CN117778413A - A GLMFR1 gene for improving soybean's ability to withstand biotic and abiotic stresses and its application - Google Patents
A GLMFR1 gene for improving soybean's ability to withstand biotic and abiotic stresses and its application Download PDFInfo
- Publication number
- CN117778413A CN117778413A CN202311838204.8A CN202311838204A CN117778413A CN 117778413 A CN117778413 A CN 117778413A CN 202311838204 A CN202311838204 A CN 202311838204A CN 117778413 A CN117778413 A CN 117778413A
- Authority
- CN
- China
- Prior art keywords
- gene
- stress
- glmfr1
- soybean
- alkali
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 108090000623 proteins and genes Proteins 0.000 title claims abstract description 63
- 244000068988 Glycine max Species 0.000 title claims abstract description 49
- 235000010469 Glycine max Nutrition 0.000 title claims abstract description 42
- 230000036579 abiotic stress Effects 0.000 title claims abstract description 13
- 230000004790 biotic stress Effects 0.000 title claims abstract description 11
- 230000035882 stress Effects 0.000 claims abstract description 70
- 239000003513 alkali Substances 0.000 claims abstract description 29
- 150000003839 salts Chemical class 0.000 claims abstract description 27
- 241000948155 Phytophthora sojae Species 0.000 claims abstract description 11
- 239000002773 nucleotide Substances 0.000 claims abstract description 4
- 125000003729 nucleotide group Chemical group 0.000 claims abstract description 4
- 239000000243 solution Substances 0.000 claims description 10
- 239000012266 salt solution Substances 0.000 claims description 2
- 230000006808 response to salt stress Effects 0.000 claims 1
- 239000000463 material Substances 0.000 abstract description 36
- 230000009261 transgenic effect Effects 0.000 abstract description 15
- 241000233614 Phytophthora Species 0.000 abstract description 11
- 238000011160 research Methods 0.000 abstract description 4
- 230000015784 hyperosmotic salinity response Effects 0.000 abstract description 2
- 241000862632 Soja Species 0.000 abstract 1
- 241000196324 Embryophyta Species 0.000 description 34
- 238000011282 treatment Methods 0.000 description 31
- 230000014509 gene expression Effects 0.000 description 28
- 108091033409 CRISPR Proteins 0.000 description 21
- 238000011081 inoculation Methods 0.000 description 15
- 206010052428 Wound Diseases 0.000 description 7
- 208000027418 Wounds and injury Diseases 0.000 description 7
- 238000004458 analytical method Methods 0.000 description 7
- 230000003247 decreasing effect Effects 0.000 description 7
- 238000000034 method Methods 0.000 description 7
- 208000015181 infectious disease Diseases 0.000 description 5
- 238000001543 one-way ANOVA Methods 0.000 description 5
- 230000004083 survival effect Effects 0.000 description 5
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 4
- 238000010354 CRISPR gene editing Methods 0.000 description 3
- 208000035240 Disease Resistance Diseases 0.000 description 3
- 239000013604 expression vector Substances 0.000 description 3
- 238000003209 gene knockout Methods 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 108091026890 Coding region Proteins 0.000 description 2
- 238000009395 breeding Methods 0.000 description 2
- 230000001488 breeding effect Effects 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 201000010099 disease Diseases 0.000 description 2
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 238000010195 expression analysis Methods 0.000 description 2
- 230000001404 mediated effect Effects 0.000 description 2
- 238000003753 real-time PCR Methods 0.000 description 2
- 238000003259 recombinant expression Methods 0.000 description 2
- YGSDEFSMJLZEOE-UHFFFAOYSA-N salicylic acid Chemical compound OC(=O)C1=CC=CC=C1O YGSDEFSMJLZEOE-UHFFFAOYSA-N 0.000 description 2
- 238000012163 sequencing technique Methods 0.000 description 2
- 230000019491 signal transduction Effects 0.000 description 2
- 239000011780 sodium chloride Substances 0.000 description 2
- 238000009331 sowing Methods 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 1
- ZBMRKNMTMPPMMK-UHFFFAOYSA-N 2-amino-4-[hydroxy(methyl)phosphoryl]butanoic acid;azane Chemical compound [NH4+].CP(O)(=O)CCC(N)C([O-])=O ZBMRKNMTMPPMMK-UHFFFAOYSA-N 0.000 description 1
- 108020005345 3' Untranslated Regions Proteins 0.000 description 1
- 108020003589 5' Untranslated Regions Proteins 0.000 description 1
- 241000589155 Agrobacterium tumefaciens Species 0.000 description 1
- 101100219309 Arabidopsis thaliana CYP82C4 gene Proteins 0.000 description 1
- 108020004414 DNA Proteins 0.000 description 1
- 241000233866 Fungi Species 0.000 description 1
- 101000827703 Homo sapiens Polyphosphoinositide phosphatase Proteins 0.000 description 1
- 108091026898 Leader sequence (mRNA) Proteins 0.000 description 1
- 208000031888 Mycoses Diseases 0.000 description 1
- 108091028043 Nucleic acid sequence Proteins 0.000 description 1
- 238000012408 PCR amplification Methods 0.000 description 1
- 102100023591 Polyphosphoinositide phosphatase Human genes 0.000 description 1
- 238000011529 RT qPCR Methods 0.000 description 1
- 108091036066 Three prime untranslated region Proteins 0.000 description 1
- 108091023040 Transcription factor Proteins 0.000 description 1
- 102000040945 Transcription factor Human genes 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 238000000246 agarose gel electrophoresis Methods 0.000 description 1
- 230000009418 agronomic effect Effects 0.000 description 1
- 239000012670 alkaline solution Substances 0.000 description 1
- 230000008651 alkaline stress Effects 0.000 description 1
- 239000002585 base Substances 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 238000007405 data analysis Methods 0.000 description 1
- 238000012217 deletion Methods 0.000 description 1
- 230000037430 deletion Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 108020004999 messenger RNA Proteins 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000013642 negative control Substances 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- FJKROLUGYXJWQN-UHFFFAOYSA-N papa-hydroxy-benzoic acid Natural products OC(=O)C1=CC=C(O)C=C1 FJKROLUGYXJWQN-UHFFFAOYSA-N 0.000 description 1
- 244000052769 pathogen Species 0.000 description 1
- 230000001717 pathogenic effect Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 229960004889 salicylic acid Drugs 0.000 description 1
- LJRGBERXYNQPJI-UHFFFAOYSA-M sodium;3-nitrobenzenesulfonate Chemical compound [Na+].[O-][N+](=O)C1=CC=CC(S([O-])(=O)=O)=C1 LJRGBERXYNQPJI-UHFFFAOYSA-M 0.000 description 1
- 238000013518 transcription Methods 0.000 description 1
- 230000035897 transcription Effects 0.000 description 1
- 239000013598 vector Substances 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
- 238000004383 yellowing Methods 0.000 description 1
Landscapes
- Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
Abstract
一种提高大豆生物及非生物胁迫能力的GLMFR1基因及其应用,它涉及大豆领域。本发明的GLMFR1基因的核苷酸序列如SEQ ID NO:1所示。本发明的GLMFR1基因应用,是在提高大豆对盐胁迫、碱胁迫、大豆疫霉根腐病菌胁迫能力的应用。本发明的GLMFR1基因对盐胁迫、碱胁迫、大豆疫霉根腐病菌胁迫,均有一定的抗性。本发明所鉴定的GLMFR1基因,对今后大豆耐盐、耐碱、抗疫霉根腐病的研究具有参考价值,本发明的转基因材料为对今后的品种培育以及丰富种质资源等研究提供基础依据,该基因具有极大市场潜力与应用前景。
A GLMFR1 gene that improves the biotic and abiotic stress capabilities of soybeans and its application, which relates to the field of soybeans. The nucleotide sequence of the GLMFR1 gene of the present invention is shown in SEQ ID NO: 1. The application of the GLMFR1 gene of the present invention is to improve the ability of soybeans to respond to salt stress, alkali stress, and Phytophthora soja root rot. The GLMFR1 gene of the present invention has certain resistance to salt stress, alkali stress, and Phytophthora sojae root rot stress. The GLMFR1 gene identified in the present invention has reference value for future research on soybean salt tolerance, alkali tolerance, and Phytophthora root rot resistance. The transgenic material of the present invention provides a basic basis for future research on variety cultivation and enrichment of germplasm resources. , this gene has great market potential and application prospects.
Description
技术领域Technical field
本发明属于大豆领域,具体涉及一种提高大豆生物及非生物胁迫能力的GLMFR1基因及其应用。The invention belongs to the field of soybeans, and specifically relates to a GLMFR1 gene that improves the biotic and abiotic stress capabilities of soybeans and its application.
背景技术Background technique
逆境胁迫会使大豆的生长发育受到抑制,非生物胁迫中的盐胁迫、碱胁迫在发生严重时会导致大豆品质和产量的下降;生物胁迫中的大豆疫霉根腐病是世界性病害,可使大豆减产10-40%,严重时甚至绝产。近年来,分子生物学的发展迅速,许多抗逆基因被发掘,其中包括耐盐碱、抗病的基因。通过分子生物学手段去探究抗逆基因的功能,提高大豆的抗逆性,规避传统育种效率低、周期长、品种稳定性差等缺点,在大豆的抗逆育种工作中起到重要的作用,应用前景十分广阔。Adversity stress will inhibit the growth and development of soybeans. Salt stress and alkali stress among abiotic stresses will lead to a decrease in soybean quality and yield when severe. Phytophthora root rot among biotic stresses is a worldwide disease that can It can reduce soybean production by 10-40%, and even produce no crops in severe cases. In recent years, molecular biology has developed rapidly, and many stress resistance genes have been discovered, including genes for salt-alkali tolerance and disease resistance. Using molecular biology methods to explore the function of stress resistance genes, improve the stress resistance of soybeans, and avoid the shortcomings of traditional breeding such as low efficiency, long cycle, and poor variety stability, play an important role in soybean stress resistance breeding. Application The prospects are very bright.
发明内容Summary of the invention
本发明的目的是为了解决大豆在盐胁迫、碱胁迫以及大豆疫霉根腐病胁迫能力差的问题,而提供一种提高大豆生物及非生物胁迫能力的GLMFR1基因及其应用。The purpose of the present invention is to solve the problem of poor soybean stress ability under salt stress, alkali stress and soybean Phytophthora root rot, and to provide a GLMFR1 gene that improves the biotic and abiotic stress ability of soybean and its application.
本发明的一种提高大豆生物及非生物胁迫能力的GLMFR1基因,所述的GLMFR1基因的核苷酸序列如SEQ ID NO:1所示。The present invention provides a GLMFR1 gene that improves the biotic and abiotic stress capabilities of soybeans. The nucleotide sequence of the GLMFR1 gene is shown in SEQ ID NO: 1.
本发明的一种提高大豆生物及非生物胁迫能力的GLMFR1基因应用,所述的GLMFR1基因是在提高大豆对盐胁迫、碱胁迫、大豆疫霉根腐病菌胁迫能力的应用。The invention discloses an application of a GLMFR1 gene for improving the biological and abiotic stress resistance of soybeans. The GLMFR1 gene is applied to improve the ability of soybeans to resist salt stress, alkali stress and soybean phytophthora root rot pathogen stress.
进一步地,所述的盐胁迫中的盐溶液浓度为100~300mmol·L-1。Further, the concentration of the salt solution in the salt stress is 100 to 300 mmol·L -1 .
进一步地,所述的盐胁迫中的碱溶液浓度为50~200mmol·L-1。Furthermore, the concentration of the alkaline solution in the salt stress is 50 to 200 mmol·L -1 .
本发明的包含所述的提高大豆生物及非生物胁迫能力的GLMFR1基因的试剂盒。The present invention provides a kit containing the GLMFR1 gene for improving soybean biotic and abiotic stress capabilities.
本发明采用CRISPR/Cas9技术,根癌农杆菌介导法,以东农50为受体,转基因阳性植株;通过对转基因植株及其后代进行分子生物学检测,筛选出GLMFR1基因编辑植株品系6个;对转基因植株进行农艺性状分析,均正常生长,通过对GLMFR1基因敲除植株进行盐、碱胁迫以及大豆疫霉根腐病菌侵染的表型鉴定,并在盐胁迫、碱胁迫、大豆疫霉根腐病菌侵染这三种表型鉴定后,对相关基因的表达量进行分析。初步完成GLMFR1基因的功能验证,证明GLMFR1基因对盐胁迫、碱胁迫、大豆疫霉根腐病菌胁迫,均有一定的抗性。本发明所鉴定的GLMFR1基因,对今后大豆耐盐、耐碱、抗疫霉根腐病的研究具有参考价值,本发明的转基因材料为对今后的品种培育以及丰富种质资源等研究提供基础依据,该基因具有极大市场潜力与应用前景。The present invention adopts CRISPR/Cas9 technology, Agrobacterium tumefaciens-mediated method, uses Dongnong 50 as the receptor, and transgenic positive plants; through molecular biological testing of transgenic plants and their progeny, 6 GLMFR1 gene-edited plant lines are screened out ; The agronomic traits of the transgenic plants were analyzed, and they all grew normally. The GLMFR1 gene knockout plants were phenotypicly identified under salt and alkali stress and infected by Phytophthora sojae root rot fungus, and the results showed that the plants were under salt stress, alkali stress, and Phytophthora sojae root rot. After the three phenotypes of root rot fungus infection were identified, the expression levels of related genes were analyzed. The functional verification of the GLMFR1 gene has been initially completed, proving that the GLMFR1 gene has certain resistance to salt stress, alkali stress, and Phytophthora soybean root rot stress. The GLMFR1 gene identified in the present invention has reference value for future research on soybean salt tolerance, alkali tolerance, and Phytophthora root rot resistance. The transgenic material of the present invention provides a basic basis for future research on variety cultivation and enrichment of germplasm resources. , this gene has great market potential and application prospects.
本发明所述的GLMFR1基因核苷酸序列如下:The nucleotide sequence of the GLMFR1 gene according to the present invention is as follows:
GGTAATTATCATTAACGAGCAAGCAGTTACTTTTCTTTTCTGTTTTCAATCATGGATTCAAGAGTAGTT CAAAGTGTAGTGCATGAGAACGATGAACATTACCCCCACATTGTTGCCTTAGAGCAAGGTATATATGAATCACATTTGGAAGCAACAAGTTGTATTATATTTGAAGGCATCTTCATTAATGTTCCTATGATGTTTTTTCTTTTCTTTGAATAATTTGCTTTGATTCTTTTTCTACTTCAAATTTTTTGGATATAGTGACACACGGTGCAGAAGAAGACCACTTTGATCATG AGAAGAAGTCTGTTCTGAATAAGGTCAAGGCAAAGGCTAAGAAAATTAAGGACACGATTAAGAAGCATGGCCATCAA GTGCTTGATCGTGGTCATGAGTATAACAATGAAGATCAGCATACCCTTGATGATCATGACTTAGACGAGGATGATGA AATGGCTGAAGACCCACAAGTTCATAAAACACCAAGTATGTTCTTTTCTAAATCATCTGGAATTAGAGGATGAGTATTAGTTCGCCATAAAGTGAAATAAGATCCGGGGTTCAAACACCTTTTCAGATCATTATGATTAAATTTGATTTTATTCCGTTAATTTTTTTTCCTATTGATTATGATCTTCATAAATTTTAAATTTTTAAAAAATAATTCCTATTATCATTCAACAATAACGTGACATATGGTGACTATTATGAGATAACATATGATGTAACATGTTTGAATGCATGTGACGTTATCAATAAAATCTATGAGGAGTAAAATCAATTGGAGGAGTAAAATCAAAATTAATCAGGGATAAAAAACATCACTAAAAAATATTACCTTAGAATTTGACATTTACTCGTCATAGATACTTTTCTAATTTTTCTTCAAAACAGAAGGAACTCAGAACCATTTCTTTTTTGAAACTTAAAACCGTTTAATAACGGGAATTTACTAATAATAAAAATAAATCTGATTTAAGTTGGACTATGTACTTGAATGTTGTGCAGTTCACGAAAGTGAAGATGTTAAAACTGCAACACCTACATCTGAGCAAGTCGAAAATTTG GGGAAGTCAGGAATTGATTCTGGAGGCACAAGAGGTACAACAGTTATGGGAGAGGAACCCCGTCATGATGCACTACT TGGAGGTGTTTCTTCAACTACTGAAATTGATCAAAACATAGCCACTGACTCGGCCAAAACATTTTCTGTGGAAGAAA AGGCAGGGCCACCAAAGGACAATTTGGAGAAGTCAATAGGCTTGGACTTGGAGGAAGAGCCTCACGCTCCAGGAAGT AGACCTGAGGCATATCCCCCTACCAATTATCAAACCAAAATCACTGATCCAAGTGTGATAGGTAAGTAAGACAATTGAACAAAGTTGTATAACTCCATTTTGTGCTATGGACTTTTTGCATTATGCATTAATATTAGTGTACCTTTTAAAAGATTTGATGGTTAAATTGATTAAGTTGGATTTGACTCCCCATTAATTTCAGATTCCTTATTTTACTATATACATGCATGTGTTCAAATTCCATATTTTACTGTTGTAATTCTGCGATCAATTTTTTGGAGTTGAATTCTTTTACTGTCCATTCAACAATACCATCAATTTTGTTTTCAAATTATACCTTTAAATGTGTTCACGCTTAATGATATTTATGTACTATGGTCTATGTGATTAAGATTTTCATCTGTGGTGGCTTACAGGAAAGGATGAAATAGAAGAAATCACACCAGTTGAGGAATCTTTTGC AAAAATGAATATGCATGATGAGCCAAAACCTACTCCAGAACCAAATATCCAAGCAACTGTTGTTGATTCTGAATACC CTCCTGTTGGAAACCACGATCAGTTTGTGCCACACCTCTCTGCTGCAACACAAACTCAGTATCCTTCTGCTGAAAGT CATGATCAGTTCAATCAGGAAACAACATCCACAAATATCAACAGAAACCTGGTAAATCCCACAGAAACTGGACAAAC TTTCAACACCATCACAACCACAATTGAAGAAAAACCACTCTATGAAGCAAAGACTGATGAAGTTATCTCTCCTAAAG ATGTCATAGCTTCTGAGGCTGGTTCAGGAGAGAAAGATGCCATAAAGGACAAGGTGGTAACAAATAAAGAGCAACAA AAAATTGGGGATGCTTCTAACATGTCTGGCTCAACTGCACAACATGGAAAGAACATTGCTCACTCTCTGACTGAGAA ATTAGCTCCAGTTTATGATAAGGTTGCAGTGGTAGGAAGTGCAGTGAAGTCCAAAGTGACTGGAACTAGCACTGGTG GTGTTGGAACTGAGACAAAGAATGAGGTTTCTGTGAAGGACTATTTGGCTGAGAAGCTAAAGCCTGGTGAAGAAGAC AAGGCACTTTCTGAGTTAATTTCAGAAGCTTTACATAAGAAAAAGGAAGAGCCAGTGAAAAATGAGGATGGAAACTT GGATGACGGCAATGATAAAATGTGTGAAGAGATCAGTGTGAAGAGTCCAGGGAAAGGTGTGGTTGGCAAGCTTAAGG GTGTTGTTGGCTCTTGGTTTGGCAAAGCCGAGGAAAAAGGTGAATGAGGTTTCTTTTGCTAAGTACATTTTTCAAAATGGTGTGTTATGTATATGTATAATTCTGATTTTGAGTTTGCCGTTGTTATGGTTGCAGGAGGTGAAGATTTATCCAA GAATACAAATTCTGGTGCAGAAGTGGAACAGGTTCACCAGGTTGTAGGTGAAATCAAGAGTGGTCCAATTGAAGAAC AAGGGACTGGCTGAATTTCTTCATGGACATTGGATAATACATGTGTGCTGTGCTTTCCTTGTGATTAGATATTTGTA TATGTTGGATTCATGTGTAAGTTATTATATGTTTGTGTAGATGTGGAATTTACATTATGATATCGTTGTACTGGAGC CGAGAATGAGACTTGGTTATTACAATGTTAAATGTAAAAAAAAGTGGCAATATATAATTGTTTTCTGTGATTGTATT TTACTTAATTCAATGTCCCATGGTAATGTGTATTTTTCTTTTTCC GGTAATTATCATTAACGAGCAAGCAGTTACTTTTCTTTTCTGTTTTCAATCATGGATTCAAGAGTAGTT CAAAGTGTAGTGCATGAGAACGATGAACATTACCCCCACATTGTTGCCTTAGAGCAAGGTATATATGAATCACATTTGGAAGCAACAAGTTGTATTATATTTGAAGGCATCTTCATTAATGTTCCTATGATGTTTTTTCTTTTCTTTGAATAATTTGCTTTGATTCTTTTTCTACTTCAAATTTTTTGGATATAGTGACACACGGTGCAGAAGAAGACCACTTTGATCATG AGAAGAAGTCTGTTCTGAATAAGGTCAAGGCAAAGGCTAAGAAAATTAAGGACACGATTAAGAAGCATGGCCATCAA GTGCTTGATCGTGGTCATGAGTATAACAATGAAGATCAGCATACCCTTGATGATCATGACTTAGACGAGGATGATGA AATGGCTAAGACCCACAAGTTCATAAAACACCAAGTATGTTCTTTTCTAAATCATCTGGAATTAGAGGATGAGTATTAGTTCGCCATAAAGTGAAATAAGATCCGGGGTTCAAACACCTTTTCAGATCATTATGATTAAATTTGATTTTATTCCGTTAATTTTTTTCCTATTGATTATGATCTTCATAAATTTTAAATTTTTAAAAAATAATTCCTATTATCATTCAACAATAACGTGACATATGGTGACTATTATGAGATAACATATGATGTAACATGTTTGAATGCATGTGACGTTATCA ATAAAATCTATGAGGAGTAAAATCAATTGGAGGGAGTAAAATCAAAATTAATCAGGGATAAAAAACATCACTAAAAAATATTACCTTAGAATTTGACATTTACTCGTCATAGATACTTTTCTAATTTTTCTTCAAAACAGAAGGAACTCAGAACCATTTCTTTTTTGAAACTTAAAACCGTTTAATAACGGGAATTTACTAATAATAAAAATAAATCTGATTTAAGTTGGACTATGTACTTGAATGTTGTGCAGTTCACGAAAGTGAAGATGTTAAAACTGCAACACCTACATCTGAGCAAGTCGAAAATTTG GGGAAGTCAGGAATTGATTCTGGAGGCACAAGAGGTACAACAGTTATGGGAGAGGAACCCCGTCATGATGCACTACT TGGAGGTGTTTCTTCAACTACTGAAATTGATCAAAACATAGCCACTGACTCGGCCAAAACATTTTCTGTGGAAGAAA AGGCAGGGCCACCAAAGGACAATTTGGAGAAGTCAATAGGCTTGGACTTGGAGGAAGAGCCTCACGCTCCAGGAAGT AGACCTGAGGCATATCCCCCTACCAATTATCAAACCAAAATCACTGATCCAAGTGTGATAGGTAAGTAAGACAATTGAACAAAGTTGTATAACTCCATTTTGTGCTATGGACTTTTTGCATTATGCATTAATATTAGTGTACCTTTTAAAAGATTTGATGGTTAAATTGATTAAGTTGGATTTGACTCCCCATTAATTTCAGATTCCTTATTTTACTATATACATGCATGTGTTCAAATTCCATATTTTACTGTTGTAATTCTGCGATCAATTTTTTGGAGTTGAATTCTTTTACTGTCCATTCAACATACCATCAATTTTGTTTTCAAATTATAC CTTTAAATGTGTTCACGCTTAATGATATTTATGTACTATGGTCTATGTGATTAAGATTTTCATCTGTGGTGGCTTACAGGAAAGGATGAAATAGAAGAAATCACACCAGTTGAGGAATCTTTTGC AAAAATGAATATGCATGATGAGCCAAAACCTACTCCAGAACCAAATATCCAAGCAACTGTTGTTGATTCTGAATACC CTCCTGTTGGAAACCACGATCAGTTTGTGCCACACCTCTCTGCTGCAACACAAACTCAGTATCCTTCTGCTGAAAGT CATGATCAGTTCAATCAGGAAACAACATCCACAAATATCAACAGAAACCTGGTAAATCCCACAGAAACTGGACAAAC TTTCAACACCATCACAACCACAATTGAAGAAAAACCACTCTATGAAGCAAAGACTGATGAAGTTATCTCTCCTAAAG ATGTCATAGCTTCTGAGGCTGGTTCAGGAGAGAAAGATGCCATAAAGGACAAGGTGGTAACAAATAAAAGAGCAACAA AAAATTGGGGATGCTTCTAACATGTCTGGCTCAACTGCACAACATGGAAAGAACATTGCTCACTCTCTGACTGAGAA ATTAGCTCCAGTTTATGATAAGGTTGCAGTGGTAGGAAGTGCAGTGAAGTCCAAAGTGACTGGAACTAGCACTGGTG GTGTTGGAACTGAGACAAAGAATGAGGTTTCTGTGAAGGACTATTTGGCTGAGAAGCTAAAGCCTGGTGAAGAAGAC AAGGCACTTTCTGAGTTAATTTCAGAAGCTTTACATAAGAAAAAGGAAGAGCCAGTGAAAAATGAGGATGGAAACTT GGATGACGGCAATGATAAAATGTGTGAAGAGATCAGTGTGAAGAGTCCAGGGAAAGGTGTGGTTGGCAAGCTTAAGG GTGTTGTTGGCTCTTGGTTTGGCAAAGCCGAGGAAAAAGGTGAATGAGGTTTCTTTTGCTAAGTACATTTTCAAAATGGTGTGTTATGTATATGTATAATTCTGATTTTGAGTTTGCCGTTGTTATGGTTGCAGGAGGTGAAGATTTATCCAA GAATACAAATTCTGGTGCAGAAGTGGAACAGGTTCACCAGGTTGTAGGTGAAATCAAGAGTGGTCCAATTGAAGAAC AAGGGACTGGCTGAATTTCTTCATGGACATTGGATAATACATGTGTGCTGTGCTTTCCTTGTGATTAGATATTTGTA TATGTTGGATTCATGTGTAAGTTATTATATGTTTGTGTAGATGTGGAATTTACATTATGATATCGTTGTACTGGAGC CGAGAATGAGACTTGGTTATTACAATGTTAAATGTAAAAAAAAGTGGCAATATATAATTGTTTTCTGTGATTGTATT TTACTTAATTCAATGTCCCATGGTAATGTGTATTTTTCTTTTTTCC
其中,虚线下划线部分序列为5'UTR(5'非翻译区),单线划线部分序列为CDS(编码序列),波浪下划线部分序列为3'UTR(3'非翻译区),无下划线部分序列为内含子。The dotted underlined sequence is the 5'UTR (5' untranslated region), the single underlined sequence is the CDS (coding sequence), the wavy underlined sequence is the 3'UTR (3' untranslated region), and the ununderlined sequence is the intron.
附图说明Description of the drawings
图1为T3代特异性引物的PCR结果图;注:M:DL2000 DNA分子量标准;1-6:转基因植株QF01-06;7:阴性对照,水;Figure 1 shows the PCR results of T 3 generation specific primers; Note: M: DL2000 DNA molecular weight standard; 1-6: transgenic plant QF01-06; 7: negative control, water;
图2为DNA序列测序比对结果图;Fig. 2 is a diagram showing the DNA sequence comparison results;
图3为盐胁迫处理后受体对照及转基因植株的表型结果照片;Figure 3 is a photo of the phenotypic results of the recipient control and transgenic plants after salt stress treatment;
图4为碱胁迫处理后受体对照及转基因植株的表型结果照片;FIG4 is a photograph of the phenotypic results of the receptor control and transgenic plants after alkaline stress treatment;
图5为下胚轴伤口接种法接菌后抗感情况照片;图A:接种大豆疫霉菌前;图B:接种大豆疫霉菌7天;Figure 5 is a photo of the resistance to infection after hypocotyl wound inoculation; Figure A: before inoculation with Phytophthora sojae; Figure B: 7 days after inoculation with Phytophthora sojae;
图6为盐胁迫、碱胁迫处理后受体对照及转基因植株的存活率图;注:显著差异分析:单因素方差分析(*代表P<0.05,**代表P<0.01);标准误差:标准误差线;Figure 6 is a graph showing the survival rate of recipient control and transgenic plants after salt stress and alkali stress treatment; Note: Significant difference analysis: One-way analysis of variance (* represents P<0.05, ** represents P<0.01); Standard error: Std. error bars;
图7为盐胁迫条件下相关抗逆基因表达量图;注:显著差异分析:单因素方差分析(*代表P<0.05,**代表P<0.01);标准误差:标准误差线;Figure 7 is a graph showing the expression levels of related stress resistance genes under salt stress conditions; Note: Significant difference analysis: one-way analysis of variance (* represents P<0.05, ** represents P<0.01); standard error: standard error bar;
图8为碱胁迫条件下相关抗逆基因表达量图;注:显著差异分析:单因素方差分析(*代表P<0.05,**代表P<0.01);标准误差:标准误差线;Figure 8 shows the expression levels of related stress resistance genes under alkali stress conditions; Note: Significant difference analysis: one-way analysis of variance (* represents P<0.05, ** represents P<0.01); standard error: standard error bar;
图9为大豆疫霉菌侵染条件下相关抗逆基因表达量图;注:显著差异分析:单因素方差分析(*代表P<0.05,**代表P<0.01);标准误差:标准误差线Figure 9 is a graph showing the expression levels of related stress resistance genes under Phytophthora sojae infection conditions; Note: Significant difference analysis: one-way analysis of variance (* represents P<0.05, ** represents P<0.01); standard error: standard error bar
图10为不同胁迫处理条件下GLMFR1基因转录水平分析图;注:显著差异分析:单因素方差分析;标准误差:标准误差线。Figure 10 is an analysis chart of GLMFR1 gene transcription levels under different stress treatment conditions; Note: Significant difference analysis: one-way analysis of variance; standard error: standard error bar.
具体实施方式Detailed ways
为使本发明实施例的目的、技术方案和优点更加清楚明白,下面将详细叙述本发明所揭示内容的精神,任何所属技术领域技术人员在了解本发明内容的实施例后,当可由本发明内容所教示的技术,加以改变及修饰,其并不脱离本发明内容的精神与范围。In order to make the purpose, technical solutions and advantages of the embodiments of the present invention more clear, the spirit of the disclosed contents of the present invention will be described in detail below. After understanding the embodiments of the present invention, any person skilled in the art can understand it from the contents of the present invention. The techniques taught are subject to changes and modifications without departing from the spirit and scope of the invention.
本发明的示意性实施例及其说明用于解释本发明,但并不作为对本发明的限定。The illustrative embodiments of the present invention and their descriptions are used to explain the present invention, but are not used to limit the present invention.
实施例1Example 1
1、大豆T3代植株的获取1. Obtaining soybean T 3rd generation plants
1.1GLMFR1基因靶标设计1.1 GLMFR1 gene target design
采用华农CRISPR-P网站进行设计(http://crispr.hzau.edu.cn/CRISPR2/),选用靶标分数高,脱靶标率低,位置合适的靶标,见表1。The Huanong CRISPR-P website was used for design (http://crispr.hzau.edu.cn/CRISPR2/), and targets with high target scores, low off-target rates, and appropriate locations were selected, as shown in Table 1.
表1GLMFR1基因靶点Table 1GLMFR1 gene targets
1.2植物CRISPR/Cas9表达载体构建1.2 Construction of plant CRISPR/Cas9 expression vector
1.2.1重组表达载体pYLCRISPR/Cas9的构建1.2.1 Construction of recombinant expression vector pYLCRISPR/Cas9
CRISPR/Cas9基因敲除构建体是用[pCBSG015(Basta)]载体(未米生物科技有限公司)开发的。The CRISPR/Cas9 gene knockout construct was developed using the [pCBSG015(Basta)] vector (Weimi Biotechnology Co., Ltd.).
1.2.2转pYLCRISPR/Cas9大豆T3代植株检测1.2.2 Detection of soybean T3 plants transformed with pYLCRISPR/Cas9
将构建的重组表达载体pYLCRISPR/Cas9转入到东农50(DN50)中,经过温室加代后,获得T3代转基因种子。使用表3特异性引物(两个靶点均包括在引物之间),进行PCR扩增,琼脂糖凝胶电泳结果如图1所示。将PCR产物送测序,对测序结果进行分析,结果如图2所示,均发生编辑,即成功完成了敲除大豆GLMFR1基因。表2显示了转基因T3植株检测编辑类型,靶点间缺失4bp-205bp。The constructed recombinant expression vector pYLCRISPR/Cas9 was transferred into Dongnong 50 (DN50), and after greenhouse generation, T3 transgenic seeds were obtained. PCR amplification was performed using the specific primers in Table 3 (both target sites were included between the primers), and the agarose gel electrophoresis results are shown in Figure 1. The PCR products were sent for sequencing, and the sequencing results were analyzed. The results are shown in Figure 2. All editing occurred, that is, the soybean GLMFR1 gene was successfully knocked out. Table 2 shows the editing type detected in the transgenic T3 plants, and the deletion between the target sites is 4bp-205bp.
表2转基因T3植株检测编辑类型Table 2 Transgenic T 3 plant detection and editing types
表3特异性引物序列Table 3 Specific primer sequences
2、T3代pYLCRISPR/Cas9转化大豆非生物胁迫鉴定2. Identification of abiotic stress in soybean transformed with pYLCRISPR/Cas9 in the T3 generation
2.1大豆苗期盐胁迫、碱胁迫处理2.1 Treatment of salt stress and alkali stress in soybean seedling stage
将1.2.2转pYLCRISPR/Cas9大豆T3代的大豆转基因株系QF01-06和对照植株(未转pYLCRISPR/Cas9的东农50植株)苗期(对照组定义为DN50)进行盐胁迫和碱胁迫,盐胁迫条件:播种18d后,开始进行胁迫处理,每3d采用处理溶液处理一次,共处理三次,处理溶液为200mmol·L-1NaCl溶液。碱胁迫条件:播种18d后,开始进行胁迫处理,每3d采用处理溶液处理一次,共处理三次,处理溶液为100mmol·L-1Na2CO3溶液。The soybean transgenic line QF01-06 of the 3rd generation of soybean T that was transformed with pYLCRISPR/Cas9 in 1.2.2 and the control plant (Dongnong 50 plant that was not transformed with pYLCRISPR/Cas9) were subjected to salt stress and alkali stress at the seedling stage (the control group was defined as DN50). , Salt stress conditions: 18 days after sowing, stress treatment was started. The treatment solution was used once every 3 days for a total of three treatments. The treatment solution was 200mmol·L -1 NaCl solution. Alkali stress conditions: 18 days after sowing, stress treatment was started. The treatment solution was used once every 3 days for a total of three treatments. The treatment solution was 100mmol·L -1 Na 2 CO 3 solution.
大豆苗期盐胁迫结果如图3所示,经过盐胁迫处理3d后,对照植株和T3代pYLCRISPR/Cas9转化大豆植株叶片均轻微泛黄;盐胁迫处理6d后,能够清晰的观察到对照植株与T3代pYLCRISPR/Cas9转化大豆植株表型之间的差异,“DN50”70%的叶片发黄萎蔫,而T3代pYLCRISPR/Cas9转化的大豆植株QF01-06叶片泛黄加重,少部分叶片萎蔫;处理9d后,对存活率进行统计,结果如图5(A)所示,DN50、QF01-06的存活率分别10%、30%、33.33%、33.33%、26.67%、33.33%、43.33%,pYLCRISPR/Cas9转化大豆植株QF01-03、QF05、QF06极显著高于对照植株“DN50”,QF04显著高于对照植株“DN50”。The results of salt stress in soybean seedling stage are shown in Figure 3. After 3 days of salt stress treatment, the leaves of the control plants and T 3rd generation pYLCRISPR/Cas9 transformed soybean plants were slightly yellowed; after 6 days of salt stress treatment, the control plants could be clearly observed. The difference between the phenotypes of soybean plants transformed with T 3rd generation pYLCRISPR/Cas9 is that 70% of the leaves of "DN50" turned yellow and wilted, while the leaves of QF01-06, the soybean plant transformed with T3rd generation pYLCRISPR/Cas9, became more yellowing, and a small number of leaves Withering; after 9 days of treatment, the survival rates were counted. The results are shown in Figure 5(A). The survival rates of DN50 and QF01-06 were 10%, 30%, 33.33%, 33.33%, 26.67%, 33.33%, and 43.33 respectively. %, pYLCRISPR/Cas9 transformed soybean plants QF01-03, QF05, and QF06 were extremely significantly higher than the control plant "DN50", and QF04 was significantly higher than the control plant "DN50".
大豆苗期碱胁迫结果如图4所示,经过碱胁迫处理3d后,对照“DN50”和T3代pYLCRISPR/Cas9转化大豆植株未表现出胁迫表型。碱胁迫处理6d后,对照“DN50”植株叶片全部萎蔫,转基因植株叶片部分萎蔫;处理9d后,对存活率进行统计,结果如图6(B)所示,DN50、QF01-06的存活率分别3.33%、53.33%、43.33%、53.33%、63.33%、53.33%、76.67%,pYLCRISPR/Cas9转化大豆植株QF01-06极显著高于对照植株“DN50”。The results of alkali stress in soybean seedling stage are shown in Figure 4. After 3 days of alkali stress treatment, the control "DN50" and T 3rd generation pYLCRISPR/Cas9 transformed soybean plants did not show stress phenotypes. After 6 days of alkali stress treatment, all the leaves of the control "DN50" plants were wilted, and some of the leaves of the transgenic plants were wilted. After 9 days of treatment, the survival rates were calculated. The results are shown in Figure 6(B). The survival rates of DN50 and QF01-06 were respectively 3.33%, 53.33%, 43.33%, 53.33%, 63.33%, 53.33%, 76.67%, pYLCRISPR/Cas9 transformed soybean plant QF01-06 was extremely significantly higher than the control plant "DN50".
2.2T3代pYLCRISPR/Cas9转化大豆疫霉根腐病鉴定Identification of Phytophthora root rot in soybean transformed with 2.2T 3rd generation pYLCRISPR/Cas9
用大豆疫霉菌株对T3代pYLCRISPR/Cas9转化大豆植株进行下胚轴伤口接种鉴定。感病植株茎基部腐烂或出现水渍状或干枯变红棕色,从接种部位上方断裂,最终死亡,而抗病植株在下胚轴接种伤口处局部变色,可以正常生长见图5。QF01-06进行抗病鉴定,结果表明,QF01、QF03、QF04、QF05、QF06为中抗品系,QF02也存在存活植株,但未达到评价标准,定为感病品种,受体对照DN50为感病品种。具体检测结果见表4。Phytophthora sojae strains were used to identify the T 3rd generation pYLCRISPR/Cas9 transformed soybean plants by hypocotyl wound inoculation. The base of the stem of susceptible plants rots or appears water-soaked or turns reddish-brown, breaks above the inoculation site, and eventually dies. However, the resistant plants partially discolor at the hypocotyl inoculation wound and can grow normally (see Figure 5). QF01-06 was evaluated for disease resistance. The results showed that QF01, QF03, QF04, QF05, and QF06 were moderately resistant lines. QF02 also had surviving plants, but did not meet the evaluation standards and was designated as a susceptible variety. The recipient control DN50 was classified as susceptible. Variety. The specific test results are shown in Table 4.
下胚轴伤口接种法,具体做法如下:待大豆幼苗对生真叶即将展开时,用无菌的手术刀在子叶下方1cm处轻轻划一条深度为茎粗1/3的伤口,将培养好的大豆疫霉菌块用打孔器打成10mm×10mm大小的菌块接种到伤口上,在光照12h,温度28℃,空气相对湿度为60%的环境中进行培养。6d后进行倒伏率调查,感病植株的接种处变色且有水渍,接菌上方部位折断,整个植株萎蔫、死亡;抗病植株的接种部位局部变色,轻轻碰触植株不会死亡,正常生长。抗感标准:倒伏率≤30%为抗病(Resistant,R),30%﹤倒伏率﹤70%为中间类型(Interminate,I),倒伏率≥70%为感病(Susceptible,S)。Hypocotyl wound inoculation method, the specific method is as follows: when the opposite true leaves of the soybean seedlings are about to expand, use a sterile scalpel to gently draw a wound 1cm below the cotyledons with a depth of 1/3 of the stem thickness, and inoculate the cultured The Phytophthora sojae pieces were punched into 10 mm × 10 mm pieces with a hole punch and inoculated into the wound. They were cultured in an environment with 12 hours of light, a temperature of 28°C, and a relative air humidity of 60%. After 6 days, the lodging rate was investigated. The inoculation site of the susceptible plant changed color and had water stains. The part above the inoculation was broken, and the entire plant wilted and died. The inoculation site of the disease-resistant plant was partially discolored, and the plant did not die if touched lightly. It was normal. grow. Resistance standards: Lodging rate ≤30% is resistant (R), 30% <lodging rate <70% is intermediate (Interminate, I), lodging rate ≥70% is susceptible (Susceptible, S).
表4下胚轴伤口接种法接菌后抗感评价Table 4 Evaluation of resistance to infection after inoculation with hypocotyl wounds
2.3盐胁迫、碱胁迫以及接种疫霉根腐病后转化大豆相关抗逆基因表达分析2.3 Analysis of stress resistance gene expression in transformed soybeans after salt stress, alkali stress and inoculation with Phytophthora root rot
基因的表达调控在多数情况下是相互作用的。由于GLMFR1基因敲除后能够提高植株的应对胁迫的能力,为探究转基因植株中的相关抗逆基因是否发生变化,利用荧光定量PCR技术对盐胁迫、碱胁迫和接种大豆疫霉菌条件下相关抗逆基因的表达量进行鉴定。The expression regulation of genes is interactive in most cases. Since GLMFR1 gene knockout can improve the ability of plants to cope with stress, in order to explore whether the related stress resistance genes in transgenic plants have changed, fluorescence quantitative PCR technology was used to measure the related stress resistance under salt stress, alkali stress and inoculation with Phytophthora sojae. Gene expression levels were identified.
盐胁迫下,结果如图7所示,与对照相比,GmNHX1基因有5个编辑类型表达量升高,其中QF02、QF03、QF04材料极显著升高,QF01、QF06材料显著升高,而QF05材料显著降低;GmST1基因有5个编辑类型表达量极显著升高,分别是QF01、QF02、QF03、QF04、QF05,而QF06材料显著降低;GmAKT1基因6个编辑类型均升高,其中QF02、QF03、QF05材料极显著升高,QF01、QF04、QF06材料没有达到显著水平;GmNCED1基因6个编辑类型均升高,且均达到极显著水平;GmFDL19基因6个编辑类型均升高,其中QF01、QF02、QF03、QF04材料达到极显著水平,QF05材料达到显著水平,QF06材料未达到显著水平;GmWRKY13基因有4个编辑类型表达量升高,其中QF03、QF04材料达到极显著水平,QF05材料达到显著水平,QF02材料未达到显著水平,而QF01、QF06与对照相差不大;GmERF3基因6个编辑类型均升高,其中QF03、QF04材料达到极显著水平,QF01、QF02、QF06材料达到显著水平,QF05材料未达到显著水平。Under salt stress, the results are shown in Figure 7. Compared with the control, the expression levels of 5 editing types of the GmNHX1 gene increased, among which the QF02, QF03, and QF04 materials increased significantly, the QF01 and QF06 materials increased significantly, and the QF05 Materials were significantly reduced; the expression levels of 5 editing types of the GmST1 gene were extremely significantly increased, namely QF01, QF02, QF03, QF04, and QF05, while the QF06 material was significantly reduced; all 6 editing types of the GmAKT1 gene were increased, among which QF02 and QF03 , QF05 material increased significantly, QF01, QF04, and QF06 materials did not reach a significant level; the 6 editing types of the GmNCED1 gene all increased, and all reached a very significant level; the 6 editing types of the GmFDL19 gene all increased, including QF01 and QF02 , QF03 and QF04 materials reached extremely significant levels, QF05 materials reached significant levels, and QF06 materials did not reach significant levels; the GmWRKY13 gene had 4 editing types with increased expression levels, among which QF03 and QF04 materials reached extremely significant levels, and QF05 materials reached significant levels. , QF02 material did not reach a significant level, while QF01 and QF06 were similar to the control; all six editing types of the GmERF3 gene were increased, among which QF03 and QF04 materials reached extremely significant levels, QF01, QF02, and QF06 materials reached significant levels, and QF05 material did not reach a significant level.
碱胁迫下,结果如图8所示,与对照相比,GmNHX1基因6个编辑类型均升高,其中QF02、QF05材料达到极显著水平,其余未达到显著水平;GmST1基因有3个编辑类型表达量极显著升高,分别为QF01、QF03、QF04,QF02、QF05材料与对照相差不大,QF06材料表达量降低,但未达到显著水平;GmAKT1基因有5个编辑类型升高,其中QF05材料达到极显著水平,QF02材料达到显著水平,QF03、QF04、QF06材料未达到显著水平,而QF01材料表达量降低;GmNCED1基因6个编辑类型均升高,其中QF01、QF02、QF03、QF06材料达到极显著水平,QF04、QF05材料未达到显著水平;GmFDL19基因有4个编辑类型表达量级显著升高,分别是QF01、QF02、QF03、QF04,2个编辑类型表达量降低,其中QF05极显著降低,QF06未达到显著水平;GmWRKY13基因有2个编辑类型表达量升高,其中QF03极显著升高、QF06显著升高,有2个编辑类型表达量降低,其中QF04显著降低、QF01未达到显著水平,而QF02、QF05材料与对照相差不大;GmERF3基因有5个编辑类型升高,其中QF02、QF05材料达到极显著水平,QF06材料达到显著水平,QF03、QF04材料未达到显著水平,而QF01材料表达量略有下降。Under alkali stress, the results are shown in Figure 8. Compared with the control, the 6 editing types of the GmNHX1 gene were all increased, among which the QF02 and QF05 materials reached extremely significant levels, while the others did not reach significant levels; the GmST1 gene had 3 editing types expressed. The expression levels of QF01, QF03 and QF04 were significantly increased, respectively. The QF02 and QF05 materials were similar to the control. The expression of QF06 material was reduced, but did not reach a significant level. Five editing types of the GmAKT1 gene were increased, among which the QF05 material reached At the extremely significant level, the QF02 material reached the significant level, while the QF03, QF04, and QF06 materials did not reach the significant level, while the expression of the QF01 material decreased; all six editing types of the GmNCED1 gene increased, among which the QF01, QF02, QF03, and QF06 materials reached the extremely significant level. level, QF04 and QF05 materials did not reach a significant level; the expression levels of 4 editing types of the GmFDL19 gene were significantly increased, namely QF01, QF02, QF03, and QF04, and the expression levels of 2 editing types were reduced, among which QF05 was extremely significantly reduced, and QF06 The GmWRKY13 gene has not reached a significant level; the expression level of 2 editing types of the GmWRKY13 gene increased, among which QF03 increased significantly and QF06 increased significantly, and the expression level of 2 editing types decreased, among which QF04 decreased significantly and QF01 did not reach a significant level, while The QF02 and QF05 materials are not much different from the control; 5 editing types of the GmERF3 gene are increased, among which the QF02 and QF05 materials reach a very significant level, the QF06 material reaches a significant level, the QF03 and QF04 materials do not reach a significant level, and the expression level of the QF01 material A slight decrease.
接种大豆疫霉菌条件下,结果如图9所示,CYP82C4、GmERF5基因在QF01-06材料中表达量均显著升高,水杨酸信号途径相关基因GmPR10和GmNPR1的表达量也均高于受体对照植株;WRKY转录因子能够参与SA、JA和ET介导的抗病信号传导途径,在大豆疫霉菌侵染条件下,GmWRKY22基因表达量在QF01-06材料均有不同程度的上调,其中在QF02-05材料中达到极显著;GmWRKY40基因表达量在QF01-06材料中均达到极显著。Under the condition of inoculation with soybean Phytophthora, the results are shown in Figure 9. The expression levels of CYP82C4 and GmERF5 genes in QF01-06 materials were significantly increased, and the expression levels of salicylic acid signaling pathway related genes GmPR10 and GmNPR1 were also higher than those of the receptor control plants; WRKY transcription factors can participate in the disease resistance signal transduction pathways mediated by SA, JA and ET. Under the condition of soybean Phytophthora infection, the expression level of GmWRKY22 gene was upregulated to varying degrees in QF01-06 materials, among which it was extremely significant in QF02-05 materials; the expression level of GmWRKY40 gene was extremely significant in QF01-06 materials.
3、逆境胁迫下GLMFR1基因的表达分析3. Expression analysis of GLMFR1 gene under adverse stress
为验证GLMFR1基因对生物以及非生物胁迫的响应情况,利用实时荧光定量qRT-PCR方法分析GLMFR1基因在盐胁迫、碱胁迫侵染处理条件下mRNA水平的表达变化,选取对生真叶展开(V1期)时期的“东农50”材料进行GLMFR1基因在逆境胁迫下的表达分析,在盐处理(200mmol·L-1NaCl溶液)、碱处理(100mmol·L-1Na2CO3溶液)、盐碱混合处理(80mmol·L-1盐碱混合溶液)处理0h、1h、6h、12h、24h、36h、48h分别对大豆根取材,液氮速冻后提取RNA,用于实时荧光定量PCR试验使用。数据分析结果如图10所示。In order to verify the response of GLMFR1 gene to biotic and abiotic stress, real-time fluorescence quantitative qRT-PCR method was used to analyze the expression changes of GLMFR1 gene mRNA level under salt stress and alkali stress infection treatment conditions. Opposite true leaves were selected to expand (V1 The expression analysis of GLMFR1 gene under stress was performed on the "Dongnong 50" material from the period). The results showed that under salt treatment (200mmol·L -1 NaCl solution), alkali treatment (100mmol·L -1 Na 2 CO 3 solution), salt treatment Alkali mixed treatment (80mmol·L -1 salt-alkali mixed solution) was used to extract soybean roots at 0h, 1h, 6h, 12h, 24h, 36h, and 48h respectively, and then quickly frozen in liquid nitrogen to extract RNA for use in real-time fluorescence quantitative PCR experiments. The data analysis results are shown in Figure 10.
盐胁迫处理后1h,大豆根中GLMFR1基因的表达量缓慢升高,处理后1-9h缓慢下降,并在9h下降为最低值,随后迅速升高,在24h上升到最高值,显著高于处理前,之后表达量有所下降,36-48h又缓慢上升,整体看12-48h,其表达量相对高于1-9h的表达量;碱胁迫处理后1-9h,根中GLMFR1基因的表达量随处理时间的增加而升高,处理后12h缓慢下降,随后迅速升高,在24h升到最高值,显著高于处理前,之后缓慢下降;大豆疫霉菌接种后1-24h,GLMFR1基因的表达量小幅度升高,而后到48h迅速升高。1 hour after salt stress treatment, the expression of GLMFR1 gene in soybean roots increased slowly, decreased slowly from 1 to 9 hours after treatment, and dropped to the lowest value at 9 hours, then increased rapidly, and reached the highest value at 24 hours, which was significantly higher than that of the treatment before, then the expression level decreased, and then slowly increased from 36 to 48h. Overall, the expression level at 12-48h was relatively higher than that at 1-9h; 1-9h after alkali stress treatment, the expression level of GLMFR1 gene in roots It increased with the increase of treatment time, slowly decreased 12h after treatment, then increased rapidly, rose to the highest value at 24h, which was significantly higher than before treatment, and then decreased slowly; 1-24h after Phytophthora sojae inoculation, the expression of GLMFR1 gene The amount increased slightly, and then increased rapidly at 48 hours.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202311838204.8A CN117778413B (en) | 2023-12-28 | 2023-12-28 | GLMFR1 gene for improving biological and abiotic stress capability of soybean and application thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202311838204.8A CN117778413B (en) | 2023-12-28 | 2023-12-28 | GLMFR1 gene for improving biological and abiotic stress capability of soybean and application thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN117778413A true CN117778413A (en) | 2024-03-29 |
CN117778413B CN117778413B (en) | 2024-10-29 |
Family
ID=90387693
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202311838204.8A Active CN117778413B (en) | 2023-12-28 | 2023-12-28 | GLMFR1 gene for improving biological and abiotic stress capability of soybean and application thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN117778413B (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2005113777A1 (en) * | 2004-05-21 | 2005-12-01 | MAX-PLANCK-Gesellschaft zur Förderung der Wissenschaften e.V. | Means and methods for producing stress-resistant plants |
CN112646818A (en) * | 2020-12-31 | 2021-04-13 | 东北农业大学 | Soybean gene GmTCM1 as well as obtaining method and application thereof |
CN115873085A (en) * | 2022-07-10 | 2023-03-31 | 哈尔滨师范大学 | Application of soybean gene GmMAX2a in plant stress resistance |
CN116606821A (en) * | 2023-04-25 | 2023-08-18 | 东北农业大学 | Plant salt-alkali-resistant protein GsSIE3, and coding gene and application thereof |
-
2023
- 2023-12-28 CN CN202311838204.8A patent/CN117778413B/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2005113777A1 (en) * | 2004-05-21 | 2005-12-01 | MAX-PLANCK-Gesellschaft zur Förderung der Wissenschaften e.V. | Means and methods for producing stress-resistant plants |
CN112646818A (en) * | 2020-12-31 | 2021-04-13 | 东北农业大学 | Soybean gene GmTCM1 as well as obtaining method and application thereof |
CN115873085A (en) * | 2022-07-10 | 2023-03-31 | 哈尔滨师范大学 | Application of soybean gene GmMAX2a in plant stress resistance |
CN116606821A (en) * | 2023-04-25 | 2023-08-18 | 东北农业大学 | Plant salt-alkali-resistant protein GsSIE3, and coding gene and application thereof |
Non-Patent Citations (2)
Title |
---|
SURYADEVARA S. RAO等: "Overexpression of GmCaM4 in soybean enhances resistance to pathogens and tolerance to salt stress", MOLECULAR PLANT PATHOLOGY, vol. 15, no. 2, 26 August 2013 (2013-08-26) * |
王伟威;魏崃;张丽;于志远;杨剑飞;刘丽君;: "腐霉菌诱导的大豆谷胱甘肽转移酶GmGST26基因的分子特征和表达分析", 分子植物育种, no. 11, 28 November 2016 (2016-11-28) * |
Also Published As
Publication number | Publication date |
---|---|
CN117778413B (en) | 2024-10-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Kieu et al. | Mutations introduced in susceptibility genes through CRISPR/Cas9 genome editing confer increased late blight resistance in potatoes | |
CN112626093B (en) | Tomato bacterial wilt resistance gene Sl alpha-KGDH E2 and application thereof | |
CN110512021B (en) | Molecular marker closely linked with wheat stem basal rot resistance QTL and application thereof | |
CN109477091A (en) | Construct and carrier for the conversion of gene implants | |
Wittig et al. | Two Brassica napus cultivars differ in gene expression, but not in their response to submergence | |
CN110551719B (en) | Long non-coding RNA gene ALEX1 and its application in improving rice bacterial blight resistance | |
CN111424111A (en) | A method for identification of radish clubroot resistance | |
CN110606877A (en) | Transcription factors for improvement of wheat varieties resistant to rust and screening method thereof | |
Li et al. | Overexpression of MpbHLH transcription factor, an encoding ICE1-like protein, enhances Foc TR4-resistance of Cavendish banana | |
CN106319082B (en) | A Method for Identifying Salt Tolerance of Cotton Seedling Stage | |
CN117165599B (en) | Application of transcription factor GhTIFY b in verticillium resistance of plants | |
CN118240841A (en) | SRZ3 gene and its application in improving salt tolerance of rice | |
CN102154362A (en) | Method for identifying salt resisting function of gene | |
CN118895295A (en) | Application of soybean GmNDB1 gene in plant adaptation to low nitrogen environment and high salt stress | |
CN117778413A (en) | A GLMFR1 gene for improving soybean's ability to withstand biotic and abiotic stresses and its application | |
CN114134155B (en) | MLO gene mutant and preparation method and application thereof | |
CN104177482B (en) | A kind of plant stress tolerance is correlated with SbSNAC1 albumen and encoding gene thereof and application | |
Azmat et al. | Powdery mildew induced physiological and biochemical changes in pea (Pisum sativum L.). | |
CN115850418A (en) | Application of OsNPF7.3 Protein in Regulating Rice Alkaline Tolerance | |
CN115838734A (en) | Application of C2H2 Zinc Finger Protein Gene HSTL in Regulating Salt Tolerance in Rice | |
WO2017155384A1 (en) | Methods for obtaining oil palm plants that have tolerance to ganoderma boninense | |
CN110438135A (en) | Disease-resistant gene PdGsSRK, expression albumen, cloning primer pair and its application of eastern cottonwood leaf rust resistance | |
CN118813626B (en) | Cold-resistant Lnc RNA and application thereof | |
CN118063580B (en) | Application of Rice DSR1 Mutant Protein and Its Encoding Gene in Rice Breeding | |
CN119220563B (en) | BADH2 gene for regulating millet aroma, application and method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |