ΔH can be adjusted based on the thickness of the dielectric layer to avoid the problem of peeling of the first dielectric layer 106.
参照图6,在一些实施例中,继续形成第二深沟槽108。具体而言,形成隔绝层109,所述隔绝层109的材料例如是氮化硅,所述隔绝层109的形成方法例如是低压化学气相沉积法、等离子体化学气相沉积法、原子层沉积法等,所述隔绝层109的厚度介于200nm至400nm;接着,形成光阻层,实施第二深沟槽108的图案化,去除所述第二深沟槽108区域的光阻层;接着,执行蚀刻工艺,所述蚀刻工艺分为两个阶段,第一阶段蚀刻去除所述隔绝层109和所述阻挡层101,第二阶段采用BOSCH蚀刻工艺进行深硅蚀刻,形成第二深沟槽108,所述第二深沟槽108与所述第一深沟槽102具有相同深度,最后,采用灰化或溶剂溶解来去除残留的光阻层。。6, in some embodiments, the second deep trench 108 is continuously formed. Specifically, an isolation layer 109 is formed, the material of the isolation layer 109 is, for example, silicon nitride, and the method of forming the isolation layer 109 is, for example, low pressure chemical vapor deposition, plasma chemical vapor deposition, atomic layer deposition, etc., and the thickness of the isolation layer 109 is between 200nm and 400nm; then, a photoresist layer is formed, the patterning of the second deep trench 108 is performed, and the photoresist layer in the second deep trench 108 region is removed; then, an etching process is performed, and the etching process is divided into two stages. In the first stage, the isolation layer 109 and the barrier layer 101 are etched away, and in the second stage, a BOSCH etching process is used to perform deep silicon etching to form the second deep trench 108, and the second deep trench 108 has the same depth as the first deep trench 102. Finally, ashing or solvent dissolution is used to remove the residual photoresist layer. .
参照图7,在一些实施例中,在所述隔绝层109的表面和所述第二深沟槽108的底面形成第二阻挡层110。所述第二阻挡层110的形成方法例如是物理气相沉积法、化学气相沉积法等,所述第二阻挡层110的台阶覆盖率(深沟槽侧壁上薄膜厚度与平面上薄膜厚度比值的百分数)需非常小,使得所述第二阻挡层110仅形成于所述隔绝层109的表面和所述第二深沟槽108的底面,而在所述第二深沟槽108的侧壁不会形成或仅形成少量的所述第二阻挡层110,所述第二阻挡层110的台阶覆盖率例如要小于20%。平面上的所述第二阻挡层110的厚度例如是40nm至100nm。7 , in some embodiments, a second barrier layer 110 is formed on the surface of the isolation layer 109 and the bottom surface of the second deep trench 108. The second barrier layer 110 is formed by, for example, physical vapor deposition, chemical vapor deposition, etc. The step coverage (the percentage of the ratio of the film thickness on the sidewall of the deep trench to the film thickness on the plane) of the second barrier layer 110 needs to be very small, so that the second barrier layer 110 is only formed on the surface of the isolation layer 109 and the bottom surface of the second deep trench 108, and no or only a small amount of the second barrier layer 110 is formed on the sidewall of the second deep trench 108. The step coverage of the second barrier layer 110 is, for example, less than 20%. The thickness of the second barrier layer 110 on the plane is, for example, 40nm to 100nm.
进一步地,实施湿法蚀刻,用以去除所述第二沟槽108侧壁上的所述第一阻挡层104,基于蚀刻速率,所述湿法蚀刻工艺通过控制蚀刻时间的方法可实现精准蚀刻。所述湿法蚀刻一方面需要去除所述第二沟槽108侧壁上的所述第一阻挡层104,另一方面需确保所述第二阻挡层110的厚度不低于所述第一阻挡层104的沉积厚度。Furthermore, wet etching is performed to remove the first barrier layer 104 on the sidewall of the second trench 108. Based on the etching rate, the wet etching process can achieve precise etching by controlling the etching time. The wet etching needs to remove the first barrier layer 104 on the sidewall of the second trench 108 on the one hand, and on the other hand, it needs to ensure that the thickness of the second barrier layer 110 is not less than the deposition thickness of the first barrier layer 104.
进一步地,在所述第二深沟槽108内壁和所述第二阻挡层110表面依次沉积第二介电层111、第三导电层112、第三介电层113和第四导电层114。Furthermore, a second dielectric layer 111 , a third conductive layer 112 , a third dielectric layer 113 and a fourth conductive layer 114 are sequentially deposited on the inner wall of the second deep trench 108 and the surface of the second barrier layer 110 .
优选地,所述第二介电层111、所述第三介电层113与所述第一介电层106一样,均为低压化学气相沉积法形成的氧化硅/氮化硅/氧化硅的(Oxide-Nitride-Oxide,ONO)的多层堆叠结构。Preferably, the second dielectric layer 111 and the third dielectric layer 113 are the same as the first dielectric layer 106 , and are a multi-layer stacked structure of silicon oxide/silicon nitride/silicon oxide (Oxide-Nitride-Oxide, ONO) formed by low pressure chemical vapor deposition.
优选地,所述第三导电层112、所述第四导电层114与所述第一导电层105、所述第二导电层107一样,均为低压化学气相沉积法形成的n型磷掺杂多晶硅薄膜,反应气体为硅烷和磷烷,生长温度介于580至630摄氏度,磷掺杂浓度介于1.5E20至3E20cm-3。同样经过快速退火工艺处理,退火温度介于1000至1150摄氏度,退火时间介于10s至30s。Preferably, the third conductive layer 112 and the fourth conductive layer 114 are the same as the first conductive layer 105 and the second conductive layer 107, and are n-type phosphorus-doped polysilicon thin films formed by low-pressure chemical vapor deposition, the reaction gases are silane and phosphine, the growth temperature is between 580 and 630 degrees Celsius, and the phosphorus doping concentration is between 1.5E20 and 3E20cm-3. They are also subjected to a rapid annealing process, the annealing temperature is between 1000 and 1150 degrees Celsius, and the annealing time is between 10s and 30s.
参照图8,在一些实施例中,实施导电层的图案化,以暴露出导电接触区域。所述导电层的图案化顺序为:先图案化顶部导电层,再逐一执行下层导电层的图案化,图案化工艺包括但不限制于光刻工艺、蚀刻工艺和湿法清洗工艺等。8 , in some embodiments, the conductive layer is patterned to expose the conductive contact area. The patterning sequence of the conductive layer is: first patterning the top conductive layer, then patterning the lower conductive layers one by one, and the patterning process includes but is not limited to photolithography, etching, and wet cleaning.
具体而言,图案化所述第四导电层114的步骤包括:形成光阻层,采用光刻工艺将所述第四导电层114的导电接触区域的光阻保留,而将其他区域的光阻去除;接着,采用蚀刻工艺去除未经光阻覆盖的区域的所述第四导电层114和所述第三介电层113,所述蚀刻工艺会过蚀刻(Over Etch)所述第三导电层112,所述过蚀刻的厚度介于5nm至15nm,以确保未经光阻覆盖的区域的所述第三导电层112完全暴露;最后,采用灰化或溶剂溶解来去除残留的光阻层。Specifically, the step of patterning the fourth conductive layer 114 includes: forming a photoresist layer, using a photolithography process to retain the photoresist in the conductive contact area of the fourth conductive layer 114, and removing the photoresist in other areas; then, using an etching process to remove the fourth conductive layer 114 and the third dielectric layer 113 in the area not covered by the photoresist, the etching process will over-etch the third conductive layer 112, and the thickness of the over-etching is between 5nm and 15nm to ensure that the third conductive layer 112 in the area not covered by the photoresist is completely exposed; finally, using ashing or solvent dissolution to remove the remaining photoresist layer.
图案化所述第三导电层112的步骤包括:形成光阻层,采用光刻工艺将所述第四导电层114和第三导电层112的导电接触区域的光阻保留,而将其他区域的光阻去除;接着,采用蚀刻工艺去除未经光阻覆盖的区域的所述第三导电层112、所述第二阻挡层110和所述隔绝层109,所述蚀刻工艺会过蚀刻所述第二导电层107,以确保完全去除未经光阻覆盖的所述第三导电层112、所述第二阻挡层110和所述隔绝层109;最后,采用灰化或溶剂溶解来去除残留的光阻层。The step of patterning the third conductive layer 112 includes: forming a photoresist layer, using a photolithography process to retain the photoresist in the conductive contact areas of the fourth conductive layer 114 and the third conductive layer 112, and removing the photoresist in other areas; then, using an etching process to remove the third conductive layer 112, the second barrier layer 110 and the insulating layer 109 in the areas not covered by the photoresist, and the etching process will over-etch the second conductive layer 107 to ensure that the third conductive layer 112, the second barrier layer 110 and the insulating layer 109 not covered by the photoresist are completely removed; finally, using ashing or solvent dissolution to remove the remaining photoresist layer.
图案化所述第二导电层107和所述第一导电层105的步骤与图案化所述第四导电层114的步骤相似,此处不再详细叙述。The steps of patterning the second conductive layer 107 and the first conductive layer 105 are similar to the steps of patterning the fourth conductive layer 114 , and will not be described in detail herein.
优选地,所述导电层图案化中的蚀刻工艺均为反应性离子蚀刻工艺。Preferably, the etching processes in the patterning of the conductive layer are all reactive ion etching processes.
可选的,在一些实施例中,在每次图案化导电层之前,先采用原子层沉积的方法在导电层上形成一层较薄的隔绝层,例如是氧化硅,厚度介于5nm至10nm,所述隔绝层用以隔绝导电层与光阻层,便于图案化工艺之后残余光阻的去除。Optionally, in some embodiments, before each patterning of the conductive layer, an atomic layer deposition method is first used to form a thinner isolation layer on the conductive layer, such as silicon oxide with a thickness of between 5nm and 10nm. The isolation layer is used to isolate the conductive layer from the photoresist layer, thereby facilitating the removal of residual photoresist after the patterning process.
参照图9,在一些实施例中,在所述导电层的侧壁继续形成侧墙115。具体而言,首先形成介电层,所述介电层例如是单层的氧化硅或氮化硅结构,或者多层的氧化硅/氮化硅堆栈结构等,所述介电层的形成方法例如是原子层沉积法、低压化学气相沉积法等;接着,采用各向异性的干法蚀刻工艺在导电层侧壁形成侧墙115。9, in some embodiments, a sidewall spacer 115 is further formed on the sidewall of the conductive layer. Specifically, a dielectric layer is first formed, and the dielectric layer is, for example, a single-layer silicon oxide or silicon nitride structure, or a multi-layer silicon oxide/silicon nitride stack structure, and the dielectric layer is formed by, for example, atomic layer deposition, low-pressure chemical vapor deposition, etc.; then, an anisotropic dry etching process is used to form the sidewall spacer 115 on the sidewall of the conductive layer.
在一些实施例中,在所述导电层的导电区域实施金属硅化物工艺。具体而言,形成介质层116,所述介质层116的材料例如是氧化硅,所述介质层116的形成方法例如是化学气相沉积法;接着,实施图案化工艺以暴露出导电接触区域,所述图案化工艺包括但不限制于光刻和蚀刻工艺等;接着,采用物理气相沉积法形成一层金属,所述金属的材料例如是Ti、Co、NiPt等;接着,利用物理气相沉积法形成一层盖帽层TiN;接着,实施一次低温快速退火处理,形成高阻态的金属硅化物;接着,实施选择性湿法刻蚀工艺以去除表面TiN和没有反应的金属薄膜;最后,实施一次高温快速退火处理,形成低阻态的金属硅化物117,例如是TiSi2、CoSi2、NiPtSi等。In some embodiments, a metal silicide process is implemented in the conductive region of the conductive layer. Specifically, a dielectric layer 116 is formed, the material of the dielectric layer 116 is, for example, silicon oxide, and the method of forming the dielectric layer 116 is, for example, chemical vapor deposition; then, a patterning process is implemented to expose the conductive contact area, and the patterning process includes but is not limited to photolithography and etching processes; then, a layer of metal is formed by physical vapor deposition, and the material of the metal is, for example, Ti, Co, NiPt, etc.; then, a cap layer TiN is formed by physical vapor deposition; then, a low-temperature rapid annealing process is implemented to form a high-resistance metal silicide; then, a selective wet etching process is implemented to remove the surface TiN and the unreacted metal film; finally, a high-temperature rapid annealing process is implemented to form a low-resistance metal silicide 117, such as TiSi2, CoSi2, NiPtSi, etc.
在一些实施例中,形成蚀刻阻挡层118和层间介电层119(Inter-LayerDielectrics,ILD),所述蚀刻阻挡层118的材料例如是氮化硅,所述蚀刻阻挡层118的形成方法例如是化学气相沉积法,所述蚀刻阻挡层118的厚度介于40nm至100nm;所述层间介电层119的材料例如是正硅酸乙酯、氟或碳掺杂的氧化硅,所述层间介电层119的形成方法例如是高密度等离子体化学气相沉积法(High Density Plasma Chemical VaporDeposition,HDP-CVD)或亚常压化学气相沉积法(Sub-atmospheric Pressure ChemicalVapor Deposition,SACVD),所述层间介电层119的厚度介于1μm 至2μm;最后,实施化学机械研磨工艺,将所述层间介电层119减薄至0.9μm左右。In some embodiments, an etch stop layer 118 and an inter-layer dielectric layer 119 (ILD) are formed. The material of the etch stop layer 118 is, for example, silicon nitride. The etch stop layer 118 is formed by, for example, chemical vapor deposition. The thickness of the etch stop layer 118 is between 40 nm and 100 nm. The material of the inter-layer dielectric layer 119 is, for example, tetraethyl orthosilicate, fluorine- or carbon-doped silicon oxide. The inter-layer dielectric layer 119 is formed by, for example, high-density plasma chemical vapor deposition (HDP-CVD) or sub-atmospheric pressure chemical vapor deposition (SACVD). The thickness of the inter-layer dielectric layer 119 is between 1 μm and 2 μm. Finally, a chemical mechanical polishing process is performed to thin the inter-layer dielectric layer 119 to about 0.9 μm.
进一步地,形成接触插塞120。具体而言,执行光刻工艺和蚀刻工艺,在蚀刻阻挡层118和层间介电层119中形成接触通孔;接着,在所述接触通孔中填充金属,所述金属的材料例如是铜、铝、钨等,所述金属的形成方法例如是电镀法、物理气相沉积法等,优选地,采用物理气相沉积法在所述接触通孔中填充阻挡层氮化钛(未示出)和金属钨;接着,执行化学机械研磨工艺去除表面上的阻挡层氮化钛和金属钨,形成接触插塞120。所述接触插塞120包括连通所述第四导电层114的接触插塞120a、连通所述第三导电层112的接触插塞120b、连通所述第二导电层107的接触插塞120c和连通所述第一导电层105的接触插塞120d。Further, a contact plug 120 is formed. Specifically, a photolithography process and an etching process are performed to form a contact through hole in the etching stop layer 118 and the interlayer dielectric layer 119; then, a metal is filled in the contact through hole, and the material of the metal is, for example, copper, aluminum, tungsten, etc., and the metal is formed by, for example, electroplating, physical vapor deposition, etc. Preferably, a barrier layer of titanium nitride (not shown) and metal tungsten are filled in the contact through hole by physical vapor deposition; then, a chemical mechanical polishing process is performed to remove the barrier layer of titanium nitride and metal tungsten on the surface to form a contact plug 120. The contact plug 120 includes a contact plug 120a connected to the fourth conductive layer 114, a contact plug 120b connected to the third conductive layer 112, a contact plug 120c connected to the second conductive layer 107, and a contact plug 120d connected to the first conductive layer 105.
综上所述,本技术发明在第一深沟槽侧壁区域形成第二深沟槽,实现了第一深沟槽和第二深沟槽中导电极板和介电层的连续堆叠,极大提升了空间利用率,电容密度增大至原来的2至3倍,提升了产品的竞争力。In summary, the present technical invention forms a second deep trench in the sidewall region of the first deep trench, realizing continuous stacking of conductive plates and dielectric layers in the first deep trench and the second deep trench, greatly improving space utilization, increasing capacitance density to 2 to 3 times of the original, and improving product competitiveness.
需要说明的是,在上述的具体实施例中,在详述本发明具体实施方案时所用到的术语,诸如“在…上”、“在…下”、“侧壁”、“内壁”等描述方位或位置关系的术语,仅是指所述附图中的方位或位置关系,而不是指示或暗示所述的装置或元器件必须具有特定的方位、或以特定的方位构造和操作。此外,在详述本发明的实施方式时,为了清楚地表示本发明的结构以便于说明,特对附图中的结构不依照一般比例绘图,并进行了局部放大、变形及简化处理,因此,应避免以此作为对本发明的限定来加以理解。It should be noted that in the above-mentioned specific embodiments, the terms used in detailing the specific implementation scheme of the present invention, such as "on...", "below...", "side wall", "inner wall" and other terms describing the orientation or position relationship, only refer to the orientation or position relationship in the drawings, and do not indicate or imply that the device or component must have a specific orientation, or be constructed and operated in a specific orientation. In addition, when describing the implementation scheme of the present invention in detail, in order to clearly represent the structure of the present invention for the convenience of explanation, the structure in the drawings is not drawn according to the general scale, and is partially enlarged, deformed and simplified. Therefore, it should be avoided to be understood as a limitation of the present invention.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202410111455.4A CN117832208A (en) | 2024-01-26 | 2024-01-26 | A trench capacitor and a method for forming the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202410111455.4A CN117832208A (en) | 2024-01-26 | 2024-01-26 | A trench capacitor and a method for forming the same |
Publications (1)
Publication Number | Publication Date |
---|---|
CN117832208A true CN117832208A (en) | 2024-04-05 |
Family
ID=90515448
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202410111455.4A Pending CN117832208A (en) | 2024-01-26 | 2024-01-26 | A trench capacitor and a method for forming the same |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN117832208A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN119730356A (en) * | 2025-02-28 | 2025-03-28 | 上海维安半导体有限公司 | Preparation method of silicon capacitor and silicon capacitor |
-
2024
- 2024-01-26 CN CN202410111455.4A patent/CN117832208A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN119730356A (en) * | 2025-02-28 | 2025-03-28 | 上海维安半导体有限公司 | Preparation method of silicon capacitor and silicon capacitor |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11133301B2 (en) | Integrated circuit having a MOM capacitor and transistor | |
US7741222B2 (en) | Etch stop structure and method of manufacture, and semiconductor device and method of manufacture | |
KR100467021B1 (en) | Contact structure of semiconductro device and method for fabricating the same | |
CN106558501B (en) | Metal gate scheme for devices and methods of forming the same | |
TWI779781B (en) | Gate-all-around semiconductor device with dielectric-all-around capacitor and method for fabricating the same | |
CN108807159A (en) | Method for forming semiconductor device | |
CN116799004B (en) | Semiconductor integrated device and manufacturing method thereof | |
US12243573B2 (en) | Semiconductor devices including ferroelectric memory and methods of forming the same | |
US20120068270A1 (en) | Semiconductor device and manufacturing method of the device | |
CN117832208A (en) | A trench capacitor and a method for forming the same | |
TW202203330A (en) | Integrated circuit device and method of manufacturing the same | |
KR20110135770A (en) | Manufacturing Method of Semiconductor Device | |
CN110071091B (en) | Contact structure | |
CN117525024A (en) | Silicon-based capacitor structure and forming method thereof | |
CN103855074B (en) | A kind of manufacture method of semiconductor device | |
KR20110135768A (en) | Method of manufacturing semiconductor device | |
US6271106B1 (en) | Method of manufacturing a semiconductor component | |
CN117936460A (en) | Semiconductor device and method for manufacturing the same | |
CN105633004A (en) | Self-Aligned Contact Fabrication Method | |
US9941372B2 (en) | Semiconductor device having electrode and manufacturing method thereof | |
CN105632906B (en) | Self-Aligned Contact Fabrication Method | |
CN221977932U (en) | A silicon-based capacitor structure | |
CN113345896A (en) | Dynamic random access memory device and manufacturing method thereof | |
TWI803113B (en) | Semiconductor device with pad structure and method for fabricating the same | |
CN221201172U (en) | Semiconductor structure |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |