CN117797645B - Method for predicting internal current of bipolar membrane electrodialysis membrane reactor device - Google Patents
Method for predicting internal current of bipolar membrane electrodialysis membrane reactor device Download PDFInfo
- Publication number
- CN117797645B CN117797645B CN202410217241.5A CN202410217241A CN117797645B CN 117797645 B CN117797645 B CN 117797645B CN 202410217241 A CN202410217241 A CN 202410217241A CN 117797645 B CN117797645 B CN 117797645B
- Authority
- CN
- China
- Prior art keywords
- leakage current
- chamber
- unit
- water collection
- resistance
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000012528 membrane Substances 0.000 title claims abstract description 98
- 238000000909 electrodialysis Methods 0.000 title claims abstract description 25
- 238000000034 method Methods 0.000 title claims abstract description 18
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 79
- 239000004744 fabric Substances 0.000 claims abstract description 41
- 239000002253 acid Substances 0.000 claims abstract description 37
- 239000003513 alkali Substances 0.000 claims abstract description 33
- 239000000463 material Substances 0.000 claims abstract description 24
- 239000003011 anion exchange membrane Substances 0.000 claims description 9
- 238000005341 cation exchange Methods 0.000 claims description 9
- 239000011159 matrix material Substances 0.000 claims description 6
- 239000002585 base Substances 0.000 claims description 4
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 3
- 238000005192 partition Methods 0.000 description 2
- 239000011780 sodium chloride Substances 0.000 description 2
- 238000006467 substitution reaction Methods 0.000 description 2
- 101100233916 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) KAR5 gene Proteins 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000000306 component Substances 0.000 description 1
- 239000008358 core component Substances 0.000 description 1
- 239000008367 deionised water Substances 0.000 description 1
- 229910021641 deionized water Inorganic materials 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 239000000523 sample Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D61/00—Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
- B01D61/42—Electrodialysis; Electro-osmosis ; Electro-ultrafiltration; Membrane capacitive deionization
- B01D61/44—Ion-selective electrodialysis
- B01D61/52—Accessories; Auxiliary operation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D61/00—Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
- B01D61/42—Electrodialysis; Electro-osmosis ; Electro-ultrafiltration; Membrane capacitive deionization
- B01D61/44—Ion-selective electrodialysis
- B01D61/445—Ion-selective electrodialysis with bipolar membranes; Water splitting
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D61/00—Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
- B01D61/42—Electrodialysis; Electro-osmosis ; Electro-ultrafiltration; Membrane capacitive deionization
- B01D61/44—Ion-selective electrodialysis
- B01D61/46—Apparatus therefor
- B01D61/48—Apparatus therefor having one or more compartments filled with ion-exchange material, e.g. electrodeionisation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D65/00—Accessories or auxiliary operations, in general, for separation processes or apparatus using semi-permeable membranes
- B01D65/10—Testing of membranes or membrane apparatus; Detecting or repairing leaks
- B01D65/104—Detection of leaks in membrane apparatus or modules
Landscapes
- Engineering & Computer Science (AREA)
- Water Supply & Treatment (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Health & Medical Sciences (AREA)
- Urology & Nephrology (AREA)
- Separation Using Semi-Permeable Membranes (AREA)
Abstract
本发明涉及双极膜电渗析膜堆技术领域,具体的,涉及一种双极膜电渗析膜堆装置内部电流预测方法。该方法包括以下步骤:S1、计算酸室泄露电流差分算子,S2、计算料室泄露电流差分算子,S3、计算碱室泄露电流差分算子,S4、计算流经第1单元处各隔室布/集水槽部位泄露电流,S5、计算流经第2单元处各隔室布/集水槽部位泄露电流,S6、计算流经第K单元处各隔室布/集水槽部位泄露电流,S7、计算流经第K单元处各隔室布/集水孔部位泄露电流,S8、计算流经第K单元处各隔室有效面积部位有效电流。利用本方法可以准确可靠的预测泄露电流及有效电流,进一步优化膜堆装置构型设计以提高过程效率。
The present invention relates to the technical field of bipolar membrane electrodialysis membrane stacks, and specifically, to a method for predicting the internal current of a bipolar membrane electrodialysis membrane stack device. The method comprises the following steps: S1, calculating the differential operator of the leakage current of the acid chamber, S2, calculating the differential operator of the leakage current of the material chamber, S3, calculating the differential operator of the leakage current of the alkali chamber, S4, calculating the leakage current of each compartment cloth/water collection trough part flowing through the first unit, S5, calculating the leakage current of each compartment cloth/water collection trough part flowing through the second unit, S6, calculating the leakage current of each compartment cloth/water collection trough part flowing through the Kth unit, S7, calculating the leakage current of each compartment cloth/water collection hole part flowing through the Kth unit, and S8, calculating the effective current of each compartment effective area part flowing through the Kth unit. The present method can accurately and reliably predict the leakage current and the effective current, and further optimize the configuration design of the membrane stack device to improve the process efficiency.
Description
技术领域Technical Field
本发明涉及双极膜电渗析膜堆技术领域,具体的,涉及一种双极膜电渗析膜堆装置内部电流预测方法。The present invention relates to the technical field of bipolar membrane electrodialysis membrane stacks, and in particular to a method for predicting the internal current of a bipolar membrane electrodialysis membrane stack device.
背景技术Background technique
双极膜电渗析是一种新型电渗析技术,可原位将低价值的无机/有机盐转化为对应的酸碱。同时,双极膜电渗析技术具有工艺简单、能耗低及环境友好等特点,因此该技术广泛应用于化工、食品、医药及环境等众多领域。双极膜电渗析系统核心部件是膜堆装置,其包含大量非金属材料如膜片、隔板等。膜堆装置中非金属组件不仅可构成各自相对独立工作的液路,而且随外部电流的输入形成对应的欧姆电路。流经膜堆装置有效面积部位的电流可称为有效电流,流经布/集水槽及布/集水孔部位电流称为泄露电流。流经上述部位的电流不可避免地转化为焦耳热,从而降低装置能效比,严重时损害设备安全。据调研发现,工业规模的双极膜电渗析膜堆装置内部热效应显著,严重影响设备安全稳定运行。然而,至今还未建立双极膜电渗析膜堆装置内部电流预测方法。Bipolar membrane electrodialysis is a new type of electrodialysis technology that can convert low-value inorganic/organic salts into corresponding acids and bases in situ. At the same time, bipolar membrane electrodialysis technology has the characteristics of simple process, low energy consumption and environmental friendliness, so this technology is widely used in many fields such as chemical industry, food, medicine and environment. The core component of the bipolar membrane electrodialysis system is the membrane stack device, which contains a large number of non-metallic materials such as diaphragms and partitions. The non-metallic components in the membrane stack device can not only constitute the liquid circuits that work relatively independently, but also form corresponding ohmic circuits with the input of external current. The current flowing through the effective area of the membrane stack device can be called the effective current, and the current flowing through the cloth/water collection tank and cloth/water collection hole is called the leakage current. The current flowing through the above parts is inevitably converted into Joule heat, thereby reducing the energy efficiency ratio of the device, and in severe cases, it damages the safety of the equipment. According to the survey, the internal thermal effect of the industrial-scale bipolar membrane electrodialysis membrane stack device is significant, which seriously affects the safe and stable operation of the equipment. However, a method for predicting the internal current of the bipolar membrane electrodialysis membrane stack device has not yet been established.
发明内容Summary of the invention
本发明的目的是针对以上问题提供一种双极膜电渗析膜堆装置内部电流预测方法,预测准确可靠,可以用于后续指标预测。The purpose of the present invention is to provide a method for predicting the internal current of a bipolar membrane electrodialysis membrane stack device in view of the above problems. The prediction is accurate and reliable and can be used for subsequent indicator prediction.
为达到上述目的,本发明公开了一种双极膜电渗析膜堆装置内部电流预测方法,该方法包括以下步骤:To achieve the above object, the present invention discloses a method for predicting the internal current of a bipolar membrane electrodialysis membrane stack device, the method comprising the following steps:
S1、采集酸室布/集水孔电阻,Ω、酸室布/集水槽电阻/>,Ω及膜堆单元电阻,Ω,膜堆单元电阻/>包含酸室电阻、料室电阻、碱室电阻、阴离子交换膜电阻、阳离子交换膜电阻及双极膜电阻,确定酸室泄露电流差分算子/>、/>;S1, collecting acid chamber cloth/water collection hole resistance ,Ω, acid chamber cloth/water collection tank resistance/> ,Ω and membrane stack unit resistance ,Ω, membrane stack unit resistance/> Including acid chamber resistance, material chamber resistance, alkali chamber resistance, anion exchange membrane resistance, cation exchange membrane resistance and bipolar membrane resistance, determine the acid chamber leakage current differential operator/> 、/> ;
S2、采集料室布/集水孔电阻,Ω、料室布/集水槽电阻/>,Ω,确定料室泄露电流差分算子/>、/>;S2, collection chamber cloth/water collection hole resistance ,Ω, chamber cloth/water collection tank resistance/> , Ω, determine the chamber leakage current differential operator/> 、/> ;
S3、采集碱室布/集水孔电阻,Ω;碱室布/集水槽电阻/>,Ω;确定碱室泄露电流差分算子/>、/>;S3, collect the resistance of alkali chamber cloth/water collection hole ,Ω; resistance of alkali chamber cloth/water collection tank/> , Ω; Determine the differential operator of the alkali chamber leakage current/> 、/> ;
S4、采集膜堆单元数N;酸室电阻与阴离子交换膜电阻之和,Ω;料室电阻与阳离子交换膜电阻之和/>,Ω;碱室电阻与双极膜电阻之和/>,Ω;输入电流I,A;膜堆单元膜电势之和/>,膜堆单元膜电势之和/>包含阴离子交换膜膜电势、阳离子交换膜膜电势及双极膜膜电势,V,确定流经第1单元处酸室布/集水槽部位泄露电流/>,A;流经第1单元处料室布/集水槽部位泄露电流/>,A;流经第1单元处碱室布/集水槽部位泄露电流/>,A;S4, the number of membrane stack units N; the sum of the acid chamber resistance and the anion exchange membrane resistance ,Ω; the sum of the resistance of the material chamber and the resistance of the cation exchange membrane/> ,Ω; the sum of the base chamber resistance and the bipolar membrane resistance/> ,Ω; input current I,A; the sum of the membrane potentials of the membrane stack units/> , the sum of the membrane potentials of the membrane stack units/> Including the membrane potential of the anion exchange membrane, the membrane potential of the cation exchange membrane and the membrane potential of the bipolar membrane, V, to determine the leakage current flowing through the acid chamber/water collection tank at the first unit/> , A; leakage current flowing through the material chamber cloth/water collection tank at the first unit/> , A; leakage current flowing through the alkali chamber cloth/water collection tank of the first unit/> , A;
S5、确定流经第2单元处酸室布/集水槽部位泄露电流,A;流经第2单元处料室布/集水槽部位泄露电流/>,A;流经第2单元处碱室布/集水槽部位泄露电流/>,A;S5. Determine the leakage current flowing through the acid chamber/water collection tank at unit 2 , A; leakage current flowing through the material chamber cloth/water collection tank at the second unit/> , A; leakage current flowing through the alkali chamber/water collection tank of the second unit/> , A;
S6、确定流经第K单元处酸室布/集水槽部位泄露电流,A;流经第K单元处料室布/集水槽部位泄露电流/>,A;流经第K单元处碱室布/集水槽部位泄露电流/>,A;S6. Determine the leakage current flowing through the acid chamber/water collection tank at unit K. , A; leakage current flowing through the material chamber cloth/water collection tank at unit K/> , A; leakage current flowing through the alkali chamber/water collection tank at unit K/> , A;
S7、确定流经第K单元处酸室布/集水孔部位泄露电流,A;流经第K单元处料室布/集水孔部位泄露电流/>,A;流经第K单元处碱室布/集水孔部位泄露电流/>,A;S7. Determine the leakage current flowing through the acid chamber/water collection hole at unit K. , A; leakage current flowing through the material chamber cloth/water collection hole at the Kth unit/> , A; leakage current flowing through the alkali chamber/water collection hole at unit K/> , A;
S8、确定流经第K单元处酸室有效面积部位有效电流,A;流经第K单元处料室有效面积部位有效电流/>,A;流经第K单元处碱室有效面积部位有效电流/>,A。S8. Determine the effective current flowing through the effective area of the acid chamber at unit K. , A; effective current flowing through the effective area of the material chamber at the Kth unit/> , A; effective current flowing through the effective area of the alkali chamber at the Kth unit/> ,A.
优选的,在步骤S1中,酸室泄露电流差分算子、/>的计算公式如下:Preferably, in step S1, the acid chamber leakage current differential operator 、/> The calculation formula is as follows:
;(1); ;(1);
其中,、/>为公式(1)的根。in, 、/> is the root of formula (1).
优选的,在步骤S2中,料室泄露电流差分算子、/>的计算公式如下:Preferably, in step S2, the chamber leakage current differential operator 、/> The calculation formula is as follows:
;(2); ;(2);
其中,、/>为公式(2)的根。in, 、/> is the root of formula (2).
优选的,在步骤S3中,碱室泄露电流差分算子、/>的计算公式如下:Preferably, in step S3, the alkali chamber leakage current differential operator 、/> The calculation formula is as follows:
;(3); ; (3);
其中,、/>为公式(3)的根。in, 、/> is the root of formula (3).
优选的,在步骤S4中,流经第1单元处各隔室布/集水槽部位泄露电流计算公式如下:Preferably, in step S4, the calculation formula for the leakage current flowing through each compartment cloth/water collecting trough at the first unit is as follows:
;(4); ; (4);
;(5); ; (5);
;(6); ; (6);
其中,A-1为矩阵A的逆矩阵;为/>;/>为/>;/>为/>;/>为;/>为/>;/>为/>;/>为/>;为/>;/>为/>。Among them, A -1 is the inverse matrix of matrix A; For/> ; /> For/> ; /> For/> ; /> for ; /> For/> ; /> For/> ; /> For/> ; For/> ; /> For/> .
优选的,在步骤S5中,流经第2单元处各隔室布/集水槽部位泄露电流计算公式如下:Preferably, in step S5, the calculation formula for the leakage current flowing through each compartment/water collecting tank at the second unit is as follows:
;(7)。 ; (7).
优选的,在步骤S6中,流经第K单元处各隔室布/集水槽部位泄露电流计算公式如下:Preferably, in step S6, the calculation formula for the leakage current flowing through each compartment/water collection tank at the Kth unit is as follows:
;(8); ;(8);
;(9); ;(9);
;(10)。 ; (10).
优选的,在步骤S7中,流经第K单元处各隔室布/集水孔部位泄露电流计算公式如下:Preferably, in step S7, the calculation formula for the leakage current flowing through each compartment cloth/water collection hole at the Kth unit is as follows:
;(11); ; (11);
;(12); ; (12);
;(13)。 ; (13).
优选的,在步骤S8中,流经第K单元处各隔室有效面积部位有效电流计算公式如下:Preferably, in step S8, the effective current flowing through the effective area of each compartment at the Kth unit is calculated as follows:
;(14); ; (14);
;(15); ; (15);
。(16)。 . (16).
综上所述,本发明的有益效果在于:利用本方法可以准确可靠的预测各隔室布/集水孔部位泄露电流及各隔室有效面积部位有效电流,可以用于后续指标预测,进一步优化膜堆装置构型设计以提高过程效率。In summary, the beneficial effects of the present invention are: the present method can be used to accurately and reliably predict the leakage current of each compartment layout/water collection hole and the effective current of each compartment effective area, which can be used for subsequent indicator prediction and further optimize the configuration design of the membrane stack device to improve process efficiency.
附图说明BRIEF DESCRIPTION OF THE DRAWINGS
图1是采用1单元BP-A-C三隔室双极膜电渗析系统的原理示意图;Fig. 1 is a schematic diagram of the principle of a 1-unit BP-A-C three-compartment bipolar membrane electrodialysis system;
图2是采用N单元BP-A-C三隔室双极膜电渗析系统的结构示意图;Fig. 2 is a schematic diagram of the structure of a three-compartment bipolar membrane electrodialysis system using an N-unit BP-A-C;
图3是采用N单元BP-A-C三隔室双极膜电渗析系统中膜堆的结构示意图;FIG3 is a schematic diagram of the structure of a membrane stack in a BP-A-C three-compartment bipolar membrane electrodialysis system using an N-unit;
图4是采用N单元BP-A-C三隔室双极膜电渗析系统中隔板的结构示意图。Figure 4 is a schematic diagram of the structure of the partition in the N-unit BP-A-C three-compartment bipolar membrane electrodialysis system.
具体实施方式Detailed ways
下面结合附图和实施例,对本发明的具体实施方式作进一步详细描述。以下实施例用于说明本发明,但不用来限制本发明的范围。The specific implementation of the present invention is further described in detail below in conjunction with the accompanying drawings and examples. The following examples are used to illustrate the present invention, but are not intended to limit the scope of the present invention.
如图1到4所示,一种双极膜电渗析膜堆装置内部电流预测方法,该方法包括以下步骤:As shown in FIGS. 1 to 4 , a method for predicting the internal current of a bipolar membrane electrodialysis stack device comprises the following steps:
S1、采集酸室布/集水孔电阻,Ω、酸室布/集水槽电阻/>,Ω及膜堆单元电阻,Ω,膜堆单元电阻/>包含酸室电阻、料室电阻、碱室电阻、阴离子交换膜电阻、阳离子交换膜电阻及双极膜电阻,确定酸室泄露电流差分算子/>、/>;S1, collecting acid chamber cloth/water collection hole resistance ,Ω, acid chamber cloth/water collection tank resistance/> ,Ω and membrane stack unit resistance ,Ω, membrane stack unit resistance/> Including acid chamber resistance, material chamber resistance, alkali chamber resistance, anion exchange membrane resistance, cation exchange membrane resistance and bipolar membrane resistance, determine the acid chamber leakage current differential operator/> 、/> ;
S2、采集料室布/集水孔电阻,Ω、料室布/集水槽电阻/>,Ω,确定料室泄露电流差分算子/>、/>;S2, collection chamber cloth/water collection hole resistance ,Ω, chamber cloth/water collection tank resistance/> , Ω, determine the chamber leakage current differential operator/> 、/> ;
S3、采集碱室布/集水孔电阻,Ω;碱室布/集水槽电阻/>,Ω;确定碱室泄露电流差分算子/>、/>;S3, collect the resistance of alkali chamber cloth/water collection hole ,Ω; resistance of alkali chamber cloth/water collection tank/> , Ω; Determine the differential operator of the alkali chamber leakage current/> 、/> ;
S4、采集膜堆单元数N;酸室电阻与阴离子交换膜电阻之和,Ω;料室电阻与阳离子交换膜电阻之和/>,Ω;碱室电阻与双极膜电阻之和/>,Ω;输入电流I,A;膜堆单元膜电势之和/>,膜堆单元膜电势之和/>包含阴离子交换膜膜电势、阳离子交换膜膜电势及双极膜膜电势,V,确定流经第1单元处酸室布/集水槽部位泄露电流/>,A;流经第1单元处料室布/集水槽部位泄露电流/>,A;流经第1单元处碱室布/集水槽部位泄露电流/>,A;S4, the number of membrane stack units N; the sum of the acid chamber resistance and the anion exchange membrane resistance ,Ω; the sum of the resistance of the material chamber and the resistance of the cation exchange membrane/> ,Ω; the sum of the base chamber resistance and the bipolar membrane resistance/> ,Ω; input current I,A; the sum of the membrane potentials of the membrane stack units/> , the sum of the membrane potentials of the membrane stack units/> Including the membrane potential of the anion exchange membrane, the membrane potential of the cation exchange membrane and the membrane potential of the bipolar membrane, V, to determine the leakage current flowing through the acid chamber/water collection tank at the first unit/> , A; leakage current flowing through the material chamber cloth/water collection tank at the first unit/> , A; leakage current flowing through the alkali chamber cloth/water collection tank of the first unit/> , A;
S5、确定流经第2单元处酸室布/集水槽部位泄露电流,A;流经第2单元处料室布/集水槽部位泄露电流/>,A;流经第2单元处碱室布/集水槽部位泄露电流/>,A;S5. Determine the leakage current flowing through the acid chamber/water collection tank at unit 2 , A; leakage current flowing through the material chamber cloth/water collection tank at the second unit/> , A; leakage current flowing through the alkali chamber/water collection tank of the second unit/> , A;
S6、确定流经第K单元处酸室布/集水槽部位泄露电流,A;流经第K单元处料室布/集水槽部位泄露电流/>,A;流经第K单元处碱室布/集水槽部位泄露电流/>,A;S6. Determine the leakage current flowing through the acid chamber/water collection tank at unit K. , A; leakage current flowing through the material chamber cloth/water collection tank at unit K/> , A; leakage current flowing through the alkali chamber/water collection tank at unit K/> , A;
S7、确定流经第K单元处酸室布/集水孔部位泄露电流,A;流经第K单元处料室布/集水孔部位泄露电流/>,A;流经第K单元处碱室布/集水孔部位泄露电流/>,A;S7. Determine the leakage current flowing through the acid chamber/water collection hole at unit K. , A; leakage current flowing through the material chamber cloth/water collection hole at the Kth unit/> , A; leakage current flowing through the alkali chamber/water collection hole at unit K/> , A;
S8、确定流经第K单元处酸室有效面积部位有效电流为,A;流经第K单元处料室有效面积部位有效电流/>,A;流经第K单元处碱室有效面积部位有效电流/>,A。S8. Determine the effective current flowing through the effective area of the acid chamber at unit K. is, A; the effective current flowing through the effective area of the material chamber at the Kth unit/> , A; effective current flowing through the effective area of the alkali chamber at the Kth unit/> ,A.
在步骤S1中,酸室泄露电流差分算子、/>的计算公式如下:In step S1, the acid chamber leakage current differential operator 、/> The calculation formula is as follows:
;(1); ;(1);
其中,、/>为公式(1)的根。in, 、/> is the root of formula (1).
在步骤S2中,料室泄露电流差分算子、/>的计算公式如下:In step S2, the chamber leakage current differential operator 、/> The calculation formula is as follows:
;(2); ;(2);
其中,、/>为公式(2)的根。in, 、/> is the root of formula (2).
在步骤S3中,碱室泄露电流差分算子、/>的计算公式如下:In step S3, the alkali chamber leakage current differential operator 、/> The calculation formula is as follows:
;(3); ; (3);
其中,、/>为公式(3)的根。in, 、/> is the root of formula (3).
在步骤S4中,流经第1单元处各隔室布/集水槽部位泄露电流计算公式如下:In step S4, the leakage current flowing through each compartment/water collection tank at the first unit is calculated as follows:
;(4); ; (4);
;(5); ; (5);
;(6); ; (6);
其中,A-1为矩阵A的逆矩阵;为/>;/>为/>;/>为/>;/>为;/>为/>;/>为/>;/>为/>;为/>;/>为/>。Among them, A -1 is the inverse matrix of matrix A; For/> ; /> For/> ; /> For/> ; /> for ; /> For/> ; /> For/> ; /> For/> ; For/> ; /> For/> .
在步骤S5中,流经第2单元处各隔室布/集水槽部位泄露电流计算公式如下:In step S5, the calculation formula for the leakage current flowing through each compartment/water collection tank at the second unit is as follows:
;(7)。 ; (7).
在步骤S6中,流经第K单元处各隔室布/集水槽部位泄露电流计算公式如下:In step S6, the calculation formula of the leakage current flowing through each compartment/water collection tank at the Kth unit is as follows:
;(8); ;(8);
;(9); ;(9);
;(10)。 ; (10).
在步骤S7中,流经第K单元处各隔室布/集水孔部位泄露电流计算公式如下:In step S7, the calculation formula for the leakage current flowing through each compartment/water collection hole at the Kth unit is as follows:
;(11); ; (11);
;(12); ; (12);
;(13)。 ; (13).
在步骤S8中,流经第K单元处各隔室有效面积部位有效电流计算公式如下:In step S8, the effective current flowing through the effective area of each compartment at the Kth unit is calculated as follows:
;(14); ; (14);
;(15); ; (15);
;(16)。 ; (16).
采用5单元BP-A-C三隔室双极膜电渗析系统。采用0.5mol/L NaCl溶液作为酸、碱、料室循环溶液,膜堆中溶液的膜面流速为5cm/s,对膜堆施加电流密度为30mA/cm2。在膜堆集水槽1、3、5位置处插入铂丝探针测定集水槽两端电压,然后根据欧姆定理换算成流经集水槽的泄露电流。实验测得集水槽泄露电流与模型预测泄露电流结果见表1,结果显示集水槽泄露电流的实验值与模型基本一致,表明该模型准确可靠,可以用于后续指标预测。A 5-unit BP-AC three-compartment bipolar membrane electrodialysis system was used. 0.5mol/L NaCl solution was used as the acid, alkali, and material chamber circulating solution. The membrane surface flow rate of the solution in the membrane stack was 5cm/s, and the current density applied to the membrane stack was 30mA/ cm2 . Platinum wire probes were inserted at positions 1, 3, and 5 of the membrane stack water collection tank to measure the voltage across the water collection tank, and then converted into the leakage current flowing through the water collection tank according to Ohm's theorem. The experimentally measured water collection tank leakage current and the model-predicted leakage current results are shown in Table 1. The results show that the experimental value of the water collection tank leakage current is basically consistent with the model, indicating that the model is accurate and reliable and can be used for subsequent indicator prediction.
表1,BP-A-C三隔室双极膜电渗析膜堆装置集水槽泄露电流实验与模型预测结果对比。Table 1. Comparison of the experimental and model prediction results of the sump leakage current of the BP-A-C three-compartment bipolar membrane electrodialysis membrane stack device.
采用5单元BP-A-C三隔室双极膜电渗析系统。采用1.0mol/L NaCl溶液作为料室循环溶液,去离子水作为酸、碱室初始循环溶液,膜堆中溶液的膜面流速为5cm/s,对膜堆施加电流密度为50mA/cm2。在线采集双极膜电渗析运行15min时实时数据,根据本发明的预测方法预测BP-A-C三隔室双极膜电渗析膜堆装置内部电流结果见表2。A 5-unit BP-AC three-compartment bipolar membrane electrodialysis system was used. A 1.0 mol/L NaCl solution was used as the circulating solution in the material chamber, deionized water was used as the initial circulating solution in the acid and alkali chambers, the membrane surface flow rate of the solution in the membrane stack was 5 cm/s, and the current density applied to the membrane stack was 50 mA/cm 2 . Real-time data of the bipolar membrane electrodialysis operation for 15 minutes was collected online. The results of predicting the internal current of the BP-AC three-compartment bipolar membrane electrodialysis membrane stack device according to the prediction method of the present invention are shown in Table 2.
表2,BP-A-C三隔室双极膜电渗析膜堆装置内部电流的预测结果。Table 2. Prediction results of the internal current of the BP-A-C three-compartment bipolar membrane electrodialysis membrane stack device.
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明技术原理的前提下,还可以做出若干改进和替换,这些改进和替换也应视为本发明的保护范围。The above is only a preferred embodiment of the present invention. It should be pointed out that for ordinary technicians in this technical field, several improvements and substitutions can be made without departing from the technical principles of the present invention. These improvements and substitutions should also be regarded as the scope of protection of the present invention.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202410217241.5A CN117797645B (en) | 2024-02-28 | 2024-02-28 | Method for predicting internal current of bipolar membrane electrodialysis membrane reactor device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202410217241.5A CN117797645B (en) | 2024-02-28 | 2024-02-28 | Method for predicting internal current of bipolar membrane electrodialysis membrane reactor device |
Publications (2)
Publication Number | Publication Date |
---|---|
CN117797645A CN117797645A (en) | 2024-04-02 |
CN117797645B true CN117797645B (en) | 2024-05-28 |
Family
ID=90423392
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202410217241.5A Active CN117797645B (en) | 2024-02-28 | 2024-02-28 | Method for predicting internal current of bipolar membrane electrodialysis membrane reactor device |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN117797645B (en) |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN201565259U (en) * | 2009-12-07 | 2010-09-01 | 杭州水处理技术研究开发中心有限公司 | Inside and outside leakage-proof and electric leakage-proof bipolar membrane electrodialysis baffle plate |
CN102698603A (en) * | 2012-05-05 | 2012-10-03 | 中国海洋大学 | Method for producing tartaric acid |
CN104084046A (en) * | 2014-06-03 | 2014-10-08 | 浙江工商大学 | Electrodialysis separation plate and bipolar-membrane electrodialysis apparatus for producing organic acids |
CN212999370U (en) * | 2020-07-30 | 2021-04-20 | 杭州科锐环境能源技术有限公司 | Full-automatic chip computer control bipolar membrane electrodialysis device |
CN114849478A (en) * | 2022-06-02 | 2022-08-05 | 中国科学技术大学 | Asymmetric bipolar membrane electrodialysis device and method for preparing acid and alkali |
CN115124118A (en) * | 2022-08-31 | 2022-09-30 | 山东环科环保科技有限公司 | A kind of thiadiazole production wastewater treatment method |
WO2022209641A1 (en) * | 2021-03-29 | 2022-10-06 | 株式会社アストム | Electrodialysis method using bipolar membrane |
CN115385495A (en) * | 2021-05-24 | 2022-11-25 | 中国科学院过程工程研究所 | Method for treating strong acid strong base salt/strong acid weak base salt by bipolar membrane electrodialysis |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030211376A1 (en) * | 2002-03-26 | 2003-11-13 | Matsushita Electric Industrial Co., Ltd. | Polymer electrolyte fuel cell, method of manufacturing the same and inspection method therefor |
CA2563411C (en) * | 2004-04-16 | 2013-01-15 | Universite Laval | Method for extracting lipids from biological solutions |
-
2024
- 2024-02-28 CN CN202410217241.5A patent/CN117797645B/en active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN201565259U (en) * | 2009-12-07 | 2010-09-01 | 杭州水处理技术研究开发中心有限公司 | Inside and outside leakage-proof and electric leakage-proof bipolar membrane electrodialysis baffle plate |
CN102698603A (en) * | 2012-05-05 | 2012-10-03 | 中国海洋大学 | Method for producing tartaric acid |
CN104084046A (en) * | 2014-06-03 | 2014-10-08 | 浙江工商大学 | Electrodialysis separation plate and bipolar-membrane electrodialysis apparatus for producing organic acids |
CN212999370U (en) * | 2020-07-30 | 2021-04-20 | 杭州科锐环境能源技术有限公司 | Full-automatic chip computer control bipolar membrane electrodialysis device |
WO2022209641A1 (en) * | 2021-03-29 | 2022-10-06 | 株式会社アストム | Electrodialysis method using bipolar membrane |
CN115385495A (en) * | 2021-05-24 | 2022-11-25 | 中国科学院过程工程研究所 | Method for treating strong acid strong base salt/strong acid weak base salt by bipolar membrane electrodialysis |
CN114849478A (en) * | 2022-06-02 | 2022-08-05 | 中国科学技术大学 | Asymmetric bipolar membrane electrodialysis device and method for preparing acid and alkali |
CN115124118A (en) * | 2022-08-31 | 2022-09-30 | 山东环科环保科技有限公司 | A kind of thiadiazole production wastewater treatment method |
Non-Patent Citations (2)
Title |
---|
A mathematical model of the external circuits in a bipolar membrane electrodialysis stack: Leakage currents and Joule heating effect;Zheng Peng et.al;Separation and Purification Technology;20220312;第290卷;第1-12页 * |
双极膜电渗析技术在制酸领域的研究进展;闫凯旋;郑强松;刘俊生;陈向荣;檀胜;杭晓风;;应用化工;20200110(01);第204-209页 * |
Also Published As
Publication number | Publication date |
---|---|
CN117797645A (en) | 2024-04-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111199122B (en) | Multiphysics-based Fault Diagnosis Method for Flooding of Proton Exchange Membrane Fuel Cell | |
WO2020200214A1 (en) | Temperature active fault-tolerant control method for proton exchange membrane fuel cell system | |
CN107681181B (en) | Performance diagnosis method of fuel cell | |
CN103245920B (en) | The multi-functional on-line testing printed circuit board (PCB) of a kind of fuel cell | |
CN103354294B (en) | Pipeline structure of a flow battery system | |
CN111995011B (en) | No-partition reverse electrodialysis salt difference energy power generation device | |
CN106198616A (en) | Synchronism detection nano fluid heat transferring coefficient and the system and method to thermoelectric heat generation system generating efficiency affecting laws thereof | |
CN117797645B (en) | Method for predicting internal current of bipolar membrane electrodialysis membrane reactor device | |
CN110487849A (en) | A kind of multi-parameter water quality measuring system and method | |
Karpenko-Jereb et al. | Theoretical study of the influence of material parameters on the performance of a polymer electrolyte fuel cell | |
CN108167659A (en) | A kind of floor heating pipeline liquid leakage detection device and its detection method | |
CN103490083B (en) | A kind of fuel cell anti-flooding control method | |
CN104749488A (en) | Direct-current circuit time domain fault distance measuring method based on continuous data window | |
CN117797646B (en) | A thermal risk prediction method for bipolar membrane electrodialysis membrane stack device | |
CN112100946A (en) | A method and device for diagnosing inverter open circuit fault based on fault online simulation | |
CN104778315B (en) | Merge the fuel cell Optimization Modeling method of krill behavior artificial bee colony algorithm | |
CN106908485A (en) | A kind of method that Non-Destructive Testing separates membrane flux | |
CN206945511U (en) | A kind of electrochemical experimental device of vapour phase inhibitor performance evaluation | |
JP2009129905A (en) | Fuel cell having humidity detecting device | |
Wang et al. | Reverse electrodialysis characteristic of the LiBr-ethanol-water ternary solution | |
Wang et al. | Novel compact ion exchange membranes through suppressing reverse permeation for high-efficiency recovery of inorganic acids | |
CN116864742A (en) | A closed-loop management system for fuel cell operating status based on impedance information feedback | |
CN214895155U (en) | Simulation dynamic simulation circulating water operation condition test system | |
CN113468743B (en) | Medium-deep buried pipe fluid temperature field analysis method considering groundwater seepage | |
CN115291074A (en) | An online monitoring method for solder layer faults of IGBT chips |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |