CN117723452B - Automatic detection method and device for injection information of fuel nozzle of engine - Google Patents
Automatic detection method and device for injection information of fuel nozzle of engine Download PDFInfo
- Publication number
- CN117723452B CN117723452B CN202410172396.1A CN202410172396A CN117723452B CN 117723452 B CN117723452 B CN 117723452B CN 202410172396 A CN202410172396 A CN 202410172396A CN 117723452 B CN117723452 B CN 117723452B
- Authority
- CN
- China
- Prior art keywords
- image
- fuel nozzle
- frame image
- detection
- camera
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Landscapes
- Image Processing (AREA)
Abstract
Description
技术领域Technical Field
本发明涉及图像处理技术在燃油喷嘴雾化检测领域的应用,具体地涉及一种发动机燃油喷嘴喷射信息自动检测方法及装置。The invention relates to the application of image processing technology in the field of fuel nozzle atomization detection, and in particular to an automatic detection method and device for engine fuel nozzle injection information.
背景技术Background technique
燃油喷嘴组件(以下简称喷嘴)是发动机中燃烧室的重要组件之一,喷嘴可以将燃油雾化成大量小颗粒液滴,能够有效增加燃油与空气的接触面积,进而实现节省燃油用量、提高燃烧效率的目的。The fuel nozzle assembly (hereinafter referred to as the nozzle) is one of the important components of the combustion chamber in the engine. The nozzle can atomize the fuel into a large number of small particle droplets, which can effectively increase the contact area between the fuel and the air, thereby achieving the purpose of saving fuel consumption and improving combustion efficiency.
喷嘴雾化质量是表征喷嘴性能的重要参数,也决定着实际工艺过程的质量效果,因此雾滴尺寸和雾化角度是燃油喷嘴性能的两个关键喷射信息指标。Nozzle atomization quality is an important parameter to characterize nozzle performance and also determines the quality effect of the actual process. Therefore, droplet size and atomization angle are two key injection information indicators of fuel nozzle performance.
目前,对雾滴尺寸检测的自动化检测方式主要是基于激光粒度仪的检测方法,例如申请号为CN201410426094.9、CN202010041110.8以及CN202010534013.2的中国发明专利中就公开了基于这种思路的方法,该方法检测结果精准、稳定可靠。其中,中国专利“一种喷雾特性参数检测装置及方法”,申请号为CN201410426094.9,授权公告号为CN104181083B,公开了一种喷雾特性参数检测方法,该方法利用高速摄像机图像采集系统,检测到喷雾轮廓造型喷雾角、喷雾宏观二维分布、喷雾颗粒飞行速度,并能够根据喷雾轮廓及宏观二维分布以及设计好的路径,调整喷嘴和激光粒度仪发出激光的相对位置,在前面的基础上,测量喷雾粒径;中国专利“喷嘴喷雾粒径检测装置”,申请号为CN202010041110.8,授权公告号为CN111157410A,公开了一种喷嘴喷雾粒径检测装置,该检测装置通过将激光粒度仪的发射端和接收端分别置于待测喷嘴喷出喷雾区域的两侧,以对待测喷嘴喷出的雾滴尺寸进行测量。中国专利“一种二维喷雾场粒径分布检测装置”,申请号为CN202010534013.2,授权公告号为CN111678847B,公开了一种二维喷雾场粒径分布检测装置,该检测装置通过将激光粒度仪的发生端和激光接收端分别安装在两个支撑平台上,并通过转动激光粒度仪,实现对喷雾场中所有雾滴的尺寸分布均进行测量。At present, the automated detection method for droplet size detection is mainly based on the detection method of the laser particle size analyzer. For example, the Chinese invention patents with application numbers CN201410426094.9, CN202010041110.8 and CN202010534013.2 disclose methods based on this idea. The detection results of this method are accurate, stable and reliable. Among them, the Chinese patent "A spray characteristic parameter detection device and method", application number CN201410426094.9, authorization announcement number CN104181083B, discloses a spray characteristic parameter detection method, which uses a high-speed camera image acquisition system to detect the spray profile modeling spray angle, spray macroscopic two-dimensional distribution, and spray particle flight speed, and can adjust the relative position of the nozzle and the laser particle size analyzer according to the spray profile and macroscopic two-dimensional distribution and the designed path, and measure the spray particle size on the basis of the above; the Chinese patent "Nozzle spray particle size detection device", application number CN202010041110.8, authorization announcement number CN111157410A, discloses a nozzle spray particle size detection device, which measures the size of droplets sprayed by the nozzle to be tested by placing the transmitting end and the receiving end of the laser particle size analyzer on both sides of the spray area of the nozzle to be tested. The Chinese patent "A two-dimensional spray field particle size distribution detection device", application number CN202010534013.2, authorization announcement number CN111678847B, discloses a two-dimensional spray field particle size distribution detection device, which measures the size distribution of all droplets in the spray field by installing the generating end and the laser receiving end of the laser particle size analyzer on two supporting platforms respectively, and rotating the laser particle size analyzer.
对于喷嘴雾化角度,常用的自动测量方法主要有基于探针检测方法和基于视觉检测的方法。其中,基于探针的方式,例如中国专利“一种燃油喷嘴雾化角度自动测量机构及自动测量方法”,申请号为CN202110983437.1,授权公告号为CN113720277B,公开了一种燃油喷嘴雾化角度自动测量机构及自动测量方法,该专利将探针布置在喷嘴喷雾的路径上,通过PLC等程序控制探针移动直至恰好达到喷雾边缘,从而能够准确的检测到喷嘴的雾化角度;基于视觉检测方法,例如申请号为CN201910146275.9、CN202110666998.9的中国发明专利即采用这种方式,该方式具备简便快捷的优点,同时对不同待测喷嘴的适应性强,更易于批量化检测分析,其中,中国专利“一种基于视觉的喷嘴雾化角度自动检测系统及方法”,申请号为CN201910146275.9,授权公告号为CN109816678B,公开了一种基于视觉的喷嘴雾化角度自动检测方法,该方法通过相机获取喷嘴雾化流体喷射的图像数据,并且对这些图像数据经过计算机分析后得到喷嘴的雾化角度;中国专利“一种喷嘴雾化角度检测操作设备及方法”,申请号为CN202110666998.9,授权公告号为CN113483697B,公开了一种喷嘴雾化角度检测方法,该方法利用第二拍摄结构完成对于所述待测试的喷头喷出的雾化流体的影像,经过控制台分析后,根据雾化流体的影像得到喷嘴的雾化角度数据。For the nozzle atomization angle, the commonly used automatic measurement methods mainly include probe-based detection methods and visual detection-based methods. Among them, the probe-based method, such as the Chinese patent "A fuel nozzle atomization angle automatic measurement mechanism and automatic measurement method", with application number CN202110983437.1 and authorization announcement number CN113720277B, discloses a fuel nozzle atomization angle automatic measurement mechanism and automatic measurement method. The patent arranges the probe on the nozzle spray path, and controls the probe movement through PLC and other programs until it just reaches the spray edge, so that the nozzle atomization angle can be accurately detected; based on the visual detection method, such as the Chinese invention patents with application numbers CN201910146275.9 and CN202110666998.9, this method is adopted. This method has the advantages of being simple and fast, and at the same time, it has strong adaptability to different nozzles to be tested, and is easier to batch detect and analyze. Among them, the Chinese patent " A vision-based automatic detection system and method for nozzle atomization angle", application number CN201910146275.9, authorization announcement number CN109816678B, discloses a vision-based automatic detection method for nozzle atomization angle, which obtains image data of nozzle atomization fluid injection through a camera, and obtains the nozzle atomization angle after computer analysis of these image data; Chinese patent "A nozzle atomization angle detection operation device and method", application number CN202110666998.9, authorization announcement number CN113483697B, discloses a nozzle atomization angle detection method, which uses a second shooting structure to complete the image of the atomized fluid sprayed from the nozzle to be tested, and after analysis by the console, the nozzle atomization angle data is obtained according to the image of the atomized fluid.
本申请发明人在实现本发明的过程中发现,现有技术的上述方案具有以下缺陷:首先,激光粒度仪作为一种专用检测设备,其体积大、成本高,部署、使用以及维护过程都比较复杂;其次,基于探针的测量方式受限于探针的检测精度,同时检测环境复杂、检测周期长、实施成本高;最后,现有燃油喷嘴检测中,雾滴尺寸和雾化角度的检测过程步骤繁琐、需要仪器种类多。The inventors of the present application discovered in the process of realizing the present invention that the above-mentioned scheme of the prior art has the following defects: first, as a special detection equipment, the laser particle size analyzer is large in size, high in cost, and its deployment, use and maintenance processes are relatively complicated; second, the probe-based measurement method is limited by the detection accuracy of the probe, and the detection environment is complex, the detection cycle is long, and the implementation cost is high; finally, in the existing fuel nozzle detection, the detection process of droplet size and atomization angle is cumbersome and requires many types of instruments.
发明内容Summary of the invention
本发明实施例的目的是提供一种方法,该方法采用基于视觉的方法对燃油喷嘴的雾滴尺寸和雾化角度同时进行分析,通过搭建一次检测环境,即可完成对雾滴尺寸和雾化角度的自动测量,而不需要单独实施两次检测步骤或配备两套检测设备,从而简化了喷嘴检测的整个流程,提升了喷嘴检测的工作效率。The purpose of an embodiment of the present invention is to provide a method that uses a vision-based method to simultaneously analyze the droplet size and atomization angle of a fuel nozzle. By building a detection environment once, the automatic measurement of the droplet size and the atomization angle can be completed without the need to implement two separate detection steps or equip two sets of detection equipment, thereby simplifying the entire process of nozzle detection and improving the work efficiency of nozzle detection.
为了实现上述目的,本发明实施例提供一种发动机燃油喷嘴喷射信息自动检测方法,其特征在于,所述方法包括:校准相机,并获取该相机的校准参数;利用校准后的所述相机,获取燃油喷嘴工作一次检测中的单帧图像I;根据所述单帧图像I,确定该单帧图像I中有效雾滴区域/>;以及根据所述有效雾滴区域/>和所述校准参数/>,获取该燃油喷嘴的雾滴尺寸/>。In order to achieve the above-mentioned object, an embodiment of the present invention provides a method for automatically detecting injection information of an engine fuel nozzle, characterized in that the method comprises: calibrating a camera and obtaining calibration parameters of the camera. ; Using the calibrated camera, obtain a single-frame image I in a fuel nozzle working test; according to the single-frame image I, determine the effective droplet area in the single-frame image I/> ; and according to the effective droplet area/> and the calibration parameters/> , get the droplet size of the fuel nozzle/> .
可选的,所述获取该相机的校准参数的步骤包括:通过所述相机完整拍摄置于所述燃油喷嘴下方的棋盘格测试卡,获取校准图像;以及根据所述校准图像,通过标定法:计算所述校准参数/>,其中,/>、/>分别表征相机的水平、垂直焦距,/>、/>分别是相机成像中心的偏移,/>表示相机在空间坐标的旋转量,/>表示相机在空间坐标的偏移量。Optionally, the camera calibration parameters are obtained. The steps include: using the camera to completely photograph a checkerboard test card placed under the fuel nozzle to obtain a calibration image; and according to the calibration image, using a calibration method: Calculate the calibration parameters/> , where /> 、/> Respectively represent the horizontal and vertical focal lengths of the camera, /> 、/> are the offsets of the camera imaging center, /> Indicates the rotation of the camera in space coordinates, /> Indicates the offset of the camera in space coordinates.
可选的,所述获取燃油喷嘴工作一次检测中的单帧图像I的步骤包括:在所述一次检测中,利用校准后的相机拍摄该燃油喷嘴工作的多帧图像;保存所述多帧图像为通用格式文件;读取该多帧图像中的每帧图像;以及解析所述每帧图像,获取该多帧图像中的各单帧图像I。Optionally, the step of obtaining a single-frame image I in a fuel nozzle operation inspection includes: in the inspection, using a calibrated camera to capture multiple frames of images of the fuel nozzle operation; saving the multiple frames of images as a universal format file; reading each frame of the multiple frames of images; and parsing each frame of the image to obtain each single-frame image I in the multiple frames of images.
可选的,所述各单帧图像I为单通道灰度图像。Optionally, each single-frame image I is a single-channel grayscale image.
可选的,所述根据所述单帧图像I确定该单帧图像I中有效雾滴区域的步骤包括:根据固定阈值二值化法,获取所述单帧图像I筛除前景后的图像B,所述前景为图像I中的雾滴;根据自适应阈值二值化法,获取所述单帧图像I筛除背景后的图像C;通过图像形态学:/>,处理并更新图像C,其中,/>;检测所述图像C中的雾滴,进而获取初始雾滴区域/>;以及根据所述图像B和初始雾滴区域/>,分析并过滤无效雾滴区域,进而确定该单帧图像I中的有效雾滴区域/>。Optionally, the effective droplet area in the single frame image I is determined according to the single frame image I. The steps include: obtaining an image B after the single frame image I is filtered out of the foreground according to a fixed threshold binarization method, wherein the foreground is the fog droplets in the image I; obtaining an image C after the single frame image I is filtered out of the background according to an adaptive threshold binarization method; and performing image morphology: /> , process and update image C, where, /> ; Detect the fog droplets in the image C, and then obtain the initial fog droplet area/> ; and according to the image B and the initial droplet area/> , analyze and filter the invalid fog droplet area, and then determine the valid fog droplet area in the single frame image I/> .
可选的,所述根据所述有效雾滴区域和校准参数/>,获取该燃油喷嘴的雾滴尺寸/>包括根据以下等式获取雾滴尺寸/>:/>,其中,/>代表所述单帧图像I中的所述有效雾滴区域/>所表示的有效雾滴集合中的序号为/>的雾滴,统计所述序号为/>的雾滴区域的平均像素宽度,/>代表所述序号为/>的雾滴的尺寸/>,符号/>代表矩阵与向量的乘法操作。Optionally, the effective droplet area and calibration parameters/> , get the droplet size of the fuel nozzle/> The droplet size is obtained according to the following equation/> :/> , where /> Represents the effective droplet area in the single frame image I/> The sequence number in the effective droplet set represented is/> of mist droplets, The serial number is counted as/> The average pixel width of the droplet area, /> Represents the serial number as/> The size of the droplets , symbol/> Represents the multiplication operation of a matrix and a vector.
可选的,所述喷嘴喷射信息自动检测方法还包括:根据该单帧图像I,确定所述单帧图像I中所述燃油喷嘴喷射的轮廓;以及根据所述轮廓/>,确定该燃油喷嘴的雾化角度。Optionally, the method for automatically detecting nozzle injection information further includes: determining the outline of the fuel nozzle injection in the single frame image I according to the single frame image I. ; and according to the profile/> , determine the atomization angle of the fuel nozzle .
可选的,所述确定该燃油喷嘴的雾化角度的步骤包括:根据最大类间方差(OTSU)法,获取所述单帧图像I筛除背景后的图像/>;根据所述图像/>,利用Suzuki85轮廓检测算法,确定该燃油喷嘴喷射的轮廓/>;以及根据所述轮廓/>,通过轮廓角度计算方法,获取该燃油喷嘴喷射的轮廓角度,进而确定该燃油喷嘴的雾化角度/>,其中,所述轮廓角度计算方法的步骤包括:获取该轮廓/>的边界点集合V的随机分组V1、V2…Vn;通过直线拟合方式获取该随机分组对应的n条直线;确定两条表征边界的直线;以及计算所述两条表征边界的直线的夹角,即为该燃油喷嘴的雾化角度/>。Optionally, the atomization angle of the fuel nozzle is determined The steps include: obtaining the image after the background of the single frame image I is removed according to the maximum between-class variance (OTSU) method/> ; According to the image/> , using the Suzuki85 contour detection algorithm, determine the contour of the fuel nozzle injection/> ; and according to the profile/> , by using the profile angle calculation method, the profile angle of the fuel nozzle injection is obtained, and then the atomization angle of the fuel nozzle is determined/> , wherein the steps of the contour angle calculation method include: obtaining the contour / The boundary point set V is randomly grouped into V 1 , V 2 ...V n ; n straight lines corresponding to the random grouping are obtained by straight line fitting; two straight lines representing the boundary are determined; and the angle between the two straight lines representing the boundary is calculated, which is the atomization angle of the fuel nozzle. .
可选的,所述喷嘴喷射信息自动检测方法还包括:获取所述燃油喷嘴工作的一次检测中多帧图像中各单帧图像I中的雾滴尺寸和雾化角度/>;以及综合并输出所述一次检测中多个所述雾滴尺寸/>和雾化角度/>。Optionally, the method for automatically detecting nozzle injection information further includes: obtaining the droplet size in each single frame image I of the multiple frame images in a detection of the fuel nozzle operation. and atomization angle/> ; and synthesizing and outputting the multiple droplet sizes in the one detection/> and atomization angle/> .
另外,本发明实施例还提供一种发动机燃油喷嘴喷射信息自动检测装置,该装置包括:存储器;以及处理器,被配置为执行所述的喷嘴喷射信息自动检测方法。In addition, an embodiment of the present invention further provides an automatic detection device for engine fuel nozzle injection information, the device comprising: a memory; and a processor, configured to execute the automatic detection method for nozzle injection information.
通过上述技术方案,本发明实施例利用校准后的相机拍摄燃油喷嘴工作时的喷雾区域,得到单帧的喷雾形态的瞬间清晰图像,然后经过图像处理算法分析、测量,得到雾化角度的检测数据,同时利用相机校准参数和图像处理算法分析、测量,得到雾滴尺寸的检测数据,从而简化了燃油喷嘴检测的步骤,提升了检测的效率,为短时间周期内进行大批量喷嘴检测测试提供了技术支撑。同时,检测实施过程中不涉及激光粒度仪等专用检测仪器,节约了燃油喷嘴的检测成本,进而提升了燃油喷嘴的研发以及生产效率。Through the above technical solution, the embodiment of the present invention uses a calibrated camera to shoot the spray area of the fuel nozzle when it is working, obtains a single-frame instantaneous clear image of the spray form, and then obtains the detection data of the atomization angle through image processing algorithm analysis and measurement. At the same time, the camera calibration parameters and image processing algorithm analysis and measurement are used to obtain the detection data of the droplet size, thereby simplifying the steps of fuel nozzle detection, improving the efficiency of detection, and providing technical support for large-scale nozzle detection and testing in a short period of time. At the same time, the detection implementation process does not involve special detection instruments such as laser particle size analyzers, saving the detection cost of fuel nozzles, thereby improving the research and development and production efficiency of fuel nozzles.
本发明实施例的其它特征和优点将在随后的具体实施方式部分予以详细说明。Other features and advantages of the embodiments of the present invention will be described in detail in the subsequent detailed description.
附图说明BRIEF DESCRIPTION OF THE DRAWINGS
附图是用来提供对本发明实施例的进一步理解,并且构成说明书的一部分,与下面的具体实施方式一起用于解释本发明实施例,但并不构成对本发明实施例的限制。在附图中:The accompanying drawings are used to provide a further understanding of the embodiments of the present invention and constitute a part of the specification. Together with the following specific embodiments, they are used to explain the embodiments of the present invention, but do not constitute a limitation on the embodiments of the present invention. In the accompanying drawings:
图1是本发明实施例提供的发动机燃油喷嘴喷射信息自动检测方法流程图;FIG1 is a flow chart of a method for automatically detecting injection information of an engine fuel nozzle provided by an embodiment of the present invention;
图2是本发明实施例提供的获取该相机的校准参数的步骤流程图;FIG. 2 is a diagram of obtaining the calibration parameters of the camera provided by an embodiment of the present invention. Flow chart of the steps;
图3是本发明实施例提供的获取燃油喷嘴工作一次检测中的单帧图像I的步骤流程图;FIG3 is a flowchart of the steps of obtaining a single frame image I in a fuel nozzle operation detection according to an embodiment of the present invention;
图4是本发明实施例提供的确定单帧图像I中有效雾滴区域的步骤流程图;FIG. 4 is a diagram of determining the effective droplet area in a single frame image I provided by an embodiment of the present invention. Flow chart of the steps;
图5是本发明实施例提供的确定该燃油喷嘴的雾滴尺寸的步骤流程图;FIG. 5 is a diagram of a method for determining the droplet size of a fuel nozzle according to an embodiment of the present invention. Flow chart of the steps;
图6是本发明实施例提供的确定该燃油喷嘴的雾化角度的步骤流程图;FIG. 6 is a diagram of a method for determining the atomization angle of the fuel nozzle provided by an embodiment of the present invention. Flow chart of the steps;
图7是本发明实施例提供的轮廓角度计算方法的步骤流程图;7 is a flowchart of the steps of the contour angle calculation method provided by an embodiment of the present invention;
图8是本发明实施例提供的发动机燃油喷嘴喷射信息自动检测方法中的检测数据整合步骤流程图;8 is a flow chart of the detection data integration step in the method for automatically detecting the injection information of the engine fuel nozzle provided by an embodiment of the present invention;
图9是本发明实施例提供的发动机燃油喷嘴喷射信息自动检测装置结构图;9 is a structural diagram of an automatic detection device for engine fuel nozzle injection information provided by an embodiment of the present invention;
图10是本发明实施例提供的发动机燃油喷嘴喷射信息自动检测装置模块图。FIG. 10 is a module diagram of an automatic detection device for engine fuel nozzle injection information provided by an embodiment of the present invention.
具体实施方式Detailed ways
以下结合附图对本发明实施例的具体实施方式进行详细说明。应当理解的是,此处所描述的具体实施方式仅用于说明和解释本发明实施例,并不用于限制本发明实施例。The specific implementation of the embodiment of the present invention is described in detail below in conjunction with the accompanying drawings. It should be understood that the specific implementation described here is only used to illustrate and explain the embodiment of the present invention, and is not used to limit the embodiment of the present invention.
参阅图1所示,本发明实施例公开了一种发动机燃油喷嘴喷射信息自动检测方法,该方法包括:Referring to FIG. 1 , an embodiment of the present invention discloses a method for automatically detecting injection information of an engine fuel nozzle, the method comprising:
步骤S100,校准相机,并获取该相机的校准参数;Step S100: calibrate the camera and obtain the calibration parameters of the camera ;
在一些实施例中,本发明实施例在相机没有进行过校准,或者没有相机校准参数的情况下,进行相机校准操作,并获取该相机的校准参数。如图2所示,本发明实施例提供了一种获取该相机的校准参数/>的步骤流程,该流程包括:In some embodiments, the embodiments of the present invention perform a camera calibration operation and obtain the camera calibration parameters when the camera has not been calibrated or there are no camera calibration parameters. As shown in FIG. 2 , an embodiment of the present invention provides a method for obtaining calibration parameters of the camera. The process includes:
步骤S110,通过所述相机完整拍摄置于所述燃油喷嘴下方的棋盘格测试卡,获取校准图像;Step S110, using the camera to completely photograph a checkerboard test card placed below the fuel nozzle to obtain a calibration image;
步骤S120,根据所述校准图像,通过标定法:计算所述校准参数/>,其中,/>、/>分别表征相机的水平、垂直焦距,/>、/>分别是相机成像中心的偏移,/>表示相机在空间坐标的旋转量,/>表示相机在空间坐标的偏移量。可选的,所述标定法为本发明实施例优选的张正友标定法。Step S120, according to the calibration image, by a calibration method: Calculate the calibration parameters/> , where /> 、/> Respectively represent the horizontal and vertical focal lengths of the camera, /> 、/> are the offsets of the camera imaging center, /> Indicates the rotation of the camera in space coordinates, /> Indicates the offset of the camera in the space coordinate. Optionally, the calibration method is the Zhang Zhengyou calibration method preferred in the embodiment of the present invention.
步骤S200,利用校准后的所述相机,获取燃油喷嘴工作一次检测中的单帧图像I;Step S200, using the calibrated camera to obtain a single frame image I of a fuel nozzle operation detection;
在一些实施例中,如图3所示,本发明实施例提供了一种获取燃油喷嘴工作一次检测中的单帧图像I的步骤流程,该流程包括:In some embodiments, as shown in FIG. 3 , an embodiment of the present invention provides a process flow for obtaining a single frame image I in a fuel nozzle operation detection, the process comprising:
步骤S210,在所述一次检测中,利用校准后的相机拍摄该燃油喷嘴工作的多帧图像,可选的,本发明实施例优选校准后的高速工业相机来完成拍摄,该高速工业相机在一次检测中可每秒钟拍摄超过25张的多帧图像,且能捕捉到许多人眼看不到的瞬时信息,能够清晰地拍摄到燃油喷嘴工作时喷雾区域的喷雾瞬间清晰图像;Step S210, in the one detection, using a calibrated camera to capture multiple frames of images of the fuel nozzle in operation. Optionally, in the embodiment of the present invention, a calibrated high-speed industrial camera is preferably used to complete the shooting. The high-speed industrial camera can capture more than 25 multiple frames of images per second in one detection, and can capture many instantaneous information that is invisible to the human body, and can clearly capture a clear image of the spray instant in the spray area when the fuel nozzle is working;
步骤S220,保存所述多帧图像为通用格式文件,可选的,将所述高速工业相机的特定图片格式转换为通用图片格式,并保存以供后续处理使用,保存该多帧图像数据的通用格式包括但不限于tiff图片文件或avi视频文件;Step S220, saving the multiple frames of images as a universal format file. Optionally, converting the specific image format of the high-speed industrial camera into a universal image format and saving it for subsequent processing. The universal format for saving the multiple frames of image data includes but is not limited to a tiff image file or an avi video file.
步骤S230,读取该多帧图像中的每帧图像;Step S230, reading each frame of the multiple frames of images;
步骤S240,解析所述每帧图像,获取该多帧图像中的各单帧图像I,在一些实施例中,本发明实施例通过将所述读取的每帧图像数据解析到像素空间得到原始的各单帧图像,可选的,所述各单帧图像I为单通道灰度图像,如果解析后的单帧图像/>为彩色图像,则进行图像的灰度转换,本发明实施例优选如下所示的公式进行图像的灰度转换:Step S240, parsing each frame of the image to obtain each single frame of the multi-frame image I. In some embodiments, the embodiment of the present invention obtains the original single frame of the image by parsing the read image data of each frame into a pixel space. Optionally, each single-frame image I is a single-channel grayscale image. If the analyzed single-frame image is If the image is a color image, grayscale conversion of the image is performed. In the embodiment of the present invention, the grayscale conversion of the image is preferably performed using the following formula:
其中,分别为彩色图像的红、绿、蓝通道,/>为转换后的单通道灰度图像。in, are the red, green and blue channels of the color image respectively,/> is the converted single-channel grayscale image.
步骤S310,根据所述单帧图像I,确定该单帧图像I中有效雾滴区域;Step S310, determining the effective droplet area in the single frame image I according to the single frame image I ;
在一些实施例中,如图4所示,本发明实施例提供了一种确定单帧图像I中有效雾滴区域的步骤流程,该流程包括:In some embodiments, as shown in FIG. 4 , an embodiment of the present invention provides a method for determining a valid droplet area in a single frame image I. The process includes:
步骤S311,根据固定阈值二值化法,获取所述单帧图像I筛除前景后的图像B,所述前景为图像I中的雾滴;可选的,本发明实施例提供的所述根据固定阈值二值化法,获取所述单帧图像I筛除前景后的图像B的步骤包括:对图像进行高斯模糊处理:/>,得到图像/>,其中,图像/>为所述转换后的单通道灰度图像/>,/>表示卷积,/>为本发明实施例优选的大小为5×5的高斯核,该高斯核可选为其他N×N的大小,其中,N为奇数;再利用预置门限对图像/>进行二值化处理,得到二值图像B,其中,所述预置门限的大小优选为该单帧图像I中最大亮度值的30%。Step S311, according to the fixed threshold binarization method, obtain the image B after the single frame image I is filtered out of the foreground, wherein the foreground is the fog droplets in the image I; Optionally, the step of obtaining the image B after the single frame image I is filtered out of the foreground according to the fixed threshold binarization method provided by the embodiment of the present invention includes: Perform Gaussian blur processing: /> , get the image/> , where the image /> is the converted single-channel grayscale image/> ,/> represents convolution, /> The preferred size of the Gaussian kernel in the embodiment of the present invention is 5×5. The Gaussian kernel may be other sizes of N×N, where N is an odd number. The image is then filtered using a preset threshold. A binary image B is obtained by performing a binarization process, wherein the size of the preset threshold is preferably 30% of the maximum brightness value in the single-frame image I.
步骤S312,根据自适应阈值二值化法,获取所述单帧图像I筛除背景后的图像C;可选的,本发明实施例提供的所述根据自适应阈值二值化法,获取所述单帧图像I筛除背景后的图像C的步骤包括:用高斯自适应阈值对图像进行二值化处理,得到二值图像C,其中,所述图像/>为所述转换后的单通道灰度图像/>。Step S312, according to the adaptive threshold binarization method, obtain the image C after the single frame image I is filtered out of the background; Optionally, the step of obtaining the image C after the single frame image I is filtered out of the background according to the adaptive threshold binarization method provided by the embodiment of the present invention includes: using a Gaussian adaptive threshold to binarize the image Perform binarization processing to obtain a binary image C, wherein the image is the converted single-channel grayscale image/> .
步骤S313,通过图像形态学:,处理并更新图像C,其中,;可选的,本发明实施例提供的所述图像形态学:/>处理并更新图像C的步骤包括:依次对图像C进行膨胀、腐蚀两次操作,其中,/>为腐蚀操作,/>为膨胀操作。Step S313, through image morphology: , process and update image C, where ; Optionally, the image morphology provided by the embodiment of the present invention:/> The step of processing and updating the image C includes: performing two operations of dilation and erosion on the image C in sequence, wherein: For corrosion operation,/> For expansion operation.
步骤S314,检测所述图像C中的雾滴,进而获取初始雾滴区域;可选的,本发明实施例提供/>来实现对已经过图像形态学处理后的图像C中的雾滴检测操作,获取初始雾滴区域/>;Step S314, detecting the fog droplets in the image C, and then obtaining the initial fog droplet area ; Optionally, the embodiment of the present invention provides/> To implement the fog droplet detection operation in the image C that has been processed by image morphology, and obtain the initial fog droplet area/> ;
步骤S315,根据所述图像B和初始雾滴区域,分析并过滤无效雾滴区域,进而确定该单帧图像I中的有效雾滴区域/>;可选的,本发明实施例利用筛除雾滴后的图像B和所述初始雾滴区域/>,通过/>,过滤初始雾滴区域/>中的无效雾滴区域,进而确定该单帧图像I中的有效雾滴区域/>。Step S315: based on the image B and the initial droplet area , analyze and filter the invalid fog droplet area, and then determine the valid fog droplet area in the single frame image I/> ; Optionally, the embodiment of the present invention uses the image B after the fog droplets are screened out and the initial fog droplet area/> , through/> , filter the initial droplet area/> The invalid fog droplet area in the single frame image I is determined, and then the valid fog droplet area in the single frame image I is determined. .
步骤S410,根据所述有效雾滴区域和所述校准参数/>,获取该燃油喷嘴的雾滴尺寸/>;在一些实施例中,本发明实施例提供了一种根据所述有效雾滴区域/>和校准参数获取该燃油喷嘴的雾滴尺寸/>的方法,该方法主要根据以下等式获取雾滴尺寸/>:来实现,参阅图5所示,该方法的具体步骤包括:Step S410, according to the effective droplet area and the calibration parameters/> , get the droplet size of the fuel nozzle/> ; In some embodiments, the present invention provides a method according to the effective droplet area / and calibration parameters Get the droplet size of the fuel nozzle/> The method mainly obtains the droplet size according to the following equation/> : To achieve this, refer to FIG5 , the specific steps of the method include:
步骤S411,通过,统计所述有效雾滴区域/>中序号为/>的雾滴区域的平均像素宽度;其中,/>代表所述单帧图像I中的所述有效雾滴区域/>所表示的有效雾滴集合中的序号为/>的雾滴,算法/>用于统计图像中一个区域的平均像素宽度,利用统计序号为/>的有效雾滴区域的像素个数来表示该序号为/>的雾滴的平均宽度。Step S411, by , count the effective droplet area/> The serial number is/> The average pixel width of the droplet area; where, /> Represents the effective droplet area in the single frame image I/> The sequence number in the effective droplet set represented is/> of droplets, algorithm/> It is used to count the average pixel width of an area in an image, using the statistical sequence number as/> The number of pixels in the effective droplet area is used to represent the sequence number / > The average width of the droplets.
步骤S412,通过,获取所述序号为/>的雾滴的真实雾滴尺寸/>;其中,/>代表所述序号为/>的雾滴的真实雾滴尺寸/>,符号/>代表矩阵与向量的乘法操作,通过将表征所述单帧图像I中所述序号为/>的有效雾滴区域大小的向量与校准参数M矩阵相乘,得到该序号为/>的雾滴的真实尺寸/>。Step S412, by , get the serial number as/> The actual droplet size of the droplets/> ; Among them, /> Represents the serial number as/> The actual droplet size of the droplets/> , symbol/> Represents the multiplication operation of a matrix and a vector, by representing the single frame image I in which the sequence number is / > The vector of the effective droplet area size is multiplied by the calibration parameter M matrix to obtain the sequence number / > The true size of the droplets/> .
步骤S320,根据该单帧图像I,确定所述单帧图像I中所述燃油喷嘴喷射的轮廓;Step S320, based on the single frame image I, determining the outline of the fuel nozzle injection in the single frame image I ;
步骤S420,根据所述轮廓,确定该燃油喷嘴的雾化角度/>;Step S420, according to the outline , determine the atomization angle of the fuel nozzle/> ;
在一些实施例中,如图6所示,本发明实施例提供了一种根据单帧图像I确定雾化角度的方法,该方法包括:In some embodiments, as shown in FIG. 6 , an embodiment of the present invention provides a method for determining a fogging angle according to a single frame image I. A method comprising:
步骤S321,根据最大类间方差(OTSU)法,获取所述单帧图像I筛除背景后的图像;可选的,对图像/>进行高斯模糊处理:/>,得到图像/>,其中/>为所述转换后的单通道灰度图像/>,/>为本发明实施例优选的大小为11×11的高斯核,该高斯核可选为其他N×N的大小,其中,N为奇数,再使用最大类间方差(OTSU)算法对图像/>进行二值化处理,获取所述单帧图像I筛除背景后的图像/>。Step S321, according to the maximum between-class variance (OTSU) method, obtain the image after the single frame image I is filtered out of the background ;Optional, for the image/> Perform Gaussian blur processing: /> , get the image/> , where/> is the converted single-channel grayscale image/> ,/> The preferred Gaussian kernel size of the embodiment of the present invention is 11×11. The Gaussian kernel size can be other N×N, where N is an odd number. The maximum between-class variance (OTSU) algorithm is then used to classify the image. Perform binarization processing to obtain the image of the single frame image I after removing the background/> .
步骤S322,根据所述图像,利用Suzuki85轮廓检测算法,确定该燃油喷嘴喷射的轮廓/>;可选的,本发明实施例优选Suzuki85轮廓检测算法:/>对所述图像/>进行轮廓检测操作,确定该燃油喷嘴喷射的轮廓/>。Step S322: based on the image , using the Suzuki85 contour detection algorithm, determine the contour of the fuel nozzle injection/> ; Optionally, the embodiment of the present invention preferably uses the Suzuki85 contour detection algorithm:/> For the image/> Performing a profile detection operation to determine the profile of the fuel nozzle injection .
步骤S421,根据所述轮廓,通过轮廓角度计算方法,获取该燃油喷嘴喷射的轮廓角度,进而确定该燃油喷嘴的雾化角度/>。Step S421, according to the outline , by using the profile angle calculation method, the profile angle of the fuel nozzle injection is obtained, and then the atomization angle of the fuel nozzle is determined/> .
可选的,本发明实施例提供了一种轮廓角度计算方法:,该轮廓角度计算方法的步骤如图7所示:Optionally, an embodiment of the present invention provides a method for calculating a contour angle: , the steps of the contour angle calculation method are shown in Figure 7:
步骤S422,获取该轮廓的边界点集合V的随机分组V1、V2…Vn;可选的,n表示分组个数,n的取值为:设边界点集合V中的点个数为m,则/>。Step S422, obtaining the contour The random grouping V 1 , V 2 ...V n of the boundary point set V; optionally, n represents the number of groups, and the value of n is: Let the number of points in the boundary point set V be m, then/> .
步骤S423,通过直线拟合方式获取该随机分组对应的n条直线;其中,所述n条直线F1、F2…Fn分别对应随机分组V1、V2…Vn。Step S423, obtaining n straight lines corresponding to the random grouping by straight line fitting; wherein the n straight lines F 1 , F 2 . . . F n correspond to the random groups V 1 , V 2 . . . V n , respectively.
步骤S424,确定两条表征边界的直线;可选的,对所述n条直线F1、F2…Fn中每一条直线,分别计算与所有边界点集合V中的点的距离并累加,得到综合距离S1、S2…Sn分别对应F1、F2…Fn,找出所述综合距离S1、S2…Sn中最小的两个综合距离Sk、Sl,其对应的Fk、Fl这2条直线即为表征边界的直线。Step S424, determine two straight lines representing the boundary; optionally, for each of the n straight lines F 1 , F 2 ..F n , respectively calculate and accumulate the distances to all points in the boundary point set V to obtain comprehensive distances S 1 , S 2 ..S n corresponding to F 1 , F 2 ..F n , respectively, find the two smallest comprehensive distances Sk , S l among the comprehensive distances S 1 , S 2 ..S n , and the corresponding two straight lines F k , F l are the straight lines representing the boundary.
步骤S425,计算所述两条表征边界的直线的夹角,即为该燃油喷嘴的雾化角度;计算所述Fk、Fl这2条表征边界的直线的夹角,即获取该燃油喷嘴喷射的轮廓角度,即为该燃油喷嘴的雾化角度/>。Step S425, calculating the angle between the two straight lines representing the boundary, which is the atomization angle of the fuel nozzle. Calculate the angle between the two straight lines F k and F l representing the boundary, that is, obtain the profile angle of the fuel nozzle injection, that is, the atomization angle of the fuel nozzle/> .
在一些实施例中,如图8所示,本发明实施例提供的发动机燃油喷嘴喷射信息自动检测方法还包括检测数据整合步骤流程,该流程包括:In some embodiments, as shown in FIG. 8 , the method for automatically detecting the injection information of the fuel nozzle of the engine provided by the embodiment of the present invention further includes a detection data integration step process, which includes:
步骤S510,获取所述燃油喷嘴工作的一次检测中多帧图像中各单帧图像I中的雾滴尺寸和雾化角度/>;其中,各单帧图像I中能检测出多个雾滴尺寸/>的测量数据,针对一次检测测试实验的多帧图像序列,可以检测出雾化角度/>的多次测量数据。Step S510, obtaining the droplet size in each single frame image I of the multiple frames of images in a detection of the fuel nozzle operation and atomization angle/> ; In each single frame image I, multiple droplet sizes can be detected / > The measurement data of a multi-frame image sequence of a detection test experiment can detect the fog angle/> Multiple measurement data.
步骤S520,综合并输出所述一次检测中多个所述雾滴尺寸和雾化角度/>;可选的,本发明实施例提供的检测数据整合模块可处理一次检测实验得到的雾滴尺寸/>和雾化角度/>的数据,及雾滴尺寸/>和雾化角度/>的最大值、最小值、平均值和方差,计算对应的统计信息并以表格的形式导出原始数据。Step S520, synthesizing and outputting the multiple droplet sizes in the one detection and atomization angle/> ; Optionally, the detection data integration module provided in the embodiment of the present invention can process the droplet size obtained from a detection experiment/> and atomization angle/> Data on droplet size /> and atomization angle/> The maximum, minimum, mean and variance of the data are calculated, the corresponding statistical information is calculated and the raw data is exported in the form of a table.
如图9所示,本发明实施例还提供了一种发动机燃油喷嘴喷射信息自动检测装置,该装置包括:存储器、及处理器,其中,处理器被配置为执行程序时实现以下步骤:校准相机,并获取该相机的校准参数;利用校准后的所述相机,获取燃油喷嘴工作一次检测中的单帧图像I;根据所述单帧图像I,确定该单帧图像I中有效雾滴区域/>;以及根据所述有效雾滴区域/>和所述校准参数/>,获取该燃油喷嘴的雾滴尺寸/>。As shown in FIG9 , an embodiment of the present invention further provides an automatic detection device for fuel nozzle injection information of an engine, the device comprising: a memory and a processor, wherein the processor is configured to implement the following steps when executing a program: calibrating a camera and obtaining calibration parameters of the camera; ; Using the calibrated camera, obtain a single-frame image I in a fuel nozzle working test; according to the single-frame image I, determine the effective droplet area in the single-frame image I/> ; and according to the effective droplet area/> and the calibration parameters/> , get the droplet size of the fuel nozzle/> .
可选的,所述获取该相机的校准参数的步骤包括:通过所述相机完整拍摄置于所述燃油喷嘴下方的棋盘格测试卡,获取校准图像;以及根据所述校准图像,通过标定法:计算所述校准参数/>,其中,/>、/>分别表征相机的水平、垂直焦距,/>、/>分别是相机成像中心的偏移,/>表示相机在空间坐标的旋转量,/>表示相机在空间坐标的偏移量。Optionally, the camera calibration parameters are obtained. The steps include: using the camera to completely photograph a checkerboard test card placed under the fuel nozzle to obtain a calibration image; and according to the calibration image, using a calibration method: Calculate the calibration parameters/> , where /> 、/> Respectively represent the horizontal and vertical focal lengths of the camera, /> 、/> are the offsets of the camera imaging center, /> Indicates the rotation of the camera in space coordinates, /> Indicates the offset of the camera in space coordinates.
可选的,所述获取燃油喷嘴工作一次检测中的单帧图像I的步骤包括:在所述一次检测中,利用校准后的相机拍摄该燃油喷嘴工作的多帧图像;保存所述多帧图像为通用格式文件;读取该多帧图像中的每帧图像;以及解析所述每帧图像,获取该多帧图像中的各单帧图像I。Optionally, the step of obtaining a single-frame image I in a fuel nozzle operation inspection includes: in the inspection, using a calibrated camera to capture multiple frames of images of the fuel nozzle operation; saving the multiple frames of images as a universal format file; reading each frame of the multiple frames of images; and parsing each frame of the image to obtain each single-frame image I in the multiple frames of images.
可选的,所述各单帧图像I为单通道灰度图像。Optionally, each single-frame image I is a single-channel grayscale image.
可选的,所述根据所述单帧图像I确定该单帧图像I中有效雾滴区域的步骤包括:根据固定阈值二值化法,获取所述单帧图像I筛除前景后的图像B,所述前景为图像I中的雾滴;根据自适应阈值二值化法,获取所述单帧图像I筛除背景后的图像C;通过图像形态学:/>,处理并更新图像C,其中,/>;检测所述图像C中的雾滴,进而获取初始雾滴区域/>;以及根据所述图像B和初始雾滴区域/>,分析并过滤无效雾滴区域,进而确定该单帧图像I中的有效雾滴区域/>。Optionally, the effective droplet area in the single frame image I is determined according to the single frame image I. The steps include: obtaining an image B after the single frame image I is filtered out of the foreground according to a fixed threshold binarization method, wherein the foreground is the fog droplets in the image I; obtaining an image C after the single frame image I is filtered out of the background according to an adaptive threshold binarization method; and performing image morphology: /> , process and update image C, where, /> ; Detect the fog droplets in the image C, and then obtain the initial fog droplet area/> ; and according to the image B and the initial droplet area/> , analyze and filter the invalid fog droplet area, and then determine the valid fog droplet area in the single frame image I/> .
可选的,所述根据所述有效雾滴区域和校准参数/>,获取该燃油喷嘴的雾滴尺寸/>包括根据以下等式获取雾滴尺寸/>:/>,其中,/>代表所述单帧图像I中的所述有效雾滴区域/>所表示的有效雾滴集合中的序号为/>的雾滴,统计所述序号为/>的雾滴区域的平均像素宽度,/>代表所述序号为/>的雾滴的尺寸/>,符号/>代表矩阵与向量的乘法操作。Optionally, the effective droplet area and calibration parameters/> , get the droplet size of the fuel nozzle/> The droplet size is obtained according to the following equation/> :/> , where /> Represents the effective droplet area in the single frame image I/> The sequence number in the effective droplet set represented is/> of mist droplets, The serial number is counted as/> The average pixel width of the droplet area, /> Represents the serial number as/> The size of the droplets , symbol/> Represents the multiplication operation of a matrix and a vector.
可选的,所述喷嘴喷射信息自动检测方法还包括:根据该单帧图像I,确定所述单帧图像I中所述燃油喷嘴喷射的轮廓;以及根据所述轮廓,确定该燃油喷嘴的雾化角度。Optionally, the method for automatically detecting nozzle injection information further includes: determining the outline of the fuel nozzle injection in the single-frame image I according to the single-frame image I; and determining the atomization angle of the fuel nozzle according to the outline. .
可选的,所述确定该燃油喷嘴的雾化角度的步骤包括:根据最大类间方差(OTSU)法,获取所述单帧图像I筛除背景后的图像/>;根据所述图像/>,利用Suzuki85轮廓检测算法,确定该燃油喷嘴喷射的轮廓;以及根据所述轮廓,通过轮廓角度计算方法,获取该燃油喷嘴喷射的轮廓角度,进而确定该燃油喷嘴的雾化角度/>,其中,所述轮廓角度计算方法的步骤包括:获取该轮廓/>的边界点集合V的随机分组V1、V2…Vn;通过直线拟合方式获取该随机分组对应的n条直线;确定两条表征边界的直线;以及计算所述两条表征边界的直线的夹角,即为该燃油喷嘴的雾化角度/>。Optionally, the atomization angle of the fuel nozzle is determined The steps include: obtaining the image after the background of the single frame image I is removed according to the maximum between-class variance (OTSU) method/> ; According to the image/> , using the Suzuki85 contour detection algorithm to determine the contour of the fuel nozzle injection; and according to the contour, using the contour angle calculation method to obtain the contour angle of the fuel nozzle injection, and then determine the atomization angle of the fuel nozzle/> , wherein the steps of the contour angle calculation method include: obtaining the contour / The boundary point set V is randomly grouped into V 1 , V 2 ...V n ; n straight lines corresponding to the random grouping are obtained by straight line fitting; two straight lines representing the boundary are determined; and the angle between the two straight lines representing the boundary is calculated, which is the atomization angle of the fuel nozzle. .
可选的,所述喷嘴喷射信息自动检测方法还包括:所述燃油喷嘴工作的一次检测中多帧图像中各单帧图像I中的雾滴尺寸和雾化角度/>;以及综合并输出所述一次检测中多个所述雾滴尺寸/>和雾化角度/>。Optionally, the method for automatically detecting the nozzle spray information further includes: the droplet size in each single frame image I of the multiple frame images in one detection of the fuel nozzle operation and atomization angle/> ; and synthesizing and outputting the multiple droplet sizes in the one detection/> and atomization angle/> .
图10是本发明实施例提供的发动机燃油喷嘴喷射信息自动检测装置模块图,参阅图10所示,本发明实施例提供的发动机燃油喷嘴喷射信息自动检测装置包括6个处理模块,分别为:相机校准模块、图像采集模块、图像解析模块、雾滴尺寸检测模块、雾化角度检测模块和检测数据整合模块。其中,所述相机校准模块利用棋盘格测试卡对高速工业相机进行校准,并得到相机校准参数;所述图像采集模块负责接收并保存所述相机拍摄燃油喷嘴工作画面的多帧图像数据;所述图像解析模块负责读取该图像采集模块中保存的每帧图像数据,并解析得到原始的各单帧图像;所述雾滴尺寸检测模块负责通过对燃油喷嘴工作的单帧图像/>进行分析并确定该单帧图像/>中的有效雾滴区域/>,再结合相机校准参数/>,最终得到雾滴尺寸/>的数据;所述雾化角度检测模块负责通过对燃油喷嘴工作的画面进行分析,得到雾化角度/>的检测数据;所述检测数据整合模块处理一次检测实验得到雾滴尺寸以及雾化角度的数据,计算对应的统计信息并以表格的形式导出原始数据。可选的,雾滴尺寸检测模块和雾化角度检测模块可以同时进行。FIG10 is a module diagram of an automatic detection device for the injection information of an engine fuel nozzle provided by an embodiment of the present invention. Referring to FIG10 , the automatic detection device for the injection information of an engine fuel nozzle provided by an embodiment of the present invention includes 6 processing modules, namely: a camera calibration module, an image acquisition module, an image analysis module, a droplet size detection module, an atomization angle detection module, and a detection data integration module. Among them, the camera calibration module uses a checkerboard test card to calibrate a high-speed industrial camera and obtain camera calibration parameters; the image acquisition module is responsible for receiving and saving multiple frames of image data of the working screen of the fuel nozzle taken by the camera; the image analysis module is responsible for reading each frame of image data stored in the image acquisition module, and analyzing to obtain the original single-frame images. ; The droplet size detection module is responsible for detecting the droplet size by taking a single frame image of the fuel nozzle working/> Analyze and determine the single frame image/> The effective droplet area in/> , combined with the camera calibration parameters/> , and finally get the droplet size/> The atomization angle detection module is responsible for analyzing the working picture of the fuel nozzle to obtain the atomization angle / > The detection data integration module processes a detection experiment to obtain the data of droplet size and atomization angle, calculates the corresponding statistical information and exports the original data in the form of a table. Optionally, the droplet size detection module and the atomization angle detection module can be performed simultaneously.
本文中的设备可以是服务器、PC、PAD、手机等。The devices in this article can be servers, PCs, PADs, mobile phones, etc.
本申请还提供了一种计算机程序产品,当在数据处理设备上执行时,适于执行初始化有如下方法步骤的程序:校准相机,并获取该相机的校准参数;获取燃油喷嘴工作一次检测中的单帧图像I;根据所述单帧图像I确定该单帧图像I中有效雾滴区域/>;以及根据所述有效雾滴区域/>和校准参数/>,获取该燃油喷嘴的雾滴尺寸/>。The present application also provides a computer program product, which, when executed on a data processing device, is suitable for executing a program that initializes the following method steps: calibrating a camera and obtaining calibration parameters of the camera. ; Obtain a single-frame image I in a fuel nozzle operation detection; Determine the effective droplet area in the single-frame image I according to the single-frame image I/> ; and according to the effective droplet area/> and calibration parameters/> , get the droplet size of the fuel nozzle/> .
可选的,所述获取该相机的校准参数的步骤包括:通过所述相机完整拍摄置于所述燃油喷嘴下方的棋盘格测试卡,获取校准图像;以及根据所述校准图像,通过标定法:计算所述校准参数/>,其中,/>、/>分别表征相机的水平、垂直焦距,/>、/>分别是相机成像中心的偏移,/>表示相机在空间坐标的旋转量,/>表示相机在空间坐标的偏移量。Optionally, the camera calibration parameters are obtained. The steps include: using the camera to completely photograph a checkerboard test card placed under the fuel nozzle to obtain a calibration image; and according to the calibration image, using a calibration method: Calculate the calibration parameters/> , where /> 、/> Respectively represent the horizontal and vertical focal lengths of the camera, /> 、/> are the offsets of the camera imaging center, /> Indicates the rotation of the camera in space coordinates, /> Indicates the offset of the camera in space coordinates.
可选的,所述获取燃油喷嘴工作一次检测中的单帧图像I的步骤包括:在所述一次检测中,利用校准后的相机拍摄该燃油喷嘴工作的多帧图像;保存所述多帧图像为通用格式文件;读取该多帧图像中的每帧图像;以及解析所述每帧图像,获取该多帧图像中的各单帧图像I。Optionally, the step of obtaining a single-frame image I in a fuel nozzle operation inspection includes: in the inspection, using a calibrated camera to capture multiple frames of images of the fuel nozzle operation; saving the multiple frames of images as a universal format file; reading each frame of the multiple frames of images; and parsing each frame of the image to obtain each single-frame image I in the multiple frames of images.
可选的,所述各单帧图像I为单通道灰度图像。Optionally, each single-frame image I is a single-channel grayscale image.
可选的,所述根据所述单帧图像I确定该单帧图像I中有效雾滴区域的步骤包括:根据固定阈值二值化法,获取所述单帧图像I筛除前景后的图像B,所述前景为图像I中的雾滴;根据自适应阈值二值化法,获取所述单帧图像I筛除背景后的图像C;通过图像形态学:/>,处理并更新图像C,其中,/>;检测所述图像C中的雾滴,进而获取初始雾滴区域/>;以及根据所述图像B和初始雾滴区域/>,分析并过滤无效雾滴区域,进而确定该单帧图像I中的有效雾滴区域/>。Optionally, the effective droplet area in the single frame image I is determined according to the single frame image I. The steps include: obtaining an image B after the single frame image I is filtered out of the foreground according to a fixed threshold binarization method, wherein the foreground is the fog droplets in the image I; obtaining an image C after the single frame image I is filtered out of the background according to an adaptive threshold binarization method; and performing image morphology: /> , process and update image C, where, /> ; Detect the fog droplets in the image C, and then obtain the initial fog droplet area/> ; and according to the image B and the initial droplet area/> , analyze and filter the invalid fog droplet area, and then determine the valid fog droplet area in the single frame image I/> .
可选的,所述根据所述有效雾滴区域和校准参数/>,获取该燃油喷嘴的雾滴尺寸/>包括根据以下等式获取雾滴尺寸/>:/>,其中,/>代表所述单帧图像I中的所述有效雾滴区域/>所表示的有效雾滴集合中的序号为/>的雾滴,统计所述序号为/>的雾滴区域的平均像素宽度,/>代表所述序号为/>的雾滴的尺寸/>,符号/>代表矩阵与向量的乘法操作。Optionally, the effective droplet area and calibration parameters/> , get the droplet size of the fuel nozzle/> The droplet size is obtained according to the following equation/> :/> , where /> Represents the effective droplet area in the single frame image I/> The sequence number in the effective droplet set represented is/> of mist droplets, The serial number is counted as/> The average pixel width of the droplet area, /> Represents the serial number as/> The size of the droplets , symbol/> Represents the multiplication operation of a matrix and a vector.
可选的,所述喷嘴喷射信息自动检测方法还包括:根据该单帧图像I,确定所述单帧图像I中所述燃油喷嘴喷射的轮廓;以及根据所述轮廓,确定该燃油喷嘴的雾化角度。Optionally, the method for automatically detecting nozzle injection information further includes: determining the outline of the fuel nozzle injection in the single-frame image I according to the single-frame image I; and determining the atomization angle of the fuel nozzle according to the outline. .
可选的,所述确定该燃油喷嘴的雾化角度的步骤包括:根据最大类间方差(OTSU)法,获取所述单帧图像I筛除背景后的图像/>;根据所述图像/>,利用Suzuki85轮廓检测算法,确定该燃油喷嘴喷射的轮廓;以及根据所述轮廓,通过轮廓角度计算方法,获取该燃油喷嘴喷射的轮廓角度,进而确定该燃油喷嘴的雾化角度/>,其中,所述轮廓角度计算方法的步骤包括:获取该轮廓/>的边界点集合V的随机分组V1、V2…Vn;通过直线拟合方式获取该随机分组对应的n条直线;确定两条表征边界的直线;以及计算所述两条表征边界的直线的夹角,即为该燃油喷嘴的雾化角度/>。Optionally, the atomization angle of the fuel nozzle is determined The steps include: obtaining the image after the background of the single frame image I is removed according to the maximum between-class variance (OTSU) method/> ; According to the image/> , using the Suzuki85 contour detection algorithm to determine the contour of the fuel nozzle injection; and according to the contour, using the contour angle calculation method to obtain the contour angle of the fuel nozzle injection, and then determine the atomization angle of the fuel nozzle/> , wherein the steps of the contour angle calculation method include: obtaining the contour / The boundary point set V is randomly grouped into V 1 , V 2 ...V n ; n straight lines corresponding to the random grouping are obtained by straight line fitting; two straight lines representing the boundary are determined; and the angle between the two straight lines representing the boundary is calculated, which is the atomization angle of the fuel nozzle. .
可选的,所述喷嘴喷射信息自动检测方法还包括:所述燃油喷嘴工作的一次检测中多帧图像中各单帧图像I中的雾滴尺寸和雾化角度/>;以及综合并输出所述一次检测中多个所述雾滴尺寸/>和雾化角度/>。Optionally, the method for automatically detecting the nozzle spray information further includes: the droplet size in each single frame image I of the multiple frame images in one detection of the fuel nozzle operation and atomization angle/> ; and synthesizing and outputting the multiple droplet sizes in the one detection/> and atomization angle/> .
本领域内的技术人员应明白,本申请的实施例可提供为方法、系统、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。Those skilled in the art will appreciate that the embodiments of the present application may be provided as methods, systems, or computer program products. Therefore, the present application may adopt the form of a complete hardware embodiment, a complete software embodiment, or an embodiment combining software and hardware. Moreover, the present application may adopt the form of a computer program product implemented on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) containing computer-usable program codes.
本申请是参照根据本申请实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。The present application is described with reference to the flowchart and/or block diagram of the method, device (system), and computer program product according to the embodiment of the present application. It should be understood that each process and/or box in the flowchart and/or block diagram, as well as the combination of the process and/or box in the flowchart and/or block diagram can be implemented by computer program instructions. These computer program instructions can be provided to a processor of a general-purpose computer, a special-purpose computer, an embedded processor, or other programmable data processing device to generate a machine, so that the instructions executed by the processor of the computer or other programmable data processing device generate a device for implementing the functions specified in one process or multiple processes in the flowchart and/or one box or multiple boxes in the block diagram.
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。These computer program instructions may also be stored in a computer-readable memory that can direct a computer or other programmable data processing device to operate in a specific manner, so that the instructions stored in the computer-readable memory produce a manufactured product including an instruction device that implements the functions specified in one or more processes in the flowchart and/or one or more boxes in the block diagram.
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。These computer program instructions may also be loaded onto a computer or other programmable data processing device so that a series of operational steps are executed on the computer or other programmable device to produce a computer-implemented process, whereby the instructions executed on the computer or other programmable device provide steps for implementing the functions specified in one or more processes in the flowchart and/or one or more boxes in the block diagram.
在一个典型的配置中,计算设备包括一个或多个处理器(CPU)、输入/输出接口、网络接口和内存。In a typical configuration, a computing device includes one or more processors (CPU), input/output interfaces, network interfaces, and memory.
存储器可能包括计算机可读介质中的非永久性存储器,随机存取存储器(RAM)和/或非易失性内存等形式,如只读存储器(ROM)或闪存(flash RAM)。存储器是计算机可读介质的示例。The memory may include non-permanent memory in a computer-readable medium, random access memory (RAM) and/or non-volatile memory in the form of read-only memory (ROM) or flash RAM. The memory is an example of a computer-readable medium.
计算机可读介质包括永久性和非永久性、可移动和非可移动媒体可以由任何方法或技术来实现信息存储。信息可以是计算机可读指令、数据结构、程序的模块或其他数据。计算机的存储介质的例子包括,但不限于相变内存(PRAM)、静态随机存取存储器 (SRAM)、动态随机存取存储器(DRAM)、其他类型的随机存取存储器(RAM)、只读存储器(ROM)、电可擦除可编程只读存储器 (EEPROM)、快闪记忆体或其他内存技术、只读光盘只读存储器 (CD-ROM)、数字多功能光盘(DVD)或其他光学存储、磁盒式磁带,磁带磁磁盘存储或其他磁性存储设备或任何其他非传输介质,可用于存储可以被计算设备访问的信息。按照本文中的界定,计算机可读介质不包括暂存电脑可读媒体(transitory media),如调制的数据信号和载波。Computer readable media include permanent and non-permanent, removable and non-removable media that can be implemented by any method or technology to store information. Information can be computer readable instructions, data structures, program modules or other data. Examples of computer storage media include, but are not limited to, phase change memory (PRAM), static random access memory (SRAM), dynamic random access memory (DRAM), other types of random access memory (RAM), read-only memory (ROM), electrically erasable programmable read-only memory (EEPROM), flash memory or other memory technology, compact disk read-only memory (CD-ROM), digital versatile disk (DVD) or other optical storage, magnetic cassettes, magnetic tape magnetic disk storage or other magnetic storage devices or any other non-transmission media that can be used to store information that can be accessed by a computing device. As defined herein, computer readable media does not include temporary computer readable media (transitory media), such as modulated data signals and carrier waves.
还需要说明的是,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、商品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、商品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括要素的过程、方法、商品或者设备中还存在另外的相同要素。It should also be noted that the terms "include", "comprises" or any other variations thereof are intended to cover non-exclusive inclusion, so that a process, method, commodity or device including a series of elements includes not only those elements, but also other elements not explicitly listed, or also includes elements inherent to such process, method, commodity or device. In the absence of more restrictions, the elements defined by the sentence "comprises a ..." do not exclude the existence of other identical elements in the process, method, commodity or device including the elements.
以上仅为本申请的实施例而已,并不用于限制本申请。对于本领域技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原理之内所作的任何修改、等同替换、改进等,均应包含在本申请的权利要求范围之内。The above are only embodiments of the present application and are not intended to limit the present application. For those skilled in the art, the present application may have various changes and variations. Any modification, equivalent replacement, improvement, etc. made within the spirit and principle of the present application should be included within the scope of the claims of the present application.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202410172396.1A CN117723452B (en) | 2024-02-07 | 2024-02-07 | Automatic detection method and device for injection information of fuel nozzle of engine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202410172396.1A CN117723452B (en) | 2024-02-07 | 2024-02-07 | Automatic detection method and device for injection information of fuel nozzle of engine |
Publications (2)
Publication Number | Publication Date |
---|---|
CN117723452A CN117723452A (en) | 2024-03-19 |
CN117723452B true CN117723452B (en) | 2024-05-28 |
Family
ID=90202014
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202410172396.1A Active CN117723452B (en) | 2024-02-07 | 2024-02-07 | Automatic detection method and device for injection information of fuel nozzle of engine |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN117723452B (en) |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1682105A (en) * | 2002-07-17 | 2005-10-12 | 微粒筛分系统公司 | Sensors and methods for high-sensitivity optical particle counting and sizing |
US7038712B1 (en) * | 2002-04-18 | 2006-05-02 | Hewlett-Packard Development Company, L.P. | Geometric and photometric calibration of cameras |
CN103076265A (en) * | 2013-01-11 | 2013-05-01 | 战仁军 | Measuring device for particle distribution and particle diameter |
KR20160102757A (en) * | 2015-02-23 | 2016-08-31 | 서울대학교산학협력단 | Apparatus for measuring droplet sizes |
CN108830905A (en) * | 2018-05-22 | 2018-11-16 | 苏州敏行医学信息技术有限公司 | The binocular calibration localization method and virtual emulation of simulating medical instrument cure teaching system |
CN111986175A (en) * | 2020-08-19 | 2020-11-24 | 北京科技大学 | Method for measuring particle size of liquid drop sprayed by industrial nozzle |
CN114858664A (en) * | 2022-04-28 | 2022-08-05 | 江苏大学 | A fuel atomization characteristic testing system and method |
CN114993895A (en) * | 2022-05-31 | 2022-09-02 | 江苏大学 | Test device and method for synchronously measuring spray far-field droplet particle size and droplet instantaneous velocity distribution |
CN117218105A (en) * | 2023-09-28 | 2023-12-12 | 北京航顺泰达科技发展有限公司 | Fuel nozzle spray angle measurement method and system based on visual recognition |
-
2024
- 2024-02-07 CN CN202410172396.1A patent/CN117723452B/en active Active
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7038712B1 (en) * | 2002-04-18 | 2006-05-02 | Hewlett-Packard Development Company, L.P. | Geometric and photometric calibration of cameras |
CN1682105A (en) * | 2002-07-17 | 2005-10-12 | 微粒筛分系统公司 | Sensors and methods for high-sensitivity optical particle counting and sizing |
CN103076265A (en) * | 2013-01-11 | 2013-05-01 | 战仁军 | Measuring device for particle distribution and particle diameter |
KR20160102757A (en) * | 2015-02-23 | 2016-08-31 | 서울대학교산학협력단 | Apparatus for measuring droplet sizes |
CN108830905A (en) * | 2018-05-22 | 2018-11-16 | 苏州敏行医学信息技术有限公司 | The binocular calibration localization method and virtual emulation of simulating medical instrument cure teaching system |
CN111986175A (en) * | 2020-08-19 | 2020-11-24 | 北京科技大学 | Method for measuring particle size of liquid drop sprayed by industrial nozzle |
CN114858664A (en) * | 2022-04-28 | 2022-08-05 | 江苏大学 | A fuel atomization characteristic testing system and method |
CN114993895A (en) * | 2022-05-31 | 2022-09-02 | 江苏大学 | Test device and method for synchronously measuring spray far-field droplet particle size and droplet instantaneous velocity distribution |
CN117218105A (en) * | 2023-09-28 | 2023-12-12 | 北京航顺泰达科技发展有限公司 | Fuel nozzle spray angle measurement method and system based on visual recognition |
Non-Patent Citations (1)
Title |
---|
基于数字粒子成像的液滴粒径识别方法;张亚竹 等;传感器与微系统;20201231;第39卷(第10期);第48-50页 * |
Also Published As
Publication number | Publication date |
---|---|
CN117723452A (en) | 2024-03-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2022170706A1 (en) | Defect detection method and apparatus for mold monitoring, and device and medium | |
CN111179358A (en) | Calibration method, device, equipment and storage medium | |
JP2021184307A (en) | System and method for detecting lines with vision system | |
CN112525107B (en) | Structured light three-dimensional measurement method based on event camera | |
US20110128354A1 (en) | System and method for obtaining camera parameters from multiple images and computer program products thereof | |
WO2019080229A1 (en) | Chess piece positioning method and system based on machine vision, storage medium, and robot | |
CN111122490B (en) | Indoor gas leakage information acquisition method and device | |
CN109345597B (en) | Camera calibration image acquisition method and device based on augmented reality | |
CN115797359B (en) | Detection method, equipment and storage medium based on solder paste on circuit board | |
CN106651849A (en) | PCB bare board defect detection method based on area array camera | |
CN109934873B (en) | Method, device and equipment for acquiring marked image | |
CN110261069A (en) | Detection method for optical lens | |
CN111047650A (en) | Parameter calibration method for time-of-flight camera | |
CN110879131A (en) | Imaging quality testing method and imaging quality testing device for visual optical system, and electronic apparatus | |
CN109461123B (en) | A kind of geometric distortion automatic analysis method for picture quality objective evaluating point diagram | |
CN117723452B (en) | Automatic detection method and device for injection information of fuel nozzle of engine | |
CN115112296A (en) | Stability precision testing method, system, medium, equipment and terminal | |
JP2022009474A (en) | System and method for detecting lines in vision system | |
CN114529555A (en) | Image recognition-based efficient cigarette box in-and-out detection method | |
CN116433769B (en) | Space calibration method, device, electronic equipment and storage medium | |
CN115690747B (en) | Vehicle blind area detection model test method and device, electronic equipment and storage medium | |
CN116993654B (en) | Camera module defect detection method, device, equipment, storage medium and product | |
CN115060731B (en) | Method for detecting scratch and metal exposure of negative membrane particles by variance algorithm | |
CN117830241A (en) | Rod piece deformation detection method based on 3D machine vision analysis | |
CN113128499B (en) | Vibration testing method for visual imaging device, computer device and storage medium |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |