CN117757771A - A diene lactone hydrolase mutant and its application - Google Patents
A diene lactone hydrolase mutant and its application Download PDFInfo
- Publication number
- CN117757771A CN117757771A CN202211170945.9A CN202211170945A CN117757771A CN 117757771 A CN117757771 A CN 117757771A CN 202211170945 A CN202211170945 A CN 202211170945A CN 117757771 A CN117757771 A CN 117757771A
- Authority
- CN
- China
- Prior art keywords
- pet
- sequence
- protein
- acfe
- hydrolase
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 108010057927 carboxymethylenebutenolidase Proteins 0.000 title description 9
- 108090000623 proteins and genes Proteins 0.000 claims abstract description 87
- 102000004169 proteins and genes Human genes 0.000 claims abstract description 54
- QPKOBORKPHRBPS-UHFFFAOYSA-N bis(2-hydroxyethyl) terephthalate Chemical compound OCCOC(=O)C1=CC=C(C(=O)OCCO)C=C1 QPKOBORKPHRBPS-UHFFFAOYSA-N 0.000 claims abstract description 19
- 230000015556 catabolic process Effects 0.000 claims abstract description 18
- 238000006731 degradation reaction Methods 0.000 claims abstract description 18
- 108020001507 fusion proteins Proteins 0.000 claims abstract description 12
- 102000037865 fusion proteins Human genes 0.000 claims abstract description 12
- 230000000593 degrading effect Effects 0.000 claims abstract description 5
- 125000000539 amino acid group Chemical group 0.000 claims abstract description 4
- 125000003275 alpha amino acid group Chemical group 0.000 claims abstract 4
- 230000007062 hydrolysis Effects 0.000 claims description 25
- 238000006460 hydrolysis reaction Methods 0.000 claims description 25
- 108020004414 DNA Proteins 0.000 claims description 20
- 238000000034 method Methods 0.000 claims description 19
- 239000013598 vector Substances 0.000 claims description 17
- 230000014509 gene expression Effects 0.000 claims description 15
- 150000007523 nucleic acids Chemical class 0.000 claims description 15
- 108020004707 nucleic acids Proteins 0.000 claims description 14
- 102000039446 nucleic acids Human genes 0.000 claims description 14
- 125000003729 nucleotide group Chemical group 0.000 claims description 12
- 238000002360 preparation method Methods 0.000 claims description 12
- 239000012620 biological material Substances 0.000 claims description 11
- 239000002773 nucleotide Substances 0.000 claims description 11
- 102000053602 DNA Human genes 0.000 claims description 9
- 244000005700 microbiome Species 0.000 claims description 8
- 230000003197 catalytic effect Effects 0.000 claims description 7
- 239000002299 complementary DNA Substances 0.000 claims description 7
- 239000003795 chemical substances by application Substances 0.000 claims description 4
- 108091026890 Coding region Proteins 0.000 claims description 3
- 101000693878 Ideonella sakaiensis (strain NBRC 110686 / TISTR 2288 / 201-F6) Poly(ethylene terephthalate) hydrolase Proteins 0.000 claims description 3
- 101000693873 Unknown prokaryotic organism Leaf-branch compost cutinase Proteins 0.000 claims description 3
- 230000003301 hydrolyzing effect Effects 0.000 claims description 3
- 238000004519 manufacturing process Methods 0.000 claims description 3
- BCBHDSLDGBIFIX-UHFFFAOYSA-M 4-[(2-hydroxyethoxy)carbonyl]benzoate Chemical compound OCCOC(=O)C1=CC=C(C([O-])=O)C=C1 BCBHDSLDGBIFIX-UHFFFAOYSA-M 0.000 claims 6
- 210000004899 c-terminal region Anatomy 0.000 claims 1
- 230000002797 proteolythic effect Effects 0.000 claims 1
- 230000000694 effects Effects 0.000 abstract description 23
- 230000035772 mutation Effects 0.000 abstract description 6
- 238000005516 engineering process Methods 0.000 abstract description 3
- 108090000604 Hydrolases Proteins 0.000 description 41
- 102000004157 Hydrolases Human genes 0.000 description 39
- 235000018102 proteins Nutrition 0.000 description 36
- 229920000139 polyethylene terephthalate Polymers 0.000 description 28
- 239000005020 polyethylene terephthalate Substances 0.000 description 28
- 239000013612 plasmid Substances 0.000 description 20
- 239000000047 product Substances 0.000 description 19
- DBMJMQXJHONAFJ-UHFFFAOYSA-M Sodium laurylsulphate Chemical compound [Na+].CCCCCCCCCCCCOS([O-])(=O)=O DBMJMQXJHONAFJ-UHFFFAOYSA-M 0.000 description 17
- 150000001413 amino acids Chemical group 0.000 description 17
- 102000004190 Enzymes Human genes 0.000 description 15
- 108090000790 Enzymes Proteins 0.000 description 15
- KKEYFWRCBNTPAC-UHFFFAOYSA-N Terephthalic acid Chemical compound OC(=O)C1=CC=C(C(O)=O)C=C1 KKEYFWRCBNTPAC-UHFFFAOYSA-N 0.000 description 14
- 239000004033 plastic Substances 0.000 description 14
- 229920003023 plastic Polymers 0.000 description 14
- 230000004927 fusion Effects 0.000 description 12
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 10
- 239000000243 solution Substances 0.000 description 9
- 239000000872 buffer Substances 0.000 description 8
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 6
- 235000001014 amino acid Nutrition 0.000 description 6
- 238000006243 chemical reaction Methods 0.000 description 6
- 239000012634 fragment Substances 0.000 description 6
- RAXXELZNTBOGNW-UHFFFAOYSA-N imidazole Natural products C1=CNC=N1 RAXXELZNTBOGNW-UHFFFAOYSA-N 0.000 description 6
- 241000894006 Bacteria Species 0.000 description 5
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 5
- 241001460678 Napo <wasp> Species 0.000 description 5
- 239000007983 Tris buffer Substances 0.000 description 5
- 238000003776 cleavage reaction Methods 0.000 description 5
- 239000011259 mixed solution Substances 0.000 description 5
- 230000007017 scission Effects 0.000 description 5
- 239000011780 sodium chloride Substances 0.000 description 5
- 108091028043 Nucleic acid sequence Proteins 0.000 description 4
- 238000002474 experimental method Methods 0.000 description 4
- 238000004128 high performance liquid chromatography Methods 0.000 description 4
- 238000000746 purification Methods 0.000 description 4
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 3
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 3
- 241000588724 Escherichia coli Species 0.000 description 3
- 102000008300 Mutant Proteins Human genes 0.000 description 3
- 108010021466 Mutant Proteins Proteins 0.000 description 3
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 3
- 239000012528 membrane Substances 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 238000002741 site-directed mutagenesis Methods 0.000 description 3
- 239000002689 soil Substances 0.000 description 3
- 239000000758 substrate Substances 0.000 description 3
- LENZDBCJOHFCAS-UHFFFAOYSA-N tris Chemical compound OCC(N)(CO)CO LENZDBCJOHFCAS-UHFFFAOYSA-N 0.000 description 3
- 241000521595 Acidimicrobium ferrooxidans Species 0.000 description 2
- 238000001712 DNA sequencing Methods 0.000 description 2
- 241001198387 Escherichia coli BL21(DE3) Species 0.000 description 2
- QNAYBMKLOCPYGJ-REOHCLBHSA-N L-alanine Chemical compound C[C@H](N)C(O)=O QNAYBMKLOCPYGJ-REOHCLBHSA-N 0.000 description 2
- CKLJMWTZIZZHCS-REOHCLBHSA-N L-aspartic acid Chemical compound OC(=O)[C@@H](N)CC(O)=O CKLJMWTZIZZHCS-REOHCLBHSA-N 0.000 description 2
- FFEARJCKVFRZRR-BYPYZUCNSA-N L-methionine Chemical compound CSCC[C@H](N)C(O)=O FFEARJCKVFRZRR-BYPYZUCNSA-N 0.000 description 2
- AYFVYJQAPQTCCC-UHFFFAOYSA-N Threonine Natural products CC(O)C(N)C(O)=O AYFVYJQAPQTCCC-UHFFFAOYSA-N 0.000 description 2
- 239000004473 Threonine Substances 0.000 description 2
- 108010028230 Trp-Ser- His-Pro-Gln-Phe-Glu-Lys Proteins 0.000 description 2
- 235000004279 alanine Nutrition 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 239000003242 anti bacterial agent Substances 0.000 description 2
- 229940088710 antibiotic agent Drugs 0.000 description 2
- 235000003704 aspartic acid Nutrition 0.000 description 2
- 230000001580 bacterial effect Effects 0.000 description 2
- OQFSQFPPLPISGP-UHFFFAOYSA-N beta-carboxyaspartic acid Natural products OC(=O)C(N)C(C(O)=O)C(O)=O OQFSQFPPLPISGP-UHFFFAOYSA-N 0.000 description 2
- 239000007795 chemical reaction product Substances 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- BDAGIHXWWSANSR-UHFFFAOYSA-N methanoic acid Natural products OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 description 2
- 229930182817 methionine Natural products 0.000 description 2
- -1 polyethylene terephthalate Polymers 0.000 description 2
- 108091008146 restriction endonucleases Proteins 0.000 description 2
- 238000012216 screening Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 239000006228 supernatant Substances 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 238000013518 transcription Methods 0.000 description 2
- 230000035897 transcription Effects 0.000 description 2
- 101150057627 trxB gene Proteins 0.000 description 2
- 125000000954 2-hydroxyethyl group Chemical group [H]C([*])([H])C([H])([H])O[H] 0.000 description 1
- OSWFIVFLDKOXQC-UHFFFAOYSA-N 4-(3-methoxyphenyl)aniline Chemical compound COC1=CC=CC(C=2C=CC(N)=CC=2)=C1 OSWFIVFLDKOXQC-UHFFFAOYSA-N 0.000 description 1
- 108020004705 Codon Proteins 0.000 description 1
- 241000195493 Cryptophyta Species 0.000 description 1
- XZWYTXMRWQJBGX-VXBMVYAYSA-N FLAG peptide Chemical compound NCCCC[C@@H](C(O)=O)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CCCCN)NC(=O)[C@@H](NC(=O)[C@@H](N)CC(O)=O)CC1=CC=C(O)C=C1 XZWYTXMRWQJBGX-VXBMVYAYSA-N 0.000 description 1
- 241000233866 Fungi Species 0.000 description 1
- 108700028146 Genetic Enhancer Elements Proteins 0.000 description 1
- 108010093488 His-His-His-His-His-His Proteins 0.000 description 1
- ROHFNLRQFUQHCH-YFKPBYRVSA-N L-leucine Chemical compound CC(C)C[C@H](N)C(O)=O ROHFNLRQFUQHCH-YFKPBYRVSA-N 0.000 description 1
- ROHFNLRQFUQHCH-UHFFFAOYSA-N Leucine Natural products CC(C)CC(N)C(O)=O ROHFNLRQFUQHCH-UHFFFAOYSA-N 0.000 description 1
- 101710135898 Myc proto-oncogene protein Proteins 0.000 description 1
- 102100038895 Myc proto-oncogene protein Human genes 0.000 description 1
- ONIBWKKTOPOVIA-UHFFFAOYSA-N Proline Natural products OC(=O)C1CCCN1 ONIBWKKTOPOVIA-UHFFFAOYSA-N 0.000 description 1
- 108020004511 Recombinant DNA Proteins 0.000 description 1
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 1
- 208000037065 Subacute sclerosing leukoencephalitis Diseases 0.000 description 1
- 206010042297 Subacute sclerosing panencephalitis Diseases 0.000 description 1
- 108010076818 TEV protease Proteins 0.000 description 1
- 101710150448 Transcriptional regulator Myc Proteins 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 229960000723 ampicillin Drugs 0.000 description 1
- AVKUERGKIZMTKX-NJBDSQKTSA-N ampicillin Chemical compound C1([C@@H](N)C(=O)N[C@H]2[C@H]3SC([C@@H](N3C2=O)C(O)=O)(C)C)=CC=CC=C1 AVKUERGKIZMTKX-NJBDSQKTSA-N 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000007806 chemical reaction intermediate Substances 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 239000000385 dialysis solution Substances 0.000 description 1
- 150000001993 dienes Chemical class 0.000 description 1
- 230000029087 digestion Effects 0.000 description 1
- 238000010828 elution Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000003912 environmental pollution Methods 0.000 description 1
- 230000006862 enzymatic digestion Effects 0.000 description 1
- 239000013604 expression vector Substances 0.000 description 1
- 239000000706 filtrate Substances 0.000 description 1
- 235000019253 formic acid Nutrition 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 238000010353 genetic engineering Methods 0.000 description 1
- 229930182470 glycoside Natural products 0.000 description 1
- 150000002338 glycosides Chemical class 0.000 description 1
- 238000009396 hybridization Methods 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 230000005764 inhibitory process Effects 0.000 description 1
- 239000013067 intermediate product Substances 0.000 description 1
- 238000004255 ion exchange chromatography Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- BPHPUYQFMNQIOC-NXRLNHOXSA-N isopropyl beta-D-thiogalactopyranoside Chemical compound CC(C)S[C@@H]1O[C@H](CO)[C@H](O)[C@H](O)[C@H]1O BPHPUYQFMNQIOC-NXRLNHOXSA-N 0.000 description 1
- 238000004811 liquid chromatography Methods 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 238000004949 mass spectrometry Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 108020004999 messenger RNA Proteins 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 229910021645 metal ion Inorganic materials 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229910001453 nickel ion Inorganic materials 0.000 description 1
- 235000015097 nutrients Nutrition 0.000 description 1
- 239000013502 plastic waste Substances 0.000 description 1
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- 239000013603 viral vector Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W30/00—Technologies for solid waste management
- Y02W30/50—Reuse, recycling or recovery technologies
- Y02W30/62—Plastics recycling; Rubber recycling
Landscapes
- Enzymes And Modification Thereof (AREA)
Abstract
本发明公开了一种双烯内脂水解酶突变体及其应用。本发明公开的双烯内脂水解酶突变体,为如下A1)、A2)或A3):A1)氨基酸序列是序列4的蛋白质;A2)将序列表中序列4中第162位外的氨基酸序列经过一个或几个氨基酸残基的取代和/或缺失和/或添加且具有相同功能的蛋白质;A3)在A1)或A2)的N端或/和C端连接标签得到的融合蛋白质。本发明利用定点突变技术将原有双烯内脂水解酶进行突变,得到其突变体,改变了原有双烯内脂水解酶活性较低的问题,有效提高降解BHET的活性,提升降解效果,本发明的双烯内脂水解酶突变体大大提高了BHET的降解效率,工业应用前景良好。The invention discloses a dienolide hydrolase mutant and its application. The dienolide hydrolase mutant disclosed by the present invention is as follows A1), A2) or A3): A1) the amino acid sequence is a protein of sequence 4; A2) the amino acid sequence other than the 162nd position in sequence 4 in the sequence listing A protein that has the same function after one or several amino acid residues have been substituted and/or deleted and/or added; A3) a fusion protein obtained by connecting a tag to the N-terminus or/and C-terminus of A1) or A2). The present invention uses site-directed mutation technology to mutate the original dienolide hydrolase to obtain its mutant, which changes the problem of low activity of the original dienolide hydrolase, effectively improves the activity of degrading BHET, and improves the degradation effect. The dienolide hydrolase mutant of the present invention greatly improves the degradation efficiency of BHET and has good industrial application prospects.
Description
技术领域Technical field
本发明涉及基因工程领域中,一种双烯内脂水解酶突变体及其应用。The invention relates to a diene lactone hydrolase mutant and its application in the field of genetic engineering.
背景技术Background technique
塑料是人类的一项伟大发明,塑料制品的使用日益广泛,给人民群众的日常生活带来极大方便。但与此同时,塑料污染问题也日益严峻,成为世界各国普遍关注的热点环境问题。Plastic is a great invention of mankind. The use of plastic products is becoming increasingly widespread, bringing great convenience to people's daily lives. But at the same time, the problem of plastic pollution is becoming increasingly serious and has become a hot environmental issue of widespread concern around the world.
据统计,2020年全球塑料产量高达3.67亿吨,除了一些能够利用的塑料之外,剩下的都成为了人们丢弃的垃圾。近70年来,人类丢弃的塑料垃圾重量早已超过70亿吨,塑料制品不像金属制品,能够循环利用,大部分的塑料都是一次性的,只有很小一部分才能够循环利用。故而在塑料产量居高不下,且每年增长的情况下,塑料污染问题只会越来越严重,很难得到缓解,除非人们能够找到彻底解决塑料污染的办法。According to statistics, global plastic production reached 367 million tons in 2020. Except for some plastics that can be used, the rest have become garbage discarded by people. In the past 70 years, the weight of plastic waste discarded by humans has exceeded 7 billion tons. Unlike metal products, plastic products can be recycled. Most plastics are disposable, and only a small part can be recycled. Therefore, when plastic production remains high and increases every year, the problem of plastic pollution will only become more and more serious and will be difficult to alleviate unless people can find a complete solution to plastic pollution.
传统处理方式是焚烧,或者填埋,但这两种方式都会造成环境污染。塑料焚烧后会产生有毒有害气体,污染空气。塑料埋进土里后,自然情况下需要百年时间才能完全降解,在这个过程中,塑料会改变土壤结构和成分,土壤营养面临流失。另外,暴露在自然界的塑料会被鸟类误食,间接杀死了许多生物。The traditional treatment methods are incineration or landfill, but both methods will cause environmental pollution. After plastic is burned, it will produce toxic and harmful gases and pollute the air. After plastic is buried in the soil, it will take hundreds of years to completely degrade naturally. During this process, the plastic will change the soil structure and composition, and soil nutrients will be lost. In addition, plastics exposed in nature can be accidentally eaten by birds, indirectly killing many organisms.
自科学家织田小平意外发现了一种能够以聚对苯二甲酸乙二醇酯(PET)为食物的微生物—大阪堺菌以来,科学家已陆续发现了一些具有降解PET活力的水解酶,但降解活力却很低。采用定点进化,加入金属离子等方法提高酶活,结果也并不理想。对苯二甲酸双羟乙酯(BHET)是PET水解的中间产物,反应中间产物的累积是限制PET水解酶降解效率的一个重要因素,BHET水解酶可以将BHET分解为单(2-羟乙基)对苯二甲酸(MHET),再进一步分解位对苯二甲酸(TPA)和乙二醇(EG),如何高效的降解BHET,打破降解壁垒,具有巨大商业价值。Since scientist Oda Kohei accidentally discovered a microorganism that can feed on polyethylene terephthalate (PET), Sakai bacterium Osaka, scientists have successively discovered some hydrolytic enzymes with the activity of degrading PET, but the degradation Vitality is low. Methods such as fixed-site evolution and adding metal ions were used to improve enzyme activity, but the results were not ideal. Bishydroxyethyl terephthalate (BHET) is an intermediate product of PET hydrolysis. The accumulation of reaction intermediates is an important factor limiting the degradation efficiency of PET hydrolase. BHET hydrolase can decompose BHET into mono(2-hydroxyethyl) ) terephthalic acid (MHET), and then further decompose it into terephthalic acid (TPA) and ethylene glycol (EG). How to efficiently degrade BHET and break the degradation barrier has huge commercial value.
发明内容Contents of the invention
本发明的一个目的是提供一种双烯内脂水解酶(Acfe)突变体,具有BHET水解活性的蛋白。得到的突变体有效提高Acfe降解BHET的活性,提升Acfe的降解效果。One object of the present invention is to provide a diene lactone hydrolase (Acfe) mutant, a protein with BHET hydrolysis activity. The obtained mutant effectively improves the BHET-degrading activity of Acfe and improves the degradation effect of Acfe.
本发明首先提供了一种蛋白质,所述蛋白质名称为Acfe-D162T,Acfe-D162T为如下A1)、A2)或A3):The present invention first provides a protein, the name of the protein is Acfe-D162T, and Acfe-D162T is as follows A1), A2) or A3):
A1)氨基酸序列是序列4的蛋白质;A1) The amino acid sequence is a protein of sequence 4;
A2)将序列表中序列4中第162位外的氨基酸序列经过一个或几个氨基酸残基的取代和/或缺失和/或添加且具有相同功能的蛋白质;A2) A protein that has the same function by substituting and/or deleting and/or adding one or several amino acid residues to the amino acid sequence other than position 162 in Sequence 4 in the sequence listing;
A3)在A1)或A2)的N端或/和C端连接标签得到的融合蛋白质。A3) A fusion protein obtained by connecting a tag to the N-terminus or/and C-terminus of A1) or A2).
为了使A1)中的蛋白质便于纯化,可在由序列表中序列4所示的氨基酸序列组成的蛋白质的氨基末端或羧基末端连接上如下表所示的标签。In order to facilitate the purification of the protein in A1), a tag as shown in the table below can be connected to the amino terminus or carboxyl terminus of the protein consisting of the amino acid sequence shown in Sequence 4 in the sequence listing.
表:标签的序列Table: Sequence of tags
上述A2)中的Acfe-D162T蛋白质,为与序列4所示蛋白质的氨基酸序列具有75%或75%以上同一性且具有相同功能的蛋白质。所述具有75%或75%以上同一性为具有75%、具有80%、具有85%、具有90%、具有95%、具有96%、具有97%、具有98%或具有99%的同一性。The Acfe-D162T protein in A2) above is a protein that has 75% or more identity with the amino acid sequence of the protein shown in Sequence 4 and has the same function. The said having 75% or more identity means having 75%, having 80%, having 85%, having 90%, having 95%, having 96%, having 97%, having 98% or having 99% identity. .
上述A2)中的Acfe-D162T蛋白质可人工合成,也可先合成其编码基因,再进行生物表达得到。The Acfe-D162T protein in A2) above can be synthesized artificially, or its encoding gene can be synthesized first and then biologically expressed.
上述A2)中的Acfe-D162T蛋白质的编码基因可通过将序列3所示的DNA序列中缺失一个或几个氨基酸残基的密码子,和/或进行一个或几个碱基对的错义突变,和/或在其5′端和/或3′端连上上表所示的标签的编码序列得到。其中,序列3所示的DNA分子编码序列4所示的Acfe-D162T蛋白质。The gene encoding the Acfe-D162T protein in A2) above can be obtained by deleting the codon of one or several amino acid residues in the DNA sequence shown in Sequence 3, and/or performing a missense mutation of one or several base pairs. , and/or obtained by connecting the coding sequence of the tag shown in the above table to its 5′ end and/or 3′ end. Among them, the DNA molecule shown in sequence 3 encodes the Acfe-D162T protein shown in sequence 4.
具体的,A2)所述蛋白质可为序列8所示的蛋白质。Specifically, the protein in A2) may be the protein shown in sequence 8.
本发明还提供了与Acfe-D162T相关的生物材料,所述生物材料为下述B1)至B4)中的任一种:The present invention also provides biomaterials related to Acfe-D162T, which biomaterials are any one of the following B1) to B4):
B1)编码Acfe-D162T的核酸分子;B1) Nucleic acid molecule encoding Acfe-D162T;
B2)含有B1)所述核酸分子的表达盒;B2) An expression cassette containing the nucleic acid molecule described in B1);
B3)含有B1)所述核酸分子的重组载体、或含有B2)所述表达盒的重组载体;B3) A recombinant vector containing the nucleic acid molecule described in B1), or a recombinant vector containing the expression cassette described in B2);
B4)含有B1)所述核酸分子的重组微生物、或含有B2)所述表达盒的重组微生物、或含有B3)所述重组载体的重组微生物。B4) A recombinant microorganism containing the nucleic acid molecule described in B1), or a recombinant microorganism containing the expression cassette described in B2), or a recombinant microorganism containing the recombinant vector described in B3).
上述生物材料中,B1)所述核酸分子可为如下b11)或b12)或b13)或b14):In the above biological materials, the nucleic acid molecules described in B1) may be the following b11) or b12) or b13) or b14):
b11)编码序列是序列表中序列3的cDNA分子或DNA分子;b11) The coding sequence is a cDNA molecule or DNA molecule of sequence 3 in the sequence listing;
b12)序列表中序列3所示的DNA分子;b12) The DNA molecule shown in sequence 3 in the sequence listing;
b13)与b11)或b12)限定的核苷酸序列具有75%或75%以上同一性,且编码Acfe-D162T的cDNA分子或DNA分子;b13) A cDNA molecule or DNA molecule that has 75% or more identity with the nucleotide sequence defined by b11) or b12) and encodes Acfe-D162T;
b14)在严格条件下与b11)或b12)或b13)限定的核苷酸序列杂交,且编码Acfe-D162T的cDNA分子或DNA分子。b14) A cDNA molecule or DNA molecule that hybridizes to the nucleotide sequence defined by b11) or b12) or b13) under stringent conditions and encodes Acfe-D162T.
其中,所述核酸分子可以是DNA,如cDNA、基因组DNA或重组DNA;所述核酸分子也可以是RNA,如mRNA或hnRNA等。Wherein, the nucleic acid molecule can be DNA, such as cDNA, genomic DNA or recombinant DNA; the nucleic acid molecule can also be RNA, such as mRNA or hnRNA, etc.
本领域普通技术人员可以很容易地采用已知的方法,例如定向进化和点突变的方法,对本发明的编码Acfe-D162T蛋白质的核苷酸序列进行突变。那些经过人工修饰的,具有与本发明的Acfe-D162T蛋白质的核苷酸序列75%或者更高同一性的核苷酸,只要编码Acfe-D162T蛋白质且具有Acfe-D162T蛋白质功能,均是衍生于本发明的核苷酸序列并且等同于本发明的序列。Those of ordinary skill in the art can easily use known methods, such as directed evolution and point mutation methods, to mutate the nucleotide sequence encoding the Acfe-D162T protein of the present invention. Those artificially modified nucleotides that have 75% or higher identity with the nucleotide sequence of the Acfe-D162T protein of the present invention, as long as they encode the Acfe-D162T protein and have the function of the Acfe-D162T protein, are derived from Nucleotide sequences of the invention and are equivalent to sequences of the invention.
这里使用的术语“同一性”指与天然核酸序列的序列相似性。“同一性”包括与本发明的编码序列4所示的氨基酸序列组成的蛋白质的核苷酸序列具有75%或更高,或85%或更高,或90%或更高,或95%或更高同一性的核苷酸序列。同一性可以用肉眼或计算机软件进行评价。使用计算机软件,两个或多个序列之间的同一性可以用百分比(%)表示,其可以用来评价相关序列之间的同一性。The term "identity" as used herein refers to sequence similarity to a native nucleic acid sequence. "Identity" includes 75% or higher, or 85% or higher, or 90% or higher, or 95% or Nucleotide sequences of higher identity. Identity can be assessed with the naked eye or with computer software. Using computer software, the identity between two or more sequences can be expressed as a percentage (%), which can be used to evaluate the identity between related sequences.
上述生物材料中,所述严格条件可为如下:50℃,在7%十二烷基硫酸钠(SDS)、0.5M NaPO4和1mM EDTA的混合溶液中杂交,在50℃,2×SSC,0.1%SDS中漂洗;还可为:50℃,在7%SDS、0.5M NaPO4和1mM EDTA的混合溶液中杂交,在50℃,1×SSC,0.1%SDS中漂洗;还可为:50℃,在7%SDS、0.5M NaPO4和1mM EDTA的混合溶液中杂交,在50℃,0.5×SSC,0.1%SDS中漂洗;还可为:50℃,在7%SDS、0.5M NaPO4和1mM EDTA的混合溶液中杂交,在50℃,0.1×SSC,0.1%SDS中漂洗;还可为:50℃,在7%SDS、0.5M NaPO4和1mM EDTA的混合溶液中杂交,在65℃,0.1×SSC,0.1%SDS中漂洗;也可为:在6×SSC,0.5%SDS的溶液中,在65℃下杂交,然后用2×SSC,0.1%SDS和1×SSC,0.1%SDS各洗膜一次;也可为:2×SSC,0.1%SDS的溶液中,在68℃下杂交并洗膜2次,每次5min,又于0.5×SSC,0.1%SDS的溶液中,在68℃下杂交并洗膜2次,每次15min;也可为:0.1×SSPE(或0.1×SSC)、0.1%SDS的溶液中,65℃条件下杂交并洗膜。In the above biological materials, the stringent conditions can be as follows: 50°C, hybridization in a mixed solution of 7% sodium dodecyl sulfate (SDS), 0.5M NaPO 4 and 1mM EDTA, 2×SSC at 50°C, Rinse in 0.1% SDS; alternatively: 50°C, hybridize in a mixed solution of 7% SDS, 0.5M NaPO 4 and 1mM EDTA, rinse in 50°C, 1×SSC, 0.1% SDS; alternatively: 50 ℃, hybridize in a mixed solution of 7% SDS, 0.5M NaPO 4 and 1mM EDTA, rinse in 50℃, 0.5×SSC, 0.1% SDS; also: 50℃, in 7% SDS, 0.5M NaPO 4 Hybridize in a mixed solution of 1mM EDTA and 50°C, rinse in 0.1×SSC, 0.1% SDS; alternatively: 50°C, hybridize in a mixed solution of 7% SDS, 0.5M NaPO 4 and 1mM EDTA, rinse at 65 ℃, rinse in 0.1×SSC, 0.1% SDS; also: hybridize in 6×SSC, 0.5% SDS solution at 65℃, then use 2×SSC, 0.1% SDS and 1×SSC, 0.1% Wash the membrane once with each SDS; it can also be: hybridize and wash the membrane twice at 68°C in a solution of 2×SSC, 0.1% SDS, 5 min each time, and then in a solution of 0.5×SSC, 0.1% SDS, at 68°C. Hybridize and wash the membrane twice at 68°C, 15 minutes each time; it can also be hybridized and washed at 65°C in a solution of 0.1×SSPE (or 0.1×SSC) and 0.1% SDS.
上述75%或75%以上同一性,可为80%、85%、90%或95%以上的同一性。The above-mentioned 75% or above identity may be 80%, 85%, 90% or 95% or above identity.
上述生物材料中,B2)所述的含有编码Acfe-D162T蛋白质的核酸分子的表达盒(Acfe-D162T基因表达盒),是指能够在宿主细胞中表达Acfe-D162T蛋白质的DNA,该DNA不但可包括启动Acfe-D162T基因转录的启动子,还可包括终止Acfe-D162T基因转录的终止子。进一步,所述表达盒还可包括增强子序列。Among the above biological materials, the expression cassette containing the nucleic acid molecule encoding the Acfe-D162T protein (Acfe-D162T gene expression cassette) described in B2) refers to DNA that can express the Acfe-D162T protein in host cells. This DNA can not only It includes a promoter that starts the transcription of the Acfe-D162T gene, and may also include a terminator that terminates the transcription of the Acfe-D162T gene. Furthermore, the expression cassette may also include an enhancer sequence.
可用现有的表达载体构建含有所述Acfe-D162T基因表达盒的重组载体。Existing expression vectors can be used to construct a recombinant vector containing the Acfe-D162T gene expression cassette.
上述生物材料中,所述载体可为质粒、黏粒、噬菌体或病毒载体。所述质粒具体可为pET32a(+)载体。In the above biological materials, the vector can be a plasmid, cosmid, phage or viral vector. The plasmid may specifically be pET32a(+) vector.
B3)所述重组载体具体可为pET32a-TEV-Acfe-D162T。所述pET32a-TEV-Acfe-D162T为将pET32a(+)载体的EcoRI和NotI识别序列间的DNA片段替换为序列7的第502-1251位所示的TEV-Acfe-D162T融合基因得到的重组载体。所述pET32a-TEV-Acfe-D162T含有TEV-Acfe-D162T融合基因,能表达序列8所示的TEV-Acfe-D162T融合蛋白。B3) The recombinant vector can specifically be pET32a-TEV-Acfe-D162T. The pET32a-TEV-Acfe-D162T is a recombinant vector obtained by replacing the DNA fragment between the EcoRI and NotI recognition sequences of the pET32a(+) vector with the TEV-Acfe-D162T fusion gene shown in positions 502-1251 of Sequence 7 . The pET32a-TEV-Acfe-D162T contains the TEV-Acfe-D162T fusion gene and can express the TEV-Acfe-D162T fusion protein shown in sequence 8.
上述生物材料中,所述微生物可为酵母、细菌、藻或真菌。其中,细菌可为大肠杆菌,如大肠杆菌BL21(DE3)trxB。In the above biological material, the microorganism may be yeast, bacteria, algae or fungi. The bacterium may be Escherichia coli, such as Escherichia coli BL21(DE3)trxB.
本发明还提供了一种水解PET的方法,所述方法包括:利用Acfe-D162T处理PET实现PET的水解。The present invention also provides a method for hydrolyzing PET, which comprises: treating PET with Acfe-D162T to achieve hydrolysis of PET.
上述方法中,所述处理可在30℃下进行。In the above method, the treatment can be performed at 30°C.
上述方法中,利用Acfe-D162T处理PET可在50mM PBS,pH8.0的缓冲液中进行。In the above method, the treatment of PET with Acfe-D162T can be carried out in 50mM PBS, pH 8.0 buffer.
本发明还提供了一种制备MHET的方法,所述方法包括:利用Acfe-D162T水解PET,得到MHET。The invention also provides a method for preparing MHET, which method includes: using Acfe-D162T to hydrolyze PET to obtain MHET.
上述方法中,所述处理可在30℃下进行。In the above method, the treatment can be performed at 30°C.
上述方法中,利用Acfe-D162T水解PET可在50mM PBS,pH8.0的缓冲液中进行。In the above method, the hydrolysis of PET using Acfe-D162T can be carried out in 50mM PBS, pH 8.0 buffer.
Acfe-D162T的下述任一应用,也属于本发明的保护范围:Any of the following applications of Acfe-D162T also falls within the protection scope of the present invention:
1)作为PET水解酶或双(2-羟乙基)对苯二甲酸酯(BHET)水解酶;1) As PET hydrolase or bis(2-hydroxyethyl)terephthalate (BHET) hydrolase;
2)催化PET水解;2) Catalyze PET hydrolysis;
3)降解PET;3) Degradation of PET;
4)催化PET水解为MHET和/或TPA;4) Catalyze the hydrolysis of PET into MHET and/or TPA;
5)制备PET降解剂;5) Prepare PET degradation agent;
6)制备催化PET水解产品;6) Preparation of catalytic PET hydrolysis products;
7)制备降解PET产品;7) Preparation of degraded PET products;
8)制备催化PET水解为MHET和/或TPA产品。8) Preparation of catalytic PET hydrolysis into MHET and/or TPA products.
所述生物材料的下述任一应用,也属于本发明的保护范围:Any of the following applications of the biological material also falls within the protection scope of the present invention:
1)催化PET水解;1) Catalyze PET hydrolysis;
2)降解PET;2) Degradation of PET;
3)催化PET水解为MHET和/或TPA;3) Catalyze the hydrolysis of PET into MHET and/or TPA;
4)制备PET降解剂;4) Prepare PET degradation agent;
5)制备催化PET水解产品;5) Preparation of catalytic PET hydrolysis products;
6)制备降解PET产品;6) Preparation of degraded PET products;
7)制备催化PET水解为MHET和/或TPA产品。7) Preparation of catalytic PET hydrolysis into MHET and/or TPA products.
上文中,PET可为BHET。In the above, PET can be BHET.
本发明利用定点突变技术将原有双烯内脂水解酶进行突变,得到其突变体,改变了原有双烯内脂水解酶活性较低的问题,有效提高降解BHET的活性,提升降解效果。BHET(短链PET)在可以解除PET降解中产物抑制的作用,本发明的突变体大大提高了BHET的降解效率,工业应用前景良好。The present invention uses site-directed mutation technology to mutate the original dienolide hydrolase to obtain its mutant, which changes the problem of low activity of the original dienolide hydrolase, effectively improves the activity of degrading BHET, and improves the degradation effect. BHET (short-chain PET) can relieve the inhibition of products in PET degradation. The mutant of the present invention greatly improves the degradation efficiency of BHET, and has good industrial application prospects.
下面结合具体实施方式对本发明进行进一步的详细描述,给出的实施例仅为了阐明本发明,而不是为了限制本发明的范围。以下提供的实施例可作为本技术领域普通技术人员进行进一步改进的指南,并不以任何方式构成对本发明的限制。The present invention will be described in further detail below in conjunction with specific embodiments. The examples given are only for illustrating the present invention and are not intended to limit the scope of the present invention. The examples provided below can serve as a guide for those of ordinary skill in the art to make further improvements, and do not limit the present invention in any way.
附图说明Description of the drawings
图1为双烯内脂水解酶及其突变体蛋白的活性分析。WT表示野生型双烯内脂水解酶,D162T和P190A/L208A表示双烯内脂水解酶突变体。Figure 1 shows the activity analysis of dienolide hydrolase and its mutant proteins. WT represents wild-type dienolide hydrolase, and D162T and P190A/L208A represent dienolide hydrolase mutants.
具体实施方式Detailed ways
下述实施例中的实验方法,如无特殊说明,均为常规方法,按照本领域内的文献所描述的技术或条件或者按照产品说明书进行。下述实施例中所用的材料、试剂、仪器等,如无特殊说明,均可从商业途径得到。下述实施例中,如无特殊说明,序列表中各核苷酸序列的第1位均为相应DNA/RNA的5′末端核苷酸,末位均为相应DNA/RNA的3′末端核苷酸。The experimental methods in the following examples, unless otherwise specified, are all conventional methods and are carried out in accordance with the techniques or conditions described in literature in the field or in accordance with product instructions. The materials, reagents, instruments, etc. used in the following examples can all be obtained from commercial sources unless otherwise specified. In the following examples, unless otherwise specified, the first position of each nucleotide sequence in the sequence list is the 5' terminal nucleotide of the corresponding DNA/RNA, and the last position is the 3' terminal core of the corresponding DNA/RNA. glycosides.
实施例1、双烯内脂水解酶突变体的制备、表达纯化及活性检测Example 1. Preparation, expression, purification and activity detection of dienolide hydrolase mutants
为增加双烯内脂酶的工业应用价值,本发明合成了来源于Acidimicrobiumferrooxidans的双烯内脂水解酶Acfe的基因,并对其进行了突变,获得了酶活性提高的突变体。In order to increase the industrial application value of dienolide, the present invention synthesizes the gene of dienolide hydrolase Acfe derived from Acidimicrobium ferrooxidans, mutates it, and obtains a mutant with improved enzyme activity.
一、野生型双烯内脂水解酶重组质粒和其突变体重组质粒的构建1. Construction of wild-type dienolide hydrolase recombinant plasmid and its mutant recombinant plasmid
1、野生型双烯内脂水解酶重组质粒的构建1. Construction of wild-type dienolide hydrolase recombinant plasmid
野生型双烯内脂水解酶为来源于Acidimicrobiumferrooxidans的Acfe,野生型双烯内脂水解酶Acfe的核苷酸序列为序列表中序列1,其编码的氨基酸序列为序列表中序列2。The wild-type dienelide hydrolase is Acfe derived from Acidimicrobiumferrooxidans. The nucleotide sequence of the wild-type dienelide hydrolase Acfe is sequence 1 in the sequence listing, and its encoded amino acid sequence is sequence 2 in the sequence listing.
合成含有TEV酶切位点的野生型双烯内脂水解酶基因,并将其插入pET32a(+)载体中EcoRI和NotI酶切位点中,获得重组质粒,记为pET32a-TEV-Acfe;该重组质粒诱导表达后编码的氨基酸序列除了野生型双烯内脂水解酶的序列外,其N端还有一段载体序列和TEV酶切位点,诱导表达后氨基酸序列如序列6所示,命名为含有野生型双烯内脂水解酶的融合蛋白(记为TEV-Acfe融合蛋白),其编码基因(记为TEV-Acfe融合基因)为序列表中5所示。The wild-type dienolide hydrolase gene containing the TEV enzyme cleavage site was synthesized and inserted into the EcoRI and NotI enzyme cleavage sites in the pET32a(+) vector to obtain a recombinant plasmid, designated as pET32a-TEV-Acfe; In addition to the sequence of the wild-type dienelide hydrolase, the amino acid sequence encoded by the recombinant plasmid after induced expression also has a vector sequence and a TEV enzyme cleavage site at its N-terminus. The amino acid sequence after induced expression is shown in Sequence 6, named The fusion protein containing wild-type dienolide hydrolase (denoted as TEV-Acfe fusion protein), and its encoding gene (denoted as TEV-Acfe fusion gene) is shown in 5 in the sequence list.
含有TEV酶切位点的TEV-Acfe融合基因的核苷酸序列从5′末端起依次由甲硫氨酸,His标签和TEV酶切位点(序列5的第502-543位)、无功能氨基酸编码核酸(序列5的第544-570位)和序列表中序列1所示的双烯内脂水解酶基因(序列5的第571-1251位)组成。The nucleotide sequence of the TEV-Acfe fusion gene containing the TEV enzyme cleavage site consists of methionine, His tag and TEV enzyme cleavage site (positions 502-543 of sequence 5), starting from the 5' end, and has no function. It consists of an amino acid encoding nucleic acid (positions 544-570 of Sequence 5) and the dienolide hydrolase gene shown in Sequence 1 in the sequence listing (positions 571-1251 of Sequence 5).
TEV-Acfe融合蛋白的氨基酸序列从N末端起依次由pET32a载体部分片段(序列6的第1-167位),甲硫氨酸、His标签和TEV酶切位点(序列6的第168-181位),无功能氨基酸(序列6的第182-190位)和序列表中序列2所示的双烯内脂水解酶(序列6的第191-417位)组成。The amino acid sequence of the TEV-Acfe fusion protein consists of the pET32a vector partial fragment (positions 1-167 of sequence 6), methionine, His tag and TEV restriction site (positions 168-181 of sequence 6) from the N-terminus. position), non-functional amino acids (positions 182-190 of sequence 6) and the diene lactone hydrolase shown in sequence 2 in the sequence listing (positions 191-417 of sequence 6).
具体的,pET32a-TEV-Acfe为将pET32a(+)载体的EcoRI和NotI识别序列间的DNA片段替换为TEV-Acfe融合基因得到的重组载体,含有序列表中序列5所示的TEV-Acfe融合基因,能表达序列表中序列6所示的TEV-Acfe融合蛋白。Specifically, pET32a-TEV-Acfe is a recombinant vector obtained by replacing the DNA fragment between the EcoRI and NotI recognition sequences of the pET32a(+) vector with the TEV-Acfe fusion gene, and contains the TEV-Acfe fusion shown in sequence 5 in the sequence list. The gene can express the TEV-Acfe fusion protein shown in sequence 6 in the sequence listing.
2、表达双烯内脂水解酶突变体的重组质粒2. Recombinant plasmid expressing dienolide hydrolase mutant
双烯内脂水解酶突变体为将序列2所示的双烯内脂水解酶按照如下突变得到的蛋白(将所得蛋白记为Acfe-D162T):其氨基酸序列的第162位由野生型双烯内脂水解酶的天冬氨酸(Aspartic acid)突变为苏氨酸(Threonine)。双烯内脂水解酶突变体Acfe-D162T的氨基酸序列为序列4,其编码基因(即Acfe-D162T基因)的核苷酸序列为序列3。The dienelide hydrolase mutant is a protein obtained by mutating the dienelide hydrolase shown in Sequence 2 as follows (the resulting protein is recorded as Acfe-D162T): the 162nd position of its amino acid sequence is changed from the wild-type diene The Aspartic acid of lactis hydrolase is mutated to Threonine. The amino acid sequence of dienolide hydrolase mutant Acfe-D162T is Sequence 4, and the nucleotide sequence of its encoding gene (ie, Acfe-D162T gene) is Sequence 3.
利用定点突变技术(site-directed mutagenesis),以pET32a-TEV-Acfe质粒为模板,用表1所示的引物进行PCR,得到表达双烯内脂水解酶突变体的质粒;进而加入限制性内切酶DpnI于37℃下反应以去除原始模板。将纯化后的反应产物转化大肠杆菌感受态细胞中,用抗生素进行初步筛选,进行DNA测序以确定成功突变的基因,得到表达双烯内脂水解酶突变体的质粒,记为pET32a-TEV-Acfe-D162T。Utilize site-directed mutagenesis, use the pET32a-TEV-Acfe plasmid as a template, and perform PCR with the primers shown in Table 1 to obtain a plasmid expressing the diene lactone hydrolase mutant; then add restriction endonuclease The enzyme DpnI reacts at 37°C to remove the original template. The purified reaction product was transformed into E. coli competent cells, and antibiotics were used for preliminary screening. DNA sequencing was performed to determine the successfully mutated genes, and a plasmid expressing the diene lactone hydrolase mutant was obtained, which was designated as pET32a-TEV-Acfe. -D162T.
具体的,pET32a-TEV-Acfe-D162T为将pET32a-TEV-Acfe中的Acfe基因替换为Acfe-D162T基因得到的重组质粒,该重组质粒含有TEV-Acfe-D162T融合基因(该基因为将TEV-Acfe融合基因中的Acfe基因替换为Acfe-D162T基因得到的DNA片段,TEV-Acfe-D162T融合基因的序列为序列7),能表达TEV-Acfe-D162T融合蛋白(该蛋白为将TEV-Acfe融合蛋白中的Acfe蛋白替换为Acfe-D162T蛋白得到的蛋白质,TEV-Acfe-D162T融合蛋白质的序列为序列8)。Specifically, pET32a-TEV-Acfe-D162T is a recombinant plasmid obtained by replacing the Acfe gene in pET32a-TEV-Acfe with the Acfe-D162T gene. The recombinant plasmid contains the TEV-Acfe-D162T fusion gene (this gene is the TEV- The Acfe gene in the Acfe fusion gene is replaced with the DNA fragment obtained by the Acfe-D162T gene. The sequence of the TEV-Acfe-D162T fusion gene is sequence 7), which can express the TEV-Acfe-D162T fusion protein (the protein is a fusion of TEV-Acfe The Acfe protein in the protein is replaced with the Acfe-D162T protein. The sequence of the TEV-Acfe-D162T fusion protein is sequence 8).
利用定点突变技术(site-directed mutagenesis),以pET32a-TEV-Acfe质粒为模板,用表1所示的引物进行PCR,得到表达双烯内脂水解酶突变体的质粒;进而加入限制性内切酶DpnI于37℃下反应以去除原始模板。将纯化后的反应产物转化大肠杆菌感受态细胞中,用抗生素进行初步筛选,进行DNA测序以确定成功突变的基因,得到表达双烯内脂水解酶突变体的质粒,记为pET32a-TEV-Acfe-P190A/L208A。Utilize site-directed mutagenesis, use the pET32a-TEV-Acfe plasmid as a template, and perform PCR with the primers shown in Table 1 to obtain a plasmid expressing the diene lactone hydrolase mutant; then add restriction endonuclease The enzyme DpnI reacts at 37°C to remove the original template. The purified reaction product was transformed into Escherichia coli competent cells, and antibiotics were used for preliminary screening. DNA sequencing was performed to determine the successfully mutated genes, and a plasmid expressing the diene lactone hydrolase mutant was obtained, which was recorded as pET32a-TEV-Acfe. -P190A/L208A.
具体的,pET32a-TEV-Acfe-P190A/L208A为将pET32a-TEV-Acfe中的Acfe基因替换为Acfe-P190A/L208A基因得到的重组质粒,该重组质粒含有TEV-Acfe-P190A/L208A融合基因(该基因为将TEV-Acfe融合基因中的Acfe基因替换为Acfe-P190A/L208A基因得到的DNA片段),能表达TEV-Acfe-P190A/L208A融合蛋白(该蛋白为将TEV-Acfe融合蛋白中的Acfe蛋白替换为Acfe-P190A/L208A蛋白得到的蛋白质)。Specifically, pET32a-TEV-Acfe-P190A/L208A is a recombinant plasmid obtained by replacing the Acfe gene in pET32a-TEV-Acfe with the Acfe-P190A/L208A gene. The recombinant plasmid contains the TEV-Acfe-P190A/L208A fusion gene ( This gene is a DNA fragment obtained by replacing the Acfe gene in the TEV-Acfe fusion gene with the Acfe-P190A/L208A gene) and can express the TEV-Acfe-P190A/L208A fusion protein (this protein is a DNA fragment obtained by replacing the Acfe gene in the TEV-Acfe fusion protein). Protein obtained by replacing Acfe protein with Acfe-P190A/L208A protein).
其中,Acfe-P190A/L208A基因的序列为序列9,Acfe-P190A/L208A蛋白的氨基酸序列为序列10。Among them, the sequence of Acfe-P190A/L208A gene is sequence 9, and the amino acid sequence of Acfe-P190A/L208A protein is sequence 10.
表1、定点突变引物Table 1. Site-directed mutagenesis primers
上述表1中,D162T指序列2中的第162个氨基酸由天冬氨酸突变为苏氨酸,P190A/L208A指序列2中的第190个氨基酸由脯氨酸突变为丙氨酸、第208个氨基酸由亮氨酸突变为丙氨酸。In Table 1 above, D162T refers to the mutation of the 162nd amino acid in sequence 2 from aspartic acid to threonine, and P190A/L208A refers to the mutation of the 190th amino acid in sequence 2 from proline to alanine, and the 208th amino acid in sequence 2. An amino acid is mutated from leucine to alanine.
二、双烯内脂水解酶突变体和野生型双烯内脂水解酶的制备2. Preparation of dienolide hydrolase mutants and wild-type dienolide hydrolase
1、野生型双烯内脂水解酶及双烯内脂水解酶突变体的表达纯化1. Expression and purification of wild-type dienolide hydrolase and dienolide hydrolase mutants
将上述一制备的表达野生型双烯内脂水解酶的重组质粒pET32a-TEV-Acfe和表达双烯内脂水解酶突变体的重组质粒pET32a-TEV-Acfe-D162T、pET32a-TEV-Acfe-P190A/L208A分别转化入大肠杆菌BL21(DE3)trxB感受态细胞中,在含有100μg/ml Ampicillin的LB培养皿中筛选菌株。把筛选出的菌株接种到5ml LB内培养,再放大菌量至200ml LB培养,最终放大到6L的LB培养基中培养(37℃,220rpm)。在OD值到达0.6至0.8时,将培养物冷却至16℃,并在16℃和220rpm下,加入终浓度0.4mM的IPTG诱导酶蛋白的大量表达。经过18小时的蛋白质诱导表达后,将菌液以6000rpm转速离心15分钟将细胞收集下来。用缓冲液(25mMtris,150mM NaCl,pH7.5)将菌体进行重悬,利用超声波细胞破碎机(sonicator)破菌,再以16000rpm转速在4℃下离心60分钟,收集上清液用以准备下一步的纯化。The above-prepared recombinant plasmid pET32a-TEV-Acfe expressing wild-type dienolide hydrolase and the recombinant plasmids pET32a-TEV-Acfe-D162T and pET32a-TEV-Acfe-P190A expressing dienolide hydrolase mutants were prepared. /L208A were transformed into E. coli BL21(DE3)trxB competent cells, and the strains were screened in LB culture dishes containing 100 μg/ml Ampicillin. Inoculate the selected strains into 5 ml LB for culture, then amplify the bacterial volume to 200 ml LB for culture, and finally amplify it into 6L LB medium for culture (37°C, 220 rpm). When the OD value reaches 0.6 to 0.8, the culture is cooled to 16°C, and IPTG at a final concentration of 0.4mM is added to induce large expression of the enzyme protein at 16°C and 220 rpm. After 18 hours of protein induction, the bacterial solution was centrifuged at 6000 rpm for 15 minutes to collect the cells. Resuspend the bacteria in buffer (25mM tris, 150mM NaCl, pH 7.5), disrupt the bacteria using an ultrasonic cell disrupter (sonicator), and then centrifuge at 16,000 rpm at 4°C for 60 minutes. Collect the supernatant for preparation. Next step of purification.
为了得到高纯度的酶蛋白,用快速蛋白质液相层析仪(fast protein liquidchromatography;FPLC)依次利用镍离子层析柱底物洗脱目的蛋白(buffer A:25mM Tris,150mM NaCl,20mM咪唑,pH7.5;buffer B:25mM Tris,150mM NaCl,250mM咪唑,pH7.5),收集目的蛋白。将目的蛋白中加入300微升TEV蛋白酶进行酶切,目的是切掉载体上的His标签,并同时将目的蛋白透析在5L透析液(25mM tris,150mM NaCl,pH7.5)中,更换一下透析液,4℃透析过夜。酶切过后的目的蛋白再过一次镍柱,收集流穿出的不含His标签的目的蛋白。将两次纯化后的目的蛋白透析在25mM Tris,150mM NaCl,pH 7.5的缓冲液中,浓缩收集,保存于-80℃,备用。In order to obtain high-purity enzyme protein, fast protein liquid chromatography (FPLC) was used to sequentially elute the target protein using a nickel ion chromatography column substrate (buffer A: 25mM Tris, 150mM NaCl, 20mM imidazole, pH 7 .5; buffer B: 25mM Tris, 150mM NaCl, 250mM imidazole, pH7.5), collect the target protein. Add 300 microliters of TEV protease to the target protein for enzymatic digestion in order to cut off the His tag on the carrier, and at the same time dialyze the target protein into 5L dialysate (25mM tris, 150mM NaCl, pH7.5), and replace the dialysis solution and dialyzed overnight at 4°C. The target protein after digestion is passed through the nickel column again, and the target protein that does not contain the His tag that flows through is collected. Dialyze the twice-purified target protein into a buffer of 25mM Tris, 150mM NaCl, pH 7.5, concentrate and collect, and store at -80°C for later use.
三、双烯内脂水解酶突变体和野生型双烯内脂水解酶的相对活性比较3. Comparison of the relative activities of dienolide hydrolase mutants and wild-type dienolide hydrolase
为验证野生型双烯内脂水解酶与双烯内脂水解酶突变体的差异,发明人进一步测定二者对BHET的降解活力。双烯内脂水解酶的活性测试步骤如下:In order to verify the difference between the wild-type dienolide hydrolase and the dienolide hydrolase mutant, the inventors further determined the BHET degradation activities of the two. The test steps for the activity of dienolide hydrolase are as follows:
每个反应体系的混合物(1mL)处于50mM PBS,pH8.0的缓冲液中,该反应体系含有1mM底物双(2-羟乙基)对苯二甲酸酯(BHET)(PET的低聚物,sigma,cas:959-26-2)和30μL酶(1mg/mL上述二制备的不同种突变体或野生型双烯内脂水解酶),余量为100mM PBS,pH8.0的缓冲液。将所得反应体系置于摇床30℃、100rpm反应40小时。每个反应均做3次重复。反应后混合物先热激(80℃,10min)终止反应,然后经过12000rpm离心10分钟,取上清反应液通过0.22μm过滤器进行过滤;收集滤液进行高效液相色谱(HPLC,Agilent 1200)产物测定与分析,分析柱为Welch Ultimate XB-C18 column(4.6×250mm,5μm,月旭科技(上海)股份有限公司)。流动相为81%纯水,18%乙腈,1%甲酸,流速0.8ml/min,波长254nm,柱温箱30℃,直接洗脱,20min。Mixtures (1 mL) of each reaction containing 1 mM of the substrate bis(2-hydroxyethyl)terephthalate (BHET) (oligomeric form of PET) were in 50 mM PBS, pH 8.0 buffer. substance, sigma, cas: 959-26-2) and 30 μL enzyme (1 mg/mL different mutants or wild-type diene lactone hydrolase prepared in the above two preparations), the balance is 100 mM PBS, pH 8.0 buffer . The obtained reaction system was placed on a shaker at 30°C and 100 rpm for 40 hours. Each reaction was repeated three times. After the reaction, the mixture was first heat-shocked (80°C, 10 min) to terminate the reaction, and then centrifuged at 12,000 rpm for 10 minutes. The supernatant reaction solution was filtered through a 0.22 μm filter; the filtrate was collected for high-performance liquid chromatography (HPLC, Agilent 1200) product determination. For analysis, the analytical column was Welch Ultimate XB-C18 column (4.6×250mm, 5μm, Yuexu Technology (Shanghai) Co., Ltd.). The mobile phase is 81% pure water, 18% acetonitrile, 1% formic acid, flow rate 0.8ml/min, wavelength 254nm, column oven 30°C, direct elution, 20min.
野生型双烯内脂水解酶和突变体的高效液相色谱(HPLC)检测结果为MHET保留时间11.6min左右,对其出峰进行质谱检测分析(负离子,Mass range 50-1000m/z),为MHET。The high-performance liquid chromatography (HPLC) detection results of wild-type dienolide hydrolase and mutants are that the MHET retention time is about 11.6 minutes, and the peaks are analyzed by mass spectrometry (negative ions, Mass range 50-1000m/z), which is MHET.
通过比较野生型双烯内脂水解酶或其突变体的水解产物MHET的峰面积,来确定野生型和突变型酶活。The activities of the wild-type and mutant enzymes were determined by comparing the peak areas of the hydrolysis product MHET of the wild-type dienolide hydrolase or its mutants.
活性测定原理如下:HPLC实验中,溶液中化合物的量与峰面积成线性关系,因此可以通过峰面积来计算溶液中化合物的量;本实验中,由产物的峰面积来定义突变体蛋白对底物的催化效果;产物越多(因为底物无法溶解,因此难以进行定量),则说明该突变体蛋白具有越好的活性。The principle of activity measurement is as follows: In HPLC experiments, the amount of compounds in the solution has a linear relationship with the peak area, so the amount of compounds in the solution can be calculated by the peak area; in this experiment, the peak area of the product is used to define the response of the mutant protein to the bottom The catalytic effect of the substance; the more products (because the substrate cannot be dissolved, so it is difficult to quantify), the better the activity of the mutant protein.
以野生型双烯内脂水解酶的水解产物MHET的峰面积记作100%,其他双烯内脂水解酶突变体的水解产物MHET的峰面积与野生型双烯内脂水解酶的水解产物MHET的峰面积相比,记作相对酶活。Taking the peak area of the hydrolysis product MHET of the wild-type dienolide hydrolase as 100%, the peak area of the hydrolysis product MHET of other dienolide hydrolase mutants is the same as the peak area of the hydrolysis product MHET of the wild-type dienolide hydrolase. The peak area was compared and recorded as relative enzyme activity.
检测结果表明,本发明的双烯内脂水解酶及其突变体均可将BHET水解为MHET,但突变体Acfe-D162T对双烯内脂水解酶降解活性高于野生型蛋白,其中,突变体催化产生的产物MHET比野生型提高了约2.4倍;而Acfe-P190A/L208A对双烯内脂水解酶降解活性低于野生型蛋白,如图1所示。表明,突变体Acfe-D162T具有很好的应用价值。The test results show that both the dienolide hydrolase and its mutants of the present invention can hydrolyze BHET into MHET, but the mutant Acfe-D162T has a higher activity of dienolide hydrolase degradation than the wild-type protein. Among them, the mutant The catalyzed product MHET is approximately 2.4 times higher than that of the wild type; while Acfe-P190A/L208A has lower dienolactone hydrolase degradation activity than the wild type protein, as shown in Figure 1. It shows that the mutant Acfe-D162T has good application value.
以上对本发明进行了详述。对于本领域技术人员来说,在不脱离本发明的宗旨和范围,以及无需进行不必要的实验情况下,可在等同参数、浓度和条件下,在较宽范围内实施本发明。虽然本发明给出了特殊的实施例,应该理解为,可以对本发明作进一步的改进。总之,按本发明的原理,本申请欲包括任何变更、用途或对本发明的改进,包括脱离了本申请中已公开范围,而用本领域已知的常规技术进行的改变。按以下附带的权利要求的范围,可以进行一些基本特征的应用。The present invention has been described in detail above. For those skilled in the art, the present invention can be implemented in a wider range under equivalent parameters, concentrations and conditions without departing from the spirit and scope of the invention and without performing unnecessary experiments. Although specific embodiments of the present invention have been shown, it should be understood that further modifications can be made to the invention. In short, based on the principles of the present invention, this application is intended to include any changes, uses, or improvements to the present invention, including changes that depart from the scope disclosed in this application and are made using conventional techniques known in the art. Some essential features may be applied within the scope of the appended claims below.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211170945.9A CN117757771A (en) | 2022-09-23 | 2022-09-23 | A diene lactone hydrolase mutant and its application |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211170945.9A CN117757771A (en) | 2022-09-23 | 2022-09-23 | A diene lactone hydrolase mutant and its application |
Publications (1)
Publication Number | Publication Date |
---|---|
CN117757771A true CN117757771A (en) | 2024-03-26 |
Family
ID=90313038
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202211170945.9A Pending CN117757771A (en) | 2022-09-23 | 2022-09-23 | A diene lactone hydrolase mutant and its application |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN117757771A (en) |
-
2022
- 2022-09-23 CN CN202211170945.9A patent/CN117757771A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111057693B (en) | High-activity PET hydrolase mutant and application thereof | |
CN108467857A (en) | PET water solution enzyme mutant and its application | |
CN107099520B (en) | A kind of zearalenone degrading enzyme and its encoding gene and application | |
CN117821419A (en) | Dienolase mutant and application thereof | |
CN114854713B (en) | PET hydrolase IsPETase-cSP mutant enzyme and coding gene and engineering bacteria | |
CN116926041A (en) | PET polyester plastic depolymerase mutants and their applications | |
JP4964284B2 (en) | Recombinantly expressed carboxypeptidase B and purification thereof | |
CN115820601A (en) | Polyester plastic hydrolase and application thereof | |
US10934521B2 (en) | Genetically modified microorganisms | |
CN117757771A (en) | A diene lactone hydrolase mutant and its application | |
CN116179523B (en) | Ochratoxin degrading enzyme and application thereof | |
CN119464250A (en) | High-activity and high-thermostability MHET hydrolase mutant and its application | |
CN117757772A (en) | A kind of lipase mutant and its application | |
CN110484525A (en) | A kind of heat-resisting N-acetylglucosamine deacetylase and its encoding gene and application | |
CN117757770A (en) | Carboxylesterase mutant and application thereof | |
US20190185522A1 (en) | Fusion proteins with improved properties | |
CN112680427B (en) | Dehalogenase HldD1 and coding gene and application thereof | |
CN112680429B (en) | A kind of dehalogenase HadD14 and its encoding gene and application | |
CN119913118B (en) | A laccase mutant and its application in treating desizing wastewater | |
CN114164223B (en) | Antarctic soil-derived esterase and encoding gene and application thereof | |
CN112680428B (en) | A kind of dehalogenase Had2CG4B and its encoding gene and application | |
CN117535269A (en) | A kind of polyester plastic hydrolase and its application | |
CN120210155A (en) | Dienolide hydrolase mutant and application thereof | |
CN120210157A (en) | Esterase mutant derived from thermophilic bacteria and application thereof | |
CN116396949A (en) | A fusion protein with dual PET hydrolase activity and method for degrading PET |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |