CN1177062A - turbo compressor - Google Patents
turbo compressor Download PDFInfo
- Publication number
- CN1177062A CN1177062A CN 97112412 CN97112412A CN1177062A CN 1177062 A CN1177062 A CN 1177062A CN 97112412 CN97112412 CN 97112412 CN 97112412 A CN97112412 A CN 97112412A CN 1177062 A CN1177062 A CN 1177062A
- Authority
- CN
- China
- Prior art keywords
- mentioned
- turbine
- compression
- cylinder barrel
- moving
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000007906 compression Methods 0.000 claims abstract description 80
- 230000006835 compression Effects 0.000 claims abstract description 73
- 230000002093 peripheral effect Effects 0.000 claims description 13
- 238000007789 sealing Methods 0.000 claims description 11
- 230000001360 synchronised effect Effects 0.000 claims description 2
- 238000007599 discharging Methods 0.000 claims 1
- 238000003780 insertion Methods 0.000 claims 1
- 230000037431 insertion Effects 0.000 claims 1
- 238000003825 pressing Methods 0.000 abstract description 13
- 238000001816 cooling Methods 0.000 description 11
- 238000000926 separation method Methods 0.000 description 5
- 238000002347 injection Methods 0.000 description 4
- 239000007924 injection Substances 0.000 description 4
- 230000002159 abnormal effect Effects 0.000 description 3
- 239000002826 coolant Substances 0.000 description 3
- 239000003507 refrigerant Substances 0.000 description 3
- 238000005057 refrigeration Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 230000002441 reversible effect Effects 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 125000006850 spacer group Chemical group 0.000 description 2
- 238000010276 construction Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 230000008092 positive effect Effects 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 238000004781 supercooling Methods 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C28/00—Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids
- F04C28/24—Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids characterised by using valves controlling pressure or flow rate, e.g. discharge valves or unloading valves
- F04C28/26—Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids characterised by using valves controlling pressure or flow rate, e.g. discharge valves or unloading valves using bypass channels
- F04C28/265—Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids characterised by using valves controlling pressure or flow rate, e.g. discharge valves or unloading valves using bypass channels being obtained by displacing a lateral sealing face
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C18/00—Rotary-piston pumps specially adapted for elastic fluids
- F04C18/02—Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
- F04C18/0207—Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form
- F04C18/0215—Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form where only one member is moving
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C27/00—Sealing arrangements in rotary-piston pumps specially adapted for elastic fluids
- F04C27/005—Axial sealings for working fluid
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Fluid Mechanics (AREA)
- Rotary Pumps (AREA)
- Structures Of Non-Positive Displacement Pumps (AREA)
- Applications Or Details Of Rotary Compressors (AREA)
Abstract
本发明公开一种涡轮式压缩机,其起动时勿须大的力矩、能得到适应所有运行条件的推压力,可靠性高且有较好的压缩性能,其具有用弹力将固定涡轮压向旋转涡轮以形成固定涡轮与旋转涡轮之间密封的螺旋弹簧,通过与压缩运行同步产生的压缩气体压力进行轴向移动,且使上述螺旋弹簧产生弹力的移动环和使上述螺旋弹簧以所定的弹力推压固定涡轮,且当螺旋弹簧的弹力达到所定值时阻挡移动环继续移动的止动部件。
The invention discloses a turbine type compressor, which does not require a large moment when starting, can obtain a pushing force suitable for all operating conditions, has high reliability and good compression performance, and has the function of pressing the fixed turbine to the rotating compressor with elastic force. The turbine uses a coil spring that forms a seal between the fixed turbine and the rotating turbine, and moves axially through the compressed gas pressure generated synchronously with the compression operation, and the moving ring that makes the above-mentioned coil spring generate elastic force and pushes the above-mentioned coil spring with a predetermined elastic force. It is a stopper that presses the fixed turbine and prevents the moving ring from continuing to move when the elastic force of the coil spring reaches a predetermined value.
Description
本发明涉及作为诸如构成空调机内冷却循环系统的压缩机使用的涡轮式压缩机。The present invention relates to a turbo compressor used as a compressor constituting a cooling cycle system in an air conditioner, for example.
诸如在形成空调机的冷却循环系统的压缩机中,与普通的转子式压缩机比较,目前倾向于使用运动噪声极低、压缩性能良好且由于不需要吸气、排气阀等部件使部件数减少的涡轮式压缩机。For example, in the compressor forming the cooling cycle system of an air conditioner, compared with the ordinary rotary compressor, it is currently tended to use a compressor with extremely low motion noise, good compression performance, and a low number of parts because it does not require components such as suction and discharge valves. Reduced turbo compressor.
该种压缩机工作原理是:使固定涡轮的旋涡状叶板和旋转涡轮的旋涡状叶板相啮合、在上述各叶板与各涡轮镜板之间形成压缩空间、使旋转涡轮转动时即可得冷却介质吸入压缩空间、压缩后再排出。The working principle of this kind of compressor is: the vortex-shaped blades of the fixed turbine and the vortex-shaped blades of the rotating turbine are meshed, a compression space is formed between the above-mentioned blades and each turbine mirror plate, and the rotating turbine is rotated. The cooling medium is sucked into the compression space, compressed and then discharged.
但是,上述涡轮式压缩机压缩空间的密封是由固定、旋转涡轮各自叶板端而分别与其相对的端板滑动配合形成的。However, the sealing of the compression space of the above-mentioned turbo compressor is formed by slidingly fitting the blade ends of the fixed and rotating turbine blades with the opposite end plates respectively.
这样,如果将旋转涡轮用力压向固定涡轮的话,虽然能保持密封,但阻碍了旋转涡轮的灵活转动。Thus, if the rotating turbine is forced against the fixed turbine, although the seal can be maintained, the flexible rotation of the rotating turbine is hindered.
此外,压缩空间通常并不一定处于正常压力状态。例如,当吸入液态冷却介质并压缩时出现液力容器运行状况,这时,压缩空间处于异常压力状态。这种状态长时间持续的话,将会在各涡轮叶板上产生大的应力,随之有破裂的危险。Furthermore, compressed spaces are often not necessarily at normal pressure. For example, when a liquid cooling medium is sucked in and compressed, the hydraulic container operating condition occurs, and at this time, the compression space is in an abnormal pressure state. If this state continues for a long time, a large stress will be generated on each turbine blade, and there is a risk of rupture.
所以,这里提出了将上述固定涡轮以适当压力压向旋转涡轮以形成压缩空间密封的方式,试图解决上述诸问题。Therefore, a method of pressing the above-mentioned fixed turbine to the rotating turbine with a proper pressure to form a compression space seal is proposed here, in an attempt to solve the above-mentioned problems.
例如,USP3,874,827(ADL专利)中,是使弹簧压力与压缩后的高压气体排出压力一起将固定涡轮压向旋转涡轮一侧。For example, in USP3,874,827 (ADL patent), the fixed turbine is pressed to one side of the rotating turbine by the spring pressure together with the compressed high-pressure gas discharge pressure.
此外,特开昭58-22901号公报(丰田自动织机)以及特开平7-72541号公报(克普兰德コ-プランド)中,提出了由将压缩过的高压气体的排出压力和压缩过程中的中间压力相合并的压力,使固定涡轮压向旋转涡轮一侧的方案。In addition, in Japanese Patent Application Publication No. 58-22901 (Toyota Automatic Loom) and Japanese Patent Application Publication No. 7-72541 (Keplande Co-plando), it is proposed that the discharge pressure of the compressed high-pressure gas and the compression process The combination of the intermediate pressure and the combined pressure makes the fixed turbine press to the side of the rotating turbine.
然而先前的USP的发明中,有下述问题:在停止运行后,弹簧仍以运行时必需的弹簧力将固定涡轮压向旋转涡轮一侧。这样,起动时就有很大的力矩,且必须配备驱动压缩机的大容量电机,结果也就不可避免地使结构大型化、零部件费用和运行费用增大。However, in the prior USP invention, there is a problem that the spring presses the stationary turbine to the side of the rotating turbine with the spring force necessary for operation after the stop of operation. In this way, there is a large torque when starting, and a large-capacity motor for driving the compressor must be equipped. As a result, the structure will inevitably be enlarged, and the cost of parts and operating costs will increase.
如果使用弹力小的弹簧则可减小起动力矩,但是由于运行条件的变化使排气压亦产生变动,则在排气压力很高时,推压力也会过大。If the spring with small elastic force is used, the starting torque can be reduced, but the exhaust pressure will also change due to the change of operating conditions, so when the exhaust pressure is high, the pushing force will be too large.
为了避免上述问题,也可将排气孔径减小,当排气压力很高的条件下运行时,可以得到较合适的推压力,但是当排气压力很低的条件下运行时,就会出现推压力不足、固定涡轮与旋转涡轮易于分离而破坏了密封性,结果引起气体泄漏、压缩性能降低等问题。In order to avoid the above problems, the diameter of the exhaust hole can also be reduced. When the exhaust pressure is high, a more suitable pushing force can be obtained, but when the exhaust pressure is very low, there will be Insufficient pushing force and easy separation of the fixed turbine and the rotating turbine damage the seal, resulting in gas leakage and reduced compression performance.
此外,如果象特开昭58-222901号公报或特开平7-72541号公报中提出的技术方案,利用排气压力和中间压力使固定涡轮压向旋转涡轮一侧,则会由于压缩机运行条件的不同而发生旋转涡轮上作用的轴向力以及固定涡轮与旋转涡轮之间的接触力过大的问题。In addition, if the technical solution proposed in JP-A No. 58-222901 or JP-7-72541 uses the discharge pressure and the intermediate pressure to press the fixed turbine to the side of the rotating turbine, the operating conditions of the compressor will The axial force acting on the rotating turbine and the contact force between the fixed turbine and the rotating turbine are too large.
本发明以解决上述诸问题为着眼点,其目的是提供一种涡轮式压缩机,其起动时不需要大的力矩,在所有的运行条件下能得到合适的推压力、在高可靠性的基础上,还可提高压缩性能。The present invention focuses on solving the above-mentioned problems, and its purpose is to provide a turbo compressor that does not require a large torque when starting, can obtain a suitable pushing force under all operating conditions, and is based on high reliability. On the other hand, compression performance can also be improved.
为达到上述目的,本发明采取以下技术方案:To achieve the above object, the present invention takes the following technical solutions:
一种涡轮式压缩机,其中,使固定涡轮7的旋涡状叶板7b与旋转涡轮6的旋涡状叶板6b相啮合、在各叶板7、6b与各镜板7a、6a之间形成有压缩空间S、使旋转涡轮6旋转运动,压缩气体被吸入上述压缩空间S,将该气体压缩并排出,其特征在于具有:A turbo-type compressor in which a spiral vane 7b of a fixed turbine 7 is engaged with a
用弹力将固定涡轮7压向旋转涡轮6而形成两涡轮之间密封的弹性部件15;The fixed turbine 7 is pressed to the rotating
由压缩运行中同步产生的压缩气体推动做轴向移动而使弹性部件15产生弹力的移动部件16;和The moving
所述弹性部件15以一定弹力推压固定涡轮7,当所述弹性部件15的弹力达到所定值时阻挡移动部件16移动的止动部件17。The
所述的涡轮式压缩机,其特征在于:Described turbo compressor is characterized in that:
与压缩运行同步产生且使上述移动部件移动的推压力是被压缩的高压气体的排气压力。The pressing force that is generated in synchronization with the compression operation and that moves the above-mentioned moving member is the discharge pressure of the compressed high-pressure gas.
所述的涡轮式压缩机,其特征在于:Described turbo compressor is characterized in that:
与压缩运行同步发生且使上述移动部件移动的推压力是由取出压缩过程中气体的中间压力气体产生。The pushing force that occurs synchronously with the compression operation and moves the above moving parts is generated by the intermediate pressure gas that takes out the gas in the compression process.
所述的涡轮式压缩机,其特征在于:Described turbo compressor is characterized in that:
上述弹性部件在压缩运行停止时,将固定涡轮推压向旋转涡轮。The above elastic member pushes the fixed scroll to the rotating scroll when the compression operation stops.
所述的涡轮式压缩机,其特征在于:Described turbo compressor is characterized in that:
具有多个上述弹性部件,其相对中心轴按一定间隔设置。There are a plurality of above-mentioned elastic parts, which are arranged at certain intervals relative to the central axis.
一种涡轮式压缩机,其具有压缩机结构部4,其中,使固定涡轮7的旋涡状叶板7b与旋转涡轮6的旋涡状叶板6b相啮合在各叶板7b,6b与各镜板7a,6a之间形成有压缩空间S,使旋转涡轮6旋转运动,将被压缩气体吸入上述压缩空间S、将该压缩气体压缩并排出、其特征在于具有:A turbo type compressor which has a
内装上述压缩机结构部4的壳体1;The casing 1 with the above-mentioned compressor
将该壳体1分隔为上述压缩机结构部一侧和除此之外部分的排气室23-侧的分离体19;The casing 1 is divided into a
设在由上述分离体19分隔出的排气室23一侧,且形成有可暂时接收由上述压缩机结构部4压缩排出的高压气体的排气压力室18a的内侧缸筒18;Located on the side of the
设在内侧缸筒18外周部,与内侧缸筒18有一定间隔设置的外侧缸筒21;An
架设在上述内侧缸筒18至外侧缸筒21之间并由与压缩运行同步产生的推压力作轴向移动的移动部件16;The moving
设置在上述外侧缸筒21上且可限定上述移动部件16移动量的止动部件17;a
设置在上述分离体19和上述移动部件16之间,受移动部件16的移动力,将上述固定涡轮7弹性压向旋转涡轮6一侧的弹性部件15。The
所述的涡轮式压缩机,其特征在于:Described turbo compressor is characterized in that:
上述分离体可以是上述固定涡轮及与该固定涡轮按一定间隔设置的背压板中任一方。The separation body may be any one of the fixed turbine and the back pressure plate provided at a certain distance from the fixed turbine.
所述的涡轮式压缩机,其特征在于:Described turbo compressor is characterized in that:
上述背压板具有能使上述移动部件从与固定涡轮相反一侧的相对面插入的上述外侧缸筒,而且设有排气压力止回阀部。The back pressure plate has the outer cylinder through which the movable member can be inserted from the opposite surface to the fixed turbine, and is provided with an exhaust pressure check valve.
所述的涡轮式压缩机,其特征在于:Described turbo compressor is characterized in that:
上述移动部件由若干张板状环构件和夹在该板板环构件之间与内侧缸筒和外侧缸筒的周面滑接且在两侧保持有压力差的密封件组成。The above-mentioned moving part is composed of several plate-shaped ring members and a sealing member which is sandwiched between the plate-plate ring members and slides on the peripheral surfaces of the inner cylinder and the outer cylinder and maintains a pressure difference on both sides.
所述发明的涡轮式压缩机具有如下特征:在这种使固定涡轮的旋涡状叶板与旋转涡轮的旋涡状叶板相啮合、在各叶板和各镜板之间形成有压缩空间、使旋转涡轮旋转运动、压缩气体被吸入上述压缩空间,并将气体压缩再排出的涡轮式压缩机中,具有将固定涡轮弹性压向旋转涡轮而形成两涡轮之间密封的弹性部件、由压缩运行中同步产生的压缩气体推动作轴向移动而使弹性部件产生弹力的移动部件和弹性部件的弹力推压固定涡轮的同时其弹力达到所定值后阻挡移动部件继续移动的止动部件。The turbo-type compressor of the said invention is characterized in that the swirl blades of the fixed turbine mesh with the swirl blades of the rotating turbine, a compression space is formed between each blade and each mirror plate, and the The rotary turbine rotates, the compressed gas is sucked into the above-mentioned compression space, and the gas is compressed and then discharged. In the turbo compressor, there is an elastic member that elastically presses the fixed turbine to the rotary turbine to form a seal between the two turbines. The synchronously generated compressed gas pushes the moving part that moves axially to make the elastic part generate elastic force and the elastic part pushes the fixed turbine, and the stop part blocks the moving part from continuing to move when its elastic force reaches a predetermined value.
所述的发明,具有如下特下:与上述压缩运行同步发生且使上述移动部件移动的推压力由压缩后的高压气体排气压力产生。The above-mentioned invention is characterized in that the pressing force for moving the moving member occurring in synchronization with the above-mentioned compression operation is generated by the discharge pressure of the compressed high-pressure gas.
所述的发明,具有如下特征:与上述压缩运行同步发生的对移动部件的推压力由压缩过程中具有中间压力的气体产生。The said invention is characterized in that the pushing force on the moving member synchronously with the above-mentioned compression operation is generated by the gas having an intermediate pressure during the compression.
所述的发明,具有如下特征:上述弹性部件在压缩运行停止时也对固定涡轮有推压力使之压向旋转涡轮。The above-mentioned invention is characterized in that the above-mentioned elastic member exerts a pressing force on the stationary turbine to press it toward the rotating turbine even when the compression operation stops.
所述的发明,具有如下特征:上述弹性部件在相对于中心的圆周上按所定间隔设置有若干个。The above-mentioned invention is characterized in that a plurality of the above-mentioned elastic members are provided at predetermined intervals on the circumference relative to the center.
所述的本发明的涡轮式压缩具有如下特征:在这种使固定涡轮的旋涡状叶板与旋转涡轮的旋涡状叶板相啮合、具有在各叶板与各端板之间形成压缩空间并将吸入其内的压缩气体压缩后再排出的压缩机结构部的涡轮式压缩机中,具有内装上述压缩机结构部的壳体、将该壳体分隔为上述压缩机结构部一侧和除此之外各部分组成的排气室一侧的分离体、其内形成有设在上述分离分隔出的排气室一侧且可暂时接收由上述压缩机结构压缩后排出的高压气体的排气压力室的内侧缸筒、内侧表面与该内侧缸筒外周部按所定间隔设置的外侧缸筒、架设在上述内侧缸筒至外侧缸筒之间并由与压缩运行同步产生的推压力作轴向移动的移动部件、设置在上述分离体和上述移动部件之间且由于移动部件的移动产生弹力推压上述固定涡轮弹性压紧向旋转涡轮的弹性部件。The turbo compression of the present invention has the following characteristics: in this way, the vortex vanes of the fixed vortex are engaged with the vortex vanes of the rotating vortex, compression spaces are formed between each vane and each end plate, and In the turbo compressor that compresses the compressed gas sucked into it and then discharges the compressor structure part, there is a casing in which the above-mentioned compressor structure part is built, and the casing is divided into the side of the compressor structure part and other parts. The separation body on the side of the exhaust chamber composed of the other parts is formed with an exhaust pressure that is located on the side of the exhaust chamber that is separated and separated and can temporarily receive the high-pressure gas that is compressed and discharged by the above-mentioned compressor structure. The inner cylinder of the chamber, the outer cylinder arranged at a predetermined interval between the inner surface and the outer circumference of the inner cylinder, is erected between the inner cylinder and the outer cylinder, and is axially moved by the pushing force generated synchronously with the compression operation. The moving part is arranged between the separating body and the moving part, and the elastic part is generated by the movement of the moving part to push the fixed turbine and elastically press against the rotating turbine.
所述的发明,具有如下特征:上述分离体可以是上述固定涡轮或与该固定涡轮按一定间隔设置的背压板中任一方。The above-mentioned invention has the following features: the above-mentioned separation body may be either the above-mentioned fixed turbine or a back pressure plate provided at a certain distance from the fixed turbine.
所述的发明,具有如下特征:上述背压板上不仅具有能使移动部件从固定涡轮的相反一侧插入的上述外侧缸筒,同时设有排气压力止回推阀结构。The above-mentioned invention has the following features: the above-mentioned back pressure plate not only has the above-mentioned outer cylinder that allows the moving parts to be inserted from the opposite side of the fixed turbine, but also has an exhaust pressure check valve structure.
所述的发明,具有如下特征:上述移动部件由若干张板状环构件和夹在该板状环构件之间、与内侧缸筒处外侧缸筒的外、内周面滑动且在两侧保持有压力差的密封件组成。The above-mentioned invention has the following characteristics: the above-mentioned moving part is composed of several plate-shaped ring members and is sandwiched between the plate-shaped ring members, slides with the outer and inner peripheral surfaces of the outer cylinder at the inner cylinder and is held on both sides. Consists of seals with differential pressure.
根据上述解决课题的方法,起动时不需要大的力矩,而且在所有运行条件下都可以使固定涡轮以适当的推压力压向旋转涡轮。According to the above means of solving the problems, a large torque is not required at the time of starting, and the stationary turbine can be pressed against the rotating turbine with an appropriate pressing force under all operating conditions.
发明的积极效果:Positive effects of the invention:
根据上述的发明,由于具有用弹力将固定涡轮压向旋转涡轮而形成两涡轮之间密封的弹性部件,由压缩运行中同步产生的压缩气体压力推动做轴向移动而使弹性部件产生弹力的移动部件和弹性部件的弹力推压固定涡轮的,同时其弹力达到所定值时,阻挡移动部件移动的止动部件,所以起动时不需要大的力矩,不论什么运行条件下都能够得到合适的推压力,这样不仅可提高可靠性,而且也提高了压缩性能。According to the above invention, since there is an elastic member that presses the fixed turbine to the rotating turbine with elastic force to form a seal between the two turbines, the elastic member is moved axially by the pressure of the compressed gas synchronously generated during the compression operation to make the elastic member move elastically. The elastic force of the component and the elastic component pushes the fixed turbine, and at the same time, when the elastic force reaches a predetermined value, it stops the moving part from moving, so there is no need for a large torque when starting, and a suitable pushing force can be obtained regardless of the operating conditions. , which improves not only reliability but also compression performance.
根据所述的发明,由于与压缩运行同步发生且使移动部件移动的推压力由压缩后的高压气体排气压力产生,所以结构得以简化,且密封部位可达到最小。According to the said invention, since the pressing force for moving the moving parts is generated simultaneously with the compression operation and is generated by the discharge pressure of the compressed high-pressure gas, the structure is simplified and the sealing portion can be minimized.
根据所述的发明,由于与压缩运行同步发生的对移动部件的推压力由压缩过程中具有中间压力的气体产生,所以起动时对固定涡轮的推压力可迅速上升,固定涡轮可迅速达到稳定运行状态。According to the said invention, since the pushing force to the moving part which occurs synchronously with the compression operation is generated by the gas having an intermediate pressure during the compression, the pushing force to the fixed turbine can be rapidly increased at startup, and the fixed turbine can quickly reach a stable operation state.
根据所述的发明,由于弹性部件在压缩运行停止时也对固定涡轮有推压力使之压向旋转涡轮,所以能抑制固定涡轮和旋转涡轮之间的松动撞击,也减小了噪声。According to the above-mentioned invention, since the elastic member presses the fixed turbine to the rotating turbine even when the compression operation is stopped, the loose collision between the fixed turbine and the rotating turbine can be suppressed, and the noise can also be reduced.
根据上述的发明,由于上述弹性部件在相对于中心的圆周上按所定间隔设置有若干个,所以能抑制运行过程中固定涡轮的松动撞击,提高了性能。According to the above-mentioned invention, since the above-mentioned elastic members are arranged at predetermined intervals on the circumference with respect to the center, the loose impact of the fixed turbine during operation can be suppressed, and the performance can be improved.
根据所述的发明,由于壳体内具有将压缩机结构部与其它部件形成的排气室分隔开的分离体、设在排气室一侧并形成排气压力室的内侧缸筒、设置在与内侧缸筒成一定间隔的外侧缸筒与该内侧缸筒之间的空间部位且由与压缩运行同步产生的轴向推压力移动的移动部件、设置在外侧缸筒处且可限定移动部件移动量的运动部件和由移动部件移动推压而产生的弹力将固定涡轮弹性压向旋转涡轮一侧的弹性部件,所以密封部分得以最小化且使结构简化、起动时不需要大的起动力矩,并能在任何运行条件下形成合适的推压力,这样不但提高了可靠性,而且得以提高压缩性能。According to the invention described above, since there is a separate body separating the compressor structural part from the discharge chamber formed by other components in the casing, the inner cylinder tube which is arranged on one side of the discharge chamber and forms the discharge pressure chamber, is arranged on the A space portion between the outer cylinder and the inner cylinder at a certain distance from the inner cylinder and a moving member moved by an axial thrust force synchronous with the compression operation, provided at the outer cylinder and capable of restricting the movement of the moving member A large number of moving parts and the elastic force generated by the moving and pushing of the moving parts elastically press the fixed turbine to the elastic part on one side of the rotating turbine, so the sealing part is minimized and the structure is simplified, and no large starting torque is required when starting, and A suitable thrust force can be formed under any operating conditions, which not only improves reliability, but also improves compression performance.
根据所述的发明,分离体可以是上述固定涡轮或与该固定涡轮按一定间隔设置的背压板中任一方,所以简化了结构。According to the above-mentioned invention, the separating body can be any one of the above-mentioned fixed turbine or the back pressure plate provided at a certain distance from the fixed turbine, so the structure is simplified.
根据所述的发明,背压板上不仅具有能使移动部件从固定涡轮的相反一侧插入的上述外侧缸筒、同时设有排气压力止回阀结构,所以不会发生弹性体与移动体的密封件装错的问题,这样,不仅能正确、简单地装配,同时也改善了装配工艺性。According to the above-mentioned invention, the back pressure plate not only has the above-mentioned outer cylinder that allows the moving parts to be inserted from the opposite side of the fixed turbine, but also is provided with the discharge pressure check valve structure, so that the elastic body and the moving body do not occur. In this way, it can not only be assembled correctly and simply, but also improve the assembly manufacturability.
根据所述的发明,因为移动部件由若干张板状环构件和夹在该板状环构件之间并与内侧缸筒和外侧缸筒的外、内周面滑动配合且在两侧保持有压力差的密封件组成,所以能可靠,简单地保持密封。According to the said invention, because the moving part consists of several plate-shaped ring members and is sandwiched between the plate-shaped ring members and is fitted in a sliding manner with the outer and inner peripheral surfaces of the inner cylinder and the outer cylinder and maintains pressure on both sides. Composed of poor seals, it is reliable and simple to maintain the seal.
以下参照附图,详细说明本发明的实施例:Embodiments of the present invention are described in detail below with reference to the accompanying drawings:
图1是本发明实施形式的涡轮式压缩机局部纵剖面示意图。Fig. 1 is a partial longitudinal sectional view of a turbo compressor according to an embodiment of the present invention.
图2是本发明另一实施形式的涡轮式压缩机局部纵剖面示意图。Fig. 2 is a partial longitudinal sectional view of a turbo compressor according to another embodiment of the present invention.
图3是本发明第3实施形式的涡轮式压缩机局部纵剖面示意图。Fig. 3 is a partial longitudinal sectional view of a turbo compressor according to a third embodiment of the present invention.
图4是图3所示涡轮式压缩机中使用的移动部件纵剖面示意图。Fig. 4 is a schematic longitudinal sectional view of moving parts used in the turbo compressor shown in Fig. 3 .
图5是本发明第4实施形式的涡轮压缩机局部纵剖面和冷却循环回路示意图。Fig. 5 is a partial longitudinal section of a turbo compressor and a schematic diagram of a cooling circuit according to a fourth embodiment of the present invention.
图6是本发明与传统结构在不同运行条件下轴向推压力和接触力变化特性比较示意图。Fig. 6 is a schematic diagram showing the comparison of the changing characteristics of the axial pushing force and contact force between the present invention and the traditional structure under different operating conditions.
图1表示了诸如冷冻装置中使用的涡轮式压缩机的局部机构。Figure 1 shows a partial mechanism such as a turbo compressor used in a refrigeration plant.
图中1是密闭的壳体,该密闭壳体1内设置有支架2,其上支承着可自由回转的回转轴3。1 in the figure is an airtight casing, and the airtight casing 1 is provided with a
上述回转轴3的上部与后面将要所述的压缩机结构部件4,下部设置有图中未示的电机部件。回转轴3的下端部支承在由电机部件从下方突出且安装在上述密闭壳体1上的辅助轴承中(图中未示),可自由转动。The upper part of the above-mentioned
上述压缩机结构部件4由下述部件组成,即包括由支推轴承5支承在上述支架2内且可自由转动的旋转涡轮6、与该旋转涡轮6啮合的固定涡轮7和将该固定涡轮7始终压向旋转涡轮6的推压部件8。The above-mentioned compressor
上述旋转涡轮6由具有与上述回转轴3上端偏心部3a相配合的轮壳6c的端板6a和由该端板6a上部突出且与端板成整体的旋涡状叶板6b组成。The
上述固定涡轮7由端板7a、由该端板下部突出且与端板7a成整体的旋涡状叶板7b组成,该叶板7b与上述叶板6b相互啮合。The fixed turbine 7 is composed of an end plate 7a and a spiral blade 7b protruding from the lower portion of the end plate and integrated with the end plate 7a. The blade 7b is engaged with the
上述旋转涡轮6,固定涡轮7的端板6a、7a与叶板6b、7b之间形成压缩空间S,作为压缩气体的制冷气体由周端侧进入向中心部移动的过程中,其容积逐渐变小,起到被压缩作用。The above-mentioned
在上述固定涡轮的端板6a上设置了连通上述压缩空间S中心部的排气腔9。An
上述固定涡轮7被支撑成可沿轴向在很小的一定距离内移动。在该固定涡轮7的端板7a外周部处形成法兰状,其上下面贯通设有多外销孔10。在上述支架上设置了螺孔11,以各自与销孔10连通。The above-mentioned fixed worm gear 7 is supported so as to be movable within a small certain distance in the axial direction. The outer peripheral portion of the end plate 7a of the fixed turbine 7 is formed in a flange shape, and a plurality of outer pin holes 10 are formed through the upper and lower surfaces thereof. Screw holes 11 are provided on the bracket to communicate with the pin holes 10 respectively.
在固定涡轮的端板7a的销孔10内分别从上缓插入套管12,其下端支承在支架2上部,其中端部由固定涡轮的端板7上面略突出一段长度。In the
该套管12的内部插入有定位用螺栓13,该螺栓13的下端旋入上述支架2的螺孔内。该定位用螺栓3的头部与套管12上端部之间装有垫片14。A
由于在上述结构中,套管12通过垫片14固定在定位用螺栓13和支架2之间,而固定涡轮7的销孔10缓插入套管12,所以该固定涡轮7可沿套管12的轴向自由移动。Because in the above structure, the
但是,上述移动的范围,只有固定涡轮的端板7a上部与上述垫片14之间很小的距离范围,该范围被定位用螺栓13所确定。即,固定涡轮端板7a上部与垫片14下部之间的距离成了确定固定涡轮7移动量而设的间隙。However, the range of the above-mentioned movement is only a small distance range between the upper part of the end plate 7a of the fixed turbine and the above-mentioned
上述固定涡轮的推压部件8具有将固定涡轮7弹性压向旋转涡轮6并使之相互密封的弹性部件螺旋弹簧15、由压缩运行过程中同步发生的力进行移动且使上述螺旋弹簧15产生弹性力的移动环16和运动部件17。该运动部件17用于当螺旋弹簧15的弹力达到一定值后阻止移动环16的移动,使螺旋弹簧15以所定的弹力推压固定涡轮。The
在固定涡轮端板7a中央部位处设置的上述排气腔9周围的端板上部一侧形成有向上突出的内侧缸筒18。该内侧缸筒18的上部是呈开口状的圆筒,该圆筒与上述排气腔9连通,其内形成有高压气体暂时停留的排气压力室18a。An
在上述内侧缸筒18的外周面上形成有与上述移动环16保持气密的结构,且相互滑动配合。该移动环16的上部一侧与下部相比较向外突出,与内侧缸筒18的配合处断面呈圆环状,其余大部分为直径很大的法兰状结构。An airtight structure with the moving
该移动环16与固定涡轮端板7a之间配置有上述螺旋弹簧15。该螺旋弹簧15的内径比上述移动环16上与内侧缸筒18配合的外径略大,其一端与移动环16的法兰状结构下侧接触并对其起弹性支撑作用。The above-mentioned
密闭壳体1内压缩机结构4的上部空间由作为分离体的背压板19、装在该背压板19上的排气压力反向止动阀20分隔为上下两部分。The upper space of the
该背压板19沿中心轴上侧部位形成有与上述移动环16的法兰状结构外周滑动配合并相互保持有气密性的法兰结合部21。The
该法兰结合部21下侧与上述止动部17相连接,该止动部17内侧向内伸出但没有接触到上述螺旋弹簧15。当移动环16向下移动并超出所定范围时,上述止动部17可挡住移动环16的法定部,这样就限制了其下降高度。The lower side of the flange
上述排气压力止回阀部件20与上述内侧环18的上端缘处存在有间隔,且使设置在背压板19上的法兰结合部21上端开口部封闭成一体。There is a gap between the exhaust pressure
在其中央部位设置了具有止回阀的阀座22,并与上述排气腔9连通。也就是说,上述排气腔9通过具有止回阀的阀座22,与背压板19上侧的空间连通。A
这样,由上述排气压力止回阀部件20和背压板19将密闭的壳体1内部分隔为上下两部分,其上侧空间成了排出的高压气体暂时停留的排气室23。Like this, by above-mentioned discharge pressure
在密闭的壳体1上部侧面处连接有排气管24,该排气管24将排气腔23和冷冻装置的冷凝器(图中未示)连接起来。在密闭的壳体1下部侧面处连接有图中未示的吸气管,该吸气管将由背压板19和排气压力止回阀部件20分隔开的密闭壳体1的下部空间与冷冻装置的蒸发器连接起来(图中未示)。An
在上述结构的涡轮式压缩机中,当电机通电并驱动压缩机结构部件4时,低压制冷气体由吸气管进入密闭的壳体1内并充满背压板19下侧的空间。In the turbo compressor with the above structure, when the motor is energized and drives the compressor
制冷气体进入旋转涡轮6和固定涡轮7之间形成的压缩空间S外周一侧后,随着旋转涡轮6的转动逐渐被移送至压缩空间S内周一侧的中心部位,且由于容积变小而被压缩。After the refrigerant gas enters the outer peripheral side of the compression space S formed between the
当上升所定压力时,被压缩的高压气体由排气腔9排出且暂时聚集在排气压力室18a中,然后经过排气压力反向止推阀20的阀座22进入排气室23。当该排气室23被充满后便由排气管24排到外部的冷凝器中。When the predetermined pressure rises, the compressed high-pressure gas is discharged from the
如上所述,压缩过程开始后,由排气腔9排出的高压气体充满排气压力室18a后,一部分高压气体就会充满内侧环18和外侧缸筒21之间的空间,这时,高压气体就给可自由移动的移动环16加上背压。As mentioned above, after the compression process starts, after the high-pressure gas discharged from the
被加上背压的上述移动环16克服了螺旋弹簧16的弹力向下移动,下降所定距离后被止动部件17止动,从而停止下降。The moving
另一方面,由于移动环16的下降,螺旋弹簧15被压缩变形,当移动环16被止动部件17止动并处于限定的状态后,螺旋弹簧15亦以所定的弹簧力作用在固定涡轮7上。On the other hand, due to the decline of the moving
由于螺旋弹簧15的弹力使固定涡轮7压紧在旋转涡轮6上,确保压缩过程中压缩空间S处于良好的密封状态,从而提高了压缩运行的效率。Due to the elastic force of the
在上述结构中,移动环16由压缩运行时产生的排气压力推压移动,从而使螺旋弹簧15产生弹力,所以起动时所需力矩很小。In the above structure, the moving
在压缩运行中,如果发生因某种原因使压缩空间压力异常上升时,由于这种异常高压的影响使固定涡轮在与定位螺栓14接触的范围内向上浮动,这样解除了压缩空间S的密封状态,形成了一定的间隙。During the compression operation, if the pressure in the compression space rises abnormally for some reason, the fixed turbine will float upwards within the contact range with the
从上述间隙处异常高压的气体可向压缩空间S外部排泄,这样就不会使构成固定、旋转涡轮7、6的叶板7b、6b产生异常应力,此即发挥出了所谓的柔性功能。The abnormally high-pressure gas from the gap can be discharged to the outside of the compression space S, so that abnormal stress will not be generated on the
另一方面,只要压缩运行一停止,排气压力消除后移动环16对螺旋弹簧15的推压力也就消失。该移动环16在螺旋弹簧15的弹性恢复力的作用下向上浮动。On the other hand, as soon as the compression operation is stopped, the pressing force of the moving
移动环16与排气压力止回阀部件20下侧接触后,即停止向上浮动。这种状态下,螺旋弹簧15分别向上对移动环16、向下对固定涡轮7作用有弹力使该二部件分别靠紧在各自的方向上。After the moving
这也就是说,即使在压缩机停止状态下,固定涡轮不仅以自重而且由螺旋弹簧15产生的一定大小的弹簧力作用在旋转涡轮的接触面上,所以仍能确保压缩空间S的密封性。That is to say, even when the compressor is stopped, the fixed turbine not only acts on the contact surface of the rotating turbine with its own weight but also with a certain amount of spring force generated by the
在上述实施形式中,作为弹性部件的螺旋弹簧15是卷绕在移动环16的外周上形成的,实际上并不限于这种形式,也可以是如图2所示的结构。In the above embodiment, the
在图2中,对图1已说明的相同部件取相同的符号,其说明亦省略,下面加以说明除此之外的部件。In FIG. 2, the same reference numerals are assigned to the same components as those already described in FIG. 1, and their descriptions are omitted, and the other components will be described below.
构成固定涡轮推压部件8A的弹性部件15A由直径很小的螺旋弹簧形成,且配置有若干个(图中只表示了一个)。固定涡轮端板7a上面和移动环16的法兰部下面的相对位置处分别形成有凹形的安装座25,用于嵌入上述螺旋弹簧15A的上下端部。The elastic member 15A constituting the fixed turbine pressing member 8A is formed of a small-diameter coil spring, and several of them are arranged (only one is shown in the figure). Concave mounts 25 are respectively formed on the upper surface of the fixed turbine end plate 7 a and the lower surface of the flange portion of the
在这种结构中,除了有若干个螺旋弹簧15A这一点不同外,运行效果与前面说明过的压缩机完全一样。In this construction, the operation is exactly the same as that of the previously described compressor except for the fact that there are several coil springs 15A.
此外,也可以使用如图3所示的固定涡轮推压部件8B。In addition, a fixed
在固定涡轮端板7a上面与内侧缸筒18有一定间隔的外周上,一体突出设置了外侧缸筒21a,其上端部固定安装有向内侧缸筒18一侧突出的止动部件17a。On the periphery of the fixed turbine end plate 7a and the
在内侧缸筒18与外侧缸筒21a之间架设有由弹性部件15B作用以弹性推压力的移动部件16A(后面将要所述),该移动部件16A可上下自由移动。Between the
上述弹性部件16b分别由若干螺旋弹簧形成,并设置在与排气压力止回阀部件20成一体的背压板19a和上述移动部件16A之间。The above-mentioned elastic members 16b are each formed of a plurality of coil springs, and are provided between the back pressure plate 19a integrated with the discharge pressure
图4是上述移动部件16A的放大示意图。其中具有断面呈倒U字形的平面环状密封件30,该密封件30的上下两面分别压有金属板形成的环状板件31、32,该环状板件31、32由铆钉32与密封板30铆接固定在一起。FIG. 4 is an enlarged schematic view of the above-mentioned
如图3所示,上述移动部件16A设置在内侧缸筒18和外侧缸筒21a之间。上述密封件30的内周面与内侧缸筒18的外周面、密封件30的外周面与外侧缸筒21a的内周面滑动配合。As shown in FIG. 3 , the above-mentioned moving
另一方面,固定涡轮7和旋转涡轮6形成的压缩空间S与内、外侧缸筒18、21a和移动部件16A所形成的环状空间之间,由设在固定涡轮端板7a上的中间压力导孔33连通。On the other hand, between the compression space S formed by the fixed turbine 7 and the
也就是说,压缩空间S内的部分压缩气体上升到所定压力之前就由中间压力导孔33进入由内、外缸筒18、21a和移动部件16A所形成的环状空间,所以该环状空间又称为中间压力室34。That is to say, before part of the compressed gas in the compression space S rises to a predetermined pressure, it enters the annular space formed by the inner and
当停止运行时,由于螺旋弹簧15B的弹力推压移动部件16A使之与固定涡轮端板7a接触并产生压紧趋势。这样可使固定涡轮7与旋转涡轮6接触,保护了压缩空间S的密封。When the operation is stopped, due to the elastic force of the
当压缩运行开始后,具有中间压力的气体从压缩空间S经过中间压力导孔33进入中间压力室34内,充满后即对固定涡轮端板7a、内外侧缸筒18、21a的部分表面以及移动部件16A产生中间压力的背压。When the compression operation starts, the gas with intermediate pressure enters the
这时,由于移动部件16A向图的上方移动,使螺旋弹簧15B产生弹性压缩变形。最后,该移动部件16A被止动部件7a止动,使之不能继续上移。At this time, since the moving
在压缩运行过程中,由于中间压力室34内充满了具有中间压力的气体,所以移动部件16A一直处于被止动部件17a止动的状态。这时,相当于固定涡轮7与移动部件16A处于一体化状态。During the compression operation, since the
这样,螺旋弹簧15B的弹力通过移动部件16A、传递给固定涡轮7,固定涡轮7被压向旋转涡轮6一侧,使压缩空间S保持密封。Thus, the elastic force of the
在这种结构中,由于中间压力形成的中间压力室的容积要比排气压力形成的排气压力室容积小,所以使起动时螺旋弹簧15B的压缩行程和时间缩短,从而也缩短了从起动到稳定运行过程所需的时间。In this structure, since the volume of the intermediate pressure chamber formed by the intermediate pressure is smaller than the volume of the exhaust pressure chamber formed by the exhaust pressure, the compression stroke and time of the
图5表示在上述图2所示具有固定涡轮推压部件8A的压缩机基本结构中,冷却循环回路R与所说的释放机构同时使用的情况。FIG. 5 shows the case where the cooling circuit R is used simultaneously with the release mechanism in the basic structure of the compressor having the fixed turbine pushing member 8A shown in FIG. 2 above.
该图中50是凝缩器、51是节流装置、52是蒸发器。这些装置与上述涡轮式压缩机一起构成了冷却循环回路R。上述释放机构40与压缩空间S连通。将压缩过程中的气体直接导入冷却循环回路R。In this figure, 50 is a condenser, 51 is an expansion device, and 52 is an evaporator. These devices form the cooling circuit R together with the above-mentioned turbo compressor. The above-mentioned release mechanism 40 communicates with the compression space S. As shown in FIG. The gas in the compression process is directly introduced into the cooling circuit R.
例如,当处于白天的冷却室运行状态向夜间过渡时,就会出现过冷状态。这时,开放释放机构40的开闭阀41,使压缩过程中的气体返回冷却循环回路R,就可以有意识地降低冷却能力。For example, supercooling occurs when a cooling room operates during the day and transitions to nighttime. At this time, the on-off valve 41 of the release mechanism 40 is opened to return the gas in the compression process to the cooling circuit R, so that the cooling capacity can be reduced intentionally.
上述释放机构40由基本与上述固定涡轮7相同的结构上设置的释放孔42,连接在该释放孔42端部并穿过密闭壳体1且与连通上述冷却循环回路R的蒸发器52与涡轮式压缩机之间冷气管P相连的释放管43和设置在该释放管43中部的上述开闭阀41组成。The above-mentioned release mechanism 40 is composed of a release hole 42 basically identical in structure to the above-mentioned fixed turbine 7, which is connected to the end of the release hole 42 and passes through the airtight casing 1 and communicates with the evaporator 52 of the above-mentioned cooling cycle R and the turbine. The release pipe 43 connected to the cold air pipe P between the compressors and the above-mentioned on-off valve 41 arranged in the middle of the release pipe 43 are composed.
在密闭壳体1内的释放管43部位上设有柔性管44。该柔性管44也可由普通配管形成螺旋状的可伸缩管路做成。A flexible pipe 44 is provided at the position of the release pipe 43 in the airtight casing 1 . The flexible pipe 44 can also be made by forming a helical telescopic pipe from ordinary pipes.
当旋转涡轮6转动时将自身产生的微幅振动传递给固定涡轮,并会进一步传递给与固定涡轮连接的释放管43,但是由于设有柔性管44,能完全吸收上述振动,阻止了向外部管路的传递。When the
也就是说,由于具有柔性管44,无疑可以防止释放管43的破损。That is, due to the flexible tube 44, breakage of the release tube 43 can certainly be prevented.
在具有热泵式冷却循环回路的空调机中,为了增大升温运行的升温能力,将压缩机排出的部分冷却介质旁路后再输入压缩空间,此即具有射入回路的空调机。In an air conditioner with a heat pump cooling cycle, in order to increase the heating capacity of the heating operation, part of the cooling medium discharged from the compressor is bypassed and then input into the compression space, which is an air conditioner with an injection circuit.
这种情况下,构成射入回路的射入管连接在固定涡轮上形成且与压缩空间S连通的射入孔端部。也就是说在密闭壳体1内,具有与前面已用图5说明的压缩机完全相同的结构,但由于其内射入管的部位上设置了柔性管,也可得到与上述相同的效果。In this case, the injection pipe constituting the injection circuit is connected to the end of the injection hole formed in the fixed turbine and communicating with the compression space S. That is to say, in the airtight casing 1, it has the same structure as the compressor described above with FIG.
图6中,横轴表示有代表性的空调机使用条件A~F,纵轴表示轴向力和接触力,其中本发明中接触力是指固定涡轮和旋转涡轮叶板端部的最小接触力。In Fig. 6, the horizontal axis represents representative air conditioner operating conditions A~F, and the vertical axis represents axial force and contact force, wherein contact force in the present invention refers to the minimum contact force of the fixed turbine and the end of the rotating turbine blade .
取本发明的固定涡轮和旋转涡轮接触力的最小值为1,然后分别将理论计算得到的本发明结构和传统结构中涡轮的相互推压力(轴向力)和接触力棒图化,即及到图5。Get the minimum value of the contact force of the fixed turbine and the rotating turbine of the present invention to be 1, and then the mutual pushing force (axial force) and the contact force of the turbine in the structure of the present invention obtained by theoretical calculation and the traditional structure are bar graphed, namely and to Figure 5.
图6中,a表示本发明结构的推压力,b表示传统结构的推压力,c表示本发明结构的接触力,d表示传统结构的接触力。In Fig. 6, a represents the pushing force of the structure of the present invention, b represents the pushing force of the conventional structure, c represents the contact force of the structure of the present invention, and d represents the contact force of the conventional structure.
本发明结构的接触力C在运行条件D中最小,而传统结构的接触力d在运行条件C中最小,其最小值分别是1基本上是相等的。The contact force C of the structure of the present invention is the smallest in the operating condition D, while the contact force d of the conventional structure is the smallest in the operating condition C, and the minimum values thereof are 1, respectively, which are substantially equal.
与最小值相比较,本发明结构的接触力在运行条件B中最大,约为3.2倍,而传统结构的接触力在运行条件F中最大,约为4.9倍。Compared with the minimum value, the contact force of the structure of the present invention is the largest in operating condition B, about 3.2 times, while the contact force of the conventional structure is the largest in operating condition F, about 4.9 times.
从推压力分析,本发明结构的推压力a在运行条件F中最大,约为9.7倍,而传统结构的推压力d在运行条件E中最大,约为12.2倍。From the analysis of the pushing force, the pushing force a of the structure of the present invention is the largest in the operating condition F, about 9.7 times, while the pushing force d of the traditional structure is the largest in the operating condition E, about 12.2 times.
从上述有关最大值的分析可以知道,本发明结构中的压缩机与传统结构的压缩机相比较,能够使负荷变小,从而提高了压缩机的可靠性及其它性能。From the above analysis on the maximum value, it can be known that the compressor in the structure of the present invention can reduce the load compared with the compressor in the traditional structure, thereby improving the reliability and other performances of the compressor.
Claims (9)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15133796A JPH09329090A (en) | 1996-06-12 | 1996-06-12 | Scroll type compressor |
JP151337/96 | 1996-06-12 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN1177062A true CN1177062A (en) | 1998-03-25 |
CN1079912C CN1079912C (en) | 2002-02-27 |
Family
ID=15516376
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN97112412A Expired - Fee Related CN1079912C (en) | 1996-06-12 | 1997-05-16 | Turbine type compressor |
Country Status (4)
Country | Link |
---|---|
JP (1) | JPH09329090A (en) |
KR (1) | KR100196122B1 (en) |
CN (1) | CN1079912C (en) |
TW (1) | TW437854U (en) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN100402857C (en) * | 2000-11-06 | 2008-07-16 | 三菱重工业株式会社 | Scroll compressor |
CN102124228A (en) * | 2008-08-05 | 2011-07-13 | (学)斗源学院 | Scroll compressor with improved back pressure control function |
CN105020134A (en) * | 2014-05-02 | 2015-11-04 | Lg电子株式会社 | Scroll compressor |
CN105041642A (en) * | 2014-05-02 | 2015-11-11 | Lg电子株式会社 | Scroll compressor |
CN106368947A (en) * | 2016-11-28 | 2017-02-01 | 天津商业大学 | Totally-closed scroll compressor in elastic contact seal |
CN106662105A (en) * | 2014-10-09 | 2017-05-10 | 松下知识产权经营株式会社 | Scroll compressor |
CN108952867A (en) * | 2018-07-17 | 2018-12-07 | 陈婧琪 | A kind of generating power with biomass combustion device recycled using supercritical carbon dioxide |
CN111065823A (en) * | 2017-09-01 | 2020-04-24 | 三星电子株式会社 | Scroll compressor having a plurality of scroll members |
CN112746957A (en) * | 2021-01-20 | 2021-05-04 | 重庆碧海扬帆投资咨询有限公司 | Scroll compressor housing assembly and scroll compressor |
CN114635855A (en) * | 2020-12-15 | 2022-06-17 | 艾默生环境优化技术(苏州)有限公司 | Scroll compressor having a plurality of scroll members |
WO2022127768A1 (en) * | 2020-12-15 | 2022-06-23 | 艾默生环境优化技术(苏州)有限公司 | Scroll compressor |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20000050619A (en) * | 1999-01-12 | 2000-08-05 | 구자홍 | Device protecting gas leak through axial clearance for scroll compressor |
KR100390430B1 (en) * | 2000-12-26 | 2003-07-07 | 엘지전자 주식회사 | Axial compliance mechanism of scroll machine |
CN100585128C (en) * | 2005-03-14 | 2010-01-27 | 财团法人工业技术研究院 | scroll device with axial clearance control function |
US7717687B2 (en) | 2007-03-23 | 2010-05-18 | Emerson Climate Technologies, Inc. | Scroll compressor with compliant retainer |
CN103790831B (en) * | 2012-10-30 | 2016-09-07 | 艾默生环境优化技术(苏州)有限公司 | Compressor with a compressor housing having a plurality of compressor blades |
JP6555543B2 (en) * | 2014-10-07 | 2019-08-07 | パナソニックIpマネジメント株式会社 | Scroll compressor |
JP6709971B2 (en) * | 2017-01-27 | 2020-06-17 | パナソニックIpマネジメント株式会社 | Scroll compressor |
US11692548B2 (en) | 2020-05-01 | 2023-07-04 | Emerson Climate Technologies, Inc. | Compressor having floating seal assembly |
GB2600716B (en) * | 2020-11-05 | 2023-05-03 | Edwards Ltd | Scroll pump |
US11767846B2 (en) * | 2021-01-21 | 2023-09-26 | Copeland Lp | Compressor having seal assembly |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS581278B2 (en) * | 1980-04-05 | 1983-01-10 | サンデン株式会社 | Scroll compressor |
JPS59110884A (en) * | 1982-12-17 | 1984-06-26 | Hitachi Ltd | Scroll compressor |
US5403172A (en) * | 1993-11-03 | 1995-04-04 | Copeland Corporation | Scroll machine sound attenuation |
US5489198A (en) * | 1994-04-21 | 1996-02-06 | Copeland Corporation | Scroll machine sound attenuation |
JPH07324689A (en) * | 1994-05-31 | 1995-12-12 | Mitsubishi Heavy Ind Ltd | Scroll type fluid compressor |
JP2705656B2 (en) * | 1995-08-28 | 1998-01-28 | 松下電器産業株式会社 | Scroll compressor |
-
1996
- 1996-06-12 JP JP15133796A patent/JPH09329090A/en active Pending
-
1997
- 1997-01-31 TW TW89219423U patent/TW437854U/en not_active IP Right Cessation
- 1997-02-19 KR KR1019970004919A patent/KR100196122B1/en not_active IP Right Cessation
- 1997-05-16 CN CN97112412A patent/CN1079912C/en not_active Expired - Fee Related
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN100402857C (en) * | 2000-11-06 | 2008-07-16 | 三菱重工业株式会社 | Scroll compressor |
CN102124228A (en) * | 2008-08-05 | 2011-07-13 | (学)斗源学院 | Scroll compressor with improved back pressure control function |
CN102124228B (en) * | 2008-08-05 | 2014-03-12 | (学)斗源学院 | Scroll compressor with improved back pressure control function |
CN105020134B (en) * | 2014-05-02 | 2017-09-05 | Lg电子株式会社 | Scroll compressor |
CN105041642A (en) * | 2014-05-02 | 2015-11-11 | Lg电子株式会社 | Scroll compressor |
US9732752B2 (en) | 2014-05-02 | 2017-08-15 | Lg Electronics Inc. | Scroll compressor having a back pressure chamber assembly disposed on a fixed scroll plate and an elastic member disposed between a floating plate and a discharge cover |
CN105020134A (en) * | 2014-05-02 | 2015-11-04 | Lg电子株式会社 | Scroll compressor |
US9784271B2 (en) | 2014-05-02 | 2017-10-10 | Lg Electronics Inc. | Scroll compressor |
CN106662105A (en) * | 2014-10-09 | 2017-05-10 | 松下知识产权经营株式会社 | Scroll compressor |
CN106662105B (en) * | 2014-10-09 | 2020-03-03 | 松下知识产权经营株式会社 | Scroll compressor having a discharge port |
CN106368947A (en) * | 2016-11-28 | 2017-02-01 | 天津商业大学 | Totally-closed scroll compressor in elastic contact seal |
CN111065823A (en) * | 2017-09-01 | 2020-04-24 | 三星电子株式会社 | Scroll compressor having a plurality of scroll members |
CN108952867A (en) * | 2018-07-17 | 2018-12-07 | 陈婧琪 | A kind of generating power with biomass combustion device recycled using supercritical carbon dioxide |
CN114635855A (en) * | 2020-12-15 | 2022-06-17 | 艾默生环境优化技术(苏州)有限公司 | Scroll compressor having a plurality of scroll members |
WO2022127768A1 (en) * | 2020-12-15 | 2022-06-23 | 艾默生环境优化技术(苏州)有限公司 | Scroll compressor |
CN112746957A (en) * | 2021-01-20 | 2021-05-04 | 重庆碧海扬帆投资咨询有限公司 | Scroll compressor housing assembly and scroll compressor |
Also Published As
Publication number | Publication date |
---|---|
CN1079912C (en) | 2002-02-27 |
KR100196122B1 (en) | 1999-06-15 |
TW437854U (en) | 2001-05-28 |
JPH09329090A (en) | 1997-12-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN1177062A (en) | turbo compressor | |
CN1254609C (en) | Swirl compressor | |
CN1183330C (en) | Bearing lubricating system for vortex type compressor | |
CN1205412C (en) | Scroll type compressor | |
CN1114761C (en) | Scroll type compressor | |
CN1079500C (en) | Scroll Gas Compressor | |
CN1192169C (en) | Apparatus for preventing vacuum compression of scroll compressor | |
CN1219981C (en) | Vacuum preventer for vortex compressor | |
CN1112514C (en) | Vortex compressor | |
CN1334405A (en) | Compressor | |
CN1192512A (en) | Whirl type air compressor | |
CN1576603A (en) | Variable capacity scroll compressor | |
CN1090295C (en) | Scroll compressor | |
CN1138669A (en) | Eddy compressor | |
CN1097174C (en) | Compressor for refrigerating circulation | |
CN2714848Y (en) | Scroll compressor | |
CN1934335A (en) | Rotary type expansion machine | |
CN1961154A (en) | Rotary fluid machine | |
CN1356476A (en) | Multi-cylinder rotary compressor | |
CN1892025A (en) | Refrigerant compressor | |
CN1629488A (en) | Eccentric coupling device in radial compliance scroll compressor | |
JP4638762B2 (en) | Scroll compressor | |
CN1274961C (en) | Rotary compressor | |
JP2008286154A (en) | Compressor | |
CN1946939A (en) | Rotating fluid machine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C06 | Publication | ||
PB01 | Publication | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
C19 | Lapse of patent right due to non-payment of the annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |