[go: up one dir, main page]

CN117830042A - Learning power evaluation system based on AI (advanced technology attachment) for student personalized data analysis - Google Patents

Learning power evaluation system based on AI (advanced technology attachment) for student personalized data analysis Download PDF

Info

Publication number
CN117830042A
CN117830042A CN202410046663.0A CN202410046663A CN117830042A CN 117830042 A CN117830042 A CN 117830042A CN 202410046663 A CN202410046663 A CN 202410046663A CN 117830042 A CN117830042 A CN 117830042A
Authority
CN
China
Prior art keywords
learning
test
data
score
motivation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202410046663.0A
Other languages
Chinese (zh)
Inventor
洪晓丹
邬歆
马玉赫
杨壮
王晨太
于丁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Heqi Juli Education Technology Co ltd
Original Assignee
Beijing Heqi Juli Education Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Heqi Juli Education Technology Co ltd filed Critical Beijing Heqi Juli Education Technology Co ltd
Priority to CN202410046663.0A priority Critical patent/CN117830042A/en
Publication of CN117830042A publication Critical patent/CN117830042A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/10Services
    • G06Q50/20Education
    • G06Q50/205Education administration or guidance
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F40/00Handling natural language data
    • G06F40/20Natural language analysis
    • G06F40/279Recognition of textual entities
    • G06F40/284Lexical analysis, e.g. tokenisation or collocates
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/004Artificial life, i.e. computing arrangements simulating life
    • G06N3/006Artificial life, i.e. computing arrangements simulating life based on simulated virtual individual or collective life forms, e.g. social simulations or particle swarm optimisation [PSO]

Landscapes

  • Engineering & Computer Science (AREA)
  • Business, Economics & Management (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Computational Linguistics (AREA)
  • Tourism & Hospitality (AREA)
  • Strategic Management (AREA)
  • Educational Technology (AREA)
  • Educational Administration (AREA)
  • Artificial Intelligence (AREA)
  • General Engineering & Computer Science (AREA)
  • Evolutionary Computation (AREA)
  • Data Mining & Analysis (AREA)
  • Software Systems (AREA)
  • Computing Systems (AREA)
  • Audiology, Speech & Language Pathology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Mathematical Physics (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Economics (AREA)
  • Human Resources & Organizations (AREA)
  • Marketing (AREA)
  • Primary Health Care (AREA)
  • General Business, Economics & Management (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

The invention relates to the technical field of data analysis and processing, and discloses a learning power assessment method and a learning power assessment system based on AI (advanced technology) for personalized data analysis of students, wherein the system comprises a learning power assessment data acquisition module, a learning power and learning power parameter processing module, a learning power parameter and learning power analysis processing module; classifying the acquired learning power test keywords according to personal targets, specific industry fields and national targets and calculating the duty ratio of the acquired learning power test keywords, so that the classification and quantification of the learning power keywords are realized, the learning power keywords with the largest duty ratio value are screened and matched with an AI intelligent recognition algorithm to carry out learning power score calculation, and the accurate measurement and analysis of the learning power of students are realized; and (3) carrying out numerical comparison by utilizing the ratio of the learning time of the students meeting the specified state to the total learning perseverance test time, and intuitively and quantitatively measuring the learning perseverance result of the students.

Description

一种基于AI针对学生个性化数据分析的学习力评估系统A learning ability assessment system based on AI for personalized data analysis of students

技术领域Technical Field

本发明涉及数据分析处理的技术领域,具体为基于AI针对学生个性化数据分析的学习力评估方法及系统。The present invention relates to the technical field of data analysis and processing, and specifically to a learning ability assessment method and system based on AI for personalized data analysis of students.

背景技术Background technique

学习力就是学习动力,学习毅力和学习能力三要素。学习力是指一个人或一个企业、一个组织学习的动力、毅力和能力的综合体现。学习力是把知识资源转化为知识资本的能力。学习力是指一个人或一个企业、一个组织学习的动力、毅力和能力的综合体现。学习力是把知识资源转化为知识资本的能力。个人的学习力,不仅包含它的知识总量,即个人学习内容的宽广程度和组织与个人的开放程度;也包含它的知识质量,即学习者的综合素质、学习效率和学习品质;还包含它的学习流量,即学习的速度及吸纳和扩充知识的能力;更重要的是看它的知识增量,即学习成果的创新程度以及学习者把知识转化为价值的程度。组织学习力是人们创新能力的集中体现,能直接转化为创新成果。它倡导团队学习比个人学习更重要,团队具有整体搭配的学习能力,团体内信息和知识自由流动,高度共享,团队学习既是团队成员相互沟通和交流思想的过程,也是团队成员寻求共识和统一行动的过程,从而也是产生团队的“创造性张力”的过程。在教育领域如何准确评估出学生的学习力是实施个性化教学目标的十分重要的参考因素,传统的学生学习力评估只是简单通过测试题目在相同时间通过学生答题得分来判断学生的学习力,然而学习力包含学习动力、学习毅力和学习能力,通过测试题目只能简单测试出学生学习能力,不能对学生的学习动力、学习毅力进行综合判断,同时在学习能力测试阶段只关注学生的答题得分,不考虑学生的答题时间也不能科学测试出学生学习能力。Learning power is the three elements of learning motivation, learning perseverance and learning ability. Learning power refers to the comprehensive manifestation of the motivation, perseverance and ability of a person, an enterprise or an organization to learn. Learning power is the ability to transform knowledge resources into knowledge capital. Learning power refers to the comprehensive manifestation of the motivation, perseverance and ability of a person, an enterprise or an organization to learn. Learning power is the ability to transform knowledge resources into knowledge capital. The learning power of an individual not only includes the total amount of knowledge, that is, the breadth of personal learning content and the degree of openness of the organization and the individual; it also includes the quality of knowledge, that is, the comprehensive quality, learning efficiency and learning quality of the learner; it also includes its learning flow, that is, the speed of learning and the ability to absorb and expand knowledge; more importantly, it looks at its knowledge increment, that is, the degree of innovation of learning results and the degree to which learners transform knowledge into value. Organizational learning power is a concentrated manifestation of people's innovation ability and can be directly transformed into innovation results. It advocates that team learning is more important than individual learning. The team has the ability to learn as a whole. Information and knowledge flow freely and are highly shared within the group. Team learning is not only a process of communication and exchange of ideas among team members, but also a process of seeking consensus and unified action, thus generating the team's "creative tension". In the field of education, how to accurately evaluate students' learning ability is a very important reference factor for implementing personalized teaching goals. Traditional student learning ability evaluation simply judges students' learning ability by the scores of students' answers at the same time through test questions. However, learning ability includes learning motivation, learning perseverance and learning ability. Test questions can only simply test students' learning ability, and cannot make a comprehensive judgment on students' learning motivation and learning perseverance. At the same time, in the learning ability test stage, only focusing on students' answering scores and not considering students' answering time can not scientifically test students' learning ability.

公开号为CN114491050A的中国发明专利申请公开了一种基于认知诊断的学习能力评估方法及系统,采用获取用户的答题记录,对用户的答题记录进行标签化预处理,得到带标签的答题记录和无标签的答题记录;根据带标签的答题记录,对无标签的答题记录进行聚类,得到所有答题记录的标签;将所有答题记录及其标签输入认知诊断模型中,认知诊断模型输出用户的答题正确概率,根据用户的答题正确概率,对用户的学习能力进行评估。本发明考虑到不同类型的答题信息,对答题记录进行标注,将无标签的答题记录与带标签的答题记录进行聚类,将聚类结果输入到传统的学习诊断模型中,完成对用户的学习能力的评估,充分利用了用户的答题记录中包含的大量的不同类型的数据信息,提高了认知诊断模型的准确率,然而以上技术方案仅仅考虑学习能力评估并未考虑对学习力评估用户的学习动力、学习毅力进行综合科学评估分析。The Chinese invention patent application with publication number CN114491050A discloses a learning ability assessment method and system based on cognitive diagnosis, which obtains the user's answer record, performs labeling preprocessing on the user's answer record, obtains the answer record with label and the answer record without label; clusters the answer record without label according to the answer record with label, obtains the label of all the answer records; inputs all the answer records and their labels into the cognitive diagnosis model, and the cognitive diagnosis model outputs the correct probability of the user's answer, and evaluates the user's learning ability according to the correct probability of the user's answer. The present invention takes into account different types of answer information, marks the answer record, clusters the answer record without label and the answer record with label, and inputs the clustering result into the traditional learning diagnosis model to complete the evaluation of the user's learning ability, makes full use of the large amount of different types of data information contained in the user's answer record, and improves the accuracy of the cognitive diagnosis model. However, the above technical scheme only considers the evaluation of learning ability and does not consider the comprehensive scientific evaluation and analysis of the learning motivation and learning perseverance of the learning ability evaluation user.

发明内容Summary of the invention

(一)解决的技术问题1. Technical issues to be solved

为解决上述传统的学生学习力评估只是简单通过测试题目在相同时间通过学生答题得分来判断学生的学习力,然而学习力包含学习动力、学习毅力和学习能力,通过测试题目只能简单测试出学生学习能力,不能对学生的学习动力、学习毅力进行综合判断,同时在学习能力测试阶段只关注学生的答题得分,不考虑学生的答题时间也不能科学测试出学生学习能力的问题,实现以上全面科学评估学习动力、学习毅力和学习能力,提升学习力评估的准确性、真实测试学生的学习力的目的。To solve the above-mentioned problem that traditional student learning ability assessment simply judges students' learning ability through test questions and their answer scores at the same time, however, learning ability includes learning motivation, learning perseverance and learning ability, and test questions can only simply test students' learning ability, and cannot make a comprehensive judgment on students' learning motivation and learning perseverance. At the same time, in the learning ability test stage, only focusing on students' answer scores, not considering students' answering time, cannot scientifically test students' learning ability. In order to achieve the above comprehensive and scientific assessment of learning motivation, learning perseverance and learning ability, improve the accuracy of learning ability assessment, and truly test students' learning ability.

(二)技术方案(II) Technical solution

本发明通过以下技术方案予以实现:基于AI针对学生个性化数据分析的学习力评估方法,所述方法包括如下步骤:The present invention is implemented by the following technical solution: a learning ability assessment method based on AI for personalized data analysis of students, the method comprising the following steps:

S1、采集学习动力测试关键词数据、学习毅力测试合规时间数据、学习能力测试分数结果数据、学习能力测试时间结果数据;S1. Collecting learning motivation test keyword data, learning perseverance test compliance time data, learning ability test score result data, and learning ability test time result data;

S2、依据所述学习动力测试关键词数据分别计量出同类型关键词个数占所有关键词个数的比重,并生成学习动力测试关键词占比数据,依据所述学习动力测试关键词占比数据进行占比数值分析,筛选出最大学习动力测试关键词占比数据;S2. According to the learning motivation test keyword data, respectively measure the proportion of the number of keywords of the same type to the number of all keywords, and generate learning motivation test keyword proportion data, perform proportion numerical analysis according to the learning motivation test keyword proportion data, and screen out the maximum learning motivation test keyword proportion data;

S3、依据最大学习动力测试关键词占比数据搜索出对应的所述学习动力测试关键词数据并标识构建为确定学习动力测试关键词数据;S3, searching for the corresponding learning motivation test keyword data according to the maximum learning motivation test keyword proportion data and marking and constructing the determined learning motivation test keyword data;

S4、依据所述确定学习动力测试关键词数据与学习动力测试得分分类数据通过数据识别算法按照学习动力测试关键词进行识别,分析生成学生学习动力测试得分数据;S4, identifying the learning motivation test keyword data and the learning motivation test score classification data according to the learning motivation test keywords through a data recognition algorithm, and analyzing and generating student learning motivation test score data;

S5、依据所述学习毅力测试合规时间数据与学习毅力测试总时间数据进行比值计量并将所述比值构建为学生学习毅力测试得分数据;S5, measuring the ratio of the compliance time data of the learning perseverance test to the total time data of the learning perseverance test and constructing the ratio as the student's learning perseverance test score data;

S6、依据所述学习能力测试分数结果数据和所述学习能力测试时间结果数据进行数值计量并将所述数值构建为学生学习能力测试得分数据;S6, performing numerical measurement based on the learning ability test score result data and the learning ability test time result data and constructing the numerical values into student learning ability test score data;

S7、依据所述学生学习动力测试得分数据、所述学生学习毅力测试得分数据、所述学生学习能力测试得分数据进行数值分析计量生成并输出学生学习力综合得分计算结果数据;采用数据识别算法将所述学生学习力综合得分计算结果数据与学生学习力综合得分分类数据按照学习力综合得分数值大小进行比对,分析构建出学生学习力评估结果。S7. Perform numerical analysis and measurement based on the student's learning motivation test score data, the student's learning perseverance test score data, and the student's learning ability test score data to generate and output the student's learning ability comprehensive score calculation result data; use a data recognition algorithm to compare the student's learning ability comprehensive score calculation result data with the student's learning ability comprehensive score classification data according to the numerical value of the learning ability comprehensive score, and analyze and construct the student's learning ability evaluation result.

优选的,所述采集学习动力测试关键词数据、学习毅力测试合规时间数据、学习能力测试分数结果数据、学习能力测试时间结果数据的操作步骤如下:Preferably, the steps of collecting the learning motivation test keyword data, the learning perseverance test compliance time data, the learning ability test score result data, and the learning ability test time result data are as follows:

S11、通过问卷调查平台在规定时间内多次采集学生的学习动力的关键词数据并生成学习动力测试关键词数据集合A=(a1,…,am,…,aθ),m=1,2,3,…,θ;其中am表示第m个学习动力测试关键词数据,θ表示学习动力测试关键词数据数量的最大值;所述规定时间包括六个月、十二个月、十八个月、二十四个月中任意一个时间段;所述学习动力测试关键词包括为个人目标而学习、为具体行业领域而学习、为国家目标而学习中至少一种,所述问卷调查平台包括问卷星、微信问卷小程序、QQ问卷小程序中任意一种;S11. Collecting the keyword data of students' learning motivation multiple times within a specified time through a questionnaire survey platform and generating a learning motivation test keyword data set A=(a 1 ,…, am ,…,a θ ), m=1,2,3,…,θ; whereinam represents the mth learning motivation test keyword data, andθ represents the maximum number of learning motivation test keyword data; the specified time includes any one of six months, twelve months, eighteen months, and twenty-four months; the learning motivation test keywords include at least one of learning for personal goals, learning for specific industry fields, and learning for national goals; the questionnaire survey platform includes any one of WJX, WeChat Questionnaire Mini Program, and QQ Questionnaire Mini Program;

通过时间计量传感器采集学生进行学习毅力测试处于符合学习规定状态的时间并生成学习毅力测试合规时间数据tyiliThe time that the student is in compliance with the study regulations when taking the study perseverance test is collected through the time measurement sensor and the compliance time data of the study perseverance test is generated ;

通过学校知识点测试平台在线测试新知识点题目并统计学生的测试得分并生成学习能力测试分数结果数据ΓnengliTest new knowledge points online through the school knowledge point test platform, count students' test scores and generate learning ability test score result data Γ nengli ;

通过学校知识点测试平台在线测试新知识点题目并统计学生的测试完成时间并生成学习能力测试时间结果数据tnengliTest new knowledge points online through the school knowledge point test platform, count students' test completion time and generate learning ability test time result data t nengli .

优选的,所述依据所述学习动力测试关键词数据分别计量出同类型关键词个数占所有关键词个数的比重,并生成学习动力测试关键词占比数据,依据所述学习动力测试关键词占比数据进行占比数值分析,筛选出最大学习动力测试关键词占比数据的操作步骤如下:Preferably, the proportion of the number of keywords of the same type to the number of all keywords is measured based on the learning motivation test keyword data, and learning motivation test keyword proportion data is generated. The proportion numerical analysis is performed based on the learning motivation test keyword proportion data, and the operation steps of screening out the maximum learning motivation test keyword proportion data are as follows:

S21、获取学习动力测试关键词数据集合A;S21, obtaining a learning motivation test keyword data set A;

S22、按照个人目标关键词、具体行业领域关键词、国家目标关键词将学习动力测试关键词数据集合A中学习动力测试关键词数据am进行分类并计算同类型关键词个数占所有关键词个数的比重并生成学习动力测试关键词占比数据集合B=(b1,b2,b3),其中b1表示在学习动力测试关键词数据集合A中属于个人目标关键词的学习动力测试关键词数据am个数占所有的学习动力测试关键词数据个数的比值,所述个人目标关键词包括为提升个人篮球技能而学习、为提升个人学习成绩而学习、为得到家长认可而学习和为改变个人生活条件而学习;S22. Classify the learning motivation test keyword data a m in the learning motivation test keyword data set A according to personal goal keywords, specific industry field keywords, and national goal keywords, calculate the proportion of the number of keywords of the same type to the number of all keywords, and generate a learning motivation test keyword proportion data set B = (b 1 , b 2 , b 3 ), wherein b 1 represents the ratio of the number of learning motivation test keyword data a m belonging to personal goal keywords in the learning motivation test keyword data set A to the number of all learning motivation test keyword data, and the personal goal keywords include learning to improve personal basketball skills, learning to improve personal academic performance, learning to get parental recognition, and learning to change personal living conditions;

b2表示在学习动力测试关键词数据集合A中属于具体行业领域关键词的学习动力测试关键词数据am个数占所有的学习动力测试关键词数据个数的比值,所述具体行业领域关键词包括为提升水稻种子质量而学习、为提升电影制作产业水平而学习、为提升无人机技术而学习和为提升汽车制造水平而学习; b2 represents the ratio of the number of learning power test keyword data a m belonging to specific industry field keywords in the learning power test keyword data set A to the number of all learning power test keyword data, wherein the specific industry field keywords include learning to improve the quality of rice seeds, learning to improve the level of film production industry, learning to improve the technology of unmanned aerial vehicles and learning to improve the level of automobile manufacturing;

b3表示在学习动力测试关键词数据集合A中属于国家目标关键词的学习动力测试关键词数据am个数占所有的学习动力测试关键词数据个数的比值,所述国家目标关键词包括为促进国家经济发展而学习和为实现制造业强国而学习; b3 represents the ratio of the number of learning motivation test keyword data a m belonging to national target keywords in the learning motivation test keyword data set A to the number of all learning motivation test keyword data, wherein the national target keywords include learning to promote national economic development and learning to achieve a strong manufacturing country;

S23、采用宽度优先搜索算法按照数值大小筛选出学习动力测试关键词占比数据集合B占比数值最大的学习动力测试关键词占比数据并标识为最大学习动力测试关键词占比数据bmaxS23, using a breadth-first search algorithm to select the learning motivation test keyword proportion data set B with the largest proportion value according to the numerical value and mark it as the maximum learning motivation test keyword proportion data b max .

优选的,所述依据最大学习动力测试关键词占比数据搜索出对应的所述学习动力测试关键词数据并标识构建为确定学习动力测试关键词数据的操作步骤如下:Preferably, the operation steps of searching for the corresponding learning motivation test keyword data based on the maximum learning motivation test keyword proportion data and identifying and constructing the learning motivation test keyword data are as follows:

S31、获取所述最大学习动力测试关键词占比数据bmaxS31, obtaining the maximum learning motivation test keyword proportion data b max ;

S32、采用宽度优先搜索算法搜索出最大学习动力测试关键词占比数据bmax对应具体同类型的所有的学习动力测试关键词数据am并标识生成确定学习动力测试关键词数据集合A’,其中A’属于A的子集。S32. Use a breadth-first search algorithm to search for the maximum learning motivation test keyword proportion data b max corresponding to all specific learning motivation test keyword data a m of the same type and identify and generate a determined learning motivation test keyword data set A', where A' belongs to a subset of A.

优选的,所述依据所述确定学习动力测试关键词数据与学习动力测试得分分类数据通过数据识别算法按照学习动力测试关键词进行识别,分析生成学生学习动力测试得分数据的操作步骤如下:Preferably, the steps of identifying the learning motivation test keyword data and the learning motivation test score classification data according to the learning motivation test keywords through a data recognition algorithm and analyzing and generating the student learning motivation test score data are as follows:

S41、建立学习动力测试得分分类数据集合C=(c1,c2,c3),其中c1表示属于个人目标关键词的学习动力测试关键词数据am对应的学习动力测试得分分类数据;S41, establishing a learning motivation test score classification data set C = (c 1 , c 2 , c 3 ), where c 1 represents the learning motivation test score classification data corresponding to the learning motivation test keyword data a m belonging to the personal target keyword;

c2表示属于具体行业领域关键词的学习动力测试关键词数据am对应的学习动力测试得分分类数据;c 2 represents the learning motivation test keyword data a m corresponding to the learning motivation test score classification data belonging to the specific industry field keywords;

c3表示属于国家目标关键词的学习动力测试关键词数据am对应的学习动力测试得分分类数据,c1+c2+c3=1;c 3 represents the learning motivation test score classification data corresponding to the learning motivation test keyword data a m belonging to the national target keyword, c 1 +c 2 +c 3 =1;

S42、采用数据识别算法将所述确定学习动力测试关键词数据集合A’中学习动力测试关键词数据am按照学习动力测试关键词与所述学习动力测试得分分类数据集合C中学习动力测试得分分类数据对应的学习动力测试关键词进行关键词字符识别,分析生成所述确定学习动力测试关键词数据集合A'对应的学习动力测试得分分类数据cA',所述数据识别算法分析生成学习动力测试得分分类数据cA'的具体步骤如下:S42, using a data recognition algorithm to perform keyword character recognition on the learning power test keyword data a m in the determined learning power test keyword data set A' according to the learning power test keywords and the learning power test keywords corresponding to the learning power test score classification data in the learning power test score classification data set C, and analyzing and generating the learning power test score classification data c A' corresponding to the determined learning power test keyword data set A ' , the specific steps of the data recognition algorithm analyzing and generating the learning power test score classification data c A' are as follows:

S421、初始化,在学习动力测试得分分类数据集合C寻优空间里随机初始化种群和更新算法最大迭代次数N;S421, initialization, randomly initializing the population in the optimization space of the learning dynamics test score classification data set C and updating the maximum number of iterations N of the algorithm;

其中Zi,j为学习动力测试得分搜索浣熊个体i在j维空间的位置,即学习动力测试得分搜索浣熊个体i在学习动力测试得分分类数据集合C搜索空间的位置,ψ为寻优上边界,ζ为寻优下边界,/>为[0,1]之间的随机数; Where Zi ,j is the position of the learning power test score search raccoon individual i in the j-dimensional space, that is, the position of the learning power test score search raccoon individual i in the learning power test score classification data set C search space, ψ is the upper boundary of the optimization, ζ is the lower boundary of the optimization, /> is a random number between [0,1];

S422、狩猎和攻击,在学习动力测试得分分类数据集合C搜索空间中更新学习动力测试得分搜索浣熊种群的第一阶段是基于模拟它们攻击鬣蜥时的策略进行建模的,执行策略中,一群学习动力测试得分搜索浣熊爬上树去接触一只鬣蜥并进行吓唬,其他学习动力测试得分搜索浣熊在树下等待,直到鬣蜥摔倒在地,鬣蜥落地后,学习动力测试得分搜索浣熊攻击并猎杀鬣蜥,即在学习动力测试得分分类数据集合C搜索与确定学习动力测试关键词数据集合A’中同类型的学习动力测试关键词数据am相匹配的学习动力测试得分分类数据,这种策略导致学习动力测试得分搜索浣熊移动到学习动力测试得分分类数据集合C搜索空间的不同位置;S422, hunting and attacking, the first stage of updating the learning dynamics test score search raccoon population in the search space of the learning dynamics test score classification data set C is modeled based on simulating their strategy when attacking iguanas. In the execution strategy, a group of learning dynamics test score search raccoons climb up a tree to contact an iguana and scare it, and other learning dynamics test score search raccoons wait under the tree until the iguana falls to the ground. After the iguana falls to the ground, the learning dynamics test score search raccoons attack and hunt the iguana, that is, the learning dynamics test score classification data set C is searched for learning dynamics test score classification data that matches the same type of learning dynamics test keyword data a m in the determined learning dynamics test keyword data set A'. This strategy causes the learning dynamics test score search raccoons to move to different positions in the search space of the learning dynamics test score classification data set C;

S423、逃离捕食者,更新学习动力测试得分搜索浣熊在学习动力测试得分分类数据集合C搜索空间中的位置的过程的第二步骤是基于学习动力测试得分搜索浣熊遇到捕食者和逃离捕食者时的自然行为进行数学建模,当捕食者攻击一只学习动力测试得分搜索浣熊时,它会从自己的位置逃跑,即在学习动力测试得分分类数据集合C搜索与确定学习动力测试关键词数据集合A’中同类型的学习动力测试关键词数据am不相匹配的学习动力测试得分分类数据进行远离和排除,学习动力测试得分搜索浣熊在这种策略中的举措使其处于接近当前位置的安全位置;利用模拟行为计算在每个学习动力测试得分搜索浣熊所在的位置附近生成随机位置;S423, escape from predator, the second step of the process of updating the position of the learning power test score search raccoon in the search space of the learning power test score classification data set C is to mathematically model the natural behavior of the learning power test score search raccoon when encountering a predator and escaping from a predator. When a predator attacks a learning power test score search raccoon, it will flee from its own position, that is, the learning power test score classification data set C is searched for the learning power test score classification data that does not match the same type of learning power test keyword data a m in the determined learning power test keyword data set A', and the learning power test score search raccoon's move in this strategy puts it in a safe position close to the current position; use simulated behavior calculation to generate a random position near the position of each learning power test score search raccoon;

S424、当满足最大迭代次数,输出确定学习动力测试关键词数据集合A’对应的学习动力测试得分分类数据,否则循环执行S422步骤至S424步骤,直至达到最大迭代次数;S424, when the maximum number of iterations is met, output the learning power test score classification data corresponding to the learning power test keyword data set A', otherwise, loop through steps S422 to S424 until the maximum number of iterations is reached;

S43、将S424步骤中输出确定学习动力测试关键词数据集合A’对应的学习动力测试得分分类数据标识生成为学习动力测试得分分类数据cA'S43, generating the learning motivation test score classification data identifier corresponding to the learning motivation test keyword data set A' output in step S424 as the learning motivation test score classification data c A' .

优选的,所述依据所述学习毅力测试合规时间数据与学习毅力测试总时间数据进行比值计量并将所述比值构建为学生学习毅力测试得分数据的操作步骤如下:Preferably, the operation steps of measuring the ratio of the compliance time data of the learning perseverance test to the total time data of the learning perseverance test and constructing the ratio as the student learning perseverance test score data are as follows:

S51、建立学习毅力测试总时间数据所述学习毅力测试总时间为学生进行学习毅力测试的规定总时间;S51. Establish the total time data of learning perseverance test The total time for the learning perseverance test is the total time required for students to take the learning perseverance test;

S52、获取所述学习毅力测试合规时间数据tyiliS52, obtaining the compliance time data t yili of the learning perseverance test;

S53、将所述学习毅力测试合规时间数据tyili与所述学习毅力测试总时间数据进行比值计算并生成学生学习毅力测试得分数据/>其中d取值[0,1]。S53, comparing the compliance time data of the learning perseverance test to the total time data of the learning perseverance test Calculate the ratio and generate the student learning perseverance test score data/> Where d takes the value [0,1].

优选的,所述依据所述学习能力测试分数结果数据和所述学习能力测试时间结果数据进行数值计量并将所述数值构建为学生学习能力测试得分数据的操作步骤如下:Preferably, the operation steps of performing numerical measurement based on the learning ability test score result data and the learning ability test time result data and constructing the numerical values into student learning ability test score data are as follows:

S61、获取所述学习能力测试分数结果数据Γnengli和所述学习能力测试时间结果数据tnengliS61, obtaining the learning ability test score result data Γ nengli and the learning ability test time result data t nengli ;

S62、计量出所述学习能力测试分数结果数据Γnengli和所述学习能力测试时间结果数据tnengli的比值并生成学生学习能力测试得分数据其中Γnengli取值范围为[0,100],tnengli单位为分钟,tnengli取值范围为[0,60],e取值范围[0,0.2];S62, measuring the ratio of the learning ability test score result data Γ nengli and the learning ability test time result data t nengli and generating the student learning ability test score data Where Γ nengli ranges from [0,100], t nengli is in minutes, t nengli ranges from [0,60], and e ranges from [0,0.2];

优选的,所述依据所述学生学习动力测试得分数据、所述学生学习毅力测试得分数据、所述学生学习能力测试得分数据进行数值分析计量生成并输出学生学习力综合得分计算结果数据;采用数据识别算法将所述学生学习力综合得分计算结果数据与学生学习力综合得分分类数据按照学习力综合得分数值大小进行比对,分析构建出学生学习力评估结果的操作步骤如下:Preferably, the steps of performing numerical analysis and measurement based on the student learning motivation test score data, the student learning perseverance test score data, and the student learning ability test score data to generate and output the student learning ability comprehensive score calculation result data; using a data recognition algorithm to compare the student learning ability comprehensive score calculation result data with the student learning ability comprehensive score classification data according to the numerical value of the learning ability comprehensive score, and analyzing and constructing the student learning ability evaluation result are as follows:

S71、获取所述学生学习动力测试得分数据cA'、所述学生学习毅力测试得分数据d、学生学习能力测试得分数据e;S71, obtaining the student's learning motivation test score data c A' , the student's learning perseverance test score data d, and the student's learning ability test score data e;

S72、将所述学生学习动力测试得分数据cA'、所述学生学习毅力测试得分数据d、学生学习能力测试得分数据e进行数值分析计算出学生学习力综合得分计算结果数据F=cA'×d×e×104,其中F取值范围[0,100];S72, numerically analyzing the student learning motivation test score data c A' , the student learning perseverance test score data d, and the student learning ability test score data e to calculate the student learning ability comprehensive score calculation result data F = c A' × d × e × 10 4 , where F has a value range of [0, 100];

S73、建立学生学习力综合得分分类数据集合G=([0,30),[30,70)正常,[70,100]),其中[0,30)表示学生学习力综合得分在[0,30)范围学习力为差;S73, establish a classification data set of students' comprehensive learning ability scores G = ([0, 30) poor , [30, 70) normal , [70, 100] excellent ), where [0, 30) poor means that the comprehensive learning ability score of the student is in the range of [0, 30) and the learning ability is poor;

[30,70)正常表示学生学习力综合得分在[30,70)范围学习力为正常;[30, 70) Normal means that the comprehensive score of students' learning ability is in the range of [30, 70) and their learning ability is normal;

[70,100]表示学生学习力综合得分在[70,100]范围学习力为优;[70, 100] Excellent means that the comprehensive score of the student's learning ability is in the range of [70, 100] and the learning ability is excellent;

S74、采用如S42步骤中的数据识别算法将所述学生学习力综合得分计算结果数据F与学生学习力综合得分分类数据集合G中学生学习力综合得分分类数据按照学习力综合得分数值大小进行比对,匹配出学生学习力综合得分计算结果数据F对应的所述学生学习力综合得分分类数据并标识生成学生学习力评估结果 S74, using the data recognition algorithm in step S42 to compare the student learning ability comprehensive score calculation result data F with the student learning ability comprehensive score classification data in the student learning ability comprehensive score classification data set G according to the numerical value of the learning ability comprehensive score, match the student learning ability comprehensive score classification data corresponding to the student learning ability comprehensive score calculation result data F and identify and generate the student learning ability evaluation result

实现所述基于AI针对学生个性化数据分析的学习力评估方法的系统,所述系统包括学习力评估数据采集模块、学习动力及学习毅力参数处理模块、学习能力参数及学习力分析处理模块;A system for implementing the learning ability assessment method based on AI for personalized data analysis of students, the system comprising a learning ability assessment data acquisition module, a learning motivation and learning perseverance parameter processing module, and a learning ability parameter and learning ability analysis processing module;

所述学习力评估数据采集模块包括学习动力测试关键词采集单元、学习毅力测试合规时间采集单元、学习能力测试分数结果采集单元、学习能力测试时间结果采集单元;The learning ability assessment data collection module includes a learning motivation test keyword collection unit, a learning perseverance test compliance time collection unit, a learning ability test score result collection unit, and a learning ability test time result collection unit;

所述学习动力测试关键词采集单元,通过问卷调查平台采集学习动力测试关键词数据;所述学习毅力测试合规时间采集单元,通过时间计量传感器采集学习毅力测试合规时间采集单元;所述学习能力测试分数结果采集单元,通过学校知识点测试平台采集学习能力测试分数结果采集单元;所述学习能力测试时间结果采集单元,通过学校知识点测试平台学习能力测试时间结果采集单元;The learning motivation test keyword collection unit collects learning motivation test keyword data through a questionnaire survey platform; the learning perseverance test compliance time collection unit collects learning perseverance test compliance time collection unit through a time measurement sensor; the learning ability test score result collection unit collects learning ability test score result collection unit through a school knowledge point test platform; the learning ability test time result collection unit collects learning ability test time result collection unit through a school knowledge point test platform;

所述学习动力及学习毅力参数处理模块包括学习动力测试关键词比重计量筛选单元、学习动力测试得分分类存储单元、学习动力测试得分分析单元、学习毅力测试总时间存储单元、学习毅力测试得分分析单元;The learning motivation and learning perseverance parameter processing module includes a learning motivation test keyword weight measurement screening unit, a learning motivation test score classification storage unit, a learning motivation test score analysis unit, a learning perseverance test total time storage unit, and a learning perseverance test score analysis unit;

所述学习动力测试关键词比重计量筛选单元,依据所述学习动力测试关键词数据分别计量出同类型关键词个数占所有关键词个数的比重,并生成学习动力测试关键词占比数据,依据所述学习动力测试关键词占比数据进行占比数值分析,筛选出最大学习动力测试关键词占比数据;依据最大学习动力测试关键词占比数据搜索出对应的所述学习动力测试关键词数据并标识构建为确定学习动力测试关键词数据;所述学习动力测试得分分类存储单元,用于存储学习动力测试得分分类数据;所述学习动力测试得分分析单元,依据所述确定学习动力测试关键词数据与学习动力测试得分分类数据通过数据识别算法按照学习动力测试关键词进行识别,分析生成学生学习动力测试得分数据;所述学习毅力测试总时间存储单元,用于存储学习毅力测试总时间数据;所述学习毅力测试得分分析单元,依据所述学习毅力测试合规时间数据与学习毅力测试总时间数据进行比值计量并将所述比值构建为学生学习毅力测试得分数据;The learning motivation test keyword proportion measurement and screening unit measures the proportion of the number of keywords of the same type to the total number of keywords based on the learning motivation test keyword data, and generates learning motivation test keyword proportion data, performs proportion numerical analysis based on the learning motivation test keyword proportion data, and screens out the maximum learning motivation test keyword proportion data; searches out the corresponding learning motivation test keyword data based on the maximum learning motivation test keyword proportion data and identifies and constructs the determined learning motivation test keyword data; the learning motivation test score classification storage unit is used to store the learning motivation test score classification data; the learning motivation test score analysis unit identifies the determined learning motivation test keyword data and the learning motivation test score classification data according to the learning motivation test keywords through a data recognition algorithm, and analyzes and generates student learning motivation test score data; the learning perseverance test total time storage unit is used to store the learning perseverance test total time data; the learning perseverance test score analysis unit performs ratio measurement based on the learning perseverance test compliance time data and the learning perseverance test total time data and constructs the ratio as the student learning perseverance test score data;

所述学习能力参数及学习力分析处理模块包括学习能力测试得分分析单元、学生学习力综合得分分类存储单元、学生学习力综合分析输出单元;The learning ability parameter and learning ability analysis processing module includes a learning ability test score analysis unit, a student learning ability comprehensive score classification storage unit, and a student learning ability comprehensive analysis output unit;

所述学习能力测试得分分析单元,依据所述学习能力测试分数结果数据和所述学习能力测试时间结果数据进行数值计量并将所述数值构建为学生学习能力测试得分数据;所述学生学习力综合得分分类存储单元,用于存储学生学习力综合得分分类数据;所述学生学习力综合分析输出单元,依据所述学生学习动力测试得分数据、所述学生学习毅力测试得分数据、所述学生学习能力测试得分数据进行数值分析计量生成并输出学生学习力综合得分计算结果数据;采用数据识别算法将所述学生学习力综合得分计算结果数据与学生学习力综合得分分类数据按照学习力综合得分数值大小进行比对,分析构建出学生学习力评估结果。The learning ability test score analysis unit performs numerical measurement based on the learning ability test score result data and the learning ability test time result data and constructs the numerical value into the student learning ability test score data; the student learning ability comprehensive score classification storage unit is used to store the student learning ability comprehensive score classification data; the student learning ability comprehensive analysis output unit performs numerical analysis and measurement based on the student learning motivation test score data, the student learning perseverance test score data, and the student learning ability test score data to generate and output the student learning ability comprehensive score calculation result data; uses a data recognition algorithm to compare the student learning ability comprehensive score calculation result data with the student learning ability comprehensive score classification data according to the numerical value of the learning ability comprehensive score, and analyzes and constructs the student learning ability evaluation result.

(三)有益效果(III) Beneficial effects

本发明提供了基于AI针对学生个性化数据分析的学习力评估方法及系统。具备以下有益效果:The present invention provides a learning ability assessment method and system based on AI for personalized data analysis of students. It has the following beneficial effects:

一、通过学习动力测试关键词采集单元通过问卷调查平台按照规定时间段科学获学生的学习动力关键词,为后续学生学习动力精确分析提供数据支撑,实现对学生学习动力在线准确测量;学习毅力测试合规时间采集单元通过时间计量传感器精确采集学生学习毅力测试的符合学习状态的时间量,实现对学生学习毅力的量化处理,提高学生学习力的测量结果精度;学习能力测试分数结果采集单元和学习能力测试时间结果采集单元相互配合通过知识点测试平台在线高效采集学生对新知识点的测试得分和测试时间参数,精确测量出学生的学习能力,提高学生学习力评估的准确性。1. Through the learning motivation test keyword collection unit, the students' learning motivation keywords are scientifically obtained through the questionnaire survey platform according to the prescribed time period, providing data support for the subsequent precise analysis of students' learning motivation, and realizing accurate online measurement of students' learning motivation; the learning perseverance test compliance time collection unit accurately collects the amount of time that conforms to the learning state of students' learning perseverance test through the time measurement sensor, realizes the quantitative processing of students' learning perseverance, and improves the accuracy of the measurement results of students' learning ability; the learning ability test score result collection unit and the learning ability test time result collection unit cooperate with each other to efficiently collect students' test scores and test time parameters for new knowledge points online through the knowledge point test platform, accurately measure students' learning ability, and improve the accuracy of students' learning ability assessment.

二、通过学习动力测试关键词比重计量筛选单元和学习动力测试得分分析单元相互配合按照个人目标、具体行业领域、国家目标对采集的学习动力测试关键词进行分类并计算其占比,实现精确对学习动力关键词分类量化,筛选占比数值最大的学习动力关键词配合AI智能识别算法进行学习动力得分计算,从而实现对学生学习动力的精确测量分析;学习毅力测试得分分析单元利用学生符合规定状态的学习时间与学习毅力测试总时间比值进行数值比对,直观量化测量学生的学习毅力结果。2. Through the cooperation of the learning motivation test keyword proportion measurement screening unit and the learning motivation test score analysis unit, the collected learning motivation test keywords are classified and their proportions are calculated according to personal goals, specific industry fields, and national goals, so as to achieve accurate classification and quantification of learning motivation keywords, screen the learning motivation keywords with the largest proportion and cooperate with the AI intelligent recognition algorithm to calculate the learning motivation score, thereby achieving accurate measurement and analysis of students' learning motivation; the learning perseverance test score analysis unit uses the ratio of students' learning time in accordance with the specified status to the total time of the learning perseverance test for numerical comparison, so as to intuitively and quantitatively measure students' learning perseverance results.

三、通过学习能力测试得分分析单元通过测量学生对新知识题目的测试得分和测试时间科学测量出学生对新知识点的学习能力,提高学生学习力评估分析的效率;学生学习力综合分析输出单元综合利用学生学习动力、学习毅力、学习能力的参数全面准确计算出学生学习力综合得分结合AI智能识别算法与学生学习力类型进行学习力得分数值匹配,高效智能计量出学生学习力评估结果,提高了学生学习力评估结果的准确性和直观性,提升学生学习力评估结果的真实性。3. The learning ability test score analysis unit measures students' test scores and test time for new knowledge points in a scientific way, thereby improving the efficiency of students' learning ability assessment and analysis. The student learning ability comprehensive analysis output unit comprehensively utilizes the parameters of students' learning motivation, learning perseverance, and learning ability to comprehensively and accurately calculate the student's comprehensive learning ability score, and combines the AI intelligent recognition algorithm with the student's learning ability type to match the learning ability score value, and efficiently and intelligently calculates the student's learning ability assessment results, thereby improving the accuracy and intuitiveness of the student's learning ability assessment results, and enhancing the authenticity of the student's learning ability assessment results.

附图说明BRIEF DESCRIPTION OF THE DRAWINGS

图1为本发明提供的基于AI针对学生个性化数据分析的学习力评估系统的模块示意图;FIG1 is a module schematic diagram of a learning ability assessment system based on AI for personalized data analysis of students provided by the present invention;

图2为本发明提供的基于AI针对学生个性化数据分析的学习力评估方法的流程图。FIG2 is a flow chart of a learning ability assessment method based on AI for personalized data analysis of students provided by the present invention.

具体实施方式Detailed ways

下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。The following will be combined with the drawings in the embodiments of the present invention to clearly and completely describe the technical solutions in the embodiments of the present invention. Obviously, the described embodiments are only part of the embodiments of the present invention, not all of the embodiments. Based on the embodiments of the present invention, all other embodiments obtained by ordinary technicians in this field without creative work are within the scope of protection of the present invention.

该基于AI针对学生个性化数据分析的学习力评估方法及系统的实施例如下:The embodiments of the learning ability assessment method and system based on AI for personalized data analysis of students are as follows:

请参阅图1-图2,基于AI针对学生个性化数据分析的学习力评估方法,方法包括如下步骤:Please refer to Figures 1 and 2 for a learning ability assessment method based on AI for personalized data analysis of students. The method includes the following steps:

S1、采集学习动力测试关键词数据、学习毅力测试合规时间数据、学习能力测试分数结果数据、学习能力测试时间结果数据;S1. Collecting learning motivation test keyword data, learning perseverance test compliance time data, learning ability test score result data, and learning ability test time result data;

S2、依据学习动力测试关键词数据分别计量出同类型关键词个数占所有关键词个数的比重,并生成学习动力测试关键词占比数据,依据学习动力测试关键词占比数据进行占比数值分析,筛选出最大学习动力测试关键词占比数据;S2. According to the learning motivation test keyword data, the proportion of the number of keywords of the same type to the total number of keywords is respectively measured, and learning motivation test keyword proportion data is generated. According to the learning motivation test keyword proportion data, a numerical analysis of the proportion is performed to screen out the maximum learning motivation test keyword proportion data;

S3、依据最大学习动力测试关键词占比数据搜索出对应的学习动力测试关键词数据并标识构建为确定学习动力测试关键词数据;S3, searching for corresponding learning motivation test keyword data according to the maximum learning motivation test keyword proportion data and marking and constructing the determined learning motivation test keyword data;

S4、依据确定学习动力测试关键词数据与学习动力测试得分分类数据通过数据识别算法按照学习动力测试关键词进行识别,分析生成学生学习动力测试得分数据;S4, identifying the learning motivation test keywords and the learning motivation test score classification data through a data recognition algorithm according to the learning motivation test keywords, and analyzing and generating the student learning motivation test score data;

S5、依据学习毅力测试合规时间数据与学习毅力测试总时间数据进行比值计量并将比值构建为学生学习毅力测试得分数据;S5. Calculate the ratio of the compliance time data of the learning perseverance test to the total time data of the learning perseverance test and construct the ratio as the student learning perseverance test score data;

S6、依据学习能力测试分数结果数据和学习能力测试时间结果数据进行数值计量并将数值构建为学生学习能力测试得分数据;S6, performing numerical measurement based on the learning ability test score result data and the learning ability test time result data and constructing the numerical value into the student learning ability test score data;

S7、依据学生学习动力测试得分数据、学生学习毅力测试得分数据、学生学习能力测试得分数据进行数值分析计量生成并输出学生学习力综合得分计算结果数据;采用数据识别算法将学生学习力综合得分计算结果数据与学生学习力综合得分分类数据按照学习力综合得分数值大小进行比对,分析构建出学生学习力评估结果。S7. Perform numerical analysis and measurement based on the students' learning motivation test score data, the students' learning perseverance test score data, and the students' learning ability test score data to generate and output the students' learning ability comprehensive score calculation result data; use data recognition algorithm to compare the students' learning ability comprehensive score calculation result data with the students' learning ability comprehensive score classification data according to the numerical size of the learning ability comprehensive score, and analyze and construct the students' learning ability evaluation results.

进一步的,请参阅图1-图2,采集学习动力测试关键词数据、学习毅力测试合规时间数据、学习能力测试分数结果数据、学习能力测试时间结果数据的操作步骤如下:Further, please refer to Figures 1-2. The operation steps for collecting learning motivation test keyword data, learning perseverance test compliance time data, learning ability test score result data, and learning ability test time result data are as follows:

S11、通过问卷调查平台在规定时间内多次采集学生的学习动力的关键词数据并生成学习动力测试关键词数据集合A=(a1,…,am,…,aθ),m=1,2,3,…,θ;其中am表示第m个学习动力测试关键词数据,θ表示学习动力测试关键词数据数量的最大值;规定时间包括六个月、十二个月、十八个月、二十四个月中任意一个时间段;学习动力测试关键词包括为个人目标而学习、为具体行业领域而学习、为国家目标而学习中至少一种,问卷调查平台包括问卷星、微信问卷小程序、QQ问卷小程序中任意一种;S11. Collect the keyword data of students' learning motivation multiple times within a specified time through a questionnaire survey platform and generate a learning motivation test keyword data set A = (a 1 , ..., a m , ..., a θ ), m = 1, 2, 3, ..., θ; wherein a m represents the mth learning motivation test keyword data, and θ represents the maximum number of learning motivation test keyword data; the specified time includes any time period of six months, twelve months, eighteen months, and twenty-four months; the learning motivation test keywords include at least one of learning for personal goals, learning for specific industry fields, and learning for national goals; the questionnaire survey platform includes any one of WJX, WeChat Questionnaire Mini Program, and QQ Questionnaire Mini Program;

通过时间计量传感器采集学生进行学习毅力测试处于符合学习规定状态的时间并生成学习毅力测试合规时间数据tyiliThe time that the student is in compliance with the study regulations when taking the study perseverance test is collected through the time measurement sensor and the compliance time data of the study perseverance test is generated ;

通过学校知识点测试平台在线测试新知识点题目并统计学生的测试得分并生成学习能力测试分数结果数据ΓnengliTest new knowledge points online through the school knowledge point test platform, count students' test scores and generate learning ability test score result data Γ nengli ;

通过学校知识点测试平台在线测试新知识点题目并统计学生的测试完成时间并生成学习能力测试时间结果数据tnengliTest new knowledge points online through the school knowledge point test platform, count students' test completion time and generate learning ability test time result data t nengli .

通过学习动力测试关键词采集单元通过问卷调查平台按照规定时间段科学获学生的学习动力关键词,为后续学生学习动力精确分析提供数据支撑,实现对学生学习动力在线准确测量;学习毅力测试合规时间采集单元通过时间计量传感器精确采集学生学习毅力测试的符合学习状态的时间量,实现对学生学习毅力的量化处理,提高学生学习力的测量结果精度;学习能力测试分数结果采集单元和学习能力测试时间结果采集单元相互配合通过知识点测试平台在线高效采集学生对新知识点的测试得分和测试时间参数,精确测量出学生的学习能力,提高学生学习力评估的准确性。The learning motivation test keyword collection unit uses the questionnaire survey platform to scientifically obtain students' learning motivation keywords according to the prescribed time period, providing data support for subsequent precise analysis of students' learning motivation, and realizing accurate online measurement of students' learning motivation; the learning perseverance test compliance time collection unit accurately collects the amount of time that conforms to the learning state of students' learning perseverance test through time measurement sensors, realizes quantitative processing of students' learning perseverance, and improves the accuracy of measurement results of students' learning ability; the learning ability test score result collection unit and the learning ability test time result collection unit cooperate with each other to efficiently collect students' test scores and test time parameters for new knowledge points online through the knowledge point test platform, accurately measure students' learning ability, and improve the accuracy of students' learning ability assessment.

进一步的,请参阅图1-图2,依据学习动力测试关键词数据分别计量出同类型关键词个数占所有关键词个数的比重,并生成学习动力测试关键词占比数据,依据学习动力测试关键词占比数据进行占比数值分析,筛选出最大学习动力测试关键词占比数据的操作步骤如下:Further, please refer to Figures 1 and 2. According to the learning motivation test keyword data, the proportion of the number of keywords of the same type to the total number of keywords is respectively measured, and the learning motivation test keyword proportion data is generated. According to the learning motivation test keyword proportion data, the proportion numerical analysis is performed, and the operation steps of screening out the maximum learning motivation test keyword proportion data are as follows:

S21、获取学习动力测试关键词数据集合A;S21, obtaining a learning motivation test keyword data set A;

S22、按照个人目标关键词、具体行业领域关键词、国家目标关键词将学习动力测试关键词数据集合A中学习动力测试关键词数据am进行分类并计算同类型关键词个数占所有关键词个数的比重并生成学习动力测试关键词占比数据集合B=(b1,b2,b3),其中b1表示在学习动力测试关键词数据集合A中属于个人目标关键词的学习动力测试关键词数据am个数占所有的学习动力测试关键词数据个数的比值,个人目标关键词包括为提升个人篮球技能而学习、为提升个人学习成绩而学习、为得到家长认可而学习和为改变个人生活条件而学习;S22. Classify the learning motivation test keyword data a m in the learning motivation test keyword data set A according to personal goal keywords, specific industry keywords, and national goal keywords, calculate the proportion of the number of keywords of the same type to the number of all keywords, and generate a learning motivation test keyword proportion data set B = (b 1 , b 2 , b 3 ), where b 1 represents the ratio of the number of learning motivation test keyword data a m belonging to personal goal keywords in the learning motivation test keyword data set A to the number of all learning motivation test keyword data, and personal goal keywords include learning to improve personal basketball skills, learning to improve personal academic performance, learning to get parental recognition, and learning to change personal living conditions;

b2表示在学习动力测试关键词数据集合A中属于具体行业领域关键词的学习动力测试关键词数据am个数占所有的学习动力测试关键词数据个数的比值,具体行业领域关键词包括为提升水稻种子质量而学习、为提升电影制作产业水平而学习、为提升无人机技术而学习和为提升汽车制造水平而学习; b2 represents the ratio of the number of learning power test keyword data a m belonging to specific industry keywords in the learning power test keyword data set A to the number of all learning power test keyword data. The specific industry keywords include learning to improve the quality of rice seeds, learning to improve the level of film production industry, learning to improve drone technology, and learning to improve the level of automobile manufacturing.

b3表示在学习动力测试关键词数据集合A中属于国家目标关键词的学习动力测试关键词数据am个数占所有的学习动力测试关键词数据个数的比值,国家目标关键词包括为促进国家经济发展而学习和为实现制造业强国而学习;b 3 represents the ratio of the number of learning motivation test keyword data a m belonging to national target keywords in the learning motivation test keyword data set A to the number of all learning motivation test keyword data. National target keywords include learning to promote national economic development and learning to achieve a strong manufacturing country.

S23、采用宽度优先搜索算法按照数值大小筛选出学习动力测试关键词占比数据集合B占比数值最大的学习动力测试关键词占比数据并标识为最大学习动力测试关键词占比数据bmaxS23, using a breadth-first search algorithm to select the learning motivation test keyword proportion data set B with the largest proportion value according to the numerical value and mark it as the maximum learning motivation test keyword proportion data b max .

依据最大学习动力测试关键词占比数据搜索出对应的学习动力测试关键词数据并标识构建为确定学习动力测试关键词数据的操作步骤如下:The operation steps for searching for corresponding learning motivation test keyword data based on the maximum learning motivation test keyword proportion data and identifying and constructing the learning motivation test keyword data are as follows:

S31、获取最大学习动力测试关键词占比数据bmaxS31, obtaining the maximum learning motivation test keyword proportion data b max ;

S32、采用宽度优先搜索算法搜索出最大学习动力测试关键词占比数据bmax对应具体同类型的所有的学习动力测试关键词数据am并标识生成确定学习动力测试关键词数据集合A’,其中A’属于A的子集。S32. Use a breadth-first search algorithm to search for the maximum learning motivation test keyword proportion data b max corresponding to all specific learning motivation test keyword data a m of the same type and identify and generate a determined learning motivation test keyword data set A', where A' belongs to a subset of A.

依据确定学习动力测试关键词数据与学习动力测试得分分类数据通过数据识别算法按照学习动力测试关键词进行识别,分析生成学生学习动力测试得分数据的操作步骤如下:Based on the determined learning motivation test keyword data and learning motivation test score classification data, the data recognition algorithm is used to identify the learning motivation test keywords and analyze and generate the student learning motivation test score data as follows:

S41、建立学习动力测试得分分类数据集合C=(c1,c2,c3),其中c1表示属于个人目标关键词的学习动力测试关键词数据am对应的学习动力测试得分分类数据;S41, establishing a learning motivation test score classification data set C = (c 1 , c 2 , c 3 ), where c 1 represents the learning motivation test score classification data corresponding to the learning motivation test keyword data a m belonging to the personal target keyword;

c2表示属于具体行业领域关键词的学习动力测试关键词数据am对应的学习动力测试得分分类数据;c 2 represents the learning motivation test keyword data a m corresponding to the learning motivation test score classification data belonging to the specific industry field keywords;

c3表示属于国家目标关键词的学习动力测试关键词数据am对应的学习动力测试得分分类数据,c1+c2+c3=1;c 3 represents the learning motivation test score classification data corresponding to the learning motivation test keyword data a m belonging to the national target keyword, c 1 +c 2 +c 3 =1;

S42、采用数据识别算法将确定学习动力测试关键词数据集合A’中学习动力测试关键词数据am按照学习动力测试关键词与学习动力测试得分分类数据集合C中学习动力测试得分分类数据对应的学习动力测试关键词进行关键词字符识别,分析生成确定学习动力测试关键词数据集合A'对应的学习动力测试得分分类数据cA',数据识别算法分析生成学习动力测试得分分类数据cA'的具体步骤如下:S42, using a data recognition algorithm to determine the learning power test keyword data a m in the learning power test keyword data set A' according to the learning power test keywords and the learning power test keywords corresponding to the learning power test score classification data in the learning power test score classification data set C, and analyzing and generating the learning power test score classification data c A ' corresponding to the learning power test keyword data set A'. The specific steps of the data recognition algorithm analyzing and generating the learning power test score classification data c A' are as follows:

S421、初始化,在学习动力测试得分分类数据集合C寻优空间里随机初始化种群和更新算法最大迭代次数N;S421, initialization, randomly initializing the population in the optimization space of the learning dynamics test score classification data set C and updating the maximum number of iterations N of the algorithm;

其中Zi,j为学习动力测试得分搜索浣熊个体i在j维空间的位置,即学习动力测试得分搜索浣熊个体i在学习动力测试得分分类数据集合C搜索空间的位置,ψ为寻优上边界,ζ为寻优下边界,/>为[0,1]之间的随机数; Where Zi ,j is the position of the learning power test score search raccoon individual i in the j-dimensional space, that is, the position of the learning power test score search raccoon individual i in the learning power test score classification data set C search space, ψ is the upper boundary of the optimization, ζ is the lower boundary of the optimization, /> is a random number between [0,1];

S422、狩猎和攻击,在学习动力测试得分分类数据集合C搜索空间中更新学习动力测试得分搜索浣熊种群的第一阶段是基于模拟它们攻击鬣蜥时的策略进行建模的,执行策略中,一群学习动力测试得分搜索浣熊爬上树去接触一只鬣蜥并进行吓唬,其他学习动力测试得分搜索浣熊在树下等待,直到鬣蜥摔倒在地,鬣蜥落地后,学习动力测试得分搜索浣熊攻击并猎杀鬣蜥,即在学习动力测试得分分类数据集合C搜索与确定学习动力测试关键词数据集合A’中同类型的学习动力测试关键词数据am相匹配的学习动力测试得分分类数据,这种策略导致学习动力测试得分搜索浣熊移动到学习动力测试得分分类数据集合C搜索空间的不同位置;S422, hunting and attacking, the first stage of updating the learning dynamics test score search raccoon population in the search space of the learning dynamics test score classification data set C is modeled based on simulating their strategy when attacking iguanas. In the execution strategy, a group of learning dynamics test score search raccoons climb up a tree to contact an iguana and scare it, and other learning dynamics test score search raccoons wait under the tree until the iguana falls to the ground. After the iguana falls to the ground, the learning dynamics test score search raccoons attack and hunt the iguana, that is, the learning dynamics test score classification data set C is searched for learning dynamics test score classification data that matches the same type of learning dynamics test keyword data a m in the determined learning dynamics test keyword data set A'. This strategy causes the learning dynamics test score search raccoons to move to different positions in the search space of the learning dynamics test score classification data set C;

S423、逃离捕食者,更新学习动力测试得分搜索浣熊在学习动力测试得分分类数据集合C搜索空间中的位置的过程的第二步骤是基于学习动力测试得分搜索浣熊遇到捕食者和逃离捕食者时的自然行为进行数学建模,当捕食者攻击一只学习动力测试得分搜索浣熊时,它会从自己的位置逃跑,即在学习动力测试得分分类数据集合C搜索与确定学习动力测试关键词数据集合A’中同类型的学习动力测试关键词数据am不相匹配的学习动力测试得分分类数据进行远离和排除,学习动力测试得分搜索浣熊在这种策略中的举措使其处于接近当前位置的安全位置;利用模拟行为计算在每个学习动力测试得分搜索浣熊所在的位置附近生成随机位置;S423, escape from predator, the second step of the process of updating the position of the learning power test score search raccoon in the search space of the learning power test score classification data set C is to mathematically model the natural behavior of the learning power test score search raccoon when encountering a predator and escaping from a predator. When a predator attacks a learning power test score search raccoon, it will flee from its own position, that is, the learning power test score classification data set C is searched for the learning power test score classification data that does not match the same type of learning power test keyword data a m in the determined learning power test keyword data set A', and the learning power test score search raccoon's move in this strategy puts it in a safe position close to the current position; use simulated behavior calculation to generate a random position near the position of each learning power test score search raccoon;

S424、当满足最大迭代次数,输出确定学习动力测试关键词数据集合A’对应的学习动力测试得分分类数据,否则循环执行S422步骤至S424步骤,直至达到最大迭代次数;S424, when the maximum number of iterations is met, output the learning power test score classification data corresponding to the learning power test keyword data set A', otherwise, loop through steps S422 to S424 until the maximum number of iterations is reached;

S43、将S424步骤中输出确定学习动力测试关键词数据集合A’对应的学习动力测试得分分类数据标识生成为学习动力测试得分分类数据cA'S43, generating the learning motivation test score classification data identifier corresponding to the learning motivation test keyword data set A' output in step S424 as the learning motivation test score classification data c A' .

依据学习毅力测试合规时间数据与学习毅力测试总时间数据进行比值计量并将比值构建为学生学习毅力测试得分数据的操作步骤如下:The steps for measuring the ratio of the compliance time data of the learning perseverance test to the total time data of the learning perseverance test and constructing the ratio into the student learning perseverance test score data are as follows:

S51、建立学习毅力测试总时间数据学习毅力测试总时间为学生进行学习毅力测试的规定总时间;S51. Establish the total time data of learning perseverance test The total time for the learning perseverance test is the total time required for students to take the learning perseverance test;

S52、获取学习毅力测试合规时间数据tyiliS52, obtaining the compliance time data of the learning perseverance test t yili ;

S53、将学习毅力测试合规时间数据tyili与学习毅力测试总时间数据进行比值计算并生成学生学习毅力测试得分数据/>其中d取值[0,1]。S53, compare the compliance time data of the learning perseverance test with the total time data of the learning perseverance test Calculate the ratio and generate the student learning perseverance test score data/> Where d takes the value [0,1].

通过学习动力测试关键词比重计量筛选单元和学习动力测试得分分析单元相互配合按照个人目标、具体行业领域、国家目标对采集的学习动力测试关键词进行分类并计算其占比,实现精确对学习动力关键词分类量化,筛选占比数值最大的学习动力关键词配合AI智能识别算法进行学习动力得分计算,从而实现对学生学习动力的精确测量分析;学习毅力测试得分分析单元利用学生符合规定状态的学习时间与学习毅力测试总时间比值进行数值比对,直观量化测量学生的学习毅力结果。Through the cooperation of the learning motivation test keyword proportion measurement screening unit and the learning motivation test score analysis unit, the collected learning motivation test keywords are classified and their proportions are calculated according to personal goals, specific industry fields, and national goals, so as to achieve accurate classification and quantification of learning motivation keywords, and screen the learning motivation keywords with the largest proportion and cooperate with the AI intelligent recognition algorithm to calculate the learning motivation score, thereby achieving accurate measurement and analysis of students' learning motivation; the learning perseverance test score analysis unit uses the ratio of students' learning time in accordance with the specified status to the total time of the learning perseverance test for numerical comparison, so as to intuitively and quantitatively measure students' learning perseverance results.

进一步的,请参阅图1-图2,依据学习能力测试分数结果数据和学习能力测试时间结果数据进行数值计量并将数值构建为学生学习能力测试得分数据的操作步骤如下:Further, referring to Figures 1 and 2, the operation steps of numerically measuring the learning ability test score result data and the learning ability test time result data and constructing the numerical values into the student learning ability test score data are as follows:

S61、获取学习能力测试分数结果数据Γnengli和学习能力测试时间结果数据tnengliS61, obtaining learning ability test score result data Γ nengli and learning ability test time result data t nengli ;

S62、计量出学习能力测试分数结果数据Γnengli和学习能力测试时间结果数据tnengli的比值并生成学生学习能力测试得分数据其中Γnengli取值范围为[0,100],tnengli单位为分钟,tnengli取值范围为[0,60],e取值范围[0,0.2];S62, calculate the ratio of the learning ability test score result data Γ nengli and the learning ability test time result data t nengli and generate the student learning ability test score data Where Γ nengli ranges from [0,100], t nengli is in minutes, t nengli ranges from [0,60], and e ranges from [0,0.2];

依据学生学习动力测试得分数据、学生学习毅力测试得分数据、学生学习能力测试得分数据进行数值分析计量生成并输出学生学习力综合得分计算结果数据;采用数据识别算法将学生学习力综合得分计算结果数据与学生学习力综合得分分类数据按照学习力综合得分数值大小进行比对,分析构建出学生学习力评估结果的操作步骤如下:Based on the student learning motivation test score data, the student learning perseverance test score data, and the student learning ability test score data, numerical analysis is performed to generate and output the student learning ability comprehensive score calculation result data; the student learning ability comprehensive score calculation result data and the student learning ability comprehensive score classification data are compared according to the numerical value of the learning ability comprehensive score using a data recognition algorithm, and the operation steps for analyzing and constructing the student learning ability evaluation result are as follows:

S71、获取学生学习动力测试得分数据cA'、学生学习毅力测试得分数据d、学生学习能力测试得分数据e;S71, obtaining the student learning motivation test score data c A' , the student learning perseverance test score data d, and the student learning ability test score data e;

S72、将学生学习动力测试得分数据cA'、学生学习毅力测试得分数据d、学生学习能力测试得分数据e进行数值分析计算出学生学习力综合得分计算结果数据F=cA'×d×e×104,其中F取值范围[0,100];S72, numerically analyzing the student learning motivation test score data c A' , the student learning perseverance test score data d, and the student learning ability test score data e to calculate the student learning ability comprehensive score calculation result data F = c A' × d × e × 10 4 , where F has a value range of [0,100];

S73、建立学生学习力综合得分分类数据集合G=([0,30),[30,70)正常,[70,100]),其中[0,30)表示学生学习力综合得分在[0,30)范围学习力为差;S73, establish a classification data set of students' comprehensive learning ability scores G = ([0, 30) poor , [30, 70) normal , [70, 100] excellent ), where [0, 30) poor means that the comprehensive learning ability score of the student is in the range of [0, 30) and the learning ability is poor;

[30,70)正常表示学生学习力综合得分在[30,70)范围学习力为正常;[30, 70) Normal means that the comprehensive score of students' learning ability is in the range of [30, 70) and their learning ability is normal;

[70,100]表示学生学习力综合得分在[70,100]范围学习力为优;[70, 100] Excellent means that the comprehensive score of the student's learning ability is in the range of [70, 100] and the learning ability is excellent;

S74、采用如S42步骤中的数据识别算法将学生学习力综合得分计算结果数据F与学生学习力综合得分分类数据集合G中学生学习力综合得分分类数据按照学习力综合得分数值大小进行比对,匹配出学生学习力综合得分计算结果数据F对应的学生学习力综合得分分类数据并标识生成学生学习力评估结果 S74, using the data recognition algorithm in step S42, compare the student learning ability comprehensive score calculation result data F with the student learning ability comprehensive score classification data in the student learning ability comprehensive score classification data set G according to the numerical value of the learning ability comprehensive score, match the student learning ability comprehensive score classification data corresponding to the student learning ability comprehensive score calculation result data F, and identify and generate the student learning ability evaluation result.

通过学习能力测试得分分析单元通过测量学生对新知识题目的测试得分和测试时间科学测量出学生对新知识点的学习能力,提高学生学习力评估分析的效率;学生学习力综合分析输出单元综合利用学生学习动力、学习毅力、学习能力的参数全面准确计算出学生学习力综合得分结合AI智能识别算法与学生学习力类型进行学习力得分数值匹配,高效智能计量出学生学习力评估结果,提高了学生学习力评估结果的准确性和直观性,提升学生学习力评估结果的真实性。The learning ability test score analysis unit measures students' test scores and test time on new knowledge points scientifically, thereby improving the efficiency of student learning ability assessment and analysis; the student learning ability comprehensive analysis output unit comprehensively utilizes the parameters of students' learning motivation, learning perseverance, and learning ability to comprehensively and accurately calculate the student's comprehensive learning ability score, and combines the AI intelligent recognition algorithm with the student's learning ability type to match the learning ability score value, and efficiently and intelligently calculates the student's learning ability assessment results, thereby improving the accuracy and intuitiveness of the student's learning ability assessment results, and enhancing the authenticity of the student's learning ability assessment results.

实现基于AI针对学生个性化数据分析的学习力评估方法的系统,系统包括学习力评估数据采集模块、学习动力及学习毅力参数处理模块、学习能力参数及学习力分析处理模块;A system for implementing a learning ability assessment method based on AI for personalized data analysis of students, the system includes a learning ability assessment data collection module, a learning motivation and learning perseverance parameter processing module, and a learning ability parameter and learning ability analysis processing module;

学习力评估数据采集模块包括学习动力测试关键词采集单元、学习毅力测试合规时间采集单元、学习能力测试分数结果采集单元、学习能力测试时间结果采集单元;The learning ability assessment data collection module includes a learning motivation test keyword collection unit, a learning perseverance test compliance time collection unit, a learning ability test score result collection unit, and a learning ability test time result collection unit;

学习动力测试关键词采集单元,通过问卷调查平台采集学习动力测试关键词数据;学习毅力测试合规时间采集单元,通过时间计量传感器采集学习毅力测试合规时间采集单元;学习能力测试分数结果采集单元,通过学校知识点测试平台采集学习能力测试分数结果采集单元;学习能力测试时间结果采集单元,通过学校知识点测试平台学习能力测试时间结果采集单元;Learning motivation test keyword collection unit, collects learning motivation test keyword data through the questionnaire survey platform; learning perseverance test compliance time collection unit, collects learning perseverance test compliance time collection unit through the time measurement sensor; learning ability test score result collection unit, collects learning ability test score result collection unit through the school knowledge point test platform; learning ability test time result collection unit, collects learning ability test time result collection unit through the school knowledge point test platform;

学习动力及学习毅力参数处理模块包括学习动力测试关键词比重计量筛选单元、学习动力测试得分分类存储单元、学习动力测试得分分析单元、学习毅力测试总时间存储单元、学习毅力测试得分分析单元;The learning motivation and learning perseverance parameter processing module includes a learning motivation test keyword weight measurement screening unit, a learning motivation test score classification storage unit, a learning motivation test score analysis unit, a learning perseverance test total time storage unit, and a learning perseverance test score analysis unit;

学习动力测试关键词比重计量筛选单元,依据学习动力测试关键词数据分别计量出同类型关键词个数占所有关键词个数的比重,并生成学习动力测试关键词占比数据,依据学习动力测试关键词占比数据进行占比数值分析,筛选出最大学习动力测试关键词占比数据;依据最大学习动力测试关键词占比数据搜索出对应的学习动力测试关键词数据并标识构建为确定学习动力测试关键词数据;学习动力测试得分分类存储单元,用于存储学习动力测试得分分类数据;学习动力测试得分分析单元,依据确定学习动力测试关键词数据与学习动力测试得分分类数据通过数据识别算法按照学习动力测试关键词进行识别,分析生成学生学习动力测试得分数据;学习毅力测试总时间存储单元,用于存储学习毅力测试总时间数据;学习毅力测试得分分析单元,依据学习毅力测试合规时间数据与学习毅力测试总时间数据进行比值计量并将比值构建为学生学习毅力测试得分数据;A learning motivation test keyword proportion measurement and screening unit measures the proportion of the number of keywords of the same type to the total number of keywords based on the learning motivation test keyword data, and generates learning motivation test keyword proportion data, performs numerical analysis of the proportion based on the learning motivation test keyword proportion data, and screens out the maximum learning motivation test keyword proportion data; searches out the corresponding learning motivation test keyword data based on the maximum learning motivation test keyword proportion data and identifies and constructs the determined learning motivation test keyword data; a learning motivation test score classification storage unit is used to store the learning motivation test score classification data; a learning motivation test score analysis unit identifies the determined learning motivation test keyword data and the learning motivation test score classification data according to the learning motivation test keywords through a data recognition algorithm, and analyzes and generates student learning motivation test score data; a learning perseverance test total time storage unit is used to store the learning perseverance test total time data; a learning perseverance test score analysis unit performs ratio measurement based on the learning perseverance test compliance time data and the learning perseverance test total time data and constructs the ratio as the student learning perseverance test score data;

学习能力参数及学习力分析处理模块包括学习能力测试得分分析单元、学生学习力综合得分分类存储单元、学生学习力综合分析输出单元;The learning ability parameter and learning ability analysis processing module includes a learning ability test score analysis unit, a student learning ability comprehensive score classification storage unit, and a student learning ability comprehensive analysis output unit;

学习能力测试得分分析单元,依据学习能力测试分数结果数据和学习能力测试时间结果数据进行数值计量并将数值构建为学生学习能力测试得分数据;学生学习力综合得分分类存储单元,用于存储学生学习力综合得分分类数据;学生学习力综合分析输出单元,依据学生学习动力测试得分数据、学生学习毅力测试得分数据、学生学习能力测试得分数据进行数值分析计量生成并输出学生学习力综合得分计算结果数据;采用数据识别算法将学生学习力综合得分计算结果数据与学生学习力综合得分分类数据按照学习力综合得分数值大小进行比对,分析构建出学生学习力评估结果。A learning ability test score analysis unit performs numerical measurement based on the learning ability test score result data and the learning ability test time result data and constructs the numerical value into the student learning ability test score data; a student learning ability comprehensive score classification storage unit is used to store the student learning ability comprehensive score classification data; a student learning ability comprehensive analysis output unit performs numerical analysis and measurement based on the student learning motivation test score data, the student learning perseverance test score data, and the student learning ability test score data to generate and output the student learning ability comprehensive score calculation result data; a data recognition algorithm is used to compare the student learning ability comprehensive score calculation result data with the student learning ability comprehensive score classification data according to the numerical value of the learning ability comprehensive score, and the student learning ability evaluation result is analyzed and constructed.

尽管已经示出和描述了本发明的实施例,对于本领域的普通技术人员而言,可以理解在不脱离本发明的原理和精神的情况下可以对这些实施例进行多种变化、修改、替换和变型,本发明的范围由所附权利要求及其等同物限定。Although embodiments of the present invention have been shown and described, it will be appreciated by those skilled in the art that various changes, modifications, substitutions and variations may be made to the embodiments without departing from the principles and spirit of the present invention, and that the scope of the present invention is defined by the appended claims and their equivalents.

Claims (9)

1.基于AI针对学生个性化数据分析的学习力评估方法,其特征在于,所述方法包括如下步骤:1. A learning ability assessment method based on AI for personalized data analysis of students, characterized in that the method comprises the following steps: S1、采集学习动力测试关键词数据、学习毅力测试合规时间数据、学习能力测试分数结果数据、学习能力测试时间结果数据;S1. Collecting learning motivation test keyword data, learning perseverance test compliance time data, learning ability test score result data, and learning ability test time result data; S2、依据所述学习动力测试关键词数据分别计量出同类型关键词个数占所有关键词个数的比重,并生成学习动力测试关键词占比数据,依据所述学习动力测试关键词占比数据进行占比数值分析,筛选出最大学习动力测试关键词占比数据;S2. According to the learning motivation test keyword data, respectively measure the proportion of the number of keywords of the same type to the number of all keywords, and generate learning motivation test keyword proportion data, perform proportion numerical analysis according to the learning motivation test keyword proportion data, and screen out the maximum learning motivation test keyword proportion data; S3、依据最大学习动力测试关键词占比数据搜索出对应的所述学习动力测试关键词数据并标识构建为确定学习动力测试关键词数据;S3, searching for the corresponding learning motivation test keyword data according to the maximum learning motivation test keyword proportion data and marking and constructing the determined learning motivation test keyword data; S4、依据所述确定学习动力测试关键词数据与学习动力测试得分分类数据通过数据识别算法按照学习动力测试关键词进行识别,分析生成学生学习动力测试得分数据;S4, identifying the learning motivation test keyword data and the learning motivation test score classification data according to the learning motivation test keywords through a data recognition algorithm, and analyzing and generating student learning motivation test score data; S5、依据所述学习毅力测试合规时间数据与学习毅力测试总时间数据进行比值计量并将所述比值构建为学生学习毅力测试得分数据;S5, measuring the ratio of the compliance time data of the learning perseverance test to the total time data of the learning perseverance test and constructing the ratio as the student's learning perseverance test score data; S6、依据所述学习能力测试分数结果数据和所述学习能力测试时间结果数据进行数值计量并将所述数值构建为学生学习能力测试得分数据;S6, performing numerical measurement based on the learning ability test score result data and the learning ability test time result data and constructing the numerical values into student learning ability test score data; S7、依据所述学生学习动力测试得分数据、所述学生学习毅力测试得分数据、所述学生学习能力测试得分数据进行数值分析计量生成并输出学生学习力综合得分计算结果数据;采用数据识别算法将所述学生学习力综合得分计算结果数据与学生学习力综合得分分类数据按照学习力综合得分数值大小进行比对,分析构建出学生学习力评估结果。S7. Perform numerical analysis and measurement based on the student's learning motivation test score data, the student's learning perseverance test score data, and the student's learning ability test score data to generate and output the student's learning ability comprehensive score calculation result data; use a data recognition algorithm to compare the student's learning ability comprehensive score calculation result data with the student's learning ability comprehensive score classification data according to the numerical value of the learning ability comprehensive score, and analyze and construct the student's learning ability evaluation result. 2.根据权利要求1所述的基于AI针对学生个性化数据分析的学习力评估方法,其特征在于:所述采集学习动力测试关键词数据、学习毅力测试合规时间数据、学习能力测试分数结果数据、学习能力测试时间结果数据的操作步骤如下:2. According to claim 1, the learning ability assessment method based on AI for personalized data analysis of students is characterized in that: the operation steps of collecting learning motivation test keyword data, learning perseverance test compliance time data, learning ability test score result data, and learning ability test time result data are as follows: S11、通过问卷调查平台在规定时间内多次采集学生的学习动力的关键词数据并生成学习动力测试关键词数据集合A=(a1,…,am,…,aθ),m=1,2,3,…,θ;其中am表示第m个学习动力测试关键词数据,θ表示学习动力测试关键词数据数量的最大值;所述规定时间包括六个月、十二个月、十八个月、二十四个月中任意一个时间段;所述学习动力测试关键词包括为个人目标而学习、为具体行业领域而学习、为国家目标而学习中至少一种,所述问卷调查平台包括问卷星、微信问卷小程序、QQ问卷小程序中任意一种;S11. Collecting the keyword data of students' learning motivation multiple times within a specified time through a questionnaire survey platform and generating a learning motivation test keyword data set A=(a 1 ,…, am ,…,a θ ), m=1,2,3,…,θ; whereinam represents the mth learning motivation test keyword data, andθ represents the maximum number of learning motivation test keyword data; the specified time includes any one of six months, twelve months, eighteen months, and twenty-four months; the learning motivation test keywords include at least one of learning for personal goals, learning for specific industry fields, and learning for national goals; the questionnaire survey platform includes any one of WJX, WeChat Questionnaire Mini Program, and QQ Questionnaire Mini Program; 通过时间计量传感器采集学生进行学习毅力测试处于符合学习规定状态的时间并生成学习毅力测试合规时间数据tyiliThe time that the student is in compliance with the study regulations when taking the study perseverance test is collected through the time measurement sensor and the compliance time data of the study perseverance test is generated ; 通过学校知识点测试平台在线测试新知识点题目并统计学生的测试得分并生成学习能力测试分数结果数据ΓnengliTest new knowledge points online through the school knowledge point test platform, count students' test scores and generate learning ability test score result data Γ nengli ; 通过学校知识点测试平台在线测试新知识点题目并统计学生的测试完成时间并生成学习能力测试时间结果数据tnengliTest new knowledge points online through the school knowledge point test platform, count students' test completion time and generate learning ability test time result data t nengli . 3.根据权利要求2所述的基于AI针对学生个性化数据分析的学习力评估方法,其特征在于:所述依据所述学习动力测试关键词数据分别计量出同类型关键词个数占所有关键词个数的比重,并生成学习动力测试关键词占比数据,依据所述学习动力测试关键词占比数据进行占比数值分析,筛选出最大学习动力测试关键词占比数据的操作步骤如下:3. According to claim 2, the learning ability assessment method based on AI for personalized data analysis of students is characterized in that: the proportion of the number of keywords of the same type to the number of all keywords is respectively measured based on the learning motivation test keyword data, and learning motivation test keyword proportion data is generated, and the proportion numerical analysis is performed based on the learning motivation test keyword proportion data, and the operation steps of screening out the maximum learning motivation test keyword proportion data are as follows: S21、获取学习动力测试关键词数据集合A;S21, obtaining a learning motivation test keyword data set A; S22、按照个人目标关键词、具体行业领域关键词、国家目标关键词将学习动力测试关键词数据集合A中学习动力测试关键词数据am进行分类并计算同类型关键词个数占所有关键词个数的比重并生成学习动力测试关键词占比数据集合B=(b1,b2,b3),其中b1表示在学习动力测试关键词数据集合A中属于个人目标关键词的学习动力测试关键词数据am个数占所有的学习动力测试关键词数据个数的比值;S22, classify the learning motivation test keyword data a m in the learning motivation test keyword data set A according to personal target keywords, specific industry field keywords, and national target keywords, calculate the proportion of the number of keywords of the same type to the number of all keywords, and generate a learning motivation test keyword proportion data set B = (b 1 , b 2 , b 3 ), where b 1 represents the ratio of the number of learning motivation test keyword data a m belonging to personal target keywords in the learning motivation test keyword data set A to the number of all learning motivation test keyword data; b2表示在学习动力测试关键词数据集合A中属于具体行业领域关键词的学习动力测试关键词数据am个数占所有的学习动力测试关键词数据个数的比值; b2 represents the ratio of the number of learning motivation test keyword data a m belonging to specific industry field keywords in the learning motivation test keyword data set A to the number of all learning motivation test keyword data; b3表示在学习动力测试关键词数据集合A中属于国家目标关键词的学习动力测试关键词数据am个数占所有的学习动力测试关键词数据个数的比值;b 3 represents the ratio of the number of learning motivation test keyword data a m belonging to the national target keyword in the learning motivation test keyword data set A to the number of all learning motivation test keyword data; S23、采用宽度优先搜索算法按照数值大小筛选出学习动力测试关键词占比数据集合B占比数值最大的学习动力测试关键词占比数据并标识为最大学习动力测试关键词占比数据bmaxS23, using a breadth-first search algorithm to select the learning motivation test keyword proportion data set B with the largest proportion value according to the numerical value and mark it as the maximum learning motivation test keyword proportion data b max . 4.根据权利要求3所述的基于AI针对学生个性化数据分析的学习力评估方法,其特征在于:所述依据最大学习动力测试关键词占比数据搜索出对应的所述学习动力测试关键词数据并标识构建为确定学习动力测试关键词数据的操作步骤如下:4. According to the learning ability assessment method based on AI for personalized data analysis of students according to claim 3, it is characterized in that: the operation steps of searching for the corresponding learning motivation test keyword data based on the maximum learning motivation test keyword proportion data and marking and constructing the learning motivation test keyword data are as follows: S31、获取所述最大学习动力测试关键词占比数据bmaxS31, obtaining the maximum learning motivation test keyword proportion data b max ; S32、采用宽度优先搜索算法搜索出最大学习动力测试关键词占比数据bmax对应具体同类型的所有的学习动力测试关键词数据am并标识生成确定学习动力测试关键词数据集合A′,其中A′属于A的子集。S32. Use a breadth-first search algorithm to search for the maximum learning motivation test keyword proportion data b max corresponding to all specific learning motivation test keyword data a m of the same type and identify and generate a determined learning motivation test keyword data set A′, where A′ belongs to a subset of A. 5.根据权利要求4所述的基于AI针对学生个性化数据分析的学习力评估方法,其特征在于:所述依据所述确定学习动力测试关键词数据与学习动力测试得分分类数据通过数据识别算法按照学习动力测试关键词进行识别,分析生成学生学习动力测试得分数据的操作步骤如下:5. According to the learning ability assessment method based on AI for personalized data analysis of students according to claim 4, it is characterized in that: the operation steps of identifying the learning motivation test keyword data and the learning motivation test score classification data according to the learning motivation test keywords through the data recognition algorithm, and analyzing and generating the student learning motivation test score data are as follows: S41、建立学习动力测试得分分类数据集合C=(c1,c2,c3),其中c1表示属于个人目标关键词的学习动力测试关键词数据am对应的学习动力测试得分分类数据;S41, establishing a learning motivation test score classification data set C = (c 1 , c 2 , c 3 ), where c 1 represents the learning motivation test score classification data corresponding to the learning motivation test keyword data a m belonging to the personal target keyword; c2表示属于具体行业领域关键词的学习动力测试关键词数据am对应的学习动力测试得分分类数据;c 2 represents the learning motivation test keyword data a m corresponding to the learning motivation test score classification data belonging to the specific industry field keywords; c3表示属于国家目标关键词的学习动力测试关键词数据am对应的学习动力测试得分分类数据,c1+c2+c3=1;c 3 represents the learning motivation test score classification data corresponding to the learning motivation test keyword data a m belonging to the national target keyword, c 1 +c 2 +c 3 =1; S42、采用数据识别算法将所述确定学习动力测试关键词数据集合A′中学习动力测试关键词数据am按照学习动力测试关键词与所述学习动力测试得分分类数据集合C中学习动力测试得分分类数据对应的学习动力测试关键词进行关键词字符识别,分析生成所述确定学习动力测试关键词数据集合A'对应的学习动力测试得分分类数据cA',所述数据识别算法分析生成学习动力测试得分分类数据cA'的具体步骤如下:S42, using a data recognition algorithm to perform keyword character recognition on the learning motivation test keyword data a m in the determined learning motivation test keyword data set A′ according to the learning motivation test keywords and the learning motivation test keywords corresponding to the learning motivation test score classification data in the learning motivation test score classification data set C, and analyzing and generating the learning motivation test score classification data c A′ corresponding to the determined learning motivation test keyword data set A , the specific steps of the data recognition algorithm analyzing and generating the learning motivation test score classification data c A′ are as follows: S421、初始化,在学习动力测试得分分类数据集合C寻优空间里随机初始化种群和更新算法最大迭代次数N;S421, initialization, randomly initializing the population in the optimization space of the learning dynamics test score classification data set C and updating the maximum number of iterations N of the algorithm; 其中Zi,j为学习动力测试得分搜索浣熊个体i在j维空间的位置,即学习动力测试得分搜索浣熊个体i在学习动力测试得分分类数据集合C搜索空间的位置,ψ为寻优上边界,ζ为寻优下边界,/>为[0,1]之间的随机数; Where Zi ,j is the position of the learning power test score search raccoon individual i in the j-dimensional space, that is, the position of the learning power test score search raccoon individual i in the learning power test score classification data set C search space, ψ is the upper boundary of the optimization, ζ is the lower boundary of the optimization, /> is a random number between [0,1]; S422、狩猎和攻击,在学习动力测试得分分类数据集合C搜索空间中更新学习动力测试得分搜索浣熊种群的第一阶段是基于模拟它们攻击鬣蜥时的策略进行建模的,执行策略中,一群学习动力测试得分搜索浣熊爬上树去接触一只鬣蜥并进行吓唬,其他学习动力测试得分搜索浣熊在树下等待,直到鬣蜥摔倒在地,鬣蜥落地后,学习动力测试得分搜索浣熊攻击并猎杀鬣蜥,即在学习动力测试得分分类数据集合C搜索与确定学习动力测试关键词数据集合A′中同类型的学习动力测试关键词数据am相匹配的学习动力测试得分分类数据,这种策略导致学习动力测试得分搜索浣熊移动到学习动力测试得分分类数据集合C搜索空间的不同位置;S422, hunting and attacking, the first stage of updating the learning dynamic test score search raccoon population in the learning dynamic test score classification data set C search space is modeled based on simulating their strategy when attacking iguanas. In the execution strategy, a group of learning dynamic test score search raccoons climb up a tree to contact an iguana and scare it, and other learning dynamic test score search raccoons wait under the tree until the iguana falls to the ground. After the iguana falls to the ground, the learning dynamic test score search raccoons attack and hunt the iguana, that is, the learning dynamic test score classification data set C is searched for learning dynamic test score classification data that matches the same type of learning dynamic test keyword data a m in the determined learning dynamic test keyword data set A′. This strategy causes the learning dynamic test score search raccoons to move to different positions in the learning dynamic test score classification data set C search space; S423、逃离捕食者,更新学习动力测试得分搜索浣熊在学习动力测试得分分类数据集合C搜索空间中的位置的过程的第二步骤是基于学习动力测试得分搜索浣熊遇到捕食者和逃离捕食者时的自然行为进行数学建模,当捕食者攻击一只学习动力测试得分搜索浣熊时,它会从自己的位置逃跑,即在学习动力测试得分分类数据集合C搜索与确定学习动力测试关键词数据集合A′中同类型的学习动力测试关键词数据am不相匹配的学习动力测试得分分类数据进行远离和排除,学习动力测试得分搜索浣熊在这种策略中的举措使其处于接近当前位置的安全位置;利用模拟行为计算在每个学习动力测试得分搜索浣熊所在的位置附近生成随机位置;S423, escape from predator, the second step of the process of updating the position of the learning power test score search raccoon in the search space of the learning power test score classification data set C is to mathematically model the natural behavior of the learning power test score search raccoon when encountering a predator and escaping from a predator. When a predator attacks a learning power test score search raccoon, it will escape from its own position, that is, the learning power test score classification data set C is searched for the learning power test score classification data that does not match the same type of learning power test keyword data a m in the determined learning power test keyword data set A′, and the learning power test score search raccoon's move in this strategy puts it in a safe position close to the current position; use simulated behavior calculation to generate a random position near the position of each learning power test score search raccoon; S424、当满足最大迭代次数,输出确定学习动力测试关键词数据集合A′对应的学习动力测试得分分类数据,否则循环执行S422步骤至S424步骤,直至达到最大迭代次数;S424, when the maximum number of iterations is met, output the learning power test score classification data corresponding to the learning power test keyword data set A′, otherwise, loop through steps S422 to S424 until the maximum number of iterations is reached; S43、将S424步骤中输出确定学习动力测试关键词数据集合A′对应的学习动力测试得分分类数据标识生成为学习动力测试得分分类数据cA'S43, generating the learning motivation test score classification data identifier corresponding to the learning motivation test keyword data set A′ output in step S424 as learning motivation test score classification data c A′ . 6.根据权利要求5所述的基于AI针对学生个性化数据分析的学习力评估方法,其特征在于:所述依据所述学习毅力测试合规时间数据与学习毅力测试总时间数据进行比值计量并将所述比值构建为学生学习毅力测试得分数据的操作步骤如下:6. The learning ability assessment method based on AI for personalized data analysis of students according to claim 5 is characterized in that: the operation steps of measuring the ratio of the compliance time data of the learning perseverance test to the total time data of the learning perseverance test and constructing the ratio as the student learning perseverance test score data are as follows: S51、建立学习毅力测试总时间数据所述学习毅力测试总时间为学生进行学习毅力测试的规定总时间;S51. Establish the total time data of learning perseverance test The total time for the learning perseverance test is the total time required for students to take the learning perseverance test; S52、获取所述学习毅力测试合规时间数据tyiliS52, obtaining the compliance time data t yili of the learning perseverance test; S53、将所述学习毅力测试合规时间数据tyili与所述学习毅力测试总时间数据进行比值计算并生成学生学习毅力测试得分数据/>其中d取值[0,1]。S53, comparing the compliance time data of the learning perseverance test to the total time data of the learning perseverance test Calculate the ratio and generate the student learning perseverance test score data/> Where d takes the value [0,1]. 7.根据权利要求6所述的基于AI针对学生个性化数据分析的学习力评估方法,其特征在于:所述依据所述学习能力测试分数结果数据和所述学习能力测试时间结果数据进行数值计量并将所述数值构建为学生学习能力测试得分数据的操作步骤如下:7. The learning ability assessment method based on AI for personalized data analysis of students according to claim 6 is characterized in that: the operation steps of numerically measuring the learning ability test score result data and the learning ability test time result data and constructing the numerical values into student learning ability test score data are as follows: S61、获取所述学习能力测试分数结果数据Γnengli和所述学习能力测试时间结果数据tnengliS61, obtaining the learning ability test score result data Γ nengli and the learning ability test time result data t nengli ; S62、计量出所述学习能力测试分数结果数据Γnengli和所述学习能力测试时间结果数据tnengli的比值并生成学生学习能力测试得分数据其中Γnengli取值范围为[0,100],tnengli单位为分钟,tnengli取值范围为[0,60],e取值范围[0,0.2]。S62, measuring the ratio of the learning ability test score result data Γ nengli and the learning ability test time result data t nengli and generating the student learning ability test score data Where Γ nengli ranges from [0,100], t nengli is in minutes, t nengli ranges from [0,60], and e ranges from [0,0.2]. 8.根据权利要求7所述的基于AI针对学生个性化数据分析的学习力评估方法,其特征在于:所述依据所述学生学习动力测试得分数据、所述学生学习毅力测试得分数据、所述学生学习能力测试得分数据进行数值分析计量生成并输出学生学习力综合得分计算结果数据;采用数据识别算法将所述学生学习力综合得分计算结果数据与学生学习力综合得分分类数据按照学习力综合得分数值大小进行比对,分析构建出学生学习力评估结果的操作步骤如下:8. According to the AI-based learning ability assessment method for personalized data analysis of students in claim 7, it is characterized by: the numerical analysis and measurement are performed based on the student learning motivation test score data, the student learning perseverance test score data, and the student learning ability test score data to generate and output the student learning ability comprehensive score calculation result data; the data recognition algorithm is used to compare the student learning ability comprehensive score calculation result data with the student learning ability comprehensive score classification data according to the numerical value of the learning ability comprehensive score, and the operation steps of analyzing and constructing the student learning ability assessment result are as follows: S71、获取所述学生学习动力测试得分数据cA'、所述学生学习毅力测试得分数据d、学生学习能力测试得分数据e;S71, obtaining the student's learning motivation test score data c A' , the student's learning perseverance test score data d, and the student's learning ability test score data e; S72、将所述学生学习动力测试得分数据cA'、所述学生学习毅力测试得分数据d、学生学习能力测试得分数据e进行数值分析计算出学生学习力综合得分计算结果数据F=cA'×d×e×104,其中F取值范围[0,100];S72, numerically analyzing the student learning motivation test score data c A' , the student learning perseverance test score data d, and the student learning ability test score data e to calculate the student learning ability comprehensive score calculation result data F = c A' × d × e × 10 4 , where F has a value range of [0, 100]; S73、建立学生学习力综合得分分类数据集合G=([0,30),[30,70)正常,[70,100]),其中[0,30)表示学生学习力综合得分在[0,30)范围学习力为差;S73, establish a classification data set of students' comprehensive learning ability scores G = ([0, 30) poor , [30, 70) normal , [70, 100] excellent ), where [0, 30) poor means that the comprehensive learning ability score of the student is in the range of [0, 30) and the learning ability is poor; [30,70)正常表示学生学习力综合得分在[30,70)范围学习力为正常;[30, 70) Normal means that the comprehensive score of students' learning ability is in the range of [30, 70) and their learning ability is normal; [70,100]表示学生学习力综合得分在[70,100]范围学习力为优;[70, 100] Excellent means that the comprehensive score of the student's learning ability is in the range of [70, 100] and the learning ability is excellent; S74、采用如S42步骤中的数据识别算法将所述学生学习力综合得分计算结果数据F与学生学习力综合得分分类数据集合G中学生学习力综合得分分类数据按照学习力综合得分数值大小进行比对,匹配出学生学习力综合得分计算结果数据F对应的所述学生学习力综合得分分类数据并标识生成学生学习力评估结果 S74, using the data recognition algorithm in step S42, compare the student learning ability comprehensive score calculation result data F with the student learning ability comprehensive score classification data in the student learning ability comprehensive score classification data set G according to the numerical value of the learning ability comprehensive score, match the student learning ability comprehensive score classification data corresponding to the student learning ability comprehensive score calculation result data F and identify and generate the student learning ability evaluation result. 9.实现如根据权利要求1-8中任意一项所述的基于AI针对学生个性化数据分析的学习力评估方法的系统。9. A system for implementing a learning ability assessment method based on AI for personalized data analysis of students as described in any one of claims 1 to 8.
CN202410046663.0A 2024-01-12 2024-01-12 Learning power evaluation system based on AI (advanced technology attachment) for student personalized data analysis Pending CN117830042A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202410046663.0A CN117830042A (en) 2024-01-12 2024-01-12 Learning power evaluation system based on AI (advanced technology attachment) for student personalized data analysis

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202410046663.0A CN117830042A (en) 2024-01-12 2024-01-12 Learning power evaluation system based on AI (advanced technology attachment) for student personalized data analysis

Publications (1)

Publication Number Publication Date
CN117830042A true CN117830042A (en) 2024-04-05

Family

ID=90520908

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202410046663.0A Pending CN117830042A (en) 2024-01-12 2024-01-12 Learning power evaluation system based on AI (advanced technology attachment) for student personalized data analysis

Country Status (1)

Country Link
CN (1) CN117830042A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN119067817A (en) * 2024-11-01 2024-12-03 山东天成书业有限公司 Learning data personalized analysis method and system based on intelligent AI

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001043107A1 (en) * 1999-12-08 2001-06-14 Intelliprep Technologies, Inc. Computer-based, interactive learning method and system
CN108596472A (en) * 2018-04-20 2018-09-28 贵州金符育才教育科技有限公司 A kind of the artificial intelligence tutoring system and method for natural sciences study
KR102197752B1 (en) * 2019-12-20 2021-01-04 주식회사 아이스크림에듀 personalized automatic questionnaires learning method based on AI(artificial intelligence) and system
CN114328816A (en) * 2021-11-19 2022-04-12 腾讯科技(深圳)有限公司 Data processing method and device, electronic equipment and computer readable storage medium
CN117010709A (en) * 2023-08-03 2023-11-07 武汉理工数字传播工程有限公司 Assessment method and system for weak students

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001043107A1 (en) * 1999-12-08 2001-06-14 Intelliprep Technologies, Inc. Computer-based, interactive learning method and system
CN108596472A (en) * 2018-04-20 2018-09-28 贵州金符育才教育科技有限公司 A kind of the artificial intelligence tutoring system and method for natural sciences study
KR102197752B1 (en) * 2019-12-20 2021-01-04 주식회사 아이스크림에듀 personalized automatic questionnaires learning method based on AI(artificial intelligence) and system
CN114328816A (en) * 2021-11-19 2022-04-12 腾讯科技(深圳)有限公司 Data processing method and device, electronic equipment and computer readable storage medium
CN117010709A (en) * 2023-08-03 2023-11-07 武汉理工数字传播工程有限公司 Assessment method and system for weak students

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN119067817A (en) * 2024-11-01 2024-12-03 山东天成书业有限公司 Learning data personalized analysis method and system based on intelligent AI

Similar Documents

Publication Publication Date Title
Nieto et al. Supporting academic decision making at higher educational institutions using machine learning-based algorithms
Ramesh et al. Learning latent engagement patterns of students in online courses
CN107123068B (en) System and method for analyzing personalized learning effect of programming language course
Patrick et al. Teaching and research quality indicators and the shaping of higher education
CN109345101A (en) Educational Quality Evaluation Analysis Method Based on Comprehensive Evaluation Analysis Method
Liu et al. Collaborative learning team formation: a cognitive modeling perspective
Kawakura et al. Analyses of diverse agricultural worker data with explainable artificial intelligence: Xai based on shap, lime, and lightgbm
CN117830042A (en) Learning power evaluation system based on AI (advanced technology attachment) for student personalized data analysis
Tamada et al. Predicting student performance based on logs in moodle LMS
Idris et al. Intelligent learning model based on significant weight of domain knowledge concept for adaptive e-learning
McNeal et al. How undergraduate students learn atmospheric science: Characterizing the current body of research
Peleschyshyn et al. Building of Information Activity Management System of Higher Educational Establishment in the Social Environments of the Internet
CN115600834A (en) Middle and primary school teacher digital literacy evaluation method and system based on procedural data
CN112016829B (en) Online course learning evaluation method based on eye movement information
CN115965143A (en) University student score prediction method based on physiological information feature fusion
Koong et al. The learning effectiveness analysis of JAVA programming with automatic grading system
Jha A systematic study on student performance prediction from the perspective of machine learning and data mining approaches
CN108596461B (en) Intelligent system and method for training effect evaluation
Fan et al. Research on auto-generating test-paper model based on spatial-temporal clustering analysis
Swacha Gamification of Information Systems: Ten Years of Research
CN109726690A (en) Multi-region description method of learner behavior image based on DenseCap network
DeCarlo et al. The design and development of an expert system prototype for enhancing exam quality
Guo Mental Health State Prediction Method of College Students Based on Integrated Algorithm
Mahboob et al. A comparative study of engineering students pedagogical progress
Awasthi et al. Using the Ensemble Approach, Predict Students' Achievement

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination