[go: up one dir, main page]

CN117803521B - Anti-icing method and system for fan blade, electronic equipment and storage medium - Google Patents

Anti-icing method and system for fan blade, electronic equipment and storage medium Download PDF

Info

Publication number
CN117803521B
CN117803521B CN202311740456.7A CN202311740456A CN117803521B CN 117803521 B CN117803521 B CN 117803521B CN 202311740456 A CN202311740456 A CN 202311740456A CN 117803521 B CN117803521 B CN 117803521B
Authority
CN
China
Prior art keywords
blade
pitch angle
wind turbine
blade pitch
reference value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202311740456.7A
Other languages
Chinese (zh)
Other versions
CN117803521A (en
Inventor
茅寿元
阳文
莫维科
伍阳阳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jinan University
Original Assignee
Jinan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jinan University filed Critical Jinan University
Priority to CN202311740456.7A priority Critical patent/CN117803521B/en
Publication of CN117803521A publication Critical patent/CN117803521A/en
Application granted granted Critical
Publication of CN117803521B publication Critical patent/CN117803521B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D80/00Details, components or accessories not provided for in groups F03D1/00 - F03D17/00
    • F03D80/40Ice detection; De-icing means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2270/00Control
    • F05B2270/30Control parameters, e.g. input parameters
    • F05B2270/328Blade pitch angle
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

本申请公开了一种风机叶片防覆冰方法、系统、电子设备及存储介质,该方法包括:实时获取环境变量数据,获取风机叶片覆冰质量阈值和风机状态变量设定值,根据风机叶片覆冰质量阈值和风机状态变量设定值确定危险范围,将环境变量数据与确定的危险范围进行比较,判断环境变量数据是否落入危险范围,如果环境变量数据落入危险范围内,将最小叶片桨距角参考值作为目标叶片桨距角参考值;如果环境变量数据并未落入危险范围,将第一预设值作为目标叶片桨距角参考值,再根据确定的目标叶片桨距角参考值调整风电机组的叶片。根据环境信息主动调整风机叶片的桨距角,提高风机叶片防覆冰效果。本发明实施例可广泛应用于防覆冰处理技术领域。

The present application discloses a method, system, electronic device and storage medium for preventing icing of wind turbine blades. The method comprises: obtaining environmental variable data in real time, obtaining a threshold value of icing quality of wind turbine blades and a set value of wind turbine state variables, determining a danger range according to the threshold value of icing quality of wind turbine blades and the set value of wind turbine state variables, comparing the environmental variable data with the determined danger range, judging whether the environmental variable data falls into the danger range, and if the environmental variable data falls into the danger range, using the minimum blade pitch angle reference value as the target blade pitch angle reference value; if the environmental variable data does not fall into the danger range, using the first preset value as the target blade pitch angle reference value, and then adjusting the blades of the wind turbine according to the determined target blade pitch angle reference value. Actively adjusting the pitch angle of the wind turbine blades according to environmental information improves the anti-icing effect of the wind turbine blades. The embodiments of the present invention can be widely applied to the field of anti-icing processing technology.

Description

一种风机叶片防覆冰方法、系统、电子设备及存储介质A method, system, electronic device and storage medium for preventing ice accumulation on fan blades

技术领域Technical Field

本发明涉及防覆冰处理技术领域,尤其涉及一种风机叶片防覆冰方法、系统、电子设备及存储介质。The present invention relates to the technical field of anti-icing treatment, and in particular to a method, system, electronic equipment and storage medium for anti-icing of fan blades.

背景技术Background technique

风力发电发展迅速,逐渐成为新能源领域的研究热点;风力发电通过带动风电机组的叶片旋转,进而产生电力,由于风力资源的位置因素影响,风电机组的叶片表面会出现覆冰情况,会对风电机组的运行产生极大影响,严重时会导致风电机组大规模连续跳机,出现大功率缺额导致局部地区大规模停电。Wind power generation has developed rapidly and has gradually become a research hotspot in the field of new energy. Wind power generation generates electricity by driving the blades of wind turbines to rotate. Due to the location of wind resources, ice will appear on the surface of the blades of wind turbines, which will have a great impact on the operation of wind turbines. In severe cases, it will cause large-scale continuous tripping of wind turbines, resulting in large-scale power shortages and large-scale power outages in local areas.

现有技术主要是给风机叶片增加涂层或者改变叶片结构,这种方法需要重新设计叶片或者设计涂层材料,实现成本较高,且防覆冰效果不佳;或者通过超声波振动风机叶片,给风机叶片加热等方式进行除冰,这类方法可能需要对风机叶片进行改造,实现成本较高,且防覆冰效果也不佳。The existing technology mainly involves adding coatings to fan blades or changing the blade structure. This method requires redesigning the blades or designing the coating materials, which is costly to implement and has a poor anti-icing effect. Alternatively, de-icing is performed by ultrasonically vibrating the fan blades, heating the fan blades, etc. This method may require modification of the fan blades, which is costly to implement and has a poor anti-icing effect.

发明内容Summary of the invention

有鉴于此,本申请实施例的主要目的在于提出一种实现成本低的风机叶片防覆冰方法、系统、电子设备及存储介质,不需要进行改造,实现成本低,提高风机叶片防覆冰效果。In view of this, the main purpose of the embodiments of the present application is to propose a low-cost anti-icing method, system, electronic device and storage medium for wind turbine blades, which does not require any modification, has low cost and improves the anti-icing effect of wind turbine blades.

为实现上述目的,本申请实施例的一方面提出了一种风机叶片防覆冰方法,所述方法包括:To achieve the above-mentioned purpose, one aspect of an embodiment of the present application provides a method for preventing icing of wind turbine blades, the method comprising:

实时获取环境变量数据,获取叶片覆冰质量阈值和风机状态变量设定值;其中,所述环境变量数据包括当前环境的风速数据、温度数据、空气含水量数据以及过冷水滴平均有效直径数据,所述叶片覆冰质量阈值表征风机叶片上允许的最大覆冰质量,所述风机状态变量设定值包括风机叶片桨距角设定值和风机转速设定值;Acquire environmental variable data in real time, and acquire blade ice mass threshold and fan state variable setting value; wherein the environmental variable data includes wind speed data, temperature data, air moisture content data and supercooled water droplet average effective diameter data of the current environment, the blade ice mass threshold represents the maximum ice mass allowed on the fan blade, and the fan state variable setting value includes the fan blade pitch angle setting value and the fan speed setting value;

根据所述叶片覆冰质量阈值和所述风机状态变量设定值确定危险范围;Determining a danger range according to the blade icing mass threshold and the wind turbine state variable setting value;

根据所述环境变量数据和所述叶片覆冰质量阈值确定最小叶片桨距角参考值;Determine a minimum blade pitch angle reference value according to the environmental variable data and the blade icing mass threshold;

将所述环境变量数据与所述危险范围进行比较,若所述环境变量数据落入所述危险范围,将所述最小叶片桨距角参考值作为目标叶片桨距角参考值;若所述环境变量数据未落入所述危险范围,将第一预设值作为所述目标叶片桨距角参考值;其中,所述最小叶片桨距角参考值表征风机叶片覆冰质量达到叶片覆冰质量阈值时的最小叶片桨距角,所述第一预设值表征所述风机叶片覆冰质量最小的叶片桨距角;The environmental variable data is compared with the danger range. If the environmental variable data falls within the danger range, the minimum blade pitch angle reference value is used as the target blade pitch angle reference value; if the environmental variable data does not fall within the danger range, the first preset value is used as the target blade pitch angle reference value; wherein the minimum blade pitch angle reference value represents the minimum blade pitch angle when the ice coating mass of the wind turbine blade reaches the blade ice coating mass threshold value, and the first preset value represents the blade pitch angle when the ice coating mass of the wind turbine blade is the minimum;

根据所述目标叶片桨距角参考值对风机叶片进行调整。The wind turbine blades are adjusted according to the target blade pitch angle reference value.

在一些实施例中,所述根据所述叶片覆冰质量阈值和所述风机状态变量设定值确定危险范围,具体包括:In some embodiments, determining the danger range according to the blade icing mass threshold and the wind turbine state variable setting value specifically includes:

将所述叶片覆冰质量阈值和所述风机状态变量设定值代入预先建立的多元函数关系模型,并保持所述风机叶片桨距角不变,得到若干组环境变量范围;其中,所述环境变量包括风速、温度、过冷水滴平均有效直径以及空气含水量;Substituting the blade icing mass threshold and the fan state variable setting value into a pre-established multivariate function relationship model, and keeping the fan blade pitch angle unchanged, to obtain several sets of environmental variable ranges; wherein the environmental variables include wind speed, temperature, average effective diameter of supercooled water droplets, and air moisture content;

根据若干个组所述环境参数范围确定危险范围。The hazard range is determined based on several groups of environmental parameter ranges.

在一些实施例中,所述根据所述环境变量数据和所述叶片覆冰质量阈值确定最小叶片桨距角参考值,具体包括:In some embodiments, determining the minimum blade pitch angle reference value according to the environmental variable data and the blade icing mass threshold specifically includes:

实时获取风机转速变量;Obtain fan speed variables in real time;

将所述环境变量数据与所述风机转速变量代入预先建立的多元函数关系模型,得到关系表达式;其中,所述关系表达式表征所述叶片覆冰质量与风机叶片桨距角之间的关系;Substituting the environmental variable data and the wind turbine speed variable into a pre-established multivariate function relationship model to obtain a relationship expression; wherein the relationship expression represents the relationship between the blade ice mass and the wind turbine blade pitch angle;

将所述叶片覆冰质量阈值代入所述关系表达式,计算得到最小叶片桨距角参考值。The blade icing mass threshold is substituted into the relational expression to calculate a minimum blade pitch angle reference value.

在一些实施例中,所述根据所述目标叶片桨距角参考值对风机叶片进行调整,具体包括:In some embodiments, adjusting the wind turbine blades according to the target blade pitch angle reference value specifically includes:

实时获取风机叶片的当前叶片桨距角;Obtain the current blade pitch angle of the wind turbine blades in real time;

根据所述当前叶片桨距角和所述目标叶片桨距角参考值计算调整值,根据所述调整值调整所述风机叶片的当前叶片桨距角,直至所述当前叶片桨距角与所述目标叶片桨距角参考值的差值满足预设条件。An adjustment value is calculated according to the current blade pitch angle and the target blade pitch angle reference value, and the current blade pitch angle of the wind turbine blade is adjusted according to the adjustment value until a difference between the current blade pitch angle and the target blade pitch angle reference value meets a preset condition.

在一些实施例中,所述多元函数关系模型通过以下方式建立:In some embodiments, the multivariate functional relationship model is established by:

对第一参数变量进行离散采样,得到采样数据;其中,所述第一参数变量包括环境风速、温度、过冷水滴平均有效直径、空气含水量、叶片桨距角;Discretely sampling the first parameter variable to obtain sampling data; wherein the first parameter variable includes ambient wind speed, temperature, average effective diameter of supercooled water droplets, air moisture content, and blade pitch angle;

根据所述采样数据进行仿真模拟,得到仿真叶片覆冰质量数据集;其中,所述仿真叶片覆冰质量数据集包括所述第一参数变量中一种或多种参数组合对应的叶片覆冰质量数据;Performing simulation according to the sampled data to obtain a simulated blade ice mass data set; wherein the simulated blade ice mass data set includes blade ice mass data corresponding to one or more parameter combinations in the first parameter variable;

根据所述仿真叶片覆冰质量数据集进行系统辨识,得到多元函数关系模型。System identification is performed based on the simulated blade ice mass data set to obtain a multivariate functional relationship model.

在一些实施例中,所述根据所述仿真叶片覆冰质量数据集进行系统辨识,得到多元函数关系模型,具体包括:In some embodiments, performing system identification according to the simulated blade ice mass data set to obtain a multivariate functional relationship model specifically includes:

将所述仿真叶片覆冰质量数据集输入数据分析软件,在固定其他变量参数的前提下,分别对每个参数进行多项式拟合,得到每个所述参数与叶片覆冰质量的关系模型;The simulated blade ice mass data set is input into the data analysis software, and under the premise of fixing other variable parameters, polynomial fitting is performed on each parameter to obtain a relationship model between each parameter and the blade ice mass;

对每个所述参数与叶片覆冰质量的关系模型进行最小二乘法计算,得到多元函数关系模型。The least squares method is used to calculate the relationship model between each parameter and the ice mass of the blade to obtain a multivariate function relationship model.

在一些实施例中,所述根据当前叶片桨距角和参考值计算调整值,包括:In some embodiments, the calculating the adjustment value according to the current blade pitch angle and the reference value includes:

根据当前叶片桨距角和参考值,采用第一公式计算调整值,所述第一公式为:According to the current blade pitch angle and the reference value, the adjustment value is calculated using the first formula, which is:

其中,为调整值,τ为时间常数,kref为理想状态桨距角参考值,k为实际状态真实桨距角。in, is the adjustment value, τ is the time constant, k ref is the reference value of the pitch angle in the ideal state, and k is the real pitch angle in the actual state.

为实现上述目的,本申请实施例的另一方面提出了一种风机叶片防覆冰系统,所述系统包括:To achieve the above object, another aspect of the embodiment of the present application provides a wind turbine blade anti-icing system, the system comprising:

第一模块,用于实时获取环境变量数据,获取叶片覆冰质量阈值和风机状态变量设定值;其中,所述环境变量数据包括当前环境的风速数据、温度数据、空气含水量数据以及过冷水滴平均有效直径数据,所述叶片覆冰质量阈值表征风机叶片上允许的最大覆冰质量,所述风机状态变量设定值包括风机叶片桨距角设定值和风机转速设定值;The first module is used to obtain environmental variable data in real time, obtain blade ice mass threshold and fan state variable setting value; wherein the environmental variable data includes wind speed data, temperature data, air moisture content data and supercooled water droplet average effective diameter data of the current environment, the blade ice mass threshold represents the maximum ice mass allowed on the fan blade, and the fan state variable setting value includes the fan blade pitch angle setting value and the fan speed setting value;

第二模块,用于根据所述叶片覆冰质量阈值和所述风机状态变量设定值确定危险范围;The second module is used to determine the danger range according to the blade ice mass threshold and the wind turbine state variable setting value;

第三模块,用于根据所述环境变量数据和所述叶片覆冰质量阈值确定最小叶片桨距角参考值;A third module is used to determine a minimum blade pitch angle reference value according to the environmental variable data and the blade icing mass threshold;

第四模块,用于将所述环境变量数据与所述危险范围进行比较,若所述环境变量数据落入所述危险范围,将所述最小叶片桨距角参考值作为目标叶片桨距角参考值;若所述环境变量数据未落入所述危险范围,将第一预设值作为所述目标叶片桨距角参考值;其中,所述最小叶片桨距角参考值表征风机叶片覆冰质量达到所述叶片覆冰质量阈值时的最小叶片桨距角,所述第一预设值表征所述风机叶片覆冰质量最小的叶片桨距角;The fourth module is used to compare the environmental variable data with the danger range, and if the environmental variable data falls into the danger range, use the minimum blade pitch angle reference value as the target blade pitch angle reference value; if the environmental variable data does not fall into the danger range, use the first preset value as the target blade pitch angle reference value; wherein the minimum blade pitch angle reference value represents the minimum blade pitch angle when the ice coating mass of the wind turbine blade reaches the blade ice coating mass threshold, and the first preset value represents the blade pitch angle with the minimum ice coating mass of the wind turbine blade;

第五模块,用于根据所述目标叶片桨距角参考值对风机叶片进行调整。The fifth module is used to adjust the wind turbine blades according to the target blade pitch angle reference value.

为实现上述目的,本申请实施例的另一方面提出了一种电子设备,所述电子设备包括存储器和处理器,所述存储器存储有计算机程序,所述处理器执行所述计算机程序时实现前面所述的方法。To achieve the above objective, another aspect of an embodiment of the present application provides an electronic device, the electronic device comprising a memory and a processor, the memory storing a computer program, and the processor implementing the above-mentioned method when executing the computer program.

为实现上述目的,本申请实施例的另一方面提出了一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,所述计算机程序被处理器执行时实现前面所述的方法。To achieve the above objective, another aspect of an embodiment of the present application provides a computer-readable storage medium, wherein the computer-readable storage medium stores a computer program, and when the computer program is executed by a processor, the method described above is implemented.

实施本发明实施例包括以下有益效果:本申请提供一种风机叶片防覆冰方法、系统、电子设备及存储介质,该方案实时获取环境变量数据,并获取风机叶片覆冰质量阈值和风机状态变量设定值,根据获取的风机叶片覆冰质量阈值和风机状态变量设定值确定危险范围,将实时获取的环境变量数据与确定的危险范围进行比较,判断环境变量数据是否落入危险范围,如果环境变量数据落入危险范围内,将最小叶片桨距角参考值作为目标叶片桨距角参考值;如果环境变量数据并未落入危险范围,将第一预设值作为目标叶片桨距角参考值,再根据确定的目标叶片桨距角参考值调整风电机组的叶片的桨距角。根据叶片覆冰质量阈值和风机状态变量设定值确定危险范围,根据危险范围监控风机当前的环境变量数据,当风机当前的环境变量数据落入危险范围时,确定在当前环境下风机叶片覆冰质量会超过叶片覆冰质量阈值,根据风机当前的转速、环境变量数据以及风机当前的环境变量数据确定最小叶片桨距角参考值,根据最小叶片桨距角参考值主动调整风机叶片的桨距角,减少风机叶片覆冰的风险,提高风机叶片防覆冰效果。Implementation of the embodiments of the present invention includes the following beneficial effects: The present application provides a method, system, electronic device and storage medium for preventing wind turbine blades from icing. The scheme acquires environmental variable data in real time, and acquires a wind turbine blade icing quality threshold and a wind turbine state variable setting value. The danger range is determined according to the acquired wind turbine blade icing quality threshold and the wind turbine state variable setting value. The environmental variable data acquired in real time is compared with the determined danger range to determine whether the environmental variable data falls within the danger range. If the environmental variable data falls within the danger range, the minimum blade pitch angle reference value is used as the target blade pitch angle reference value. If the environmental variable data does not fall within the danger range, the first preset value is used as the target blade pitch angle reference value, and then the pitch angle of the blades of the wind turbine set is adjusted according to the determined target blade pitch angle reference value. The danger range is determined according to the blade icing mass threshold and the set value of the fan state variable, and the current environmental variable data of the fan is monitored according to the danger range. When the current environmental variable data of the fan falls into the danger range, it is determined that the ice mass of the fan blades will exceed the blade icing mass threshold under the current environment. The minimum blade pitch angle reference value is determined according to the current speed of the fan, the environmental variable data and the current environmental variable data of the fan. The pitch angle of the fan blades is actively adjusted according to the minimum blade pitch angle reference value to reduce the risk of icing on the fan blades and improve the anti-icing effect of the fan blades.

附图说明BRIEF DESCRIPTION OF THE DRAWINGS

图1是本发明实施例提供的一种风机叶片防覆冰方法的步骤流程示意图;FIG1 is a schematic flow chart of the steps of a method for preventing icing of wind turbine blades provided by an embodiment of the present invention;

图2是本发明实施例提供的一种风机叶片防覆冰方法中确定危险范围的步骤流程示意图;FIG2 is a schematic flow chart of the steps of determining a danger range in a method for preventing icing of wind turbine blades provided by an embodiment of the present invention;

图3是本发明实施例提供的一种风机叶片防覆冰方法中建立多元函数关系模型的步骤流程示意图;3 is a schematic flow chart of the steps of establishing a multivariate function relationship model in a method for preventing icing of wind turbine blades provided by an embodiment of the present invention;

图4是本发明实施例提供的一种风机叶片防覆冰方法中系统辨识的步骤流程示意图;FIG4 is a schematic flow chart of system identification steps in a method for preventing icing of wind turbine blades provided by an embodiment of the present invention;

图5是本发明实施例提供的一种风机叶片防覆冰方法中计算最小叶片桨距角参考值的步骤流程示意图;5 is a schematic flow chart of the steps of calculating a minimum blade pitch angle reference value in a method for preventing icing of wind turbine blades provided by an embodiment of the present invention;

图6是本发明实施例提供的一种风机叶片防覆冰方法中不同风速下覆冰质量与桨距角的关系示意图;6 is a schematic diagram of the relationship between ice mass and pitch angle at different wind speeds in a method for preventing icing of wind turbine blades provided by an embodiment of the present invention;

图7是本发明实施例提供的一种风机叶片防覆冰方法中进行叶片桨距角调整的步骤流程示意图;7 is a schematic flow chart of the steps of adjusting the blade pitch angle in a method for preventing icing of wind turbine blades provided by an embodiment of the present invention;

图8是本发明实施例提供的一种风机叶片防覆冰方法中变桨距系统的控制框图;8 is a control block diagram of a variable pitch system in a method for preventing icing of wind turbine blades provided by an embodiment of the present invention;

图9是本发明实施例提供的一种具体实施例的步骤流程示意图;FIG9 is a schematic diagram of a step flow chart of a specific embodiment provided by an embodiment of the present invention;

图10是本发明实施例提供的一种风机叶片防覆冰系统的结构框图;10 is a structural block diagram of a fan blade anti-icing system provided in an embodiment of the present invention;

图11是本发明实施例提供的电子设备的硬件结构示意图。FIG. 11 is a schematic diagram of the hardware structure of an electronic device provided in an embodiment of the present invention.

具体实施方式Detailed ways

下面结合附图和具体实施例对本发明做进一步的详细说明。对于以下实施例中的步骤编号,其仅为了便于阐述说明而设置,对步骤之间的顺序不做任何限定,实施例中的各步骤的执行顺序均可根据本领域技术人员的理解来进行适应性调整。The present invention is further described in detail below in conjunction with the accompanying drawings and specific embodiments. The step numbers in the following embodiments are only provided for the convenience of explanation and description, and the order between the steps is not limited in any way. The execution order of each step in the embodiment can be adaptively adjusted according to the understanding of those skilled in the art.

在以下的描述中,涉及到“一些实施例”,其描述了所有可能实施例的子集,但是可以理解,“一些实施例”可以是所有可能实施例的相同子集或不同子集,并且可以在不冲突的情况下相互结合。In the following description, reference is made to “some embodiments”, which describe a subset of all possible embodiments, but it will be understood that “some embodiments” may be the same subset or different subsets of all possible embodiments and may be combined with each other without conflict.

在以下的描述中,所涉及的术语“第一\第二\第三”仅仅是是区别类似的对象,不代表针对对象的特定排序,可以理解地,“第一\第二\第三”在允许的情况下可以互换特定的顺序或先后次序,以使这里描述的本发明实施例能够以除了在这里图示或描述的以外的顺序实施。In the following description, the terms "first\second\third" involved are merely used to distinguish similar objects and do not represent a specific ordering of the objects. It can be understood that "first\second\third" can be interchanged with a specific order or sequence where permitted, so that the embodiments of the present invention described herein can be implemented in an order other than that illustrated or described herein.

除非另有定义,本发明实施例所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本发明实施例中所使用的术语只是为了描述本发明实施例的目的,不是旨在限制本发明。Unless otherwise defined, all technical and scientific terms used in the embodiments of the present invention have the same meanings as those commonly understood by those skilled in the art of the present invention. The terms used in the embodiments of the present invention are only for the purpose of describing the embodiments of the present invention and are not intended to limit the present invention.

风力发电是新能源系统中重要的来源,风电机组利用风力带动叶片旋转,进而带动发电机进行发电,因此风电机组通常设置在风力资源丰富的区域;而风力资源丰富的区域,气象条件变化频繁,而风电机组的叶片对气象条件的变化十分敏感;例如,风电机组在空气过冷的环境下运行,风机叶片与空气过冷造成的水滴碰撞,容易在风电机组的叶片表面出现覆冰,风机叶片表面出现覆冰后,叶片表面的粗糙度变高而导致叶片的气动性能变低,风电机组的运行功率也随之降低,当叶片表面的覆冰质量超过一定阈值时,叶片的转矩为零,导致风电机组的输出功率也为零,甚至对风电机组造成损坏。Wind power generation is an important source in the new energy system. Wind turbines use wind power to drive the blades to rotate, which in turn drives the generator to generate electricity. Therefore, wind turbines are usually installed in areas with abundant wind resources. In areas with abundant wind resources, weather conditions change frequently, and the blades of wind turbines are very sensitive to changes in weather conditions. For example, when wind turbines operate in an environment with supercooled air, the collision between the wind turbine blades and water droplets caused by the supercooled air can easily lead to ice on the surface of the wind turbine blades. After ice appears on the surface of the wind turbine blades, the roughness of the blade surface increases, resulting in lower aerodynamic performance of the blades, and the operating power of the wind turbine also decreases. When the mass of ice on the blade surface exceeds a certain threshold, the torque of the blade is zero, causing the output power of the wind turbine to also be zero, or even causing damage to the wind turbine.

有鉴于此,本申请实施例中提供了一种风机叶片防覆冰方法、系统、电子设备及存储介质,该方案实时获取风机的环境变量数据,获取叶片覆冰质量阈值以及风机状态变量设定值,根据叶片覆冰质量阈值和风机状态变量设定值确定危险范围,通过危险范围确定风机叶片的覆冰质量是否超过可承受的阈值,以及是否需要对风机叶片的叶片桨距角进行调整;将实时获取的环境变量数据与危险范围进行比较,如果环境变量数据落入危险范围,将最小叶片桨距角参考值作为目标叶片桨距角参考值对风机叶片桨距角进行调整,如果环境变量数据未落入危险范围,将第一预设值作为目标叶片桨距角参考值进行调整;通过调整风机叶片的桨距角的大小,改变风机叶片的迎风角度,减小风机叶片覆冰的风险,从而提高风机叶片防覆冰效果。In view of this, an embodiment of the present application provides a method, system, electronic device and storage medium for preventing icing on wind turbine blades. The scheme obtains environmental variable data of the wind turbine in real time, obtains a blade icing quality threshold and a fan state variable setting value, determines a danger range according to the blade icing quality threshold and the fan state variable setting value, and determines whether the icing quality of the wind turbine blades exceeds the tolerable threshold through the danger range, and whether it is necessary to adjust the blade pitch angle of the wind turbine blades; compares the environmental variable data obtained in real time with the danger range, and if the environmental variable data falls into the danger range, adjusts the wind turbine blade pitch angle by taking the minimum blade pitch angle reference value as the target blade pitch angle reference value; if the environmental variable data does not fall into the danger range, adjusts the wind turbine blade pitch angle by taking the first preset value as the target blade pitch angle reference value; by adjusting the size of the pitch angle of the wind turbine blades, the windward angle of the wind turbine blades is changed, and the risk of icing on the wind turbine blades is reduced, thereby improving the anti-icing effect of the wind turbine blades.

图1是本申请实施例提供的风机叶片防覆冰方法的一个可选的流程图,图1中的方法可以包括但不限于包括步骤S101至步骤S105。FIG1 is an optional flow chart of a method for preventing icing of wind turbine blades provided in an embodiment of the present application. The method in FIG1 may include but is not limited to steps S101 to S105.

步骤S101,实时获取环境变量数据,获取叶片覆冰质量阈值和风机状态变量设定值;其中,环境变量数据包括当前环境的风速数据、温度数据、空气含水量数据以及过冷水滴平均有效直径数据,叶片覆冰质量阈值表征风机叶片上允许的最大覆冰质量,风机状态变量设定值包括风机叶片桨距角设定值和风机转速设定值;Step S101, real-time acquisition of environmental variable data, blade ice mass threshold and fan state variable setting value; wherein the environmental variable data includes wind speed data, temperature data, air moisture data and supercooled water droplet average effective diameter data of the current environment, the blade ice mass threshold represents the maximum ice mass allowed on the fan blade, and the fan state variable setting value includes the fan blade pitch angle setting value and the fan speed setting value;

步骤S102,根据叶片覆冰质量阈值和风机状态变量设定值确定危险范围;Step S102, determining a danger range according to a blade icing mass threshold and a set value of a wind turbine state variable;

步骤S103,根据环境变量数据和叶片覆冰质量阈值确定最小叶片桨距角参考值;Step S103, determining a minimum blade pitch angle reference value according to the environmental variable data and the blade icing mass threshold;

步骤S104,将环境变量数据与危险范围进行比较,若环境变量数据落入危险范围,将最小叶片桨距角参考值作为目标叶片桨距角参考值;若环境变量数据未落入危险范围,将第一预设值作为目标叶片桨距角参考值;其中,最小叶片桨距角参考值表征风机叶片覆冰质量达到叶片覆冰质量阈值时的最小叶片桨距角,第一预设值表征风机叶片覆冰质量最小的叶片桨距角;Step S104, comparing the environmental variable data with the danger range, if the environmental variable data falls into the danger range, taking the minimum blade pitch angle reference value as the target blade pitch angle reference value; if the environmental variable data does not fall into the danger range, taking the first preset value as the target blade pitch angle reference value; wherein the minimum blade pitch angle reference value represents the minimum blade pitch angle when the ice coating mass of the wind turbine blade reaches the blade ice coating mass threshold value, and the first preset value represents the blade pitch angle when the ice coating mass of the wind turbine blade is the minimum;

步骤S105,根据目标叶片桨距角参考值对风机叶片进行调整。Step S105, adjusting the wind turbine blades according to the target blade pitch angle reference value.

本申请实施例所示意的步骤S101至步骤S105,通过设置在风电机组上的一些传感器实时采集风电机组所处的环境当前的环境变量数据,包括环境的风速、温度、空气含水量以及过冷水滴平均有效直径等数据,基于实时获取的环境变量数据,可以分析得出在当前环境下,风机叶片出现覆冰的可能;然后,获取风电机组的叶片覆冰质量阈值和风机状态变量设定值,叶片覆冰质量阈值根据风机叶片的承载能力设定,当风机叶片上的覆冰质量超过该阈值,就会对风机叶片造成损坏,而风机状态变量设定值包括有风机叶片桨距角和风机转速,风机状态变量设定值表明了风机叶片可设置的叶片桨距角的最大值以及风机运行的可允许的转速,根据叶片覆冰质量阈值和风机状态变量设定值确定出环境变量的危险范围,当环境变量落入危险范围时,如果风机状态变量保持不变,那么风机叶片的覆冰质量可能会超出叶片覆冰阈值,此时需要设置最小叶片桨距角参考值为目标叶片桨距角参考值,对风机叶片桨距角进行调整;如果环境变量并未落入危险范围,说明风机状态变量保持不变,风机叶片的覆冰质量仍在可允许范围内,此时将第一预设值设置为目标叶片桨距角参考值,在风机叶片的覆冰质量在允许范围内的条件下,保持风电机组的输出功率,示例性地,第一预设值可以设置为60度,风机叶片的覆冰质量在保持风电机组的输出功率时最小。In steps S101 to S105 shown in the embodiment of the present application, some sensors arranged on the wind turbine generator set collect the current environmental variable data of the environment in which the wind turbine generator set is located in real time, including the environmental wind speed, temperature, air moisture content, average effective diameter of supercooled water droplets and other data. Based on the environmental variable data acquired in real time, it can be analyzed that under the current environment, the possibility of ice covering the wind turbine blades can be obtained; then, the blade ice covering mass threshold value and the fan state variable setting value of the wind turbine generator set are obtained. The blade ice covering mass threshold value is set according to the carrying capacity of the fan blades. When the ice covering mass on the fan blades exceeds the threshold value, the fan blades will be damaged. The fan state variable setting value includes the fan blade pitch angle and the fan speed. The fan state variable setting value indicates the maximum value of the blade pitch angle that can be set for the fan blades and the fan operation speed. The allowable speed is determined according to the blade icing mass threshold and the set value of the fan state variable. When the environmental variable falls into the danger range, if the fan state variable remains unchanged, the icing mass of the fan blades may exceed the blade icing threshold. At this time, it is necessary to set the minimum blade pitch angle reference value as the target blade pitch angle reference value to adjust the fan blade pitch angle. If the environmental variable does not fall into the danger range, it means that the fan state variable remains unchanged, and the icing mass of the fan blades is still within the allowable range. At this time, the first preset value is set to the target blade pitch angle reference value. Under the condition that the icing mass of the fan blades is within the allowable range, the output power of the wind turbine is maintained. By way of example, the first preset value can be set to 60 degrees, and the icing mass of the fan blades is minimum when maintaining the output power of the wind turbine.

在一些实施例的步骤S101中,可以通过设置在风电机组的传感器实时获取风电机组当前环境的环境变量数据,也可以通过联网获取气象数据信息,对气象数据信息分析得到风电机组当前环境的环境变量数据,不限于此。In step S101 of some embodiments, environmental variable data of the current environment of the wind turbine generator set can be obtained in real time through sensors installed in the wind turbine generator set, or meteorological data information can be obtained through networking and analyzed to obtain environmental variable data of the current environment of the wind turbine generator set, but the present invention is not limited thereto.

请参阅图2,在一些实施例中,步骤S102可以包括但不限于包括步骤S201至步骤S202:Please refer to FIG. 2 . In some embodiments, step S102 may include but is not limited to steps S201 to S202:

步骤S201,将叶片覆冰质量阈值和风机状态变量设定值代入预先建立的多元函数关系模型,并保持风机叶片桨距角不变,得到若干组环境变量范围;其中,环境变量包括风速、温度、过冷水滴平均有效直径以及空气含水量;Step S201, substituting the blade ice mass threshold and the fan state variable setting value into a pre-established multivariate function relationship model, and keeping the fan blade pitch angle unchanged, to obtain several sets of environmental variable ranges; wherein the environmental variables include wind speed, temperature, average effective diameter of supercooled water droplets, and air moisture content;

步骤S202,根据若干个组环境参数范围确定危险范围。Step S202, determining a danger range according to several groups of environmental parameter ranges.

在一些实施例的步骤S201中,在进行危险范围的确定之前,预先建立有以环境变量和风机状态变量为自变量,以叶片覆冰质量为因变量的多元函数关系模型,将获取的叶片覆冰质量阈值代入该多元函数关系模型中,将叶片桨距角设定为常量也代入多元函数关系模型中,对代入数据后的多元函数关系模型进行反推,得到环境变量数据中不同参数的范围,这个范围是在风机叶片上的覆冰质量达到叶片覆冰质量阈值时对应的环境变量参数。In step S201 of some embodiments, before determining the danger range, a multivariate functional relationship model is pre-established with environmental variables and wind turbine state variables as independent variables and blade icing mass as dependent variable, the acquired blade icing mass threshold is substituted into the multivariate functional relationship model, the blade pitch angle is set as a constant and also substituted into the multivariate functional relationship model, the multivariate functional relationship model after the data is substituted is reversed to obtain the range of different parameters in the environmental variable data, and this range is the environmental variable parameter corresponding to when the icing mass on the wind turbine blades reaches the blade icing mass threshold.

在一些实施例的步骤S202中,通过步骤S201中的多元函数关系模型反推后,得到了一组环境变量参数的范围,将这些环境变量参数的范围进行整合,得到风电机组的环境变量的危险范围,以便后续判断是否需要对风机叶片进行调整。In step S202 of some embodiments, after inverting the multivariate functional relationship model in step S201, a set of ranges of environmental variable parameters are obtained, and these ranges of environmental variable parameters are integrated to obtain the dangerous range of the environmental variables of the wind turbine group, so as to subsequently determine whether the wind turbine blades need to be adjusted.

请参阅图3,在一些实施例中,通过图3所示的步骤S301至步骤S303,建立多元函数关系模型;Please refer to FIG. 3 . In some embodiments, through steps S301 to S303 shown in FIG. 3 , a multivariate functional relationship model is established;

步骤S301,对第一参数变量进行离散采样,得到采样数据;其中,第一参数变量包括环境风速、温度、过冷水滴平均有效直径、空气含水量、叶片桨距角;Step S301, discretely sampling the first parameter variable to obtain sampling data; wherein the first parameter variable includes ambient wind speed, temperature, average effective diameter of supercooled water droplets, air moisture content, and blade pitch angle;

步骤S302,根据采样数据进行仿真模拟,得到仿真叶片覆冰质量数据集;其中,仿真叶片覆冰质量数据集包括第一参数变量中一种或多种参数组合对应的叶片覆冰质量数据;Step S302, performing simulation according to the sampled data to obtain a simulated blade icing mass data set; wherein the simulated blade icing mass data set includes blade icing mass data corresponding to one or more parameter combinations in the first parameter variable;

步骤S303,根据仿真叶片覆冰质量数据集进行系统辨识,得到多元函数关系模型。Step S303: performing system identification based on the simulated blade ice mass data set to obtain a multivariate functional relationship model.

在一些实施例中的步骤S301,为了建立不同环境参数与风机叶片覆冰质量之间的多元函数关系模型,首先,通过预设的参数范围进行数据采集,获取不同环境参数下叶片覆冰质量的数据,例如,环境风速的采集范围为风速2米每秒至10米每秒,数据采集装置按1米每秒的间隔离散采样不同风速下的叶片覆冰质量数据。In step S301 of some embodiments, in order to establish a multivariate functional relationship model between different environmental parameters and the ice mass of wind turbine blades, first, data is collected within a preset parameter range to obtain data on the ice mass of blades under different environmental parameters. For example, the collection range of the ambient wind speed is 2 meters per second to 10 meters per second, and the data collection device discretely samples the ice mass data of blades under different wind speeds at intervals of 1 meter per second.

在一些实施例中的步骤S302,通过步骤S301获取到不同环境参数下叶片覆冰质量的采样数据,将得到的采样数据输入到CFD仿真模型软件中进行仿真模拟,将不同的环境变量参数进行相应组合,将离散采样的数据进行整合,得到不同环境参数共同影响下的叶片覆冰质量;由于不同的环境参数之间的并不都是相互积极作用的,因此,不同环境参数共同影响下的叶片覆冰质量并不是将不同环境参数对应的叶片覆冰质量进行叠加;通过将采样数据进行CFD仿真模拟后,得到仿真叶片覆冰质量数据集,其中包括有不同环境参数对应的叶片覆冰质量数据和不同环境参数共同影响下的叶片覆冰质量数据;以提高后续基于多元函数关系模型确定的危险范围或者最小叶片桨距角参考值的准确性和可靠性,进而提高叶片防覆冰效果。In step S302 of some embodiments, sampling data of blade icing mass under different environmental parameters are obtained through step S301, and the obtained sampling data are input into CFD simulation model software for simulation, and different environmental variable parameters are combined accordingly, and discrete sampling data are integrated to obtain the blade icing mass under the joint influence of different environmental parameters; because different environmental parameters do not all interact positively with each other, therefore, the blade icing mass under the joint influence of different environmental parameters is not the superposition of the blade icing mass corresponding to different environmental parameters; by performing CFD simulation on the sampling data, a simulated blade icing mass data set is obtained, which includes blade icing mass data corresponding to different environmental parameters and blade icing mass data under the joint influence of different environmental parameters; so as to improve the accuracy and reliability of the subsequent dangerous range or minimum blade pitch angle reference value determined based on the multivariate functional relationship model, thereby improving the blade anti-icing effect.

在一些实施例中的步骤S303,通过步骤S302中得到仿真叶片覆冰质量数据集后,将多元函数关系模型视作一个黑盒系统,将不同环境参数和不同环境参数的组合看作该黑盒系统的输入,仿真叶片覆冰质量数据集看作该黑盒系统的输出,通过输入输出的关系进行系统辨识,对黑盒系统进行描述,得到多元函数关系模型。In step S303 of some embodiments, after obtaining the simulated blade icing mass data set in step S302, the multivariate functional relationship model is regarded as a black box system, different environmental parameters and combinations of different environmental parameters are regarded as inputs of the black box system, and the simulated blade icing mass data set is regarded as outputs of the black box system. System identification is performed through the relationship between input and output, the black box system is described, and the multivariate functional relationship model is obtained.

请参阅图4,在一些实施例中,步骤S303可以包括但不限于包括步骤S401至步骤S402:Please refer to FIG. 4 . In some embodiments, step S303 may include but is not limited to steps S401 to S402:

步骤S401,将仿真叶片覆冰质量数据集输入数据分析软件,在固定其他变量参数的前提下,分别对每个参数进行多项式拟合,得到每个参数与叶片覆冰质量的关系模型;Step S401, inputting the simulated blade ice mass data set into the data analysis software, and performing polynomial fitting on each parameter under the premise of fixing other variable parameters, to obtain a relationship model between each parameter and the blade ice mass;

步骤S402,对每个参数与叶片覆冰质量的关系模型进行最小二乘法计算,得到多元函数关系模型。Step S402: performing least squares calculation on the relationship model between each parameter and the blade ice mass to obtain a multivariate function relationship model.

在一些实施例中的步骤S401,通过步骤S303中可以知道,采用多元函数关系模型对黑盒模型进行描述,而根据仿真叶片覆冰质量数据集可以知道,这个黑盒系统是一个多输入多输出的系统,那么将仿真叶片覆冰质量数据集输入数据分析软件中,将各个参数独立出来进行数学建模,即保持其他参数不变,通过多项式拟合得到各个环境参数与叶片覆冰质量之间的函数关系模型。In step S401 of some embodiments, it can be known from step S303 that a multivariate functional relationship model is used to describe the black box model, and according to the simulated blade ice mass data set, it can be known that this black box system is a multi-input and multi-output system, so the simulated blade ice mass data set is input into the data analysis software, and each parameter is separated out for mathematical modeling, that is, other parameters are kept unchanged, and a functional relationship model between each environmental parameter and the blade ice mass is obtained by polynomial fitting.

在一些实施例中的步骤S402,由于黑盒系统是一个多输入多输出的系统,说明不同参数之间存在影响,而步骤S401中通过多项式拟合得到的不同参数与叶片覆冰质量之间的函数关系模型之间是相互独立的,那么将相互独立的函数关系模型进行最小二乘法进行整合,得到描述黑盒系统的数学模型,将描述该黑盒系统的数学模型作为多元函数关系模型。In step S402 of some embodiments, since the black box system is a multi-input and multi-output system, it means that there is influence between different parameters, and the functional relationship models between different parameters and blade ice coverage mass obtained by polynomial fitting in step S401 are independent of each other, then the independent functional relationship models are integrated by least squares method to obtain a mathematical model describing the black box system, and the mathematical model describing the black box system is used as a multivariate functional relationship model.

请参阅图5,在一些实施例中,通过图5所示的步骤S501至步骤S503,得到步骤S103中的最小叶片桨距角参考值;Please refer to FIG. 5 . In some embodiments, through steps S501 to S503 shown in FIG. 5 , the minimum blade pitch angle reference value in step S103 is obtained;

步骤S501,实时获取风机转速变量;Step S501, obtaining the fan speed variable in real time;

步骤S502,将环境变量数据与风机转速变量代入预先建立的多元函数关系模型,得到关系表达式;其中,关系表达式表征叶片覆冰质量与风机叶片桨距角之间的关系;Step S502, substituting the environmental variable data and the wind turbine speed variable into a pre-established multivariate function relationship model to obtain a relationship expression; wherein the relationship expression represents the relationship between the blade ice mass and the wind turbine blade pitch angle;

步骤S503,将叶片覆冰质量阈值代入关系表达式,计算得到最小叶片桨距角参考值。Step S503: Substitute the blade ice mass threshold into the relational expression to calculate the minimum blade pitch angle reference value.

在一些实施例中的步骤S501,在步骤S103中,当实时获取的环境变量数据落入危险范围时,将最小叶片桨距角参考值作为目标叶片桨距角参考值,对风电机组叶片的叶片桨距角进行调整,该最小叶片桨距角参考值表明在当前环境变量数据下,使风电机组叶片的叶片覆冰质量不超过叶片覆冰质量阈值的最小的叶片桨距角;为了得到最小叶片桨距角参考值,需要先推导出风电机组叶片的叶片覆冰质量和风机叶片的叶片桨距角之间的关系表达式。In step S501 of some embodiments, in step S103, when the environmental variable data acquired in real time falls into a dangerous range, the minimum blade pitch angle reference value is used as the target blade pitch angle reference value, and the blade pitch angle of the wind turbine blade is adjusted. The minimum blade pitch angle reference value indicates the minimum blade pitch angle that makes the blade icing mass of the wind turbine blade not exceed the blade icing mass threshold under the current environmental variable data; in order to obtain the minimum blade pitch angle reference value, it is necessary to first derive the relationship expression between the blade icing mass of the wind turbine blade and the blade pitch angle of the wind turbine blade.

在一些实施例中的步骤S502,将实时获取当前的环境变量数据和风机转速变量数据代入预先建立的多元函数关系模型中进行推导,从多元函数关系模型中分析提取出风机叶片的叶片覆冰质量和风机叶片的叶片桨距角之间的关系表达式。In step S502 of some embodiments, the current environmental variable data and wind speed variable data acquired in real time are substituted into a pre-established multivariate functional relationship model for derivation, and the relationship expression between the blade ice coverage mass of the wind blade and the blade pitch angle of the wind blade is analyzed and extracted from the multivariate functional relationship model.

在一些实施例中的步骤S503,通过步骤S502中得到风机叶片的叶片覆冰质量和风机叶片的叶片桨距角之间的关系表达式后,将叶片覆冰质量阈值代入该关系表达式,就可以得到风电机组叶片的叶片覆冰质量不超过叶片覆冰质量阈值的最小叶片桨距角参考值;示例性地,风电机组采用NACA0012翼型叶片,通过对多元函数关系模型进行推导计算得到关系表达式,得到如图6所示的关系图,图6中包括有该叶片在不同的环境风速下的关系表达式,从图中可以得到,在叶片桨距角大于18°后总体呈叶片桨距角越大,叶片覆冰质量越低的趋势,在60°附近叶片覆冰质量显著下降,而大于60°后叶片覆冰质量下降不明显,因此,可以将60°设置为叶片的最小叶片桨距角参考值。In step S503 of some embodiments, after obtaining the relationship expression between the blade icing mass of the wind turbine blade and the blade pitch angle of the wind turbine blade in step S502, the blade icing mass threshold is substituted into the relationship expression, so as to obtain the minimum blade pitch angle reference value at which the blade icing mass of the wind turbine blade does not exceed the blade icing mass threshold; illustratively, the wind turbine adopts NACA0012 airfoil blades, and the relationship expression is obtained by deriving and calculating the multivariate function relationship model, and a relationship diagram as shown in FIG6 is obtained, which includes the relationship expression of the blade under different ambient wind speeds. It can be seen from the figure that after the blade pitch angle is greater than 18°, the overall trend is that the larger the blade pitch angle, the lower the blade icing mass, and the blade icing mass decreases significantly around 60°, while the blade icing mass decreases insignificantly after it is greater than 60°. Therefore, 60° can be set as the minimum blade pitch angle reference value of the blade.

请参阅图7,在一些实施例中,步骤S104可以包括但不限于包括步骤S601至步骤S602:Please refer to FIG. 7 . In some embodiments, step S104 may include but is not limited to steps S601 to S602:

步骤S601,实时获取风机叶片的当前叶片桨距角;Step S601, obtaining the current blade pitch angle of the wind turbine blade in real time;

步骤S602,根据当前叶片桨距角和目标叶片桨距角参考值计算调整值,根据调整值调整风机叶片的当前叶片桨距角,直至当前叶片桨距角与目标叶片桨距角参考值的差值满足预设条件。Step S602, calculating an adjustment value according to the current blade pitch angle and the target blade pitch angle reference value, and adjusting the current blade pitch angle of the wind turbine blade according to the adjustment value until the difference between the current blade pitch angle and the target blade pitch angle reference value meets a preset condition.

在一些实施例中的步骤S601,通过步骤S103得到目标叶片桨距角参考值后,根据目标叶片桨距角参考值对风电机组的叶片桨距角进行调整,具体通过驱动桨距伺服机构控制风机叶片进行旋转,桨距伺服机构通过一个闭环控制的变桨距系统进行控制驱动,该变桨距系统的结构如图8所示,变桨距系统通过实时采集风机叶片当前的叶片桨距角进行控制。In step S601 of some embodiments, after obtaining the target blade pitch angle reference value through step S103, the blade pitch angle of the wind turbine is adjusted according to the target blade pitch angle reference value, specifically by driving the pitch servo mechanism to control the rotation of the wind turbine blades, and the pitch servo mechanism is controlled and driven by a closed-loop controlled variable pitch system. The structure of the variable pitch system is shown in Figure 8, and the variable pitch system is controlled by real-time acquisition of the current blade pitch angle of the wind turbine blades.

在一些实施例中的步骤S602,变桨距系统将步骤S103得到的目标叶片桨距角参考值作为变桨距系统的目标输出量,将实时采集的叶片桨距角作为控制量输入变桨距系统中,变桨距系统的输出驱动桨距伺服机构旋转风机叶片,由于变桨距系统是闭环控制,因此在将实时采集的叶片桨距角调整到目标叶片桨距角参考值前都在进行调整,直到风机当前的叶片桨距角与目标叶片桨距角参考值的差值满足停止条件,示例性地,目标叶片桨距角设置为45度,通过采集数据得到风机当前的叶片桨距角为55度,通过计算得到调整值为10度,变桨距系统根据调整值调整风机当前的叶片桨距角,当风机当前的叶片桨距角与目标叶片桨距角的差值在1度以内,确定变距角系统对风机叶片桨距角的调整完成,减少叶片覆冰的风险。因此具有抑制干扰的能力,提高叶片防覆冰效果。In step S602 of some embodiments, the pitch system uses the target blade pitch angle reference value obtained in step S103 as the target output of the pitch system, and inputs the real-time collected blade pitch angle into the pitch system as the control quantity. The output of the pitch system drives the pitch servo mechanism to rotate the fan blade. Since the pitch system is a closed-loop control, the real-time collected blade pitch angle is adjusted to the target blade pitch angle reference value before being adjusted until the difference between the current blade pitch angle of the fan and the target blade pitch angle reference value meets the stop condition. For example, the target blade pitch angle is set to 45 degrees, and the current blade pitch angle of the fan is obtained by collecting data to be 55 degrees. The adjustment value is 10 degrees by calculation. The pitch system adjusts the current blade pitch angle of the fan according to the adjustment value. When the difference between the current blade pitch angle of the fan and the target blade pitch angle is within 1 degree, it is determined that the pitch angle system has completed the adjustment of the fan blade pitch angle, thereby reducing the risk of blade icing. Therefore, it has the ability to suppress interference and improve the anti-icing effect of blades.

下面,结合具体应用例子,对本发明实施例的方案作详细介绍和说明:The following is a detailed description and explanation of the solution of the embodiment of the present invention in conjunction with a specific application example:

参照图9,图9示出了本申请实施例中提供的一种风机叶片防覆冰方法应用的示意图。本申请实施例中,获取风电机组设定的叶片覆冰质量阈值,读取风电机组的风机状态变量设定值,然后,将获取的叶片覆冰质量阈值和风机状态变量设定值代入预先建立的多元函数关系模型中进行计算,得到环境变量的危险范围;然后,实时获取风电机组当前的环境变量数据,将当前的环境变量数据与确定的环境变量的危险范围进行比较,判断是否落入环境变量的危险范围中,如果当前的环境变量数据落入危险范围,将叶片覆冰质量阈值、当前的环境变量输入和风机当前的状态变量输入多元函数关系模型中,计算得到最小叶片桨距角参考值为60度;如果当前的环境变量数据没有落入危险范围,就保持风电机组当前的叶片桨距角,并继续获取风电机组当前的环境变量数据;然后将得到的最小叶片桨距角参考值作为目标叶片桨距角参考值,并将目标叶片桨距角参考值输入变桨距系统中,实时采集风电机组当前的叶片桨距角输入变桨距系统,变桨距系统根据输入的当前的叶片桨距角和目标叶片桨距角参考值驱动桨距伺服机构,对风电机组的叶片桨距角进行调整,直到当前的叶片桨距角等于目标叶片桨距角参考值60度,实现叶片防覆冰效果。Referring to Figure 9, Figure 9 shows a schematic diagram of the application of a method for preventing wind turbine blade icing provided in an embodiment of the present application. In the embodiment of the present application, the blade icing quality threshold set by the wind turbine is obtained, and the fan state variable setting value of the wind turbine is read. Then, the obtained blade icing quality threshold and the fan state variable setting value are substituted into a pre-established multivariate function relationship model for calculation to obtain a dangerous range of environmental variables; then, the current environmental variable data of the wind turbine is obtained in real time, and the current environmental variable data is compared with the determined dangerous range of environmental variables to determine whether it falls into the dangerous range of environmental variables. If the current environmental variable data falls into the dangerous range, the blade icing quality threshold, the current environmental variable input and the current state variable of the wind turbine are input into the multivariate function relationship model to calculate the minimum The blade pitch angle reference value is 60 degrees; if the current environmental variable data does not fall into the danger range, the current blade pitch angle of the wind turbine is maintained, and the current environmental variable data of the wind turbine continues to be obtained; then the obtained minimum blade pitch angle reference value is used as the target blade pitch angle reference value, and the target blade pitch angle reference value is input into the variable pitch system, and the current blade pitch angle of the wind turbine is collected in real time and input into the variable pitch system. The variable pitch system drives the pitch servo mechanism according to the input current blade pitch angle and the target blade pitch angle reference value, and adjusts the blade pitch angle of the wind turbine until the current blade pitch angle is equal to the target blade pitch angle reference value of 60 degrees, thereby achieving the blade anti-icing effect.

实施本发明实施例包括以下有益效果:本申请提供一种风机叶片防覆冰方法、系统、电子设备及存储介质,该方案实时获取环境变量数据,并获取风机叶片覆冰质量阈值和风机状态变量设定值,根据获取的风机叶片覆冰质量阈值和风机状态变量设定值确定危险范围,将实时获取的环境变量数据与确定的危险范围进行比较,判断环境变量数据是否落入危险范围,如果环境变量数据落入危险范围内,将最小叶片桨距角参考值作为目标叶片桨距角参考值;如果环境变量数据并未落入危险范围,将第一预设值作为目标叶片桨距角参考值,再根据确定的目标叶片桨距角参考值调整风电机组的叶片。根据环境信息主动调整风机叶片的桨距角,减少风机叶片覆冰的风险,提高风机叶片防覆冰效果;通过闭环控制的变桨距系统调整风机叶片桨距角,抗干扰能力强,防覆冰效果可靠性高。The implementation of the embodiments of the present invention includes the following beneficial effects: the present application provides a method, system, electronic device and storage medium for preventing icing of wind turbine blades. The scheme acquires environmental variable data in real time, and acquires the icing quality threshold of wind turbine blades and the setting value of wind turbine state variables. The danger range is determined according to the acquired icing quality threshold of wind turbine blades and the setting value of wind turbine state variables. The environmental variable data acquired in real time is compared with the determined danger range to determine whether the environmental variable data falls into the danger range. If the environmental variable data falls into the danger range, the minimum blade pitch angle reference value is used as the target blade pitch angle reference value; if the environmental variable data does not fall into the danger range, the first preset value is used as the target blade pitch angle reference value, and then the blades of the wind turbine set are adjusted according to the determined target blade pitch angle reference value. The pitch angle of the wind turbine blades is actively adjusted according to the environmental information to reduce the risk of icing of the wind turbine blades and improve the anti-icing effect of the wind turbine blades; the pitch angle of the wind turbine blades is adjusted by the variable pitch system controlled by the closed loop, which has strong anti-interference ability and high reliability of anti-icing effect.

请参阅图10,本申请实施例还提供了一种风机叶片防覆冰系统,可以实现上述风机叶片防覆冰方法,该系统包括:Referring to FIG. 10 , the embodiment of the present application further provides a fan blade anti-icing system, which can implement the above-mentioned fan blade anti-icing method, and the system includes:

第一模块,用于实时获取环境变量数据,获取叶片覆冰质量阈值和风机状态变量设定值;其中,环境变量数据包括当前环境的风速数据、温度数据、空气含水量数据以及过冷水滴平均有效直径数据,叶片覆冰质量阈值表征风机叶片上允许的最大覆冰质量,风机状态变量设定值包括风机叶片桨距角设定值和风机转速设定值;The first module is used to obtain environmental variable data in real time, obtain blade ice mass threshold and fan state variable setting value; wherein the environmental variable data includes wind speed data, temperature data, air moisture content data and supercooled water drop average effective diameter data of the current environment, the blade ice mass threshold represents the maximum ice mass allowed on the fan blade, and the fan state variable setting value includes the fan blade pitch angle setting value and the fan speed setting value;

第二模块,用于根据叶片覆冰质量阈值和风机状态变量设定值确定危险范围;The second module is used to determine the danger range according to the blade ice mass threshold and the set value of the wind turbine state variable;

第三模块,用于根据环境变量数据和叶片覆冰质量阈值确定最小叶片桨距角参考值;The third module is used to determine a minimum blade pitch angle reference value according to the environmental variable data and the blade icing mass threshold;

第四模块,用于将环境变量数据与危险范围进行比较,若环境变量数据落入危险范围,将最小叶片桨距角参考值作为目标叶片桨距角参考值;若环境变量数据未落入危险范围,将第一预设值作为目标叶片桨距角参考值;其中,最小叶片桨距角参考值表征风机叶片覆冰质量达到叶片覆冰质量阈值时的最小叶片桨距角,所述第一预设值表征风机叶片覆冰质量最小的叶片桨距角;The fourth module is used to compare the environmental variable data with the danger range. If the environmental variable data falls into the danger range, the minimum blade pitch angle reference value is used as the target blade pitch angle reference value; if the environmental variable data does not fall into the danger range, the first preset value is used as the target blade pitch angle reference value; wherein the minimum blade pitch angle reference value represents the minimum blade pitch angle when the ice coating mass of the wind turbine blade reaches the blade ice coating mass threshold value, and the first preset value represents the blade pitch angle with the minimum ice coating mass of the wind turbine blade;

第五模块,用于根据目标叶片桨距角参考值对风机叶片进行调整。The fifth module is used to adjust the wind turbine blades according to the target blade pitch angle reference value.

可以理解的是,上述方法实施例中的内容均适用于本系统实施例中,本系统实施例所具体实现的功能与上述方法实施例相同,并且达到的有益效果与上述方法实施例所达到的有益效果也相同。It can be understood that the contents of the above method embodiments are all applicable to the present system embodiments, the functions specifically implemented by the present system embodiments are the same as those of the above method embodiments, and the beneficial effects achieved are also the same as those achieved by the above method embodiments.

本申请实施例还提供了一种电子设备,电子设备包括存储器和处理器,存储器存储有计算机程序,处理器执行计算机程序时实现上述风机叶片防覆冰方法。该电子设备可以为包括平板电脑、车载电脑等任意智能终端。The embodiment of the present application also provides an electronic device, the electronic device includes a memory and a processor, the memory stores a computer program, and the processor implements the above-mentioned wind turbine blade anti-icing method when executing the computer program. The electronic device can be any intelligent terminal including a tablet computer, a car computer, etc.

可以理解的是,上述方法实施例中的内容均适用于本设备实施例中,本设备实施例所具体实现的功能与上述方法实施例相同,并且达到的有益效果与上述方法实施例所达到的有益效果也相同。It can be understood that the contents of the above method embodiments are all applicable to the present device embodiments, the functions specifically implemented by the present device embodiments are the same as those of the above method embodiments, and the beneficial effects achieved are also the same as those achieved by the above method embodiments.

请参阅图11,图11示意了另一实施例的电子设备的硬件结构,电子设备包括:Please refer to FIG. 11 , which schematically shows the hardware structure of an electronic device according to another embodiment. The electronic device includes:

处理器1101,可以采用通用的CPU(CentralProcessingUnit,中央处理器)、微处理器、应用专用集成电路(ApplicationSpecificIntegratedCircuit,ASIC)、或者一个或多个集成电路等方式实现,用于执行相关程序,以实现本申请实施例所提供的技术方案;The processor 1101 may be implemented by a general-purpose CPU (Central Processing Unit), a microprocessor, an application-specific integrated circuit (Application Specific Integrated Circuit, ASIC), or one or more integrated circuits, and is used to execute relevant programs to implement the technical solutions provided in the embodiments of the present application;

存储器1102,可以采用只读存储器(ReadOnlyMemory,ROM)、静态存储设备、动态存储设备或者随机存取存储器(RandomAccessMemory,RAM)等形式实现。存储器1102可以存储操作系统和其他应用程序,在通过软件或者固件来实现本说明书实施例所提供的技术方案时,相关的程序代码保存在存储器1102中,并由处理器1101来调用执行本申请实施例的风机叶片防覆冰方法;The memory 1102 can be implemented in the form of a read-only memory (ROM), a static storage device, a dynamic storage device, or a random access memory (RAM). The memory 1102 can store an operating system and other application programs. When the technical solution provided in the embodiment of this specification is implemented by software or firmware, the relevant program code is stored in the memory 1102, and the processor 1101 calls and executes the wind turbine blade anti-icing method of the embodiment of this application;

输入/输出接口1103,用于实现信息输入及输出;Input/output interface 1103, used to implement information input and output;

通信接口1104,用于实现本设备与其他设备的通信交互,可以通过有线方式(例如USB、网线等)实现通信,也可以通过无线方式(例如移动网络、WIFI、蓝牙等)实现通信;The communication interface 1104 is used to realize the communication interaction between the device and other devices. The communication can be realized through a wired manner (such as USB, network cable, etc.) or a wireless manner (such as mobile network, WIFI, Bluetooth, etc.);

总线1105,在设备的各个组件(例如处理器1101、存储器1102、输入/输出接口1103和通信接口1104)之间传输信息;A bus 1105 that transmits information between various components of the device (e.g., the processor 1101, the memory 1102, the input/output interface 1103, and the communication interface 1104);

其中处理器1101、存储器1102、输入/输出接口1103和通信接口1104通过总线1105实现彼此之间在设备内部的通信连接。The processor 1101 , the memory 1102 , the input/output interface 1103 and the communication interface 1104 are connected to each other in communication within the device via the bus 1105 .

此外,本申请实施例还公开了一种计算机程序产品或计算机程序,计算机程序产品或计算机程序存储在计算机可读存介质中。计算机设备的处理器可以从计算机可读存储介质读取该计算机程序,处理器执行该计算机程序,使得该计算机设备执行上述的方法。同样地,上述方法实施例中的内容均适用于本存储介质实施例中,本存储介质实施例所具体实现的功能与上述方法实施例相同,并且达到的有益效果与上述方法实施例所达到的有益效果也相同。In addition, the embodiment of the present application also discloses a computer program product or a computer program, and the computer program product or the computer program is stored in a computer-readable storage medium. The processor of the computer device can read the computer program from the computer-readable storage medium, and the processor executes the computer program, so that the computer device performs the above method. Similarly, the contents in the above method embodiment are all applicable to the storage medium embodiment, and the functions specifically implemented by the storage medium embodiment are the same as those in the above method embodiment, and the beneficial effects achieved are also the same as those achieved by the above method embodiment.

本发明实施例还提供了一种计算机可读存储介质,该计算机可读存储介质存储有处理器可执行的程序,所述处理器可执行的程序在被处理器执行时用于实现上述的方法。An embodiment of the present invention further provides a computer-readable storage medium, which stores a program executable by a processor. The program executable by the processor is used to implement the above method when executed by the processor.

可以理解的是,上文中所公开方法中的全部或某些步骤、系统可以被实施为软件、固件、硬件及其适当的组合。某些物理组件或所有物理组件可以被实施为由处理器,如中央处理器、数字信号处理器或微处理器执行的软件,或者被实施为硬件,或者被实施为集成电路,如专用集成电路。这样的软件可以分布在计算机可读介质上,计算机可读介质可以包括计算机存储介质(或非暂时性介质)和通信介质(或暂时性介质)。如本领域普通技术人员公知的,术语计算机存储介质包括在用于存储信息(诸如计算机可读指令、数据结构、程序模块或其他数据)的任何方法或技术中实施的易失性和非易失性、可移除和不可移除介质。计算机存储介质包括但不限于RAM、ROM、EEPROM、闪存或其他存储器技术、CD-ROM、数字多功能盘(DVD)或其他光盘存储、磁盒、磁带、磁盘存储或其他磁存储装置、或者可以用于存储期望的信息并且可以被计算机访问的任何其他的介质。此外,本领域普通技术人员公知的是,通信介质通常包含计算机可读指令、数据结构、程序模块或者诸如载波或其他传输机制之类的调制数据信号中的其他数据,并且可包括任何信息递送介质。It is understood that all or some steps and systems in the disclosed method above can be implemented as software, firmware, hardware and appropriate combinations thereof. Some physical components or all physical components can be implemented as software executed by a processor, such as a central processing unit, a digital signal processor or a microprocessor, or implemented as hardware, or implemented as an integrated circuit, such as an application-specific integrated circuit. Such software can be distributed on a computer-readable medium, and the computer-readable medium can include a computer storage medium (or a non-transitory medium) and a communication medium (or a temporary medium). As known to those of ordinary skill in the art, the term computer storage medium includes volatile and non-volatile, removable and non-removable media implemented in any method or technology for storing information (such as computer-readable instructions, data structures, program modules or other data). Computer storage media include, but are not limited to, RAM, ROM, EEPROM, flash memory or other memory technology, CD-ROM, digital versatile disk (DVD) or other optical disk storage, magnetic cassette, magnetic tape, disk storage or other magnetic storage device, or any other medium that can be used to store desired information and can be accessed by a computer. Furthermore, it is well known to those skilled in the art that communication media typically embodies computer readable instructions, data structures, program modules, or other data in a modulated data signal such as a carrier wave or other transport mechanism, and may include any information delivery media.

本申请实施例提供的风机叶片防覆冰方法、风机叶片防覆冰系统、电子设备及存储介质,其通过实时获取风机的当前环境变量数据,获取风机的叶片覆冰质量阈值和风机状态变量设定值,根据叶片覆冰质量阈值和风机状态变量设定值确定风机环境变量的危险范围,将实时获取的当前环境变量数据与风机环境变量的危险范围进行比较,如果获取的环境变量数据落入危险范围内,将最小叶片桨距角参考值作为目标叶片桨距角参考值;如果获取的环境变量数据没有落入危险范围内,将第一预设值作为目标叶片桨距角参考值;确定目标叶片桨距角参考值后,根据目标叶片桨距角参考值对风机叶片的桨距角进行调整;根据风机当前的实时环境变量数据和确定的危险范围对风机叶片的桨距角进行调整,不需要对现有风机进行改造,防覆冰实现成本低;根据风机当前的实时环境变量数据和确定的危险范围进行比较,在实时环境变量数据落入危险范围时,主动调整风机叶片的桨距角降低叶片覆冰风险,提高叶片防覆冰的效果。The embodiments of the present application provide a method for preventing icing on fan blades, a system for preventing icing on fan blades, an electronic device and a storage medium, which obtain the current environmental variable data of the fan in real time, obtain the blade icing quality threshold of the fan and the setting value of the fan state variable, determine the dangerous range of the fan environmental variable according to the blade icing quality threshold and the setting value of the fan state variable, compare the current environmental variable data obtained in real time with the dangerous range of the fan environmental variable, and if the obtained environmental variable data falls within the dangerous range, use the minimum blade pitch angle reference value as the target blade pitch angle reference value; if the obtained environmental variable data does not fall .... When it falls within the danger range, the first preset value is used as the target blade pitch angle reference value; after determining the target blade pitch angle reference value, the pitch angle of the wind turbine blades is adjusted according to the target blade pitch angle reference value; the pitch angle of the wind turbine blades is adjusted according to the current real-time environmental variable data of the wind turbine and the determined danger range, without the need to modify the existing wind turbine, and the anti-icing cost is low; the current real-time environmental variable data of the wind turbine is compared with the determined danger range, and when the real-time environmental variable data falls into the danger range, the pitch angle of the wind turbine blades is actively adjusted to reduce the risk of blade icing and improve the effect of blade anti-icing.

以上是对本发明的较佳实施进行了具体说明,但本发明创造并不限于所述实施例,熟悉本领域的技术人员在不违背本发明精神的前提下还可做出种种的等同变形或替换,这些等同的变形或替换均包含在本申请权利要求所限定的范围内。The above is a specific description of the preferred implementation of the present invention, but the invention is not limited to the embodiments. Those skilled in the art can make various equivalent modifications or substitutions without violating the spirit of the present invention. These equivalent modifications or substitutions are all included in the scope defined by the claims of this application.

Claims (10)

1.一种风机叶片防覆冰方法,其特征在于,包括以下步骤:1. A method for preventing icing of wind turbine blades, comprising the following steps: 实时获取环境变量数据,获取叶片覆冰质量阈值和风机状态变量设定值;其中,所述环境变量数据包括当前环境的风速数据、温度数据、空气含水量数据以及过冷水滴平均有效直径数据,所述叶片覆冰质量阈值表征风机叶片上允许的最大覆冰质量,所述风机状态变量设定值包括风机叶片桨距角设定值和风机转速设定值;Acquire environmental variable data in real time, and acquire blade ice mass threshold and fan state variable setting value; wherein the environmental variable data includes wind speed data, temperature data, air moisture content data and supercooled water droplet average effective diameter data of the current environment, the blade ice mass threshold represents the maximum ice mass allowed on the fan blade, and the fan state variable setting value includes the fan blade pitch angle setting value and the fan speed setting value; 根据所述叶片覆冰质量阈值和所述风机状态变量设定值确定危险范围;Determining a danger range according to the blade icing mass threshold and the wind turbine state variable setting value; 根据所述环境变量数据和所述叶片覆冰质量阈值确定最小叶片桨距角参考值;Determine a minimum blade pitch angle reference value according to the environmental variable data and the blade icing mass threshold; 将所述环境变量数据与所述危险范围进行比较,若所述环境变量数据落入所述危险范围,将所述最小叶片桨距角参考值作为目标叶片桨距角参考值;若所述环境变量数据未落入所述危险范围,将第一预设值作为所述目标叶片桨距角参考值;其中,所述最小叶片桨距角参考值表征风机叶片覆冰质量达到所述叶片覆冰质量阈值时的最小叶片桨距角,所述第一预设值表征所述风机叶片覆冰质量最小的叶片桨距角;The environmental variable data is compared with the danger range. If the environmental variable data falls within the danger range, the minimum blade pitch angle reference value is used as the target blade pitch angle reference value; if the environmental variable data does not fall within the danger range, the first preset value is used as the target blade pitch angle reference value; wherein the minimum blade pitch angle reference value represents the minimum blade pitch angle when the ice coating mass of the wind turbine blade reaches the blade ice coating mass threshold value, and the first preset value represents the blade pitch angle when the ice coating mass of the wind turbine blade is the minimum; 根据所述目标叶片桨距角参考值对风机叶片进行调整。The wind turbine blades are adjusted according to the target blade pitch angle reference value. 2.根据权利要求1所述的方法,其特征在于,所述根据所述叶片覆冰质量阈值和所述风机状态变量设定值确定危险范围,具体包括:2. The method according to claim 1, characterized in that the step of determining the danger range according to the blade icing mass threshold and the wind turbine state variable setting value specifically comprises: 将所述叶片覆冰质量阈值和所述风机状态变量设定值代入预先建立的多元函数关系模型,并保持所述风机叶片桨距角不变,得到若干组环境变量范围;其中,所述环境变量包括风速、温度、过冷水滴平均有效直径以及空气含水量;Substituting the blade icing mass threshold and the fan state variable setting value into a pre-established multivariate function relationship model, and keeping the fan blade pitch angle unchanged, to obtain several sets of environmental variable ranges; wherein the environmental variables include wind speed, temperature, average effective diameter of supercooled water droplets, and air moisture content; 根据若干组所述环境变量范围确定危险变量。The risk variables are determined based on several sets of ranges of the environmental variables. 3.根据权利要求1所述的方法,其特征在于,所述根据所述环境变量数据和所述叶片覆冰质量阈值确定最小叶片桨距角参考值,具体包括:3. The method according to claim 1, characterized in that the step of determining the minimum blade pitch angle reference value according to the environmental variable data and the blade icing mass threshold comprises: 实时获取风机转速变量;Obtain fan speed variables in real time; 将所述环境变量数据与所述风机转速变量代入预先建立的多元函数关系模型,得到关系表达式;其中,所述关系表达式表征所述叶片覆冰质量与风机叶片桨距角之间的关系;Substituting the environmental variable data and the wind turbine speed variable into a pre-established multivariate function relationship model to obtain a relationship expression; wherein the relationship expression represents the relationship between the blade ice mass and the wind turbine blade pitch angle; 将所述叶片覆冰质量阈值代入所述关系表达式,计算得到最小叶片桨距角参考值。The blade icing mass threshold is substituted into the relational expression to calculate a minimum blade pitch angle reference value. 4.根据权利要求1所述的方法,其特征在于,所述根据所述目标叶片桨距角参考值对风机叶片进行调整,具体包括:4. The method according to claim 1, characterized in that the step of adjusting the wind turbine blades according to the target blade pitch angle reference value specifically comprises: 实时获取风机叶片的当前叶片桨距角;Obtain the current blade pitch angle of the wind turbine blades in real time; 根据所述当前叶片桨距角和所述目标叶片桨距角参考值计算调整值,根据所述调整值调整所述风机叶片的当前叶片桨距角,直至所述当前叶片桨距角与所述目标叶片桨距角参考值的差值满足预设条件。An adjustment value is calculated according to the current blade pitch angle and the target blade pitch angle reference value, and the current blade pitch angle of the wind turbine blade is adjusted according to the adjustment value until a difference between the current blade pitch angle and the target blade pitch angle reference value meets a preset condition. 5.根据权利要求2所述的方法,其特征在于,所述多元函数关系模型通过以下方式建立:5. The method according to claim 2, characterized in that the multivariate functional relationship model is established by: 对第一参数变量进行离散采样,得到采样数据;其中,所述第一参数变量包括环境风速、温度、过冷水滴平均有效直径、空气含水量、叶片桨距角;Discretely sampling the first parameter variable to obtain sampling data; wherein the first parameter variable includes ambient wind speed, temperature, average effective diameter of supercooled water droplets, air moisture content, and blade pitch angle; 根据所述采样数据进行仿真模拟,得到仿真叶片覆冰质量数据集;其中,所述仿真叶片覆冰质量数据集包括所述第一参数变量中一种或多种参数组合对应的叶片覆冰质量数据;Performing simulation according to the sampled data to obtain a simulated blade ice mass data set; wherein the simulated blade ice mass data set includes blade ice mass data corresponding to one or more parameter combinations in the first parameter variable; 根据所述仿真叶片覆冰质量数据集进行系统辨识,得到多元函数关系模型。System identification is performed based on the simulated blade ice mass data set to obtain a multivariate functional relationship model. 6.根据权利要求5所述的方法,其特征在于,所述根据所述仿真叶片覆冰质量数据集进行系统辨识,得到多元函数关系模型,具体包括:6. The method according to claim 5, characterized in that the system identification is performed according to the simulated blade ice mass data set to obtain a multivariate functional relationship model, specifically comprising: 将所述仿真叶片覆冰质量数据集输入数据分析软件,在固定其他变量参数的前提下,分别对每个参数进行多项式拟合,得到每个所述参数与叶片覆冰质量的关系模型;The simulated blade ice mass data set is input into the data analysis software, and under the premise of fixing other variable parameters, each parameter is respectively fitted with a polynomial to obtain a relationship model between each parameter and the blade ice mass; 对每个所述参数与叶片覆冰质量的关系模型进行最小二乘法计算,得到多元函数关系模型。The least squares method is used to calculate the relationship model between each parameter and the ice mass of the blade to obtain a multivariate function relationship model. 7.根据权利要求4所述的方法,其特征在于,所述根据当前叶片桨距角和目标叶片桨距角参考值计算调整值,包括:7. The method according to claim 4, characterized in that the calculating the adjustment value according to the current blade pitch angle and the target blade pitch angle reference value comprises: 根据当前叶片桨距角和参考值,采用第一公式计算调整值,所述第一公式为:According to the current blade pitch angle and the reference value, the adjustment value is calculated using the first formula, which is: 其中,k为调整值,τ为时间常数,kref为理想状态桨距角参考值,k为实际状态真实桨距角。Wherein, k is the adjustment value, τ is the time constant, k ref is the reference value of the pitch angle in the ideal state, and k is the real pitch angle in the actual state. 8.一种风机叶片防覆冰系统,其特征在于,所述系统包括:8. A wind turbine blade anti-icing system, characterized in that the system comprises: 第一模块,用于实时获取环境变量数据,获取叶片覆冰质量阈值和风机状态变量设定值;其中,所述环境变量数据包括当前环境的风速数据、温度数据、空气含水量数据以及过冷水滴平均有效直径数据,所述叶片覆冰质量阈值表征风机叶片上允许的最大覆冰质量,所述风机状态变量设定值包括风机叶片桨距角设定值和风机转速设定值;The first module is used to obtain environmental variable data in real time, obtain blade ice mass threshold and fan state variable setting value; wherein the environmental variable data includes wind speed data, temperature data, air moisture content data and supercooled water droplet average effective diameter data of the current environment, the blade ice mass threshold represents the maximum ice mass allowed on the fan blade, and the fan state variable setting value includes the fan blade pitch angle setting value and the fan speed setting value; 第二模块,用于根据所述叶片覆冰质量阈值和所述风机状态变量设定值确定危险范围;The second module is used to determine the danger range according to the blade ice mass threshold and the wind turbine state variable setting value; 第三模块,用于根据所述环境变量数据和所述叶片覆冰质量阈值确定最小叶片桨距角参考值;A third module is used to determine a minimum blade pitch angle reference value according to the environmental variable data and the blade icing mass threshold; 第四模块,用于将所述环境变量数据与所述危险范围进行比较,若所述环境变量数据落入所述危险范围,将所述最小叶片桨距角参考值作为目标叶片桨距角参考值;若所述环境变量数据未落入所述危险范围,将第一预设值作为所述目标叶片桨距角参考值;其中,所述最小叶片桨距角参考值表征风机叶片覆冰质量达到所述叶片覆冰质量阈值时的最小叶片桨距角,所述第一预设值表征所述风机叶片覆冰质量最小的叶片桨距角;The fourth module is used to compare the environmental variable data with the danger range, and if the environmental variable data falls into the danger range, use the minimum blade pitch angle reference value as the target blade pitch angle reference value; if the environmental variable data does not fall into the danger range, use the first preset value as the target blade pitch angle reference value; wherein the minimum blade pitch angle reference value represents the minimum blade pitch angle when the ice coating mass of the wind turbine blade reaches the blade ice coating mass threshold, and the first preset value represents the blade pitch angle with the minimum ice coating mass of the wind turbine blade; 第五模块,用于根据所述目标叶片桨距角参考值对风机叶片进行调整。The fifth module is used to adjust the wind turbine blades according to the target blade pitch angle reference value. 9.一种电子设备,其特征在于,包括:9. An electronic device, comprising: 至少一个处理器;at least one processor; 至少一个存储器,用于存储至少一个程序;at least one memory for storing at least one program; 当所述至少一个程序被所述至少一个处理器执行,使得所述至少一个处理器实现如权利要求1-7任一项所述的方法。When the at least one program is executed by the at least one processor, the at least one processor implements the method according to any one of claims 1 to 7. 10.一种计算机可读存储介质,其中存储有处理器可执行的程序,其特征在于,所述处理器可执行的程序在由处理器执行时用于执行如权利要求1-7任一项所述的方法。10. A computer-readable storage medium storing a processor-executable program, wherein the processor-executable program is used to execute the method according to any one of claims 1 to 7 when executed by a processor.
CN202311740456.7A 2023-12-15 2023-12-15 Anti-icing method and system for fan blade, electronic equipment and storage medium Active CN117803521B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202311740456.7A CN117803521B (en) 2023-12-15 2023-12-15 Anti-icing method and system for fan blade, electronic equipment and storage medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202311740456.7A CN117803521B (en) 2023-12-15 2023-12-15 Anti-icing method and system for fan blade, electronic equipment and storage medium

Publications (2)

Publication Number Publication Date
CN117803521A CN117803521A (en) 2024-04-02
CN117803521B true CN117803521B (en) 2024-07-12

Family

ID=90429084

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202311740456.7A Active CN117803521B (en) 2023-12-15 2023-12-15 Anti-icing method and system for fan blade, electronic equipment and storage medium

Country Status (1)

Country Link
CN (1) CN117803521B (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111295600A (en) * 2017-10-30 2020-06-16 福斯4X股份有限公司 Method for forecasting wind farm production under icing conditions
CN116044683A (en) * 2023-01-19 2023-05-02 云南电力试验研究院(集团)有限公司 Wind turbine generator blade icing prevention method based on meteorological early warning information and active control

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9759068B2 (en) * 2013-02-28 2017-09-12 General Electric Company System and method for controlling a wind turbine based on identified surface conditions of the rotor blades
US9638168B2 (en) * 2013-04-11 2017-05-02 General Electric Company System and method for detecting ice on a wind turbine rotor blade
CN116306346A (en) * 2023-01-19 2023-06-23 暨南大学 A Data-Driven Method for Predicting Icing Quality of Wind Turbine Blades

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111295600A (en) * 2017-10-30 2020-06-16 福斯4X股份有限公司 Method for forecasting wind farm production under icing conditions
CN116044683A (en) * 2023-01-19 2023-05-02 云南电力试验研究院(集团)有限公司 Wind turbine generator blade icing prevention method based on meteorological early warning information and active control

Also Published As

Publication number Publication date
CN117803521A (en) 2024-04-02

Similar Documents

Publication Publication Date Title
EP3613982B1 (en) Method for controlling operation of a wind turbine
JP7194868B1 (en) Methods and apparatus for detecting yaw anomalies with respect to wind, and devices and storage media thereof
CN101684774B (en) Wind power generation system and wind measuring method of wind power generator
CN110094298B (en) Method and device for adaptive adjustment of cut-out strategy
CN105844361B (en) Wind power prediction method, uncoiling method and device for wind turbine
EP4194684A1 (en) Load control method and apparatus for wind turbine generator system
CN108894918A (en) Pitch control method and device and computer readable storage medium
CN108488038A (en) A kind of Yaw control method of wind power generating set
CN111379665B (en) Variable pitch control method and system of wind generating set
CN102797631A (en) Method, system and device for carrying out online self-correcting on optimal gain of wind generating set
CN111749845A (en) Load reduction control method and device for wind turbine generator
US12104576B2 (en) Method and system for parameterization of a controller for a wind energy installation and/or operation of a wind energy installation
CN117803521B (en) Anti-icing method and system for fan blade, electronic equipment and storage medium
CN108612624A (en) A method and device for controlling the speed of a wind power generator
CN107514336B (en) Wind speed information processing method and device and pitch control method, device and system
CN106246467B (en) The wind-driven power generation control system and its control method of wind power plant
CN116484652B (en) Wake interference detection method in wind farms based on blade root load
CN113027674A (en) Control method and device of wind generating set
CN117329073A (en) Wind turbine hub load suppression method with independent pitch and yaw collaborative control
CN111456898A (en) Method, system, medium and electronic device for adjusting generated power of wind turbine generator
CN117590027A (en) Deficiency correction method and system for wind meter of wind turbine generator and electronic equipment
CN116816597A (en) Control method and system of wind turbine generator, electronic equipment and storage medium
CN116720437A (en) Modeling method, system, terminal and medium for clearance distance of wind turbine generator blade
CN108537372A (en) A kind of Yaw control method of wind direction prediction technique and wind power generating set
CN110943480B (en) Power system frequency modulation method, device, computer equipment and storage medium

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant