[go: up one dir, main page]

CN117690943A - Manufacturing method of image sensor - Google Patents

Manufacturing method of image sensor Download PDF

Info

Publication number
CN117690943A
CN117690943A CN202410129350.1A CN202410129350A CN117690943A CN 117690943 A CN117690943 A CN 117690943A CN 202410129350 A CN202410129350 A CN 202410129350A CN 117690943 A CN117690943 A CN 117690943A
Authority
CN
China
Prior art keywords
layer
material layer
substrate
oxide
bonding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202410129350.1A
Other languages
Chinese (zh)
Other versions
CN117690943B (en
Inventor
陶磊
刘文彬
吴冠毅
周宗典
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nexchip Semiconductor Corp
Original Assignee
Nexchip Semiconductor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nexchip Semiconductor Corp filed Critical Nexchip Semiconductor Corp
Priority to CN202410129350.1A priority Critical patent/CN117690943B/en
Publication of CN117690943A publication Critical patent/CN117690943A/en
Application granted granted Critical
Publication of CN117690943B publication Critical patent/CN117690943B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10FINORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
    • H10F39/00Integrated devices, or assemblies of multiple devices, comprising at least one element covered by group H10F30/00, e.g. radiation detectors comprising photodiode arrays
    • H10F39/011Manufacture or treatment of image sensors covered by group H10F39/12
    • H10F39/026Wafer-level processing
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10FINORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
    • H10F39/00Integrated devices, or assemblies of multiple devices, comprising at least one element covered by group H10F30/00, e.g. radiation detectors comprising photodiode arrays
    • H10F39/011Manufacture or treatment of image sensors covered by group H10F39/12
    • H10F39/016Manufacture or treatment of image sensors covered by group H10F39/12 of thin-film-based image sensors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10FINORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
    • H10F39/00Integrated devices, or assemblies of multiple devices, comprising at least one element covered by group H10F30/00, e.g. radiation detectors comprising photodiode arrays
    • H10F39/011Manufacture or treatment of image sensors covered by group H10F39/12
    • H10F39/018Manufacture or treatment of image sensors covered by group H10F39/12 of hybrid image sensors

Landscapes

  • Solid State Image Pick-Up Elements (AREA)

Abstract

本发明提出了一种图像传感器的制作方法,属于半导体制造技术领域,包括以下步骤:提供一衬底,包括器件区和非器件区;在衬底上形成第一氧化层,第一氧化层覆盖器件区并延伸至部分非器件区上;在非器件区的衬底上形成台阶;在衬底上形成第二氧化材料层,第二氧化材料层覆盖第一氧化层、台阶的表面和侧壁;在第二氧化材料层表面形成牺牲层;对牺牲层进行至少两次平坦化处理,以去除牺牲层和部分厚度的第二氧化材料层,再进行抛光处理,形成第二氧化层;在第二氧化层上形成高键合强度的键合接触层;将键合接触层与承载基板进行键合,形成图像传感器。本发明提供的一种图像传感器的制作方法,能有效改善图像传感器的质量和良率。

The invention proposes a method for manufacturing an image sensor, which belongs to the field of semiconductor manufacturing technology and includes the following steps: providing a substrate, including a device area and a non-device area; forming a first oxide layer on the substrate, and covering the first oxide layer The device area extends to part of the non-device area; steps are formed on the substrate in the non-device area; a second oxide material layer is formed on the substrate, and the second oxide material layer covers the first oxide layer, the surface and sidewalls of the steps ; Forming a sacrificial layer on the surface of the second oxidized material layer; performing planarization processing on the sacrificial layer at least twice to remove the sacrificial layer and part of the thickness of the second oxidized material layer, and then performing polishing processing to form a second oxidized layer; in the first A bonding contact layer with high bonding strength is formed on the dioxide layer; the bonding contact layer is bonded to the carrier substrate to form an image sensor. The invention provides a method for manufacturing an image sensor, which can effectively improve the quality and yield of the image sensor.

Description

一种图像传感器的制作方法A method of manufacturing an image sensor

技术领域Technical field

本发明涉及半导体制造技术领域,具体涉及一种图像传感器的制作方法。The present invention relates to the field of semiconductor manufacturing technology, and in particular to a method for manufacturing an image sensor.

背景技术Background technique

图像传感器可以通过光电转换将照射在自身感光面上的光信号转换为相应的电信号,并依据所转换的电信号输出相应的图像,其被广泛应用于各种光电设备中,比如数码相机、摄影机、录影机、传真机、影像扫描仪以及数字电视等。然而图像传感器的制作存在流程复杂、良率低等问题。The image sensor can convert the light signal shining on its own photosensitive surface into a corresponding electrical signal through photoelectric conversion, and output a corresponding image based on the converted electrical signal. It is widely used in various optoelectronic devices, such as digital cameras, Cameras, video recorders, fax machines, image scanners and digital televisions, etc. However, the production of image sensors has problems such as complex processes and low yield rates.

发明内容Contents of the invention

本发明提出了一种图像传感器的制作方法,意想不到的效果是能有效减少键合界面的气泡,提高了键合的质量,从而提高图像传感器的良品率。The present invention proposes a method for manufacturing an image sensor. The unexpected effect is that it can effectively reduce bubbles at the bonding interface, improve bonding quality, and thus improve the yield rate of the image sensor.

为解决上述技术问题,本发明是通过如下的技术方案实现的。In order to solve the above technical problems, the present invention is implemented through the following technical solutions.

本发明提出一种图像传感器的制作方法,至少包括以下步骤:The present invention proposes a method for manufacturing an image sensor, which at least includes the following steps:

提供一衬底,所述衬底包括器件区和非器件区;Provide a substrate, the substrate including a device area and a non-device area;

在所述衬底上形成第一氧化层,所述第一氧化层覆盖所述器件区并延伸至部分所述非器件区上;forming a first oxide layer on the substrate, the first oxide layer covering the device area and extending to part of the non-device area;

在所述非器件区的所述衬底上形成台阶;forming steps on the substrate in the non-device area;

在所述衬底上形成第二氧化材料层,所述第二氧化材料层覆盖所述第一氧化层、所述台阶的表面和侧壁;forming a second oxide material layer on the substrate, the second oxide material layer covering the first oxide layer, the surface and sidewalls of the steps;

在所述第二氧化材料层表面形成牺牲层;Form a sacrificial layer on the surface of the second oxidized material layer;

对所述牺牲层进行至少两次平坦化处理,以去除所述牺牲层和部分厚度的所述第二氧化材料层,再进行抛光处理,形成第二氧化层;Perform planarization processing on the sacrificial layer at least twice to remove the sacrificial layer and part of the thickness of the second oxide material layer, and then perform polishing processing to form a second oxide layer;

在所述第二氧化层上形成高键合强度的键合接触层;以及forming a bonding contact layer with high bonding strength on the second oxide layer; and

将所述键合接触层与承载基板进行键合,形成图像传感器。The bonding contact layer is bonded to the carrier substrate to form an image sensor.

进一步地,所述键合接触层采用高密度等离子体化学气相沉积工艺形成。Further, the bonding contact layer is formed using a high-density plasma chemical vapor deposition process.

进一步地,所述抛光处理施加的压力为所述平坦化处理施加的压力的一半。Further, the pressure applied by the polishing process is half of the pressure applied by the planarization process.

进一步地,形成所述第二氧化层的步骤包括:Further, the step of forming the second oxide layer includes:

在所述第二氧化材料层表面形成第一牺牲层;Form a first sacrificial layer on the surface of the second oxidized material layer;

对所述第一牺牲层进行第一次平坦化处理,以去除部分厚度的所述第一牺牲层,形成第二牺牲层;Perform a first planarization process on the first sacrificial layer to remove part of the thickness of the first sacrificial layer to form a second sacrificial layer;

对所述第二牺牲层进行第二次平坦化处理,以去除所述第二牺牲层和部分厚度的所述第二氧化材料层,形成中间氧化材料层;以及Perform a second planarization process on the second sacrificial layer to remove the second sacrificial layer and part of the thickness of the second oxide material layer to form an intermediate oxide material layer; and

对所述中间氧化材料层进行第一次抛光处理,以去除部分厚度的所述中间氧化材料层,形成第二氧化层,所述第二氧化层的表面平滑。A first polishing process is performed on the intermediate oxide material layer to remove part of the thickness of the intermediate oxide material layer to form a second oxide layer, and the surface of the second oxide layer is smooth.

进一步地,所述第一次抛光处理的厚度为70nm-90nm,处理的时间为57s-67s。Further, the thickness of the first polishing process is 70nm-90nm, and the processing time is 57s-67s.

进一步地,所述第一次抛光处理后,所述第二氧化层的表面的粗糙度为0.1nm-0.3nm。Further, after the first polishing process, the surface roughness of the second oxide layer is 0.1nm-0.3nm.

进一步地,形成所述键合接触层的步骤包括:Further, the step of forming the bonding contact layer includes:

在所述第二氧化层表面形成键合材料层;Form a bonding material layer on the surface of the second oxide layer;

对所述键合材料层进行第二次抛光处理,以去除部分厚度的所述键合材料层,形成键合接触层。The bonding material layer is polished for a second time to remove part of the thickness of the bonding material layer to form a bonding contact layer.

进一步地,所述键合材料层的厚度为90nm-110nm。Further, the thickness of the bonding material layer is 90nm-110nm.

进一步地,所述第二次抛光处理的厚度为50nm-70nm,处理的时间为57s-67s。Further, the thickness of the second polishing process is 50nm-70nm, and the processing time is 57s-67s.

进一步地,所述第二次抛光处理后,所述键合接触层的表面的粗糙度为0.1nm-0.3nm。Further, after the second polishing process, the surface roughness of the bonding contact layer is 0.1nm-0.3nm.

进一步地,所述制作方法还包括:形成所述键合接触层后,对所述衬底进行粒子去除和清洗处理。Further, the manufacturing method further includes: after forming the bonding contact layer, performing particle removal and cleaning on the substrate.

本发明提出了一种图像传感器的制作方法,通过在平坦化处理之后添加抛光处理,意想不到的效果是:简化工艺流程,大大降低工艺时长,提高生产效率;且形成的键合界面膜层均匀性高、致密性好、表面粗糙度高且键合强度高,减少了键合过程中气泡的产生,提高了图像传感器与承载基板的键合的质量,从而提高图像传感器的可靠性及良品率。The present invention proposes a method for manufacturing an image sensor. By adding polishing treatment after planarization, the unexpected effects are: simplifying the process flow, greatly reducing process time, and improving production efficiency; and the formed bonding interface film layer is uniform It has high properties, good density, high surface roughness and high bonding strength, which reduces the generation of bubbles during the bonding process and improves the quality of the bonding between the image sensor and the carrier substrate, thus improving the reliability and yield rate of the image sensor. .

附图说明Description of the drawings

图1为本发明中一种图像传感器的制作方法的流程图。FIG. 1 is a flow chart of a manufacturing method of an image sensor in the present invention.

图2为本发明一实施例中第一氧化材料层的结构示意图。FIG. 2 is a schematic structural diagram of the first oxide material layer in an embodiment of the present invention.

图3为本发明一实施例中研磨单元的结构示意图。Figure 3 is a schematic structural diagram of a grinding unit in an embodiment of the present invention.

图4为本发明一实施例中台阶的结构示意图。Figure 4 is a schematic structural diagram of a step in an embodiment of the present invention.

图5为本发明一实施例中第二氧化材料层的结构示意图。FIG. 5 is a schematic structural diagram of the second oxide material layer in an embodiment of the present invention.

图6为本发明一实施例中第一牺牲层的结构示意图。FIG. 6 is a schematic structural diagram of the first sacrificial layer in an embodiment of the present invention.

图7为本发明一实施例中第二牺牲层的结构示意图。FIG. 7 is a schematic structural diagram of the second sacrificial layer in an embodiment of the present invention.

图8为本发明一实施例中中间氧化材料层的结构示意图。FIG. 8 is a schematic structural diagram of the intermediate oxide material layer in an embodiment of the present invention.

图9为本发明一实施例中第二氧化层的结构示意图。FIG. 9 is a schematic structural diagram of the second oxide layer in an embodiment of the present invention.

图10为本发明一实施例中键合材料层的结构示意图。Figure 10 is a schematic structural diagram of the bonding material layer in an embodiment of the present invention.

图11为本发明一实施例中键合接触层的结构示意图。FIG. 11 is a schematic structural diagram of a bonding contact layer in an embodiment of the present invention.

图12为本发明一实施例中CMOS晶体管与承载基板键合的示意图。FIG. 12 is a schematic diagram of bonding between a CMOS transistor and a carrier substrate in an embodiment of the present invention.

图13为本发明另一实施例中制作的图像传感器的电镜图。FIG. 13 is an electron micrograph of an image sensor produced in another embodiment of the present invention.

图14为本发明一实施例中制作的图像传感器的电镜图。FIG. 14 is an electron micrograph of an image sensor produced in an embodiment of the present invention.

附图说明:Picture description:

100、衬底;110、台阶;200、第一氧化材料层;210、第一氧化层;300、第二氧化材料层;310、中间氧化材料层;320、第二氧化层;400、第一牺牲层;410、第二牺牲层;500、键合材料层;510、键合接触层;511、接触面;600、承载基板;601、结合面;700、旋转轴;800、研磨刀片。100. Substrate; 110. Step; 200. First oxide material layer; 210. First oxide layer; 300. Second oxide material layer; 310. Intermediate oxide material layer; 320. Second oxide layer; 400. First Sacrificial layer; 410, second sacrificial layer; 500, bonding material layer; 510, bonding contact layer; 511, contact surface; 600, bearing substrate; 601, bonding surface; 700, rotation axis; 800, grinding blade.

具体实施方式Detailed ways

以下通过特定的具体实例说明本发明的实施方式,本领域技术人员可由本说明书所揭露的内容轻易地了解本发明的其他优点与功效。本发明还可以通过另外不同的具体实施方式加以实施或应用,本说明书中的各项细节也可以基于不同观点与应用,在没有背离本发明的精神下进行各种修饰或改变。The following describes the embodiments of the present invention through specific examples. Those skilled in the art can easily understand other advantages and effects of the present invention from the content disclosed in this specification. The present invention can also be implemented or applied through other different specific embodiments. Various details in this specification can also be modified or changed in various ways based on different viewpoints and applications without departing from the spirit of the present invention.

需要说明的是,本实施例中所提供的图示仅以示意方式说明本发明的基本构想,遂图式中仅显示与本发明中有关的组件而非按照实际实施时的组件数目、形状及尺寸绘制,其实际实施时各组件的型态、数量及比例可为一种随意的改变,且其组件布局型态也可能更为复杂。It should be noted that the diagrams provided in this embodiment only illustrate the basic concept of the present invention in a schematic manner. The drawings only show the components related to the present invention and do not follow the actual implementation of the component numbers, shapes and components. Dimension drawing, in actual implementation, the type, quantity and proportion of each component can be arbitrarily changed, and the component layout type may also be more complex.

下面结合若干实施例及附图对本发明的技术方案做进一步详细说明,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都属于本发明保护的范围。The technical solution of the present invention will be further described in detail below with reference to several embodiments and drawings. Obviously, the described embodiments are only some of the embodiments of the present invention, rather than all of the embodiments. Based on the embodiments of the present invention, all other embodiments obtained by those of ordinary skill in the art without any creative work fall within the scope of protection of the present invention.

背照式图像传感器(Back side Illuminated Complementary Metal OxideSemiconductor,BSI CMOS)将金属互联层与感光层分别设置在衬底的两侧,避免金属互联层对入射光的折射及阻碍。相比于正照式图像传感器(Front side Illumination CMOS,FSI CMOS)具有更好的量子效率和角响应度,使得背照式图像传感器在工业应用中逐渐占据重要地位,并广泛用于数码相机、可换镜头数码相机和智能手机等领域,在背照式图像传感器制备过程中,需要将CMOS晶体管与一承载基板进行键合。本申请提出一种图像传感器的制作方法,能够有效降低CMOS晶体管与承载基板的键合界面的气泡,提高图像传感器的键合质量,可提高背照式图像传感器的性能。The backside illuminated image sensor (Back side Illuminated Complementary Metal Oxide Semiconductor, BSI CMOS) has a metal interconnection layer and a photosensitive layer respectively placed on both sides of the substrate to avoid refraction and obstruction of incident light by the metal interconnection layer. Compared with front side illumination CMOS (FSI CMOS), it has better quantum efficiency and angular responsivity, making back-illuminated image sensors gradually occupy an important position in industrial applications and is widely used in digital cameras, In fields such as interchangeable lens digital cameras and smartphones, during the preparation process of back-illuminated image sensors, CMOS transistors need to be bonded to a carrier substrate. This application proposes a method for manufacturing an image sensor, which can effectively reduce bubbles at the bonding interface between the CMOS transistor and the carrier substrate, improve the bonding quality of the image sensor, and improve the performance of the back-illuminated image sensor.

请参阅图1和图2所示,在步骤S10中,在本发明一实施例中,先提供一衬底100,并在衬底100上制作半导体器件,形成器件区(图中未显示),将未制作半导体器件的区域定义为非器件区(图中未显示),且非器件区例如设置在器件区的周围。以此制作器件的衬底100为例,对背照式图像传感器的制作过程进行阐述。本发明对衬底的种类不以限制,可根据制作不同类型的半导体器件,选择不同种类的衬底。在本发明一实施例中,衬底100例如可以选用硅(Si)衬底,以制作互补金属氧化物半导体晶体管(Complementary Metal OxideSemiconductor,CMOS)。在本发明的一实施例中,在制作器件之前,对衬底100进行掺杂,可以减小衬底100的电阻,防止闩锁效应。在本发明一实施例中,在衬底100中掺杂硼(B)或镓(Ga),形成P型掺杂衬底。Please refer to Figures 1 and 2. In step S10, in an embodiment of the present invention, a substrate 100 is first provided, and a semiconductor device is fabricated on the substrate 100 to form a device area (not shown in the figure). A region where a semiconductor device is not fabricated is defined as a non-device region (not shown in the figure), and the non-device region is, for example, provided around the device region. Taking the substrate 100 for manufacturing the device as an example, the manufacturing process of the back-illuminated image sensor will be described. The present invention does not limit the type of substrate, and different types of substrates can be selected according to the production of different types of semiconductor devices. In an embodiment of the present invention, the substrate 100 may be a silicon (Si) substrate, for example, to produce a complementary metal oxide semiconductor transistor (CMOS). In an embodiment of the present invention, before fabricating the device, the substrate 100 is doped to reduce the resistance of the substrate 100 and prevent the latch-up effect. In an embodiment of the present invention, the substrate 100 is doped with boron (B) or gallium (Ga) to form a P-type doped substrate.

请参阅图1和图2所示,在步骤S10中,在本发明一实施例中,在衬底100上制作器件后,将两片甚至多片衬底100贴合在一起进行键合。在本发明一实施例中,以制作了CMOS晶体管的衬底100与一承载基板键合为例,对背照式图像传感器的制作过程进行阐述。Please refer to FIGS. 1 and 2 . In step S10 , in an embodiment of the present invention, after fabricating a device on a substrate 100 , two or even multiple substrates 100 are bonded together. In one embodiment of the present invention, the manufacturing process of the back-illuminated image sensor is explained by taking the bonding of the substrate 100 in which the CMOS transistor is manufactured and a carrier substrate as an example.

请参阅图1和图2所示,在步骤S20中,在本发明一实施例中,首先在制作了CMOS晶体管的衬底100上形成第一氧化材料层200,第一氧化材料层200覆盖整个器件区和非器件区以及衬底100的侧壁。在本发明一实施例中,第一氧化材料层200例如为致密的氧化硅等材料。本发明对第一氧化材料层200的形成方法不加以限制,在本实施例中,例如采用高密度等离子体化学气相沉积法(High Density Plasma Chemical Vapor Deposition,HDPCVD)形成第一氧化材料层200。第一氧化材料层200的厚度例如为350nm-400nm,具体例如为360nm、380nm或400nm等。Please refer to FIGS. 1 and 2 . In step S20 , in an embodiment of the present invention, a first oxide material layer 200 is first formed on the substrate 100 on which the CMOS transistor is fabricated. The first oxide material layer 200 covers the entire Device and non-device areas and sidewalls of the substrate 100 . In an embodiment of the present invention, the first oxide material layer 200 is, for example, dense silicon oxide or other materials. The present invention is not limited to the method of forming the first oxidized material layer 200. In this embodiment, for example, the first oxidized material layer 200 is formed using High Density Plasma Chemical Vapor Deposition (HDPCVD). The thickness of the first oxide material layer 200 is, for example, 350 nm-400 nm, specifically, it is 360 nm, 380 nm, or 400 nm.

请参阅图1、图3和图4所示,在步骤S30中,在本发明一实施例中,在第一氧化材料层200形成后,例如可以采用化学机械研磨工艺(Chemical Mechanical Polishing,CMP)对非器件区的衬底100进行修边处理(Edge Trim),形成台阶110,以减少碎边缺陷,提高器件可靠性。修边处理可分为两步进行,如平面研磨和边缘切割。具体地,采用化学机械抛光工艺对整个第一氧化材料层200进行平面研磨,以使第一氧化材料层200表面平坦,并保证边缘切割的深度保持一致。对第一氧化材料层200平面研磨后,使用图3中的研磨单元对衬底100的边缘进行研磨切割。研磨单元包括研磨刀片800和旋转轴700,研磨刀片800固定在旋转轴700上,旋转轴700带动研磨刀片800在垂直方向进行旋转,衬底100在水平方向进行旋转,研磨刀片800与衬底100边缘接触并对衬底100的边缘进行研磨切割,去除覆盖在衬底100边缘的第一氧化材料层200及部分衬底100,形成台阶110。在修边过程中,同步移除衬底100侧边第一氧化材料层200,形成第一氧化层210。采用化学机械抛光工艺对衬底100进行修边处理,工艺流程简单且工艺时间大大缩短,有效提高了生产效率。Please refer to FIG. 1 , FIG. 3 and FIG. 4 . In step S30 , in an embodiment of the present invention, after the first oxide material layer 200 is formed, for example, a chemical mechanical polishing (CMP) process may be used. The substrate 100 in the non-device area is edge trimmed to form steps 110 to reduce edge defects and improve device reliability. Trimming can be done in two steps, such as surface grinding and edge cutting. Specifically, a chemical mechanical polishing process is used to plane grind the entire first oxidized material layer 200 to make the surface of the first oxidized material layer 200 flat and ensure that the depth of edge cutting remains consistent. After the first oxide material layer 200 is plane ground, the edge of the substrate 100 is ground and cut using the grinding unit in FIG. 3 . The grinding unit includes a grinding blade 800 and a rotating shaft 700. The grinding blade 800 is fixed on the rotating shaft 700. The rotating shaft 700 drives the grinding blade 800 to rotate in the vertical direction, and the substrate 100 rotates in the horizontal direction. The grinding blade 800 and the substrate 100 The edges of the substrate 100 are contacted and grinded and cut to remove the first oxide material layer 200 covering the edges of the substrate 100 and part of the substrate 100 to form steps 110 . During the trimming process, the first oxide material layer 200 on the side of the substrate 100 is simultaneously removed to form the first oxide layer 210 . The substrate 100 is trimmed using a chemical mechanical polishing process. The process flow is simple and the process time is greatly shortened, which effectively improves production efficiency.

请参阅图3和图4所示,在本发明的一实施例中,台阶110的深度h例如为140μm-160μm,具体例如为140μm、150μm或160μm等,台阶110的宽度d例如为1.3mm-1.5mm,具体例如为1.3mm、1.4mm或1.5mm等。通过将台阶110的尺寸设置在上述范围内,可有效防止在后续沉积键合界面膜层时衬底100上器件区发生异常。Please refer to Figures 3 and 4. In an embodiment of the present invention, the depth h of the step 110 is, for example, 140 μm-160 μm, specifically, it is 140 μm, 150 μm or 160 μm, etc., and the width d of the step 110 is, for example, 1.3 mm-160 μm. 1.5mm, for example, 1.3mm, 1.4mm or 1.5mm. By setting the size of the step 110 within the above range, abnormalities in the device area on the substrate 100 can be effectively prevented during subsequent deposition of the bonding interface film layer.

请参阅图1、图4和图5所示,在步骤S40中,在本发明一实施例中,在形成台阶110后,例如采用等离子体增强化学气相沉积法(Plasma Enhanced CVD,PECVD)沉积正硅酸乙酯薄膜(Tetraethylorthosilicate,TEOS)的技术,在第一氧化层210表面及台阶110的表面和侧壁形成第二氧化材料层300。具体地,例如以正硅酸乙酯(TEOS)和氧气(O2)作为原料,在台阶110表面沉积第二氧化材料层300。在本发明一实施例中,通入的正硅酸乙酯液体的流量例如为500mgm-1000mgm,将正硅酸乙酯液体进行气化处理,气化处理的温度例如为100℃-120℃。随后通过惰性气体将正硅酸乙酯气体输送至反应腔室内,惰性气体例如为氦气,并向反应腔室内通入氧气。通过射频使正硅酸乙酯气体和氧气在腔室内发生解离,并反应生成二氧化硅。在本发明一实施例中,氧气的气体流量例如可以设置为2000sccm-3000sccm,射频功率例如为400W-800W。在本发明一实施例中,反应腔室内的反应压力例如为7T-9T,反应温度例如为400℃-420℃,进一步的,反应压力为8T,反应温度为410℃。形成的第二氧化材料层300覆盖性好,且正硅酸乙酯(TEOS)表面的迁移率大,可避免低密度区域或者空洞的产生。且第二氧化材料层300通过等离子体增强正硅酸乙酯薄膜(PETEOS)的工艺形成,降低沉积第二氧化材料层300的温度,保证第二氧化材料层300的薄膜质量,从而提高在第二氧化材料层300表面上形成的其他膜层的质量。在本发明一实施例中,第二氧化材料层300的厚度例如为1400nm-1450nm,具体例如为1420nm、1440nm或1450nm等。Please refer to FIG. 1, FIG. 4 and FIG. 5. In step S40, in an embodiment of the present invention, after forming the step 110, for example, plasma enhanced chemical vapor deposition (Plasma Enhanced CVD, PECVD) is used to deposit the positive Using Tetraethylorthosilicate (TEOS) technology, the second oxide material layer 300 is formed on the surface of the first oxide layer 210 and the surface and side walls of the step 110 . Specifically, for example, using tetraethyl orthosilicate (TEOS) and oxygen (O 2 ) as raw materials, the second oxide material layer 300 is deposited on the surface of the step 110 . In one embodiment of the present invention, the flow rate of the tetraethyl orthosilicate liquid introduced is, for example, 500 mgm-1000 mgm, and the ethyl orthosilicate liquid is vaporized, and the temperature of the vaporization treatment is, for example, 100°C-120°C. Then, the ethyl orthosilicate gas is transported into the reaction chamber through an inert gas, such as helium, and oxygen is introduced into the reaction chamber. Radio frequency is used to dissociate ethyl orthosilicate gas and oxygen in the chamber, and react to generate silicon dioxide. In an embodiment of the present invention, the gas flow rate of oxygen can be set to 2000 sccm-3000 sccm, for example, and the radio frequency power can be set to 400W-800W, for example. In one embodiment of the present invention, the reaction pressure in the reaction chamber is, for example, 7T-9T, and the reaction temperature is, for example, 400°C-420°C. Further, the reaction pressure is 8T, and the reaction temperature is 410°C. The formed second oxide material layer 300 has good coverage and high mobility on the TEOS surface, which can avoid the generation of low-density areas or voids. And the second oxide material layer 300 is formed through a plasma enhanced ethyl orthosilicate film (PETEOS) process, which reduces the temperature of depositing the second oxide material layer 300 and ensures the film quality of the second oxide material layer 300, thereby improving the performance of the second oxide material layer 300. The quality of other film layers formed on the surface of the dioxide material layer 300. In an embodiment of the present invention, the thickness of the second oxide material layer 300 is, for example, 1400nm-1450nm, specifically, it is 1420nm, 1440nm or 1450nm.

请参阅图1、图5和图6所示,在步骤S50中,在本发明一实施例中,在形成第二氧化材料层300后,例如采用等离子体增强正硅酸乙酯薄膜的工艺,在第二氧化材料层300表面上形成第一牺牲层400。在本发明一实施例中,第一牺牲层400例如为致密的氧化硅等材料,且第一牺牲层400的厚度例如为1180nm-1220nm,具体例如为1190nm、1200nm或1210nm等。采用两次等离子体增强正硅酸乙酯薄膜工艺,分别形成第二氧化材料层300和第一牺牲层400,在保证第二氧化材料层300和第一牺牲层400的总体厚度和强度不变,同时提高氧化层的覆盖均匀性,提升氧化层总体质量。在制作的CMOS晶体管中,曝光区域(shot)与曝光区域之间的切割沟道的深度为500nm左右,将第二氧化材料层300和第一牺牲层400的总体厚度控制在2500nm-2700nm,可以充分填充shot与shot之间的切割沟道,防止后续CMOS晶体管与承载基板的键合过程中出现气泡。Please refer to FIG. 1, FIG. 5 and FIG. 6. In step S50, in one embodiment of the present invention, after forming the second oxide material layer 300, for example, using a plasma enhanced ethyl orthosilicate film process, A first sacrificial layer 400 is formed on the surface of the second oxide material layer 300. In an embodiment of the present invention, the first sacrificial layer 400 is made of, for example, dense silicon oxide and other materials, and the thickness of the first sacrificial layer 400 is, for example, 1180 nm-1220 nm, specifically, for example, 1190 nm, 1200 nm, or 1210 nm. Two plasma-enhanced ethyl orthosilicate film processes are used to form the second oxidized material layer 300 and the first sacrificial layer 400 respectively, while ensuring that the overall thickness and strength of the second oxidized material layer 300 and the first sacrificial layer 400 remain unchanged. , while improving the coverage uniformity of the oxide layer and improving the overall quality of the oxide layer. In the fabricated CMOS transistor, the depth of the cutting channel between the exposure area (shot) is about 500nm, and the overall thickness of the second oxide material layer 300 and the first sacrificial layer 400 is controlled to 2500nm-2700nm. Fully fill the cutting trench between shot and shot to prevent bubbles from appearing during the subsequent bonding process between the CMOS transistor and the carrier substrate.

请参阅图1、图5和图6所示,在步骤S50中,在本发明一实施例中,形成第一牺牲层400后,对衬底100进行退火处理,可改善第二氧化材料层300和第一牺牲层400的质量,并进一步降低界面电荷。在本发明一实施例中,停止向腔室内通入氧气和TEOS,并向腔室内注入氮气,然后将衬底100温度保持在380℃-420℃,对衬底100上的第二氧化材料层300和第一牺牲层400进行退火,提高氧化层的致密性以及氧化层之间的结合强度。Please refer to FIGS. 1, 5 and 6. In step S50, in an embodiment of the present invention, after forming the first sacrificial layer 400, the substrate 100 is annealed to improve the second oxide material layer 300. and the quality of the first sacrificial layer 400, and further reduce the interface charge. In one embodiment of the present invention, the flow of oxygen and TEOS into the chamber is stopped, nitrogen is injected into the chamber, and then the temperature of the substrate 100 is maintained at 380°C-420°C, and the second oxide material layer on the substrate 100 is 300 and the first sacrificial layer 400 are annealed to improve the density of the oxide layer and the bonding strength between the oxide layers.

请参阅图1、图6至图7所示,在步骤S60中,在本发明一实施例中,对衬底100进行退火处理后,例如对衬底100上的第一牺牲层400进行第一次平坦化处理。在本发明一实施例中,例如采用化学机械研磨(CMP)工艺进行第一次平坦化处理,使用的抛光垫例如为硬垫,且硬垫的使用寿命例如大于25h,提高化学机械研磨工艺的质量,从而提高半导体结构的生产良率。在本发明一实施例中,例如采用图3中的研磨单元对衬底100上的第一牺牲层400进行第一次平坦化处理,以去除部分厚度的第一牺牲层400。在本发明一实施例中,例如将衬底100划分为器件区和非器件区,其中,靠近衬底100圆心的区域为器件区,靠近衬底100边缘的区域为非器件区。且在第一次平坦化处理的过程中,器件区的区域的压力例如设置为2mT-4mT,非器件区内侧区域的压力例如设置为6mT-8mT,非器件区外侧区域的压力例如设置为8mT-10mT。在沉积膜层时,衬底100边缘的区域的膜层堆积导致实际沉积的厚度大于预设的厚度,通过对衬底100边缘的区域设置较高的压力,从而确保研磨后衬底100的表面保持平坦化。在本发明一实施例中,第一次平坦化处理例如分三阶段进行,且第一阶段例如研磨45s-55s,第二阶段例如研磨45s-55s,第三阶段例如研磨45s-55s。在本发明一实施例中,第一次平坦化处理的厚度例如为800nm-1000nm,具体例如为800nm、900nm或1000nm等,宽度例如为1.3mm-1.5mm。且第一牺牲层400进行第一次平坦化处理后,形成第二牺牲层410。Please refer to FIG. 1, FIG. 6 to FIG. 7. In step S60, in an embodiment of the present invention, after the substrate 100 is annealed, for example, the first sacrificial layer 400 on the substrate 100 is subjected to a first step. Secondary flattening process. In one embodiment of the present invention, for example, a chemical mechanical polishing (CMP) process is used to perform the first planarization process. The polishing pad used is, for example, a hard pad, and the service life of the hard pad is, for example, greater than 25 hours. This improves the efficiency of the chemical mechanical polishing process. quality, thereby improving the production yield of semiconductor structures. In one embodiment of the present invention, for example, the grinding unit in FIG. 3 is used to perform a first planarization process on the first sacrificial layer 400 on the substrate 100 to remove part of the thickness of the first sacrificial layer 400 . In an embodiment of the present invention, for example, the substrate 100 is divided into a device area and a non-device area, where the area close to the center of the substrate 100 is the device area, and the area close to the edge of the substrate 100 is the non-device area. And during the first planarization process, the pressure in the device area is set to 2mT-4mT, for example, the pressure in the area inside the non-device area is set to 6mT-8mT, and the pressure in the area outside the non-device area is set to 8mT, for example. -10mT. When depositing a film layer, the accumulation of the film layer in the area at the edge of the substrate 100 causes the actual deposited thickness to be greater than the preset thickness. By setting a higher pressure on the area at the edge of the substrate 100 , the surface of the substrate 100 is ensured after polishing. Keep it flat. In one embodiment of the present invention, the first planarization process is performed in three stages, for example, and the first stage is for example grinding for 45s-55s, the second stage is for example grinding for 45s-55s, and the third stage is for example grinding for 45s-55s. In an embodiment of the present invention, the thickness of the first planarization process is, for example, 800nm-1000nm, specifically, 800nm, 900nm or 1000nm, etc., and the width is, for example, 1.3mm-1.5mm. After the first sacrificial layer 400 is subjected to the first planarization process, the second sacrificial layer 410 is formed.

请参阅图1和图8所示,在步骤S60中,在本发明一实施例中,形成第二牺牲层410后,例如采用CMP工艺对第二牺牲层410进行第二次平坦化处理,使用的抛光垫例如为硬垫,且硬垫的使用寿命例如大于25h。在本发明一实施例中,例如采用图3中的研磨单元对第二牺牲层410进行第二次平坦化处理,以去除第二牺牲层410和部分厚度的第二氧化材料层300,形成中间氧化材料层310。在第二次平坦化处理的过程中,器件区的区域的压力例如设置为2mT-4mT,非器件区内侧区域的压力例如设置为6mT-8mT,非器件区外侧区域的压力例如设置为8mT-10mT。在本发明一实施例中,第二次平坦化处理例如分三阶段进行,且第一阶段例如研磨45s-55s,第二阶段例如研磨45s-55s,第三阶段例如研磨45s-55s。在本发明一实施例中,第二次平坦化处理的厚度例如为800nm-1000nm,具体例如为800nm、900nm或1000nm等,宽度例如为1.3mm-1.5mm。Please refer to FIG. 1 and FIG. 8 . In step S60 , in an embodiment of the present invention, after forming the second sacrificial layer 410 , the second sacrificial layer 410 is planarized for a second time using, for example, a CMP process. The polishing pad is, for example, a hard pad, and the service life of the hard pad is, for example, greater than 25 hours. In one embodiment of the present invention, for example, the grinding unit in FIG. 3 is used to perform a second planarization process on the second sacrificial layer 410 to remove the second sacrificial layer 410 and part of the thickness of the second oxide material layer 300 to form an intermediate layer. Oxide material layer 310. During the second planarization process, the pressure in the device area is set to, for example, 2mT-4mT, the pressure in the area inside the non-device area is set to, for example, 6mT-8mT, and the pressure in the area outside the non-device area is set to, for example, 8mT-8mT. 10mT. In one embodiment of the present invention, the second planarization process is performed in three stages, for example, and the first stage is for example grinding for 45s-55s, the second stage is for example grinding for 45s-55s, and the third stage is for example grinding for 45s-55s. In an embodiment of the present invention, the thickness of the second planarization process is, for example, 800nm-1000nm, specifically, 800nm, 900nm or 1000nm, etc., and the width is, for example, 1.3mm-1.5mm.

请参阅图1、图8和图9所示,在步骤S60中,在本发明一实施例中,形成中间氧化材料层310,对中间氧化材料层310继续进行第一次抛光处理,去掉部分厚度的中间氧化材料层310,形成第二氧化层320。在本发明一实施例中,例如采用buffing CMP工艺进行第一次抛光处理,且抛光处理过程中对衬底100施加的压力为平坦化处理过程中对衬底100施加的压力。在第一次抛光处理的过程中,器件区的区域的压力例如设置为1mT-2mT,非器件区内侧区域的压力例如设置为3mT-4mT,非器件区外侧区域的压力例如设置为4mT-5mT。在本发明一实施例中,第一次抛光处理例如分三阶段进行,且第一阶段例如抛光1s,第二阶段例如抛光1s,第三阶段例如抛光55s-65s。在本发明一实施例中,第一次抛光处理的厚度例如为50nm-70nm,具体例如为50nm、60nm或70nm等,宽度例如为1.3mm-1.5mm。在本发明一实施例中,第一次抛光处理过程中使用的抛光垫例如为无纺布类抛光垫,与硬垫相比,无纺布柔软且表面平整度极好,抛光时对氧化材料层划伤较小。在本发明一实施例中,第一次抛光处理前,第二氧化层320表面的粗糙度例如为0.4nm-0.6nm,经过第一次抛光处理后,第二氧化层320表面的粗糙度例如为0.1nm-0.3nm,又例如为0.2nm。通过buffing CMP工艺,可以改善氧化材料层表面的细微刮伤(micro scratch)和粗糙度(roughness)等缺陷,使得第二氧化层320表面平坦光滑,从而保证后续膜层沉积的均匀性和沉积质量。Please refer to Figure 1, Figure 8 and Figure 9. In step S60, in an embodiment of the present invention, an intermediate oxide material layer 310 is formed, and the first polishing process is continued on the intermediate oxide material layer 310 to remove part of the thickness. The middle oxide material layer 310 forms a second oxide layer 320. In one embodiment of the present invention, for example, a buffing CMP process is used to perform the first polishing process, and the pressure applied to the substrate 100 during the polishing process is the pressure applied to the substrate 100 during the planarization process. During the first polishing process, the pressure in the device area is set to 1mT-2mT, for example, the pressure in the area inside the non-device area is set to 3mT-4mT, and the pressure in the area outside the non-device area is set to 4mT-5mT, for example. . In one embodiment of the present invention, the first polishing process is performed in three stages, for example, and the first stage is for example polishing for 1 s, the second stage is for example polishing for 1 s, and the third stage is for example polishing for 55s-65s. In an embodiment of the present invention, the thickness of the first polishing process is, for example, 50nm-70nm, specifically, 50nm, 60nm or 70nm, etc., and the width is, for example, 1.3mm-1.5mm. In one embodiment of the present invention, the polishing pad used in the first polishing process is, for example, a non-woven polishing pad. Compared with hard pads, non-woven fabrics are soft and have excellent surface smoothness, and are less sensitive to oxidized materials during polishing. Layer scratches are minor. In one embodiment of the present invention, before the first polishing process, the surface roughness of the second oxide layer 320 is, for example, 0.4nm-0.6nm. After the first polishing process, the surface roughness of the second oxide layer 320 is, for example, It is 0.1nm-0.3nm, and for example, it is 0.2nm. Through the buffering CMP process, defects such as micro scratches and roughness on the surface of the oxidized material layer can be improved, making the surface of the second oxide layer 320 flat and smooth, thus ensuring the uniformity and deposition quality of subsequent film deposition. .

请参阅图1、图9和图10所示,在步骤S70中,在本发明一实施例中,形成第二氧化层320后,在第二氧化层320的表面形成键合材料层500。且键合材料层500例如为致密的氧化硅等材料。本发明对键合材料层500的形成方法不加以限制,在本实施例中,例如采用高密度等离子体化学气相沉积法(High Density Plasma Chemical Vapor Deposition,HDPCVD)形成键合材料层500,且HDPCVD工艺过程中只进行沉积(deposit),不进行溅射刻蚀(sputter),从而可以提高键合材料层500的沉积效率,以及提高键合材料层500对台阶110的覆盖效果,从而进一步增强衬底100的键合界面膜层的键合强度,这有利于改善后续CMOS晶体管与承载基板键合过程中快速退火导致的气泡增强效应。在本发明一实施例中,键合材料层500的厚度例如为90nm-110nm,具体例如为90nm、100nm或110nm等。且在本发明一实施例中,通过设置第一次抛光处理,避免了采用TEOS技术形成的第二氧化层320与采用HDPCVD技术形成的键合材料层500在后续封装切割的步骤中分离,提高了图像传感器的良品率。Referring to FIG. 1 , FIG. 9 and FIG. 10 , in step S70 , in an embodiment of the present invention, after forming the second oxide layer 320 , a bonding material layer 500 is formed on the surface of the second oxide layer 320 . And the bonding material layer 500 is, for example, dense silicon oxide or other materials. The present invention does not limit the formation method of the bonding material layer 500. In this embodiment, for example, the bonding material layer 500 is formed by using High Density Plasma Chemical Vapor Deposition (HDPCVD), and HDPCVD During the process, only deposition is performed without sputter etching, thereby improving the deposition efficiency of the bonding material layer 500 and improving the coverage effect of the bonding material layer 500 on the steps 110, thereby further enhancing the lining. The bonding strength of the bonding interface film layer of the bottom 100 is beneficial to improving the bubble enhancement effect caused by rapid annealing during the subsequent bonding process between the CMOS transistor and the carrier substrate. In an embodiment of the present invention, the thickness of the bonding material layer 500 is, for example, 90 nm-110 nm, specifically, it is 90 nm, 100 nm, or 110 nm. And in one embodiment of the present invention, by configuring the first polishing process, the second oxide layer 320 formed by TEOS technology and the bonding material layer 500 formed by HDPCVD technology are prevented from being separated in the subsequent packaging and cutting steps, thereby improving improve the image sensor yield.

请参阅图1、图10和图11所示,在步骤S80中,在本发明一实施例中,形成键合材料层500后,对键合材料层500进行第二次抛光处理处理,去掉部分厚度的键合材料层500,形成键合接触层510,键合接触层510的键合强度高。在本发明一实施例中,例如采用buffingCMP工艺进行第二次抛光处理。在第二次抛光处理的过程中,器件区的区域的压力例如设置为1mT-2mT,非器件区内侧区域的压力例如设置为3mT-4mT,非器件区外侧区域的压力例如设置为4mT-5mT。在本发明一实施例中,第二次抛光处理例如分三阶段进行,且第一阶段例如抛光1s,第二阶段例如抛光1s,第三阶段例如抛光55s-65s。在本发明一实施例中,第二次抛光处理的厚度例如为50nm-70nm,具体例如为50nm、60nm或70nm等,宽度例如为1.3mm-1.5mm。在本发明一实施例中,第一次抛光处理过程中使用的抛光垫例如为无纺布类抛光垫,与硬垫相比,无纺布柔软且表面平整度极好,抛光时对材料层划伤较小。在本发明一实施例中,第二次抛光处理前键合接触层510表面的粗糙度例如为0.4nm-0.6nm,经过第二次抛光处理后,键合接触层510表面的粗糙度例如为0.1nm-0.3nm,又例如为0.2nm。通过buffing CMP工艺,可以改善材料层表面的细微刮伤(micro scratch)和粗糙度(roughness)等缺陷,从而进一步增强键合接触层510的平坦度和粗糙度,进一步增强键合接触层510的键合强度,从而抑制了键合过程中快速退火导致的气泡增强效应,从而提高CMOS晶体管与承载基板的键合质量,提高图像传感器的良率。Please refer to Figure 1, Figure 10 and Figure 11. In step S80, in an embodiment of the present invention, after forming the bonding material layer 500, the bonding material layer 500 is polished for a second time to remove part of the bonding material layer 500. The thick bonding material layer 500 forms a bonding contact layer 510, and the bonding contact layer 510 has high bonding strength. In an embodiment of the present invention, for example, a buffingCMP process is used to perform the second polishing process. During the second polishing process, the pressure in the device area is set to 1mT-2mT, for example, the pressure in the area inside the non-device area is set to 3mT-4mT, and the pressure in the area outside the non-device area is set to 4mT-5mT, for example. . In an embodiment of the present invention, the second polishing process is performed in three stages, for example, and the first stage is polishing for 1 s, the second stage is polishing for 1 s, and the third stage is polishing for 55 s-65 s. In an embodiment of the present invention, the thickness of the second polishing process is, for example, 50nm-70nm, specifically, 50nm, 60nm or 70nm, etc., and the width is, for example, 1.3mm-1.5mm. In one embodiment of the present invention, the polishing pad used in the first polishing process is, for example, a non-woven polishing pad. Compared with hard pads, non-woven fabrics are soft and have excellent surface smoothness. During polishing, the material layer is The scratches are minor. In an embodiment of the present invention, the roughness of the surface of the bonding contact layer 510 before the second polishing process is, for example, 0.4nm-0.6nm. After the second polishing process, the roughness of the surface of the bonding contact layer 510 is, for example, 0.1nm-0.3nm, another example is 0.2nm. Through the buffering CMP process, defects such as micro scratches and roughness on the surface of the material layer can be improved, thereby further enhancing the flatness and roughness of the bonding contact layer 510 and further enhancing the bonding contact layer 510 . Bonding strength, thereby suppressing the bubble enhancement effect caused by rapid annealing during the bonding process, thereby improving the bonding quality of the CMOS transistor and the carrier substrate, and improving the yield of the image sensor.

请参阅图1、图10和图11所示,在本发明一实施例中,形成键合接触层510后,对衬底100进行粒子去除(partical remove)和清洗处理。进一步的,例如采用RCA清洗工艺对衬底100进行清洗,将多次化学机械研磨处理过程中产生的大量粒子进行去除,防止造成器件污染等。Please refer to FIG. 1 , FIG. 10 and FIG. 11 . In an embodiment of the present invention, after the bonding contact layer 510 is formed, the substrate 100 is subjected to particle removal and cleaning. Further, for example, an RCA cleaning process is used to clean the substrate 100 to remove a large number of particles generated during multiple chemical mechanical polishing processes to prevent device contamination.

请参阅图1、图10至图12所示,在步骤S80中,在本发明一实施例中,形成键合接触层510后,将制作了CMOS晶体管的衬底100翻转,使键合接触层510靠近承载基板600,并采用低温熔融键合工艺对衬底100与承载基板600进行键合,制作背照式图像传感器。具体地,对键合接触层510上的接触面511和承载基板600的结合面601进行等离子体激活处理,所采用的反应气体包括Ar、N2、O2和SF6中的一种或多种。通过键合接触层510上的接触面511和承载基板600的结合面601进行接触,将衬底100与承载基板600进行键合,键合过程中,施加的键合压力例如为1N-10N,键合时间例如为10s-60s,键合温度例如为10℃-50℃。将键合后的衬底100与承载基板600进行退火处理,退火的温度例如为300℃-400℃,退火的时间例如为40min-80min。退火的时间控制在上述范围内,可以有效提高衬底100与承载基板600的键合质量,退火时间过程,会导致键合气泡不断生长,从而导致衬底100与承载基板600的贴合度变差。退火结束后,对衬底100进行减薄处理,进行微透镜以及滤光层等工序,以形成背照式图像传感器。Please refer to FIG. 1, FIG. 10 to FIG. 12. In step S80, in an embodiment of the present invention, after forming the bonding contact layer 510, the substrate 100 on which the CMOS transistor is fabricated is turned over, so that the bonding contact layer 510 is formed. 510 is close to the carrier substrate 600, and uses a low-temperature fusion bonding process to bond the substrate 100 and the carrier substrate 600 to produce a back-illuminated image sensor. Specifically, a plasma activation process is performed on the contact surface 511 on the bonding contact layer 510 and the bonding surface 601 of the carrier substrate 600. The reaction gas used includes one or more of Ar, N2 , O2 and SF6. kind. By contacting the contact surface 511 on the bonding contact layer 510 with the bonding surface 601 of the carrier substrate 600, the substrate 100 and the carrier substrate 600 are bonded. During the bonding process, the bonding pressure applied is, for example, 1N-10N. The bonding time is, for example, 10s-60s, and the bonding temperature is, for example, 10°C-50°C. The bonded substrate 100 and the carrier substrate 600 are annealed. The annealing temperature is, for example, 300° C. to 400° C., and the annealing time is, for example, 40 min to 80 min. Controlling the annealing time within the above range can effectively improve the bonding quality of the substrate 100 and the carrier substrate 600. The annealing time process will cause the bonding bubbles to continue to grow, resulting in a change in the fit between the substrate 100 and the carrier substrate 600. Difference. After the annealing is completed, the substrate 100 is thinned, and processes such as microlenses and filter layers are performed to form a back-illuminated image sensor.

请参阅图13和图14所示,在本发明一实施例中,图13为另一实施例中,在第二次平坦化处理后,采用低沉积正硅酸乙酯薄膜(Low deposition Tetraethylorthosilicate,LDTEOS)的工艺沉积键合界面层的方法,所制作的背照式图像传感器的电镜图,图14为本实施例中提供的一种图像传感器的制作方法所制作的背照式图像传感器的电镜图。结合图13和图14可知,使用本发明提供的一种图像传感器的制作方法制作的背照式图像传感器中键合气泡大大减少,从而保证了图像传感器的可靠性和良品率。Please refer to Figures 13 and 14. In one embodiment of the present invention, Figure 13 shows another embodiment. After the second planarization process, a low deposition Tetraethylorthosilicate film (Low deposition Tetraethylorthosilicate, The electron microscopy of the back-illuminated image sensor produced by the method of depositing the bonding interface layer using the LDTEOS process. Figure 14 is the electron microscopy of the back-illuminated image sensor produced by the manufacturing method of the image sensor provided in this embodiment. picture. Combining Figures 13 and 14, it can be seen that the bonding bubbles in the back-illuminated image sensor produced using the image sensor production method provided by the present invention are greatly reduced, thus ensuring the reliability and yield of the image sensor.

综上所述,本发明提出一种图像传感器的制作方法,通过简化工艺流程,减少了退火等工艺次数,降低了工艺时长,大大提高了生产效率。通过在衬底上形成台阶,意想不到的效果是降低了键合过程中产生碎边缺陷。通过HDPCVD工艺形成键合材料层,意想不到的效果是增强了衬底的键合界面膜层的键合强度,这有利于改善后续CMOS晶体管与承载基板的键合过程中快速退火导致的气泡增强效应。通过在CMP去除氧化层的工艺后新增buffingCMP工艺,意想不到的效果是改善了氧化层表面的细微刮伤和表面粗糙度。通过在HDPCVD工艺形成键合材料层之后新增buffing CMP工艺,意想不到的效果是改善了键合界面膜层表面的细微刮伤和表面粗糙度,提高了键合界面膜层的平坦度和粗糙度,且进一步增加了键合强度,从而抑制了键合过程中快速退火导致的气泡增强效应,从而减少了键合过程中气泡的产生,提高了CMOS晶体管与承载基板之间键合的质量,从而提高图像传感器的可靠性及良品率。To sum up, the present invention proposes a method for manufacturing an image sensor, which simplifies the process flow, reduces the number of annealing and other processes, reduces the process time, and greatly improves production efficiency. By forming steps on the substrate, the unexpected effect is to reduce chipping defects during the bonding process. The bonding material layer is formed through the HDPCVD process. The unexpected effect is to enhance the bonding strength of the bonding interface film layer of the substrate, which is beneficial to improving the bubble enhancement caused by rapid annealing during the subsequent bonding process of the CMOS transistor and the carrier substrate. effect. By adding the buffingCMP process after the CMP oxide layer removal process, the unexpected effect is to improve the fine scratches and surface roughness on the oxide layer surface. By adding the buffering CMP process after the bonding material layer is formed by the HDPCVD process, the unexpected effect is to improve the fine scratches and surface roughness of the bonding interface film layer, and improve the flatness and roughness of the bonding interface film layer. degree, and further increases the bonding strength, thereby suppressing the bubble enhancement effect caused by rapid annealing during the bonding process, thereby reducing the generation of bubbles during the bonding process, and improving the quality of the bonding between the CMOS transistor and the carrier substrate. Thereby improving the reliability and yield rate of the image sensor.

以上描述仅为本申请的较佳实施例以及对所运用技术原理的说明,本领域技术人员应当理解,本申请中所涉及的发明范围,并不限于上述技术特征的特定组合而成的技术方案,同时也应涵盖在不脱离所述发明构思的情况下,由上述技术特征或其等同特征进行任意组合而形成的其它技术方案,例如上述特征与本申请中公开的(但不限于)具有类似功能的技术特征进行互相替换而形成的技术方案。The above description is only a preferred embodiment of the present application and an explanation of the technical principles used. Those skilled in the art should understand that the scope of the invention involved in the present application is not limited to technical solutions formed by specific combinations of the above technical features. , it should also cover other technical solutions formed by any combination of the above technical features or their equivalent features without departing from the inventive concept. For example, the above features are similar to those disclosed in this application (but not limited to). A technical solution formed by replacing the technical features of functions with each other.

除说明书所述的技术特征外,其余技术特征为本领域技术人员的已知技术,为突出本发明的创新特点,其余技术特征在此不再赘述。Except for the technical features described in the description, the remaining technical features are known to those skilled in the art. In order to highlight the innovative features of the present invention, the remaining technical features will not be described in detail here.

Claims (10)

1. A method for manufacturing an image sensor, comprising at least the steps of:
providing a substrate, wherein the substrate comprises a device region and a non-device region;
forming a first oxide layer on the substrate, wherein the first oxide layer covers the device region and extends to part of the non-device region;
forming a step on the substrate of the non-device region;
forming a second oxide material layer on the substrate, wherein the second oxide material layer covers the first oxide layer, the surface of the step and the side wall;
forming a sacrificial layer on the surface of the second oxide material layer;
flattening the sacrificial layer at least twice to remove the sacrificial layer and part of the second oxide material layer, and polishing to form a second oxide layer;
forming a bonding contact layer on the second oxide layer; and
and bonding the bonding contact layer with the bearing substrate to form the image sensor.
2. The method of claim 1, wherein the bonding contact layer is formed by high-density plasma chemical vapor deposition.
3. The method of claim 1, wherein the polishing process applies a pressure that is half of the pressure applied by the planarization process.
4. The method of manufacturing an image sensor of claim 1, wherein the step of forming the second oxide layer comprises:
forming a first sacrificial layer on the surface of the second oxide material layer;
carrying out first planarization treatment on the first sacrificial layer to remove part of the thickness of the first sacrificial layer and form a second sacrificial layer;
performing a second planarization treatment on the second sacrificial layer to remove the second sacrificial layer and a part of the second oxide material layer with the thickness to form an intermediate oxide material layer; and
and performing first polishing treatment on the intermediate oxide material layer to remove part of the thickness of the intermediate oxide material layer, so as to form a second oxide layer, wherein the surface of the second oxide layer is smooth.
5. The method of manufacturing an image sensor according to claim 4, wherein the first polishing process is performed at a thickness of 70nm to 90nm for a period of 57s to 67s.
6. The method of manufacturing an image sensor according to claim 4, wherein the roughness of the surface of the second oxide layer after the first polishing process is 0.1nm to 0.3nm.
7. The method of manufacturing an image sensor of claim 4, wherein the step of forming the bonding contact layer comprises:
forming a bonding material layer on the surface of the second oxide layer;
and performing secondary polishing treatment on the bonding material layer to remove part of the bonding material layer to form a bonding contact layer.
8. The method of claim 7, wherein the bonding material layer has a thickness of 90nm-110nm.
9. The method of manufacturing an image sensor according to claim 7, wherein the roughness of the surface of the bonding contact layer after the second polishing process is 0.1nm to 0.3nm.
10. The method of manufacturing an image sensor of claim 7, further comprising: and after the bonding contact layer is formed, carrying out particle removal and cleaning treatment on the substrate.
CN202410129350.1A 2024-01-31 2024-01-31 Manufacturing method of image sensor Active CN117690943B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202410129350.1A CN117690943B (en) 2024-01-31 2024-01-31 Manufacturing method of image sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202410129350.1A CN117690943B (en) 2024-01-31 2024-01-31 Manufacturing method of image sensor

Publications (2)

Publication Number Publication Date
CN117690943A true CN117690943A (en) 2024-03-12
CN117690943B CN117690943B (en) 2024-06-04

Family

ID=90135581

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202410129350.1A Active CN117690943B (en) 2024-01-31 2024-01-31 Manufacturing method of image sensor

Country Status (1)

Country Link
CN (1) CN117690943B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118299394A (en) * 2024-06-05 2024-07-05 合肥晶合集成电路股份有限公司 Semiconductor structure and preparation method thereof

Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1191383A (en) * 1996-11-15 1998-08-26 佳能株式会社 Method of manufacturing semiconductor article
KR20000014023A (en) * 1998-08-17 2000-03-06 밍 루 Fabricating method of acceleration sensor
CN1248788A (en) * 1998-07-23 2000-03-29 佳能株式会社 Method for making semiconductor substrate parts
CN1826434A (en) * 2003-07-24 2006-08-30 S.O.I.Tec绝缘体上硅技术公司 Method of fabricating an epitaxially grown layer
CN101075585A (en) * 2006-05-19 2007-11-21 国际商业机器公司 Semiconductor structure and manufacturing method thereof
WO2007145679A2 (en) * 2006-02-02 2007-12-21 Trustees Of Boston University Planarization of gan by photoresist technique using an inductively coupled plasma
CN101834152A (en) * 2010-04-20 2010-09-15 中国科学院上海微系统与信息技术研究所 Manufacturing method of three-dimensional stacked resistive switching memory
CN101897001A (en) * 2008-01-17 2010-11-24 硅绝缘体技术有限公司 Process of treating defects during the bonding of wafers
CN102272926A (en) * 2009-01-12 2011-12-07 国际商业机器公司 Low cost fabrication of double BOX back gate silicon-on-insulator wafers
CN102760697A (en) * 2011-04-27 2012-10-31 株式会社半导体能源研究所 Manufacturing method of semiconductor device
US20120276702A1 (en) * 2011-04-27 2012-11-01 Yang Jun-Kyu Method of manufacturing semiconductor device
CN104658927A (en) * 2013-11-19 2015-05-27 中芯国际集成电路制造(上海)有限公司 Bonding thinning and optimizing method for semiconductor chip
CN110703382A (en) * 2019-01-10 2020-01-17 济南晶正电子科技有限公司 High-integration-level lithium niobate/silicon nitride optical waveguide integrated structure and preparation method thereof
CN111965856A (en) * 2020-08-25 2020-11-20 济南晶正电子科技有限公司 Electro-optical crystal film, preparation method thereof and electro-optical modulator
WO2020232587A1 (en) * 2019-05-17 2020-11-26 天津三安光电有限公司 Method for manufacturing semiconductor light-emitting element
CN112115755A (en) * 2019-10-23 2020-12-22 中芯集成电路(宁波)有限公司上海分公司 Fingerprint identification module, manufacturing method thereof and electronic equipment
CN114273992A (en) * 2022-01-06 2022-04-05 西南应用磁学研究所(中国电子科技集团公司第九研究所) Surface polishing method for patterned metal layer
CN114864753A (en) * 2022-07-05 2022-08-05 杭州视光半导体科技有限公司 Preparation method and application of wafer with three-layer stacking structure
CN115881622A (en) * 2023-01-29 2023-03-31 合肥晶合集成电路股份有限公司 Wafer bonding method
CN116260412A (en) * 2022-12-12 2023-06-13 赛莱克斯微系统科技(北京)有限公司 Method for manufacturing cavity type film bulk acoustic wave resonator

Patent Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1191383A (en) * 1996-11-15 1998-08-26 佳能株式会社 Method of manufacturing semiconductor article
CN1248788A (en) * 1998-07-23 2000-03-29 佳能株式会社 Method for making semiconductor substrate parts
KR20000014023A (en) * 1998-08-17 2000-03-06 밍 루 Fabricating method of acceleration sensor
CN1826434A (en) * 2003-07-24 2006-08-30 S.O.I.Tec绝缘体上硅技术公司 Method of fabricating an epitaxially grown layer
WO2007145679A2 (en) * 2006-02-02 2007-12-21 Trustees Of Boston University Planarization of gan by photoresist technique using an inductively coupled plasma
CN101075585A (en) * 2006-05-19 2007-11-21 国际商业机器公司 Semiconductor structure and manufacturing method thereof
CN101897001A (en) * 2008-01-17 2010-11-24 硅绝缘体技术有限公司 Process of treating defects during the bonding of wafers
CN102272926A (en) * 2009-01-12 2011-12-07 国际商业机器公司 Low cost fabrication of double BOX back gate silicon-on-insulator wafers
CN101834152A (en) * 2010-04-20 2010-09-15 中国科学院上海微系统与信息技术研究所 Manufacturing method of three-dimensional stacked resistive switching memory
US20120276702A1 (en) * 2011-04-27 2012-11-01 Yang Jun-Kyu Method of manufacturing semiconductor device
CN102760697A (en) * 2011-04-27 2012-10-31 株式会社半导体能源研究所 Manufacturing method of semiconductor device
CN104658927A (en) * 2013-11-19 2015-05-27 中芯国际集成电路制造(上海)有限公司 Bonding thinning and optimizing method for semiconductor chip
CN110703382A (en) * 2019-01-10 2020-01-17 济南晶正电子科技有限公司 High-integration-level lithium niobate/silicon nitride optical waveguide integrated structure and preparation method thereof
WO2020232587A1 (en) * 2019-05-17 2020-11-26 天津三安光电有限公司 Method for manufacturing semiconductor light-emitting element
CN112115755A (en) * 2019-10-23 2020-12-22 中芯集成电路(宁波)有限公司上海分公司 Fingerprint identification module, manufacturing method thereof and electronic equipment
CN111965856A (en) * 2020-08-25 2020-11-20 济南晶正电子科技有限公司 Electro-optical crystal film, preparation method thereof and electro-optical modulator
CN114273992A (en) * 2022-01-06 2022-04-05 西南应用磁学研究所(中国电子科技集团公司第九研究所) Surface polishing method for patterned metal layer
CN114864753A (en) * 2022-07-05 2022-08-05 杭州视光半导体科技有限公司 Preparation method and application of wafer with three-layer stacking structure
CN116260412A (en) * 2022-12-12 2023-06-13 赛莱克斯微系统科技(北京)有限公司 Method for manufacturing cavity type film bulk acoustic wave resonator
CN115881622A (en) * 2023-01-29 2023-03-31 合肥晶合集成电路股份有限公司 Wafer bonding method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
刘玉岭: "超大规模集成电路衬底材料性能及加工测试技术工程", 31 December 2020 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118299394A (en) * 2024-06-05 2024-07-05 合肥晶合集成电路股份有限公司 Semiconductor structure and preparation method thereof

Also Published As

Publication number Publication date
CN117690943B (en) 2024-06-04

Similar Documents

Publication Publication Date Title
CN110211979B (en) Photodetector and method for manufacturing the same
JP3684401B2 (en) Manufacturing method of SOI wafer
CN115881622B (en) Wafer bonding method
CN117690943B (en) Manufacturing method of image sensor
KR101722401B1 (en) Bonded wafer manufacturing method
CN101771058A (en) Back side illuminaton image sensor and method for manufacturing the same
CN107425018B (en) A method of manufacturing a semiconductor device
CN115579374B (en) Fabrication method of back-illuminated image sensor and back-illuminated image sensor
CN110718453A (en) Semiconductor device and method for manufacturing the same
CN109545672A (en) Wafer bonding method and bonded wafer
KR102010703B1 (en) High dielectric constant dielectric layer forming method, image sensor device, and manufacturing method thereof
CN102044472B (en) Method for reducing thickness of dielectric layer
CN112599409A (en) Wafer bonding method
JP2014072237A (en) Semiconductor device
JP2011014673A (en) Soi substrate and method of manufacturing the same, and method of manufacturing solid-state image pickup device with soi substrate
CN102117819B (en) Method for forming backside illuminated (BSI) image sensor
US7985613B2 (en) Method for manufacturing back side illumination image sensor
CN104253139B (en) A kind of imaging sensor preparation technology
US12341056B2 (en) Method of fabricating a semiconductor structure and semiconductor structure obtained therefrom
TW202443875A (en) Image sensing device and method of manufacturing the same
CN116247069A (en) Semiconductor structure, preparation method thereof and back-illuminated image sensor
CN119317213B (en) Back-illuminated semiconductor structure bonding method and back-illuminated image sensor
TW408451B (en) Method for fabricating semiconductor wafers
CN110211977B (en) Three-dimensional stacked CIS and forming method thereof
CN108281442B (en) Image sensor and forming method thereof

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant